Merge branch 'kbuild' of git://git.kernel.org/pub/scm/linux/kernel/git/mmarek/kbuild
[deliverable/linux.git] / kernel / auditsc.c
1 /* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
3 *
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
7 * All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24 *
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
27 *
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
31 *
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
34 *
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37 *
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
40 *
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
43 */
44
45 #include <linux/init.h>
46 #include <asm/types.h>
47 #include <linux/atomic.h>
48 #include <linux/fs.h>
49 #include <linux/namei.h>
50 #include <linux/mm.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/mount.h>
54 #include <linux/socket.h>
55 #include <linux/mqueue.h>
56 #include <linux/audit.h>
57 #include <linux/personality.h>
58 #include <linux/time.h>
59 #include <linux/netlink.h>
60 #include <linux/compiler.h>
61 #include <asm/unistd.h>
62 #include <linux/security.h>
63 #include <linux/list.h>
64 #include <linux/tty.h>
65 #include <linux/binfmts.h>
66 #include <linux/highmem.h>
67 #include <linux/syscalls.h>
68 #include <linux/capability.h>
69 #include <linux/fs_struct.h>
70 #include <linux/compat.h>
71
72 #include "audit.h"
73
74 /* flags stating the success for a syscall */
75 #define AUDITSC_INVALID 0
76 #define AUDITSC_SUCCESS 1
77 #define AUDITSC_FAILURE 2
78
79 /* AUDIT_NAMES is the number of slots we reserve in the audit_context
80 * for saving names from getname(). If we get more names we will allocate
81 * a name dynamically and also add those to the list anchored by names_list. */
82 #define AUDIT_NAMES 5
83
84 /* Indicates that audit should log the full pathname. */
85 #define AUDIT_NAME_FULL -1
86
87 /* no execve audit message should be longer than this (userspace limits) */
88 #define MAX_EXECVE_AUDIT_LEN 7500
89
90 /* number of audit rules */
91 int audit_n_rules;
92
93 /* determines whether we collect data for signals sent */
94 int audit_signals;
95
96 struct audit_cap_data {
97 kernel_cap_t permitted;
98 kernel_cap_t inheritable;
99 union {
100 unsigned int fE; /* effective bit of a file capability */
101 kernel_cap_t effective; /* effective set of a process */
102 };
103 };
104
105 /* When fs/namei.c:getname() is called, we store the pointer in name and
106 * we don't let putname() free it (instead we free all of the saved
107 * pointers at syscall exit time).
108 *
109 * Further, in fs/namei.c:path_lookup() we store the inode and device. */
110 struct audit_names {
111 struct list_head list; /* audit_context->names_list */
112 const char *name;
113 unsigned long ino;
114 dev_t dev;
115 umode_t mode;
116 kuid_t uid;
117 kgid_t gid;
118 dev_t rdev;
119 u32 osid;
120 struct audit_cap_data fcap;
121 unsigned int fcap_ver;
122 int name_len; /* number of name's characters to log */
123 bool name_put; /* call __putname() for this name */
124 /*
125 * This was an allocated audit_names and not from the array of
126 * names allocated in the task audit context. Thus this name
127 * should be freed on syscall exit
128 */
129 bool should_free;
130 };
131
132 struct audit_aux_data {
133 struct audit_aux_data *next;
134 int type;
135 };
136
137 #define AUDIT_AUX_IPCPERM 0
138
139 /* Number of target pids per aux struct. */
140 #define AUDIT_AUX_PIDS 16
141
142 struct audit_aux_data_execve {
143 struct audit_aux_data d;
144 int argc;
145 int envc;
146 struct mm_struct *mm;
147 };
148
149 struct audit_aux_data_pids {
150 struct audit_aux_data d;
151 pid_t target_pid[AUDIT_AUX_PIDS];
152 kuid_t target_auid[AUDIT_AUX_PIDS];
153 kuid_t target_uid[AUDIT_AUX_PIDS];
154 unsigned int target_sessionid[AUDIT_AUX_PIDS];
155 u32 target_sid[AUDIT_AUX_PIDS];
156 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
157 int pid_count;
158 };
159
160 struct audit_aux_data_bprm_fcaps {
161 struct audit_aux_data d;
162 struct audit_cap_data fcap;
163 unsigned int fcap_ver;
164 struct audit_cap_data old_pcap;
165 struct audit_cap_data new_pcap;
166 };
167
168 struct audit_aux_data_capset {
169 struct audit_aux_data d;
170 pid_t pid;
171 struct audit_cap_data cap;
172 };
173
174 struct audit_tree_refs {
175 struct audit_tree_refs *next;
176 struct audit_chunk *c[31];
177 };
178
179 /* The per-task audit context. */
180 struct audit_context {
181 int dummy; /* must be the first element */
182 int in_syscall; /* 1 if task is in a syscall */
183 enum audit_state state, current_state;
184 unsigned int serial; /* serial number for record */
185 int major; /* syscall number */
186 struct timespec ctime; /* time of syscall entry */
187 unsigned long argv[4]; /* syscall arguments */
188 long return_code;/* syscall return code */
189 u64 prio;
190 int return_valid; /* return code is valid */
191 /*
192 * The names_list is the list of all audit_names collected during this
193 * syscall. The first AUDIT_NAMES entries in the names_list will
194 * actually be from the preallocated_names array for performance
195 * reasons. Except during allocation they should never be referenced
196 * through the preallocated_names array and should only be found/used
197 * by running the names_list.
198 */
199 struct audit_names preallocated_names[AUDIT_NAMES];
200 int name_count; /* total records in names_list */
201 struct list_head names_list; /* anchor for struct audit_names->list */
202 char * filterkey; /* key for rule that triggered record */
203 struct path pwd;
204 struct audit_context *previous; /* For nested syscalls */
205 struct audit_aux_data *aux;
206 struct audit_aux_data *aux_pids;
207 struct sockaddr_storage *sockaddr;
208 size_t sockaddr_len;
209 /* Save things to print about task_struct */
210 pid_t pid, ppid;
211 kuid_t uid, euid, suid, fsuid;
212 kgid_t gid, egid, sgid, fsgid;
213 unsigned long personality;
214 int arch;
215
216 pid_t target_pid;
217 kuid_t target_auid;
218 kuid_t target_uid;
219 unsigned int target_sessionid;
220 u32 target_sid;
221 char target_comm[TASK_COMM_LEN];
222
223 struct audit_tree_refs *trees, *first_trees;
224 struct list_head killed_trees;
225 int tree_count;
226
227 int type;
228 union {
229 struct {
230 int nargs;
231 long args[6];
232 } socketcall;
233 struct {
234 kuid_t uid;
235 kgid_t gid;
236 umode_t mode;
237 u32 osid;
238 int has_perm;
239 uid_t perm_uid;
240 gid_t perm_gid;
241 umode_t perm_mode;
242 unsigned long qbytes;
243 } ipc;
244 struct {
245 mqd_t mqdes;
246 struct mq_attr mqstat;
247 } mq_getsetattr;
248 struct {
249 mqd_t mqdes;
250 int sigev_signo;
251 } mq_notify;
252 struct {
253 mqd_t mqdes;
254 size_t msg_len;
255 unsigned int msg_prio;
256 struct timespec abs_timeout;
257 } mq_sendrecv;
258 struct {
259 int oflag;
260 umode_t mode;
261 struct mq_attr attr;
262 } mq_open;
263 struct {
264 pid_t pid;
265 struct audit_cap_data cap;
266 } capset;
267 struct {
268 int fd;
269 int flags;
270 } mmap;
271 };
272 int fds[2];
273
274 #if AUDIT_DEBUG
275 int put_count;
276 int ino_count;
277 #endif
278 };
279
280 static inline int open_arg(int flags, int mask)
281 {
282 int n = ACC_MODE(flags);
283 if (flags & (O_TRUNC | O_CREAT))
284 n |= AUDIT_PERM_WRITE;
285 return n & mask;
286 }
287
288 static int audit_match_perm(struct audit_context *ctx, int mask)
289 {
290 unsigned n;
291 if (unlikely(!ctx))
292 return 0;
293 n = ctx->major;
294
295 switch (audit_classify_syscall(ctx->arch, n)) {
296 case 0: /* native */
297 if ((mask & AUDIT_PERM_WRITE) &&
298 audit_match_class(AUDIT_CLASS_WRITE, n))
299 return 1;
300 if ((mask & AUDIT_PERM_READ) &&
301 audit_match_class(AUDIT_CLASS_READ, n))
302 return 1;
303 if ((mask & AUDIT_PERM_ATTR) &&
304 audit_match_class(AUDIT_CLASS_CHATTR, n))
305 return 1;
306 return 0;
307 case 1: /* 32bit on biarch */
308 if ((mask & AUDIT_PERM_WRITE) &&
309 audit_match_class(AUDIT_CLASS_WRITE_32, n))
310 return 1;
311 if ((mask & AUDIT_PERM_READ) &&
312 audit_match_class(AUDIT_CLASS_READ_32, n))
313 return 1;
314 if ((mask & AUDIT_PERM_ATTR) &&
315 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
316 return 1;
317 return 0;
318 case 2: /* open */
319 return mask & ACC_MODE(ctx->argv[1]);
320 case 3: /* openat */
321 return mask & ACC_MODE(ctx->argv[2]);
322 case 4: /* socketcall */
323 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
324 case 5: /* execve */
325 return mask & AUDIT_PERM_EXEC;
326 default:
327 return 0;
328 }
329 }
330
331 static int audit_match_filetype(struct audit_context *ctx, int val)
332 {
333 struct audit_names *n;
334 umode_t mode = (umode_t)val;
335
336 if (unlikely(!ctx))
337 return 0;
338
339 list_for_each_entry(n, &ctx->names_list, list) {
340 if ((n->ino != -1) &&
341 ((n->mode & S_IFMT) == mode))
342 return 1;
343 }
344
345 return 0;
346 }
347
348 /*
349 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
350 * ->first_trees points to its beginning, ->trees - to the current end of data.
351 * ->tree_count is the number of free entries in array pointed to by ->trees.
352 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
353 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
354 * it's going to remain 1-element for almost any setup) until we free context itself.
355 * References in it _are_ dropped - at the same time we free/drop aux stuff.
