audit: complex interfield comparison helper
[deliverable/linux.git] / kernel / auditsc.c
1 /* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
3 *
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
7 * All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24 *
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
27 *
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
31 *
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
34 *
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37 *
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
40 *
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
43 */
44
45 #include <linux/init.h>
46 #include <asm/types.h>
47 #include <linux/atomic.h>
48 #include <linux/fs.h>
49 #include <linux/namei.h>
50 #include <linux/mm.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/mount.h>
54 #include <linux/socket.h>
55 #include <linux/mqueue.h>
56 #include <linux/audit.h>
57 #include <linux/personality.h>
58 #include <linux/time.h>
59 #include <linux/netlink.h>
60 #include <linux/compiler.h>
61 #include <asm/unistd.h>
62 #include <linux/security.h>
63 #include <linux/list.h>
64 #include <linux/tty.h>
65 #include <linux/binfmts.h>
66 #include <linux/highmem.h>
67 #include <linux/syscalls.h>
68 #include <linux/capability.h>
69 #include <linux/fs_struct.h>
70
71 #include "audit.h"
72
73 /* flags stating the success for a syscall */
74 #define AUDITSC_INVALID 0
75 #define AUDITSC_SUCCESS 1
76 #define AUDITSC_FAILURE 2
77
78 /* AUDIT_NAMES is the number of slots we reserve in the audit_context
79 * for saving names from getname(). If we get more names we will allocate
80 * a name dynamically and also add those to the list anchored by names_list. */
81 #define AUDIT_NAMES 5
82
83 /* Indicates that audit should log the full pathname. */
84 #define AUDIT_NAME_FULL -1
85
86 /* no execve audit message should be longer than this (userspace limits) */
87 #define MAX_EXECVE_AUDIT_LEN 7500
88
89 /* number of audit rules */
90 int audit_n_rules;
91
92 /* determines whether we collect data for signals sent */
93 int audit_signals;
94
95 struct audit_cap_data {
96 kernel_cap_t permitted;
97 kernel_cap_t inheritable;
98 union {
99 unsigned int fE; /* effective bit of a file capability */
100 kernel_cap_t effective; /* effective set of a process */
101 };
102 };
103
104 /* When fs/namei.c:getname() is called, we store the pointer in name and
105 * we don't let putname() free it (instead we free all of the saved
106 * pointers at syscall exit time).
107 *
108 * Further, in fs/namei.c:path_lookup() we store the inode and device. */
109 struct audit_names {
110 struct list_head list; /* audit_context->names_list */
111 const char *name;
112 unsigned long ino;
113 dev_t dev;
114 umode_t mode;
115 uid_t uid;
116 gid_t gid;
117 dev_t rdev;
118 u32 osid;
119 struct audit_cap_data fcap;
120 unsigned int fcap_ver;
121 int name_len; /* number of name's characters to log */
122 bool name_put; /* call __putname() for this name */
123 /*
124 * This was an allocated audit_names and not from the array of
125 * names allocated in the task audit context. Thus this name
126 * should be freed on syscall exit
127 */
128 bool should_free;
129 };
130
131 struct audit_aux_data {
132 struct audit_aux_data *next;
133 int type;
134 };
135
136 #define AUDIT_AUX_IPCPERM 0
137
138 /* Number of target pids per aux struct. */
139 #define AUDIT_AUX_PIDS 16
140
141 struct audit_aux_data_execve {
142 struct audit_aux_data d;
143 int argc;
144 int envc;
145 struct mm_struct *mm;
146 };
147
148 struct audit_aux_data_pids {
149 struct audit_aux_data d;
150 pid_t target_pid[AUDIT_AUX_PIDS];
151 uid_t target_auid[AUDIT_AUX_PIDS];
152 uid_t target_uid[AUDIT_AUX_PIDS];
153 unsigned int target_sessionid[AUDIT_AUX_PIDS];
154 u32 target_sid[AUDIT_AUX_PIDS];
155 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
156 int pid_count;
157 };
158
159 struct audit_aux_data_bprm_fcaps {
160 struct audit_aux_data d;
161 struct audit_cap_data fcap;
162 unsigned int fcap_ver;
163 struct audit_cap_data old_pcap;
164 struct audit_cap_data new_pcap;
165 };
166
167 struct audit_aux_data_capset {
168 struct audit_aux_data d;
169 pid_t pid;
170 struct audit_cap_data cap;
171 };
172
173 struct audit_tree_refs {
174 struct audit_tree_refs *next;
175 struct audit_chunk *c[31];
176 };
177
178 /* The per-task audit context. */
179 struct audit_context {
180 int dummy; /* must be the first element */
181 int in_syscall; /* 1 if task is in a syscall */
182 enum audit_state state, current_state;
183 unsigned int serial; /* serial number for record */
184 int major; /* syscall number */
185 struct timespec ctime; /* time of syscall entry */
186 unsigned long argv[4]; /* syscall arguments */
187 long return_code;/* syscall return code */
188 u64 prio;
189 int return_valid; /* return code is valid */
190 /*
191 * The names_list is the list of all audit_names collected during this
192 * syscall. The first AUDIT_NAMES entries in the names_list will
193 * actually be from the preallocated_names array for performance
194 * reasons. Except during allocation they should never be referenced
195 * through the preallocated_names array and should only be found/used
196 * by running the names_list.
197 */
198 struct audit_names preallocated_names[AUDIT_NAMES];
199 int name_count; /* total records in names_list */
200 struct list_head names_list; /* anchor for struct audit_names->list */
201 char * filterkey; /* key for rule that triggered record */
202 struct path pwd;
203 struct audit_context *previous; /* For nested syscalls */
204 struct audit_aux_data *aux;
205 struct audit_aux_data *aux_pids;
206 struct sockaddr_storage *sockaddr;
207 size_t sockaddr_len;
208 /* Save things to print about task_struct */
209 pid_t pid, ppid;
210 uid_t uid, euid, suid, fsuid;
211 gid_t gid, egid, sgid, fsgid;
212 unsigned long personality;
213 int arch;
214
215 pid_t target_pid;
216 uid_t target_auid;
217 uid_t target_uid;
218 unsigned int target_sessionid;
219 u32 target_sid;
220 char target_comm[TASK_COMM_LEN];
221
222 struct audit_tree_refs *trees, *first_trees;
223 struct list_head killed_trees;
224 int tree_count;
225
226 int type;
227 union {
228 struct {
229 int nargs;
230 long args[6];
231 } socketcall;
232 struct {
233 uid_t uid;
234 gid_t gid;
235 umode_t mode;
236 u32 osid;
237 int has_perm;
238 uid_t perm_uid;
239 gid_t perm_gid;
240 umode_t perm_mode;
241 unsigned long qbytes;
242 } ipc;
243 struct {
244 mqd_t mqdes;
245 struct mq_attr mqstat;
246 } mq_getsetattr;
247 struct {
248 mqd_t mqdes;
249 int sigev_signo;
250 } mq_notify;
251 struct {
252 mqd_t mqdes;
253 size_t msg_len;
254 unsigned int msg_prio;
255 struct timespec abs_timeout;
256 } mq_sendrecv;
257 struct {
258 int oflag;
259 umode_t mode;
260 struct mq_attr attr;
261 } mq_open;
262 struct {
263 pid_t pid;
264 struct audit_cap_data cap;
265 } capset;
266 struct {
267 int fd;
268 int flags;
269 } mmap;
270 };
271 int fds[2];
272
273 #if AUDIT_DEBUG
274 int put_count;
275 int ino_count;
276 #endif
277 };
278
279 static inline int open_arg(int flags, int mask)
280 {
281 int n = ACC_MODE(flags);
282 if (flags & (O_TRUNC | O_CREAT))
283 n |= AUDIT_PERM_WRITE;
284 return n & mask;
285 }
286
287 static int audit_match_perm(struct audit_context *ctx, int mask)
288 {
289 unsigned n;
290 if (unlikely(!ctx))
291 return 0;
292 n = ctx->major;
293
294 switch (audit_classify_syscall(ctx->arch, n)) {
295 case 0: /* native */
296 if ((mask & AUDIT_PERM_WRITE) &&
297 audit_match_class(AUDIT_CLASS_WRITE, n))
298 return 1;
299 if ((mask & AUDIT_PERM_READ) &&
300 audit_match_class(AUDIT_CLASS_READ, n))
301 return 1;
302 if ((mask & AUDIT_PERM_ATTR) &&
303 audit_match_class(AUDIT_CLASS_CHATTR, n))
304 return 1;
305 return 0;
306 case 1: /* 32bit on biarch */
307 if ((mask & AUDIT_PERM_WRITE) &&
308 audit_match_class(AUDIT_CLASS_WRITE_32, n))
309 return 1;
310 if ((mask & AUDIT_PERM_READ) &&
311 audit_match_class(AUDIT_CLASS_READ_32, n))
312 return 1;
313 if ((mask & AUDIT_PERM_ATTR) &&
314 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
315 return 1;
316 return 0;
317 case 2: /* open */
318 return mask & ACC_MODE(ctx->argv[1]);
319 case 3: /* openat */
320 return mask & ACC_MODE(ctx->argv[2]);
321 case 4: /* socketcall */
322 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
323 case 5: /* execve */
324 return mask & AUDIT_PERM_EXEC;
325 default:
326 return 0;
327 }
328 }
329
330 static int audit_match_filetype(struct audit_context *ctx, int val)
331 {
332 struct audit_names *n;
333 umode_t mode = (umode_t)val;
334
335 if (unlikely(!ctx))
336 return 0;
337
338 list_for_each_entry(n, &ctx->names_list, list) {
339 if ((n->ino != -1) &&
340 ((n->mode & S_IFMT) == mode))
341 return 1;
342 }
343
344 return 0;
345 }
346
347 /*
348 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
349 * ->first_trees points to its beginning, ->trees - to the current end of data.
350 * ->tree_count is the number of free entries in array pointed to by ->trees.
351 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
352 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
353 * it's going to remain 1-element for almost any setup) until we free context itself.
354 * References in it _are_ dropped - at the same time we free/drop aux stuff.
