sanitize audit_mq_notify()
[deliverable/linux.git] / kernel / auditsc.c
1 /* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
3 *
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
7 * All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24 *
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
27 *
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
31 *
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
34 *
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37 *
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
40 *
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
43 */
44
45 #include <linux/init.h>
46 #include <asm/types.h>
47 #include <asm/atomic.h>
48 #include <linux/fs.h>
49 #include <linux/namei.h>
50 #include <linux/mm.h>
51 #include <linux/module.h>
52 #include <linux/mount.h>
53 #include <linux/socket.h>
54 #include <linux/mqueue.h>
55 #include <linux/audit.h>
56 #include <linux/personality.h>
57 #include <linux/time.h>
58 #include <linux/netlink.h>
59 #include <linux/compiler.h>
60 #include <asm/unistd.h>
61 #include <linux/security.h>
62 #include <linux/list.h>
63 #include <linux/tty.h>
64 #include <linux/binfmts.h>
65 #include <linux/highmem.h>
66 #include <linux/syscalls.h>
67 #include <linux/inotify.h>
68 #include <linux/capability.h>
69
70 #include "audit.h"
71
72 /* AUDIT_NAMES is the number of slots we reserve in the audit_context
73 * for saving names from getname(). */
74 #define AUDIT_NAMES 20
75
76 /* Indicates that audit should log the full pathname. */
77 #define AUDIT_NAME_FULL -1
78
79 /* no execve audit message should be longer than this (userspace limits) */
80 #define MAX_EXECVE_AUDIT_LEN 7500
81
82 /* number of audit rules */
83 int audit_n_rules;
84
85 /* determines whether we collect data for signals sent */
86 int audit_signals;
87
88 struct audit_cap_data {
89 kernel_cap_t permitted;
90 kernel_cap_t inheritable;
91 union {
92 unsigned int fE; /* effective bit of a file capability */
93 kernel_cap_t effective; /* effective set of a process */
94 };
95 };
96
97 /* When fs/namei.c:getname() is called, we store the pointer in name and
98 * we don't let putname() free it (instead we free all of the saved
99 * pointers at syscall exit time).
100 *
101 * Further, in fs/namei.c:path_lookup() we store the inode and device. */
102 struct audit_names {
103 const char *name;
104 int name_len; /* number of name's characters to log */
105 unsigned name_put; /* call __putname() for this name */
106 unsigned long ino;
107 dev_t dev;
108 umode_t mode;
109 uid_t uid;
110 gid_t gid;
111 dev_t rdev;
112 u32 osid;
113 struct audit_cap_data fcap;
114 unsigned int fcap_ver;
115 };
116
117 struct audit_aux_data {
118 struct audit_aux_data *next;
119 int type;
120 };
121
122 #define AUDIT_AUX_IPCPERM 0
123
124 /* Number of target pids per aux struct. */
125 #define AUDIT_AUX_PIDS 16
126
127 struct audit_aux_data_mq_open {
128 struct audit_aux_data d;
129 int oflag;
130 mode_t mode;
131 struct mq_attr attr;
132 };
133
134 struct audit_aux_data_mq_sendrecv {
135 struct audit_aux_data d;
136 mqd_t mqdes;
137 size_t msg_len;
138 unsigned int msg_prio;
139 struct timespec abs_timeout;
140 };
141
142 struct audit_aux_data_execve {
143 struct audit_aux_data d;
144 int argc;
145 int envc;
146 struct mm_struct *mm;
147 };
148
149 struct audit_aux_data_fd_pair {
150 struct audit_aux_data d;
151 int fd[2];
152 };
153
154 struct audit_aux_data_pids {
155 struct audit_aux_data d;
156 pid_t target_pid[AUDIT_AUX_PIDS];
157 uid_t target_auid[AUDIT_AUX_PIDS];
158 uid_t target_uid[AUDIT_AUX_PIDS];
159 unsigned int target_sessionid[AUDIT_AUX_PIDS];
160 u32 target_sid[AUDIT_AUX_PIDS];
161 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
162 int pid_count;
163 };
164
165 struct audit_aux_data_bprm_fcaps {
166 struct audit_aux_data d;
167 struct audit_cap_data fcap;
168 unsigned int fcap_ver;
169 struct audit_cap_data old_pcap;
170 struct audit_cap_data new_pcap;
171 };
172
173 struct audit_aux_data_capset {
174 struct audit_aux_data d;
175 pid_t pid;
176 struct audit_cap_data cap;
177 };
178
179 struct audit_tree_refs {
180 struct audit_tree_refs *next;
181 struct audit_chunk *c[31];
182 };
183
184 /* The per-task audit context. */
185 struct audit_context {
186 int dummy; /* must be the first element */
187 int in_syscall; /* 1 if task is in a syscall */
188 enum audit_state state;
189 unsigned int serial; /* serial number for record */
190 struct timespec ctime; /* time of syscall entry */
191 int major; /* syscall number */
192 unsigned long argv[4]; /* syscall arguments */
193 int return_valid; /* return code is valid */
194 long return_code;/* syscall return code */
195 int auditable; /* 1 if record should be written */
196 int name_count;
197 struct audit_names names[AUDIT_NAMES];
198 char * filterkey; /* key for rule that triggered record */
199 struct path pwd;
200 struct audit_context *previous; /* For nested syscalls */
201 struct audit_aux_data *aux;
202 struct audit_aux_data *aux_pids;
203 struct sockaddr_storage *sockaddr;
204 size_t sockaddr_len;
205 /* Save things to print about task_struct */
206 pid_t pid, ppid;
207 uid_t uid, euid, suid, fsuid;
208 gid_t gid, egid, sgid, fsgid;
209 unsigned long personality;
210 int arch;
211
212 pid_t target_pid;
213 uid_t target_auid;
214 uid_t target_uid;
215 unsigned int target_sessionid;
216 u32 target_sid;
217 char target_comm[TASK_COMM_LEN];
218
219 struct audit_tree_refs *trees, *first_trees;
220 int tree_count;
221
222 int type;
223 union {
224 struct {
225 int nargs;
226 long args[6];
227 } socketcall;
228 struct {
229 uid_t uid;
230 gid_t gid;
231 mode_t mode;
232 u32 osid;
233 int has_perm;
234 uid_t perm_uid;
235 gid_t perm_gid;
236 mode_t perm_mode;
237 unsigned long qbytes;
238 } ipc;
239 struct {
240 mqd_t mqdes;
241 struct mq_attr mqstat;
242 } mq_getsetattr;
243 struct {
244 mqd_t mqdes;
245 int sigev_signo;
246 } mq_notify;
247 };
248
249 #if AUDIT_DEBUG
250 int put_count;
251 int ino_count;
252 #endif
253 };
254
255 #define ACC_MODE(x) ("\004\002\006\006"[(x)&O_ACCMODE])
256 static inline int open_arg(int flags, int mask)
257 {
258 int n = ACC_MODE(flags);
259 if (flags & (O_TRUNC | O_CREAT))
260 n |= AUDIT_PERM_WRITE;
261 return n & mask;
262 }
263
264 static int audit_match_perm(struct audit_context *ctx, int mask)
265 {
266 unsigned n;
267 if (unlikely(!ctx))
268 return 0;
269 n = ctx->major;
270
271 switch (audit_classify_syscall(ctx->arch, n)) {
272 case 0: /* native */
273 if ((mask & AUDIT_PERM_WRITE) &&
274 audit_match_class(AUDIT_CLASS_WRITE, n))
275 return 1;
276 if ((mask & AUDIT_PERM_READ) &&
277 audit_match_class(AUDIT_CLASS_READ, n))
278 return 1;
279 if ((mask & AUDIT_PERM_ATTR) &&
280 audit_match_class(AUDIT_CLASS_CHATTR, n))
281 return 1;
282 return 0;
283 case 1: /* 32bit on biarch */
284 if ((mask & AUDIT_PERM_WRITE) &&
285 audit_match_class(AUDIT_CLASS_WRITE_32, n))
286 return 1;
287 if ((mask & AUDIT_PERM_READ) &&
288 audit_match_class(AUDIT_CLASS_READ_32, n))
289 return 1;
290 if ((mask & AUDIT_PERM_ATTR) &&
291 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
292 return 1;
293 return 0;
294 case 2: /* open */
295 return mask & ACC_MODE(ctx->argv[1]);
296 case 3: /* openat */
297 return mask & ACC_MODE(ctx->argv[2]);
298 case 4: /* socketcall */
299 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
300 case 5: /* execve */
301 return mask & AUDIT_PERM_EXEC;
302 default:
303 return 0;
304 }
305 }
306
307 static int audit_match_filetype(struct audit_context *ctx, int which)
308 {
309 unsigned index = which & ~S_IFMT;
310 mode_t mode = which & S_IFMT;
311
312 if (unlikely(!ctx))
313 return 0;
314
315 if (index >= ctx->name_count)
316 return 0;
317 if (ctx->names[index].ino == -1)
318 return 0;
319 if ((ctx->names[index].mode ^ mode) & S_IFMT)
320 return 0;
321 return 1;
322 }
323
324 /*
325 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
326 * ->first_trees points to its beginning, ->trees - to the current end of data.
327 * ->tree_count is the number of free entries in array pointed to by ->trees.
328 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
329 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
330 * it's going to remain 1-element for almost any setup) until we free context itself.
331 * References in it _are_ dropped - at the same time we free/drop aux stuff.