356 */
357
358 #ifdef CONFIG_AUDIT_TREE
359 static void audit_set_auditable(struct audit_context *ctx)
360 {
361 if (!ctx->prio) {
362 ctx->prio = 1;
363 ctx->current_state = AUDIT_RECORD_CONTEXT;
364 }
365 }
366
367 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
368 {
369 struct audit_tree_refs *p = ctx->trees;
370 int left = ctx->tree_count;
371 if (likely(left)) {
372 p->c[--left] = chunk;
373 ctx->tree_count = left;
374 return 1;
375 }
376 if (!p)
377 return 0;
378 p = p->next;
379 if (p) {
380 p->c[30] = chunk;
381 ctx->trees = p;
382 ctx->tree_count = 30;
383 return 1;
384 }
385 return 0;
386 }
387
388 static int grow_tree_refs(struct audit_context *ctx)
389 {
390 struct audit_tree_refs *p = ctx->trees;
391 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
392 if (!ctx->trees) {
393 ctx->trees = p;
394 return 0;
395 }
396 if (p)
397 p->next = ctx->trees;
398 else
399 ctx->first_trees = ctx->trees;
400 ctx->tree_count = 31;
401 return 1;
402 }
403 #endif
404
405 static void unroll_tree_refs(struct audit_context *ctx,
406 struct audit_tree_refs *p, int count)
407 {
408 #ifdef CONFIG_AUDIT_TREE
409 struct audit_tree_refs *q;
410 int n;
411 if (!p) {
412 /* we started with empty chain */
413 p = ctx->first_trees;
414 count = 31;
415 /* if the very first allocation has failed, nothing to do */
416 if (!p)
417 return;
418 }
419 n = count;
420 for (q = p; q != ctx->trees; q = q->next, n = 31) {
421 while (n--) {
422 audit_put_chunk(q->c[n]);
423 q->c[n] = NULL;
424 }
425 }
426 while (n-- > ctx->tree_count) {
427 audit_put_chunk(q->c[n]);
428 q->c[n] = NULL;
429 }
430 ctx->trees = p;
431 ctx->tree_count = count;
432 #endif
433 }
434
435 static void free_tree_refs(struct audit_context *ctx)
436 {
437 struct audit_tree_refs *p, *q;
438 for (p = ctx->first_trees; p; p = q) {
439 q = p->next;
440 kfree(p);
441 }
442 }
443
444 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
445 {
446 #ifdef CONFIG_AUDIT_TREE
447 struct audit_tree_refs *p;
448 int n;
449 if (!tree)
450 return 0;
451 /* full ones */
452 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
453 for (n = 0; n < 31; n++)
454 if (audit_tree_match(p->c[n], tree))
455 return 1;
456 }
457 /* partial */
458 if (p) {
459 for (n = ctx->tree_count; n < 31; n++)
460 if (audit_tree_match(p->c[n], tree))
461 return 1;
462 }
463 #endif
464 return 0;
465 }
466
467 static int audit_compare_uid(kuid_t uid,
468 struct audit_names *name,
469 struct audit_field *f,
470 struct audit_context *ctx)
471 {
472 struct audit_names *n;
473 int rc;
474
475 if (name) {
476 rc = audit_uid_comparator(uid, f->op, name->uid);
477 if (rc)
478 return rc;
479 }
480
481 if (ctx) {
482 list_for_each_entry(n, &ctx->names_list, list) {
483 rc = audit_uid_comparator(uid, f->op, n->uid);
484 if (rc)
485 return rc;
486 }
487 }
488 return 0;
489 }
490
491 static int audit_compare_gid(kgid_t gid,
492 struct audit_names *name,
493 struct audit_field *f,
494 struct audit_context *ctx)
495 {
496 struct audit_names *n;
497 int rc;
498
499 if (name) {
500 rc = audit_gid_comparator(gid, f->op, name->gid);
501 if (rc)
502 return rc;
503 }
504
505 if (ctx) {
506 list_for_each_entry(n, &ctx->names_list, list) {
507 rc = audit_gid_comparator(gid, f->op, n->gid);
508 if (rc)
509 return rc;
510 }
511 }
512 return 0;
513 }
514
515 static int audit_field_compare(struct task_struct *tsk,
516 const struct cred *cred,
517 struct audit_field *f,
518 struct audit_context *ctx,
519 struct audit_names *name)
520 {
521 switch (f->val) {
522 /* process to file object comparisons */
523 case AUDIT_COMPARE_UID_TO_OBJ_UID:
524 return audit_compare_uid(cred->uid, name, f, ctx);
525 case AUDIT_COMPARE_GID_TO_OBJ_GID:
526 return audit_compare_gid(cred->gid, name, f, ctx);
527 case AUDIT_COMPARE_EUID_TO_OBJ_UID:
528 return audit_compare_uid(cred->euid, name, f, ctx);
529 case AUDIT_COMPARE_EGID_TO_OBJ_GID:
530 return audit_compare_gid(cred->egid, name, f, ctx);
531 case AUDIT_COMPARE_AUID_TO_OBJ_UID:
532 return audit_compare_uid(tsk->loginuid, name, f, ctx);
533 case AUDIT_COMPARE_SUID_TO_OBJ_UID:
534 return audit_compare_uid(cred->suid, name, f, ctx);
535 case AUDIT_COMPARE_SGID_TO_OBJ_GID:
536 return audit_compare_gid(cred->sgid, name, f, ctx);
537 case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
538 return audit_compare_uid(cred->fsuid, name, f, ctx);
539 case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
540 return audit_compare_gid(cred->fsgid, name, f, ctx);
541 /* uid comparisons */
542 case AUDIT_COMPARE_UID_TO_AUID:
543 return audit_uid_comparator(cred->uid, f->op, tsk->loginuid);
544 case AUDIT_COMPARE_UID_TO_EUID:
545 return audit_uid_comparator(cred->uid, f->op, cred->euid);
546 case AUDIT_COMPARE_UID_TO_SUID:
547 return audit_uid_comparator(cred->uid, f->op, cred->suid);
548 case AUDIT_COMPARE_UID_TO_FSUID:
549 return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
550 /* auid comparisons */
551 case AUDIT_COMPARE_AUID_TO_EUID:
552 return audit_uid_comparator(tsk->loginuid, f->op, cred->euid);
553 case AUDIT_COMPARE_AUID_TO_SUID:
554 return audit_uid_comparator(tsk->loginuid, f->op, cred->suid);
555 case AUDIT_COMPARE_AUID_TO_FSUID:
556 return audit_uid_comparator(tsk->loginuid, f->op, cred->fsuid);
557 /* euid comparisons */
558 case AUDIT_COMPARE_EUID_TO_SUID:
559 return audit_uid_comparator(cred->euid, f->op, cred->suid);
560 case AUDIT_COMPARE_EUID_TO_FSUID:
561 return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
562 /* suid comparisons */
563 case AUDIT_COMPARE_SUID_TO_FSUID:
564 return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
565 /* gid comparisons */
566 case AUDIT_COMPARE_GID_TO_EGID:
567 return audit_gid_comparator(cred->gid, f->op, cred->egid);
568 case AUDIT_COMPARE_GID_TO_SGID:
569 return audit_gid_comparator(cred->gid, f->op, cred->sgid);
570 case AUDIT_COMPARE_GID_TO_FSGID:
571 return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
572 /* egid comparisons */
573 case AUDIT_COMPARE_EGID_TO_SGID:
574 return audit_gid_comparator(cred->egid, f->op, cred->sgid);
575 case AUDIT_COMPARE_EGID_TO_FSGID:
576 return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
577 /* sgid comparison */
578 case AUDIT_COMPARE_SGID_TO_FSGID:
579 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
580 default:
581 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
582 return 0;
583 }
584 return 0;
585 }
586
587 /* Determine if any context name data matches a rule's watch data */
588 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
589 * otherwise.
590 *
591 * If task_creation is true, this is an explicit indication that we are
592 * filtering a task rule at task creation time. This and tsk == current are
593 * the only situations where tsk->cred may be accessed without an rcu read lock.
594 */
595 static int audit_filter_rules(struct task_struct *tsk,
596 struct audit_krule *rule,
597 struct audit_context *ctx,
598 struct audit_names *name,
599 enum audit_state *state,
600 bool task_creation)
601 {
602 const struct cred *cred;
603 int i, need_sid = 1;
604 u32 sid;
605
606 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
607
608 for (i = 0; i < rule->field_count; i++) {
609 struct audit_field *f = &rule->fields[i];
610 struct audit_names *n;
611 int result = 0;
612
613 switch (f->type) {
614 case AUDIT_PID:
615 result = audit_comparator(tsk->pid, f->op, f->val);
616 break;
617 case AUDIT_PPID:
618 if (ctx) {
619 if (!ctx->ppid)
620 ctx->ppid = sys_getppid();
621 result = audit_comparator(ctx->ppid, f->op, f->val);
622 }
623 break;
624 case AUDIT_UID:
625 result = audit_uid_comparator(cred->uid, f->op, f->uid);
626 break;
627 case AUDIT_EUID:
628 result = audit_uid_comparator(cred->euid, f->op, f->uid);
629 break;
630 case AUDIT_SUID:
631 result = audit_uid_comparator(cred->suid, f->op, f->uid);
632 break;
633 case AUDIT_FSUID:
634 result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
635 break;
636 case AUDIT_GID:
637 result = audit_gid_comparator(cred->gid, f->op, f->gid);
638 break;
639 case AUDIT_EGID:
640 result = audit_gid_comparator(cred->egid, f->op, f->gid);
641 break;
642 case AUDIT_SGID:
643 result = audit_gid_comparator(cred->sgid, f->op, f->gid);
644 break;
645 case AUDIT_FSGID:
646 result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
647 break;
648 case AUDIT_PERS:
649 result = audit_comparator(tsk->personality, f->op, f->val);
650 break;
651 case AUDIT_ARCH:
652 if (ctx)
653 result = audit_comparator(ctx->arch, f->op, f->val);
654 break;
655
656 case AUDIT_EXIT:
657 if (ctx && ctx->return_valid)
658 result = audit_comparator(ctx->return_code, f->op, f->val);
659 break;
660 case AUDIT_SUCCESS:
661 if (ctx && ctx->return_valid) {
662 if (f->val)
663 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
664 else
665 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
666 }
667 break;
668 case AUDIT_DEVMAJOR:
669 if (name) {
670 if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
671 audit_comparator(MAJOR(name->rdev), f->op, f->val))
672 ++result;
673 } else if (ctx) {
674 list_for_each_entry(n, &ctx->names_list, list) {
675 if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
676 audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
677 ++result;
678 break;
679 }
680 }
681 }
682 break;
683 case AUDIT_DEVMINOR:
684 if (name) {
685 if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
686 audit_comparator(MINOR(name->rdev), f->op, f->val))
687 ++result;
688 } else if (ctx) {
689 list_for_each_entry(n, &ctx->names_list, list) {
690 if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
691 audit_comparator(MINOR(n->rdev), f->op, f->val)) {
692 ++result;
693 break;
694 }
695 }
696 }
697 break;
698 case AUDIT_INODE:
699 if (name)
700 result = (name->ino == f->val);
701 else if (ctx) {
702 list_for_each_entry(n, &ctx->names_list, list) {
703 if (audit_comparator(n->ino, f->op, f->val)) {
704 ++result;
705 break;
706 }
707 }
708 }