355 */
356
357 #ifdef CONFIG_AUDIT_TREE
358 static void audit_set_auditable(struct audit_context *ctx)
359 {
360 if (!ctx->prio) {
361 ctx->prio = 1;
362 ctx->current_state = AUDIT_RECORD_CONTEXT;
363 }
364 }
365
366 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
367 {
368 struct audit_tree_refs *p = ctx->trees;
369 int left = ctx->tree_count;
370 if (likely(left)) {
371 p->c[--left] = chunk;
372 ctx->tree_count = left;
373 return 1;
374 }
375 if (!p)
376 return 0;
377 p = p->next;
378 if (p) {
379 p->c[30] = chunk;
380 ctx->trees = p;
381 ctx->tree_count = 30;
382 return 1;
383 }
384 return 0;
385 }
386
387 static int grow_tree_refs(struct audit_context *ctx)
388 {
389 struct audit_tree_refs *p = ctx->trees;
390 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
391 if (!ctx->trees) {
392 ctx->trees = p;
393 return 0;
394 }
395 if (p)
396 p->next = ctx->trees;
397 else
398 ctx->first_trees = ctx->trees;
399 ctx->tree_count = 31;
400 return 1;
401 }
402 #endif
403
404 static void unroll_tree_refs(struct audit_context *ctx,
405 struct audit_tree_refs *p, int count)
406 {
407 #ifdef CONFIG_AUDIT_TREE
408 struct audit_tree_refs *q;
409 int n;
410 if (!p) {
411 /* we started with empty chain */
412 p = ctx->first_trees;
413 count = 31;
414 /* if the very first allocation has failed, nothing to do */
415 if (!p)
416 return;
417 }
418 n = count;
419 for (q = p; q != ctx->trees; q = q->next, n = 31) {
420 while (n--) {
421 audit_put_chunk(q->c[n]);
422 q->c[n] = NULL;
423 }
424 }
425 while (n-- > ctx->tree_count) {
426 audit_put_chunk(q->c[n]);
427 q->c[n] = NULL;
428 }
429 ctx->trees = p;
430 ctx->tree_count = count;
431 #endif
432 }
433
434 static void free_tree_refs(struct audit_context *ctx)
435 {
436 struct audit_tree_refs *p, *q;
437 for (p = ctx->first_trees; p; p = q) {
438 q = p->next;
439 kfree(p);
440 }
441 }
442
443 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
444 {
445 #ifdef CONFIG_AUDIT_TREE
446 struct audit_tree_refs *p;
447 int n;
448 if (!tree)
449 return 0;
450 /* full ones */
451 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
452 for (n = 0; n < 31; n++)
453 if (audit_tree_match(p->c[n], tree))
454 return 1;
455 }
456 /* partial */
457 if (p) {
458 for (n = ctx->tree_count; n < 31; n++)
459 if (audit_tree_match(p->c[n], tree))
460 return 1;
461 }
462 #endif
463 return 0;
464 }
465
466 static int audit_compare_id(uid_t uid1,
467 struct audit_names *name,
468 unsigned long name_offset,
469 struct audit_field *f,
470 struct audit_context *ctx)
471 {
472 struct audit_names *n;
473 unsigned long addr;
474 uid_t uid2;
475 int rc;
476
477 if (name) {
478 addr = (unsigned long)name;
479 addr += name_offset;
480
481 uid2 = *(uid_t *)addr;
482 rc = audit_comparator(uid1, f->op, uid2);
483 if (rc)
484 return rc;
485 }
486
487 if (ctx) {
488 list_for_each_entry(n, &ctx->names_list, list) {
489 addr = (unsigned long)n;
490 addr += name_offset;
491
492 uid2 = *(uid_t *)addr;
493
494 rc = audit_comparator(uid1, f->op, uid2);
495 if (rc)
496 return rc;
497 }
498 }
499 return 0;
500 }
501
502 static int audit_field_compare(struct task_struct *tsk,
503 const struct cred *cred,
504 struct audit_field *f,
505 struct audit_context *ctx,
506 struct audit_names *name)
507 {
508 switch (f->val) {
509 case AUDIT_COMPARE_UID_TO_OBJ_UID:
510 return audit_compare_id(cred->uid,
511 name, offsetof(struct audit_names, uid),
512 f, ctx);
513 default:
514 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
515 return 0;
516 }
517 return 0;
518 }
519
520 /* Determine if any context name data matches a rule's watch data */
521 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
522 * otherwise.
523 *
524 * If task_creation is true, this is an explicit indication that we are
525 * filtering a task rule at task creation time. This and tsk == current are
526 * the only situations where tsk->cred may be accessed without an rcu read lock.
527 */
528 static int audit_filter_rules(struct task_struct *tsk,
529 struct audit_krule *rule,
530 struct audit_context *ctx,
531 struct audit_names *name,
532 enum audit_state *state,
533 bool task_creation)
534 {
535 const struct cred *cred;
536 int i, need_sid = 1;
537 u32 sid;
538
539 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
540
541 for (i = 0; i < rule->field_count; i++) {
542 struct audit_field *f = &rule->fields[i];
543 struct audit_names *n;
544 int result = 0;
545
546 switch (f->type) {
547 case AUDIT_PID:
548 result = audit_comparator(tsk->pid, f->op, f->val);
549 break;
550 case AUDIT_PPID:
551 if (ctx) {
552 if (!ctx->ppid)
553 ctx->ppid = sys_getppid();
554 result = audit_comparator(ctx->ppid, f->op, f->val);
555 }
556 break;
557 case AUDIT_UID:
558 result = audit_comparator(cred->uid, f->op, f->val);
559 break;
560 case AUDIT_EUID:
561 result = audit_comparator(cred->euid, f->op, f->val);
562 break;
563 case AUDIT_SUID:
564 result = audit_comparator(cred->suid, f->op, f->val);
565 break;
566 case AUDIT_FSUID:
567 result = audit_comparator(cred->fsuid, f->op, f->val);
568 break;
569 case AUDIT_GID:
570 result = audit_comparator(cred->gid, f->op, f->val);
571 break;
572 case AUDIT_EGID:
573 result = audit_comparator(cred->egid, f->op, f->val);
574 break;
575 case AUDIT_SGID:
576 result = audit_comparator(cred->sgid, f->op, f->val);
577 break;
578 case AUDIT_FSGID:
579 result = audit_comparator(cred->fsgid, f->op, f->val);
580 break;
581 case AUDIT_PERS:
582 result = audit_comparator(tsk->personality, f->op, f->val);
583 break;
584 case AUDIT_ARCH:
585 if (ctx)
586 result = audit_comparator(ctx->arch, f->op, f->val);
587 break;
588
589 case AUDIT_EXIT:
590 if (ctx && ctx->return_valid)
591 result = audit_comparator(ctx->return_code, f->op, f->val);
592 break;
593 case AUDIT_SUCCESS:
594 if (ctx && ctx->return_valid) {
595 if (f->val)
596 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
597 else
598 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
599 }
600 break;
601 case AUDIT_DEVMAJOR:
602 if (name) {
603 if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
604 audit_comparator(MAJOR(name->rdev), f->op, f->val))
605 ++result;
606 } else if (ctx) {
607 list_for_each_entry(n, &ctx->names_list, list) {
608 if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
609 audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
610 ++result;
611 break;
612 }
613 }
614 }
615 break;
616 case AUDIT_DEVMINOR:
617 if (name) {
618 if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
619 audit_comparator(MINOR(name->rdev), f->op, f->val))
620 ++result;
621 } else if (ctx) {
622 list_for_each_entry(n, &ctx->names_list, list) {
623 if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
624 audit_comparator(MINOR(n->rdev), f->op, f->val)) {
625 ++result;
626 break;
627 }
628 }
629 }
630 break;
631 case AUDIT_INODE:
632 if (name)
633 result = (name->ino == f->val);
634 else if (ctx) {
635 list_for_each_entry(n, &ctx->names_list, list) {
636 if (audit_comparator(n->ino, f->op, f->val)) {
637 ++result;
638 break;
639 }
640 }
641 }
642 break;
643 case AUDIT_OBJ_UID:
644 if (name) {
645 result = audit_comparator(name->uid, f->op, f->val);
646 } else if (ctx) {
647 list_for_each_entry(n, &ctx->names_list, list) {
648 if (audit_comparator(n->uid, f->op, f->val)) {
649 ++result;
650 break;
651 }
652 }
653 }
654 break;
655 case AUDIT_OBJ_GID:
656 if (name) {
657 result = audit_comparator(name->gid, f->op, f->val);
658 } else if (ctx) {
659 list_for_each_entry(n, &ctx->names_list, list) {
660 if (audit_comparator(n->gid, f->op, f->val)) {
661 ++result;
662 break;
663 }
664 }
665 }
666 break;
667 case AUDIT_WATCH:
668 if (name)
669 result = audit_watch_compare(rule->watch, name->ino, name->dev);
670 break;
671 case AUDIT_DIR:
672 if (ctx)
673 result = match_tree_refs(ctx, rule->tree);
674 break;
675 case AUDIT_LOGINUID:
676 result = 0;
677 if (ctx)
678 result = audit_comparator(tsk->loginuid, f->op, f->val);
679 break;
680 case AUDIT_SUBJ_USER:
681 case AUDIT_SUBJ_ROLE:
682 case AUDIT_SUBJ_TYPE:
683 case AUDIT_SUBJ_SEN:
684 case AUDIT_SUBJ_CLR:
685 /* NOTE: this may return negative values indicating
686 a temporary error. We simply treat this as a
687 match for now to avoid losing information that
688 may be wanted. An error message will also be
689 logged upon error */
690 if (f->lsm_rule) {
691 if (need_sid) {
692 security_task_getsecid(tsk, &sid);
693 need_sid = 0;
694 }
695 result = security_audit_rule_match(sid, f->type,
696 f->op,
697 f->lsm_rule,
698 ctx);
699 }
700 break;
701 case AUDIT_OBJ_USER:
702 case AUDIT_OBJ_ROLE:
703 case AUDIT_OBJ_TYPE:
704 case AUDIT_OBJ_LEV_LOW:
705 case AUDIT_OBJ_LEV_HIGH:
706 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
707 also applies here */
708 if (f->lsm_rule) {
709 /* Find files that match */
710 if (name) {
711 result = security_audit_rule_match(
712 name->osid, f->type, f->op,
713 f->lsm_rule, ctx);
714 } else if (ctx) {
715 list_for_each_entry(n, &ctx->names_list, list) {
716 if (security_audit_rule_match(n->osid, f->type,
717 f->op, f->lsm_rule,
718 ctx)) {
719 ++result;
720 break;
721 }
722 }
723 }
724 /* Find ipc objects that match */
725 if (!ctx || ctx->type != AUDIT_IPC)
726 break;
727 if (security_audit_rule_match(ctx->ipc.osid,
728 f->type, f->op,
729 f->lsm_rule, ctx))
730 ++result;
731 }
732 break;
733 case AUDIT_ARG0:
734 case AUDIT_ARG1:
735 case AUDIT_ARG2:
736 case AUDIT_ARG3:
737 if (ctx)
738 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
739 break;
740 case AUDIT_FILTERKEY:
741 /* ignore this field for filtering */
742 result = 1;
743 break;
744 case AUDIT_PERM:
745 result = audit_match_perm(ctx, f->val);
746 break;
747 case AUDIT_FILETYPE:
748 result = audit_match_filetype(ctx, f->val);
749 break;
750 case AUDIT_FIELD_COMPARE:
751 result = audit_field_compare(tsk, cred, f, ctx, name);
752 break;
753 }
754 if (!result)
755 return 0;
756 }
757
758 if (ctx) {
759 if (rule->prio <= ctx->prio)
760 return 0;
761 if (rule->filterkey) {
762 kfree(ctx->filterkey);
763 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
764 }
765 ctx->prio = rule->prio;
766 }
767 switch (rule->action) {
768 case AUDIT_NEVER: *state = AUDIT_DISABLED; break;
769 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break;
770 }
771 return 1;
772 }
773
774 /* At process creation time, we can determine if system-call auditing is
775 * completely disabled for this task. Since we only have the task
776 * structure at this point, we can only check uid and gid.
