audit: overhaul __audit_inode_child to accomodate retrying
[deliverable/linux.git] / kernel / auditsc.c
1 /* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
3 *
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
7 * All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24 *
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
27 *
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
31 *
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
34 *
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37 *
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
40 *
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
43 */
44
45 #include <linux/init.h>
46 #include <asm/types.h>
47 #include <linux/atomic.h>
48 #include <linux/fs.h>
49 #include <linux/namei.h>
50 #include <linux/mm.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/mount.h>
54 #include <linux/socket.h>
55 #include <linux/mqueue.h>
56 #include <linux/audit.h>
57 #include <linux/personality.h>
58 #include <linux/time.h>
59 #include <linux/netlink.h>
60 #include <linux/compiler.h>
61 #include <asm/unistd.h>
62 #include <linux/security.h>
63 #include <linux/list.h>
64 #include <linux/tty.h>
65 #include <linux/binfmts.h>
66 #include <linux/highmem.h>
67 #include <linux/syscalls.h>
68 #include <linux/capability.h>
69 #include <linux/fs_struct.h>
70 #include <linux/compat.h>
71
72 #include "audit.h"
73
74 /* flags stating the success for a syscall */
75 #define AUDITSC_INVALID 0
76 #define AUDITSC_SUCCESS 1
77 #define AUDITSC_FAILURE 2
78
79 /* AUDIT_NAMES is the number of slots we reserve in the audit_context
80 * for saving names from getname(). If we get more names we will allocate
81 * a name dynamically and also add those to the list anchored by names_list. */
82 #define AUDIT_NAMES 5
83
84 /* no execve audit message should be longer than this (userspace limits) */
85 #define MAX_EXECVE_AUDIT_LEN 7500
86
87 /* number of audit rules */
88 int audit_n_rules;
89
90 /* determines whether we collect data for signals sent */
91 int audit_signals;
92
93 struct audit_cap_data {
94 kernel_cap_t permitted;
95 kernel_cap_t inheritable;
96 union {
97 unsigned int fE; /* effective bit of a file capability */
98 kernel_cap_t effective; /* effective set of a process */
99 };
100 };
101
102 /* When fs/namei.c:getname() is called, we store the pointer in name and
103 * we don't let putname() free it (instead we free all of the saved
104 * pointers at syscall exit time).
105 *
106 * Further, in fs/namei.c:path_lookup() we store the inode and device. */
107 struct audit_names {
108 struct list_head list; /* audit_context->names_list */
109 const char *name;
110 unsigned long ino;
111 dev_t dev;
112 umode_t mode;
113 kuid_t uid;
114 kgid_t gid;
115 dev_t rdev;
116 u32 osid;
117 struct audit_cap_data fcap;
118 unsigned int fcap_ver;
119 int name_len; /* number of name's characters to log */
120 unsigned char type; /* record type */
121 bool name_put; /* call __putname() for this name */
122 /*
123 * This was an allocated audit_names and not from the array of
124 * names allocated in the task audit context. Thus this name
125 * should be freed on syscall exit
126 */
127 bool should_free;
128 };
129
130 struct audit_aux_data {
131 struct audit_aux_data *next;
132 int type;
133 };
134
135 #define AUDIT_AUX_IPCPERM 0
136
137 /* Number of target pids per aux struct. */
138 #define AUDIT_AUX_PIDS 16
139
140 struct audit_aux_data_execve {
141 struct audit_aux_data d;
142 int argc;
143 int envc;
144 struct mm_struct *mm;
145 };
146
147 struct audit_aux_data_pids {
148 struct audit_aux_data d;
149 pid_t target_pid[AUDIT_AUX_PIDS];
150 kuid_t target_auid[AUDIT_AUX_PIDS];
151 kuid_t target_uid[AUDIT_AUX_PIDS];
152 unsigned int target_sessionid[AUDIT_AUX_PIDS];
153 u32 target_sid[AUDIT_AUX_PIDS];
154 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
155 int pid_count;
156 };
157
158 struct audit_aux_data_bprm_fcaps {
159 struct audit_aux_data d;
160 struct audit_cap_data fcap;
161 unsigned int fcap_ver;
162 struct audit_cap_data old_pcap;
163 struct audit_cap_data new_pcap;
164 };
165
166 struct audit_aux_data_capset {
167 struct audit_aux_data d;
168 pid_t pid;
169 struct audit_cap_data cap;
170 };
171
172 struct audit_tree_refs {
173 struct audit_tree_refs *next;
174 struct audit_chunk *c[31];
175 };
176
177 /* The per-task audit context. */
178 struct audit_context {
179 int dummy; /* must be the first element */
180 int in_syscall; /* 1 if task is in a syscall */
181 enum audit_state state, current_state;
182 unsigned int serial; /* serial number for record */
183 int major; /* syscall number */
184 struct timespec ctime; /* time of syscall entry */
185 unsigned long argv[4]; /* syscall arguments */
186 long return_code;/* syscall return code */
187 u64 prio;
188 int return_valid; /* return code is valid */
189 /*
190 * The names_list is the list of all audit_names collected during this
191 * syscall. The first AUDIT_NAMES entries in the names_list will
192 * actually be from the preallocated_names array for performance
193 * reasons. Except during allocation they should never be referenced
194 * through the preallocated_names array and should only be found/used
195 * by running the names_list.
196 */
197 struct audit_names preallocated_names[AUDIT_NAMES];
198 int name_count; /* total records in names_list */
199 struct list_head names_list; /* anchor for struct audit_names->list */
200 char * filterkey; /* key for rule that triggered record */
201 struct path pwd;
202 struct audit_context *previous; /* For nested syscalls */
203 struct audit_aux_data *aux;
204 struct audit_aux_data *aux_pids;
205 struct sockaddr_storage *sockaddr;
206 size_t sockaddr_len;
207 /* Save things to print about task_struct */
208 pid_t pid, ppid;
209 kuid_t uid, euid, suid, fsuid;
210 kgid_t gid, egid, sgid, fsgid;
211 unsigned long personality;
212 int arch;
213
214 pid_t target_pid;
215 kuid_t target_auid;
216 kuid_t target_uid;
217 unsigned int target_sessionid;
218 u32 target_sid;
219 char target_comm[TASK_COMM_LEN];
220
221 struct audit_tree_refs *trees, *first_trees;
222 struct list_head killed_trees;
223 int tree_count;
224
225 int type;
226 union {
227 struct {
228 int nargs;
229 long args[6];
230 } socketcall;
231 struct {
232 kuid_t uid;
233 kgid_t gid;
234 umode_t mode;
235 u32 osid;
236 int has_perm;
237 uid_t perm_uid;
238 gid_t perm_gid;
239 umode_t perm_mode;
240 unsigned long qbytes;
241 } ipc;
242 struct {
243 mqd_t mqdes;
244 struct mq_attr mqstat;
245 } mq_getsetattr;
246 struct {
247 mqd_t mqdes;
248 int sigev_signo;
249 } mq_notify;
250 struct {
251 mqd_t mqdes;
252 size_t msg_len;
253 unsigned int msg_prio;
254 struct timespec abs_timeout;
255 } mq_sendrecv;
256 struct {
257 int oflag;
258 umode_t mode;
259 struct mq_attr attr;
260 } mq_open;
261 struct {
262 pid_t pid;
263 struct audit_cap_data cap;
264 } capset;
265 struct {
266 int fd;
267 int flags;
268 } mmap;
269 };
270 int fds[2];
271
272 #if AUDIT_DEBUG
273 int put_count;
274 int ino_count;
275 #endif
276 };
277
278 static inline int open_arg(int flags, int mask)
279 {
280 int n = ACC_MODE(flags);
281 if (flags & (O_TRUNC | O_CREAT))
282 n |= AUDIT_PERM_WRITE;
283 return n & mask;
284 }
285
286 static int audit_match_perm(struct audit_context *ctx, int mask)
287 {
288 unsigned n;
289 if (unlikely(!ctx))
290 return 0;
291 n = ctx->major;
292
293 switch (audit_classify_syscall(ctx->arch, n)) {
294 case 0: /* native */
295 if ((mask & AUDIT_PERM_WRITE) &&
296 audit_match_class(AUDIT_CLASS_WRITE, n))
297 return 1;
298 if ((mask & AUDIT_PERM_READ) &&
299 audit_match_class(AUDIT_CLASS_READ, n))
300 return 1;
301 if ((mask & AUDIT_PERM_ATTR) &&
302 audit_match_class(AUDIT_CLASS_CHATTR, n))
303 return 1;
304 return 0;
305 case 1: /* 32bit on biarch */
306 if ((mask & AUDIT_PERM_WRITE) &&
307 audit_match_class(AUDIT_CLASS_WRITE_32, n))
308 return 1;
309 if ((mask & AUDIT_PERM_READ) &&
310 audit_match_class(AUDIT_CLASS_READ_32, n))
311 return 1;
312 if ((mask & AUDIT_PERM_ATTR) &&
313 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
314 return 1;
315 return 0;
316 case 2: /* open */
317 return mask & ACC_MODE(ctx->argv[1]);
318 case 3: /* openat */
319 return mask & ACC_MODE(ctx->argv[2]);
320 case 4: /* socketcall */
321 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
322 case 5: /* execve */
323 return mask & AUDIT_PERM_EXEC;
324 default:
325 return 0;
326 }
327 }
328
329 static int audit_match_filetype(struct audit_context *ctx, int val)
330 {
331 struct audit_names *n;
332 umode_t mode = (umode_t)val;
333
334 if (unlikely(!ctx))
335 return 0;
336
337 list_for_each_entry(n, &ctx->names_list, list) {
338 if ((n->ino != -1) &&
339 ((n->mode & S_IFMT) == mode))
340 return 1;
341 }
342
343 return 0;
344 }
345
346 /*
347 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
348 * ->first_trees points to its beginning, ->trees - to the current end of data.
349 * ->tree_count is the number of free entries in array pointed to by ->trees.
350 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
351 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
352 * it's going to remain 1-element for almost any setup) until we free context itself.
353 * References in it _are_ dropped - at the same time we free/drop aux stuff.