709 break;
710 case AUDIT_OBJ_UID:
711 if (name) {
712 result = audit_uid_comparator(name->uid, f->op, f->uid);
713 } else if (ctx) {
714 list_for_each_entry(n, &ctx->names_list, list) {
715 if (audit_uid_comparator(n->uid, f->op, f->uid)) {
716 ++result;
717 break;
718 }
719 }
720 }
721 break;
722 case AUDIT_OBJ_GID:
723 if (name) {
724 result = audit_gid_comparator(name->gid, f->op, f->gid);
725 } else if (ctx) {
726 list_for_each_entry(n, &ctx->names_list, list) {
727 if (audit_gid_comparator(n->gid, f->op, f->gid)) {
728 ++result;
729 break;
730 }
731 }
732 }
733 break;
734 case AUDIT_WATCH:
735 if (name)
736 result = audit_watch_compare(rule->watch, name->ino, name->dev);
737 break;
738 case AUDIT_DIR:
739 if (ctx)
740 result = match_tree_refs(ctx, rule->tree);
741 break;
742 case AUDIT_LOGINUID:
743 result = 0;
744 if (ctx)
745 result = audit_uid_comparator(tsk->loginuid, f->op, f->uid);
746 break;
747 case AUDIT_SUBJ_USER:
748 case AUDIT_SUBJ_ROLE:
749 case AUDIT_SUBJ_TYPE:
750 case AUDIT_SUBJ_SEN:
751 case AUDIT_SUBJ_CLR:
752 /* NOTE: this may return negative values indicating
753 a temporary error. We simply treat this as a
754 match for now to avoid losing information that
755 may be wanted. An error message will also be
756 logged upon error */
757 if (f->lsm_rule) {
758 if (need_sid) {
759 security_task_getsecid(tsk, &sid);
760 need_sid = 0;
761 }
762 result = security_audit_rule_match(sid, f->type,
763 f->op,
764 f->lsm_rule,
765 ctx);
766 }
767 break;
768 case AUDIT_OBJ_USER:
769 case AUDIT_OBJ_ROLE:
770 case AUDIT_OBJ_TYPE:
771 case AUDIT_OBJ_LEV_LOW:
772 case AUDIT_OBJ_LEV_HIGH:
773 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
774 also applies here */
775 if (f->lsm_rule) {
776 /* Find files that match */
777 if (name) {
778 result = security_audit_rule_match(
779 name->osid, f->type, f->op,
780 f->lsm_rule, ctx);
781 } else if (ctx) {
782 list_for_each_entry(n, &ctx->names_list, list) {
783 if (security_audit_rule_match(n->osid, f->type,
784 f->op, f->lsm_rule,
785 ctx)) {
786 ++result;
787 break;
788 }
789 }
790 }
791 /* Find ipc objects that match */
792 if (!ctx || ctx->type != AUDIT_IPC)
793 break;
794 if (security_audit_rule_match(ctx->ipc.osid,
795 f->type, f->op,
796 f->lsm_rule, ctx))
797 ++result;
798 }
799 break;
800 case AUDIT_ARG0:
801 case AUDIT_ARG1:
802 case AUDIT_ARG2:
803 case AUDIT_ARG3:
804 if (ctx)
805 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
806 break;
807 case AUDIT_FILTERKEY:
808 /* ignore this field for filtering */
809 result = 1;
810 break;
811 case AUDIT_PERM:
812 result = audit_match_perm(ctx, f->val);
813 break;
814 case AUDIT_FILETYPE:
815 result = audit_match_filetype(ctx, f->val);
816 break;
817 case AUDIT_FIELD_COMPARE:
818 result = audit_field_compare(tsk, cred, f, ctx, name);
819 break;
820 }
821 if (!result)
822 return 0;
823 }
824
825 if (ctx) {
826 if (rule->prio <= ctx->prio)
827 return 0;
828 if (rule->filterkey) {
829 kfree(ctx->filterkey);
830 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
831 }
832 ctx->prio = rule->prio;
833 }
834 switch (rule->action) {
835 case AUDIT_NEVER: *state = AUDIT_DISABLED; break;
836 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break;
837 }
838 return 1;
839 }
840
841 /* At process creation time, we can determine if system-call auditing is
842 * completely disabled for this task. Since we only have the task
843 * structure at this point, we can only check uid and gid.
844 */
845 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
846 {
847 struct audit_entry *e;
848 enum audit_state state;
849
850 rcu_read_lock();
851 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
852 if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
853 &state, true)) {
854 if (state == AUDIT_RECORD_CONTEXT)
855 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
856 rcu_read_unlock();
857 return state;
858 }
859 }
860 rcu_read_unlock();
861 return AUDIT_BUILD_CONTEXT;
862 }
863
864 /* At syscall entry and exit time, this filter is called if the
865 * audit_state is not low enough that auditing cannot take place, but is
866 * also not high enough that we already know we have to write an audit
867 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
868 */
869 static enum audit_state audit_filter_syscall(struct task_struct *tsk,
870 struct audit_context *ctx,
871 struct list_head *list)
872 {
873 struct audit_entry *e;
874 enum audit_state state;
875
876 if (audit_pid && tsk->tgid == audit_pid)
877 return AUDIT_DISABLED;
878
879 rcu_read_lock();
880 if (!list_empty(list)) {
881 int word = AUDIT_WORD(ctx->major);
882 int bit = AUDIT_BIT(ctx->major);
883
884 list_for_each_entry_rcu(e, list, list) {
885 if ((e->rule.mask[word] & bit) == bit &&
886 audit_filter_rules(tsk, &e->rule, ctx, NULL,
887 &state, false)) {
888 rcu_read_unlock();
889 ctx->current_state = state;
890 return state;
891 }
892 }
893 }
894 rcu_read_unlock();
895 return AUDIT_BUILD_CONTEXT;
896 }
897
898 /*
899 * Given an audit_name check the inode hash table to see if they match.
900 * Called holding the rcu read lock to protect the use of audit_inode_hash
901 */
902 static int audit_filter_inode_name(struct task_struct *tsk,
903 struct audit_names *n,
904 struct audit_context *ctx) {
905 int word, bit;
906 int h = audit_hash_ino((u32)n->ino);
907 struct list_head *list = &audit_inode_hash[h];
908 struct audit_entry *e;
909 enum audit_state state;
910
911 word = AUDIT_WORD(ctx->major);
912 bit = AUDIT_BIT(ctx->major);
913
914 if (list_empty(list))
915 return 0;
916
917 list_for_each_entry_rcu(e, list, list) {
918 if ((e->rule.mask[word] & bit) == bit &&
919 audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
920 ctx->current_state = state;
921 return 1;
922 }
923 }
924
925 return 0;
926 }
927
928 /* At syscall exit time, this filter is called if any audit_names have been
929 * collected during syscall processing. We only check rules in sublists at hash
930 * buckets applicable to the inode numbers in audit_names.
931 * Regarding audit_state, same rules apply as for audit_filter_syscall().
932 */
933 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
934 {
935 struct audit_names *n;
936
937 if (audit_pid && tsk->tgid == audit_pid)
938 return;
939
940 rcu_read_lock();
941
942 list_for_each_entry(n, &ctx->names_list, list) {
943 if (audit_filter_inode_name(tsk, n, ctx))
944 break;
945 }
946 rcu_read_unlock();
947 }
948
949 static inline struct audit_context *audit_get_context(struct task_struct *tsk,
950 int return_valid,
951 long return_code)
952 {
953 struct audit_context *context = tsk->audit_context;
954
955 if (!context)
956 return NULL;
957 context->return_valid = return_valid;
958
959 /*
960 * we need to fix up the return code in the audit logs if the actual
961 * return codes are later going to be fixed up by the arch specific
962 * signal handlers
963 *
964 * This is actually a test for:
965 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
966 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
967 *
968 * but is faster than a bunch of ||
969 */
970 if (unlikely(return_code <= -ERESTARTSYS) &&
971 (return_code >= -ERESTART_RESTARTBLOCK) &&
972 (return_code != -ENOIOCTLCMD))
973 context->return_code = -EINTR;
974 else
975 context->return_code = return_code;
976
977 if (context->in_syscall && !context->dummy) {
978 audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
979 audit_filter_inodes(tsk, context);
980 }
981
982 tsk->audit_context = NULL;
983 return context;
984 }
985
986 static inline void audit_free_names(struct audit_context *context)
987 {
988 struct audit_names *n, *next;
989
990 #if AUDIT_DEBUG == 2
991 if (context->put_count + context->ino_count != context->name_count) {
992 printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
993 " name_count=%d put_count=%d"
994 " ino_count=%d [NOT freeing]\n",
995 __FILE__, __LINE__,
996 context->serial, context->major, context->in_syscall,
997 context->name_count, context->put_count,
998 context->ino_count);
999 list_for_each_entry(n, &context->names_list, list) {
1000 printk(KERN_ERR "names[%d] = %p = %s\n", i,
1001 n->name, n->name ?: "(null)");
1002 }
1003 dump_stack();
1004 return;
1005 }
1006 #endif
1007 #if AUDIT_DEBUG
1008 context->put_count = 0;
1009 context->ino_count = 0;
1010 #endif
1011
1012 list_for_each_entry_safe(n, next, &context->names_list, list) {
1013 list_del(&n->list);
1014 if (n->name && n->name_put)
1015 __putname(n->name);
1016 if (n->should_free)
1017 kfree(n);
1018 }
1019 context->name_count = 0;
1020 path_put(&context->pwd);
1021 context->pwd.dentry = NULL;
1022 context->pwd.mnt = NULL;
1023 }
1024
1025 static inline void audit_free_aux(struct audit_context *context)
1026 {
1027 struct audit_aux_data *aux;
1028
1029 while ((aux = context->aux)) {
1030 context->aux = aux->next;
1031 kfree(aux);
1032 }
1033 while ((aux = context->aux_pids)) {
1034 context->aux_pids = aux->next;
1035 kfree(aux);
1036 }
1037 }
1038
1039 static inline void audit_zero_context(struct audit_context *context,
1040 enum audit_state state)
1041 {
1042 memset(context, 0, sizeof(*context));
1043 context->state = state;
1044 context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1045 }
1046
1047 static inline struct audit_context *audit_alloc_context(enum audit_state state)
1048 {
1049 struct audit_context *context;
1050
1051 if (!(context = kmalloc(sizeof(*context), GFP_KERNEL)))
1052 return NULL;
1053 audit_zero_context(context, state);
1054 INIT_LIST_HEAD(&context->killed_trees);
1055 INIT_LIST_HEAD(&context->names_list);
1056 return context;
1057 }
1058
1059 /**
1060 * audit_alloc - allocate an audit context block for a task
1061 * @tsk: task
1062 *
1063 * Filter on the task information and allocate a per-task audit context
1064 * if necessary. Doing so turns on system call auditing for the
1065 * specified task. This is called from copy_process, so no lock is
1066 * needed.