777 */
778 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
779 {
780 struct audit_entry *e;
781 enum audit_state state;
782
783 rcu_read_lock();
784 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
785 if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
786 &state, true)) {
787 if (state == AUDIT_RECORD_CONTEXT)
788 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
789 rcu_read_unlock();
790 return state;
791 }
792 }
793 rcu_read_unlock();
794 return AUDIT_BUILD_CONTEXT;
795 }
796
797 /* At syscall entry and exit time, this filter is called if the
798 * audit_state is not low enough that auditing cannot take place, but is
799 * also not high enough that we already know we have to write an audit
800 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
801 */
802 static enum audit_state audit_filter_syscall(struct task_struct *tsk,
803 struct audit_context *ctx,
804 struct list_head *list)
805 {
806 struct audit_entry *e;
807 enum audit_state state;
808
809 if (audit_pid && tsk->tgid == audit_pid)
810 return AUDIT_DISABLED;
811
812 rcu_read_lock();
813 if (!list_empty(list)) {
814 int word = AUDIT_WORD(ctx->major);
815 int bit = AUDIT_BIT(ctx->major);
816
817 list_for_each_entry_rcu(e, list, list) {
818 if ((e->rule.mask[word] & bit) == bit &&
819 audit_filter_rules(tsk, &e->rule, ctx, NULL,
820 &state, false)) {
821 rcu_read_unlock();
822 ctx->current_state = state;
823 return state;
824 }
825 }
826 }
827 rcu_read_unlock();
828 return AUDIT_BUILD_CONTEXT;
829 }
830
831 /*
832 * Given an audit_name check the inode hash table to see if they match.
833 * Called holding the rcu read lock to protect the use of audit_inode_hash
834 */
835 static int audit_filter_inode_name(struct task_struct *tsk,
836 struct audit_names *n,
837 struct audit_context *ctx) {
838 int word, bit;
839 int h = audit_hash_ino((u32)n->ino);
840 struct list_head *list = &audit_inode_hash[h];
841 struct audit_entry *e;
842 enum audit_state state;
843
844 word = AUDIT_WORD(ctx->major);
845 bit = AUDIT_BIT(ctx->major);
846
847 if (list_empty(list))
848 return 0;
849
850 list_for_each_entry_rcu(e, list, list) {
851 if ((e->rule.mask[word] & bit) == bit &&
852 audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
853 ctx->current_state = state;
854 return 1;
855 }
856 }
857
858 return 0;
859 }
860
861 /* At syscall exit time, this filter is called if any audit_names have been
862 * collected during syscall processing. We only check rules in sublists at hash
863 * buckets applicable to the inode numbers in audit_names.
864 * Regarding audit_state, same rules apply as for audit_filter_syscall().
865 */
866 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
867 {
868 struct audit_names *n;
869
870 if (audit_pid && tsk->tgid == audit_pid)
871 return;
872
873 rcu_read_lock();
874
875 list_for_each_entry(n, &ctx->names_list, list) {
876 if (audit_filter_inode_name(tsk, n, ctx))
877 break;
878 }
879 rcu_read_unlock();
880 }
881
882 static inline struct audit_context *audit_get_context(struct task_struct *tsk,
883 int return_valid,
884 long return_code)
885 {
886 struct audit_context *context = tsk->audit_context;
887
888 if (!context)
889 return NULL;
890 context->return_valid = return_valid;
891
892 /*
893 * we need to fix up the return code in the audit logs if the actual
894 * return codes are later going to be fixed up by the arch specific
895 * signal handlers
896 *
897 * This is actually a test for:
898 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
899 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
900 *
901 * but is faster than a bunch of ||
902 */
903 if (unlikely(return_code <= -ERESTARTSYS) &&
904 (return_code >= -ERESTART_RESTARTBLOCK) &&
905 (return_code != -ENOIOCTLCMD))
906 context->return_code = -EINTR;
907 else
908 context->return_code = return_code;
909
910 if (context->in_syscall && !context->dummy) {
911 audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
912 audit_filter_inodes(tsk, context);
913 }
914
915 tsk->audit_context = NULL;
916 return context;
917 }
918
919 static inline void audit_free_names(struct audit_context *context)
920 {
921 struct audit_names *n, *next;
922
923 #if AUDIT_DEBUG == 2
924 if (context->put_count + context->ino_count != context->name_count) {
925 printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
926 " name_count=%d put_count=%d"
927 " ino_count=%d [NOT freeing]\n",
928 __FILE__, __LINE__,
929 context->serial, context->major, context->in_syscall,
930 context->name_count, context->put_count,
931 context->ino_count);
932 list_for_each_entry(n, &context->names_list, list) {
933 printk(KERN_ERR "names[%d] = %p = %s\n", i,
934 n->name, n->name ?: "(null)");
935 }
936 dump_stack();
937 return;
938 }
939 #endif
940 #if AUDIT_DEBUG
941 context->put_count = 0;
942 context->ino_count = 0;
943 #endif
944
945 list_for_each_entry_safe(n, next, &context->names_list, list) {
946 list_del(&n->list);
947 if (n->name && n->name_put)
948 __putname(n->name);
949 if (n->should_free)
950 kfree(n);
951 }
952 context->name_count = 0;
953 path_put(&context->pwd);
954 context->pwd.dentry = NULL;
955 context->pwd.mnt = NULL;
956 }
957
958 static inline void audit_free_aux(struct audit_context *context)
959 {
960 struct audit_aux_data *aux;
961
962 while ((aux = context->aux)) {
963 context->aux = aux->next;
964 kfree(aux);
965 }
966 while ((aux = context->aux_pids)) {
967 context->aux_pids = aux->next;
968 kfree(aux);
969 }
970 }
971
972 static inline void audit_zero_context(struct audit_context *context,
973 enum audit_state state)
974 {
975 memset(context, 0, sizeof(*context));
976 context->state = state;
977 context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
978 }
979
980 static inline struct audit_context *audit_alloc_context(enum audit_state state)
981 {
982 struct audit_context *context;
983
984 if (!(context = kmalloc(sizeof(*context), GFP_KERNEL)))
985 return NULL;
986 audit_zero_context(context, state);
987 INIT_LIST_HEAD(&context->killed_trees);
988 INIT_LIST_HEAD(&context->names_list);
989 return context;
990 }
991
992 /**
993 * audit_alloc - allocate an audit context block for a task
994 * @tsk: task
995 *
996 * Filter on the task information and allocate a per-task audit context
997 * if necessary. Doing so turns on system call auditing for the
998 * specified task. This is called from copy_process, so no lock is
999 * needed.