332 */
333
334 #ifdef CONFIG_AUDIT_TREE
335 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
336 {
337 struct audit_tree_refs *p = ctx->trees;
338 int left = ctx->tree_count;
339 if (likely(left)) {
340 p->c[--left] = chunk;
341 ctx->tree_count = left;
342 return 1;
343 }
344 if (!p)
345 return 0;
346 p = p->next;
347 if (p) {
348 p->c[30] = chunk;
349 ctx->trees = p;
350 ctx->tree_count = 30;
351 return 1;
352 }
353 return 0;
354 }
355
356 static int grow_tree_refs(struct audit_context *ctx)
357 {
358 struct audit_tree_refs *p = ctx->trees;
359 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
360 if (!ctx->trees) {
361 ctx->trees = p;
362 return 0;
363 }
364 if (p)
365 p->next = ctx->trees;
366 else
367 ctx->first_trees = ctx->trees;
368 ctx->tree_count = 31;
369 return 1;
370 }
371 #endif
372
373 static void unroll_tree_refs(struct audit_context *ctx,
374 struct audit_tree_refs *p, int count)
375 {
376 #ifdef CONFIG_AUDIT_TREE
377 struct audit_tree_refs *q;
378 int n;
379 if (!p) {
380 /* we started with empty chain */
381 p = ctx->first_trees;
382 count = 31;
383 /* if the very first allocation has failed, nothing to do */
384 if (!p)
385 return;
386 }
387 n = count;
388 for (q = p; q != ctx->trees; q = q->next, n = 31) {
389 while (n--) {
390 audit_put_chunk(q->c[n]);
391 q->c[n] = NULL;
392 }
393 }
394 while (n-- > ctx->tree_count) {
395 audit_put_chunk(q->c[n]);
396 q->c[n] = NULL;
397 }
398 ctx->trees = p;
399 ctx->tree_count = count;
400 #endif
401 }
402
403 static void free_tree_refs(struct audit_context *ctx)
404 {
405 struct audit_tree_refs *p, *q;
406 for (p = ctx->first_trees; p; p = q) {
407 q = p->next;
408 kfree(p);
409 }
410 }
411
412 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
413 {
414 #ifdef CONFIG_AUDIT_TREE
415 struct audit_tree_refs *p;
416 int n;
417 if (!tree)
418 return 0;
419 /* full ones */
420 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
421 for (n = 0; n < 31; n++)
422 if (audit_tree_match(p->c[n], tree))
423 return 1;
424 }
425 /* partial */
426 if (p) {
427 for (n = ctx->tree_count; n < 31; n++)
428 if (audit_tree_match(p->c[n], tree))
429 return 1;
430 }
431 #endif
432 return 0;
433 }
434
435 /* Determine if any context name data matches a rule's watch data */
436 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
437 * otherwise. */
438 static int audit_filter_rules(struct task_struct *tsk,
439 struct audit_krule *rule,
440 struct audit_context *ctx,
441 struct audit_names *name,
442 enum audit_state *state)
443 {
444 const struct cred *cred = get_task_cred(tsk);
445 int i, j, need_sid = 1;
446 u32 sid;
447
448 for (i = 0; i < rule->field_count; i++) {
449 struct audit_field *f = &rule->fields[i];
450 int result = 0;
451
452 switch (f->type) {
453 case AUDIT_PID:
454 result = audit_comparator(tsk->pid, f->op, f->val);
455 break;
456 case AUDIT_PPID:
457 if (ctx) {
458 if (!ctx->ppid)
459 ctx->ppid = sys_getppid();
460 result = audit_comparator(ctx->ppid, f->op, f->val);
461 }
462 break;
463 case AUDIT_UID:
464 result = audit_comparator(cred->uid, f->op, f->val);
465 break;
466 case AUDIT_EUID:
467 result = audit_comparator(cred->euid, f->op, f->val);
468 break;
469 case AUDIT_SUID:
470 result = audit_comparator(cred->suid, f->op, f->val);
471 break;
472 case AUDIT_FSUID:
473 result = audit_comparator(cred->fsuid, f->op, f->val);
474 break;
475 case AUDIT_GID:
476 result = audit_comparator(cred->gid, f->op, f->val);
477 break;
478 case AUDIT_EGID:
479 result = audit_comparator(cred->egid, f->op, f->val);
480 break;
481 case AUDIT_SGID:
482 result = audit_comparator(cred->sgid, f->op, f->val);
483 break;
484 case AUDIT_FSGID:
485 result = audit_comparator(cred->fsgid, f->op, f->val);
486 break;
487 case AUDIT_PERS:
488 result = audit_comparator(tsk->personality, f->op, f->val);
489 break;
490 case AUDIT_ARCH:
491 if (ctx)
492 result = audit_comparator(ctx->arch, f->op, f->val);
493 break;
494
495 case AUDIT_EXIT:
496 if (ctx && ctx->return_valid)
497 result = audit_comparator(ctx->return_code, f->op, f->val);
498 break;
499 case AUDIT_SUCCESS:
500 if (ctx && ctx->return_valid) {
501 if (f->val)
502 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
503 else
504 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
505 }
506 break;
507 case AUDIT_DEVMAJOR:
508 if (name)
509 result = audit_comparator(MAJOR(name->dev),
510 f->op, f->val);
511 else if (ctx) {
512 for (j = 0; j < ctx->name_count; j++) {
513 if (audit_comparator(MAJOR(ctx->names[j].dev), f->op, f->val)) {
514 ++result;
515 break;
516 }
517 }
518 }
519 break;
520 case AUDIT_DEVMINOR:
521 if (name)
522 result = audit_comparator(MINOR(name->dev),
523 f->op, f->val);
524 else if (ctx) {
525 for (j = 0; j < ctx->name_count; j++) {
526 if (audit_comparator(MINOR(ctx->names[j].dev), f->op, f->val)) {
527 ++result;
528 break;
529 }
530 }
531 }
532 break;
533 case AUDIT_INODE:
534 if (name)
535 result = (name->ino == f->val);
536 else if (ctx) {
537 for (j = 0; j < ctx->name_count; j++) {
538 if (audit_comparator(ctx->names[j].ino, f->op, f->val)) {
539 ++result;
540 break;
541 }
542 }
543 }
544 break;
545 case AUDIT_WATCH:
546 if (name && rule->watch->ino != (unsigned long)-1)
547 result = (name->dev == rule->watch->dev &&
548 name->ino == rule->watch->ino);
549 break;
550 case AUDIT_DIR:
551 if (ctx)
552 result = match_tree_refs(ctx, rule->tree);
553 break;
554 case AUDIT_LOGINUID:
555 result = 0;
556 if (ctx)
557 result = audit_comparator(tsk->loginuid, f->op, f->val);
558 break;
559 case AUDIT_SUBJ_USER:
560 case AUDIT_SUBJ_ROLE:
561 case AUDIT_SUBJ_TYPE:
562 case AUDIT_SUBJ_SEN:
563 case AUDIT_SUBJ_CLR:
564 /* NOTE: this may return negative values indicating
565 a temporary error. We simply treat this as a
566 match for now to avoid losing information that
567 may be wanted. An error message will also be
568 logged upon error */
569 if (f->lsm_rule) {
570 if (need_sid) {
571 security_task_getsecid(tsk, &sid);
572 need_sid = 0;
573 }
574 result = security_audit_rule_match(sid, f->type,
575 f->op,
576 f->lsm_rule,
577 ctx);
578 }
579 break;
580 case AUDIT_OBJ_USER:
581 case AUDIT_OBJ_ROLE:
582 case AUDIT_OBJ_TYPE:
583 case AUDIT_OBJ_LEV_LOW:
584 case AUDIT_OBJ_LEV_HIGH:
585 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
586 also applies here */
587 if (f->lsm_rule) {
588 /* Find files that match */
589 if (name) {
590 result = security_audit_rule_match(
591 name->osid, f->type, f->op,
592 f->lsm_rule, ctx);
593 } else if (ctx) {
594 for (j = 0; j < ctx->name_count; j++) {
595 if (security_audit_rule_match(
596 ctx->names[j].osid,
597 f->type, f->op,
598 f->lsm_rule, ctx)) {
599 ++result;
600 break;
601 }
602 }
603 }
604 /* Find ipc objects that match */
605 if (!ctx || ctx->type != AUDIT_IPC)
606 break;
607 if (security_audit_rule_match(ctx->ipc.osid,
608 f->type, f->op,
609 f->lsm_rule, ctx))
610 ++result;
611 }
612 break;
613 case AUDIT_ARG0:
614 case AUDIT_ARG1:
615 case AUDIT_ARG2:
616 case AUDIT_ARG3:
617 if (ctx)
618 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
619 break;
620 case AUDIT_FILTERKEY:
621 /* ignore this field for filtering */
622 result = 1;
623 break;
624 case AUDIT_PERM:
625 result = audit_match_perm(ctx, f->val);
626 break;
627 case AUDIT_FILETYPE:
628 result = audit_match_filetype(ctx, f->val);
629 break;
630 }
631
632 if (!result) {
633 put_cred(cred);
634 return 0;
635 }
636 }
637 if (rule->filterkey && ctx)
638 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
639 switch (rule->action) {
640 case AUDIT_NEVER: *state = AUDIT_DISABLED; break;
641 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break;
642 }
643 put_cred(cred);
644 return 1;
645 }
646
647 /* At process creation time, we can determine if system-call auditing is
648 * completely disabled for this task. Since we only have the task
649 * structure at this point, we can only check uid and gid.
650 */
651 static enum audit_state audit_filter_task(struct task_struct *tsk)
652 {
653 struct audit_entry *e;
654 enum audit_state state;
655
656 rcu_read_lock();
657 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
658 if (audit_filter_rules(tsk, &e->rule, NULL, NULL, &state)) {
659 rcu_read_unlock();
660 return state;
661 }
662 }
663 rcu_read_unlock();
664 return AUDIT_BUILD_CONTEXT;
665 }
666
667 /* At syscall entry and exit time, this filter is called if the
668 * audit_state is not low enough that auditing cannot take place, but is
669 * also not high enough that we already know we have to write an audit
670 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
671 */
672 static enum audit_state audit_filter_syscall(struct task_struct *tsk,
673 struct audit_context *ctx,
674 struct list_head *list)
675 {
676 struct audit_entry *e;
677 enum audit_state state;
678
679 if (audit_pid && tsk->tgid == audit_pid)
680 return AUDIT_DISABLED;
681
682 rcu_read_lock();
683 if (!list_empty(list)) {
684 int word = AUDIT_WORD(ctx->major);
685 int bit = AUDIT_BIT(ctx->major);
686
687 list_for_each_entry_rcu(e, list, list) {
688 if ((e->rule.mask[word] & bit) == bit &&
689 audit_filter_rules(tsk, &e->rule, ctx, NULL,
690 &state)) {
691 rcu_read_unlock();
692 return state;
693 }
694 }
695 }
696 rcu_read_unlock();
697 return AUDIT_BUILD_CONTEXT;
698 }
699
700 /* At syscall exit time, this filter is called if any audit_names[] have been
701 * collected during syscall processing. We only check rules in sublists at hash
702 * buckets applicable to the inode numbers in audit_names[].
703 * Regarding audit_state, same rules apply as for audit_filter_syscall().