354 */
355
356 #ifdef CONFIG_AUDIT_TREE
357 static void audit_set_auditable(struct audit_context *ctx)
358 {
359 if (!ctx->prio) {
360 ctx->prio = 1;
361 ctx->current_state = AUDIT_RECORD_CONTEXT;
362 }
363 }
364
365 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
366 {
367 struct audit_tree_refs *p = ctx->trees;
368 int left = ctx->tree_count;
369 if (likely(left)) {
370 p->c[--left] = chunk;
371 ctx->tree_count = left;
372 return 1;
373 }
374 if (!p)
375 return 0;
376 p = p->next;
377 if (p) {
378 p->c[30] = chunk;
379 ctx->trees = p;
380 ctx->tree_count = 30;
381 return 1;
382 }
383 return 0;
384 }
385
386 static int grow_tree_refs(struct audit_context *ctx)
387 {
388 struct audit_tree_refs *p = ctx->trees;
389 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
390 if (!ctx->trees) {
391 ctx->trees = p;
392 return 0;
393 }
394 if (p)
395 p->next = ctx->trees;
396 else
397 ctx->first_trees = ctx->trees;
398 ctx->tree_count = 31;
399 return 1;
400 }
401 #endif
402
403 static void unroll_tree_refs(struct audit_context *ctx,
404 struct audit_tree_refs *p, int count)
405 {
406 #ifdef CONFIG_AUDIT_TREE
407 struct audit_tree_refs *q;
408 int n;
409 if (!p) {
410 /* we started with empty chain */
411 p = ctx->first_trees;
412 count = 31;
413 /* if the very first allocation has failed, nothing to do */
414 if (!p)
415 return;
416 }
417 n = count;
418 for (q = p; q != ctx->trees; q = q->next, n = 31) {
419 while (n--) {
420 audit_put_chunk(q->c[n]);
421 q->c[n] = NULL;
422 }
423 }
424 while (n-- > ctx->tree_count) {
425 audit_put_chunk(q->c[n]);
426 q->c[n] = NULL;
427 }
428 ctx->trees = p;
429 ctx->tree_count = count;
430 #endif
431 }
432
433 static void free_tree_refs(struct audit_context *ctx)
434 {
435 struct audit_tree_refs *p, *q;
436 for (p = ctx->first_trees; p; p = q) {
437 q = p->next;
438 kfree(p);
439 }
440 }
441
442 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
443 {
444 #ifdef CONFIG_AUDIT_TREE
445 struct audit_tree_refs *p;
446 int n;
447 if (!tree)
448 return 0;
449 /* full ones */
450 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
451 for (n = 0; n < 31; n++)
452 if (audit_tree_match(p->c[n], tree))
453 return 1;
454 }
455 /* partial */
456 if (p) {
457 for (n = ctx->tree_count; n < 31; n++)
458 if (audit_tree_match(p->c[n], tree))
459 return 1;
460 }
461 #endif
462 return 0;
463 }
464
465 static int audit_compare_uid(kuid_t uid,
466 struct audit_names *name,
467 struct audit_field *f,
468 struct audit_context *ctx)
469 {
470 struct audit_names *n;
471 int rc;
472
473 if (name) {
474 rc = audit_uid_comparator(uid, f->op, name->uid);
475 if (rc)
476 return rc;
477 }
478
479 if (ctx) {
480 list_for_each_entry(n, &ctx->names_list, list) {
481 rc = audit_uid_comparator(uid, f->op, n->uid);
482 if (rc)
483 return rc;
484 }
485 }
486 return 0;
487 }
488
489 static int audit_compare_gid(kgid_t gid,
490 struct audit_names *name,
491 struct audit_field *f,
492 struct audit_context *ctx)
493 {
494 struct audit_names *n;
495 int rc;
496
497 if (name) {
498 rc = audit_gid_comparator(gid, f->op, name->gid);
499 if (rc)
500 return rc;
501 }
502
503 if (ctx) {
504 list_for_each_entry(n, &ctx->names_list, list) {
505 rc = audit_gid_comparator(gid, f->op, n->gid);
506 if (rc)
507 return rc;
508 }
509 }
510 return 0;
511 }
512
513 static int audit_field_compare(struct task_struct *tsk,
514 const struct cred *cred,
515 struct audit_field *f,
516 struct audit_context *ctx,
517 struct audit_names *name)
518 {
519 switch (f->val) {
520 /* process to file object comparisons */
521 case AUDIT_COMPARE_UID_TO_OBJ_UID:
522 return audit_compare_uid(cred->uid, name, f, ctx);
523 case AUDIT_COMPARE_GID_TO_OBJ_GID:
524 return audit_compare_gid(cred->gid, name, f, ctx);
525 case AUDIT_COMPARE_EUID_TO_OBJ_UID:
526 return audit_compare_uid(cred->euid, name, f, ctx);
527 case AUDIT_COMPARE_EGID_TO_OBJ_GID:
528 return audit_compare_gid(cred->egid, name, f, ctx);
529 case AUDIT_COMPARE_AUID_TO_OBJ_UID:
530 return audit_compare_uid(tsk->loginuid, name, f, ctx);
531 case AUDIT_COMPARE_SUID_TO_OBJ_UID:
532 return audit_compare_uid(cred->suid, name, f, ctx);
533 case AUDIT_COMPARE_SGID_TO_OBJ_GID:
534 return audit_compare_gid(cred->sgid, name, f, ctx);
535 case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
536 return audit_compare_uid(cred->fsuid, name, f, ctx);
537 case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
538 return audit_compare_gid(cred->fsgid, name, f, ctx);
539 /* uid comparisons */
540 case AUDIT_COMPARE_UID_TO_AUID:
541 return audit_uid_comparator(cred->uid, f->op, tsk->loginuid);
542 case AUDIT_COMPARE_UID_TO_EUID:
543 return audit_uid_comparator(cred->uid, f->op, cred->euid);
544 case AUDIT_COMPARE_UID_TO_SUID:
545 return audit_uid_comparator(cred->uid, f->op, cred->suid);
546 case AUDIT_COMPARE_UID_TO_FSUID:
547 return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
548 /* auid comparisons */
549 case AUDIT_COMPARE_AUID_TO_EUID:
550 return audit_uid_comparator(tsk->loginuid, f->op, cred->euid);
551 case AUDIT_COMPARE_AUID_TO_SUID:
552 return audit_uid_comparator(tsk->loginuid, f->op, cred->suid);
553 case AUDIT_COMPARE_AUID_TO_FSUID:
554 return audit_uid_comparator(tsk->loginuid, f->op, cred->fsuid);
555 /* euid comparisons */
556 case AUDIT_COMPARE_EUID_TO_SUID:
557 return audit_uid_comparator(cred->euid, f->op, cred->suid);
558 case AUDIT_COMPARE_EUID_TO_FSUID:
559 return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
560 /* suid comparisons */
561 case AUDIT_COMPARE_SUID_TO_FSUID:
562 return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
563 /* gid comparisons */
564 case AUDIT_COMPARE_GID_TO_EGID:
565 return audit_gid_comparator(cred->gid, f->op, cred->egid);
566 case AUDIT_COMPARE_GID_TO_SGID:
567 return audit_gid_comparator(cred->gid, f->op, cred->sgid);
568 case AUDIT_COMPARE_GID_TO_FSGID:
569 return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
570 /* egid comparisons */
571 case AUDIT_COMPARE_EGID_TO_SGID:
572 return audit_gid_comparator(cred->egid, f->op, cred->sgid);
573 case AUDIT_COMPARE_EGID_TO_FSGID:
574 return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
575 /* sgid comparison */
576 case AUDIT_COMPARE_SGID_TO_FSGID:
577 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
578 default:
579 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
580 return 0;
581 }
582 return 0;
583 }
584
585 /* Determine if any context name data matches a rule's watch data */
586 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
587 * otherwise.
588 *
589 * If task_creation is true, this is an explicit indication that we are
590 * filtering a task rule at task creation time. This and tsk == current are
591 * the only situations where tsk->cred may be accessed without an rcu read lock.
592 */
593 static int audit_filter_rules(struct task_struct *tsk,
594 struct audit_krule *rule,
595 struct audit_context *ctx,
596 struct audit_names *name,
597 enum audit_state *state,
598 bool task_creation)
599 {
600 const struct cred *cred;
601 int i, need_sid = 1;
602 u32 sid;
603
604 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
605
606 for (i = 0; i < rule->field_count; i++) {
607 struct audit_field *f = &rule->fields[i];
608 struct audit_names *n;
609 int result = 0;
610
611 switch (f->type) {
612 case AUDIT_PID:
613 result = audit_comparator(tsk->pid, f->op, f->val);
614 break;
615 case AUDIT_PPID:
616 if (ctx) {
617 if (!ctx->ppid)
618 ctx->ppid = sys_getppid();
619 result = audit_comparator(ctx->ppid, f->op, f->val);
620 }
621 break;
622 case AUDIT_UID:
623 result = audit_uid_comparator(cred->uid, f->op, f->uid);
624 break;
625 case AUDIT_EUID:
626 result = audit_uid_comparator(cred->euid, f->op, f->uid);
627 break;
628 case AUDIT_SUID:
629 result = audit_uid_comparator(cred->suid, f->op, f->uid);
630 break;
631 case AUDIT_FSUID:
632 result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
633 break;
634 case AUDIT_GID:
635 result = audit_gid_comparator(cred->gid, f->op, f->gid);
636 break;
637 case AUDIT_EGID:
638 result = audit_gid_comparator(cred->egid, f->op, f->gid);
639 break;
640 case AUDIT_SGID:
641 result = audit_gid_comparator(cred->sgid, f->op, f->gid);
642 break;
643 case AUDIT_FSGID:
644 result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
645 break;
646 case AUDIT_PERS:
647 result = audit_comparator(tsk->personality, f->op, f->val);
648 break;
649 case AUDIT_ARCH:
650 if (ctx)
651 result = audit_comparator(ctx->arch, f->op, f->val);
652 break;
653
654 case AUDIT_EXIT:
655 if (ctx && ctx->return_valid)
656 result = audit_comparator(ctx->return_code, f->op, f->val);
657 break;
658 case AUDIT_SUCCESS:
659 if (ctx && ctx->return_valid) {
660 if (f->val)
661 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
662 else
663 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
664 }
665 break;
666 case AUDIT_DEVMAJOR:
667 if (name) {
668 if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
669 audit_comparator(MAJOR(name->rdev), f->op, f->val))
670 ++result;
671 } else if (ctx) {
672 list_for_each_entry(n, &ctx->names_list, list) {
673 if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
674 audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
675 ++result;
676 break;
677 }
678 }
679 }
680 break;
681 case AUDIT_DEVMINOR:
682 if (name) {
683 if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
684 audit_comparator(MINOR(name->rdev), f->op, f->val))
685 ++result;
686 } else if (ctx) {
687 list_for_each_entry(n, &ctx->names_list, list) {
688 if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
689 audit_comparator(MINOR(n->rdev), f->op, f->val)) {
690 ++result;
691 break;
692 }
693 }
694 }
695 break;
696 case AUDIT_INODE:
697 if (name)
698 result = (name->ino == f->val);
699 else if (ctx) {
700 list_for_each_entry(n, &ctx->names_list, list) {
701 if (audit_comparator(n->ino, f->op, f->val)) {
702 ++result;
703 break;
704 }
705 }
706 }