1000 */
1001 int audit_alloc(struct task_struct *tsk)
1002 {
1003 struct audit_context *context;
1004 enum audit_state state;
1005 char *key = NULL;
1006
1007 if (likely(!audit_ever_enabled))
1008 return 0; /* Return if not auditing. */
1009
1010 state = audit_filter_task(tsk, &key);
1011 if (state == AUDIT_DISABLED)
1012 return 0;
1013
1014 if (!(context = audit_alloc_context(state))) {
1015 kfree(key);
1016 audit_log_lost("out of memory in audit_alloc");
1017 return -ENOMEM;
1018 }
1019 context->filterkey = key;
1020
1021 tsk->audit_context = context;
1022 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
1023 return 0;
1024 }
1025
1026 static inline void audit_free_context(struct audit_context *context)
1027 {
1028 struct audit_context *previous;
1029 int count = 0;
1030
1031 do {
1032 previous = context->previous;
1033 if (previous || (count && count < 10)) {
1034 ++count;
1035 printk(KERN_ERR "audit(:%d): major=%d name_count=%d:"
1036 " freeing multiple contexts (%d)\n",
1037 context->serial, context->major,
1038 context->name_count, count);
1039 }
1040 audit_free_names(context);
1041 unroll_tree_refs(context, NULL, 0);
1042 free_tree_refs(context);
1043 audit_free_aux(context);
1044 kfree(context->filterkey);
1045 kfree(context->sockaddr);
1046 kfree(context);
1047 context = previous;
1048 } while (context);
1049 if (count >= 10)
1050 printk(KERN_ERR "audit: freed %d contexts\n", count);
1051 }
1052
1053 void audit_log_task_context(struct audit_buffer *ab)
1054 {
1055 char *ctx = NULL;
1056 unsigned len;
1057 int error;
1058 u32 sid;
1059
1060 security_task_getsecid(current, &sid);
1061 if (!sid)
1062 return;
1063
1064 error = security_secid_to_secctx(sid, &ctx, &len);
1065 if (error) {
1066 if (error != -EINVAL)
1067 goto error_path;
1068 return;
1069 }
1070
1071 audit_log_format(ab, " subj=%s", ctx);
1072 security_release_secctx(ctx, len);
1073 return;
1074
1075 error_path:
1076 audit_panic("error in audit_log_task_context");
1077 return;
1078 }
1079
1080 EXPORT_SYMBOL(audit_log_task_context);
1081
1082 static void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
1083 {
1084 char name[sizeof(tsk->comm)];
1085 struct mm_struct *mm = tsk->mm;
1086 struct vm_area_struct *vma;
1087
1088 /* tsk == current */
1089
1090 get_task_comm(name, tsk);
1091 audit_log_format(ab, " comm=");
1092 audit_log_untrustedstring(ab, name);
1093
1094 if (mm) {
1095 down_read(&mm->mmap_sem);
1096 vma = mm->mmap;
1097 while (vma) {
1098 if ((vma->vm_flags & VM_EXECUTABLE) &&
1099 vma->vm_file) {
1100 audit_log_d_path(ab, "exe=",
1101 &vma->vm_file->f_path);
1102 break;
1103 }
1104 vma = vma->vm_next;
1105 }
1106 up_read(&mm->mmap_sem);
1107 }
1108 audit_log_task_context(ab);
1109 }
1110
1111 static int audit_log_pid_context(struct audit_context *context, pid_t pid,
1112 uid_t auid, uid_t uid, unsigned int sessionid,
1113 u32 sid, char *comm)
1114 {
1115 struct audit_buffer *ab;
1116 char *ctx = NULL;
1117 u32 len;
1118 int rc = 0;
1119
1120 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
1121 if (!ab)
1122 return rc;
1123
1124 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, auid,
1125 uid, sessionid);
1126 if (security_secid_to_secctx(sid, &ctx, &len)) {
1127 audit_log_format(ab, " obj=(none)");
1128 rc = 1;
1129 } else {
1130 audit_log_format(ab, " obj=%s", ctx);
1131 security_release_secctx(ctx, len);
1132 }
1133 audit_log_format(ab, " ocomm=");
1134 audit_log_untrustedstring(ab, comm);
1135 audit_log_end(ab);
1136
1137 return rc;
1138 }
1139
1140 /*
1141 * to_send and len_sent accounting are very loose estimates. We aren't
1142 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
1143 * within about 500 bytes (next page boundary)
1144 *
1145 * why snprintf? an int is up to 12 digits long. if we just assumed when
1146 * logging that a[%d]= was going to be 16 characters long we would be wasting
1147 * space in every audit message. In one 7500 byte message we can log up to
1148 * about 1000 min size arguments. That comes down to about 50% waste of space
1149 * if we didn't do the snprintf to find out how long arg_num_len was.
1150 */
1151 static int audit_log_single_execve_arg(struct audit_context *context,
1152 struct audit_buffer **ab,
1153 int arg_num,
1154 size_t *len_sent,
1155 const char __user *p,
1156 char *buf)
1157 {
1158 char arg_num_len_buf[12];
1159 const char __user *tmp_p = p;
1160 /* how many digits are in arg_num? 5 is the length of ' a=""' */
1161 size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 5;
1162 size_t len, len_left, to_send;
1163 size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
1164 unsigned int i, has_cntl = 0, too_long = 0;
1165 int ret;
1166
1167 /* strnlen_user includes the null we don't want to send */
1168 len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1169
1170 /*
1171 * We just created this mm, if we can't find the strings
1172 * we just copied into it something is _very_ wrong. Similar
1173 * for strings that are too long, we should not have created
1174 * any.
1175 */
1176 if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
1177 WARN_ON(1);
1178 send_sig(SIGKILL, current, 0);
1179 return -1;
1180 }
1181
1182 /* walk the whole argument looking for non-ascii chars */
1183 do {
1184 if (len_left > MAX_EXECVE_AUDIT_LEN)
1185 to_send = MAX_EXECVE_AUDIT_LEN;
1186 else
1187 to_send = len_left;
1188 ret = copy_from_user(buf, tmp_p, to_send);
1189 /*
1190 * There is no reason for this copy to be short. We just
1191 * copied them here, and the mm hasn't been exposed to user-
1192 * space yet.
1193 */
1194 if (ret) {
1195 WARN_ON(1);
1196 send_sig(SIGKILL, current, 0);
1197 return -1;
1198 }
1199 buf[to_send] = '\0';
1200 has_cntl = audit_string_contains_control(buf, to_send);
1201 if (has_cntl) {
1202 /*
1203 * hex messages get logged as 2 bytes, so we can only
1204 * send half as much in each message
1205 */
1206 max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
1207 break;
1208 }
1209 len_left -= to_send;
1210 tmp_p += to_send;
1211 } while (len_left > 0);
1212
1213 len_left = len;
1214
1215 if (len > max_execve_audit_len)
1216 too_long = 1;
1217
1218 /* rewalk the argument actually logging the message */
1219 for (i = 0; len_left > 0; i++) {
1220 int room_left;
1221
1222 if (len_left > max_execve_audit_len)
1223 to_send = max_execve_audit_len;
1224 else
1225 to_send = len_left;
1226
1227 /* do we have space left to send this argument in this ab? */
1228 room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1229 if (has_cntl)
1230 room_left -= (to_send * 2);
1231 else
1232 room_left -= to_send;
1233 if (room_left < 0) {
1234 *len_sent = 0;
1235 audit_log_end(*ab);
1236 *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1237 if (!*ab)
1238 return 0;
1239 }
1240
1241 /*
1242 * first record needs to say how long the original string was
1243 * so we can be sure nothing was lost.
1244 */
1245 if ((i == 0) && (too_long))
1246 audit_log_format(*ab, " a%d_len=%zu", arg_num,
1247 has_cntl ? 2*len : len);
1248
1249 /*
1250 * normally arguments are small enough to fit and we already
1251 * filled buf above when we checked for control characters
1252 * so don't bother with another copy_from_user
1253 */
1254 if (len >= max_execve_audit_len)
1255 ret = copy_from_user(buf, p, to_send);
1256 else
1257 ret = 0;
1258 if (ret) {
1259 WARN_ON(1);
1260 send_sig(SIGKILL, current, 0);
1261 return -1;
1262 }
1263 buf[to_send] = '\0';
1264
1265 /* actually log it */
1266 audit_log_format(*ab, " a%d", arg_num);
1267 if (too_long)
1268 audit_log_format(*ab, "[%d]", i);
1269 audit_log_format(*ab, "=");
1270 if (has_cntl)
1271 audit_log_n_hex(*ab, buf, to_send);
1272 else
1273 audit_log_string(*ab, buf);
1274
1275 p += to_send;
1276 len_left -= to_send;
1277 *len_sent += arg_num_len;
1278 if (has_cntl)
1279 *len_sent += to_send * 2;
1280 else
1281 *len_sent += to_send;
1282 }
1283 /* include the null we didn't log */
1284 return len + 1;
1285 }
1286
1287 static void audit_log_execve_info(struct audit_context *context,
1288 struct audit_buffer **ab,
1289 struct audit_aux_data_execve *axi)
1290 {
1291 int i;
1292 size_t len, len_sent = 0;
1293 const char __user *p;
1294 char *buf;
1295
1296 if (axi->mm != current->mm)
1297 return; /* execve failed, no additional info */
1298
1299 p = (const char __user *)axi->mm->arg_start;
1300
1301 audit_log_format(*ab, "argc=%d", axi->argc);
1302
1303 /*
1304 * we need some kernel buffer to hold the userspace args. Just
1305 * allocate one big one rather than allocating one of the right size
1306 * for every single argument inside audit_log_single_execve_arg()
1307 * should be <8k allocation so should be pretty safe.