704 */
705 enum audit_state audit_filter_inodes(struct task_struct *tsk,
706 struct audit_context *ctx)
707 {
708 int i;
709 struct audit_entry *e;
710 enum audit_state state;
711
712 if (audit_pid && tsk->tgid == audit_pid)
713 return AUDIT_DISABLED;
714
715 rcu_read_lock();
716 for (i = 0; i < ctx->name_count; i++) {
717 int word = AUDIT_WORD(ctx->major);
718 int bit = AUDIT_BIT(ctx->major);
719 struct audit_names *n = &ctx->names[i];
720 int h = audit_hash_ino((u32)n->ino);
721 struct list_head *list = &audit_inode_hash[h];
722
723 if (list_empty(list))
724 continue;
725
726 list_for_each_entry_rcu(e, list, list) {
727 if ((e->rule.mask[word] & bit) == bit &&
728 audit_filter_rules(tsk, &e->rule, ctx, n, &state)) {
729 rcu_read_unlock();
730 return state;
731 }
732 }
733 }
734 rcu_read_unlock();
735 return AUDIT_BUILD_CONTEXT;
736 }
737
738 void audit_set_auditable(struct audit_context *ctx)
739 {
740 ctx->auditable = 1;
741 }
742
743 static inline struct audit_context *audit_get_context(struct task_struct *tsk,
744 int return_valid,
745 int return_code)
746 {
747 struct audit_context *context = tsk->audit_context;
748
749 if (likely(!context))
750 return NULL;
751 context->return_valid = return_valid;
752
753 /*
754 * we need to fix up the return code in the audit logs if the actual
755 * return codes are later going to be fixed up by the arch specific
756 * signal handlers
757 *
758 * This is actually a test for:
759 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
760 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
761 *
762 * but is faster than a bunch of ||
763 */
764 if (unlikely(return_code <= -ERESTARTSYS) &&
765 (return_code >= -ERESTART_RESTARTBLOCK) &&
766 (return_code != -ENOIOCTLCMD))
767 context->return_code = -EINTR;
768 else
769 context->return_code = return_code;
770
771 if (context->in_syscall && !context->dummy && !context->auditable) {
772 enum audit_state state;
773
774 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
775 if (state == AUDIT_RECORD_CONTEXT) {
776 context->auditable = 1;
777 goto get_context;
778 }
779
780 state = audit_filter_inodes(tsk, context);
781 if (state == AUDIT_RECORD_CONTEXT)
782 context->auditable = 1;
783
784 }
785
786 get_context:
787
788 tsk->audit_context = NULL;
789 return context;
790 }
791
792 static inline void audit_free_names(struct audit_context *context)
793 {
794 int i;
795
796 #if AUDIT_DEBUG == 2
797 if (context->auditable
798 ||context->put_count + context->ino_count != context->name_count) {
799 printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
800 " name_count=%d put_count=%d"
801 " ino_count=%d [NOT freeing]\n",
802 __FILE__, __LINE__,
803 context->serial, context->major, context->in_syscall,
804 context->name_count, context->put_count,
805 context->ino_count);
806 for (i = 0; i < context->name_count; i++) {
807 printk(KERN_ERR "names[%d] = %p = %s\n", i,
808 context->names[i].name,
809 context->names[i].name ?: "(null)");
810 }
811 dump_stack();
812 return;
813 }
814 #endif
815 #if AUDIT_DEBUG
816 context->put_count = 0;
817 context->ino_count = 0;
818 #endif
819
820 for (i = 0; i < context->name_count; i++) {
821 if (context->names[i].name && context->names[i].name_put)
822 __putname(context->names[i].name);
823 }
824 context->name_count = 0;
825 path_put(&context->pwd);
826 context->pwd.dentry = NULL;
827 context->pwd.mnt = NULL;
828 }
829
830 static inline void audit_free_aux(struct audit_context *context)
831 {
832 struct audit_aux_data *aux;
833
834 while ((aux = context->aux)) {
835 context->aux = aux->next;
836 kfree(aux);
837 }
838 while ((aux = context->aux_pids)) {
839 context->aux_pids = aux->next;
840 kfree(aux);
841 }
842 }
843
844 static inline void audit_zero_context(struct audit_context *context,
845 enum audit_state state)
846 {
847 memset(context, 0, sizeof(*context));
848 context->state = state;
849 }
850
851 static inline struct audit_context *audit_alloc_context(enum audit_state state)
852 {
853 struct audit_context *context;
854
855 if (!(context = kmalloc(sizeof(*context), GFP_KERNEL)))
856 return NULL;
857 audit_zero_context(context, state);
858 return context;
859 }
860
861 /**
862 * audit_alloc - allocate an audit context block for a task
863 * @tsk: task
864 *
865 * Filter on the task information and allocate a per-task audit context
866 * if necessary. Doing so turns on system call auditing for the
867 * specified task. This is called from copy_process, so no lock is
868 * needed.
869 */
870 int audit_alloc(struct task_struct *tsk)
871 {
872 struct audit_context *context;
873 enum audit_state state;
874
875 if (likely(!audit_ever_enabled))
876 return 0; /* Return if not auditing. */
877
878 state = audit_filter_task(tsk);
879 if (likely(state == AUDIT_DISABLED))
880 return 0;
881
882 if (!(context = audit_alloc_context(state))) {
883 audit_log_lost("out of memory in audit_alloc");
884 return -ENOMEM;
885 }
886
887 tsk->audit_context = context;
888 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
889 return 0;
890 }
891
892 static inline void audit_free_context(struct audit_context *context)
893 {
894 struct audit_context *previous;
895 int count = 0;
896
897 do {
898 previous = context->previous;
899 if (previous || (count && count < 10)) {
900 ++count;
901 printk(KERN_ERR "audit(:%d): major=%d name_count=%d:"
902 " freeing multiple contexts (%d)\n",
903 context->serial, context->major,
904 context->name_count, count);
905 }
906 audit_free_names(context);
907 unroll_tree_refs(context, NULL, 0);
908 free_tree_refs(context);
909 audit_free_aux(context);
910 kfree(context->filterkey);
911 kfree(context->sockaddr);
912 kfree(context);
913 context = previous;
914 } while (context);
915 if (count >= 10)
916 printk(KERN_ERR "audit: freed %d contexts\n", count);
917 }
918
919 void audit_log_task_context(struct audit_buffer *ab)
920 {
921 char *ctx = NULL;
922 unsigned len;
923 int error;
924 u32 sid;
925
926 security_task_getsecid(current, &sid);
927 if (!sid)
928 return;
929
930 error = security_secid_to_secctx(sid, &ctx, &len);
931 if (error) {
932 if (error != -EINVAL)
933 goto error_path;
934 return;
935 }
936
937 audit_log_format(ab, " subj=%s", ctx);
938 security_release_secctx(ctx, len);
939 return;
940
941 error_path:
942 audit_panic("error in audit_log_task_context");
943 return;
944 }
945
946 EXPORT_SYMBOL(audit_log_task_context);
947
948 static void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
949 {
950 char name[sizeof(tsk->comm)];
951 struct mm_struct *mm = tsk->mm;
952 struct vm_area_struct *vma;
953
954 /* tsk == current */
955
956 get_task_comm(name, tsk);
957 audit_log_format(ab, " comm=");
958 audit_log_untrustedstring(ab, name);
959
960 if (mm) {
961 down_read(&mm->mmap_sem);
962 vma = mm->mmap;
963 while (vma) {
964 if ((vma->vm_flags & VM_EXECUTABLE) &&
965 vma->vm_file) {
966 audit_log_d_path(ab, "exe=",
967 &vma->vm_file->f_path);
968 break;
969 }
970 vma = vma->vm_next;
971 }
972 up_read(&mm->mmap_sem);
973 }
974 audit_log_task_context(ab);
975 }
976
977 static int audit_log_pid_context(struct audit_context *context, pid_t pid,
978 uid_t auid, uid_t uid, unsigned int sessionid,
979 u32 sid, char *comm)
980 {
981 struct audit_buffer *ab;
982 char *ctx = NULL;
983 u32 len;
984 int rc = 0;
985
986 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
987 if (!ab)
988 return rc;
989
990 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, auid,
991 uid, sessionid);
992 if (security_secid_to_secctx(sid, &ctx, &len)) {
993 audit_log_format(ab, " obj=(none)");
994 rc = 1;
995 } else {
996 audit_log_format(ab, " obj=%s", ctx);
997 security_release_secctx(ctx, len);
998 }
999 audit_log_format(ab, " ocomm=");
1000 audit_log_untrustedstring(ab, comm);
1001 audit_log_end(ab);
1002
1003 return rc;
1004 }
1005
1006 /*
1007 * to_send and len_sent accounting are very loose estimates. We aren't
1008 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
1009 * within about 500 bytes (next page boundry)
1010 *
1011 * why snprintf? an int is up to 12 digits long. if we just assumed when
1012 * logging that a[%d]= was going to be 16 characters long we would be wasting
1013 * space in every audit message. In one 7500 byte message we can log up to
1014 * about 1000 min size arguments. That comes down to about 50% waste of space
1015 * if we didn't do the snprintf to find out how long arg_num_len was.
1016 */
1017 static int audit_log_single_execve_arg(struct audit_context *context,
1018 struct audit_buffer **ab,
1019 int arg_num,
1020 size_t *len_sent,
1021 const char __user *p,
1022 char *buf)
1023 {
1024 char arg_num_len_buf[12];
1025 const char __user *tmp_p = p;
1026 /* how many digits are in arg_num? 3 is the length of a=\n */
1027 size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 3;
1028 size_t len, len_left, to_send;
1029 size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
1030 unsigned int i, has_cntl = 0, too_long = 0;
1031 int ret;
1032
1033 /* strnlen_user includes the null we don't want to send */
1034 len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1035
1036 /*
1037 * We just created this mm, if we can't find the strings
1038 * we just copied into it something is _very_ wrong. Similar
1039 * for strings that are too long, we should not have created
1040 * any.
1041 */
1042 if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
1043 WARN_ON(1);
1044 send_sig(SIGKILL, current, 0);
1045 return -1;
1046 }
1047
1048 /* walk the whole argument looking for non-ascii chars */
1049 do {
1050 if (len_left > MAX_EXECVE_AUDIT_LEN)
1051 to_send = MAX_EXECVE_AUDIT_LEN;
1052 else
1053 to_send = len_left;
1054 ret = copy_from_user(buf, tmp_p, to_send);
1055 /*
1056 * There is no reason for this copy to be short. We just
1057 * copied them here, and the mm hasn't been exposed to user-
1058 * space yet.
