Merge branch 'devel' of master.kernel.org:/home/rmk/linux-2.6-arm
[deliverable/linux.git] / kernel / auditsc.c
1 /* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
3 *
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
7 * All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24 *
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
27 *
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
31 *
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
34 *
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37 *
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
40 *
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
43 */
44
45 #include <linux/init.h>
46 #include <asm/types.h>
47 #include <asm/atomic.h>
48 #include <asm/types.h>
49 #include <linux/fs.h>
50 #include <linux/namei.h>
51 #include <linux/mm.h>
52 #include <linux/module.h>
53 #include <linux/mount.h>
54 #include <linux/socket.h>
55 #include <linux/mqueue.h>
56 #include <linux/audit.h>
57 #include <linux/personality.h>
58 #include <linux/time.h>
59 #include <linux/netlink.h>
60 #include <linux/compiler.h>
61 #include <asm/unistd.h>
62 #include <linux/security.h>
63 #include <linux/list.h>
64 #include <linux/tty.h>
65 #include <linux/selinux.h>
66 #include <linux/binfmts.h>
67 #include <linux/highmem.h>
68 #include <linux/syscalls.h>
69
70 #include "audit.h"
71
72 extern struct list_head audit_filter_list[];
73
74 /* AUDIT_NAMES is the number of slots we reserve in the audit_context
75 * for saving names from getname(). */
76 #define AUDIT_NAMES 20
77
78 /* Indicates that audit should log the full pathname. */
79 #define AUDIT_NAME_FULL -1
80
81 /* number of audit rules */
82 int audit_n_rules;
83
84 /* determines whether we collect data for signals sent */
85 int audit_signals;
86
87 /* When fs/namei.c:getname() is called, we store the pointer in name and
88 * we don't let putname() free it (instead we free all of the saved
89 * pointers at syscall exit time).
90 *
91 * Further, in fs/namei.c:path_lookup() we store the inode and device. */
92 struct audit_names {
93 const char *name;
94 int name_len; /* number of name's characters to log */
95 unsigned name_put; /* call __putname() for this name */
96 unsigned long ino;
97 dev_t dev;
98 umode_t mode;
99 uid_t uid;
100 gid_t gid;
101 dev_t rdev;
102 u32 osid;
103 };
104
105 struct audit_aux_data {
106 struct audit_aux_data *next;
107 int type;
108 };
109
110 #define AUDIT_AUX_IPCPERM 0
111
112 /* Number of target pids per aux struct. */
113 #define AUDIT_AUX_PIDS 16
114
115 struct audit_aux_data_mq_open {
116 struct audit_aux_data d;
117 int oflag;
118 mode_t mode;
119 struct mq_attr attr;
120 };
121
122 struct audit_aux_data_mq_sendrecv {
123 struct audit_aux_data d;
124 mqd_t mqdes;
125 size_t msg_len;
126 unsigned int msg_prio;
127 struct timespec abs_timeout;
128 };
129
130 struct audit_aux_data_mq_notify {
131 struct audit_aux_data d;
132 mqd_t mqdes;
133 struct sigevent notification;
134 };
135
136 struct audit_aux_data_mq_getsetattr {
137 struct audit_aux_data d;
138 mqd_t mqdes;
139 struct mq_attr mqstat;
140 };
141
142 struct audit_aux_data_ipcctl {
143 struct audit_aux_data d;
144 struct ipc_perm p;
145 unsigned long qbytes;
146 uid_t uid;
147 gid_t gid;
148 mode_t mode;
149 u32 osid;
150 };
151
152 struct audit_aux_data_execve {
153 struct audit_aux_data d;
154 int argc;
155 int envc;
156 struct mm_struct *mm;
157 };
158
159 struct audit_aux_data_socketcall {
160 struct audit_aux_data d;
161 int nargs;
162 unsigned long args[0];
163 };
164
165 struct audit_aux_data_sockaddr {
166 struct audit_aux_data d;
167 int len;
168 char a[0];
169 };
170
171 struct audit_aux_data_fd_pair {
172 struct audit_aux_data d;
173 int fd[2];
174 };
175
176 struct audit_aux_data_pids {
177 struct audit_aux_data d;
178 pid_t target_pid[AUDIT_AUX_PIDS];
179 u32 target_sid[AUDIT_AUX_PIDS];
180 int pid_count;
181 };
182
183 /* The per-task audit context. */
184 struct audit_context {
185 int dummy; /* must be the first element */
186 int in_syscall; /* 1 if task is in a syscall */
187 enum audit_state state;
188 unsigned int serial; /* serial number for record */
189 struct timespec ctime; /* time of syscall entry */
190 uid_t loginuid; /* login uid (identity) */
191 int major; /* syscall number */
192 unsigned long argv[4]; /* syscall arguments */
193 int return_valid; /* return code is valid */
194 long return_code;/* syscall return code */
195 int auditable; /* 1 if record should be written */
196 int name_count;
197 struct audit_names names[AUDIT_NAMES];
198 char * filterkey; /* key for rule that triggered record */
199 struct dentry * pwd;
200 struct vfsmount * pwdmnt;
201 struct audit_context *previous; /* For nested syscalls */
202 struct audit_aux_data *aux;
203 struct audit_aux_data *aux_pids;
204
205 /* Save things to print about task_struct */
206 pid_t pid, ppid;
207 uid_t uid, euid, suid, fsuid;
208 gid_t gid, egid, sgid, fsgid;
209 unsigned long personality;
210 int arch;
211
212 pid_t target_pid;
213 u32 target_sid;
214
215 #if AUDIT_DEBUG
216 int put_count;
217 int ino_count;
218 #endif
219 };
220
221 #define ACC_MODE(x) ("\004\002\006\006"[(x)&O_ACCMODE])
222 static inline int open_arg(int flags, int mask)
223 {
224 int n = ACC_MODE(flags);
225 if (flags & (O_TRUNC | O_CREAT))
226 n |= AUDIT_PERM_WRITE;
227 return n & mask;
228 }
229
230 static int audit_match_perm(struct audit_context *ctx, int mask)
231 {
232 unsigned n = ctx->major;
233 switch (audit_classify_syscall(ctx->arch, n)) {
234 case 0: /* native */
235 if ((mask & AUDIT_PERM_WRITE) &&
236 audit_match_class(AUDIT_CLASS_WRITE, n))
237 return 1;
238 if ((mask & AUDIT_PERM_READ) &&
239 audit_match_class(AUDIT_CLASS_READ, n))
240 return 1;
241 if ((mask & AUDIT_PERM_ATTR) &&
242 audit_match_class(AUDIT_CLASS_CHATTR, n))
243 return 1;
244 return 0;
245 case 1: /* 32bit on biarch */
246 if ((mask & AUDIT_PERM_WRITE) &&
247 audit_match_class(AUDIT_CLASS_WRITE_32, n))
248 return 1;
249 if ((mask & AUDIT_PERM_READ) &&
250 audit_match_class(AUDIT_CLASS_READ_32, n))
251 return 1;
252 if ((mask & AUDIT_PERM_ATTR) &&
253 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
254 return 1;
255 return 0;
256 case 2: /* open */
257 return mask & ACC_MODE(ctx->argv[1]);
258 case 3: /* openat */
259 return mask & ACC_MODE(ctx->argv[2]);
260 case 4: /* socketcall */
261 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
262 case 5: /* execve */
263 return mask & AUDIT_PERM_EXEC;
264 default:
265 return 0;
266 }
267 }
268
269 /* Determine if any context name data matches a rule's watch data */
270 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
271 * otherwise. */
272 static int audit_filter_rules(struct task_struct *tsk,
273 struct audit_krule *rule,
274 struct audit_context *ctx,
275 struct audit_names *name,
276 enum audit_state *state)
277 {
278 int i, j, need_sid = 1;