707 break;
708 case AUDIT_OBJ_UID:
709 if (name) {
710 result = audit_uid_comparator(name->uid, f->op, f->uid);
711 } else if (ctx) {
712 list_for_each_entry(n, &ctx->names_list, list) {
713 if (audit_uid_comparator(n->uid, f->op, f->uid)) {
714 ++result;
715 break;
716 }
717 }
718 }
719 break;
720 case AUDIT_OBJ_GID:
721 if (name) {
722 result = audit_gid_comparator(name->gid, f->op, f->gid);
723 } else if (ctx) {
724 list_for_each_entry(n, &ctx->names_list, list) {
725 if (audit_gid_comparator(n->gid, f->op, f->gid)) {
726 ++result;
727 break;
728 }
729 }
730 }
731 break;
732 case AUDIT_WATCH:
733 if (name)
734 result = audit_watch_compare(rule->watch, name->ino, name->dev);
735 break;
736 case AUDIT_DIR:
737 if (ctx)
738 result = match_tree_refs(ctx, rule->tree);
739 break;
740 case AUDIT_LOGINUID:
741 result = 0;
742 if (ctx)
743 result = audit_uid_comparator(tsk->loginuid, f->op, f->uid);
744 break;
745 case AUDIT_SUBJ_USER:
746 case AUDIT_SUBJ_ROLE:
747 case AUDIT_SUBJ_TYPE:
748 case AUDIT_SUBJ_SEN:
749 case AUDIT_SUBJ_CLR:
750 /* NOTE: this may return negative values indicating
751 a temporary error. We simply treat this as a
752 match for now to avoid losing information that
753 may be wanted. An error message will also be
754 logged upon error */
755 if (f->lsm_rule) {
756 if (need_sid) {
757 security_task_getsecid(tsk, &sid);
758 need_sid = 0;
759 }
760 result = security_audit_rule_match(sid, f->type,
761 f->op,
762 f->lsm_rule,
763 ctx);
764 }
765 break;
766 case AUDIT_OBJ_USER:
767 case AUDIT_OBJ_ROLE:
768 case AUDIT_OBJ_TYPE:
769 case AUDIT_OBJ_LEV_LOW:
770 case AUDIT_OBJ_LEV_HIGH:
771 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
772 also applies here */
773 if (f->lsm_rule) {
774 /* Find files that match */
775 if (name) {
776 result = security_audit_rule_match(
777 name->osid, f->type, f->op,
778 f->lsm_rule, ctx);
779 } else if (ctx) {
780 list_for_each_entry(n, &ctx->names_list, list) {
781 if (security_audit_rule_match(n->osid, f->type,
782 f->op, f->lsm_rule,
783 ctx)) {
784 ++result;
785 break;
786 }
787 }
788 }
789 /* Find ipc objects that match */
790 if (!ctx || ctx->type != AUDIT_IPC)
791 break;
792 if (security_audit_rule_match(ctx->ipc.osid,
793 f->type, f->op,
794 f->lsm_rule, ctx))
795 ++result;
796 }
797 break;
798 case AUDIT_ARG0:
799 case AUDIT_ARG1:
800 case AUDIT_ARG2:
801 case AUDIT_ARG3:
802 if (ctx)
803 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
804 break;
805 case AUDIT_FILTERKEY:
806 /* ignore this field for filtering */
807 result = 1;
808 break;
809 case AUDIT_PERM:
810 result = audit_match_perm(ctx, f->val);
811 break;
812 case AUDIT_FILETYPE:
813 result = audit_match_filetype(ctx, f->val);
814 break;
815 case AUDIT_FIELD_COMPARE:
816 result = audit_field_compare(tsk, cred, f, ctx, name);
817 break;
818 }
819 if (!result)
820 return 0;
821 }
822
823 if (ctx) {
824 if (rule->prio <= ctx->prio)
825 return 0;
826 if (rule->filterkey) {
827 kfree(ctx->filterkey);
828 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
829 }
830 ctx->prio = rule->prio;
831 }
832 switch (rule->action) {
833 case AUDIT_NEVER: *state = AUDIT_DISABLED; break;
834 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break;
835 }
836 return 1;
837 }
838
839 /* At process creation time, we can determine if system-call auditing is
840 * completely disabled for this task. Since we only have the task
841 * structure at this point, we can only check uid and gid.
842 */
843 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
844 {
845 struct audit_entry *e;
846 enum audit_state state;
847
848 rcu_read_lock();
849 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
850 if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
851 &state, true)) {
852 if (state == AUDIT_RECORD_CONTEXT)
853 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
854 rcu_read_unlock();
855 return state;
856 }
857 }
858 rcu_read_unlock();
859 return AUDIT_BUILD_CONTEXT;
860 }
861
862 /* At syscall entry and exit time, this filter is called if the
863 * audit_state is not low enough that auditing cannot take place, but is
864 * also not high enough that we already know we have to write an audit
865 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
866 */
867 static enum audit_state audit_filter_syscall(struct task_struct *tsk,
868 struct audit_context *ctx,
869 struct list_head *list)
870 {
871 struct audit_entry *e;
872 enum audit_state state;
873
874 if (audit_pid && tsk->tgid == audit_pid)
875 return AUDIT_DISABLED;
876
877 rcu_read_lock();
878 if (!list_empty(list)) {
879 int word = AUDIT_WORD(ctx->major);
880 int bit = AUDIT_BIT(ctx->major);
881
882 list_for_each_entry_rcu(e, list, list) {
883 if ((e->rule.mask[word] & bit) == bit &&
884 audit_filter_rules(tsk, &e->rule, ctx, NULL,
885 &state, false)) {
886 rcu_read_unlock();
887 ctx->current_state = state;
888 return state;
889 }
890 }
891 }
892 rcu_read_unlock();
893 return AUDIT_BUILD_CONTEXT;
894 }
895
896 /*
897 * Given an audit_name check the inode hash table to see if they match.
898 * Called holding the rcu read lock to protect the use of audit_inode_hash
899 */
900 static int audit_filter_inode_name(struct task_struct *tsk,
901 struct audit_names *n,
902 struct audit_context *ctx) {
903 int word, bit;
904 int h = audit_hash_ino((u32)n->ino);
905 struct list_head *list = &audit_inode_hash[h];
906 struct audit_entry *e;
907 enum audit_state state;
908
909 word = AUDIT_WORD(ctx->major);
910 bit = AUDIT_BIT(ctx->major);
911
912 if (list_empty(list))
913 return 0;
914
915 list_for_each_entry_rcu(e, list, list) {
916 if ((e->rule.mask[word] & bit) == bit &&
917 audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
918 ctx->current_state = state;
919 return 1;
920 }
921 }
922
923 return 0;
924 }
925
926 /* At syscall exit time, this filter is called if any audit_names have been
927 * collected during syscall processing. We only check rules in sublists at hash
928 * buckets applicable to the inode numbers in audit_names.
929 * Regarding audit_state, same rules apply as for audit_filter_syscall().
930 */
931 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
932 {
933 struct audit_names *n;
934
935 if (audit_pid && tsk->tgid == audit_pid)
936 return;
937
938 rcu_read_lock();
939
940 list_for_each_entry(n, &ctx->names_list, list) {
941 if (audit_filter_inode_name(tsk, n, ctx))
942 break;
943 }
944 rcu_read_unlock();
945 }
946
947 static inline struct audit_context *audit_get_context(struct task_struct *tsk,
948 int return_valid,
949 long return_code)
950 {
951 struct audit_context *context = tsk->audit_context;
952
953 if (!context)
954 return NULL;
955 context->return_valid = return_valid;
956
957 /*
958 * we need to fix up the return code in the audit logs if the actual
959 * return codes are later going to be fixed up by the arch specific
960 * signal handlers
961 *
962 * This is actually a test for:
963 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
964 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
965 *
966 * but is faster than a bunch of ||
967 */
968 if (unlikely(return_code <= -ERESTARTSYS) &&
969 (return_code >= -ERESTART_RESTARTBLOCK) &&
970 (return_code != -ENOIOCTLCMD))
971 context->return_code = -EINTR;
972 else
973 context->return_code = return_code;
974
975 if (context->in_syscall && !context->dummy) {
976 audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
977 audit_filter_inodes(tsk, context);
978 }
979
980 tsk->audit_context = NULL;
981 return context;
982 }
983
984 static inline void audit_free_names(struct audit_context *context)
985 {
986 struct audit_names *n, *next;
987
988 #if AUDIT_DEBUG == 2
989 if (context->put_count + context->ino_count != context->name_count) {
990 printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
991 " name_count=%d put_count=%d"
992 " ino_count=%d [NOT freeing]\n",
993 __FILE__, __LINE__,
994 context->serial, context->major, context->in_syscall,
995 context->name_count, context->put_count,
996 context->ino_count);
997 list_for_each_entry(n, &context->names_list, list) {
998 printk(KERN_ERR "names[%d] = %p = %s\n", i,
999 n->name, n->name ?: "(null)");
1000 }
1001 dump_stack();
1002 return;
1003 }
1004 #endif
1005 #if AUDIT_DEBUG
1006 context->put_count = 0;
1007 context->ino_count = 0;
1008 #endif
1009
1010 list_for_each_entry_safe(n, next, &context->names_list, list) {
1011 list_del(&n->list);
1012 if (n->name && n->name_put)
1013 __putname(n->name);
1014 if (n->should_free)
1015 kfree(n);
1016 }
1017 context->name_count = 0;
1018 path_put(&context->pwd);
1019 context->pwd.dentry = NULL;
1020 context->pwd.mnt = NULL;
1021 }
1022
1023 static inline void audit_free_aux(struct audit_context *context)
1024 {
1025 struct audit_aux_data *aux;
1026
1027 while ((aux = context->aux)) {
1028 context->aux = aux->next;
1029 kfree(aux);
1030 }
1031 while ((aux = context->aux_pids)) {
1032 context->aux_pids = aux->next;
1033 kfree(aux);
1034 }
1035 }
1036
1037 static inline void audit_zero_context(struct audit_context *context,
1038 enum audit_state state)
1039 {
1040 memset(context, 0, sizeof(*context));
1041 context->state = state;
1042 context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1043 }
1044
1045 static inline struct audit_context *audit_alloc_context(enum audit_state state)
1046 {
1047 struct audit_context *context;
1048
1049 if (!(context = kmalloc(sizeof(*context), GFP_KERNEL)))
1050 return NULL;
1051 audit_zero_context(context, state);
1052 INIT_LIST_HEAD(&context->killed_trees);
1053 INIT_LIST_HEAD(&context->names_list);
1054 return context;
1055 }
1056
1057 /**
1058 * audit_alloc - allocate an audit context block for a task
1059 * @tsk: task
1060 *
1061 * Filter on the task information and allocate a per-task audit context
1062 * if necessary. Doing so turns on system call auditing for the
1063 * specified task. This is called from copy_process, so no lock is
1064 * needed.