1059 */
1060 if (ret) {
1061 WARN_ON(1);
1062 send_sig(SIGKILL, current, 0);
1063 return -1;
1064 }
1065 buf[to_send] = '\0';
1066 has_cntl = audit_string_contains_control(buf, to_send);
1067 if (has_cntl) {
1068 /*
1069 * hex messages get logged as 2 bytes, so we can only
1070 * send half as much in each message
1071 */
1072 max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
1073 break;
1074 }
1075 len_left -= to_send;
1076 tmp_p += to_send;
1077 } while (len_left > 0);
1078
1079 len_left = len;
1080
1081 if (len > max_execve_audit_len)
1082 too_long = 1;
1083
1084 /* rewalk the argument actually logging the message */
1085 for (i = 0; len_left > 0; i++) {
1086 int room_left;
1087
1088 if (len_left > max_execve_audit_len)
1089 to_send = max_execve_audit_len;
1090 else
1091 to_send = len_left;
1092
1093 /* do we have space left to send this argument in this ab? */
1094 room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1095 if (has_cntl)
1096 room_left -= (to_send * 2);
1097 else
1098 room_left -= to_send;
1099 if (room_left < 0) {
1100 *len_sent = 0;
1101 audit_log_end(*ab);
1102 *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1103 if (!*ab)
1104 return 0;
1105 }
1106
1107 /*
1108 * first record needs to say how long the original string was
1109 * so we can be sure nothing was lost.
1110 */
1111 if ((i == 0) && (too_long))
1112 audit_log_format(*ab, "a%d_len=%zu ", arg_num,
1113 has_cntl ? 2*len : len);
1114
1115 /*
1116 * normally arguments are small enough to fit and we already
1117 * filled buf above when we checked for control characters
1118 * so don't bother with another copy_from_user
1119 */
1120 if (len >= max_execve_audit_len)
1121 ret = copy_from_user(buf, p, to_send);
1122 else
1123 ret = 0;
1124 if (ret) {
1125 WARN_ON(1);
1126 send_sig(SIGKILL, current, 0);
1127 return -1;
1128 }
1129 buf[to_send] = '\0';
1130
1131 /* actually log it */
1132 audit_log_format(*ab, "a%d", arg_num);
1133 if (too_long)
1134 audit_log_format(*ab, "[%d]", i);
1135 audit_log_format(*ab, "=");
1136 if (has_cntl)
1137 audit_log_n_hex(*ab, buf, to_send);
1138 else
1139 audit_log_format(*ab, "\"%s\"", buf);
1140 audit_log_format(*ab, "\n");
1141
1142 p += to_send;
1143 len_left -= to_send;
1144 *len_sent += arg_num_len;
1145 if (has_cntl)
1146 *len_sent += to_send * 2;
1147 else
1148 *len_sent += to_send;
1149 }
1150 /* include the null we didn't log */
1151 return len + 1;
1152 }
1153
1154 static void audit_log_execve_info(struct audit_context *context,
1155 struct audit_buffer **ab,
1156 struct audit_aux_data_execve *axi)
1157 {
1158 int i;
1159 size_t len, len_sent = 0;
1160 const char __user *p;
1161 char *buf;
1162
1163 if (axi->mm != current->mm)
1164 return; /* execve failed, no additional info */
1165
1166 p = (const char __user *)axi->mm->arg_start;
1167
1168 audit_log_format(*ab, "argc=%d ", axi->argc);
1169
1170 /*
1171 * we need some kernel buffer to hold the userspace args. Just
1172 * allocate one big one rather than allocating one of the right size
1173 * for every single argument inside audit_log_single_execve_arg()
1174 * should be <8k allocation so should be pretty safe.
1175 */
1176 buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1177 if (!buf) {
1178 audit_panic("out of memory for argv string\n");
1179 return;
1180 }
1181
1182 for (i = 0; i < axi->argc; i++) {
1183 len = audit_log_single_execve_arg(context, ab, i,
1184 &len_sent, p, buf);
1185 if (len <= 0)
1186 break;
1187 p += len;
1188 }
1189 kfree(buf);
1190 }
1191
1192 static void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1193 {
1194 int i;
1195
1196 audit_log_format(ab, " %s=", prefix);
1197 CAP_FOR_EACH_U32(i) {
1198 audit_log_format(ab, "%08x", cap->cap[(_KERNEL_CAPABILITY_U32S-1) - i]);
1199 }
1200 }
1201
1202 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1203 {
1204 kernel_cap_t *perm = &name->fcap.permitted;
1205 kernel_cap_t *inh = &name->fcap.inheritable;
1206 int log = 0;
1207
1208 if (!cap_isclear(*perm)) {
1209 audit_log_cap(ab, "cap_fp", perm);
1210 log = 1;
1211 }
1212 if (!cap_isclear(*inh)) {
1213 audit_log_cap(ab, "cap_fi", inh);
1214 log = 1;
1215 }
1216
1217 if (log)
1218 audit_log_format(ab, " cap_fe=%d cap_fver=%x", name->fcap.fE, name->fcap_ver);
1219 }
1220
1221 static void show_special(struct audit_context *context, int *call_panic)
1222 {
1223 struct audit_buffer *ab;
1224 int i;
1225
1226 ab = audit_log_start(context, GFP_KERNEL, context->type);
1227 if (!ab)
1228 return;
1229
1230 switch (context->type) {
1231 case AUDIT_SOCKETCALL: {
1232 int nargs = context->socketcall.nargs;
1233 audit_log_format(ab, "nargs=%d", nargs);
1234 for (i = 0; i < nargs; i++)
1235 audit_log_format(ab, " a%d=%lx", i,
1236 context->socketcall.args[i]);
1237 break; }
1238 case AUDIT_IPC: {
1239 u32 osid = context->ipc.osid;
1240
1241 audit_log_format(ab, "ouid=%u ogid=%u mode=%#o",
1242 context->ipc.uid, context->ipc.gid, context->ipc.mode);
1243 if (osid) {
1244 char *ctx = NULL;
1245 u32 len;
1246 if (security_secid_to_secctx(osid, &ctx, &len)) {
1247 audit_log_format(ab, " osid=%u", osid);
1248 *call_panic = 1;
1249 } else {
1250 audit_log_format(ab, " obj=%s", ctx);
1251 security_release_secctx(ctx, len);
1252 }
1253 }
1254 if (context->ipc.has_perm) {
1255 audit_log_end(ab);
1256 ab = audit_log_start(context, GFP_KERNEL,
1257 AUDIT_IPC_SET_PERM);
1258 audit_log_format(ab,
1259 "qbytes=%lx ouid=%u ogid=%u mode=%#o",
1260 context->ipc.qbytes,
1261 context->ipc.perm_uid,
1262 context->ipc.perm_gid,
1263 context->ipc.perm_mode);
1264 if (!ab)
1265 return;
1266 }
1267 break; }
1268 case AUDIT_MQ_NOTIFY: {
1269 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1270 context->mq_notify.mqdes,
1271 context->mq_notify.sigev_signo);
1272 break; }
1273 case AUDIT_MQ_GETSETATTR: {
1274 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1275 audit_log_format(ab,
1276 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1277 "mq_curmsgs=%ld ",
1278 context->mq_getsetattr.mqdes,
1279 attr->mq_flags, attr->mq_maxmsg,
1280 attr->mq_msgsize, attr->mq_curmsgs);
1281 break; }
1282 }
1283 audit_log_end(ab);
1284 }
1285
1286 static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1287 {
1288 const struct cred *cred;
1289 int i, call_panic = 0;
1290 struct audit_buffer *ab;
1291 struct audit_aux_data *aux;
1292 const char *tty;
1293
1294 /* tsk == current */
1295 context->pid = tsk->pid;
1296 if (!context->ppid)
1297 context->ppid = sys_getppid();
1298 cred = current_cred();
1299 context->uid = cred->uid;
1300 context->gid = cred->gid;
1301 context->euid = cred->euid;
1302 context->suid = cred->suid;
1303 context->fsuid = cred->fsuid;
1304 context->egid = cred->egid;
1305 context->sgid = cred->sgid;
1306 context->fsgid = cred->fsgid;
1307 context->personality = tsk->personality;
1308
1309 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1310 if (!ab)
1311 return; /* audit_panic has been called */
1312 audit_log_format(ab, "arch=%x syscall=%d",
1313 context->arch, context->major);
1314 if (context->personality != PER_LINUX)
1315 audit_log_format(ab, " per=%lx", context->personality);
1316 if (context->return_valid)
1317 audit_log_format(ab, " success=%s exit=%ld",
1318 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1319 context->return_code);
1320
1321 spin_lock_irq(&tsk->sighand->siglock);
1322 if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1323 tty = tsk->signal->tty->name;
1324 else
1325 tty = "(none)";
1326 spin_unlock_irq(&tsk->sighand->siglock);
1327
1328 audit_log_format(ab,
1329 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d"
1330 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
1331 " euid=%u suid=%u fsuid=%u"
1332 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1333 context->argv[0],
1334 context->argv[1],
1335 context->argv[2],
1336 context->argv[3],
1337 context->name_count,
1338 context->ppid,
1339 context->pid,
1340 tsk->loginuid,
1341 context->uid,
1342 context->gid,
1343 context->euid, context->suid, context->fsuid,
1344 context->egid, context->sgid, context->fsgid, tty,
1345 tsk->sessionid);
1346
1347
1348 audit_log_task_info(ab, tsk);
1349 if (context->filterkey) {
1350 audit_log_format(ab, " key=");
1351 audit_log_untrustedstring(ab, context->filterkey);
1352 } else
1353 audit_log_format(ab, " key=(null)");
1354 audit_log_end(ab);
1355
1356 for (aux = context->aux; aux; aux = aux->next) {
1357
1358 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1359 if (!ab)
1360 continue; /* audit_panic has been called */
1361
1362 switch (aux->type) {
1363 case AUDIT_MQ_OPEN: {
1364 struct audit_aux_data_mq_open *axi = (void *)aux;
1365 audit_log_format(ab,
1366 "oflag=0x%x mode=%#o mq_flags=0x%lx mq_maxmsg=%ld "
1367 "mq_msgsize=%ld mq_curmsgs=%ld",
1368 axi->oflag, axi->mode, axi->attr.mq_flags,
1369 axi->attr.mq_maxmsg, axi->attr.mq_msgsize,
1370 axi->attr.mq_curmsgs);
1371 break; }
1372
1373 case AUDIT_MQ_SENDRECV: {
1374 struct audit_aux_data_mq_sendrecv *axi = (void *)aux;
1375 audit_log_format(ab,
1376 "mqdes=%d msg_len=%zd msg_prio=%u "
1377 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1378 axi->mqdes, axi->msg_len, axi->msg_prio,
1379 axi->abs_timeout.tv_sec, axi->abs_timeout.tv_nsec);
1380 break; }
1381
1382 case AUDIT_EXECVE: {