1067 */
1068 int audit_alloc(struct task_struct *tsk)
1069 {
1070 struct audit_context *context;
1071 enum audit_state state;
1072 char *key = NULL;
1073
1074 if (likely(!audit_ever_enabled))
1075 return 0; /* Return if not auditing. */
1076
1077 state = audit_filter_task(tsk, &key);
1078 if (state == AUDIT_DISABLED)
1079 return 0;
1080
1081 if (!(context = audit_alloc_context(state))) {
1082 kfree(key);
1083 audit_log_lost("out of memory in audit_alloc");
1084 return -ENOMEM;
1085 }
1086 context->filterkey = key;
1087
1088 tsk->audit_context = context;
1089 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
1090 return 0;
1091 }
1092
1093 static inline void audit_free_context(struct audit_context *context)
1094 {
1095 struct audit_context *previous;
1096 int count = 0;
1097
1098 do {
1099 previous = context->previous;
1100 if (previous || (count && count < 10)) {
1101 ++count;
1102 printk(KERN_ERR "audit(:%d): major=%d name_count=%d:"
1103 " freeing multiple contexts (%d)\n",
1104 context->serial, context->major,
1105 context->name_count, count);
1106 }
1107 audit_free_names(context);
1108 unroll_tree_refs(context, NULL, 0);
1109 free_tree_refs(context);
1110 audit_free_aux(context);
1111 kfree(context->filterkey);
1112 kfree(context->sockaddr);
1113 kfree(context);
1114 context = previous;
1115 } while (context);
1116 if (count >= 10)
1117 printk(KERN_ERR "audit: freed %d contexts\n", count);
1118 }
1119
1120 void audit_log_task_context(struct audit_buffer *ab)
1121 {
1122 char *ctx = NULL;
1123 unsigned len;
1124 int error;
1125 u32 sid;
1126
1127 security_task_getsecid(current, &sid);
1128 if (!sid)
1129 return;
1130
1131 error = security_secid_to_secctx(sid, &ctx, &len);
1132 if (error) {
1133 if (error != -EINVAL)
1134 goto error_path;
1135 return;
1136 }
1137
1138 audit_log_format(ab, " subj=%s", ctx);
1139 security_release_secctx(ctx, len);
1140 return;
1141
1142 error_path:
1143 audit_panic("error in audit_log_task_context");
1144 return;
1145 }
1146
1147 EXPORT_SYMBOL(audit_log_task_context);
1148
1149 void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
1150 {
1151 const struct cred *cred;
1152 char name[sizeof(tsk->comm)];
1153 struct mm_struct *mm = tsk->mm;
1154 char *tty;
1155
1156 if (!ab)
1157 return;
1158
1159 /* tsk == current */
1160 cred = current_cred();
1161
1162 spin_lock_irq(&tsk->sighand->siglock);
1163 if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1164 tty = tsk->signal->tty->name;
1165 else
1166 tty = "(none)";
1167 spin_unlock_irq(&tsk->sighand->siglock);
1168
1169
1170 audit_log_format(ab,
1171 " ppid=%ld pid=%d auid=%u uid=%u gid=%u"
1172 " euid=%u suid=%u fsuid=%u"
1173 " egid=%u sgid=%u fsgid=%u ses=%u tty=%s",
1174 sys_getppid(),
1175 tsk->pid,
1176 from_kuid(&init_user_ns, tsk->loginuid),
1177 from_kuid(&init_user_ns, cred->uid),
1178 from_kgid(&init_user_ns, cred->gid),
1179 from_kuid(&init_user_ns, cred->euid),
1180 from_kuid(&init_user_ns, cred->suid),
1181 from_kuid(&init_user_ns, cred->fsuid),
1182 from_kgid(&init_user_ns, cred->egid),
1183 from_kgid(&init_user_ns, cred->sgid),
1184 from_kgid(&init_user_ns, cred->fsgid),
1185 tsk->sessionid, tty);
1186
1187 get_task_comm(name, tsk);
1188 audit_log_format(ab, " comm=");
1189 audit_log_untrustedstring(ab, name);
1190
1191 if (mm) {
1192 down_read(&mm->mmap_sem);
1193 if (mm->exe_file)
1194 audit_log_d_path(ab, " exe=", &mm->exe_file->f_path);
1195 up_read(&mm->mmap_sem);
1196 }
1197 audit_log_task_context(ab);
1198 }
1199
1200 EXPORT_SYMBOL(audit_log_task_info);
1201
1202 static int audit_log_pid_context(struct audit_context *context, pid_t pid,
1203 kuid_t auid, kuid_t uid, unsigned int sessionid,
1204 u32 sid, char *comm)
1205 {
1206 struct audit_buffer *ab;
1207 char *ctx = NULL;
1208 u32 len;
1209 int rc = 0;
1210
1211 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
1212 if (!ab)
1213 return rc;
1214
1215 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
1216 from_kuid(&init_user_ns, auid),
1217 from_kuid(&init_user_ns, uid), sessionid);
1218 if (security_secid_to_secctx(sid, &ctx, &len)) {
1219 audit_log_format(ab, " obj=(none)");
1220 rc = 1;
1221 } else {
1222 audit_log_format(ab, " obj=%s", ctx);
1223 security_release_secctx(ctx, len);
1224 }
1225 audit_log_format(ab, " ocomm=");
1226 audit_log_untrustedstring(ab, comm);
1227 audit_log_end(ab);
1228
1229 return rc;
1230 }
1231
1232 /*
1233 * to_send and len_sent accounting are very loose estimates. We aren't
1234 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
1235 * within about 500 bytes (next page boundary)
1236 *
1237 * why snprintf? an int is up to 12 digits long. if we just assumed when
1238 * logging that a[%d]= was going to be 16 characters long we would be wasting
1239 * space in every audit message. In one 7500 byte message we can log up to
1240 * about 1000 min size arguments. That comes down to about 50% waste of space
1241 * if we didn't do the snprintf to find out how long arg_num_len was.
1242 */
1243 static int audit_log_single_execve_arg(struct audit_context *context,
1244 struct audit_buffer **ab,
1245 int arg_num,
1246 size_t *len_sent,
1247 const char __user *p,
1248 char *buf)
1249 {
1250 char arg_num_len_buf[12];
1251 const char __user *tmp_p = p;
1252 /* how many digits are in arg_num? 5 is the length of ' a=""' */
1253 size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 5;
1254 size_t len, len_left, to_send;
1255 size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
1256 unsigned int i, has_cntl = 0, too_long = 0;
1257 int ret;
1258
1259 /* strnlen_user includes the null we don't want to send */
1260 len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1261
1262 /*
1263 * We just created this mm, if we can't find the strings
1264 * we just copied into it something is _very_ wrong. Similar
1265 * for strings that are too long, we should not have created
1266 * any.
1267 */
1268 if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
1269 WARN_ON(1);
1270 send_sig(SIGKILL, current, 0);
1271 return -1;
1272 }
1273
1274 /* walk the whole argument looking for non-ascii chars */
1275 do {
1276 if (len_left > MAX_EXECVE_AUDIT_LEN)
1277 to_send = MAX_EXECVE_AUDIT_LEN;
1278 else
1279 to_send = len_left;
1280 ret = copy_from_user(buf, tmp_p, to_send);
1281 /*
1282 * There is no reason for this copy to be short. We just
1283 * copied them here, and the mm hasn't been exposed to user-
1284 * space yet.
1285 */
1286 if (ret) {
1287 WARN_ON(1);
1288 send_sig(SIGKILL, current, 0);
1289 return -1;
1290 }
1291 buf[to_send] = '\0';
1292 has_cntl = audit_string_contains_control(buf, to_send);
1293 if (has_cntl) {
1294 /*
1295 * hex messages get logged as 2 bytes, so we can only
1296 * send half as much in each message
1297 */
1298 max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
1299 break;
1300 }
1301 len_left -= to_send;
1302 tmp_p += to_send;
1303 } while (len_left > 0);
1304
1305 len_left = len;
1306
1307 if (len > max_execve_audit_len)
1308 too_long = 1;
1309
1310 /* rewalk the argument actually logging the message */
1311 for (i = 0; len_left > 0; i++) {
1312 int room_left;
1313
1314 if (len_left > max_execve_audit_len)
1315 to_send = max_execve_audit_len;
1316 else
1317 to_send = len_left;
1318
1319 /* do we have space left to send this argument in this ab? */
1320 room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1321 if (has_cntl)
1322 room_left -= (to_send * 2);
1323 else
1324 room_left -= to_send;
1325 if (room_left < 0) {
1326 *len_sent = 0;
1327 audit_log_end(*ab);
1328 *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1329 if (!*ab)
1330 return 0;
1331 }
1332
1333 /*
1334 * first record needs to say how long the original string was
1335 * so we can be sure nothing was lost.
1336 */
1337 if ((i == 0) && (too_long))
1338 audit_log_format(*ab, " a%d_len=%zu", arg_num,
1339 has_cntl ? 2*len : len);
1340
1341 /*
1342 * normally arguments are small enough to fit and we already
1343 * filled buf above when we checked for control characters
1344 * so don't bother with another copy_from_user
1345 */
1346 if (len >= max_execve_audit_len)
1347 ret = copy_from_user(buf, p, to_send);
1348 else
1349 ret = 0;
1350 if (ret) {
1351 WARN_ON(1);
1352 send_sig(SIGKILL, current, 0);
1353 return -1;
1354 }
1355 buf[to_send] = '\0';
1356
1357 /* actually log it */
1358 audit_log_format(*ab, " a%d", arg_num);
1359 if (too_long)
1360 audit_log_format(*ab, "[%d]", i);
1361 audit_log_format(*ab, "=");
1362 if (has_cntl)
1363 audit_log_n_hex(*ab, buf, to_send);
1364 else
1365 audit_log_string(*ab, buf);
1366
1367 p += to_send;
1368 len_left -= to_send;
1369 *len_sent += arg_num_len;
1370 if (has_cntl)
1371 *len_sent += to_send * 2;
1372 else
1373 *len_sent += to_send;
1374 }
1375 /* include the null we didn't log */
1376 return len + 1;
1377 }
1378
1379 static void audit_log_execve_info(struct audit_context *context,
1380 struct audit_buffer **ab,
1381 struct audit_aux_data_execve *axi)
1382 {
1383 int i, len;
1384 size_t len_sent = 0;
1385 const char __user *p;
1386 char *buf;
1387
1388 if (axi->mm != current->mm)
1389 return; /* execve failed, no additional info */
1390
1391 p = (const char __user *)axi->mm->arg_start;
1392
1393 audit_log_format(*ab, "argc=%d", axi->argc);
1394
1395 /*
1396 * we need some kernel buffer to hold the userspace args. Just
1397 * allocate one big one rather than allocating one of the right size
1398 * for every single argument inside audit_log_single_execve_arg()
1399 * should be <8k allocation so should be pretty safe.