279 u32 sid;
280
281 for (i = 0; i < rule->field_count; i++) {
282 struct audit_field *f = &rule->fields[i];
283 int result = 0;
284
285 switch (f->type) {
286 case AUDIT_PID:
287 result = audit_comparator(tsk->pid, f->op, f->val);
288 break;
289 case AUDIT_PPID:
290 if (ctx) {
291 if (!ctx->ppid)
292 ctx->ppid = sys_getppid();
293 result = audit_comparator(ctx->ppid, f->op, f->val);
294 }
295 break;
296 case AUDIT_UID:
297 result = audit_comparator(tsk->uid, f->op, f->val);
298 break;
299 case AUDIT_EUID:
300 result = audit_comparator(tsk->euid, f->op, f->val);
301 break;
302 case AUDIT_SUID:
303 result = audit_comparator(tsk->suid, f->op, f->val);
304 break;
305 case AUDIT_FSUID:
306 result = audit_comparator(tsk->fsuid, f->op, f->val);
307 break;
308 case AUDIT_GID:
309 result = audit_comparator(tsk->gid, f->op, f->val);
310 break;
311 case AUDIT_EGID:
312 result = audit_comparator(tsk->egid, f->op, f->val);
313 break;
314 case AUDIT_SGID:
315 result = audit_comparator(tsk->sgid, f->op, f->val);
316 break;
317 case AUDIT_FSGID:
318 result = audit_comparator(tsk->fsgid, f->op, f->val);
319 break;
320 case AUDIT_PERS:
321 result = audit_comparator(tsk->personality, f->op, f->val);
322 break;
323 case AUDIT_ARCH:
324 if (ctx)
325 result = audit_comparator(ctx->arch, f->op, f->val);
326 break;
327
328 case AUDIT_EXIT:
329 if (ctx && ctx->return_valid)
330 result = audit_comparator(ctx->return_code, f->op, f->val);
331 break;
332 case AUDIT_SUCCESS:
333 if (ctx && ctx->return_valid) {
334 if (f->val)
335 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
336 else
337 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
338 }
339 break;
340 case AUDIT_DEVMAJOR:
341 if (name)
342 result = audit_comparator(MAJOR(name->dev),
343 f->op, f->val);
344 else if (ctx) {
345 for (j = 0; j < ctx->name_count; j++) {
346 if (audit_comparator(MAJOR(ctx->names[j].dev), f->op, f->val)) {
347 ++result;
348 break;
349 }
350 }
351 }
352 break;
353 case AUDIT_DEVMINOR:
354 if (name)
355 result = audit_comparator(MINOR(name->dev),
356 f->op, f->val);
357 else if (ctx) {
358 for (j = 0; j < ctx->name_count; j++) {
359 if (audit_comparator(MINOR(ctx->names[j].dev), f->op, f->val)) {
360 ++result;
361 break;
362 }
363 }
364 }
365 break;
366 case AUDIT_INODE:
367 if (name)
368 result = (name->ino == f->val);
369 else if (ctx) {
370 for (j = 0; j < ctx->name_count; j++) {
371 if (audit_comparator(ctx->names[j].ino, f->op, f->val)) {
372 ++result;
373 break;
374 }
375 }
376 }
377 break;
378 case AUDIT_WATCH:
379 if (name && rule->watch->ino != (unsigned long)-1)
380 result = (name->dev == rule->watch->dev &&
381 name->ino == rule->watch->ino);
382 break;
383 case AUDIT_LOGINUID:
384 result = 0;
385 if (ctx)
386 result = audit_comparator(ctx->loginuid, f->op, f->val);
387 break;
388 case AUDIT_SUBJ_USER:
389 case AUDIT_SUBJ_ROLE:
390 case AUDIT_SUBJ_TYPE:
391 case AUDIT_SUBJ_SEN:
392 case AUDIT_SUBJ_CLR:
393 /* NOTE: this may return negative values indicating
394 a temporary error. We simply treat this as a
395 match for now to avoid losing information that
396 may be wanted. An error message will also be
397 logged upon error */
398 if (f->se_rule) {
399 if (need_sid) {
400 selinux_get_task_sid(tsk, &sid);
401 need_sid = 0;
402 }
403 result = selinux_audit_rule_match(sid, f->type,
404 f->op,
405 f->se_rule,
406 ctx);
407 }
408 break;
409 case AUDIT_OBJ_USER:
410 case AUDIT_OBJ_ROLE:
411 case AUDIT_OBJ_TYPE:
412 case AUDIT_OBJ_LEV_LOW:
413 case AUDIT_OBJ_LEV_HIGH:
414 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
415 also applies here */
416 if (f->se_rule) {
417 /* Find files that match */
418 if (name) {
419 result = selinux_audit_rule_match(
420 name->osid, f->type, f->op,
421 f->se_rule, ctx);
422 } else if (ctx) {
423 for (j = 0; j < ctx->name_count; j++) {
424 if (selinux_audit_rule_match(
425 ctx->names[j].osid,
426 f->type, f->op,
427 f->se_rule, ctx)) {
428 ++result;
429 break;
430 }
431 }
432 }
433 /* Find ipc objects that match */
434 if (ctx) {
435 struct audit_aux_data *aux;
436 for (aux = ctx->aux; aux;
437 aux = aux->next) {
438 if (aux->type == AUDIT_IPC) {
439 struct audit_aux_data_ipcctl *axi = (void *)aux;
440 if (selinux_audit_rule_match(axi->osid, f->type, f->op, f->se_rule, ctx)) {
441 ++result;
442 break;
443 }
444 }
445 }
446 }
447 }
448 break;
449 case AUDIT_ARG0:
450 case AUDIT_ARG1:
451 case AUDIT_ARG2:
452 case AUDIT_ARG3:
453 if (ctx)
454 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
455 break;
456 case AUDIT_FILTERKEY:
457 /* ignore this field for filtering */
458 result = 1;
459 break;
460 case AUDIT_PERM:
461 result = audit_match_perm(ctx, f->val);
462 break;
463 }
464
465 if (!result)
466 return 0;
467 }
468 if (rule->filterkey)
469 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
470 switch (rule->action) {
471 case AUDIT_NEVER: *state = AUDIT_DISABLED; break;
472 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break;
473 }
474 return 1;
475 }
476
477 /* At process creation time, we can determine if system-call auditing is
478 * completely disabled for this task. Since we only have the task
479 * structure at this point, we can only check uid and gid.
480 */
481 static enum audit_state audit_filter_task(struct task_struct *tsk)
482 {
483 struct audit_entry *e;
484 enum audit_state state;
485
486 rcu_read_lock();
487 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
488 if (audit_filter_rules(tsk, &e->rule, NULL, NULL, &state)) {
489 rcu_read_unlock();
490 return state;
491 }
492 }
493 rcu_read_unlock();
494 return AUDIT_BUILD_CONTEXT;
495 }
496
497 /* At syscall entry and exit time, this filter is called if the
498 * audit_state is not low enough that auditing cannot take place, but is
499 * also not high enough that we already know we have to write an audit
500 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
501 */
502 static enum audit_state audit_filter_syscall(struct task_struct *tsk,
503 struct audit_context *ctx,
504 struct list_head *list)
505 {
506 struct audit_entry *e;
507 enum audit_state state;
508
509 if (audit_pid && tsk->tgid == audit_pid)
510 return AUDIT_DISABLED;
511
512 rcu_read_lock();
513 if (!list_empty(list)) {
514 int word = AUDIT_WORD(ctx->major);
515 int bit = AUDIT_BIT(ctx->major);
516
517 list_for_each_entry_rcu(e, list, list) {
518 if ((e->rule.mask[word] & bit) == bit &&
519 audit_filter_rules(tsk, &e->rule, ctx, NULL,
520 &state)) {
521 rcu_read_unlock();
522 return state;
523 }
524 }
525 }
526 rcu_read_unlock();
527 return AUDIT_BUILD_CONTEXT;
528 }
529
530 /* At syscall exit time, this filter is called if any audit_names[] have been
531 * collected during syscall processing. We only check rules in sublists at hash
532 * buckets applicable to the inode numbers in audit_names[].
533 * Regarding audit_state, same rules apply as for audit_filter_syscall().