1065 */
1066 int audit_alloc(struct task_struct *tsk)
1067 {
1068 struct audit_context *context;
1069 enum audit_state state;
1070 char *key = NULL;
1071
1072 if (likely(!audit_ever_enabled))
1073 return 0; /* Return if not auditing. */
1074
1075 state = audit_filter_task(tsk, &key);
1076 if (state == AUDIT_DISABLED)
1077 return 0;
1078
1079 if (!(context = audit_alloc_context(state))) {
1080 kfree(key);
1081 audit_log_lost("out of memory in audit_alloc");
1082 return -ENOMEM;
1083 }
1084 context->filterkey = key;
1085
1086 tsk->audit_context = context;
1087 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
1088 return 0;
1089 }
1090
1091 static inline void audit_free_context(struct audit_context *context)
1092 {
1093 struct audit_context *previous;
1094 int count = 0;
1095
1096 do {
1097 previous = context->previous;
1098 if (previous || (count && count < 10)) {
1099 ++count;
1100 printk(KERN_ERR "audit(:%d): major=%d name_count=%d:"
1101 " freeing multiple contexts (%d)\n",
1102 context->serial, context->major,
1103 context->name_count, count);
1104 }
1105 audit_free_names(context);
1106 unroll_tree_refs(context, NULL, 0);
1107 free_tree_refs(context);
1108 audit_free_aux(context);
1109 kfree(context->filterkey);
1110 kfree(context->sockaddr);
1111 kfree(context);
1112 context = previous;
1113 } while (context);
1114 if (count >= 10)
1115 printk(KERN_ERR "audit: freed %d contexts\n", count);
1116 }
1117
1118 void audit_log_task_context(struct audit_buffer *ab)
1119 {
1120 char *ctx = NULL;
1121 unsigned len;
1122 int error;
1123 u32 sid;
1124
1125 security_task_getsecid(current, &sid);
1126 if (!sid)
1127 return;
1128
1129 error = security_secid_to_secctx(sid, &ctx, &len);
1130 if (error) {
1131 if (error != -EINVAL)
1132 goto error_path;
1133 return;
1134 }
1135
1136 audit_log_format(ab, " subj=%s", ctx);
1137 security_release_secctx(ctx, len);
1138 return;
1139
1140 error_path:
1141 audit_panic("error in audit_log_task_context");
1142 return;
1143 }
1144
1145 EXPORT_SYMBOL(audit_log_task_context);
1146
1147 void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
1148 {
1149 const struct cred *cred;
1150 char name[sizeof(tsk->comm)];
1151 struct mm_struct *mm = tsk->mm;
1152 char *tty;
1153
1154 if (!ab)
1155 return;
1156
1157 /* tsk == current */
1158 cred = current_cred();
1159
1160 spin_lock_irq(&tsk->sighand->siglock);
1161 if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1162 tty = tsk->signal->tty->name;
1163 else
1164 tty = "(none)";
1165 spin_unlock_irq(&tsk->sighand->siglock);
1166
1167
1168 audit_log_format(ab,
1169 " ppid=%ld pid=%d auid=%u uid=%u gid=%u"
1170 " euid=%u suid=%u fsuid=%u"
1171 " egid=%u sgid=%u fsgid=%u ses=%u tty=%s",
1172 sys_getppid(),
1173 tsk->pid,
1174 from_kuid(&init_user_ns, tsk->loginuid),
1175 from_kuid(&init_user_ns, cred->uid),
1176 from_kgid(&init_user_ns, cred->gid),
1177 from_kuid(&init_user_ns, cred->euid),
1178 from_kuid(&init_user_ns, cred->suid),
1179 from_kuid(&init_user_ns, cred->fsuid),
1180 from_kgid(&init_user_ns, cred->egid),
1181 from_kgid(&init_user_ns, cred->sgid),
1182 from_kgid(&init_user_ns, cred->fsgid),
1183 tsk->sessionid, tty);
1184
1185 get_task_comm(name, tsk);
1186 audit_log_format(ab, " comm=");
1187 audit_log_untrustedstring(ab, name);
1188
1189 if (mm) {
1190 down_read(&mm->mmap_sem);
1191 if (mm->exe_file)
1192 audit_log_d_path(ab, " exe=", &mm->exe_file->f_path);
1193 up_read(&mm->mmap_sem);
1194 }
1195 audit_log_task_context(ab);
1196 }
1197
1198 EXPORT_SYMBOL(audit_log_task_info);
1199
1200 static int audit_log_pid_context(struct audit_context *context, pid_t pid,
1201 kuid_t auid, kuid_t uid, unsigned int sessionid,
1202 u32 sid, char *comm)
1203 {
1204 struct audit_buffer *ab;
1205 char *ctx = NULL;
1206 u32 len;
1207 int rc = 0;
1208
1209 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
1210 if (!ab)
1211 return rc;
1212
1213 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
1214 from_kuid(&init_user_ns, auid),
1215 from_kuid(&init_user_ns, uid), sessionid);
1216 if (security_secid_to_secctx(sid, &ctx, &len)) {
1217 audit_log_format(ab, " obj=(none)");
1218 rc = 1;
1219 } else {
1220 audit_log_format(ab, " obj=%s", ctx);
1221 security_release_secctx(ctx, len);
1222 }
1223 audit_log_format(ab, " ocomm=");
1224 audit_log_untrustedstring(ab, comm);
1225 audit_log_end(ab);
1226
1227 return rc;
1228 }
1229
1230 /*
1231 * to_send and len_sent accounting are very loose estimates. We aren't
1232 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
1233 * within about 500 bytes (next page boundary)
1234 *
1235 * why snprintf? an int is up to 12 digits long. if we just assumed when
1236 * logging that a[%d]= was going to be 16 characters long we would be wasting
1237 * space in every audit message. In one 7500 byte message we can log up to
1238 * about 1000 min size arguments. That comes down to about 50% waste of space
1239 * if we didn't do the snprintf to find out how long arg_num_len was.
1240 */
1241 static int audit_log_single_execve_arg(struct audit_context *context,
1242 struct audit_buffer **ab,
1243 int arg_num,
1244 size_t *len_sent,
1245 const char __user *p,
1246 char *buf)
1247 {
1248 char arg_num_len_buf[12];
1249 const char __user *tmp_p = p;
1250 /* how many digits are in arg_num? 5 is the length of ' a=""' */
1251 size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 5;
1252 size_t len, len_left, to_send;
1253 size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
1254 unsigned int i, has_cntl = 0, too_long = 0;
1255 int ret;
1256
1257 /* strnlen_user includes the null we don't want to send */
1258 len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1259
1260 /*
1261 * We just created this mm, if we can't find the strings
1262 * we just copied into it something is _very_ wrong. Similar
1263 * for strings that are too long, we should not have created
1264 * any.
1265 */
1266 if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
1267 WARN_ON(1);
1268 send_sig(SIGKILL, current, 0);
1269 return -1;
1270 }
1271
1272 /* walk the whole argument looking for non-ascii chars */
1273 do {
1274 if (len_left > MAX_EXECVE_AUDIT_LEN)
1275 to_send = MAX_EXECVE_AUDIT_LEN;
1276 else
1277 to_send = len_left;
1278 ret = copy_from_user(buf, tmp_p, to_send);
1279 /*
1280 * There is no reason for this copy to be short. We just
1281 * copied them here, and the mm hasn't been exposed to user-
1282 * space yet.
1283 */
1284 if (ret) {
1285 WARN_ON(1);
1286 send_sig(SIGKILL, current, 0);
1287 return -1;
1288 }
1289 buf[to_send] = '\0';
1290 has_cntl = audit_string_contains_control(buf, to_send);
1291 if (has_cntl) {
1292 /*
1293 * hex messages get logged as 2 bytes, so we can only
1294 * send half as much in each message
1295 */
1296 max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
1297 break;
1298 }
1299 len_left -= to_send;
1300 tmp_p += to_send;
1301 } while (len_left > 0);
1302
1303 len_left = len;
1304
1305 if (len > max_execve_audit_len)
1306 too_long = 1;
1307
1308 /* rewalk the argument actually logging the message */
1309 for (i = 0; len_left > 0; i++) {
1310 int room_left;
1311
1312 if (len_left > max_execve_audit_len)
1313 to_send = max_execve_audit_len;
1314 else
1315 to_send = len_left;
1316
1317 /* do we have space left to send this argument in this ab? */
1318 room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1319 if (has_cntl)
1320 room_left -= (to_send * 2);
1321 else
1322 room_left -= to_send;
1323 if (room_left < 0) {
1324 *len_sent = 0;
1325 audit_log_end(*ab);
1326 *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1327 if (!*ab)
1328 return 0;
1329 }
1330
1331 /*
1332 * first record needs to say how long the original string was
1333 * so we can be sure nothing was lost.
1334 */
1335 if ((i == 0) && (too_long))
1336 audit_log_format(*ab, " a%d_len=%zu", arg_num,
1337 has_cntl ? 2*len : len);
1338
1339 /*
1340 * normally arguments are small enough to fit and we already
1341 * filled buf above when we checked for control characters
1342 * so don't bother with another copy_from_user
1343 */
1344 if (len >= max_execve_audit_len)
1345 ret = copy_from_user(buf, p, to_send);
1346 else
1347 ret = 0;
1348 if (ret) {
1349 WARN_ON(1);
1350 send_sig(SIGKILL, current, 0);
1351 return -1;
1352 }
1353 buf[to_send] = '\0';
1354
1355 /* actually log it */
1356 audit_log_format(*ab, " a%d", arg_num);
1357 if (too_long)
1358 audit_log_format(*ab, "[%d]", i);
1359 audit_log_format(*ab, "=");
1360 if (has_cntl)
1361 audit_log_n_hex(*ab, buf, to_send);
1362 else
1363 audit_log_string(*ab, buf);
1364
1365 p += to_send;
1366 len_left -= to_send;
1367 *len_sent += arg_num_len;
1368 if (has_cntl)
1369 *len_sent += to_send * 2;
1370 else
1371 *len_sent += to_send;
1372 }
1373 /* include the null we didn't log */
1374 return len + 1;
1375 }
1376
1377 static void audit_log_execve_info(struct audit_context *context,
1378 struct audit_buffer **ab,
1379 struct audit_aux_data_execve *axi)
1380 {
1381 int i, len;
1382 size_t len_sent = 0;
1383 const char __user *p;
1384 char *buf;
1385
1386 if (axi->mm != current->mm)
1387 return; /* execve failed, no additional info */
1388
1389 p = (const char __user *)axi->mm->arg_start;
1390
1391 audit_log_format(*ab, "argc=%d", axi->argc);
1392
1393 /*
1394 * we need some kernel buffer to hold the userspace args. Just
1395 * allocate one big one rather than allocating one of the right size
1396 * for every single argument inside audit_log_single_execve_arg()
1397 * should be <8k allocation so should be pretty safe.