1400 */
1401 buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1402 if (!buf) {
1403 audit_panic("out of memory for argv string\n");
1404 return;
1405 }
1406
1407 for (i = 0; i < axi->argc; i++) {
1408 len = audit_log_single_execve_arg(context, ab, i,
1409 &len_sent, p, buf);
1410 if (len <= 0)
1411 break;
1412 p += len;
1413 }
1414 kfree(buf);
1415 }
1416
1417 static void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1418 {
1419 int i;
1420
1421 audit_log_format(ab, " %s=", prefix);
1422 CAP_FOR_EACH_U32(i) {
1423 audit_log_format(ab, "%08x", cap->cap[(_KERNEL_CAPABILITY_U32S-1) - i]);
1424 }
1425 }
1426
1427 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1428 {
1429 kernel_cap_t *perm = &name->fcap.permitted;
1430 kernel_cap_t *inh = &name->fcap.inheritable;
1431 int log = 0;
1432
1433 if (!cap_isclear(*perm)) {
1434 audit_log_cap(ab, "cap_fp", perm);
1435 log = 1;
1436 }
1437 if (!cap_isclear(*inh)) {
1438 audit_log_cap(ab, "cap_fi", inh);
1439 log = 1;
1440 }
1441
1442 if (log)
1443 audit_log_format(ab, " cap_fe=%d cap_fver=%x", name->fcap.fE, name->fcap_ver);
1444 }
1445
1446 static void show_special(struct audit_context *context, int *call_panic)
1447 {
1448 struct audit_buffer *ab;
1449 int i;
1450
1451 ab = audit_log_start(context, GFP_KERNEL, context->type);
1452 if (!ab)
1453 return;
1454
1455 switch (context->type) {
1456 case AUDIT_SOCKETCALL: {
1457 int nargs = context->socketcall.nargs;
1458 audit_log_format(ab, "nargs=%d", nargs);
1459 for (i = 0; i < nargs; i++)
1460 audit_log_format(ab, " a%d=%lx", i,
1461 context->socketcall.args[i]);
1462 break; }
1463 case AUDIT_IPC: {
1464 u32 osid = context->ipc.osid;
1465
1466 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1467 from_kuid(&init_user_ns, context->ipc.uid),
1468 from_kgid(&init_user_ns, context->ipc.gid),
1469 context->ipc.mode);
1470 if (osid) {
1471 char *ctx = NULL;
1472 u32 len;
1473 if (security_secid_to_secctx(osid, &ctx, &len)) {
1474 audit_log_format(ab, " osid=%u", osid);
1475 *call_panic = 1;
1476 } else {
1477 audit_log_format(ab, " obj=%s", ctx);
1478 security_release_secctx(ctx, len);
1479 }
1480 }
1481 if (context->ipc.has_perm) {
1482 audit_log_end(ab);
1483 ab = audit_log_start(context, GFP_KERNEL,
1484 AUDIT_IPC_SET_PERM);
1485 audit_log_format(ab,
1486 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1487 context->ipc.qbytes,
1488 context->ipc.perm_uid,
1489 context->ipc.perm_gid,
1490 context->ipc.perm_mode);
1491 if (!ab)
1492 return;
1493 }
1494 break; }
1495 case AUDIT_MQ_OPEN: {
1496 audit_log_format(ab,
1497 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1498 "mq_msgsize=%ld mq_curmsgs=%ld",
1499 context->mq_open.oflag, context->mq_open.mode,
1500 context->mq_open.attr.mq_flags,
1501 context->mq_open.attr.mq_maxmsg,
1502 context->mq_open.attr.mq_msgsize,
1503 context->mq_open.attr.mq_curmsgs);
1504 break; }
1505 case AUDIT_MQ_SENDRECV: {
1506 audit_log_format(ab,
1507 "mqdes=%d msg_len=%zd msg_prio=%u "
1508 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1509 context->mq_sendrecv.mqdes,
1510 context->mq_sendrecv.msg_len,
1511 context->mq_sendrecv.msg_prio,
1512 context->mq_sendrecv.abs_timeout.tv_sec,
1513 context->mq_sendrecv.abs_timeout.tv_nsec);
1514 break; }
1515 case AUDIT_MQ_NOTIFY: {
1516 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1517 context->mq_notify.mqdes,
1518 context->mq_notify.sigev_signo);
1519 break; }
1520 case AUDIT_MQ_GETSETATTR: {
1521 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1522 audit_log_format(ab,
1523 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1524 "mq_curmsgs=%ld ",
1525 context->mq_getsetattr.mqdes,
1526 attr->mq_flags, attr->mq_maxmsg,
1527 attr->mq_msgsize, attr->mq_curmsgs);
1528 break; }
1529 case AUDIT_CAPSET: {
1530 audit_log_format(ab, "pid=%d", context->capset.pid);
1531 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1532 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1533 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1534 break; }
1535 case AUDIT_MMAP: {
1536 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1537 context->mmap.flags);
1538 break; }
1539 }
1540 audit_log_end(ab);
1541 }
1542
1543 static void audit_log_name(struct audit_context *context, struct audit_names *n,
1544 int record_num, int *call_panic)
1545 {
1546 struct audit_buffer *ab;
1547 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1548 if (!ab)
1549 return; /* audit_panic has been called */
1550
1551 audit_log_format(ab, "item=%d", record_num);
1552
1553 if (n->name) {
1554 switch (n->name_len) {
1555 case AUDIT_NAME_FULL:
1556 /* log the full path */
1557 audit_log_format(ab, " name=");
1558 audit_log_untrustedstring(ab, n->name);
1559 break;
1560 case 0:
1561 /* name was specified as a relative path and the
1562 * directory component is the cwd */
1563 audit_log_d_path(ab, " name=", &context->pwd);
1564 break;
1565 default:
1566 /* log the name's directory component */
1567 audit_log_format(ab, " name=");
1568 audit_log_n_untrustedstring(ab, n->name,
1569 n->name_len);
1570 }
1571 } else
1572 audit_log_format(ab, " name=(null)");
1573
1574 if (n->ino != (unsigned long)-1) {
1575 audit_log_format(ab, " inode=%lu"
1576 " dev=%02x:%02x mode=%#ho"
1577 " ouid=%u ogid=%u rdev=%02x:%02x",
1578 n->ino,
1579 MAJOR(n->dev),
1580 MINOR(n->dev),
1581 n->mode,
1582 from_kuid(&init_user_ns, n->uid),
1583 from_kgid(&init_user_ns, n->gid),
1584 MAJOR(n->rdev),
1585 MINOR(n->rdev));
1586 }
1587 if (n->osid != 0) {
1588 char *ctx = NULL;
1589 u32 len;
1590 if (security_secid_to_secctx(
1591 n->osid, &ctx, &len)) {
1592 audit_log_format(ab, " osid=%u", n->osid);
1593 *call_panic = 2;
1594 } else {
1595 audit_log_format(ab, " obj=%s", ctx);
1596 security_release_secctx(ctx, len);
1597 }
1598 }
1599
1600 audit_log_fcaps(ab, n);
1601
1602 audit_log_end(ab);
1603 }
1604
1605 static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1606 {
1607 int i, call_panic = 0;
1608 struct audit_buffer *ab;
1609 struct audit_aux_data *aux;
1610 struct audit_names *n;
1611
1612 /* tsk == current */
1613 context->personality = tsk->personality;
1614
1615 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1616 if (!ab)
1617 return; /* audit_panic has been called */
1618 audit_log_format(ab, "arch=%x syscall=%d",
1619 context->arch, context->major);
1620 if (context->personality != PER_LINUX)
1621 audit_log_format(ab, " per=%lx", context->personality);
1622 if (context->return_valid)
1623 audit_log_format(ab, " success=%s exit=%ld",
1624 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1625 context->return_code);
1626
1627 audit_log_format(ab,
1628 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1629 context->argv[0],
1630 context->argv[1],
1631 context->argv[2],
1632 context->argv[3],
1633 context->name_count);
1634
1635 audit_log_task_info(ab, tsk);
1636 audit_log_key(ab, context->filterkey);
1637 audit_log_end(ab);
1638
1639 for (aux = context->aux; aux; aux = aux->next) {
1640
1641 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1642 if (!ab)
1643 continue; /* audit_panic has been called */
1644
1645 switch (aux->type) {
1646
1647 case AUDIT_EXECVE: {
1648 struct audit_aux_data_execve *axi = (void *)aux;
1649 audit_log_execve_info(context, &ab, axi);
1650 break; }
1651
1652 case AUDIT_BPRM_FCAPS: {
1653 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1654 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1655 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1656 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1657 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1658 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1659 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1660 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1661 audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1662 audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1663 audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
1664 break; }
1665
1666 }
1667 audit_log_end(ab);
1668 }
1669
1670 if (context->type)
1671 show_special(context, &call_panic);
1672
1673 if (context->fds[0] >= 0) {
1674 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1675 if (ab) {
1676 audit_log_format(ab, "fd0=%d fd1=%d",
1677 context->fds[0], context->fds[1]);
1678 audit_log_end(ab);
1679 }
1680 }
1681
1682 if (context->sockaddr_len) {
1683 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1684 if (ab) {
1685 audit_log_format(ab, "saddr=");
1686 audit_log_n_hex(ab, (void *)context->sockaddr,
1687 context->sockaddr_len);
1688 audit_log_end(ab);
1689 }
1690 }
1691
1692 for (aux = context->aux_pids; aux; aux = aux->next) {
1693 struct audit_aux_data_pids *axs = (void *)aux;
1694
1695 for (i = 0; i < axs->pid_count; i++)
1696 if (audit_log_pid_context(context, axs->target_pid[i],
1697 axs->target_auid[i],
1698 axs->target_uid[i],
1699 axs->target_sessionid[i],
1700 axs->target_sid[i],
1701 axs->target_comm[i]))
1702 call_panic = 1;
1703 }
1704
1705 if (context->target_pid &&
1706 audit_log_pid_context(context, context->target_pid,
1707 context->target_auid, context->target_uid,
1708 context->target_sessionid,
1709 context->target_sid, context->target_comm))
1710 call_panic = 1;
1711
1712 if (context->pwd.dentry && context->pwd.mnt) {
1713 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1714 if (ab) {
1715 audit_log_d_path(ab, " cwd=", &context->pwd);
1716 audit_log_end(ab);
1717 }
1718 }
1719
1720 i = 0;
1721 list_for_each_entry(n, &context->names_list, list)
1722 audit_log_name(context, n, i++, &call_panic);
1723
1724 /* Send end of event record to help user space know we are finished */
1725 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1726 if (ab)
1727 audit_log_end(ab);
1728 if (call_panic)
1729 audit_panic("error converting sid to string");
1730 }
1731
1732 /**
1733 * audit_free - free a per-task audit context
1734 * @tsk: task whose audit context block to free
1735 *
1736 * Called from copy_process and do_exit
1737 */
1738 void __audit_free(struct task_struct *tsk)
1739 {
1740 struct audit_context *context;
1741
1742 context = audit_get_context(tsk, 0, 0);
1743 if (!context)
1744 return;
1745
1746 /* Check for system calls that do not go through the exit
1747 * function (e.g., exit_group), then free context block.