534 */
535 enum audit_state audit_filter_inodes(struct task_struct *tsk,
536 struct audit_context *ctx)
537 {
538 int i;
539 struct audit_entry *e;
540 enum audit_state state;
541
542 if (audit_pid && tsk->tgid == audit_pid)
543 return AUDIT_DISABLED;
544
545 rcu_read_lock();
546 for (i = 0; i < ctx->name_count; i++) {
547 int word = AUDIT_WORD(ctx->major);
548 int bit = AUDIT_BIT(ctx->major);
549 struct audit_names *n = &ctx->names[i];
550 int h = audit_hash_ino((u32)n->ino);
551 struct list_head *list = &audit_inode_hash[h];
552
553 if (list_empty(list))
554 continue;
555
556 list_for_each_entry_rcu(e, list, list) {
557 if ((e->rule.mask[word] & bit) == bit &&
558 audit_filter_rules(tsk, &e->rule, ctx, n, &state)) {
559 rcu_read_unlock();
560 return state;
561 }
562 }
563 }
564 rcu_read_unlock();
565 return AUDIT_BUILD_CONTEXT;
566 }
567
568 void audit_set_auditable(struct audit_context *ctx)
569 {
570 ctx->auditable = 1;
571 }
572
573 static inline struct audit_context *audit_get_context(struct task_struct *tsk,
574 int return_valid,
575 int return_code)
576 {
577 struct audit_context *context = tsk->audit_context;
578
579 if (likely(!context))
580 return NULL;
581 context->return_valid = return_valid;
582 context->return_code = return_code;
583
584 if (context->in_syscall && !context->dummy && !context->auditable) {
585 enum audit_state state;
586
587 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
588 if (state == AUDIT_RECORD_CONTEXT) {
589 context->auditable = 1;
590 goto get_context;
591 }
592
593 state = audit_filter_inodes(tsk, context);
594 if (state == AUDIT_RECORD_CONTEXT)
595 context->auditable = 1;
596
597 }
598
599 get_context:
600
601 tsk->audit_context = NULL;
602 return context;
603 }
604
605 static inline void audit_free_names(struct audit_context *context)
606 {
607 int i;
608
609 #if AUDIT_DEBUG == 2
610 if (context->auditable
611 ||context->put_count + context->ino_count != context->name_count) {
612 printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
613 " name_count=%d put_count=%d"
614 " ino_count=%d [NOT freeing]\n",
615 __FILE__, __LINE__,
616 context->serial, context->major, context->in_syscall,
617 context->name_count, context->put_count,
618 context->ino_count);
619 for (i = 0; i < context->name_count; i++) {
620 printk(KERN_ERR "names[%d] = %p = %s\n", i,
621 context->names[i].name,
622 context->names[i].name ?: "(null)");
623 }
624 dump_stack();
625 return;
626 }
627 #endif
628 #if AUDIT_DEBUG
629 context->put_count = 0;
630 context->ino_count = 0;
631 #endif
632
633 for (i = 0; i < context->name_count; i++) {
634 if (context->names[i].name && context->names[i].name_put)
635 __putname(context->names[i].name);
636 }
637 context->name_count = 0;
638 if (context->pwd)
639 dput(context->pwd);
640 if (context->pwdmnt)
641 mntput(context->pwdmnt);
642 context->pwd = NULL;
643 context->pwdmnt = NULL;
644 }
645
646 static inline void audit_free_aux(struct audit_context *context)
647 {
648 struct audit_aux_data *aux;
649
650 while ((aux = context->aux)) {
651 context->aux = aux->next;
652 kfree(aux);
653 }
654 while ((aux = context->aux_pids)) {
655 context->aux_pids = aux->next;
656 kfree(aux);
657 }
658 }
659
660 static inline void audit_zero_context(struct audit_context *context,
661 enum audit_state state)
662 {
663 uid_t loginuid = context->loginuid;
664
665 memset(context, 0, sizeof(*context));
666 context->state = state;
667 context->loginuid = loginuid;
668 }
669
670 static inline struct audit_context *audit_alloc_context(enum audit_state state)
671 {
672 struct audit_context *context;
673
674 if (!(context = kmalloc(sizeof(*context), GFP_KERNEL)))
675 return NULL;
676 audit_zero_context(context, state);
677 return context;
678 }
679
680 /**
681 * audit_alloc - allocate an audit context block for a task
682 * @tsk: task
683 *
684 * Filter on the task information and allocate a per-task audit context
685 * if necessary. Doing so turns on system call auditing for the
686 * specified task. This is called from copy_process, so no lock is
687 * needed.
688 */
689 int audit_alloc(struct task_struct *tsk)
690 {
691 struct audit_context *context;
692 enum audit_state state;
693
694 if (likely(!audit_enabled))
695 return 0; /* Return if not auditing. */
696
697 state = audit_filter_task(tsk);
698 if (likely(state == AUDIT_DISABLED))
699 return 0;
700
701 if (!(context = audit_alloc_context(state))) {
702 audit_log_lost("out of memory in audit_alloc");
703 return -ENOMEM;
704 }
705
706 /* Preserve login uid */
707 context->loginuid = -1;
708 if (current->audit_context)
709 context->loginuid = current->audit_context->loginuid;
710
711 tsk->audit_context = context;
712 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
713 return 0;
714 }
715
716 static inline void audit_free_context(struct audit_context *context)
717 {
718 struct audit_context *previous;
719 int count = 0;
720
721 do {
722 previous = context->previous;
723 if (previous || (count && count < 10)) {
724 ++count;
725 printk(KERN_ERR "audit(:%d): major=%d name_count=%d:"
726 " freeing multiple contexts (%d)\n",
727 context->serial, context->major,
728 context->name_count, count);
729 }
730 audit_free_names(context);
731 audit_free_aux(context);
732 kfree(context->filterkey);
733 kfree(context);
734 context = previous;
735 } while (context);
736 if (count >= 10)
737 printk(KERN_ERR "audit: freed %d contexts\n", count);
738 }
739
740 void audit_log_task_context(struct audit_buffer *ab)
741 {
742 char *ctx = NULL;
743 unsigned len;
744 int error;
745 u32 sid;
746
747 selinux_get_task_sid(current, &sid);
748 if (!sid)
749 return;
750
751 error = selinux_sid_to_string(sid, &ctx, &len);
752 if (error) {
753 if (error != -EINVAL)
754 goto error_path;
755 return;
756 }
757
758 audit_log_format(ab, " subj=%s", ctx);
759 kfree(ctx);
760 return;
761
762 error_path:
763 audit_panic("error in audit_log_task_context");
764 return;
765 }
766
767 EXPORT_SYMBOL(audit_log_task_context);
768
769 static void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
770 {
771 char name[sizeof(tsk->comm)];
772 struct mm_struct *mm = tsk->mm;
773 struct vm_area_struct *vma;
774
775 /* tsk == current */
776
777 get_task_comm(name, tsk);
778 audit_log_format(ab, " comm=");
779 audit_log_untrustedstring(ab, name);
780
781 if (mm) {
782 down_read(&mm->mmap_sem);
783 vma = mm->mmap;
784 while (vma) {
785 if ((vma->vm_flags & VM_EXECUTABLE) &&
786 vma->vm_file) {
787 audit_log_d_path(ab, "exe=",
788 vma->vm_file->f_path.dentry,
789 vma->vm_file->f_path.mnt);
790 break;
791 }
792 vma = vma->vm_next;
793 }
794 up_read(&mm->mmap_sem);
795 }
796 audit_log_task_context(ab);
797 }
798
799 static int audit_log_pid_context(struct audit_context *context, pid_t pid,
800 u32 sid)
801 {
802 struct audit_buffer *ab;
803 char *s = NULL;
804 u32 len;
805 int rc = 0;
806
807 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
808 if (!ab)
809 return 1;
810
811 if (selinux_sid_to_string(sid, &s, &len)) {
812 audit_log_format(ab, "opid=%d obj=(none)", pid);
813 rc = 1;
814 } else
815 audit_log_format(ab, "opid=%d obj=%s", pid, s);
816 audit_log_end(ab);
817 kfree(s);
818
819 return rc;
820 }
821
822 static void audit_log_execve_info(struct audit_buffer *ab,
823 struct audit_aux_data_execve *axi)
824 {
825 int i;
826 long len, ret;
827 const char __user *p = (const char __user *)axi->mm->arg_start;
828 char *buf;
829
830 if (axi->mm != current->mm)
831 return; /* execve failed, no additional info */
832
833 for (i = 0; i < axi->argc; i++, p += len) {
834 len = strnlen_user(p, MAX_ARG_STRLEN);
835 /*
836 * We just created this mm, if we can't find the strings
837 * we just copied into it something is _very_ wrong. Similar
838 * for strings that are too long, we should not have created
839 * any.