1383 struct audit_aux_data_execve *axi = (void *)aux;
1384 audit_log_execve_info(context, &ab, axi);
1385 break; }
1386
1387 case AUDIT_FD_PAIR: {
1388 struct audit_aux_data_fd_pair *axs = (void *)aux;
1389 audit_log_format(ab, "fd0=%d fd1=%d", axs->fd[0], axs->fd[1]);
1390 break; }
1391
1392 case AUDIT_BPRM_FCAPS: {
1393 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1394 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1395 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1396 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1397 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1398 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1399 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1400 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1401 audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1402 audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1403 audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
1404 break; }
1405
1406 case AUDIT_CAPSET: {
1407 struct audit_aux_data_capset *axs = (void *)aux;
1408 audit_log_format(ab, "pid=%d", axs->pid);
1409 audit_log_cap(ab, "cap_pi", &axs->cap.inheritable);
1410 audit_log_cap(ab, "cap_pp", &axs->cap.permitted);
1411 audit_log_cap(ab, "cap_pe", &axs->cap.effective);
1412 break; }
1413
1414 }
1415 audit_log_end(ab);
1416 }
1417
1418 if (context->type)
1419 show_special(context, &call_panic);
1420
1421 if (context->sockaddr_len) {
1422 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1423 if (ab) {
1424 audit_log_format(ab, "saddr=");
1425 audit_log_n_hex(ab, (void *)context->sockaddr,
1426 context->sockaddr_len);
1427 audit_log_end(ab);
1428 }
1429 }
1430
1431 for (aux = context->aux_pids; aux; aux = aux->next) {
1432 struct audit_aux_data_pids *axs = (void *)aux;
1433
1434 for (i = 0; i < axs->pid_count; i++)
1435 if (audit_log_pid_context(context, axs->target_pid[i],
1436 axs->target_auid[i],
1437 axs->target_uid[i],
1438 axs->target_sessionid[i],
1439 axs->target_sid[i],
1440 axs->target_comm[i]))
1441 call_panic = 1;
1442 }
1443
1444 if (context->target_pid &&
1445 audit_log_pid_context(context, context->target_pid,
1446 context->target_auid, context->target_uid,
1447 context->target_sessionid,
1448 context->target_sid, context->target_comm))
1449 call_panic = 1;
1450
1451 if (context->pwd.dentry && context->pwd.mnt) {
1452 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1453 if (ab) {
1454 audit_log_d_path(ab, "cwd=", &context->pwd);
1455 audit_log_end(ab);
1456 }
1457 }
1458 for (i = 0; i < context->name_count; i++) {
1459 struct audit_names *n = &context->names[i];
1460
1461 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1462 if (!ab)
1463 continue; /* audit_panic has been called */
1464
1465 audit_log_format(ab, "item=%d", i);
1466
1467 if (n->name) {
1468 switch(n->name_len) {
1469 case AUDIT_NAME_FULL:
1470 /* log the full path */
1471 audit_log_format(ab, " name=");
1472 audit_log_untrustedstring(ab, n->name);
1473 break;
1474 case 0:
1475 /* name was specified as a relative path and the
1476 * directory component is the cwd */
1477 audit_log_d_path(ab, " name=", &context->pwd);
1478 break;
1479 default:
1480 /* log the name's directory component */
1481 audit_log_format(ab, " name=");
1482 audit_log_n_untrustedstring(ab, n->name,
1483 n->name_len);
1484 }
1485 } else
1486 audit_log_format(ab, " name=(null)");
1487
1488 if (n->ino != (unsigned long)-1) {
1489 audit_log_format(ab, " inode=%lu"
1490 " dev=%02x:%02x mode=%#o"
1491 " ouid=%u ogid=%u rdev=%02x:%02x",
1492 n->ino,
1493 MAJOR(n->dev),
1494 MINOR(n->dev),
1495 n->mode,
1496 n->uid,
1497 n->gid,
1498 MAJOR(n->rdev),
1499 MINOR(n->rdev));
1500 }
1501 if (n->osid != 0) {
1502 char *ctx = NULL;
1503 u32 len;
1504 if (security_secid_to_secctx(
1505 n->osid, &ctx, &len)) {
1506 audit_log_format(ab, " osid=%u", n->osid);
1507 call_panic = 2;
1508 } else {
1509 audit_log_format(ab, " obj=%s", ctx);
1510 security_release_secctx(ctx, len);
1511 }
1512 }
1513
1514 audit_log_fcaps(ab, n);
1515
1516 audit_log_end(ab);
1517 }
1518
1519 /* Send end of event record to help user space know we are finished */
1520 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1521 if (ab)
1522 audit_log_end(ab);
1523 if (call_panic)
1524 audit_panic("error converting sid to string");
1525 }
1526
1527 /**
1528 * audit_free - free a per-task audit context
1529 * @tsk: task whose audit context block to free
1530 *
1531 * Called from copy_process and do_exit
1532 */
1533 void audit_free(struct task_struct *tsk)
1534 {
1535 struct audit_context *context;
1536
1537 context = audit_get_context(tsk, 0, 0);
1538 if (likely(!context))
1539 return;
1540
1541 /* Check for system calls that do not go through the exit
1542 * function (e.g., exit_group), then free context block.
1543 * We use GFP_ATOMIC here because we might be doing this
1544 * in the context of the idle thread */
1545 /* that can happen only if we are called from do_exit() */
1546 if (context->in_syscall && context->auditable)
1547 audit_log_exit(context, tsk);
1548
1549 audit_free_context(context);
1550 }
1551
1552 /**
1553 * audit_syscall_entry - fill in an audit record at syscall entry
1554 * @arch: architecture type
1555 * @major: major syscall type (function)
1556 * @a1: additional syscall register 1
1557 * @a2: additional syscall register 2
1558 * @a3: additional syscall register 3
1559 * @a4: additional syscall register 4
1560 *
1561 * Fill in audit context at syscall entry. This only happens if the
1562 * audit context was created when the task was created and the state or
1563 * filters demand the audit context be built. If the state from the
1564 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1565 * then the record will be written at syscall exit time (otherwise, it
1566 * will only be written if another part of the kernel requests that it
1567 * be written).
1568 */
1569 void audit_syscall_entry(int arch, int major,
1570 unsigned long a1, unsigned long a2,
1571 unsigned long a3, unsigned long a4)
1572 {
1573 struct task_struct *tsk = current;
1574 struct audit_context *context = tsk->audit_context;
1575 enum audit_state state;
1576
1577 if (unlikely(!context))
1578 return;
1579
1580 /*
1581 * This happens only on certain architectures that make system
1582 * calls in kernel_thread via the entry.S interface, instead of
1583 * with direct calls. (If you are porting to a new
1584 * architecture, hitting this condition can indicate that you
1585 * got the _exit/_leave calls backward in entry.S.)
1586 *
1587 * i386 no
1588 * x86_64 no
1589 * ppc64 yes (see arch/powerpc/platforms/iseries/misc.S)
1590 *
1591 * This also happens with vm86 emulation in a non-nested manner
1592 * (entries without exits), so this case must be caught.
1593 */
1594 if (context->in_syscall) {
1595 struct audit_context *newctx;
1596
1597 #if AUDIT_DEBUG
1598 printk(KERN_ERR
1599 "audit(:%d) pid=%d in syscall=%d;"
1600 " entering syscall=%d\n",
1601 context->serial, tsk->pid, context->major, major);
1602 #endif
1603 newctx = audit_alloc_context(context->state);
1604 if (newctx) {
1605 newctx->previous = context;
1606 context = newctx;
1607 tsk->audit_context = newctx;
1608 } else {
1609 /* If we can't alloc a new context, the best we
1610 * can do is to leak memory (any pending putname
1611 * will be lost). The only other alternative is
1612 * to abandon auditing. */
1613 audit_zero_context(context, context->state);
1614 }
1615 }
1616 BUG_ON(context->in_syscall || context->name_count);
1617
1618 if (!audit_enabled)
1619 return;
1620
1621 context->arch = arch;
1622 context->major = major;
1623 context->argv[0] = a1;
1624 context->argv[1] = a2;
1625 context->argv[2] = a3;
1626 context->argv[3] = a4;
1627
1628 state = context->state;
1629 context->dummy = !audit_n_rules;
1630 if (!context->dummy && (state == AUDIT_SETUP_CONTEXT || state == AUDIT_BUILD_CONTEXT))
1631 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1632 if (likely(state == AUDIT_DISABLED))
1633 return;
1634
1635 context->serial = 0;
1636 context->ctime = CURRENT_TIME;
1637 context->in_syscall = 1;
1638 context->auditable = !!(state == AUDIT_RECORD_CONTEXT);
1639 context->ppid = 0;
1640 }
1641
1642 void audit_finish_fork(struct task_struct *child)
1643 {
1644 struct audit_context *ctx = current->audit_context;
1645 struct audit_context *p = child->audit_context;
1646 if (!p || !ctx || !ctx->auditable)
1647 return;
1648 p->arch = ctx->arch;
1649 p->major = ctx->major;
1650 memcpy(p->argv, ctx->argv, sizeof(ctx->argv));
1651 p->ctime = ctx->ctime;
1652 p->dummy = ctx->dummy;
1653 p->auditable = ctx->auditable;
1654 p->in_syscall = ctx->in_syscall;
1655 p->filterkey = kstrdup(ctx->filterkey, GFP_KERNEL);
1656 p->ppid = current->pid;
1657 }
1658
1659 /**
1660 * audit_syscall_exit - deallocate audit context after a system call
1661 * @valid: success/failure flag
1662 * @return_code: syscall return value
1663 *
1664 * Tear down after system call. If the audit context has been marked as
1665 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1666 * filtering, or because some other part of the kernel write an audit
1667 * message), then write out the syscall information. In call cases,
1668 * free the names stored from getname().