1748 * We use GFP_ATOMIC here because we might be doing this
1749 * in the context of the idle thread */
1750 /* that can happen only if we are called from do_exit() */
1751 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1752 audit_log_exit(context, tsk);
1753 if (!list_empty(&context->killed_trees))
1754 audit_kill_trees(&context->killed_trees);
1755
1756 audit_free_context(context);
1757 }
1758
1759 /**
1760 * audit_syscall_entry - fill in an audit record at syscall entry
1761 * @arch: architecture type
1762 * @major: major syscall type (function)
1763 * @a1: additional syscall register 1
1764 * @a2: additional syscall register 2
1765 * @a3: additional syscall register 3
1766 * @a4: additional syscall register 4
1767 *
1768 * Fill in audit context at syscall entry. This only happens if the
1769 * audit context was created when the task was created and the state or
1770 * filters demand the audit context be built. If the state from the
1771 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1772 * then the record will be written at syscall exit time (otherwise, it
1773 * will only be written if another part of the kernel requests that it
1774 * be written).
1775 */
1776 void __audit_syscall_entry(int arch, int major,
1777 unsigned long a1, unsigned long a2,
1778 unsigned long a3, unsigned long a4)
1779 {
1780 struct task_struct *tsk = current;
1781 struct audit_context *context = tsk->audit_context;
1782 enum audit_state state;
1783
1784 if (!context)
1785 return;
1786
1787 /*
1788 * This happens only on certain architectures that make system
1789 * calls in kernel_thread via the entry.S interface, instead of
1790 * with direct calls. (If you are porting to a new
1791 * architecture, hitting this condition can indicate that you
1792 * got the _exit/_leave calls backward in entry.S.)
1793 *
1794 * i386 no
1795 * x86_64 no
1796 * ppc64 yes (see arch/powerpc/platforms/iseries/misc.S)
1797 *
1798 * This also happens with vm86 emulation in a non-nested manner
1799 * (entries without exits), so this case must be caught.
1800 */
1801 if (context->in_syscall) {
1802 struct audit_context *newctx;
1803
1804 #if AUDIT_DEBUG
1805 printk(KERN_ERR
1806 "audit(:%d) pid=%d in syscall=%d;"
1807 " entering syscall=%d\n",
1808 context->serial, tsk->pid, context->major, major);
1809 #endif
1810 newctx = audit_alloc_context(context->state);
1811 if (newctx) {
1812 newctx->previous = context;
1813 context = newctx;
1814 tsk->audit_context = newctx;
1815 } else {
1816 /* If we can't alloc a new context, the best we
1817 * can do is to leak memory (any pending putname
1818 * will be lost). The only other alternative is
1819 * to abandon auditing. */
1820 audit_zero_context(context, context->state);
1821 }
1822 }
1823 BUG_ON(context->in_syscall || context->name_count);
1824
1825 if (!audit_enabled)
1826 return;
1827
1828 context->arch = arch;
1829 context->major = major;
1830 context->argv[0] = a1;
1831 context->argv[1] = a2;
1832 context->argv[2] = a3;
1833 context->argv[3] = a4;
1834
1835 state = context->state;
1836 context->dummy = !audit_n_rules;
1837 if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1838 context->prio = 0;
1839 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1840 }
1841 if (state == AUDIT_DISABLED)
1842 return;
1843
1844 context->serial = 0;
1845 context->ctime = CURRENT_TIME;
1846 context->in_syscall = 1;
1847 context->current_state = state;
1848 context->ppid = 0;
1849 }
1850
1851 /**
1852 * audit_syscall_exit - deallocate audit context after a system call
1853 * @success: success value of the syscall
1854 * @return_code: return value of the syscall
1855 *
1856 * Tear down after system call. If the audit context has been marked as
1857 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1858 * filtering, or because some other part of the kernel wrote an audit
1859 * message), then write out the syscall information. In call cases,
1860 * free the names stored from getname().
1861 */
1862 void __audit_syscall_exit(int success, long return_code)
1863 {
1864 struct task_struct *tsk = current;
1865 struct audit_context *context;
1866
1867 if (success)
1868 success = AUDITSC_SUCCESS;
1869 else
1870 success = AUDITSC_FAILURE;
1871
1872 context = audit_get_context(tsk, success, return_code);
1873 if (!context)
1874 return;
1875
1876 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1877 audit_log_exit(context, tsk);
1878
1879 context->in_syscall = 0;
1880 context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1881
1882 if (!list_empty(&context->killed_trees))
1883 audit_kill_trees(&context->killed_trees);
1884
1885 if (context->previous) {
1886 struct audit_context *new_context = context->previous;
1887 context->previous = NULL;
1888 audit_free_context(context);
1889 tsk->audit_context = new_context;
1890 } else {
1891 audit_free_names(context);
1892 unroll_tree_refs(context, NULL, 0);
1893 audit_free_aux(context);
1894 context->aux = NULL;
1895 context->aux_pids = NULL;
1896 context->target_pid = 0;
1897 context->target_sid = 0;
1898 context->sockaddr_len = 0;
1899 context->type = 0;
1900 context->fds[0] = -1;
1901 if (context->state != AUDIT_RECORD_CONTEXT) {
1902 kfree(context->filterkey);
1903 context->filterkey = NULL;
1904 }
1905 tsk->audit_context = context;
1906 }
1907 }
1908
1909 static inline void handle_one(const struct inode *inode)
1910 {
1911 #ifdef CONFIG_AUDIT_TREE
1912 struct audit_context *context;
1913 struct audit_tree_refs *p;
1914 struct audit_chunk *chunk;
1915 int count;
1916 if (likely(hlist_empty(&inode->i_fsnotify_marks)))
1917 return;
1918 context = current->audit_context;
1919 p = context->trees;
1920 count = context->tree_count;
1921 rcu_read_lock();
1922 chunk = audit_tree_lookup(inode);
1923 rcu_read_unlock();
1924 if (!chunk)
1925 return;
1926 if (likely(put_tree_ref(context, chunk)))
1927 return;
1928 if (unlikely(!grow_tree_refs(context))) {
1929 printk(KERN_WARNING "out of memory, audit has lost a tree reference\n");
1930 audit_set_auditable(context);
1931 audit_put_chunk(chunk);
1932 unroll_tree_refs(context, p, count);
1933 return;
1934 }
1935 put_tree_ref(context, chunk);
1936 #endif
1937 }
1938
1939 static void handle_path(const struct dentry *dentry)
1940 {
1941 #ifdef CONFIG_AUDIT_TREE
1942 struct audit_context *context;
1943 struct audit_tree_refs *p;
1944 const struct dentry *d, *parent;
1945 struct audit_chunk *drop;
1946 unsigned long seq;
1947 int count;
1948
1949 context = current->audit_context;
1950 p = context->trees;
1951 count = context->tree_count;
1952 retry:
1953 drop = NULL;
1954 d = dentry;
1955 rcu_read_lock();
1956 seq = read_seqbegin(&rename_lock);
1957 for(;;) {
1958 struct inode *inode = d->d_inode;
1959 if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) {
1960 struct audit_chunk *chunk;
1961 chunk = audit_tree_lookup(inode);
1962 if (chunk) {
1963 if (unlikely(!put_tree_ref(context, chunk))) {
1964 drop = chunk;
1965 break;
1966 }
1967 }
1968 }
1969 parent = d->d_parent;
1970 if (parent == d)
1971 break;
1972 d = parent;
1973 }
1974 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1975 rcu_read_unlock();
1976 if (!drop) {
1977 /* just a race with rename */
1978 unroll_tree_refs(context, p, count);
1979 goto retry;
1980 }
1981 audit_put_chunk(drop);
1982 if (grow_tree_refs(context)) {
1983 /* OK, got more space */
1984 unroll_tree_refs(context, p, count);
1985 goto retry;
1986 }
1987 /* too bad */
1988 printk(KERN_WARNING
1989 "out of memory, audit has lost a tree reference\n");
1990 unroll_tree_refs(context, p, count);
1991 audit_set_auditable(context);
1992 return;
1993 }
1994 rcu_read_unlock();
1995 #endif
1996 }
1997
1998 static struct audit_names *audit_alloc_name(struct audit_context *context)
1999 {
2000 struct audit_names *aname;
2001
2002 if (context->name_count < AUDIT_NAMES) {
2003 aname = &context->preallocated_names[context->name_count];
2004 memset(aname, 0, sizeof(*aname));
2005 } else {
2006 aname = kzalloc(sizeof(*aname), GFP_NOFS);
2007 if (!aname)
2008 return NULL;
2009 aname->should_free = true;
2010 }
2011
2012 aname->ino = (unsigned long)-1;
2013 list_add_tail(&aname->list, &context->names_list);
2014
2015 context->name_count++;
2016 #if AUDIT_DEBUG
2017 context->ino_count++;
2018 #endif
2019 return aname;
2020 }
2021
2022 /**
2023 * audit_getname - add a name to the list
2024 * @name: name to add
2025 *
2026 * Add a name to the list of audit names for this context.
2027 * Called from fs/namei.c:getname().
2028 */
2029 void __audit_getname(const char *name)
2030 {
2031 struct audit_context *context = current->audit_context;
2032 struct audit_names *n;
2033
2034 if (!context->in_syscall) {
2035 #if AUDIT_DEBUG == 2
2036 printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
2037 __FILE__, __LINE__, context->serial, name);
2038 dump_stack();
2039 #endif
2040 return;
2041 }
2042
2043 n = audit_alloc_name(context);
2044 if (!n)
2045 return;
2046
2047 n->name = name;
2048 n->name_len = AUDIT_NAME_FULL;
2049 n->name_put = true;
2050
2051 if (!context->pwd.dentry)
2052 get_fs_pwd(current->fs, &context->pwd);
2053 }
2054
2055 /* audit_putname - intercept a putname request
2056 * @name: name to intercept and delay for putname
2057 *
2058 * If we have stored the name from getname in the audit context,
2059 * then we delay the putname until syscall exit.
2060 * Called from include/linux/fs.h:putname().