840 */
841 if (!len || len > MAX_ARG_STRLEN) {
842 WARN_ON(1);
843 send_sig(SIGKILL, current, 0);
844 }
845
846 buf = kmalloc(len, GFP_KERNEL);
847 if (!buf) {
848 audit_panic("out of memory for argv string\n");
849 break;
850 }
851
852 ret = copy_from_user(buf, p, len);
853 /*
854 * There is no reason for this copy to be short. We just
855 * copied them here, and the mm hasn't been exposed to user-
856 * space yet.
857 */
858 if (!ret) {
859 WARN_ON(1);
860 send_sig(SIGKILL, current, 0);
861 }
862
863 audit_log_format(ab, "a%d=", i);
864 audit_log_untrustedstring(ab, buf);
865 audit_log_format(ab, "\n");
866
867 kfree(buf);
868 }
869 }
870
871 static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
872 {
873 int i, call_panic = 0;
874 struct audit_buffer *ab;
875 struct audit_aux_data *aux;
876 const char *tty;
877
878 /* tsk == current */
879 context->pid = tsk->pid;
880 if (!context->ppid)
881 context->ppid = sys_getppid();
882 context->uid = tsk->uid;
883 context->gid = tsk->gid;
884 context->euid = tsk->euid;
885 context->suid = tsk->suid;
886 context->fsuid = tsk->fsuid;
887 context->egid = tsk->egid;
888 context->sgid = tsk->sgid;
889 context->fsgid = tsk->fsgid;
890 context->personality = tsk->personality;
891
892 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
893 if (!ab)
894 return; /* audit_panic has been called */
895 audit_log_format(ab, "arch=%x syscall=%d",
896 context->arch, context->major);
897 if (context->personality != PER_LINUX)
898 audit_log_format(ab, " per=%lx", context->personality);
899 if (context->return_valid)
900 audit_log_format(ab, " success=%s exit=%ld",
901 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
902 context->return_code);
903
904 mutex_lock(&tty_mutex);
905 read_lock(&tasklist_lock);
906 if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
907 tty = tsk->signal->tty->name;
908 else
909 tty = "(none)";
910 read_unlock(&tasklist_lock);
911 audit_log_format(ab,
912 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d"
913 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
914 " euid=%u suid=%u fsuid=%u"
915 " egid=%u sgid=%u fsgid=%u tty=%s",
916 context->argv[0],
917 context->argv[1],
918 context->argv[2],
919 context->argv[3],
920 context->name_count,
921 context->ppid,
922 context->pid,
923 context->loginuid,
924 context->uid,
925 context->gid,
926 context->euid, context->suid, context->fsuid,
927 context->egid, context->sgid, context->fsgid, tty);
928
929 mutex_unlock(&tty_mutex);
930
931 audit_log_task_info(ab, tsk);
932 if (context->filterkey) {
933 audit_log_format(ab, " key=");
934 audit_log_untrustedstring(ab, context->filterkey);
935 } else
936 audit_log_format(ab, " key=(null)");
937 audit_log_end(ab);
938
939 for (aux = context->aux; aux; aux = aux->next) {
940
941 ab = audit_log_start(context, GFP_KERNEL, aux->type);
942 if (!ab)
943 continue; /* audit_panic has been called */
944
945 switch (aux->type) {
946 case AUDIT_MQ_OPEN: {
947 struct audit_aux_data_mq_open *axi = (void *)aux;
948 audit_log_format(ab,
949 "oflag=0x%x mode=%#o mq_flags=0x%lx mq_maxmsg=%ld "
950 "mq_msgsize=%ld mq_curmsgs=%ld",
951 axi->oflag, axi->mode, axi->attr.mq_flags,
952 axi->attr.mq_maxmsg, axi->attr.mq_msgsize,
953 axi->attr.mq_curmsgs);
954 break; }
955
956 case AUDIT_MQ_SENDRECV: {
957 struct audit_aux_data_mq_sendrecv *axi = (void *)aux;
958 audit_log_format(ab,
959 "mqdes=%d msg_len=%zd msg_prio=%u "
960 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
961 axi->mqdes, axi->msg_len, axi->msg_prio,
962 axi->abs_timeout.tv_sec, axi->abs_timeout.tv_nsec);
963 break; }
964
965 case AUDIT_MQ_NOTIFY: {
966 struct audit_aux_data_mq_notify *axi = (void *)aux;
967 audit_log_format(ab,
968 "mqdes=%d sigev_signo=%d",
969 axi->mqdes,
970 axi->notification.sigev_signo);
971 break; }
972
973 case AUDIT_MQ_GETSETATTR: {
974 struct audit_aux_data_mq_getsetattr *axi = (void *)aux;
975 audit_log_format(ab,
976 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
977 "mq_curmsgs=%ld ",
978 axi->mqdes,
979 axi->mqstat.mq_flags, axi->mqstat.mq_maxmsg,
980 axi->mqstat.mq_msgsize, axi->mqstat.mq_curmsgs);
981 break; }
982
983 case AUDIT_IPC: {
984 struct audit_aux_data_ipcctl *axi = (void *)aux;
985 audit_log_format(ab,
986 "ouid=%u ogid=%u mode=%#o",
987 axi->uid, axi->gid, axi->mode);
988 if (axi->osid != 0) {
989 char *ctx = NULL;
990 u32 len;
991 if (selinux_sid_to_string(
992 axi->osid, &ctx, &len)) {
993 audit_log_format(ab, " osid=%u",
994 axi->osid);
995 call_panic = 1;
996 } else
997 audit_log_format(ab, " obj=%s", ctx);
998 kfree(ctx);
999 }
1000 break; }
1001
1002 case AUDIT_IPC_SET_PERM: {
1003 struct audit_aux_data_ipcctl *axi = (void *)aux;
1004 audit_log_format(ab,
1005 "qbytes=%lx ouid=%u ogid=%u mode=%#o",
1006 axi->qbytes, axi->uid, axi->gid, axi->mode);
1007 break; }
1008
1009 case AUDIT_EXECVE: {
1010 struct audit_aux_data_execve *axi = (void *)aux;
1011 audit_log_execve_info(ab, axi);
1012 break; }
1013
1014 case AUDIT_SOCKETCALL: {
1015 int i;
1016 struct audit_aux_data_socketcall *axs = (void *)aux;
1017 audit_log_format(ab, "nargs=%d", axs->nargs);
1018 for (i=0; i<axs->nargs; i++)
1019 audit_log_format(ab, " a%d=%lx", i, axs->args[i]);
1020 break; }
1021
1022 case AUDIT_SOCKADDR: {
1023 struct audit_aux_data_sockaddr *axs = (void *)aux;
1024
1025 audit_log_format(ab, "saddr=");
1026 audit_log_hex(ab, axs->a, axs->len);
1027 break; }
1028
1029 case AUDIT_FD_PAIR: {
1030 struct audit_aux_data_fd_pair *axs = (void *)aux;
1031 audit_log_format(ab, "fd0=%d fd1=%d", axs->fd[0], axs->fd[1]);
1032 break; }
1033
1034 }
1035 audit_log_end(ab);
1036 }
1037
1038 for (aux = context->aux_pids; aux; aux = aux->next) {
1039 struct audit_aux_data_pids *axs = (void *)aux;
1040 int i;
1041
1042 for (i = 0; i < axs->pid_count; i++)
1043 if (audit_log_pid_context(context, axs->target_pid[i],
1044 axs->target_sid[i]))
1045 call_panic = 1;
1046 }
1047
1048 if (context->target_pid &&
1049 audit_log_pid_context(context, context->target_pid,
1050 context->target_sid))
1051 call_panic = 1;
1052
1053 if (context->pwd && context->pwdmnt) {
1054 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1055 if (ab) {
1056 audit_log_d_path(ab, "cwd=", context->pwd, context->pwdmnt);
1057 audit_log_end(ab);
1058 }
1059 }
1060 for (i = 0; i < context->name_count; i++) {
1061 struct audit_names *n = &context->names[i];
1062
1063 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1064 if (!ab)
1065 continue; /* audit_panic has been called */
1066
1067 audit_log_format(ab, "item=%d", i);
1068
1069 if (n->name) {
1070 switch(n->name_len) {
1071 case AUDIT_NAME_FULL:
1072 /* log the full path */
1073 audit_log_format(ab, " name=");
1074 audit_log_untrustedstring(ab, n->name);
1075 break;
1076 case 0:
1077 /* name was specified as a relative path and the
1078 * directory component is the cwd */
1079 audit_log_d_path(ab, " name=", context->pwd,
1080 context->pwdmnt);
1081 break;
1082 default:
1083 /* log the name's directory component */
1084 audit_log_format(ab, " name=");
1085 audit_log_n_untrustedstring(ab, n->name_len,
1086 n->name);
1087 }
1088 } else
1089 audit_log_format(ab, " name=(null)");
1090
1091 if (n->ino != (unsigned long)-1) {
1092 audit_log_format(ab, " inode=%lu"
1093 " dev=%02x:%02x mode=%#o"
1094 " ouid=%u ogid=%u rdev=%02x:%02x",
1095 n->ino,
1096 MAJOR(n->dev),
1097 MINOR(n->dev),
1098 n->mode,
1099 n->uid,
1100 n->gid,
1101 MAJOR(n->rdev),
1102 MINOR(n->rdev));
1103 }
1104 if (n->osid != 0) {
1105 char *ctx = NULL;
1106 u32 len;
1107 if (selinux_sid_to_string(
1108 n->osid, &ctx, &len)) {
1109 audit_log_format(ab, " osid=%u", n->osid);
1110 call_panic = 2;
1111 } else
1112 audit_log_format(ab, " obj=%s", ctx);
1113 kfree(ctx);
1114 }
1115
1116 audit_log_end(ab);
1117 }
1118 if (call_panic)
1119 audit_panic("error converting sid to string");
1120 }
1121
1122 /**
1123 * audit_free - free a per-task audit context
1124 * @tsk: task whose audit context block to free
1125 *
1126 * Called from copy_process and do_exit
1127 */
1128 void audit_free(struct task_struct *tsk)
1129 {
1130 struct audit_context *context;
1131
1132 context = audit_get_context(tsk, 0, 0);
1133 if (likely(!context))
1134 return;
1135
1136 /* Check for system calls that do not go through the exit
1137 * function (e.g., exit_group), then free context block.