1669 */
1670 void audit_syscall_exit(int valid, long return_code)
1671 {
1672 struct task_struct *tsk = current;
1673 struct audit_context *context;
1674
1675 context = audit_get_context(tsk, valid, return_code);
1676
1677 if (likely(!context))
1678 return;
1679
1680 if (context->in_syscall && context->auditable)
1681 audit_log_exit(context, tsk);
1682
1683 context->in_syscall = 0;
1684 context->auditable = 0;
1685
1686 if (context->previous) {
1687 struct audit_context *new_context = context->previous;
1688 context->previous = NULL;
1689 audit_free_context(context);
1690 tsk->audit_context = new_context;
1691 } else {
1692 audit_free_names(context);
1693 unroll_tree_refs(context, NULL, 0);
1694 audit_free_aux(context);
1695 context->aux = NULL;
1696 context->aux_pids = NULL;
1697 context->target_pid = 0;
1698 context->target_sid = 0;
1699 context->sockaddr_len = 0;
1700 context->type = 0;
1701 kfree(context->filterkey);
1702 context->filterkey = NULL;
1703 tsk->audit_context = context;
1704 }
1705 }
1706
1707 static inline void handle_one(const struct inode *inode)
1708 {
1709 #ifdef CONFIG_AUDIT_TREE
1710 struct audit_context *context;
1711 struct audit_tree_refs *p;
1712 struct audit_chunk *chunk;
1713 int count;
1714 if (likely(list_empty(&inode->inotify_watches)))
1715 return;
1716 context = current->audit_context;
1717 p = context->trees;
1718 count = context->tree_count;
1719 rcu_read_lock();
1720 chunk = audit_tree_lookup(inode);
1721 rcu_read_unlock();
1722 if (!chunk)
1723 return;
1724 if (likely(put_tree_ref(context, chunk)))
1725 return;
1726 if (unlikely(!grow_tree_refs(context))) {
1727 printk(KERN_WARNING "out of memory, audit has lost a tree reference\n");
1728 audit_set_auditable(context);
1729 audit_put_chunk(chunk);
1730 unroll_tree_refs(context, p, count);
1731 return;
1732 }
1733 put_tree_ref(context, chunk);
1734 #endif
1735 }
1736
1737 static void handle_path(const struct dentry *dentry)
1738 {
1739 #ifdef CONFIG_AUDIT_TREE
1740 struct audit_context *context;
1741 struct audit_tree_refs *p;
1742 const struct dentry *d, *parent;
1743 struct audit_chunk *drop;
1744 unsigned long seq;
1745 int count;
1746
1747 context = current->audit_context;
1748 p = context->trees;
1749 count = context->tree_count;
1750 retry:
1751 drop = NULL;
1752 d = dentry;
1753 rcu_read_lock();
1754 seq = read_seqbegin(&rename_lock);
1755 for(;;) {
1756 struct inode *inode = d->d_inode;
1757 if (inode && unlikely(!list_empty(&inode->inotify_watches))) {
1758 struct audit_chunk *chunk;
1759 chunk = audit_tree_lookup(inode);
1760 if (chunk) {
1761 if (unlikely(!put_tree_ref(context, chunk))) {
1762 drop = chunk;
1763 break;
1764 }
1765 }
1766 }
1767 parent = d->d_parent;
1768 if (parent == d)
1769 break;
1770 d = parent;
1771 }
1772 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1773 rcu_read_unlock();
1774 if (!drop) {
1775 /* just a race with rename */
1776 unroll_tree_refs(context, p, count);
1777 goto retry;
1778 }
1779 audit_put_chunk(drop);
1780 if (grow_tree_refs(context)) {
1781 /* OK, got more space */
1782 unroll_tree_refs(context, p, count);
1783 goto retry;
1784 }
1785 /* too bad */
1786 printk(KERN_WARNING
1787 "out of memory, audit has lost a tree reference\n");
1788 unroll_tree_refs(context, p, count);
1789 audit_set_auditable(context);
1790 return;
1791 }
1792 rcu_read_unlock();
1793 #endif
1794 }
1795
1796 /**
1797 * audit_getname - add a name to the list
1798 * @name: name to add
1799 *
1800 * Add a name to the list of audit names for this context.
1801 * Called from fs/namei.c:getname().
1802 */
1803 void __audit_getname(const char *name)
1804 {
1805 struct audit_context *context = current->audit_context;
1806
1807 if (IS_ERR(name) || !name)
1808 return;
1809
1810 if (!context->in_syscall) {
1811 #if AUDIT_DEBUG == 2
1812 printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
1813 __FILE__, __LINE__, context->serial, name);
1814 dump_stack();
1815 #endif
1816 return;
1817 }
1818 BUG_ON(context->name_count >= AUDIT_NAMES);
1819 context->names[context->name_count].name = name;
1820 context->names[context->name_count].name_len = AUDIT_NAME_FULL;
1821 context->names[context->name_count].name_put = 1;
1822 context->names[context->name_count].ino = (unsigned long)-1;
1823 context->names[context->name_count].osid = 0;
1824 ++context->name_count;
1825 if (!context->pwd.dentry) {
1826 read_lock(&current->fs->lock);
1827 context->pwd = current->fs->pwd;
1828 path_get(&current->fs->pwd);
1829 read_unlock(&current->fs->lock);
1830 }
1831
1832 }
1833
1834 /* audit_putname - intercept a putname request
1835 * @name: name to intercept and delay for putname
1836 *
1837 * If we have stored the name from getname in the audit context,
1838 * then we delay the putname until syscall exit.
1839 * Called from include/linux/fs.h:putname().
1840 */
1841 void audit_putname(const char *name)
1842 {
1843 struct audit_context *context = current->audit_context;
1844
1845 BUG_ON(!context);
1846 if (!context->in_syscall) {
1847 #if AUDIT_DEBUG == 2
1848 printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n",
1849 __FILE__, __LINE__, context->serial, name);
1850 if (context->name_count) {
1851 int i;
1852 for (i = 0; i < context->name_count; i++)
1853 printk(KERN_ERR "name[%d] = %p = %s\n", i,
1854 context->names[i].name,
1855 context->names[i].name ?: "(null)");
1856 }
1857 #endif
1858 __putname(name);
1859 }
1860 #if AUDIT_DEBUG
1861 else {
1862 ++context->put_count;
1863 if (context->put_count > context->name_count) {
1864 printk(KERN_ERR "%s:%d(:%d): major=%d"
1865 " in_syscall=%d putname(%p) name_count=%d"
1866 " put_count=%d\n",
1867 __FILE__, __LINE__,
1868 context->serial, context->major,
1869 context->in_syscall, name, context->name_count,
1870 context->put_count);
1871 dump_stack();
1872 }
1873 }
1874 #endif
1875 }
1876
1877 static int audit_inc_name_count(struct audit_context *context,
1878 const struct inode *inode)
1879 {
1880 if (context->name_count >= AUDIT_NAMES) {
1881 if (inode)
1882 printk(KERN_DEBUG "name_count maxed, losing inode data: "
1883 "dev=%02x:%02x, inode=%lu\n",
1884 MAJOR(inode->i_sb->s_dev),
1885 MINOR(inode->i_sb->s_dev),
1886 inode->i_ino);
1887
1888 else
1889 printk(KERN_DEBUG "name_count maxed, losing inode data\n");
1890 return 1;
1891 }
1892 context->name_count++;
1893 #if AUDIT_DEBUG
1894 context->ino_count++;
1895 #endif
1896 return 0;
1897 }
1898
1899
1900 static inline int audit_copy_fcaps(struct audit_names *name, const struct dentry *dentry)
1901 {
1902 struct cpu_vfs_cap_data caps;
1903 int rc;
1904
1905 memset(&name->fcap.permitted, 0, sizeof(kernel_cap_t));
1906 memset(&name->fcap.inheritable, 0, sizeof(kernel_cap_t));
1907 name->fcap.fE = 0;
1908 name->fcap_ver = 0;
1909
1910 if (!dentry)
1911 return 0;
1912
1913 rc = get_vfs_caps_from_disk(dentry, &caps);
1914 if (rc)
1915 return rc;
1916
1917 name->fcap.permitted = caps.permitted;
1918 name->fcap.inheritable = caps.inheritable;
1919 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1920 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
1921
1922 return 0;
1923 }
1924
1925
1926 /* Copy inode data into an audit_names. */
1927 static void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
1928 const struct inode *inode)
1929 {
1930 name->ino = inode->i_ino;
1931 name->dev = inode->i_sb->s_dev;
1932 name->mode = inode->i_mode;
1933 name->uid = inode->i_uid;
1934 name->gid = inode->i_gid;
1935 name->rdev = inode->i_rdev;
1936 security_inode_getsecid(inode, &name->osid);
1937 audit_copy_fcaps(name, dentry);
1938 }
1939
1940 /**
1941 * audit_inode - store the inode and device from a lookup
1942 * @name: name being audited
1943 * @dentry: dentry being audited
1944 *
1945 * Called from fs/namei.c:path_lookup().
1946 */
1947 void __audit_inode(const char *name, const struct dentry *dentry)
1948 {
1949 int idx;
1950 struct audit_context *context = current->audit_context;
1951 const struct inode *inode = dentry->d_inode;
1952
1953 if (!context->in_syscall)
1954 return;
1955 if (context->name_count
1956 && context->names[context->name_count-1].name
1957 && context->names[context->name_count-1].name == name)
1958 idx = context->name_count - 1;
1959 else if (context->name_count > 1
1960 && context->names[context->name_count-2].name
1961 && context->names[context->name_count-2].name == name)
1962 idx = context->name_count - 2;
1963 else {
1964 /* FIXME: how much do we care about inodes that have no
1965 * associated name? */
1966 if (audit_inc_name_count(context, inode))
1967 return;
1968 idx = context->name_count - 1;
1969 context->names[idx].name = NULL;
1970 }
1971 handle_path(dentry);
1972 audit_copy_inode(&context->names[idx], dentry, inode);
1973 }
1974
1975 /**
1976 * audit_inode_child - collect inode info for created/removed objects
1977 * @dname: inode's dentry name
1978 * @dentry: dentry being audited
1979 * @parent: inode of dentry parent
1980 *
1981 * For syscalls that create or remove filesystem objects, audit_inode
1982 * can only collect information for the filesystem object's parent.
1983 * This call updates the audit context with the child's information.
1984 * Syscalls that create a new filesystem object must be hooked after
1985 * the object is created. Syscalls that remove a filesystem object
1986 * must be hooked prior, in order to capture the target inode during
1987 * unsuccessful attempts.