1308 */
1309 buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1310 if (!buf) {
1311 audit_panic("out of memory for argv string\n");
1312 return;
1313 }
1314
1315 for (i = 0; i < axi->argc; i++) {
1316 len = audit_log_single_execve_arg(context, ab, i,
1317 &len_sent, p, buf);
1318 if (len <= 0)
1319 break;
1320 p += len;
1321 }
1322 kfree(buf);
1323 }
1324
1325 static void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1326 {
1327 int i;
1328
1329 audit_log_format(ab, " %s=", prefix);
1330 CAP_FOR_EACH_U32(i) {
1331 audit_log_format(ab, "%08x", cap->cap[(_KERNEL_CAPABILITY_U32S-1) - i]);
1332 }
1333 }
1334
1335 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1336 {
1337 kernel_cap_t *perm = &name->fcap.permitted;
1338 kernel_cap_t *inh = &name->fcap.inheritable;
1339 int log = 0;
1340
1341 if (!cap_isclear(*perm)) {
1342 audit_log_cap(ab, "cap_fp", perm);
1343 log = 1;
1344 }
1345 if (!cap_isclear(*inh)) {
1346 audit_log_cap(ab, "cap_fi", inh);
1347 log = 1;
1348 }
1349
1350 if (log)
1351 audit_log_format(ab, " cap_fe=%d cap_fver=%x", name->fcap.fE, name->fcap_ver);
1352 }
1353
1354 static void show_special(struct audit_context *context, int *call_panic)
1355 {
1356 struct audit_buffer *ab;
1357 int i;
1358
1359 ab = audit_log_start(context, GFP_KERNEL, context->type);
1360 if (!ab)
1361 return;
1362
1363 switch (context->type) {
1364 case AUDIT_SOCKETCALL: {
1365 int nargs = context->socketcall.nargs;
1366 audit_log_format(ab, "nargs=%d", nargs);
1367 for (i = 0; i < nargs; i++)
1368 audit_log_format(ab, " a%d=%lx", i,
1369 context->socketcall.args[i]);
1370 break; }
1371 case AUDIT_IPC: {
1372 u32 osid = context->ipc.osid;
1373
1374 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1375 context->ipc.uid, context->ipc.gid, context->ipc.mode);
1376 if (osid) {
1377 char *ctx = NULL;
1378 u32 len;
1379 if (security_secid_to_secctx(osid, &ctx, &len)) {
1380 audit_log_format(ab, " osid=%u", osid);
1381 *call_panic = 1;
1382 } else {
1383 audit_log_format(ab, " obj=%s", ctx);
1384 security_release_secctx(ctx, len);
1385 }
1386 }
1387 if (context->ipc.has_perm) {
1388 audit_log_end(ab);
1389 ab = audit_log_start(context, GFP_KERNEL,
1390 AUDIT_IPC_SET_PERM);
1391 audit_log_format(ab,
1392 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1393 context->ipc.qbytes,
1394 context->ipc.perm_uid,
1395 context->ipc.perm_gid,
1396 context->ipc.perm_mode);
1397 if (!ab)
1398 return;
1399 }
1400 break; }
1401 case AUDIT_MQ_OPEN: {
1402 audit_log_format(ab,
1403 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1404 "mq_msgsize=%ld mq_curmsgs=%ld",
1405 context->mq_open.oflag, context->mq_open.mode,
1406 context->mq_open.attr.mq_flags,
1407 context->mq_open.attr.mq_maxmsg,
1408 context->mq_open.attr.mq_msgsize,
1409 context->mq_open.attr.mq_curmsgs);
1410 break; }
1411 case AUDIT_MQ_SENDRECV: {
1412 audit_log_format(ab,
1413 "mqdes=%d msg_len=%zd msg_prio=%u "
1414 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1415 context->mq_sendrecv.mqdes,
1416 context->mq_sendrecv.msg_len,
1417 context->mq_sendrecv.msg_prio,
1418 context->mq_sendrecv.abs_timeout.tv_sec,
1419 context->mq_sendrecv.abs_timeout.tv_nsec);
1420 break; }
1421 case AUDIT_MQ_NOTIFY: {
1422 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1423 context->mq_notify.mqdes,
1424 context->mq_notify.sigev_signo);
1425 break; }
1426 case AUDIT_MQ_GETSETATTR: {
1427 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1428 audit_log_format(ab,
1429 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1430 "mq_curmsgs=%ld ",
1431 context->mq_getsetattr.mqdes,
1432 attr->mq_flags, attr->mq_maxmsg,
1433 attr->mq_msgsize, attr->mq_curmsgs);
1434 break; }
1435 case AUDIT_CAPSET: {
1436 audit_log_format(ab, "pid=%d", context->capset.pid);
1437 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1438 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1439 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1440 break; }
1441 case AUDIT_MMAP: {
1442 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1443 context->mmap.flags);
1444 break; }
1445 }
1446 audit_log_end(ab);
1447 }
1448
1449 static void audit_log_name(struct audit_context *context, struct audit_names *n,
1450 int record_num, int *call_panic)
1451 {
1452 struct audit_buffer *ab;
1453 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1454 if (!ab)
1455 return; /* audit_panic has been called */
1456
1457 audit_log_format(ab, "item=%d", record_num);
1458
1459 if (n->name) {
1460 switch (n->name_len) {
1461 case AUDIT_NAME_FULL:
1462 /* log the full path */
1463 audit_log_format(ab, " name=");
1464 audit_log_untrustedstring(ab, n->name);
1465 break;
1466 case 0:
1467 /* name was specified as a relative path and the
1468 * directory component is the cwd */
1469 audit_log_d_path(ab, "name=", &context->pwd);
1470 break;
1471 default:
1472 /* log the name's directory component */
1473 audit_log_format(ab, " name=");
1474 audit_log_n_untrustedstring(ab, n->name,
1475 n->name_len);
1476 }
1477 } else
1478 audit_log_format(ab, " name=(null)");
1479
1480 if (n->ino != (unsigned long)-1) {
1481 audit_log_format(ab, " inode=%lu"
1482 " dev=%02x:%02x mode=%#ho"
1483 " ouid=%u ogid=%u rdev=%02x:%02x",
1484 n->ino,
1485 MAJOR(n->dev),
1486 MINOR(n->dev),
1487 n->mode,
1488 n->uid,
1489 n->gid,
1490 MAJOR(n->rdev),
1491 MINOR(n->rdev));
1492 }
1493 if (n->osid != 0) {
1494 char *ctx = NULL;
1495 u32 len;
1496 if (security_secid_to_secctx(
1497 n->osid, &ctx, &len)) {
1498 audit_log_format(ab, " osid=%u", n->osid);
1499 *call_panic = 2;
1500 } else {
1501 audit_log_format(ab, " obj=%s", ctx);
1502 security_release_secctx(ctx, len);
1503 }
1504 }
1505
1506 audit_log_fcaps(ab, n);
1507
1508 audit_log_end(ab);
1509 }
1510
1511 static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1512 {
1513 const struct cred *cred;
1514 int i, call_panic = 0;
1515 struct audit_buffer *ab;
1516 struct audit_aux_data *aux;
1517 const char *tty;
1518 struct audit_names *n;
1519
1520 /* tsk == current */
1521 context->pid = tsk->pid;
1522 if (!context->ppid)
1523 context->ppid = sys_getppid();
1524 cred = current_cred();
1525 context->uid = cred->uid;
1526 context->gid = cred->gid;
1527 context->euid = cred->euid;
1528 context->suid = cred->suid;
1529 context->fsuid = cred->fsuid;
1530 context->egid = cred->egid;
1531 context->sgid = cred->sgid;
1532 context->fsgid = cred->fsgid;
1533 context->personality = tsk->personality;
1534
1535 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1536 if (!ab)
1537 return; /* audit_panic has been called */
1538 audit_log_format(ab, "arch=%x syscall=%d",
1539 context->arch, context->major);
1540 if (context->personality != PER_LINUX)
1541 audit_log_format(ab, " per=%lx", context->personality);
1542 if (context->return_valid)
1543 audit_log_format(ab, " success=%s exit=%ld",
1544 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1545 context->return_code);
1546
1547 spin_lock_irq(&tsk->sighand->siglock);
1548 if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1549 tty = tsk->signal->tty->name;
1550 else
1551 tty = "(none)";
1552 spin_unlock_irq(&tsk->sighand->siglock);
1553
1554 audit_log_format(ab,
1555 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d"
1556 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
1557 " euid=%u suid=%u fsuid=%u"
1558 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1559 context->argv[0],
1560 context->argv[1],
1561 context->argv[2],
1562 context->argv[3],
1563 context->name_count,
1564 context->ppid,
1565 context->pid,
1566 tsk->loginuid,
1567 context->uid,
1568 context->gid,
1569 context->euid, context->suid, context->fsuid,
1570 context->egid, context->sgid, context->fsgid, tty,
1571 tsk->sessionid);
1572
1573
1574 audit_log_task_info(ab, tsk);
1575 audit_log_key(ab, context->filterkey);
1576 audit_log_end(ab);
1577
1578 for (aux = context->aux; aux; aux = aux->next) {
1579
1580 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1581 if (!ab)
1582 continue; /* audit_panic has been called */
1583
1584 switch (aux->type) {
1585
1586 case AUDIT_EXECVE: {
1587 struct audit_aux_data_execve *axi = (void *)aux;
1588 audit_log_execve_info(context, &ab, axi);
1589 break; }
1590
1591 case AUDIT_BPRM_FCAPS: {
1592 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1593 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1594 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1595 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1596 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1597 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1598 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1599 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1600 audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1601 audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1602 audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
1603 break; }
1604
1605 }
1606 audit_log_end(ab);
1607 }
1608
1609 if (context->type)
1610 show_special(context, &call_panic);
1611
1612 if (context->fds[0] >= 0) {
1613 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1614 if (ab) {
1615 audit_log_format(ab, "fd0=%d fd1=%d",
1616 context->fds[0], context->fds[1]);
1617 audit_log_end(ab);
1618 }
1619 }
1620
1621 if (context->sockaddr_len) {
1622 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1623 if (ab) {
1624 audit_log_format(ab, "saddr=");
1625 audit_log_n_hex(ab, (void *)context->sockaddr,
1626 context->sockaddr_len);
1627 audit_log_end(ab);
1628 }
1629 }
1630
1631 for (aux = context->aux_pids; aux; aux = aux->next) {
1632 struct audit_aux_data_pids *axs = (void *)aux;
1633
1634 for (i = 0; i < axs->pid_count; i++)
1635 if (audit_log_pid_context(context, axs->target_pid[i],
1636 axs->target_auid[i],
1637 axs->target_uid[i],
1638 axs->target_sessionid[i],
1639 axs->target_sid[i],
1640 axs->target_comm[i]))
1641 call_panic = 1;
1642 }
1643
1644 if (context->target_pid &&
1645 audit_log_pid_context(context, context->target_pid,
1646 context->target_auid, context->target_uid,
1647 context->target_sessionid,
1648 context->target_sid, context->target_comm))
1649 call_panic = 1;
1650
1651 if (context->pwd.dentry && context->pwd.mnt) {
1652 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1653 if (ab) {
1654 audit_log_d_path(ab, "cwd=", &context->pwd);
1655 audit_log_end(ab);
1656 }
1657 }
1658
1659 i = 0;
1660 list_for_each_entry(n, &context->names_list, list)
1661 audit_log_name(context, n, i++, &call_panic);
1662
1663 /* Send end of event record to help user space know we are finished */
1664 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1665 if (ab)
1666 audit_log_end(ab);
1667 if (call_panic)
1668 audit_panic("error converting sid to string");
1669 }
1670
1671 /**
1672 * audit_free - free a per-task audit context
1673 * @tsk: task whose audit context block to free
1674 *
1675 * Called from copy_process and do_exit
1676 */
1677 void __audit_free(struct task_struct *tsk)
1678 {
1679 struct audit_context *context;
1680
1681 context = audit_get_context(tsk, 0, 0);
1682 if (!context)
1683 return;
1684
1685 /* Check for system calls that do not go through the exit
1686 * function (e.g., exit_group), then free context block.
1687 * We use GFP_ATOMIC here because we might be doing this
1688 * in the context of the idle thread */
1689 /* that can happen only if we are called from do_exit() */
1690 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1691 audit_log_exit(context, tsk);
1692 if (!list_empty(&context->killed_trees))
1693 audit_kill_trees(&context->killed_trees);
1694
1695 audit_free_context(context);
1696 }
1697
1698 /**
1699 * audit_syscall_entry - fill in an audit record at syscall entry
1700 * @arch: architecture type
1701 * @major: major syscall type (function)
1702 * @a1: additional syscall register 1
1703 * @a2: additional syscall register 2
1704 * @a3: additional syscall register 3
1705 * @a4: additional syscall register 4
1706 *
1707 * Fill in audit context at syscall entry. This only happens if the
1708 * audit context was created when the task was created and the state or
1709 * filters demand the audit context be built. If the state from the
1710 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1711 * then the record will be written at syscall exit time (otherwise, it
1712 * will only be written if another part of the kernel requests that it
1713 * be written).