1398 */
1399 buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1400 if (!buf) {
1401 audit_panic("out of memory for argv string\n");
1402 return;
1403 }
1404
1405 for (i = 0; i < axi->argc; i++) {
1406 len = audit_log_single_execve_arg(context, ab, i,
1407 &len_sent, p, buf);
1408 if (len <= 0)
1409 break;
1410 p += len;
1411 }
1412 kfree(buf);
1413 }
1414
1415 static void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1416 {
1417 int i;
1418
1419 audit_log_format(ab, " %s=", prefix);
1420 CAP_FOR_EACH_U32(i) {
1421 audit_log_format(ab, "%08x", cap->cap[(_KERNEL_CAPABILITY_U32S-1) - i]);
1422 }
1423 }
1424
1425 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1426 {
1427 kernel_cap_t *perm = &name->fcap.permitted;
1428 kernel_cap_t *inh = &name->fcap.inheritable;
1429 int log = 0;
1430
1431 if (!cap_isclear(*perm)) {
1432 audit_log_cap(ab, "cap_fp", perm);
1433 log = 1;
1434 }
1435 if (!cap_isclear(*inh)) {
1436 audit_log_cap(ab, "cap_fi", inh);
1437 log = 1;
1438 }
1439
1440 if (log)
1441 audit_log_format(ab, " cap_fe=%d cap_fver=%x", name->fcap.fE, name->fcap_ver);
1442 }
1443
1444 static void show_special(struct audit_context *context, int *call_panic)
1445 {
1446 struct audit_buffer *ab;
1447 int i;
1448
1449 ab = audit_log_start(context, GFP_KERNEL, context->type);
1450 if (!ab)
1451 return;
1452
1453 switch (context->type) {
1454 case AUDIT_SOCKETCALL: {
1455 int nargs = context->socketcall.nargs;
1456 audit_log_format(ab, "nargs=%d", nargs);
1457 for (i = 0; i < nargs; i++)
1458 audit_log_format(ab, " a%d=%lx", i,
1459 context->socketcall.args[i]);
1460 break; }
1461 case AUDIT_IPC: {
1462 u32 osid = context->ipc.osid;
1463
1464 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1465 from_kuid(&init_user_ns, context->ipc.uid),
1466 from_kgid(&init_user_ns, context->ipc.gid),
1467 context->ipc.mode);
1468 if (osid) {
1469 char *ctx = NULL;
1470 u32 len;
1471 if (security_secid_to_secctx(osid, &ctx, &len)) {
1472 audit_log_format(ab, " osid=%u", osid);
1473 *call_panic = 1;
1474 } else {
1475 audit_log_format(ab, " obj=%s", ctx);
1476 security_release_secctx(ctx, len);
1477 }
1478 }
1479 if (context->ipc.has_perm) {
1480 audit_log_end(ab);
1481 ab = audit_log_start(context, GFP_KERNEL,
1482 AUDIT_IPC_SET_PERM);
1483 audit_log_format(ab,
1484 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1485 context->ipc.qbytes,
1486 context->ipc.perm_uid,
1487 context->ipc.perm_gid,
1488 context->ipc.perm_mode);
1489 if (!ab)
1490 return;
1491 }
1492 break; }
1493 case AUDIT_MQ_OPEN: {
1494 audit_log_format(ab,
1495 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1496 "mq_msgsize=%ld mq_curmsgs=%ld",
1497 context->mq_open.oflag, context->mq_open.mode,
1498 context->mq_open.attr.mq_flags,
1499 context->mq_open.attr.mq_maxmsg,
1500 context->mq_open.attr.mq_msgsize,
1501 context->mq_open.attr.mq_curmsgs);
1502 break; }
1503 case AUDIT_MQ_SENDRECV: {
1504 audit_log_format(ab,
1505 "mqdes=%d msg_len=%zd msg_prio=%u "
1506 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1507 context->mq_sendrecv.mqdes,
1508 context->mq_sendrecv.msg_len,
1509 context->mq_sendrecv.msg_prio,
1510 context->mq_sendrecv.abs_timeout.tv_sec,
1511 context->mq_sendrecv.abs_timeout.tv_nsec);
1512 break; }
1513 case AUDIT_MQ_NOTIFY: {
1514 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1515 context->mq_notify.mqdes,
1516 context->mq_notify.sigev_signo);
1517 break; }
1518 case AUDIT_MQ_GETSETATTR: {
1519 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1520 audit_log_format(ab,
1521 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1522 "mq_curmsgs=%ld ",
1523 context->mq_getsetattr.mqdes,
1524 attr->mq_flags, attr->mq_maxmsg,
1525 attr->mq_msgsize, attr->mq_curmsgs);
1526 break; }
1527 case AUDIT_CAPSET: {
1528 audit_log_format(ab, "pid=%d", context->capset.pid);
1529 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1530 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1531 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1532 break; }
1533 case AUDIT_MMAP: {
1534 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1535 context->mmap.flags);
1536 break; }
1537 }
1538 audit_log_end(ab);
1539 }
1540
1541 static void audit_log_name(struct audit_context *context, struct audit_names *n,
1542 int record_num, int *call_panic)
1543 {
1544 struct audit_buffer *ab;
1545 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1546 if (!ab)
1547 return; /* audit_panic has been called */
1548
1549 audit_log_format(ab, "item=%d", record_num);
1550
1551 if (n->name) {
1552 switch (n->name_len) {
1553 case AUDIT_NAME_FULL:
1554 /* log the full path */
1555 audit_log_format(ab, " name=");
1556 audit_log_untrustedstring(ab, n->name);
1557 break;
1558 case 0:
1559 /* name was specified as a relative path and the
1560 * directory component is the cwd */
1561 audit_log_d_path(ab, " name=", &context->pwd);
1562 break;
1563 default:
1564 /* log the name's directory component */
1565 audit_log_format(ab, " name=");
1566 audit_log_n_untrustedstring(ab, n->name,
1567 n->name_len);
1568 }
1569 } else
1570 audit_log_format(ab, " name=(null)");
1571
1572 if (n->ino != (unsigned long)-1) {
1573 audit_log_format(ab, " inode=%lu"
1574 " dev=%02x:%02x mode=%#ho"
1575 " ouid=%u ogid=%u rdev=%02x:%02x",
1576 n->ino,
1577 MAJOR(n->dev),
1578 MINOR(n->dev),
1579 n->mode,
1580 from_kuid(&init_user_ns, n->uid),
1581 from_kgid(&init_user_ns, n->gid),
1582 MAJOR(n->rdev),
1583 MINOR(n->rdev));
1584 }
1585 if (n->osid != 0) {
1586 char *ctx = NULL;
1587 u32 len;
1588 if (security_secid_to_secctx(
1589 n->osid, &ctx, &len)) {
1590 audit_log_format(ab, " osid=%u", n->osid);
1591 *call_panic = 2;
1592 } else {
1593 audit_log_format(ab, " obj=%s", ctx);
1594 security_release_secctx(ctx, len);
1595 }
1596 }
1597
1598 audit_log_fcaps(ab, n);
1599
1600 audit_log_end(ab);
1601 }
1602
1603 static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1604 {
1605 int i, call_panic = 0;
1606 struct audit_buffer *ab;
1607 struct audit_aux_data *aux;
1608 struct audit_names *n;
1609
1610 /* tsk == current */
1611 context->personality = tsk->personality;
1612
1613 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1614 if (!ab)
1615 return; /* audit_panic has been called */
1616 audit_log_format(ab, "arch=%x syscall=%d",
1617 context->arch, context->major);
1618 if (context->personality != PER_LINUX)
1619 audit_log_format(ab, " per=%lx", context->personality);
1620 if (context->return_valid)
1621 audit_log_format(ab, " success=%s exit=%ld",
1622 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1623 context->return_code);
1624
1625 audit_log_format(ab,
1626 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1627 context->argv[0],
1628 context->argv[1],
1629 context->argv[2],
1630 context->argv[3],
1631 context->name_count);
1632
1633 audit_log_task_info(ab, tsk);
1634 audit_log_key(ab, context->filterkey);
1635 audit_log_end(ab);
1636
1637 for (aux = context->aux; aux; aux = aux->next) {
1638
1639 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1640 if (!ab)
1641 continue; /* audit_panic has been called */
1642
1643 switch (aux->type) {
1644
1645 case AUDIT_EXECVE: {
1646 struct audit_aux_data_execve *axi = (void *)aux;
1647 audit_log_execve_info(context, &ab, axi);
1648 break; }
1649
1650 case AUDIT_BPRM_FCAPS: {
1651 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1652 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1653 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1654 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1655 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1656 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1657 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1658 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1659 audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1660 audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1661 audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
1662 break; }
1663
1664 }
1665 audit_log_end(ab);
1666 }
1667
1668 if (context->type)
1669 show_special(context, &call_panic);
1670
1671 if (context->fds[0] >= 0) {
1672 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1673 if (ab) {
1674 audit_log_format(ab, "fd0=%d fd1=%d",
1675 context->fds[0], context->fds[1]);
1676 audit_log_end(ab);
1677 }
1678 }
1679
1680 if (context->sockaddr_len) {
1681 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1682 if (ab) {
1683 audit_log_format(ab, "saddr=");
1684 audit_log_n_hex(ab, (void *)context->sockaddr,
1685 context->sockaddr_len);
1686 audit_log_end(ab);
1687 }
1688 }
1689
1690 for (aux = context->aux_pids; aux; aux = aux->next) {
1691 struct audit_aux_data_pids *axs = (void *)aux;
1692
1693 for (i = 0; i < axs->pid_count; i++)
1694 if (audit_log_pid_context(context, axs->target_pid[i],
1695 axs->target_auid[i],
1696 axs->target_uid[i],
1697 axs->target_sessionid[i],
1698 axs->target_sid[i],
1699 axs->target_comm[i]))
1700 call_panic = 1;
1701 }
1702
1703 if (context->target_pid &&
1704 audit_log_pid_context(context, context->target_pid,
1705 context->target_auid, context->target_uid,
1706 context->target_sessionid,
1707 context->target_sid, context->target_comm))
1708 call_panic = 1;
1709
1710 if (context->pwd.dentry && context->pwd.mnt) {
1711 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1712 if (ab) {
1713 audit_log_d_path(ab, " cwd=", &context->pwd);
1714 audit_log_end(ab);
1715 }
1716 }
1717
1718 i = 0;
1719 list_for_each_entry(n, &context->names_list, list)
1720 audit_log_name(context, n, i++, &call_panic);
1721
1722 /* Send end of event record to help user space know we are finished */
1723 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1724 if (ab)
1725 audit_log_end(ab);
1726 if (call_panic)
1727 audit_panic("error converting sid to string");
1728 }
1729
1730 /**
1731 * audit_free - free a per-task audit context
1732 * @tsk: task whose audit context block to free
1733 *
1734 * Called from copy_process and do_exit
1735 */
1736 void __audit_free(struct task_struct *tsk)
1737 {
1738 struct audit_context *context;
1739
1740 context = audit_get_context(tsk, 0, 0);
1741 if (!context)
1742 return;
1743
1744 /* Check for system calls that do not go through the exit
1745 * function (e.g., exit_group), then free context block.