2061 */
2062 void audit_putname(const char *name)
2063 {
2064 struct audit_context *context = current->audit_context;
2065
2066 BUG_ON(!context);
2067 if (!context->in_syscall) {
2068 #if AUDIT_DEBUG == 2
2069 printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n",
2070 __FILE__, __LINE__, context->serial, name);
2071 if (context->name_count) {
2072 struct audit_names *n;
2073 int i;
2074
2075 list_for_each_entry(n, &context->names_list, list)
2076 printk(KERN_ERR "name[%d] = %p = %s\n", i,
2077 n->name, n->name ?: "(null)");
2078 }
2079 #endif
2080 __putname(name);
2081 }
2082 #if AUDIT_DEBUG
2083 else {
2084 ++context->put_count;
2085 if (context->put_count > context->name_count) {
2086 printk(KERN_ERR "%s:%d(:%d): major=%d"
2087 " in_syscall=%d putname(%p) name_count=%d"
2088 " put_count=%d\n",
2089 __FILE__, __LINE__,
2090 context->serial, context->major,
2091 context->in_syscall, name, context->name_count,
2092 context->put_count);
2093 dump_stack();
2094 }
2095 }
2096 #endif
2097 }
2098
2099 static inline int audit_copy_fcaps(struct audit_names *name, const struct dentry *dentry)
2100 {
2101 struct cpu_vfs_cap_data caps;
2102 int rc;
2103
2104 if (!dentry)
2105 return 0;
2106
2107 rc = get_vfs_caps_from_disk(dentry, &caps);
2108 if (rc)
2109 return rc;
2110
2111 name->fcap.permitted = caps.permitted;
2112 name->fcap.inheritable = caps.inheritable;
2113 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2114 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2115
2116 return 0;
2117 }
2118
2119
2120 /* Copy inode data into an audit_names. */
2121 static void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
2122 const struct inode *inode)
2123 {
2124 name->ino = inode->i_ino;
2125 name->dev = inode->i_sb->s_dev;
2126 name->mode = inode->i_mode;
2127 name->uid = inode->i_uid;
2128 name->gid = inode->i_gid;
2129 name->rdev = inode->i_rdev;
2130 security_inode_getsecid(inode, &name->osid);
2131 audit_copy_fcaps(name, dentry);
2132 }
2133
2134 /**
2135 * audit_inode - store the inode and device from a lookup
2136 * @name: name being audited
2137 * @dentry: dentry being audited
2138 *
2139 * Called from fs/namei.c:path_lookup().
2140 */
2141 void __audit_inode(const char *name, const struct dentry *dentry)
2142 {
2143 struct audit_context *context = current->audit_context;
2144 const struct inode *inode = dentry->d_inode;
2145 struct audit_names *n;
2146
2147 if (!context->in_syscall)
2148 return;
2149
2150 list_for_each_entry_reverse(n, &context->names_list, list) {
2151 if (n->name && (n->name == name))
2152 goto out;
2153 }
2154
2155 /* unable to find the name from a previous getname() */
2156 n = audit_alloc_name(context);
2157 if (!n)
2158 return;
2159 out:
2160 handle_path(dentry);
2161 audit_copy_inode(n, dentry, inode);
2162 }
2163
2164 /**
2165 * audit_inode_child - collect inode info for created/removed objects
2166 * @dentry: dentry being audited
2167 * @parent: inode of dentry parent
2168 *
2169 * For syscalls that create or remove filesystem objects, audit_inode
2170 * can only collect information for the filesystem object's parent.
2171 * This call updates the audit context with the child's information.
2172 * Syscalls that create a new filesystem object must be hooked after
2173 * the object is created. Syscalls that remove a filesystem object
2174 * must be hooked prior, in order to capture the target inode during
2175 * unsuccessful attempts.
2176 */
2177 void __audit_inode_child(const struct dentry *dentry,
2178 const struct inode *parent)
2179 {
2180 struct audit_context *context = current->audit_context;
2181 const char *found_parent = NULL, *found_child = NULL;
2182 const struct inode *inode = dentry->d_inode;
2183 const char *dname = dentry->d_name.name;
2184 struct audit_names *n;
2185 int dirlen = 0;
2186
2187 if (!context->in_syscall)
2188 return;
2189
2190 if (inode)
2191 handle_one(inode);
2192
2193 /* parent is more likely, look for it first */
2194 list_for_each_entry(n, &context->names_list, list) {
2195 if (!n->name)
2196 continue;
2197
2198 if (n->ino == parent->i_ino &&
2199 !audit_compare_dname_path(dname, n->name, &dirlen)) {
2200 n->name_len = dirlen; /* update parent data in place */
2201 found_parent = n->name;
2202 goto add_names;
2203 }
2204 }
2205
2206 /* no matching parent, look for matching child */
2207 list_for_each_entry(n, &context->names_list, list) {
2208 if (!n->name)
2209 continue;
2210
2211 /* strcmp() is the more likely scenario */
2212 if (!strcmp(dname, n->name) ||
2213 !audit_compare_dname_path(dname, n->name, &dirlen)) {
2214 if (inode)
2215 audit_copy_inode(n, NULL, inode);
2216 else
2217 n->ino = (unsigned long)-1;
2218 found_child = n->name;
2219 goto add_names;
2220 }
2221 }
2222
2223 add_names:
2224 if (!found_parent) {
2225 n = audit_alloc_name(context);
2226 if (!n)
2227 return;
2228 audit_copy_inode(n, NULL, parent);
2229 }
2230
2231 if (!found_child) {
2232 n = audit_alloc_name(context);
2233 if (!n)
2234 return;
2235
2236 /* Re-use the name belonging to the slot for a matching parent
2237 * directory. All names for this context are relinquished in
2238 * audit_free_names() */
2239 if (found_parent) {
2240 n->name = found_parent;
2241 n->name_len = AUDIT_NAME_FULL;
2242 /* don't call __putname() */
2243 n->name_put = false;
2244 }
2245
2246 if (inode)
2247 audit_copy_inode(n, NULL, inode);
2248 }
2249 }
2250 EXPORT_SYMBOL_GPL(__audit_inode_child);
2251
2252 /**
2253 * auditsc_get_stamp - get local copies of audit_context values
2254 * @ctx: audit_context for the task
2255 * @t: timespec to store time recorded in the audit_context
2256 * @serial: serial value that is recorded in the audit_context
2257 *
2258 * Also sets the context as auditable.
2259 */
2260 int auditsc_get_stamp(struct audit_context *ctx,
2261 struct timespec *t, unsigned int *serial)
2262 {
2263 if (!ctx->in_syscall)
2264 return 0;
2265 if (!ctx->serial)
2266 ctx->serial = audit_serial();
2267 t->tv_sec = ctx->ctime.tv_sec;
2268 t->tv_nsec = ctx->ctime.tv_nsec;
2269 *serial = ctx->serial;
2270 if (!ctx->prio) {
2271 ctx->prio = 1;
2272 ctx->current_state = AUDIT_RECORD_CONTEXT;
2273 }
2274 return 1;
2275 }
2276
2277 /* global counter which is incremented every time something logs in */
2278 static atomic_t session_id = ATOMIC_INIT(0);
2279
2280 /**
2281 * audit_set_loginuid - set current task's audit_context loginuid
2282 * @loginuid: loginuid value
2283 *
2284 * Returns 0.
2285 *
2286 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2287 */
2288 int audit_set_loginuid(kuid_t loginuid)
2289 {
2290 struct task_struct *task = current;
2291 struct audit_context *context = task->audit_context;
2292 unsigned int sessionid;
2293
2294 #ifdef CONFIG_AUDIT_LOGINUID_IMMUTABLE
2295 if (uid_valid(task->loginuid))
2296 return -EPERM;
2297 #else /* CONFIG_AUDIT_LOGINUID_IMMUTABLE */
2298 if (!capable(CAP_AUDIT_CONTROL))
2299 return -EPERM;
2300 #endif /* CONFIG_AUDIT_LOGINUID_IMMUTABLE */
2301
2302 sessionid = atomic_inc_return(&session_id);
2303 if (context && context->in_syscall) {
2304 struct audit_buffer *ab;
2305
2306 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
2307 if (ab) {
2308 audit_log_format(ab, "login pid=%d uid=%u "
2309 "old auid=%u new auid=%u"
2310 " old ses=%u new ses=%u",
2311 task->pid,
2312 from_kuid(&init_user_ns, task_uid(task)),
2313 from_kuid(&init_user_ns, task->loginuid),
2314 from_kuid(&init_user_ns, loginuid),
2315 task->sessionid, sessionid);
2316 audit_log_end(ab);
2317 }
2318 }
2319 task->sessionid = sessionid;
2320 task->loginuid = loginuid;
2321 return 0;
2322 }
2323
2324 /**
2325 * __audit_mq_open - record audit data for a POSIX MQ open
2326 * @oflag: open flag
2327 * @mode: mode bits
2328 * @attr: queue attributes
2329 *
2330 */
2331 void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2332 {
2333 struct audit_context *context = current->audit_context;
2334
2335 if (attr)
2336 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2337 else
2338 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2339
2340 context->mq_open.oflag = oflag;
2341 context->mq_open.mode = mode;
2342
2343 context->type = AUDIT_MQ_OPEN;
2344 }
2345
2346 /**
2347 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2348 * @mqdes: MQ descriptor
2349 * @msg_len: Message length
2350 * @msg_prio: Message priority
2351 * @abs_timeout: Message timeout in absolute time
2352 *
2353 */
2354 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2355 const struct timespec *abs_timeout)
2356 {
2357 struct audit_context *context = current->audit_context;
2358 struct timespec *p = &context->mq_sendrecv.abs_timeout;
2359
2360 if (abs_timeout)
2361 memcpy(p, abs_timeout, sizeof(struct timespec));
2362 else
2363 memset(p, 0, sizeof(struct timespec));
2364
2365 context->mq_sendrecv.mqdes = mqdes;
2366 context->mq_sendrecv.msg_len = msg_len;
2367 context->mq_sendrecv.msg_prio = msg_prio;
2368
2369 context->type = AUDIT_MQ_SENDRECV;
2370 }
2371
2372 /**
2373 * __audit_mq_notify - record audit data for a POSIX MQ notify
2374 * @mqdes: MQ descriptor
2375 * @notification: Notification event
2376 *
2377 */
2378
2379 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2380 {
2381 struct audit_context *context = current->audit_context;
2382
2383 if (notification)
2384 context->mq_notify.sigev_signo = notification->sigev_signo;
2385 else
2386 context->mq_notify.sigev_signo = 0;
2387
2388 context->mq_notify.mqdes = mqdes;
2389 context->type = AUDIT_MQ_NOTIFY;
2390 }
2391
2392 /**
2393 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2394 * @mqdes: MQ descriptor
2395 * @mqstat: MQ flags
2396 *
2397 */
2398 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2399 {
2400 struct audit_context *context = current->audit_context;
2401 context->mq_getsetattr.mqdes = mqdes;
2402 context->mq_getsetattr.mqstat = *mqstat;
2403 context->type = AUDIT_MQ_GETSETATTR;
2404 }
2405
2406 /**
2407 * audit_ipc_obj - record audit data for ipc object
2408 * @ipcp: ipc permissions
2409 *
2410 */
2411 void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2412 {
2413 struct audit_context *context = current->audit_context;
2414 context->ipc.uid = ipcp->uid;
2415 context->ipc.gid = ipcp->gid;
2416 context->ipc.mode = ipcp->mode;
2417 context->ipc.has_perm = 0;
2418 security_ipc_getsecid(ipcp, &context->ipc.osid);
2419 context->type = AUDIT_IPC;
2420 }
2421
2422 /**
2423 * audit_ipc_set_perm - record audit data for new ipc permissions
2424 * @qbytes: msgq bytes
2425 * @uid: msgq user id
2426 * @gid: msgq group id
2427 * @mode: msgq mode (permissions)
2428 *
2429 * Called only after audit_ipc_obj().