1714 */
1715 void __audit_syscall_entry(int arch, int major,
1716 unsigned long a1, unsigned long a2,
1717 unsigned long a3, unsigned long a4)
1718 {
1719 struct task_struct *tsk = current;
1720 struct audit_context *context = tsk->audit_context;
1721 enum audit_state state;
1722
1723 if (!context)
1724 return;
1725
1726 /*
1727 * This happens only on certain architectures that make system
1728 * calls in kernel_thread via the entry.S interface, instead of
1729 * with direct calls. (If you are porting to a new
1730 * architecture, hitting this condition can indicate that you
1731 * got the _exit/_leave calls backward in entry.S.)
1732 *
1733 * i386 no
1734 * x86_64 no
1735 * ppc64 yes (see arch/powerpc/platforms/iseries/misc.S)
1736 *
1737 * This also happens with vm86 emulation in a non-nested manner
1738 * (entries without exits), so this case must be caught.
1739 */
1740 if (context->in_syscall) {
1741 struct audit_context *newctx;
1742
1743 #if AUDIT_DEBUG
1744 printk(KERN_ERR
1745 "audit(:%d) pid=%d in syscall=%d;"
1746 " entering syscall=%d\n",
1747 context->serial, tsk->pid, context->major, major);
1748 #endif
1749 newctx = audit_alloc_context(context->state);
1750 if (newctx) {
1751 newctx->previous = context;
1752 context = newctx;
1753 tsk->audit_context = newctx;
1754 } else {
1755 /* If we can't alloc a new context, the best we
1756 * can do is to leak memory (any pending putname
1757 * will be lost). The only other alternative is
1758 * to abandon auditing. */
1759 audit_zero_context(context, context->state);
1760 }
1761 }
1762 BUG_ON(context->in_syscall || context->name_count);
1763
1764 if (!audit_enabled)
1765 return;
1766
1767 context->arch = arch;
1768 context->major = major;
1769 context->argv[0] = a1;
1770 context->argv[1] = a2;
1771 context->argv[2] = a3;
1772 context->argv[3] = a4;
1773
1774 state = context->state;
1775 context->dummy = !audit_n_rules;
1776 if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1777 context->prio = 0;
1778 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1779 }
1780 if (state == AUDIT_DISABLED)
1781 return;
1782
1783 context->serial = 0;
1784 context->ctime = CURRENT_TIME;
1785 context->in_syscall = 1;
1786 context->current_state = state;
1787 context->ppid = 0;
1788 }
1789
1790 /**
1791 * audit_syscall_exit - deallocate audit context after a system call
1792 * @pt_regs: syscall registers
1793 *
1794 * Tear down after system call. If the audit context has been marked as
1795 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1796 * filtering, or because some other part of the kernel write an audit
1797 * message), then write out the syscall information. In call cases,
1798 * free the names stored from getname().
1799 */
1800 void __audit_syscall_exit(int success, long return_code)
1801 {
1802 struct task_struct *tsk = current;
1803 struct audit_context *context;
1804
1805 if (success)
1806 success = AUDITSC_SUCCESS;
1807 else
1808 success = AUDITSC_FAILURE;
1809
1810 context = audit_get_context(tsk, success, return_code);
1811 if (!context)
1812 return;
1813
1814 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1815 audit_log_exit(context, tsk);
1816
1817 context->in_syscall = 0;
1818 context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1819
1820 if (!list_empty(&context->killed_trees))
1821 audit_kill_trees(&context->killed_trees);
1822
1823 if (context->previous) {
1824 struct audit_context *new_context = context->previous;
1825 context->previous = NULL;
1826 audit_free_context(context);
1827 tsk->audit_context = new_context;
1828 } else {
1829 audit_free_names(context);
1830 unroll_tree_refs(context, NULL, 0);
1831 audit_free_aux(context);
1832 context->aux = NULL;
1833 context->aux_pids = NULL;
1834 context->target_pid = 0;
1835 context->target_sid = 0;
1836 context->sockaddr_len = 0;
1837 context->type = 0;
1838 context->fds[0] = -1;
1839 if (context->state != AUDIT_RECORD_CONTEXT) {
1840 kfree(context->filterkey);
1841 context->filterkey = NULL;
1842 }
1843 tsk->audit_context = context;
1844 }
1845 }
1846
1847 static inline void handle_one(const struct inode *inode)
1848 {
1849 #ifdef CONFIG_AUDIT_TREE
1850 struct audit_context *context;
1851 struct audit_tree_refs *p;
1852 struct audit_chunk *chunk;
1853 int count;
1854 if (likely(hlist_empty(&inode->i_fsnotify_marks)))
1855 return;
1856 context = current->audit_context;
1857 p = context->trees;
1858 count = context->tree_count;
1859 rcu_read_lock();
1860 chunk = audit_tree_lookup(inode);
1861 rcu_read_unlock();
1862 if (!chunk)
1863 return;
1864 if (likely(put_tree_ref(context, chunk)))
1865 return;
1866 if (unlikely(!grow_tree_refs(context))) {
1867 printk(KERN_WARNING "out of memory, audit has lost a tree reference\n");
1868 audit_set_auditable(context);
1869 audit_put_chunk(chunk);
1870 unroll_tree_refs(context, p, count);
1871 return;
1872 }
1873 put_tree_ref(context, chunk);
1874 #endif
1875 }
1876
1877 static void handle_path(const struct dentry *dentry)
1878 {
1879 #ifdef CONFIG_AUDIT_TREE
1880 struct audit_context *context;
1881 struct audit_tree_refs *p;
1882 const struct dentry *d, *parent;
1883 struct audit_chunk *drop;
1884 unsigned long seq;
1885 int count;
1886
1887 context = current->audit_context;
1888 p = context->trees;
1889 count = context->tree_count;
1890 retry:
1891 drop = NULL;
1892 d = dentry;
1893 rcu_read_lock();
1894 seq = read_seqbegin(&rename_lock);
1895 for(;;) {
1896 struct inode *inode = d->d_inode;
1897 if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) {
1898 struct audit_chunk *chunk;
1899 chunk = audit_tree_lookup(inode);
1900 if (chunk) {
1901 if (unlikely(!put_tree_ref(context, chunk))) {
1902 drop = chunk;
1903 break;
1904 }
1905 }
1906 }
1907 parent = d->d_parent;
1908 if (parent == d)
1909 break;
1910 d = parent;
1911 }
1912 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1913 rcu_read_unlock();
1914 if (!drop) {
1915 /* just a race with rename */
1916 unroll_tree_refs(context, p, count);
1917 goto retry;
1918 }
1919 audit_put_chunk(drop);
1920 if (grow_tree_refs(context)) {
1921 /* OK, got more space */
1922 unroll_tree_refs(context, p, count);
1923 goto retry;
1924 }
1925 /* too bad */
1926 printk(KERN_WARNING
1927 "out of memory, audit has lost a tree reference\n");
1928 unroll_tree_refs(context, p, count);
1929 audit_set_auditable(context);
1930 return;
1931 }
1932 rcu_read_unlock();
1933 #endif
1934 }
1935
1936 static struct audit_names *audit_alloc_name(struct audit_context *context)
1937 {
1938 struct audit_names *aname;
1939
1940 if (context->name_count < AUDIT_NAMES) {
1941 aname = &context->preallocated_names[context->name_count];
1942 memset(aname, 0, sizeof(*aname));
1943 } else {
1944 aname = kzalloc(sizeof(*aname), GFP_NOFS);
1945 if (!aname)
1946 return NULL;
1947 aname->should_free = true;
1948 }
1949
1950 aname->ino = (unsigned long)-1;
1951 list_add_tail(&aname->list, &context->names_list);
1952
1953 context->name_count++;
1954 #if AUDIT_DEBUG
1955 context->ino_count++;
1956 #endif
1957 return aname;
1958 }
1959
1960 /**
1961 * audit_getname - add a name to the list
1962 * @name: name to add
1963 *
1964 * Add a name to the list of audit names for this context.
1965 * Called from fs/namei.c:getname().
1966 */
1967 void __audit_getname(const char *name)
1968 {
1969 struct audit_context *context = current->audit_context;
1970 struct audit_names *n;
1971
1972 if (!context->in_syscall) {
1973 #if AUDIT_DEBUG == 2
1974 printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
1975 __FILE__, __LINE__, context->serial, name);
1976 dump_stack();
1977 #endif
1978 return;
1979 }
1980
1981 n = audit_alloc_name(context);
1982 if (!n)
1983 return;
1984
1985 n->name = name;
1986 n->name_len = AUDIT_NAME_FULL;
1987 n->name_put = true;
1988
1989 if (!context->pwd.dentry)
1990 get_fs_pwd(current->fs, &context->pwd);
1991 }
1992
1993 /* audit_putname - intercept a putname request
1994 * @name: name to intercept and delay for putname
1995 *
1996 * If we have stored the name from getname in the audit context,
1997 * then we delay the putname until syscall exit.
1998 * Called from include/linux/fs.h:putname().