1138 * We use GFP_ATOMIC here because we might be doing this
1139 * in the context of the idle thread */
1140 /* that can happen only if we are called from do_exit() */
1141 if (context->in_syscall && context->auditable)
1142 audit_log_exit(context, tsk);
1143
1144 audit_free_context(context);
1145 }
1146
1147 /**
1148 * audit_syscall_entry - fill in an audit record at syscall entry
1149 * @tsk: task being audited
1150 * @arch: architecture type
1151 * @major: major syscall type (function)
1152 * @a1: additional syscall register 1
1153 * @a2: additional syscall register 2
1154 * @a3: additional syscall register 3
1155 * @a4: additional syscall register 4
1156 *
1157 * Fill in audit context at syscall entry. This only happens if the
1158 * audit context was created when the task was created and the state or
1159 * filters demand the audit context be built. If the state from the
1160 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1161 * then the record will be written at syscall exit time (otherwise, it
1162 * will only be written if another part of the kernel requests that it
1163 * be written).
1164 */
1165 void audit_syscall_entry(int arch, int major,
1166 unsigned long a1, unsigned long a2,
1167 unsigned long a3, unsigned long a4)
1168 {
1169 struct task_struct *tsk = current;
1170 struct audit_context *context = tsk->audit_context;
1171 enum audit_state state;
1172
1173 BUG_ON(!context);
1174
1175 /*
1176 * This happens only on certain architectures that make system
1177 * calls in kernel_thread via the entry.S interface, instead of
1178 * with direct calls. (If you are porting to a new
1179 * architecture, hitting this condition can indicate that you
1180 * got the _exit/_leave calls backward in entry.S.)
1181 *
1182 * i386 no
1183 * x86_64 no
1184 * ppc64 yes (see arch/powerpc/platforms/iseries/misc.S)
1185 *
1186 * This also happens with vm86 emulation in a non-nested manner
1187 * (entries without exits), so this case must be caught.
1188 */
1189 if (context->in_syscall) {
1190 struct audit_context *newctx;
1191
1192 #if AUDIT_DEBUG
1193 printk(KERN_ERR
1194 "audit(:%d) pid=%d in syscall=%d;"
1195 " entering syscall=%d\n",
1196 context->serial, tsk->pid, context->major, major);
1197 #endif
1198 newctx = audit_alloc_context(context->state);
1199 if (newctx) {
1200 newctx->previous = context;
1201 context = newctx;
1202 tsk->audit_context = newctx;
1203 } else {
1204 /* If we can't alloc a new context, the best we
1205 * can do is to leak memory (any pending putname
1206 * will be lost). The only other alternative is
1207 * to abandon auditing. */
1208 audit_zero_context(context, context->state);
1209 }
1210 }
1211 BUG_ON(context->in_syscall || context->name_count);
1212
1213 if (!audit_enabled)
1214 return;
1215
1216 context->arch = arch;
1217 context->major = major;
1218 context->argv[0] = a1;
1219 context->argv[1] = a2;
1220 context->argv[2] = a3;
1221 context->argv[3] = a4;
1222
1223 state = context->state;
1224 context->dummy = !audit_n_rules;
1225 if (!context->dummy && (state == AUDIT_SETUP_CONTEXT || state == AUDIT_BUILD_CONTEXT))
1226 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1227 if (likely(state == AUDIT_DISABLED))
1228 return;
1229
1230 context->serial = 0;
1231 context->ctime = CURRENT_TIME;
1232 context->in_syscall = 1;
1233 context->auditable = !!(state == AUDIT_RECORD_CONTEXT);
1234 context->ppid = 0;
1235 }
1236
1237 /**
1238 * audit_syscall_exit - deallocate audit context after a system call
1239 * @tsk: task being audited
1240 * @valid: success/failure flag
1241 * @return_code: syscall return value
1242 *
1243 * Tear down after system call. If the audit context has been marked as
1244 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1245 * filtering, or because some other part of the kernel write an audit
1246 * message), then write out the syscall information. In call cases,
1247 * free the names stored from getname().
1248 */
1249 void audit_syscall_exit(int valid, long return_code)
1250 {
1251 struct task_struct *tsk = current;
1252 struct audit_context *context;
1253
1254 context = audit_get_context(tsk, valid, return_code);
1255
1256 if (likely(!context))
1257 return;
1258
1259 if (context->in_syscall && context->auditable)
1260 audit_log_exit(context, tsk);
1261
1262 context->in_syscall = 0;
1263 context->auditable = 0;
1264
1265 if (context->previous) {
1266 struct audit_context *new_context = context->previous;
1267 context->previous = NULL;
1268 audit_free_context(context);
1269 tsk->audit_context = new_context;
1270 } else {
1271 audit_free_names(context);
1272 audit_free_aux(context);
1273 context->aux = NULL;
1274 context->aux_pids = NULL;
1275 context->target_pid = 0;
1276 context->target_sid = 0;
1277 kfree(context->filterkey);
1278 context->filterkey = NULL;
1279 tsk->audit_context = context;
1280 }
1281 }
1282
1283 /**
1284 * audit_getname - add a name to the list
1285 * @name: name to add
1286 *
1287 * Add a name to the list of audit names for this context.
1288 * Called from fs/namei.c:getname().
1289 */
1290 void __audit_getname(const char *name)
1291 {
1292 struct audit_context *context = current->audit_context;
1293
1294 if (IS_ERR(name) || !name)
1295 return;
1296
1297 if (!context->in_syscall) {
1298 #if AUDIT_DEBUG == 2
1299 printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
1300 __FILE__, __LINE__, context->serial, name);
1301 dump_stack();
1302 #endif
1303 return;
1304 }
1305 BUG_ON(context->name_count >= AUDIT_NAMES);
1306 context->names[context->name_count].name = name;
1307 context->names[context->name_count].name_len = AUDIT_NAME_FULL;
1308 context->names[context->name_count].name_put = 1;
1309 context->names[context->name_count].ino = (unsigned long)-1;
1310 context->names[context->name_count].osid = 0;
1311 ++context->name_count;
1312 if (!context->pwd) {
1313 read_lock(&current->fs->lock);
1314 context->pwd = dget(current->fs->pwd);
1315 context->pwdmnt = mntget(current->fs->pwdmnt);
1316 read_unlock(&current->fs->lock);
1317 }
1318
1319 }
1320
1321 /* audit_putname - intercept a putname request
1322 * @name: name to intercept and delay for putname
1323 *
1324 * If we have stored the name from getname in the audit context,
1325 * then we delay the putname until syscall exit.