2430 */
2431 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2432 {
2433 struct audit_context *context = current->audit_context;
2434
2435 context->ipc.qbytes = qbytes;
2436 context->ipc.perm_uid = uid;
2437 context->ipc.perm_gid = gid;
2438 context->ipc.perm_mode = mode;
2439 context->ipc.has_perm = 1;
2440 }
2441
2442 int __audit_bprm(struct linux_binprm *bprm)
2443 {
2444 struct audit_aux_data_execve *ax;
2445 struct audit_context *context = current->audit_context;
2446
2447 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2448 if (!ax)
2449 return -ENOMEM;
2450
2451 ax->argc = bprm->argc;
2452 ax->envc = bprm->envc;
2453 ax->mm = bprm->mm;
2454 ax->d.type = AUDIT_EXECVE;
2455 ax->d.next = context->aux;
2456 context->aux = (void *)ax;
2457 return 0;
2458 }
2459
2460
2461 /**
2462 * audit_socketcall - record audit data for sys_socketcall
2463 * @nargs: number of args
2464 * @args: args array
2465 *
2466 */
2467 void __audit_socketcall(int nargs, unsigned long *args)
2468 {
2469 struct audit_context *context = current->audit_context;
2470
2471 context->type = AUDIT_SOCKETCALL;
2472 context->socketcall.nargs = nargs;
2473 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2474 }
2475
2476 /**
2477 * __audit_fd_pair - record audit data for pipe and socketpair
2478 * @fd1: the first file descriptor
2479 * @fd2: the second file descriptor
2480 *
2481 */
2482 void __audit_fd_pair(int fd1, int fd2)
2483 {
2484 struct audit_context *context = current->audit_context;
2485 context->fds[0] = fd1;
2486 context->fds[1] = fd2;
2487 }
2488
2489 /**
2490 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2491 * @len: data length in user space
2492 * @a: data address in kernel space
2493 *
2494 * Returns 0 for success or NULL context or < 0 on error.
2495 */
2496 int __audit_sockaddr(int len, void *a)
2497 {
2498 struct audit_context *context = current->audit_context;
2499
2500 if (!context->sockaddr) {
2501 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2502 if (!p)
2503 return -ENOMEM;
2504 context->sockaddr = p;
2505 }
2506
2507 context->sockaddr_len = len;
2508 memcpy(context->sockaddr, a, len);
2509 return 0;
2510 }
2511
2512 void __audit_ptrace(struct task_struct *t)
2513 {
2514 struct audit_context *context = current->audit_context;
2515
2516 context->target_pid = t->pid;
2517 context->target_auid = audit_get_loginuid(t);
2518 context->target_uid = task_uid(t);
2519 context->target_sessionid = audit_get_sessionid(t);
2520 security_task_getsecid(t, &context->target_sid);
2521 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2522 }
2523
2524 /**
2525 * audit_signal_info - record signal info for shutting down audit subsystem
2526 * @sig: signal value
2527 * @t: task being signaled
2528 *
2529 * If the audit subsystem is being terminated, record the task (pid)
2530 * and uid that is doing that.
2531 */
2532 int __audit_signal_info(int sig, struct task_struct *t)
2533 {
2534 struct audit_aux_data_pids *axp;
2535 struct task_struct *tsk = current;
2536 struct audit_context *ctx = tsk->audit_context;
2537 kuid_t uid = current_uid(), t_uid = task_uid(t);
2538
2539 if (audit_pid && t->tgid == audit_pid) {
2540 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
2541 audit_sig_pid = tsk->pid;
2542 if (uid_valid(tsk->loginuid))
2543 audit_sig_uid = tsk->loginuid;
2544 else
2545 audit_sig_uid = uid;
2546 security_task_getsecid(tsk, &audit_sig_sid);
2547 }
2548 if (!audit_signals || audit_dummy_context())
2549 return 0;
2550 }
2551
2552 /* optimize the common case by putting first signal recipient directly
2553 * in audit_context */
2554 if (!ctx->target_pid) {
2555 ctx->target_pid = t->tgid;
2556 ctx->target_auid = audit_get_loginuid(t);
2557 ctx->target_uid = t_uid;
2558 ctx->target_sessionid = audit_get_sessionid(t);
2559 security_task_getsecid(t, &ctx->target_sid);
2560 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2561 return 0;
2562 }
2563
2564 axp = (void *)ctx->aux_pids;
2565 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2566 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2567 if (!axp)
2568 return -ENOMEM;
2569
2570 axp->d.type = AUDIT_OBJ_PID;
2571 axp->d.next = ctx->aux_pids;
2572 ctx->aux_pids = (void *)axp;
2573 }
2574 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2575
2576 axp->target_pid[axp->pid_count] = t->tgid;
2577 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2578 axp->target_uid[axp->pid_count] = t_uid;
2579 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2580 security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2581 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2582 axp->pid_count++;
2583
2584 return 0;
2585 }
2586
2587 /**
2588 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2589 * @bprm: pointer to the bprm being processed
2590 * @new: the proposed new credentials
2591 * @old: the old credentials
2592 *
2593 * Simply check if the proc already has the caps given by the file and if not
2594 * store the priv escalation info for later auditing at the end of the syscall
2595 *
2596 * -Eric
2597 */
2598 int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2599 const struct cred *new, const struct cred *old)
2600 {
2601 struct audit_aux_data_bprm_fcaps *ax;
2602 struct audit_context *context = current->audit_context;
2603 struct cpu_vfs_cap_data vcaps;
2604 struct dentry *dentry;
2605
2606 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2607 if (!ax)
2608 return -ENOMEM;
2609
2610 ax->d.type = AUDIT_BPRM_FCAPS;
2611 ax->d.next = context->aux;
2612 context->aux = (void *)ax;
2613
2614 dentry = dget(bprm->file->f_dentry);
2615 get_vfs_caps_from_disk(dentry, &vcaps);
2616 dput(dentry);
2617
2618 ax->fcap.permitted = vcaps.permitted;
2619 ax->fcap.inheritable = vcaps.inheritable;
2620 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2621 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2622
2623 ax->old_pcap.permitted = old->cap_permitted;
2624 ax->old_pcap.inheritable = old->cap_inheritable;
2625 ax->old_pcap.effective = old->cap_effective;
2626
2627 ax->new_pcap.permitted = new->cap_permitted;
2628 ax->new_pcap.inheritable = new->cap_inheritable;
2629 ax->new_pcap.effective = new->cap_effective;
2630 return 0;
2631 }
2632
2633 /**
2634 * __audit_log_capset - store information about the arguments to the capset syscall
2635 * @pid: target pid of the capset call
2636 * @new: the new credentials
2637 * @old: the old (current) credentials
2638 *
2639 * Record the aguments userspace sent to sys_capset for later printing by the
2640 * audit system if applicable
2641 */
2642 void __audit_log_capset(pid_t pid,
2643 const struct cred *new, const struct cred *old)
2644 {
2645 struct audit_context *context = current->audit_context;
2646 context->capset.pid = pid;
2647 context->capset.cap.effective = new->cap_effective;
2648 context->capset.cap.inheritable = new->cap_effective;
2649 context->capset.cap.permitted = new->cap_permitted;
2650 context->type = AUDIT_CAPSET;
2651 }
2652
2653 void __audit_mmap_fd(int fd, int flags)
2654 {
2655 struct audit_context *context = current->audit_context;
2656 context->mmap.fd = fd;
2657 context->mmap.flags = flags;
2658 context->type = AUDIT_MMAP;
2659 }
2660
2661 static void audit_log_abend(struct audit_buffer *ab, char *reason, long signr)
2662 {
2663 kuid_t auid, uid;
2664 kgid_t gid;
2665 unsigned int sessionid;
2666
2667 auid = audit_get_loginuid(current);
2668 sessionid = audit_get_sessionid(current);
2669 current_uid_gid(&uid, &gid);
2670
2671 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2672 from_kuid(&init_user_ns, auid),
2673 from_kuid(&init_user_ns, uid),
2674 from_kgid(&init_user_ns, gid),
2675 sessionid);
2676 audit_log_task_context(ab);
2677 audit_log_format(ab, " pid=%d comm=", current->pid);
2678 audit_log_untrustedstring(ab, current->comm);
2679 audit_log_format(ab, " reason=");
2680 audit_log_string(ab, reason);
2681 audit_log_format(ab, " sig=%ld", signr);
2682 }
2683 /**
2684 * audit_core_dumps - record information about processes that end abnormally
2685 * @signr: signal value
2686 *
2687 * If a process ends with a core dump, something fishy is going on and we
2688 * should record the event for investigation.
2689 */
2690 void audit_core_dumps(long signr)
2691 {
2692 struct audit_buffer *ab;
2693
2694 if (!audit_enabled)
2695 return;
2696
2697 if (signr == SIGQUIT) /* don't care for those */
2698 return;
2699
2700 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2701 audit_log_abend(ab, "memory violation", signr);
2702 audit_log_end(ab);
2703 }
2704
2705 void __audit_seccomp(unsigned long syscall, long signr, int code)
2706 {
2707 struct audit_buffer *ab;
2708
2709 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2710 audit_log_abend(ab, "seccomp", signr);
2711 audit_log_format(ab, " syscall=%ld", syscall);
2712 audit_log_format(ab, " compat=%d", is_compat_task());
2713 audit_log_format(ab, " ip=0x%lx", KSTK_EIP(current));
2714 audit_log_format(ab, " code=0x%x", code);
2715 audit_log_end(ab);
2716 }
2717
2718 struct list_head *audit_killed_trees(void)
2719 {
2720 struct audit_context *ctx = current->audit_context;
2721 if (likely(!ctx || !ctx->in_syscall))
2722 return NULL;
2723 return &ctx->killed_trees;
2724 }
This page took 0.125132 seconds and 6 git commands to generate.