1988 */
1989 void __audit_inode_child(const char *dname, const struct dentry *dentry,
1990 const struct inode *parent)
1991 {
1992 int idx;
1993 struct audit_context *context = current->audit_context;
1994 const char *found_parent = NULL, *found_child = NULL;
1995 const struct inode *inode = dentry->d_inode;
1996 int dirlen = 0;
1997
1998 if (!context->in_syscall)
1999 return;
2000
2001 if (inode)
2002 handle_one(inode);
2003 /* determine matching parent */
2004 if (!dname)
2005 goto add_names;
2006
2007 /* parent is more likely, look for it first */
2008 for (idx = 0; idx < context->name_count; idx++) {
2009 struct audit_names *n = &context->names[idx];
2010
2011 if (!n->name)
2012 continue;
2013
2014 if (n->ino == parent->i_ino &&
2015 !audit_compare_dname_path(dname, n->name, &dirlen)) {
2016 n->name_len = dirlen; /* update parent data in place */
2017 found_parent = n->name;
2018 goto add_names;
2019 }
2020 }
2021
2022 /* no matching parent, look for matching child */
2023 for (idx = 0; idx < context->name_count; idx++) {
2024 struct audit_names *n = &context->names[idx];
2025
2026 if (!n->name)
2027 continue;
2028
2029 /* strcmp() is the more likely scenario */
2030 if (!strcmp(dname, n->name) ||
2031 !audit_compare_dname_path(dname, n->name, &dirlen)) {
2032 if (inode)
2033 audit_copy_inode(n, NULL, inode);
2034 else
2035 n->ino = (unsigned long)-1;
2036 found_child = n->name;
2037 goto add_names;
2038 }
2039 }
2040
2041 add_names:
2042 if (!found_parent) {
2043 if (audit_inc_name_count(context, parent))
2044 return;
2045 idx = context->name_count - 1;
2046 context->names[idx].name = NULL;
2047 audit_copy_inode(&context->names[idx], NULL, parent);
2048 }
2049
2050 if (!found_child) {
2051 if (audit_inc_name_count(context, inode))
2052 return;
2053 idx = context->name_count - 1;
2054
2055 /* Re-use the name belonging to the slot for a matching parent
2056 * directory. All names for this context are relinquished in
2057 * audit_free_names() */
2058 if (found_parent) {
2059 context->names[idx].name = found_parent;
2060 context->names[idx].name_len = AUDIT_NAME_FULL;
2061 /* don't call __putname() */
2062 context->names[idx].name_put = 0;
2063 } else {
2064 context->names[idx].name = NULL;
2065 }
2066
2067 if (inode)
2068 audit_copy_inode(&context->names[idx], NULL, inode);
2069 else
2070 context->names[idx].ino = (unsigned long)-1;
2071 }
2072 }
2073 EXPORT_SYMBOL_GPL(__audit_inode_child);
2074
2075 /**
2076 * auditsc_get_stamp - get local copies of audit_context values
2077 * @ctx: audit_context for the task
2078 * @t: timespec to store time recorded in the audit_context
2079 * @serial: serial value that is recorded in the audit_context
2080 *
2081 * Also sets the context as auditable.
2082 */
2083 int auditsc_get_stamp(struct audit_context *ctx,
2084 struct timespec *t, unsigned int *serial)
2085 {
2086 if (!ctx->in_syscall)
2087 return 0;
2088 if (!ctx->serial)
2089 ctx->serial = audit_serial();
2090 t->tv_sec = ctx->ctime.tv_sec;
2091 t->tv_nsec = ctx->ctime.tv_nsec;
2092 *serial = ctx->serial;
2093 ctx->auditable = 1;
2094 return 1;
2095 }
2096
2097 /* global counter which is incremented every time something logs in */
2098 static atomic_t session_id = ATOMIC_INIT(0);
2099
2100 /**
2101 * audit_set_loginuid - set a task's audit_context loginuid
2102 * @task: task whose audit context is being modified
2103 * @loginuid: loginuid value
2104 *
2105 * Returns 0.
2106 *
2107 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2108 */
2109 int audit_set_loginuid(struct task_struct *task, uid_t loginuid)
2110 {
2111 unsigned int sessionid = atomic_inc_return(&session_id);
2112 struct audit_context *context = task->audit_context;
2113
2114 if (context && context->in_syscall) {
2115 struct audit_buffer *ab;
2116
2117 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
2118 if (ab) {
2119 audit_log_format(ab, "login pid=%d uid=%u "
2120 "old auid=%u new auid=%u"
2121 " old ses=%u new ses=%u",
2122 task->pid, task_uid(task),
2123 task->loginuid, loginuid,
2124 task->sessionid, sessionid);
2125 audit_log_end(ab);
2126 }
2127 }
2128 task->sessionid = sessionid;
2129 task->loginuid = loginuid;
2130 return 0;
2131 }
2132
2133 /**
2134 * __audit_mq_open - record audit data for a POSIX MQ open
2135 * @oflag: open flag
2136 * @mode: mode bits
2137 * @u_attr: queue attributes
2138 *
2139 * Returns 0 for success or NULL context or < 0 on error.
2140 */
2141 int __audit_mq_open(int oflag, mode_t mode, struct mq_attr __user *u_attr)
2142 {
2143 struct audit_aux_data_mq_open *ax;
2144 struct audit_context *context = current->audit_context;
2145
2146 if (!audit_enabled)
2147 return 0;
2148
2149 if (likely(!context))
2150 return 0;
2151
2152 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2153 if (!ax)
2154 return -ENOMEM;
2155
2156 if (u_attr != NULL) {
2157 if (copy_from_user(&ax->attr, u_attr, sizeof(ax->attr))) {
2158 kfree(ax);
2159 return -EFAULT;
2160 }
2161 } else
2162 memset(&ax->attr, 0, sizeof(ax->attr));
2163
2164 ax->oflag = oflag;
2165 ax->mode = mode;
2166
2167 ax->d.type = AUDIT_MQ_OPEN;
2168 ax->d.next = context->aux;
2169 context->aux = (void *)ax;
2170 return 0;
2171 }
2172
2173 /**
2174 * __audit_mq_timedsend - record audit data for a POSIX MQ timed send
2175 * @mqdes: MQ descriptor
2176 * @msg_len: Message length
2177 * @msg_prio: Message priority
2178 * @u_abs_timeout: Message timeout in absolute time
2179 *
2180 * Returns 0 for success or NULL context or < 0 on error.
2181 */
2182 int __audit_mq_timedsend(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2183 const struct timespec __user *u_abs_timeout)
2184 {
2185 struct audit_aux_data_mq_sendrecv *ax;
2186 struct audit_context *context = current->audit_context;
2187
2188 if (!audit_enabled)
2189 return 0;
2190
2191 if (likely(!context))
2192 return 0;
2193
2194 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2195 if (!ax)
2196 return -ENOMEM;
2197
2198 if (u_abs_timeout != NULL) {
2199 if (copy_from_user(&ax->abs_timeout, u_abs_timeout, sizeof(ax->abs_timeout))) {
2200 kfree(ax);
2201 return -EFAULT;
2202 }
2203 } else
2204 memset(&ax->abs_timeout, 0, sizeof(ax->abs_timeout));
2205
2206 ax->mqdes = mqdes;
2207 ax->msg_len = msg_len;
2208 ax->msg_prio = msg_prio;
2209
2210 ax->d.type = AUDIT_MQ_SENDRECV;
2211 ax->d.next = context->aux;
2212 context->aux = (void *)ax;
2213 return 0;
2214 }
2215
2216 /**
2217 * __audit_mq_timedreceive - record audit data for a POSIX MQ timed receive
2218 * @mqdes: MQ descriptor
2219 * @msg_len: Message length
2220 * @u_msg_prio: Message priority
2221 * @u_abs_timeout: Message timeout in absolute time
2222 *
2223 * Returns 0 for success or NULL context or < 0 on error.
2224 */
2225 int __audit_mq_timedreceive(mqd_t mqdes, size_t msg_len,
2226 unsigned int __user *u_msg_prio,
2227 const struct timespec __user *u_abs_timeout)
2228 {
2229 struct audit_aux_data_mq_sendrecv *ax;
2230 struct audit_context *context = current->audit_context;
2231
2232 if (!audit_enabled)
2233 return 0;
2234
2235 if (likely(!context))
2236 return 0;
2237
2238 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2239 if (!ax)
2240 return -ENOMEM;
2241
2242 if (u_msg_prio != NULL) {
2243 if (get_user(ax->msg_prio, u_msg_prio)) {
2244 kfree(ax);
2245 return -EFAULT;
2246 }
2247 } else
2248 ax->msg_prio = 0;
2249
2250 if (u_abs_timeout != NULL) {
2251 if (copy_from_user(&ax->abs_timeout, u_abs_timeout, sizeof(ax->abs_timeout))) {
2252 kfree(ax);
2253 return -EFAULT;
2254 }
2255 } else
2256 memset(&ax->abs_timeout, 0, sizeof(ax->abs_timeout));
2257
2258 ax->mqdes = mqdes;
2259 ax->msg_len = msg_len;
2260
2261 ax->d.type = AUDIT_MQ_SENDRECV;
2262 ax->d.next = context->aux;
2263 context->aux = (void *)ax;
2264 return 0;
2265 }
2266
2267 /**
2268 * __audit_mq_notify - record audit data for a POSIX MQ notify
2269 * @mqdes: MQ descriptor
2270 * @u_notification: Notification event
2271 *
2272 */
2273
2274 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2275 {
2276 struct audit_context *context = current->audit_context;
2277
2278 if (notification)
2279 context->mq_notify.sigev_signo = notification->sigev_signo;
2280 else
2281 context->mq_notify.sigev_signo = 0;
2282
2283 context->mq_notify.mqdes = mqdes;
2284 context->type = AUDIT_MQ_NOTIFY;
2285 }
2286
2287 /**
2288 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2289 * @mqdes: MQ descriptor
2290 * @mqstat: MQ flags
2291 *
2292 */
2293 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2294 {
2295 struct audit_context *context = current->audit_context;
2296 context->mq_getsetattr.mqdes = mqdes;
2297 context->mq_getsetattr.mqstat = *mqstat;
2298 context->type = AUDIT_MQ_GETSETATTR;
2299 }
2300
2301 /**
2302 * audit_ipc_obj - record audit data for ipc object
2303 * @ipcp: ipc permissions
2304 *
2305 */
2306 void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2307 {
2308 struct audit_context *context = current->audit_context;
2309 context->ipc.uid = ipcp->uid;
2310 context->ipc.gid = ipcp->gid;
2311 context->ipc.mode = ipcp->mode;
2312 context->ipc.has_perm = 0;
2313 security_ipc_getsecid(ipcp, &context->ipc.osid);
2314 context->type = AUDIT_IPC;
2315 }
2316
2317 /**
2318 * audit_ipc_set_perm - record audit data for new ipc permissions
2319 * @qbytes: msgq bytes
2320 * @uid: msgq user id
2321 * @gid: msgq group id
2322 * @mode: msgq mode (permissions)
2323 *
2324 * Called only after audit_ipc_obj().