1326 * Called from include/linux/fs.h:putname().
1327 */
1328 void audit_putname(const char *name)
1329 {
1330 struct audit_context *context = current->audit_context;
1331
1332 BUG_ON(!context);
1333 if (!context->in_syscall) {
1334 #if AUDIT_DEBUG == 2
1335 printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n",
1336 __FILE__, __LINE__, context->serial, name);
1337 if (context->name_count) {
1338 int i;
1339 for (i = 0; i < context->name_count; i++)
1340 printk(KERN_ERR "name[%d] = %p = %s\n", i,
1341 context->names[i].name,
1342 context->names[i].name ?: "(null)");
1343 }
1344 #endif
1345 __putname(name);
1346 }
1347 #if AUDIT_DEBUG
1348 else {
1349 ++context->put_count;
1350 if (context->put_count > context->name_count) {
1351 printk(KERN_ERR "%s:%d(:%d): major=%d"
1352 " in_syscall=%d putname(%p) name_count=%d"
1353 " put_count=%d\n",
1354 __FILE__, __LINE__,
1355 context->serial, context->major,
1356 context->in_syscall, name, context->name_count,
1357 context->put_count);
1358 dump_stack();
1359 }
1360 }
1361 #endif
1362 }
1363
1364 static int audit_inc_name_count(struct audit_context *context,
1365 const struct inode *inode)
1366 {
1367 if (context->name_count >= AUDIT_NAMES) {
1368 if (inode)
1369 printk(KERN_DEBUG "name_count maxed, losing inode data: "
1370 "dev=%02x:%02x, inode=%lu",
1371 MAJOR(inode->i_sb->s_dev),
1372 MINOR(inode->i_sb->s_dev),
1373 inode->i_ino);
1374
1375 else
1376 printk(KERN_DEBUG "name_count maxed, losing inode data");
1377 return 1;
1378 }
1379 context->name_count++;
1380 #if AUDIT_DEBUG
1381 context->ino_count++;
1382 #endif
1383 return 0;
1384 }
1385
1386 /* Copy inode data into an audit_names. */
1387 static void audit_copy_inode(struct audit_names *name, const struct inode *inode)
1388 {
1389 name->ino = inode->i_ino;
1390 name->dev = inode->i_sb->s_dev;
1391 name->mode = inode->i_mode;
1392 name->uid = inode->i_uid;
1393 name->gid = inode->i_gid;
1394 name->rdev = inode->i_rdev;
1395 selinux_get_inode_sid(inode, &name->osid);
1396 }
1397
1398 /**
1399 * audit_inode - store the inode and device from a lookup
1400 * @name: name being audited
1401 * @inode: inode being audited
1402 *
1403 * Called from fs/namei.c:path_lookup().
1404 */
1405 void __audit_inode(const char *name, const struct inode *inode)
1406 {
1407 int idx;
1408 struct audit_context *context = current->audit_context;
1409
1410 if (!context->in_syscall)
1411 return;
1412 if (context->name_count
1413 && context->names[context->name_count-1].name
1414 && context->names[context->name_count-1].name == name)
1415 idx = context->name_count - 1;
1416 else if (context->name_count > 1
1417 && context->names[context->name_count-2].name
1418 && context->names[context->name_count-2].name == name)
1419 idx = context->name_count - 2;
1420 else {
1421 /* FIXME: how much do we care about inodes that have no
1422 * associated name? */
1423 if (audit_inc_name_count(context, inode))
1424 return;
1425 idx = context->name_count - 1;
1426 context->names[idx].name = NULL;
1427 }
1428 audit_copy_inode(&context->names[idx], inode);
1429 }
1430
1431 /**
1432 * audit_inode_child - collect inode info for created/removed objects
1433 * @dname: inode's dentry name
1434 * @inode: inode being audited
1435 * @parent: inode of dentry parent
1436 *
1437 * For syscalls that create or remove filesystem objects, audit_inode
1438 * can only collect information for the filesystem object's parent.
1439 * This call updates the audit context with the child's information.
1440 * Syscalls that create a new filesystem object must be hooked after
1441 * the object is created. Syscalls that remove a filesystem object
1442 * must be hooked prior, in order to capture the target inode during
1443 * unsuccessful attempts.
1444 */
1445 void __audit_inode_child(const char *dname, const struct inode *inode,
1446 const struct inode *parent)
1447 {
1448 int idx;
1449 struct audit_context *context = current->audit_context;
1450 const char *found_parent = NULL, *found_child = NULL;
1451 int dirlen = 0;
1452
1453 if (!context->in_syscall)
1454 return;
1455
1456 /* determine matching parent */
1457 if (!dname)
1458 goto add_names;
1459
1460 /* parent is more likely, look for it first */
1461 for (idx = 0; idx < context->name_count; idx++) {
1462 struct audit_names *n = &context->names[idx];
1463
1464 if (!n->name)
1465 continue;
1466
1467 if (n->ino == parent->i_ino &&
1468 !audit_compare_dname_path(dname, n->name, &dirlen)) {
1469 n->name_len = dirlen; /* update parent data in place */
1470 found_parent = n->name;
1471 goto add_names;
1472 }
1473 }
1474
1475 /* no matching parent, look for matching child */
1476 for (idx = 0; idx < context->name_count; idx++) {
1477 struct audit_names *n = &context->names[idx];
1478
1479 if (!n->name)
1480 continue;
1481
1482 /* strcmp() is the more likely scenario */
1483 if (!strcmp(dname, n->name) ||
1484 !audit_compare_dname_path(dname, n->name, &dirlen)) {
1485 if (inode)
1486 audit_copy_inode(n, inode);
1487 else
1488 n->ino = (unsigned long)-1;
1489 found_child = n->name;
1490 goto add_names;
1491 }
1492 }
1493
1494 add_names:
1495 if (!found_parent) {
1496 if (audit_inc_name_count(context, parent))
1497 return;
1498 idx = context->name_count - 1;
1499 context->names[idx].name = NULL;
1500 audit_copy_inode(&context->names[idx], parent);
1501 }
1502
1503 if (!found_child) {
1504 if (audit_inc_name_count(context, inode))
1505 return;
1506 idx = context->name_count - 1;
1507
1508 /* Re-use the name belonging to the slot for a matching parent
1509 * directory. All names for this context are relinquished in
1510 * audit_free_names() */
1511 if (found_parent) {
1512 context->names[idx].name = found_parent;
1513 context->names[idx].name_len = AUDIT_NAME_FULL;
1514 /* don't call __putname() */
1515 context->names[idx].name_put = 0;
1516 } else {
1517 context->names[idx].name = NULL;
1518 }
1519
1520 if (inode)
1521 audit_copy_inode(&context->names[idx], inode);
1522 else
1523 context->names[idx].ino = (unsigned long)-1;
1524 }
1525 }
1526
1527 /**
1528 * auditsc_get_stamp - get local copies of audit_context values
1529 * @ctx: audit_context for the task
1530 * @t: timespec to store time recorded in the audit_context
1531 * @serial: serial value that is recorded in the audit_context
1532 *
1533 * Also sets the context as auditable.
1534 */
1535 void auditsc_get_stamp(struct audit_context *ctx,
1536 struct timespec *t, unsigned int *serial)
1537 {
1538 if (!ctx->serial)
1539 ctx->serial = audit_serial();
1540 t->tv_sec = ctx->ctime.tv_sec;
1541 t->tv_nsec = ctx->ctime.tv_nsec;
1542 *serial = ctx->serial;
1543 ctx->auditable = 1;
1544 }
1545
1546 /**
1547 * audit_set_loginuid - set a task's audit_context loginuid
1548 * @task: task whose audit context is being modified
1549 * @loginuid: loginuid value
1550 *
1551 * Returns 0.
1552 *
1553 * Called (set) from fs/proc/base.c::proc_loginuid_write().