1999 */
2000 void audit_putname(const char *name)
2001 {
2002 struct audit_context *context = current->audit_context;
2003
2004 BUG_ON(!context);
2005 if (!context->in_syscall) {
2006 #if AUDIT_DEBUG == 2
2007 printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n",
2008 __FILE__, __LINE__, context->serial, name);
2009 if (context->name_count) {
2010 struct audit_names *n;
2011 int i;
2012
2013 list_for_each_entry(n, &context->names_list, list)
2014 printk(KERN_ERR "name[%d] = %p = %s\n", i,
2015 n->name, n->name ?: "(null)");
2016 }
2017 #endif
2018 __putname(name);
2019 }
2020 #if AUDIT_DEBUG
2021 else {
2022 ++context->put_count;
2023 if (context->put_count > context->name_count) {
2024 printk(KERN_ERR "%s:%d(:%d): major=%d"
2025 " in_syscall=%d putname(%p) name_count=%d"
2026 " put_count=%d\n",
2027 __FILE__, __LINE__,
2028 context->serial, context->major,
2029 context->in_syscall, name, context->name_count,
2030 context->put_count);
2031 dump_stack();
2032 }
2033 }
2034 #endif
2035 }
2036
2037 static inline int audit_copy_fcaps(struct audit_names *name, const struct dentry *dentry)
2038 {
2039 struct cpu_vfs_cap_data caps;
2040 int rc;
2041
2042 if (!dentry)
2043 return 0;
2044
2045 rc = get_vfs_caps_from_disk(dentry, &caps);
2046 if (rc)
2047 return rc;
2048
2049 name->fcap.permitted = caps.permitted;
2050 name->fcap.inheritable = caps.inheritable;
2051 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2052 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2053
2054 return 0;
2055 }
2056
2057
2058 /* Copy inode data into an audit_names. */
2059 static void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
2060 const struct inode *inode)
2061 {
2062 name->ino = inode->i_ino;
2063 name->dev = inode->i_sb->s_dev;
2064 name->mode = inode->i_mode;
2065 name->uid = inode->i_uid;
2066 name->gid = inode->i_gid;
2067 name->rdev = inode->i_rdev;
2068 security_inode_getsecid(inode, &name->osid);
2069 audit_copy_fcaps(name, dentry);
2070 }
2071
2072 /**
2073 * audit_inode - store the inode and device from a lookup
2074 * @name: name being audited
2075 * @dentry: dentry being audited
2076 *
2077 * Called from fs/namei.c:path_lookup().
2078 */
2079 void __audit_inode(const char *name, const struct dentry *dentry)
2080 {
2081 struct audit_context *context = current->audit_context;
2082 const struct inode *inode = dentry->d_inode;
2083 struct audit_names *n;
2084
2085 if (!context->in_syscall)
2086 return;
2087
2088 list_for_each_entry_reverse(n, &context->names_list, list) {
2089 if (n->name && (n->name == name))
2090 goto out;
2091 }
2092
2093 /* unable to find the name from a previous getname() */
2094 n = audit_alloc_name(context);
2095 if (!n)
2096 return;
2097 out:
2098 handle_path(dentry);
2099 audit_copy_inode(n, dentry, inode);
2100 }
2101
2102 /**
2103 * audit_inode_child - collect inode info for created/removed objects
2104 * @dentry: dentry being audited
2105 * @parent: inode of dentry parent
2106 *
2107 * For syscalls that create or remove filesystem objects, audit_inode
2108 * can only collect information for the filesystem object's parent.
2109 * This call updates the audit context with the child's information.
2110 * Syscalls that create a new filesystem object must be hooked after
2111 * the object is created. Syscalls that remove a filesystem object
2112 * must be hooked prior, in order to capture the target inode during
2113 * unsuccessful attempts.
2114 */
2115 void __audit_inode_child(const struct dentry *dentry,
2116 const struct inode *parent)
2117 {
2118 struct audit_context *context = current->audit_context;
2119 const char *found_parent = NULL, *found_child = NULL;
2120 const struct inode *inode = dentry->d_inode;
2121 const char *dname = dentry->d_name.name;
2122 struct audit_names *n;
2123 int dirlen = 0;
2124
2125 if (!context->in_syscall)
2126 return;
2127
2128 if (inode)
2129 handle_one(inode);
2130
2131 /* parent is more likely, look for it first */
2132 list_for_each_entry(n, &context->names_list, list) {
2133 if (!n->name)
2134 continue;
2135
2136 if (n->ino == parent->i_ino &&
2137 !audit_compare_dname_path(dname, n->name, &dirlen)) {
2138 n->name_len = dirlen; /* update parent data in place */
2139 found_parent = n->name;
2140 goto add_names;
2141 }
2142 }
2143
2144 /* no matching parent, look for matching child */
2145 list_for_each_entry(n, &context->names_list, list) {
2146 if (!n->name)
2147 continue;
2148
2149 /* strcmp() is the more likely scenario */
2150 if (!strcmp(dname, n->name) ||
2151 !audit_compare_dname_path(dname, n->name, &dirlen)) {
2152 if (inode)
2153 audit_copy_inode(n, NULL, inode);
2154 else
2155 n->ino = (unsigned long)-1;
2156 found_child = n->name;
2157 goto add_names;
2158 }
2159 }
2160
2161 add_names:
2162 if (!found_parent) {
2163 n = audit_alloc_name(context);
2164 if (!n)
2165 return;
2166 audit_copy_inode(n, NULL, parent);
2167 }
2168
2169 if (!found_child) {
2170 n = audit_alloc_name(context);
2171 if (!n)
2172 return;
2173
2174 /* Re-use the name belonging to the slot for a matching parent
2175 * directory. All names for this context are relinquished in
2176 * audit_free_names() */
2177 if (found_parent) {
2178 n->name = found_parent;
2179 n->name_len = AUDIT_NAME_FULL;
2180 /* don't call __putname() */
2181 n->name_put = false;
2182 }
2183
2184 if (inode)
2185 audit_copy_inode(n, NULL, inode);
2186 }
2187 }
2188 EXPORT_SYMBOL_GPL(__audit_inode_child);
2189
2190 /**
2191 * auditsc_get_stamp - get local copies of audit_context values
2192 * @ctx: audit_context for the task
2193 * @t: timespec to store time recorded in the audit_context
2194 * @serial: serial value that is recorded in the audit_context
2195 *
2196 * Also sets the context as auditable.
2197 */
2198 int auditsc_get_stamp(struct audit_context *ctx,
2199 struct timespec *t, unsigned int *serial)
2200 {
2201 if (!ctx->in_syscall)
2202 return 0;
2203 if (!ctx->serial)
2204 ctx->serial = audit_serial();
2205 t->tv_sec = ctx->ctime.tv_sec;
2206 t->tv_nsec = ctx->ctime.tv_nsec;
2207 *serial = ctx->serial;
2208 if (!ctx->prio) {
2209 ctx->prio = 1;
2210 ctx->current_state = AUDIT_RECORD_CONTEXT;
2211 }
2212 return 1;
2213 }
2214
2215 /* global counter which is incremented every time something logs in */
2216 static atomic_t session_id = ATOMIC_INIT(0);
2217
2218 /**
2219 * audit_set_loginuid - set current task's audit_context loginuid
2220 * @loginuid: loginuid value
2221 *
2222 * Returns 0.
2223 *
2224 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2225 */
2226 int audit_set_loginuid(uid_t loginuid)
2227 {
2228 struct task_struct *task = current;
2229 struct audit_context *context = task->audit_context;
2230 unsigned int sessionid;
2231
2232 #ifdef CONFIG_AUDIT_LOGINUID_IMMUTABLE
2233 if (task->loginuid != -1)
2234 return -EPERM;
2235 #else /* CONFIG_AUDIT_LOGINUID_IMMUTABLE */
2236 if (!capable(CAP_AUDIT_CONTROL))
2237 return -EPERM;
2238 #endif /* CONFIG_AUDIT_LOGINUID_IMMUTABLE */
2239
2240 sessionid = atomic_inc_return(&session_id);
2241 if (context && context->in_syscall) {
2242 struct audit_buffer *ab;
2243
2244 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
2245 if (ab) {
2246 audit_log_format(ab, "login pid=%d uid=%u "
2247 "old auid=%u new auid=%u"
2248 " old ses=%u new ses=%u",
2249 task->pid, task_uid(task),
2250 task->loginuid, loginuid,
2251 task->sessionid, sessionid);
2252 audit_log_end(ab);
2253 }
2254 }
2255 task->sessionid = sessionid;
2256 task->loginuid = loginuid;
2257 return 0;
2258 }
2259
2260 /**
2261 * __audit_mq_open - record audit data for a POSIX MQ open
2262 * @oflag: open flag
2263 * @mode: mode bits
2264 * @attr: queue attributes
2265 *
2266 */
2267 void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2268 {
2269 struct audit_context *context = current->audit_context;
2270
2271 if (attr)
2272 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2273 else
2274 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2275
2276 context->mq_open.oflag = oflag;
2277 context->mq_open.mode = mode;
2278
2279 context->type = AUDIT_MQ_OPEN;
2280 }
2281
2282 /**
2283 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2284 * @mqdes: MQ descriptor
2285 * @msg_len: Message length
2286 * @msg_prio: Message priority
2287 * @abs_timeout: Message timeout in absolute time
2288 *
2289 */
2290 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2291 const struct timespec *abs_timeout)
2292 {
2293 struct audit_context *context = current->audit_context;
2294 struct timespec *p = &context->mq_sendrecv.abs_timeout;
2295
2296 if (abs_timeout)
2297 memcpy(p, abs_timeout, sizeof(struct timespec));
2298 else
2299 memset(p, 0, sizeof(struct timespec));
2300
2301 context->mq_sendrecv.mqdes = mqdes;
2302 context->mq_sendrecv.msg_len = msg_len;
2303 context->mq_sendrecv.msg_prio = msg_prio;
2304
2305 context->type = AUDIT_MQ_SENDRECV;
2306 }
2307
2308 /**
2309 * __audit_mq_notify - record audit data for a POSIX MQ notify
2310 * @mqdes: MQ descriptor
2311 * @notification: Notification event
2312 *
2313 */
2314
2315 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2316 {
2317 struct audit_context *context = current->audit_context;
2318
2319 if (notification)
2320 context->mq_notify.sigev_signo = notification->sigev_signo;
2321 else
2322 context->mq_notify.sigev_signo = 0;
2323
2324 context->mq_notify.mqdes = mqdes;
2325 context->type = AUDIT_MQ_NOTIFY;
2326 }
2327
2328 /**
2329 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2330 * @mqdes: MQ descriptor
2331 * @mqstat: MQ flags
2332 *
2333 */
2334 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2335 {
2336 struct audit_context *context = current->audit_context;
2337 context->mq_getsetattr.mqdes = mqdes;
2338 context->mq_getsetattr.mqstat = *mqstat;
2339 context->type = AUDIT_MQ_GETSETATTR;
2340 }
2341
2342 /**
2343 * audit_ipc_obj - record audit data for ipc object
2344 * @ipcp: ipc permissions
2345 *
2346 */
2347 void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2348 {
2349 struct audit_context *context = current->audit_context;
2350 context->ipc.uid = ipcp->uid;
2351 context->ipc.gid = ipcp->gid;
2352 context->ipc.mode = ipcp->mode;
2353 context->ipc.has_perm = 0;
2354 security_ipc_getsecid(ipcp, &context->ipc.osid);
2355 context->type = AUDIT_IPC;
2356 }
2357
2358 /**
2359 * audit_ipc_set_perm - record audit data for new ipc permissions
2360 * @qbytes: msgq bytes
2361 * @uid: msgq user id
2362 * @gid: msgq group id
2363 * @mode: msgq mode (permissions)
2364 *
2365 * Called only after audit_ipc_obj().