2325 */
2326 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, mode_t mode)
2327 {
2328 struct audit_context *context = current->audit_context;
2329
2330 context->ipc.qbytes = qbytes;
2331 context->ipc.perm_uid = uid;
2332 context->ipc.perm_gid = gid;
2333 context->ipc.perm_mode = mode;
2334 context->ipc.has_perm = 1;
2335 }
2336
2337 int audit_bprm(struct linux_binprm *bprm)
2338 {
2339 struct audit_aux_data_execve *ax;
2340 struct audit_context *context = current->audit_context;
2341
2342 if (likely(!audit_enabled || !context || context->dummy))
2343 return 0;
2344
2345 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2346 if (!ax)
2347 return -ENOMEM;
2348
2349 ax->argc = bprm->argc;
2350 ax->envc = bprm->envc;
2351 ax->mm = bprm->mm;
2352 ax->d.type = AUDIT_EXECVE;
2353 ax->d.next = context->aux;
2354 context->aux = (void *)ax;
2355 return 0;
2356 }
2357
2358
2359 /**
2360 * audit_socketcall - record audit data for sys_socketcall
2361 * @nargs: number of args
2362 * @args: args array
2363 *
2364 */
2365 void audit_socketcall(int nargs, unsigned long *args)
2366 {
2367 struct audit_context *context = current->audit_context;
2368
2369 if (likely(!context || context->dummy))
2370 return;
2371
2372 context->type = AUDIT_SOCKETCALL;
2373 context->socketcall.nargs = nargs;
2374 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2375 }
2376
2377 /**
2378 * __audit_fd_pair - record audit data for pipe and socketpair
2379 * @fd1: the first file descriptor
2380 * @fd2: the second file descriptor
2381 *
2382 * Returns 0 for success or NULL context or < 0 on error.
2383 */
2384 int __audit_fd_pair(int fd1, int fd2)
2385 {
2386 struct audit_context *context = current->audit_context;
2387 struct audit_aux_data_fd_pair *ax;
2388
2389 if (likely(!context)) {
2390 return 0;
2391 }
2392
2393 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2394 if (!ax) {
2395 return -ENOMEM;
2396 }
2397
2398 ax->fd[0] = fd1;
2399 ax->fd[1] = fd2;
2400
2401 ax->d.type = AUDIT_FD_PAIR;
2402 ax->d.next = context->aux;
2403 context->aux = (void *)ax;
2404 return 0;
2405 }
2406
2407 /**
2408 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2409 * @len: data length in user space
2410 * @a: data address in kernel space
2411 *
2412 * Returns 0 for success or NULL context or < 0 on error.
2413 */
2414 int audit_sockaddr(int len, void *a)
2415 {
2416 struct audit_context *context = current->audit_context;
2417
2418 if (likely(!context || context->dummy))
2419 return 0;
2420
2421 if (!context->sockaddr) {
2422 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2423 if (!p)
2424 return -ENOMEM;
2425 context->sockaddr = p;
2426 }
2427
2428 context->sockaddr_len = len;
2429 memcpy(context->sockaddr, a, len);
2430 return 0;
2431 }
2432
2433 void __audit_ptrace(struct task_struct *t)
2434 {
2435 struct audit_context *context = current->audit_context;
2436
2437 context->target_pid = t->pid;
2438 context->target_auid = audit_get_loginuid(t);
2439 context->target_uid = task_uid(t);
2440 context->target_sessionid = audit_get_sessionid(t);
2441 security_task_getsecid(t, &context->target_sid);
2442 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2443 }
2444
2445 /**
2446 * audit_signal_info - record signal info for shutting down audit subsystem
2447 * @sig: signal value
2448 * @t: task being signaled
2449 *
2450 * If the audit subsystem is being terminated, record the task (pid)
2451 * and uid that is doing that.
2452 */
2453 int __audit_signal_info(int sig, struct task_struct *t)
2454 {
2455 struct audit_aux_data_pids *axp;
2456 struct task_struct *tsk = current;
2457 struct audit_context *ctx = tsk->audit_context;
2458 uid_t uid = current_uid(), t_uid = task_uid(t);
2459
2460 if (audit_pid && t->tgid == audit_pid) {
2461 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
2462 audit_sig_pid = tsk->pid;
2463 if (tsk->loginuid != -1)
2464 audit_sig_uid = tsk->loginuid;
2465 else
2466 audit_sig_uid = uid;
2467 security_task_getsecid(tsk, &audit_sig_sid);
2468 }
2469 if (!audit_signals || audit_dummy_context())
2470 return 0;
2471 }
2472
2473 /* optimize the common case by putting first signal recipient directly
2474 * in audit_context */
2475 if (!ctx->target_pid) {
2476 ctx->target_pid = t->tgid;
2477 ctx->target_auid = audit_get_loginuid(t);
2478 ctx->target_uid = t_uid;
2479 ctx->target_sessionid = audit_get_sessionid(t);
2480 security_task_getsecid(t, &ctx->target_sid);
2481 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2482 return 0;
2483 }
2484
2485 axp = (void *)ctx->aux_pids;
2486 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2487 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2488 if (!axp)
2489 return -ENOMEM;
2490
2491 axp->d.type = AUDIT_OBJ_PID;
2492 axp->d.next = ctx->aux_pids;
2493 ctx->aux_pids = (void *)axp;
2494 }
2495 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2496
2497 axp->target_pid[axp->pid_count] = t->tgid;
2498 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2499 axp->target_uid[axp->pid_count] = t_uid;
2500 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2501 security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2502 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2503 axp->pid_count++;
2504
2505 return 0;
2506 }
2507
2508 /**
2509 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2510 * @bprm: pointer to the bprm being processed
2511 * @new: the proposed new credentials
2512 * @old: the old credentials
2513 *
2514 * Simply check if the proc already has the caps given by the file and if not
2515 * store the priv escalation info for later auditing at the end of the syscall
2516 *
2517 * -Eric
2518 */
2519 int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2520 const struct cred *new, const struct cred *old)
2521 {
2522 struct audit_aux_data_bprm_fcaps *ax;
2523 struct audit_context *context = current->audit_context;
2524 struct cpu_vfs_cap_data vcaps;
2525 struct dentry *dentry;
2526
2527 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2528 if (!ax)
2529 return -ENOMEM;
2530
2531 ax->d.type = AUDIT_BPRM_FCAPS;
2532 ax->d.next = context->aux;
2533 context->aux = (void *)ax;
2534
2535 dentry = dget(bprm->file->f_dentry);
2536 get_vfs_caps_from_disk(dentry, &vcaps);
2537 dput(dentry);
2538
2539 ax->fcap.permitted = vcaps.permitted;
2540 ax->fcap.inheritable = vcaps.inheritable;
2541 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2542 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2543
2544 ax->old_pcap.permitted = old->cap_permitted;
2545 ax->old_pcap.inheritable = old->cap_inheritable;
2546 ax->old_pcap.effective = old->cap_effective;
2547
2548 ax->new_pcap.permitted = new->cap_permitted;
2549 ax->new_pcap.inheritable = new->cap_inheritable;
2550 ax->new_pcap.effective = new->cap_effective;
2551 return 0;
2552 }
2553
2554 /**
2555 * __audit_log_capset - store information about the arguments to the capset syscall
2556 * @pid: target pid of the capset call
2557 * @new: the new credentials
2558 * @old: the old (current) credentials
2559 *
2560 * Record the aguments userspace sent to sys_capset for later printing by the
2561 * audit system if applicable
2562 */
2563 int __audit_log_capset(pid_t pid,
2564 const struct cred *new, const struct cred *old)
2565 {
2566 struct audit_aux_data_capset *ax;
2567 struct audit_context *context = current->audit_context;
2568
2569 if (likely(!audit_enabled || !context || context->dummy))
2570 return 0;
2571
2572 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2573 if (!ax)
2574 return -ENOMEM;
2575
2576 ax->d.type = AUDIT_CAPSET;
2577 ax->d.next = context->aux;
2578 context->aux = (void *)ax;
2579
2580 ax->pid = pid;
2581 ax->cap.effective = new->cap_effective;
2582 ax->cap.inheritable = new->cap_effective;
2583 ax->cap.permitted = new->cap_permitted;
2584
2585 return 0;
2586 }
2587
2588 /**
2589 * audit_core_dumps - record information about processes that end abnormally
2590 * @signr: signal value
2591 *
2592 * If a process ends with a core dump, something fishy is going on and we
2593 * should record the event for investigation.
2594 */
2595 void audit_core_dumps(long signr)
2596 {
2597 struct audit_buffer *ab;
2598 u32 sid;
2599 uid_t auid = audit_get_loginuid(current), uid;
2600 gid_t gid;
2601 unsigned int sessionid = audit_get_sessionid(current);
2602
2603 if (!audit_enabled)
2604 return;
2605
2606 if (signr == SIGQUIT) /* don't care for those */
2607 return;
2608
2609 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2610 current_uid_gid(&uid, &gid);
2611 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2612 auid, uid, gid, sessionid);
2613 security_task_getsecid(current, &sid);
2614 if (sid) {
2615 char *ctx = NULL;
2616 u32 len;
2617
2618 if (security_secid_to_secctx(sid, &ctx, &len))
2619 audit_log_format(ab, " ssid=%u", sid);
2620 else {
2621 audit_log_format(ab, " subj=%s", ctx);
2622 security_release_secctx(ctx, len);
2623 }
2624 }
2625 audit_log_format(ab, " pid=%d comm=", current->pid);
2626 audit_log_untrustedstring(ab, current->comm);
2627 audit_log_format(ab, " sig=%ld", signr);
2628 audit_log_end(ab);
2629 }
This page took 0.080586 seconds and 6 git commands to generate.