1554 */
1555 int audit_set_loginuid(struct task_struct *task, uid_t loginuid)
1556 {
1557 struct audit_context *context = task->audit_context;
1558
1559 if (context) {
1560 /* Only log if audit is enabled */
1561 if (context->in_syscall) {
1562 struct audit_buffer *ab;
1563
1564 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
1565 if (ab) {
1566 audit_log_format(ab, "login pid=%d uid=%u "
1567 "old auid=%u new auid=%u",
1568 task->pid, task->uid,
1569 context->loginuid, loginuid);
1570 audit_log_end(ab);
1571 }
1572 }
1573 context->loginuid = loginuid;
1574 }
1575 return 0;
1576 }
1577
1578 /**
1579 * audit_get_loginuid - get the loginuid for an audit_context
1580 * @ctx: the audit_context
1581 *
1582 * Returns the context's loginuid or -1 if @ctx is NULL.
1583 */
1584 uid_t audit_get_loginuid(struct audit_context *ctx)
1585 {
1586 return ctx ? ctx->loginuid : -1;
1587 }
1588
1589 EXPORT_SYMBOL(audit_get_loginuid);
1590
1591 /**
1592 * __audit_mq_open - record audit data for a POSIX MQ open
1593 * @oflag: open flag
1594 * @mode: mode bits
1595 * @u_attr: queue attributes
1596 *
1597 * Returns 0 for success or NULL context or < 0 on error.
1598 */
1599 int __audit_mq_open(int oflag, mode_t mode, struct mq_attr __user *u_attr)
1600 {
1601 struct audit_aux_data_mq_open *ax;
1602 struct audit_context *context = current->audit_context;
1603
1604 if (!audit_enabled)
1605 return 0;
1606
1607 if (likely(!context))
1608 return 0;
1609
1610 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1611 if (!ax)
1612 return -ENOMEM;
1613
1614 if (u_attr != NULL) {
1615 if (copy_from_user(&ax->attr, u_attr, sizeof(ax->attr))) {
1616 kfree(ax);
1617 return -EFAULT;
1618 }
1619 } else
1620 memset(&ax->attr, 0, sizeof(ax->attr));
1621
1622 ax->oflag = oflag;
1623 ax->mode = mode;
1624
1625 ax->d.type = AUDIT_MQ_OPEN;
1626 ax->d.next = context->aux;
1627 context->aux = (void *)ax;
1628 return 0;
1629 }
1630
1631 /**
1632 * __audit_mq_timedsend - record audit data for a POSIX MQ timed send
1633 * @mqdes: MQ descriptor
1634 * @msg_len: Message length
1635 * @msg_prio: Message priority
1636 * @u_abs_timeout: Message timeout in absolute time
1637 *
1638 * Returns 0 for success or NULL context or < 0 on error.
1639 */
1640 int __audit_mq_timedsend(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
1641 const struct timespec __user *u_abs_timeout)
1642 {
1643 struct audit_aux_data_mq_sendrecv *ax;
1644 struct audit_context *context = current->audit_context;
1645
1646 if (!audit_enabled)
1647 return 0;
1648
1649 if (likely(!context))
1650 return 0;
1651
1652 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1653 if (!ax)
1654 return -ENOMEM;
1655
1656 if (u_abs_timeout != NULL) {
1657 if (copy_from_user(&ax->abs_timeout, u_abs_timeout, sizeof(ax->abs_timeout))) {
1658 kfree(ax);
1659 return -EFAULT;
1660 }
1661 } else
1662 memset(&ax->abs_timeout, 0, sizeof(ax->abs_timeout));
1663
1664 ax->mqdes = mqdes;
1665 ax->msg_len = msg_len;
1666 ax->msg_prio = msg_prio;
1667
1668 ax->d.type = AUDIT_MQ_SENDRECV;
1669 ax->d.next = context->aux;
1670 context->aux = (void *)ax;
1671 return 0;
1672 }
1673
1674 /**
1675 * __audit_mq_timedreceive - record audit data for a POSIX MQ timed receive
1676 * @mqdes: MQ descriptor
1677 * @msg_len: Message length
1678 * @u_msg_prio: Message priority
1679 * @u_abs_timeout: Message timeout in absolute time
1680 *
1681 * Returns 0 for success or NULL context or < 0 on error.
1682 */
1683 int __audit_mq_timedreceive(mqd_t mqdes, size_t msg_len,
1684 unsigned int __user *u_msg_prio,
1685 const struct timespec __user *u_abs_timeout)
1686 {
1687 struct audit_aux_data_mq_sendrecv *ax;
1688 struct audit_context *context = current->audit_context;
1689
1690 if (!audit_enabled)
1691 return 0;
1692
1693 if (likely(!context))
1694 return 0;
1695
1696 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1697 if (!ax)
1698 return -ENOMEM;
1699
1700 if (u_msg_prio != NULL) {
1701 if (get_user(ax->msg_prio, u_msg_prio)) {
1702 kfree(ax);
1703 return -EFAULT;
1704 }
1705 } else
1706 ax->msg_prio = 0;
1707
1708 if (u_abs_timeout != NULL) {
1709 if (copy_from_user(&ax->abs_timeout, u_abs_timeout, sizeof(ax->abs_timeout))) {
1710 kfree(ax);
1711 return -EFAULT;
1712 }
1713 } else
1714 memset(&ax->abs_timeout, 0, sizeof(ax->abs_timeout));
1715
1716 ax->mqdes = mqdes;
1717 ax->msg_len = msg_len;
1718
1719 ax->d.type = AUDIT_MQ_SENDRECV;
1720 ax->d.next = context->aux;
1721 context->aux = (void *)ax;
1722 return 0;
1723 }
1724
1725 /**
1726 * __audit_mq_notify - record audit data for a POSIX MQ notify
1727 * @mqdes: MQ descriptor
1728 * @u_notification: Notification event
1729 *
1730 * Returns 0 for success or NULL context or < 0 on error.
1731 */
1732
1733 int __audit_mq_notify(mqd_t mqdes, const struct sigevent __user *u_notification)
1734 {
1735 struct audit_aux_data_mq_notify *ax;
1736 struct audit_context *context = current->audit_context;
1737
1738 if (!audit_enabled)
1739 return 0;
1740
1741 if (likely(!context))
1742 return 0;
1743
1744 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1745 if (!ax)
1746 return -ENOMEM;
1747
1748 if (u_notification != NULL) {
1749 if (copy_from_user(&ax->notification, u_notification, sizeof(ax->notification))) {
1750 kfree(ax);
1751 return -EFAULT;
1752 }
1753 } else
1754 memset(&ax->notification, 0, sizeof(ax->notification));
1755
1756 ax->mqdes = mqdes;
1757
1758 ax->d.type = AUDIT_MQ_NOTIFY;
1759 ax->d.next = context->aux;
1760 context->aux = (void *)ax;
1761 return 0;
1762 }
1763
1764 /**
1765 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
1766 * @mqdes: MQ descriptor
1767 * @mqstat: MQ flags
1768 *
1769 * Returns 0 for success or NULL context or < 0 on error.
1770 */
1771 int __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
1772 {
1773 struct audit_aux_data_mq_getsetattr *ax;
1774 struct audit_context *context = current->audit_context;
1775
1776 if (!audit_enabled)
1777 return 0;
1778
1779 if (likely(!context))
1780 return 0;
1781
1782 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1783 if (!ax)
1784 return -ENOMEM;
1785
1786 ax->mqdes = mqdes;
1787 ax->mqstat = *mqstat;
1788
1789 ax->d.type = AUDIT_MQ_GETSETATTR;
1790 ax->d.next = context->aux;
1791 context->aux = (void *)ax;
1792 return 0;
1793 }
1794
1795 /**
1796 * audit_ipc_obj - record audit data for ipc object
1797 * @ipcp: ipc permissions
1798 *
1799 * Returns 0 for success or NULL context or < 0 on error.
1800 */
1801 int __audit_ipc_obj(struct kern_ipc_perm *ipcp)
1802 {
1803 struct audit_aux_data_ipcctl *ax;
1804 struct audit_context *context = current->audit_context;
1805
1806 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1807 if (!ax)
1808 return -ENOMEM;
1809
1810 ax->uid = ipcp->uid;
1811 ax->gid = ipcp->gid;
1812 ax->mode = ipcp->mode;
1813 selinux_get_ipc_sid(ipcp, &ax->osid);
1814
1815 ax->d.type = AUDIT_IPC;
1816 ax->d.next = context->aux;
1817 context->aux = (void *)ax;
1818 return 0;
1819 }
1820
1821 /**
1822 * audit_ipc_set_perm - record audit data for new ipc permissions
1823 * @qbytes: msgq bytes
1824 * @uid: msgq user id
1825 * @gid: msgq group id
1826 * @mode: msgq mode (permissions)
1827 *
1828 * Returns 0 for success or NULL context or < 0 on error.