1746 * We use GFP_ATOMIC here because we might be doing this
1747 * in the context of the idle thread */
1748 /* that can happen only if we are called from do_exit() */
1749 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1750 audit_log_exit(context, tsk);
1751 if (!list_empty(&context->killed_trees))
1752 audit_kill_trees(&context->killed_trees);
1753
1754 audit_free_context(context);
1755 }
1756
1757 /**
1758 * audit_syscall_entry - fill in an audit record at syscall entry
1759 * @arch: architecture type
1760 * @major: major syscall type (function)
1761 * @a1: additional syscall register 1
1762 * @a2: additional syscall register 2
1763 * @a3: additional syscall register 3
1764 * @a4: additional syscall register 4
1765 *
1766 * Fill in audit context at syscall entry. This only happens if the
1767 * audit context was created when the task was created and the state or
1768 * filters demand the audit context be built. If the state from the
1769 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1770 * then the record will be written at syscall exit time (otherwise, it
1771 * will only be written if another part of the kernel requests that it
1772 * be written).
1773 */
1774 void __audit_syscall_entry(int arch, int major,
1775 unsigned long a1, unsigned long a2,
1776 unsigned long a3, unsigned long a4)
1777 {
1778 struct task_struct *tsk = current;
1779 struct audit_context *context = tsk->audit_context;
1780 enum audit_state state;
1781
1782 if (!context)
1783 return;
1784
1785 /*
1786 * This happens only on certain architectures that make system
1787 * calls in kernel_thread via the entry.S interface, instead of
1788 * with direct calls. (If you are porting to a new
1789 * architecture, hitting this condition can indicate that you
1790 * got the _exit/_leave calls backward in entry.S.)
1791 *
1792 * i386 no
1793 * x86_64 no
1794 * ppc64 yes (see arch/powerpc/platforms/iseries/misc.S)
1795 *
1796 * This also happens with vm86 emulation in a non-nested manner
1797 * (entries without exits), so this case must be caught.
1798 */
1799 if (context->in_syscall) {
1800 struct audit_context *newctx;
1801
1802 #if AUDIT_DEBUG
1803 printk(KERN_ERR
1804 "audit(:%d) pid=%d in syscall=%d;"
1805 " entering syscall=%d\n",
1806 context->serial, tsk->pid, context->major, major);
1807 #endif
1808 newctx = audit_alloc_context(context->state);
1809 if (newctx) {
1810 newctx->previous = context;
1811 context = newctx;
1812 tsk->audit_context = newctx;
1813 } else {
1814 /* If we can't alloc a new context, the best we
1815 * can do is to leak memory (any pending putname
1816 * will be lost). The only other alternative is
1817 * to abandon auditing. */
1818 audit_zero_context(context, context->state);
1819 }
1820 }
1821 BUG_ON(context->in_syscall || context->name_count);
1822
1823 if (!audit_enabled)
1824 return;
1825
1826 context->arch = arch;
1827 context->major = major;
1828 context->argv[0] = a1;
1829 context->argv[1] = a2;
1830 context->argv[2] = a3;
1831 context->argv[3] = a4;
1832
1833 state = context->state;
1834 context->dummy = !audit_n_rules;
1835 if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1836 context->prio = 0;
1837 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1838 }
1839 if (state == AUDIT_DISABLED)
1840 return;
1841
1842 context->serial = 0;
1843 context->ctime = CURRENT_TIME;
1844 context->in_syscall = 1;
1845 context->current_state = state;
1846 context->ppid = 0;
1847 }
1848
1849 /**
1850 * audit_syscall_exit - deallocate audit context after a system call
1851 * @success: success value of the syscall
1852 * @return_code: return value of the syscall
1853 *
1854 * Tear down after system call. If the audit context has been marked as
1855 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1856 * filtering, or because some other part of the kernel wrote an audit
1857 * message), then write out the syscall information. In call cases,
1858 * free the names stored from getname().
1859 */
1860 void __audit_syscall_exit(int success, long return_code)
1861 {
1862 struct task_struct *tsk = current;
1863 struct audit_context *context;
1864
1865 if (success)
1866 success = AUDITSC_SUCCESS;
1867 else
1868 success = AUDITSC_FAILURE;
1869
1870 context = audit_get_context(tsk, success, return_code);
1871 if (!context)
1872 return;
1873
1874 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1875 audit_log_exit(context, tsk);
1876
1877 context->in_syscall = 0;
1878 context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1879
1880 if (!list_empty(&context->killed_trees))
1881 audit_kill_trees(&context->killed_trees);
1882
1883 if (context->previous) {
1884 struct audit_context *new_context = context->previous;
1885 context->previous = NULL;
1886 audit_free_context(context);
1887 tsk->audit_context = new_context;
1888 } else {
1889 audit_free_names(context);
1890 unroll_tree_refs(context, NULL, 0);
1891 audit_free_aux(context);
1892 context->aux = NULL;
1893 context->aux_pids = NULL;
1894 context->target_pid = 0;
1895 context->target_sid = 0;
1896 context->sockaddr_len = 0;
1897 context->type = 0;
1898 context->fds[0] = -1;
1899 if (context->state != AUDIT_RECORD_CONTEXT) {
1900 kfree(context->filterkey);
1901 context->filterkey = NULL;
1902 }
1903 tsk->audit_context = context;
1904 }
1905 }
1906
1907 static inline void handle_one(const struct inode *inode)
1908 {
1909 #ifdef CONFIG_AUDIT_TREE
1910 struct audit_context *context;
1911 struct audit_tree_refs *p;
1912 struct audit_chunk *chunk;
1913 int count;
1914 if (likely(hlist_empty(&inode->i_fsnotify_marks)))
1915 return;
1916 context = current->audit_context;
1917 p = context->trees;
1918 count = context->tree_count;
1919 rcu_read_lock();
1920 chunk = audit_tree_lookup(inode);
1921 rcu_read_unlock();
1922 if (!chunk)
1923 return;
1924 if (likely(put_tree_ref(context, chunk)))
1925 return;
1926 if (unlikely(!grow_tree_refs(context))) {
1927 printk(KERN_WARNING "out of memory, audit has lost a tree reference\n");
1928 audit_set_auditable(context);
1929 audit_put_chunk(chunk);
1930 unroll_tree_refs(context, p, count);
1931 return;
1932 }
1933 put_tree_ref(context, chunk);
1934 #endif
1935 }
1936
1937 static void handle_path(const struct dentry *dentry)
1938 {
1939 #ifdef CONFIG_AUDIT_TREE
1940 struct audit_context *context;
1941 struct audit_tree_refs *p;
1942 const struct dentry *d, *parent;
1943 struct audit_chunk *drop;
1944 unsigned long seq;
1945 int count;
1946
1947 context = current->audit_context;
1948 p = context->trees;
1949 count = context->tree_count;
1950 retry:
1951 drop = NULL;
1952 d = dentry;
1953 rcu_read_lock();
1954 seq = read_seqbegin(&rename_lock);
1955 for(;;) {
1956 struct inode *inode = d->d_inode;
1957 if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) {
1958 struct audit_chunk *chunk;
1959 chunk = audit_tree_lookup(inode);
1960 if (chunk) {
1961 if (unlikely(!put_tree_ref(context, chunk))) {
1962 drop = chunk;
1963 break;
1964 }
1965 }
1966 }
1967 parent = d->d_parent;
1968 if (parent == d)
1969 break;
1970 d = parent;
1971 }
1972 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1973 rcu_read_unlock();
1974 if (!drop) {
1975 /* just a race with rename */
1976 unroll_tree_refs(context, p, count);
1977 goto retry;
1978 }
1979 audit_put_chunk(drop);
1980 if (grow_tree_refs(context)) {
1981 /* OK, got more space */
1982 unroll_tree_refs(context, p, count);
1983 goto retry;
1984 }
1985 /* too bad */
1986 printk(KERN_WARNING
1987 "out of memory, audit has lost a tree reference\n");
1988 unroll_tree_refs(context, p, count);
1989 audit_set_auditable(context);
1990 return;
1991 }
1992 rcu_read_unlock();
1993 #endif
1994 }
1995
1996 static struct audit_names *audit_alloc_name(struct audit_context *context,
1997 unsigned char type)
1998 {
1999 struct audit_names *aname;
2000
2001 if (context->name_count < AUDIT_NAMES) {
2002 aname = &context->preallocated_names[context->name_count];
2003 memset(aname, 0, sizeof(*aname));
2004 } else {
2005 aname = kzalloc(sizeof(*aname), GFP_NOFS);
2006 if (!aname)
2007 return NULL;
2008 aname->should_free = true;
2009 }
2010
2011 aname->ino = (unsigned long)-1;
2012 aname->type = type;
2013 list_add_tail(&aname->list, &context->names_list);
2014
2015 context->name_count++;
2016 #if AUDIT_DEBUG
2017 context->ino_count++;
2018 #endif
2019 return aname;
2020 }
2021
2022 /**
2023 * audit_getname - add a name to the list
2024 * @name: name to add
2025 *
2026 * Add a name to the list of audit names for this context.
2027 * Called from fs/namei.c:getname().
2028 */
2029 void __audit_getname(const char *name)
2030 {
2031 struct audit_context *context = current->audit_context;
2032 struct audit_names *n;
2033
2034 if (!context->in_syscall) {
2035 #if AUDIT_DEBUG == 2
2036 printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
2037 __FILE__, __LINE__, context->serial, name);
2038 dump_stack();
2039 #endif
2040 return;
2041 }
2042
2043 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
2044 if (!n)
2045 return;
2046
2047 n->name = name;
2048 n->name_len = AUDIT_NAME_FULL;
2049 n->name_put = true;
2050
2051 if (!context->pwd.dentry)
2052 get_fs_pwd(current->fs, &context->pwd);
2053 }
2054
2055 /* audit_putname - intercept a putname request
2056 * @name: name to intercept and delay for putname
2057 *
2058 * If we have stored the name from getname in the audit context,
2059 * then we delay the putname until syscall exit.
2060 * Called from include/linux/fs.h:putname().