2366 */
2367 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2368 {
2369 struct audit_context *context = current->audit_context;
2370
2371 context->ipc.qbytes = qbytes;
2372 context->ipc.perm_uid = uid;
2373 context->ipc.perm_gid = gid;
2374 context->ipc.perm_mode = mode;
2375 context->ipc.has_perm = 1;
2376 }
2377
2378 int __audit_bprm(struct linux_binprm *bprm)
2379 {
2380 struct audit_aux_data_execve *ax;
2381 struct audit_context *context = current->audit_context;
2382
2383 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2384 if (!ax)
2385 return -ENOMEM;
2386
2387 ax->argc = bprm->argc;
2388 ax->envc = bprm->envc;
2389 ax->mm = bprm->mm;
2390 ax->d.type = AUDIT_EXECVE;
2391 ax->d.next = context->aux;
2392 context->aux = (void *)ax;
2393 return 0;
2394 }
2395
2396
2397 /**
2398 * audit_socketcall - record audit data for sys_socketcall
2399 * @nargs: number of args
2400 * @args: args array
2401 *
2402 */
2403 void __audit_socketcall(int nargs, unsigned long *args)
2404 {
2405 struct audit_context *context = current->audit_context;
2406
2407 context->type = AUDIT_SOCKETCALL;
2408 context->socketcall.nargs = nargs;
2409 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2410 }
2411
2412 /**
2413 * __audit_fd_pair - record audit data for pipe and socketpair
2414 * @fd1: the first file descriptor
2415 * @fd2: the second file descriptor
2416 *
2417 */
2418 void __audit_fd_pair(int fd1, int fd2)
2419 {
2420 struct audit_context *context = current->audit_context;
2421 context->fds[0] = fd1;
2422 context->fds[1] = fd2;
2423 }
2424
2425 /**
2426 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2427 * @len: data length in user space
2428 * @a: data address in kernel space
2429 *
2430 * Returns 0 for success or NULL context or < 0 on error.
2431 */
2432 int __audit_sockaddr(int len, void *a)
2433 {
2434 struct audit_context *context = current->audit_context;
2435
2436 if (!context->sockaddr) {
2437 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2438 if (!p)
2439 return -ENOMEM;
2440 context->sockaddr = p;
2441 }
2442
2443 context->sockaddr_len = len;
2444 memcpy(context->sockaddr, a, len);
2445 return 0;
2446 }
2447
2448 void __audit_ptrace(struct task_struct *t)
2449 {
2450 struct audit_context *context = current->audit_context;
2451
2452 context->target_pid = t->pid;
2453 context->target_auid = audit_get_loginuid(t);
2454 context->target_uid = task_uid(t);
2455 context->target_sessionid = audit_get_sessionid(t);
2456 security_task_getsecid(t, &context->target_sid);
2457 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2458 }
2459
2460 /**
2461 * audit_signal_info - record signal info for shutting down audit subsystem
2462 * @sig: signal value
2463 * @t: task being signaled
2464 *
2465 * If the audit subsystem is being terminated, record the task (pid)
2466 * and uid that is doing that.
2467 */
2468 int __audit_signal_info(int sig, struct task_struct *t)
2469 {
2470 struct audit_aux_data_pids *axp;
2471 struct task_struct *tsk = current;
2472 struct audit_context *ctx = tsk->audit_context;
2473 uid_t uid = current_uid(), t_uid = task_uid(t);
2474
2475 if (audit_pid && t->tgid == audit_pid) {
2476 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
2477 audit_sig_pid = tsk->pid;
2478 if (tsk->loginuid != -1)
2479 audit_sig_uid = tsk->loginuid;
2480 else
2481 audit_sig_uid = uid;
2482 security_task_getsecid(tsk, &audit_sig_sid);
2483 }
2484 if (!audit_signals || audit_dummy_context())
2485 return 0;
2486 }
2487
2488 /* optimize the common case by putting first signal recipient directly
2489 * in audit_context */
2490 if (!ctx->target_pid) {
2491 ctx->target_pid = t->tgid;
2492 ctx->target_auid = audit_get_loginuid(t);
2493 ctx->target_uid = t_uid;
2494 ctx->target_sessionid = audit_get_sessionid(t);
2495 security_task_getsecid(t, &ctx->target_sid);
2496 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2497 return 0;
2498 }
2499
2500 axp = (void *)ctx->aux_pids;
2501 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2502 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2503 if (!axp)
2504 return -ENOMEM;
2505
2506 axp->d.type = AUDIT_OBJ_PID;
2507 axp->d.next = ctx->aux_pids;
2508 ctx->aux_pids = (void *)axp;
2509 }
2510 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2511
2512 axp->target_pid[axp->pid_count] = t->tgid;
2513 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2514 axp->target_uid[axp->pid_count] = t_uid;
2515 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2516 security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2517 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2518 axp->pid_count++;
2519
2520 return 0;
2521 }
2522
2523 /**
2524 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2525 * @bprm: pointer to the bprm being processed
2526 * @new: the proposed new credentials
2527 * @old: the old credentials
2528 *
2529 * Simply check if the proc already has the caps given by the file and if not
2530 * store the priv escalation info for later auditing at the end of the syscall
2531 *
2532 * -Eric
2533 */
2534 int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2535 const struct cred *new, const struct cred *old)
2536 {
2537 struct audit_aux_data_bprm_fcaps *ax;
2538 struct audit_context *context = current->audit_context;
2539 struct cpu_vfs_cap_data vcaps;
2540 struct dentry *dentry;
2541
2542 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2543 if (!ax)
2544 return -ENOMEM;
2545
2546 ax->d.type = AUDIT_BPRM_FCAPS;
2547 ax->d.next = context->aux;
2548 context->aux = (void *)ax;
2549
2550 dentry = dget(bprm->file->f_dentry);
2551 get_vfs_caps_from_disk(dentry, &vcaps);
2552 dput(dentry);
2553
2554 ax->fcap.permitted = vcaps.permitted;
2555 ax->fcap.inheritable = vcaps.inheritable;
2556 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2557 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2558
2559 ax->old_pcap.permitted = old->cap_permitted;
2560 ax->old_pcap.inheritable = old->cap_inheritable;
2561 ax->old_pcap.effective = old->cap_effective;
2562
2563 ax->new_pcap.permitted = new->cap_permitted;
2564 ax->new_pcap.inheritable = new->cap_inheritable;
2565 ax->new_pcap.effective = new->cap_effective;
2566 return 0;
2567 }
2568
2569 /**
2570 * __audit_log_capset - store information about the arguments to the capset syscall
2571 * @pid: target pid of the capset call
2572 * @new: the new credentials
2573 * @old: the old (current) credentials
2574 *
2575 * Record the aguments userspace sent to sys_capset for later printing by the
2576 * audit system if applicable
2577 */
2578 void __audit_log_capset(pid_t pid,
2579 const struct cred *new, const struct cred *old)
2580 {
2581 struct audit_context *context = current->audit_context;
2582 context->capset.pid = pid;
2583 context->capset.cap.effective = new->cap_effective;
2584 context->capset.cap.inheritable = new->cap_effective;
2585 context->capset.cap.permitted = new->cap_permitted;
2586 context->type = AUDIT_CAPSET;
2587 }
2588
2589 void __audit_mmap_fd(int fd, int flags)
2590 {
2591 struct audit_context *context = current->audit_context;
2592 context->mmap.fd = fd;
2593 context->mmap.flags = flags;
2594 context->type = AUDIT_MMAP;
2595 }
2596
2597 static void audit_log_abend(struct audit_buffer *ab, char *reason, long signr)
2598 {
2599 uid_t auid, uid;
2600 gid_t gid;
2601 unsigned int sessionid;
2602
2603 auid = audit_get_loginuid(current);
2604 sessionid = audit_get_sessionid(current);
2605 current_uid_gid(&uid, &gid);
2606
2607 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2608 auid, uid, gid, sessionid);
2609 audit_log_task_context(ab);
2610 audit_log_format(ab, " pid=%d comm=", current->pid);
2611 audit_log_untrustedstring(ab, current->comm);
2612 audit_log_format(ab, " reason=");
2613 audit_log_string(ab, reason);
2614 audit_log_format(ab, " sig=%ld", signr);
2615 }
2616 /**
2617 * audit_core_dumps - record information about processes that end abnormally
2618 * @signr: signal value
2619 *
2620 * If a process ends with a core dump, something fishy is going on and we
2621 * should record the event for investigation.
2622 */
2623 void audit_core_dumps(long signr)
2624 {
2625 struct audit_buffer *ab;
2626
2627 if (!audit_enabled)
2628 return;
2629
2630 if (signr == SIGQUIT) /* don't care for those */
2631 return;
2632
2633 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2634 audit_log_abend(ab, "memory violation", signr);
2635 audit_log_end(ab);
2636 }
2637
2638 void __audit_seccomp(unsigned long syscall)
2639 {
2640 struct audit_buffer *ab;
2641
2642 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2643 audit_log_abend(ab, "seccomp", SIGKILL);
2644 audit_log_format(ab, " syscall=%ld", syscall);
2645 audit_log_end(ab);
2646 }
2647
2648 struct list_head *audit_killed_trees(void)
2649 {
2650 struct audit_context *ctx = current->audit_context;
2651 if (likely(!ctx || !ctx->in_syscall))
2652 return NULL;
2653 return &ctx->killed_trees;
2654 }
This page took 0.085747 seconds and 6 git commands to generate.