1829 */
1830 int __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, mode_t mode)
1831 {
1832 struct audit_aux_data_ipcctl *ax;
1833 struct audit_context *context = current->audit_context;
1834
1835 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1836 if (!ax)
1837 return -ENOMEM;
1838
1839 ax->qbytes = qbytes;
1840 ax->uid = uid;
1841 ax->gid = gid;
1842 ax->mode = mode;
1843
1844 ax->d.type = AUDIT_IPC_SET_PERM;
1845 ax->d.next = context->aux;
1846 context->aux = (void *)ax;
1847 return 0;
1848 }
1849
1850 int audit_argv_kb = 32;
1851
1852 int audit_bprm(struct linux_binprm *bprm)
1853 {
1854 struct audit_aux_data_execve *ax;
1855 struct audit_context *context = current->audit_context;
1856
1857 if (likely(!audit_enabled || !context || context->dummy))
1858 return 0;
1859
1860 /*
1861 * Even though the stack code doesn't limit the arg+env size any more,
1862 * the audit code requires that _all_ arguments be logged in a single
1863 * netlink skb. Hence cap it :-(
1864 */
1865 if (bprm->argv_len > (audit_argv_kb << 10))
1866 return -E2BIG;
1867
1868 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
1869 if (!ax)
1870 return -ENOMEM;
1871
1872 ax->argc = bprm->argc;
1873 ax->envc = bprm->envc;
1874 ax->mm = bprm->mm;
1875 ax->d.type = AUDIT_EXECVE;
1876 ax->d.next = context->aux;
1877 context->aux = (void *)ax;
1878 return 0;
1879 }
1880
1881
1882 /**
1883 * audit_socketcall - record audit data for sys_socketcall
1884 * @nargs: number of args
1885 * @args: args array
1886 *
1887 * Returns 0 for success or NULL context or < 0 on error.
1888 */
1889 int audit_socketcall(int nargs, unsigned long *args)
1890 {
1891 struct audit_aux_data_socketcall *ax;
1892 struct audit_context *context = current->audit_context;
1893
1894 if (likely(!context || context->dummy))
1895 return 0;
1896
1897 ax = kmalloc(sizeof(*ax) + nargs * sizeof(unsigned long), GFP_KERNEL);
1898 if (!ax)
1899 return -ENOMEM;
1900
1901 ax->nargs = nargs;
1902 memcpy(ax->args, args, nargs * sizeof(unsigned long));
1903
1904 ax->d.type = AUDIT_SOCKETCALL;
1905 ax->d.next = context->aux;
1906 context->aux = (void *)ax;
1907 return 0;
1908 }
1909
1910 /**
1911 * __audit_fd_pair - record audit data for pipe and socketpair
1912 * @fd1: the first file descriptor
1913 * @fd2: the second file descriptor
1914 *
1915 * Returns 0 for success or NULL context or < 0 on error.
1916 */
1917 int __audit_fd_pair(int fd1, int fd2)
1918 {
1919 struct audit_context *context = current->audit_context;
1920 struct audit_aux_data_fd_pair *ax;
1921
1922 if (likely(!context)) {
1923 return 0;
1924 }
1925
1926 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
1927 if (!ax) {
1928 return -ENOMEM;
1929 }
1930
1931 ax->fd[0] = fd1;
1932 ax->fd[1] = fd2;
1933
1934 ax->d.type = AUDIT_FD_PAIR;
1935 ax->d.next = context->aux;
1936 context->aux = (void *)ax;
1937 return 0;
1938 }
1939
1940 /**
1941 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
1942 * @len: data length in user space
1943 * @a: data address in kernel space
1944 *
1945 * Returns 0 for success or NULL context or < 0 on error.
1946 */
1947 int audit_sockaddr(int len, void *a)
1948 {
1949 struct audit_aux_data_sockaddr *ax;
1950 struct audit_context *context = current->audit_context;
1951
1952 if (likely(!context || context->dummy))
1953 return 0;
1954
1955 ax = kmalloc(sizeof(*ax) + len, GFP_KERNEL);
1956 if (!ax)
1957 return -ENOMEM;
1958
1959 ax->len = len;
1960 memcpy(ax->a, a, len);
1961
1962 ax->d.type = AUDIT_SOCKADDR;
1963 ax->d.next = context->aux;
1964 context->aux = (void *)ax;
1965 return 0;
1966 }
1967
1968 void __audit_ptrace(struct task_struct *t)
1969 {
1970 struct audit_context *context = current->audit_context;
1971
1972 context->target_pid = t->pid;
1973 selinux_get_task_sid(t, &context->target_sid);
1974 }
1975
1976 /**
1977 * audit_signal_info - record signal info for shutting down audit subsystem
1978 * @sig: signal value
1979 * @t: task being signaled
1980 *
1981 * If the audit subsystem is being terminated, record the task (pid)
1982 * and uid that is doing that.
1983 */
1984 int __audit_signal_info(int sig, struct task_struct *t)
1985 {
1986 struct audit_aux_data_pids *axp;
1987 struct task_struct *tsk = current;
1988 struct audit_context *ctx = tsk->audit_context;
1989 extern pid_t audit_sig_pid;
1990 extern uid_t audit_sig_uid;
1991 extern u32 audit_sig_sid;
1992
1993 if (audit_pid && t->tgid == audit_pid &&
1994 (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1)) {
1995 audit_sig_pid = tsk->pid;
1996 if (ctx)
1997 audit_sig_uid = ctx->loginuid;
1998 else
1999 audit_sig_uid = tsk->uid;
2000 selinux_get_task_sid(tsk, &audit_sig_sid);
2001 }
2002
2003 if (!audit_signals) /* audit_context checked in wrapper */
2004 return 0;
2005
2006 /* optimize the common case by putting first signal recipient directly
2007 * in audit_context */
2008 if (!ctx->target_pid) {
2009 ctx->target_pid = t->tgid;
2010 selinux_get_task_sid(t, &ctx->target_sid);
2011 return 0;
2012 }
2013
2014 axp = (void *)ctx->aux_pids;
2015 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2016 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2017 if (!axp)
2018 return -ENOMEM;
2019
2020 axp->d.type = AUDIT_OBJ_PID;
2021 axp->d.next = ctx->aux_pids;
2022 ctx->aux_pids = (void *)axp;
2023 }
2024 BUG_ON(axp->pid_count > AUDIT_AUX_PIDS);
2025
2026 axp->target_pid[axp->pid_count] = t->tgid;
2027 selinux_get_task_sid(t, &axp->target_sid[axp->pid_count]);
2028 axp->pid_count++;
2029
2030 return 0;
2031 }
2032
2033 /**
2034 * audit_core_dumps - record information about processes that end abnormally
2035 * @signr: signal value
2036 *
2037 * If a process ends with a core dump, something fishy is going on and we
2038 * should record the event for investigation.
2039 */
2040 void audit_core_dumps(long signr)
2041 {
2042 struct audit_buffer *ab;
2043 u32 sid;
2044
2045 if (!audit_enabled)
2046 return;
2047
2048 if (signr == SIGQUIT) /* don't care for those */
2049 return;
2050
2051 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2052 audit_log_format(ab, "auid=%u uid=%u gid=%u",
2053 audit_get_loginuid(current->audit_context),
2054 current->uid, current->gid);
2055 selinux_get_task_sid(current, &sid);
2056 if (sid) {
2057 char *ctx = NULL;
2058 u32 len;
2059
2060 if (selinux_sid_to_string(sid, &ctx, &len))
2061 audit_log_format(ab, " ssid=%u", sid);
2062 else
2063 audit_log_format(ab, " subj=%s", ctx);
2064 kfree(ctx);
2065 }
2066 audit_log_format(ab, " pid=%d comm=", current->pid);
2067 audit_log_untrustedstring(ab, current->comm);
2068 audit_log_format(ab, " sig=%ld", signr);
2069 audit_log_end(ab);
2070 }
This page took 0.097569 seconds and 6 git commands to generate.