2061 */
2062 void audit_putname(const char *name)
2063 {
2064 struct audit_context *context = current->audit_context;
2065
2066 BUG_ON(!context);
2067 if (!context->in_syscall) {
2068 #if AUDIT_DEBUG == 2
2069 printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n",
2070 __FILE__, __LINE__, context->serial, name);
2071 if (context->name_count) {
2072 struct audit_names *n;
2073 int i;
2074
2075 list_for_each_entry(n, &context->names_list, list)
2076 printk(KERN_ERR "name[%d] = %p = %s\n", i,
2077 n->name, n->name ?: "(null)");
2078 }
2079 #endif
2080 __putname(name);
2081 }
2082 #if AUDIT_DEBUG
2083 else {
2084 ++context->put_count;
2085 if (context->put_count > context->name_count) {
2086 printk(KERN_ERR "%s:%d(:%d): major=%d"
2087 " in_syscall=%d putname(%p) name_count=%d"
2088 " put_count=%d\n",
2089 __FILE__, __LINE__,
2090 context->serial, context->major,
2091 context->in_syscall, name, context->name_count,
2092 context->put_count);
2093 dump_stack();
2094 }
2095 }
2096 #endif
2097 }
2098
2099 static inline int audit_copy_fcaps(struct audit_names *name, const struct dentry *dentry)
2100 {
2101 struct cpu_vfs_cap_data caps;
2102 int rc;
2103
2104 if (!dentry)
2105 return 0;
2106
2107 rc = get_vfs_caps_from_disk(dentry, &caps);
2108 if (rc)
2109 return rc;
2110
2111 name->fcap.permitted = caps.permitted;
2112 name->fcap.inheritable = caps.inheritable;
2113 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2114 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2115
2116 return 0;
2117 }
2118
2119
2120 /* Copy inode data into an audit_names. */
2121 static void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
2122 const struct inode *inode)
2123 {
2124 name->ino = inode->i_ino;
2125 name->dev = inode->i_sb->s_dev;
2126 name->mode = inode->i_mode;
2127 name->uid = inode->i_uid;
2128 name->gid = inode->i_gid;
2129 name->rdev = inode->i_rdev;
2130 security_inode_getsecid(inode, &name->osid);
2131 audit_copy_fcaps(name, dentry);
2132 }
2133
2134 /**
2135 * __audit_inode - store the inode and device from a lookup
2136 * @name: name being audited
2137 * @dentry: dentry being audited
2138 * @parent: does this dentry represent the parent?
2139 */
2140 void __audit_inode(const char *name, const struct dentry *dentry,
2141 unsigned int parent)
2142 {
2143 struct audit_context *context = current->audit_context;
2144 const struct inode *inode = dentry->d_inode;
2145 struct audit_names *n;
2146
2147 if (!context->in_syscall)
2148 return;
2149
2150 if (!name)
2151 goto out_alloc;
2152
2153 list_for_each_entry_reverse(n, &context->names_list, list) {
2154 /* does the name pointer match? */
2155 if (n->name != name)
2156 continue;
2157
2158 /* match the correct record type */
2159 if (parent) {
2160 if (n->type == AUDIT_TYPE_PARENT ||
2161 n->type == AUDIT_TYPE_UNKNOWN)
2162 goto out;
2163 } else {
2164 if (n->type != AUDIT_TYPE_PARENT)
2165 goto out;
2166 }
2167 }
2168
2169 out_alloc:
2170 /* unable to find the name from a previous getname(). Allocate a new
2171 * anonymous entry.
2172 */
2173 n = audit_alloc_name(context, AUDIT_TYPE_NORMAL);
2174 if (!n)
2175 return;
2176 out:
2177 if (parent) {
2178 n->name_len = n->name ? parent_len(n->name) : AUDIT_NAME_FULL;
2179 n->type = AUDIT_TYPE_PARENT;
2180 } else {
2181 n->name_len = AUDIT_NAME_FULL;
2182 n->type = AUDIT_TYPE_NORMAL;
2183 }
2184 handle_path(dentry);
2185 audit_copy_inode(n, dentry, inode);
2186 }
2187
2188 /**
2189 * __audit_inode_child - collect inode info for created/removed objects
2190 * @parent: inode of dentry parent
2191 * @dentry: dentry being audited
2192 * @type: AUDIT_TYPE_* value that we're looking for
2193 *
2194 * For syscalls that create or remove filesystem objects, audit_inode
2195 * can only collect information for the filesystem object's parent.
2196 * This call updates the audit context with the child's information.
2197 * Syscalls that create a new filesystem object must be hooked after
2198 * the object is created. Syscalls that remove a filesystem object
2199 * must be hooked prior, in order to capture the target inode during
2200 * unsuccessful attempts.
2201 */
2202 void __audit_inode_child(const struct inode *parent,
2203 const struct dentry *dentry,
2204 const unsigned char type)
2205 {
2206 struct audit_context *context = current->audit_context;
2207 const struct inode *inode = dentry->d_inode;
2208 const char *dname = dentry->d_name.name;
2209 struct audit_names *n, *found_parent = NULL, *found_child = NULL;
2210
2211 if (!context->in_syscall)
2212 return;
2213
2214 if (inode)
2215 handle_one(inode);
2216
2217 /* look for a parent entry first */
2218 list_for_each_entry(n, &context->names_list, list) {
2219 if (!n->name || n->type != AUDIT_TYPE_PARENT)
2220 continue;
2221
2222 if (n->ino == parent->i_ino &&
2223 !audit_compare_dname_path(dname, n->name, n->name_len)) {
2224 found_parent = n;
2225 break;
2226 }
2227 }
2228
2229 /* is there a matching child entry? */
2230 list_for_each_entry(n, &context->names_list, list) {
2231 /* can only match entries that have a name */
2232 if (!n->name || n->type != type)
2233 continue;
2234
2235 /* if we found a parent, make sure this one is a child of it */
2236 if (found_parent && (n->name != found_parent->name))
2237 continue;
2238
2239 if (!strcmp(dname, n->name) ||
2240 !audit_compare_dname_path(dname, n->name,
2241 found_parent ?
2242 found_parent->name_len :
2243 AUDIT_NAME_FULL)) {
2244 found_child = n;
2245 break;
2246 }
2247 }
2248
2249 if (!found_parent) {
2250 /* create a new, "anonymous" parent record */
2251 n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
2252 if (!n)
2253 return;
2254 audit_copy_inode(n, NULL, parent);
2255 }
2256
2257 if (!found_child) {
2258 found_child = audit_alloc_name(context, type);
2259 if (!found_child)
2260 return;
2261
2262 /* Re-use the name belonging to the slot for a matching parent
2263 * directory. All names for this context are relinquished in
2264 * audit_free_names() */
2265 if (found_parent) {
2266 found_child->name = found_parent->name;
2267 found_child->name_len = AUDIT_NAME_FULL;
2268 /* don't call __putname() */
2269 found_child->name_put = false;
2270 }
2271 }
2272 if (inode)
2273 audit_copy_inode(found_child, dentry, inode);
2274 else
2275 found_child->ino = (unsigned long)-1;
2276 }
2277 EXPORT_SYMBOL_GPL(__audit_inode_child);
2278
2279 /**
2280 * auditsc_get_stamp - get local copies of audit_context values
2281 * @ctx: audit_context for the task
2282 * @t: timespec to store time recorded in the audit_context
2283 * @serial: serial value that is recorded in the audit_context
2284 *
2285 * Also sets the context as auditable.
2286 */
2287 int auditsc_get_stamp(struct audit_context *ctx,
2288 struct timespec *t, unsigned int *serial)
2289 {
2290 if (!ctx->in_syscall)
2291 return 0;
2292 if (!ctx->serial)
2293 ctx->serial = audit_serial();
2294 t->tv_sec = ctx->ctime.tv_sec;
2295 t->tv_nsec = ctx->ctime.tv_nsec;
2296 *serial = ctx->serial;
2297 if (!ctx->prio) {
2298 ctx->prio = 1;
2299 ctx->current_state = AUDIT_RECORD_CONTEXT;
2300 }
2301 return 1;
2302 }
2303
2304 /* global counter which is incremented every time something logs in */
2305 static atomic_t session_id = ATOMIC_INIT(0);
2306
2307 /**
2308 * audit_set_loginuid - set current task's audit_context loginuid
2309 * @loginuid: loginuid value
2310 *
2311 * Returns 0.
2312 *
2313 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2314 */
2315 int audit_set_loginuid(kuid_t loginuid)
2316 {
2317 struct task_struct *task = current;
2318 struct audit_context *context = task->audit_context;
2319 unsigned int sessionid;
2320
2321 #ifdef CONFIG_AUDIT_LOGINUID_IMMUTABLE
2322 if (uid_valid(task->loginuid))
2323 return -EPERM;
2324 #else /* CONFIG_AUDIT_LOGINUID_IMMUTABLE */
2325 if (!capable(CAP_AUDIT_CONTROL))
2326 return -EPERM;
2327 #endif /* CONFIG_AUDIT_LOGINUID_IMMUTABLE */
2328
2329 sessionid = atomic_inc_return(&session_id);
2330 if (context && context->in_syscall) {
2331 struct audit_buffer *ab;
2332
2333 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
2334 if (ab) {
2335 audit_log_format(ab, "login pid=%d uid=%u "
2336 "old auid=%u new auid=%u"
2337 " old ses=%u new ses=%u",
2338 task->pid,
2339 from_kuid(&init_user_ns, task_uid(task)),
2340 from_kuid(&init_user_ns, task->loginuid),
2341 from_kuid(&init_user_ns, loginuid),
2342 task->sessionid, sessionid);
2343 audit_log_end(ab);
2344 }
2345 }
2346 task->sessionid = sessionid;
2347 task->loginuid = loginuid;
2348 return 0;
2349 }
2350
2351 /**
2352 * __audit_mq_open - record audit data for a POSIX MQ open
2353 * @oflag: open flag
2354 * @mode: mode bits
2355 * @attr: queue attributes
2356 *
2357 */
2358 void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2359 {
2360 struct audit_context *context = current->audit_context;
2361
2362 if (attr)
2363 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2364 else
2365 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2366
2367 context->mq_open.oflag = oflag;
2368 context->mq_open.mode = mode;
2369
2370 context->type = AUDIT_MQ_OPEN;
2371 }
2372
2373 /**
2374 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2375 * @mqdes: MQ descriptor
2376 * @msg_len: Message length
2377 * @msg_prio: Message priority
2378 * @abs_timeout: Message timeout in absolute time
2379 *
2380 */
2381 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2382 const struct timespec *abs_timeout)
2383 {
2384 struct audit_context *context = current->audit_context;
2385 struct timespec *p = &context->mq_sendrecv.abs_timeout;
2386
2387 if (abs_timeout)
2388 memcpy(p, abs_timeout, sizeof(struct timespec));
2389 else
2390 memset(p, 0, sizeof(struct timespec));
2391
2392 context->mq_sendrecv.mqdes = mqdes;
2393 context->mq_sendrecv.msg_len = msg_len;
2394 context->mq_sendrecv.msg_prio = msg_prio;
2395
2396 context->type = AUDIT_MQ_SENDRECV;
2397 }
2398
2399 /**
2400 * __audit_mq_notify - record audit data for a POSIX MQ notify
2401 * @mqdes: MQ descriptor
2402 * @notification: Notification event
2403 *
2404 */
2405
2406 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2407 {
2408 struct audit_context *context = current->audit_context;
2409
2410 if (notification)
2411 context->mq_notify.sigev_signo = notification->sigev_signo;
2412 else
2413 context->mq_notify.sigev_signo = 0;
2414
2415 context->mq_notify.mqdes = mqdes;
2416 context->type = AUDIT_MQ_NOTIFY;
2417 }
2418
2419 /**
2420 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2421 * @mqdes: MQ descriptor
2422 * @mqstat: MQ flags
2423 *
2424 */
2425 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2426 {
2427 struct audit_context *context = current->audit_context;
2428 context->mq_getsetattr.mqdes = mqdes;
2429 context->mq_getsetattr.mqstat = *mqstat;
2430 context->type = AUDIT_MQ_GETSETATTR;
2431 }
2432
2433 /**
2434 * audit_ipc_obj - record audit data for ipc object
2435 * @ipcp: ipc permissions
2436 *
2437 */
2438 void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2439 {
2440 struct audit_context *context = current->audit_context;
2441 context->ipc.uid = ipcp->uid;
2442 context->ipc.gid = ipcp->gid;
2443 context->ipc.mode = ipcp->mode;
2444 context->ipc.has_perm = 0;
2445 security_ipc_getsecid(ipcp, &context->ipc.osid);
2446 context->type = AUDIT_IPC;
2447 }
2448
2449 /**
2450 * audit_ipc_set_perm - record audit data for new ipc permissions
2451 * @qbytes: msgq bytes
2452 * @uid: msgq user id
2453 * @gid: msgq group id
2454 * @mode: msgq mode (permissions)
2455 *
2456 * Called only after audit_ipc_obj().
2457 */
2458 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2459 {
2460 struct audit_context *context = current->audit_context;
2461
2462 context->ipc.qbytes = qbytes;
2463 context->ipc.perm_uid = uid;
2464 context->ipc.perm_gid = gid;
2465 context->ipc.perm_mode = mode;
2466 context->ipc.has_perm = 1;
2467 }
2468
2469 int __audit_bprm(struct linux_binprm *bprm)
2470 {
2471 struct audit_aux_data_execve *ax;
2472 struct audit_context *context = current->audit_context;
2473
2474 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2475 if (!ax)
2476 return -ENOMEM;
2477
2478 ax->argc = bprm->argc;
2479 ax->envc = bprm->envc;
2480 ax->mm = bprm->mm;
2481 ax->d.type = AUDIT_EXECVE;
2482 ax->d.next = context->aux;
2483 context->aux = (void *)ax;
2484 return 0;
2485 }
2486
2487
2488 /**
2489 * audit_socketcall - record audit data for sys_socketcall
2490 * @nargs: number of args
2491 * @args: args array
2492 *
2493 */
2494 void __audit_socketcall(int nargs, unsigned long *args)
2495 {
2496 struct audit_context *context = current->audit_context;
2497
2498 context->type = AUDIT_SOCKETCALL;
2499 context->socketcall.nargs = nargs;
2500 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2501 }
2502
2503 /**
2504 * __audit_fd_pair - record audit data for pipe and socketpair
2505 * @fd1: the first file descriptor
2506 * @fd2: the second file descriptor
2507 *
2508 */
2509 void __audit_fd_pair(int fd1, int fd2)
2510 {
2511 struct audit_context *context = current->audit_context;
2512 context->fds[0] = fd1;
2513 context->fds[1] = fd2;
2514 }
2515
2516 /**
2517 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2518 * @len: data length in user space
2519 * @a: data address in kernel space
2520 *
2521 * Returns 0 for success or NULL context or < 0 on error.
2522 */
2523 int __audit_sockaddr(int len, void *a)
2524 {
2525 struct audit_context *context = current->audit_context;
2526
2527 if (!context->sockaddr) {
2528 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2529 if (!p)
2530 return -ENOMEM;
2531 context->sockaddr = p;
2532 }
2533
2534 context->sockaddr_len = len;
2535 memcpy(context->sockaddr, a, len);
2536 return 0;
2537 }
2538
2539 void __audit_ptrace(struct task_struct *t)
2540 {
2541 struct audit_context *context = current->audit_context;
2542
2543 context->target_pid = t->pid;
2544 context->target_auid = audit_get_loginuid(t);
2545 context->target_uid = task_uid(t);
2546 context->target_sessionid = audit_get_sessionid(t);
2547 security_task_getsecid(t, &context->target_sid);
2548 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2549 }
2550
2551 /**
2552 * audit_signal_info - record signal info for shutting down audit subsystem
2553 * @sig: signal value
2554 * @t: task being signaled
2555 *
2556 * If the audit subsystem is being terminated, record the task (pid)
2557 * and uid that is doing that.
2558 */
2559 int __audit_signal_info(int sig, struct task_struct *t)
2560 {
2561 struct audit_aux_data_pids *axp;
2562 struct task_struct *tsk = current;
2563 struct audit_context *ctx = tsk->audit_context;
2564 kuid_t uid = current_uid(), t_uid = task_uid(t);
2565
2566 if (audit_pid && t->tgid == audit_pid) {
2567 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
2568 audit_sig_pid = tsk->pid;
2569 if (uid_valid(tsk->loginuid))
2570 audit_sig_uid = tsk->loginuid;
2571 else
2572 audit_sig_uid = uid;
2573 security_task_getsecid(tsk, &audit_sig_sid);
2574 }
2575 if (!audit_signals || audit_dummy_context())
2576 return 0;
2577 }
2578
2579 /* optimize the common case by putting first signal recipient directly
2580 * in audit_context */
2581 if (!ctx->target_pid) {
2582 ctx->target_pid = t->tgid;
2583 ctx->target_auid = audit_get_loginuid(t);
2584 ctx->target_uid = t_uid;
2585 ctx->target_sessionid = audit_get_sessionid(t);
2586 security_task_getsecid(t, &ctx->target_sid);
2587 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2588 return 0;
2589 }
2590
2591 axp = (void *)ctx->aux_pids;
2592 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2593 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2594 if (!axp)
2595 return -ENOMEM;
2596
2597 axp->d.type = AUDIT_OBJ_PID;
2598 axp->d.next = ctx->aux_pids;
2599 ctx->aux_pids = (void *)axp;
2600 }
2601 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2602
2603 axp->target_pid[axp->pid_count] = t->tgid;
2604 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2605 axp->target_uid[axp->pid_count] = t_uid;
2606 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2607 security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2608 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2609 axp->pid_count++;
2610
2611 return 0;
2612 }
2613
2614 /**
2615 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2616 * @bprm: pointer to the bprm being processed
2617 * @new: the proposed new credentials
2618 * @old: the old credentials
2619 *
2620 * Simply check if the proc already has the caps given by the file and if not
2621 * store the priv escalation info for later auditing at the end of the syscall
2622 *
2623 * -Eric
2624 */
2625 int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2626 const struct cred *new, const struct cred *old)
2627 {
2628 struct audit_aux_data_bprm_fcaps *ax;
2629 struct audit_context *context = current->audit_context;
2630 struct cpu_vfs_cap_data vcaps;
2631 struct dentry *dentry;
2632
2633 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2634 if (!ax)
2635 return -ENOMEM;
2636
2637 ax->d.type = AUDIT_BPRM_FCAPS;
2638 ax->d.next = context->aux;
2639 context->aux = (void *)ax;
2640
2641 dentry = dget(bprm->file->f_dentry);
2642 get_vfs_caps_from_disk(dentry, &vcaps);
2643 dput(dentry);
2644
2645 ax->fcap.permitted = vcaps.permitted;
2646 ax->fcap.inheritable = vcaps.inheritable;
2647 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2648 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2649
2650 ax->old_pcap.permitted = old->cap_permitted;
2651 ax->old_pcap.inheritable = old->cap_inheritable;
2652 ax->old_pcap.effective = old->cap_effective;
2653
2654 ax->new_pcap.permitted = new->cap_permitted;
2655 ax->new_pcap.inheritable = new->cap_inheritable;
2656 ax->new_pcap.effective = new->cap_effective;
2657 return 0;
2658 }
2659
2660 /**
2661 * __audit_log_capset - store information about the arguments to the capset syscall
2662 * @pid: target pid of the capset call
2663 * @new: the new credentials
2664 * @old: the old (current) credentials
2665 *
2666 * Record the aguments userspace sent to sys_capset for later printing by the
2667 * audit system if applicable
2668 */
2669 void __audit_log_capset(pid_t pid,
2670 const struct cred *new, const struct cred *old)
2671 {
2672 struct audit_context *context = current->audit_context;
2673 context->capset.pid = pid;
2674 context->capset.cap.effective = new->cap_effective;
2675 context->capset.cap.inheritable = new->cap_effective;
2676 context->capset.cap.permitted = new->cap_permitted;
2677 context->type = AUDIT_CAPSET;
2678 }
2679
2680 void __audit_mmap_fd(int fd, int flags)
2681 {
2682 struct audit_context *context = current->audit_context;
2683 context->mmap.fd = fd;
2684 context->mmap.flags = flags;
2685 context->type = AUDIT_MMAP;
2686 }
2687
2688 static void audit_log_abend(struct audit_buffer *ab, char *reason, long signr)
2689 {
2690 kuid_t auid, uid;
2691 kgid_t gid;
2692 unsigned int sessionid;
2693
2694 auid = audit_get_loginuid(current);
2695 sessionid = audit_get_sessionid(current);
2696 current_uid_gid(&uid, &gid);
2697
2698 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2699 from_kuid(&init_user_ns, auid),
2700 from_kuid(&init_user_ns, uid),
2701 from_kgid(&init_user_ns, gid),
2702 sessionid);
2703 audit_log_task_context(ab);
2704 audit_log_format(ab, " pid=%d comm=", current->pid);
2705 audit_log_untrustedstring(ab, current->comm);
2706 audit_log_format(ab, " reason=");
2707 audit_log_string(ab, reason);
2708 audit_log_format(ab, " sig=%ld", signr);
2709 }
2710 /**
2711 * audit_core_dumps - record information about processes that end abnormally
2712 * @signr: signal value
2713 *
2714 * If a process ends with a core dump, something fishy is going on and we
2715 * should record the event for investigation.
2716 */
2717 void audit_core_dumps(long signr)
2718 {
2719 struct audit_buffer *ab;
2720
2721 if (!audit_enabled)
2722 return;
2723
2724 if (signr == SIGQUIT) /* don't care for those */
2725 return;
2726
2727 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2728 audit_log_abend(ab, "memory violation", signr);
2729 audit_log_end(ab);
2730 }
2731
2732 void __audit_seccomp(unsigned long syscall, long signr, int code)
2733 {
2734 struct audit_buffer *ab;
2735
2736 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2737 audit_log_abend(ab, "seccomp", signr);
2738 audit_log_format(ab, " syscall=%ld", syscall);
2739 audit_log_format(ab, " compat=%d", is_compat_task());
2740 audit_log_format(ab, " ip=0x%lx", KSTK_EIP(current));
2741 audit_log_format(ab, " code=0x%x", code);
2742 audit_log_end(ab);
2743 }
2744
2745 struct list_head *audit_killed_trees(void)
2746 {
2747 struct audit_context *ctx = current->audit_context;
2748 if (likely(!ctx || !ctx->in_syscall))
2749 return NULL;
2750 return &ctx->killed_trees;
2751 }
This page took 0.132983 seconds and 6 git commands to generate.