audit: allow matching on obj_uid
[deliverable/linux.git] / kernel / auditsc.c
1 /* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
3 *
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
7 * All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24 *
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
27 *
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
31 *
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
34 *
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37 *
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
40 *
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
43 */
44
45 #include <linux/init.h>
46 #include <asm/types.h>
47 #include <linux/atomic.h>
48 #include <linux/fs.h>
49 #include <linux/namei.h>
50 #include <linux/mm.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/mount.h>
54 #include <linux/socket.h>
55 #include <linux/mqueue.h>
56 #include <linux/audit.h>
57 #include <linux/personality.h>
58 #include <linux/time.h>
59 #include <linux/netlink.h>
60 #include <linux/compiler.h>
61 #include <asm/unistd.h>
62 #include <linux/security.h>
63 #include <linux/list.h>
64 #include <linux/tty.h>
65 #include <linux/binfmts.h>
66 #include <linux/highmem.h>
67 #include <linux/syscalls.h>
68 #include <linux/capability.h>
69 #include <linux/fs_struct.h>
70
71 #include "audit.h"
72
73 /* flags stating the success for a syscall */
74 #define AUDITSC_INVALID 0
75 #define AUDITSC_SUCCESS 1
76 #define AUDITSC_FAILURE 2
77
78 /* AUDIT_NAMES is the number of slots we reserve in the audit_context
79 * for saving names from getname(). If we get more names we will allocate
80 * a name dynamically and also add those to the list anchored by names_list. */
81 #define AUDIT_NAMES 5
82
83 /* Indicates that audit should log the full pathname. */
84 #define AUDIT_NAME_FULL -1
85
86 /* no execve audit message should be longer than this (userspace limits) */
87 #define MAX_EXECVE_AUDIT_LEN 7500
88
89 /* number of audit rules */
90 int audit_n_rules;
91
92 /* determines whether we collect data for signals sent */
93 int audit_signals;
94
95 struct audit_cap_data {
96 kernel_cap_t permitted;
97 kernel_cap_t inheritable;
98 union {
99 unsigned int fE; /* effective bit of a file capability */
100 kernel_cap_t effective; /* effective set of a process */
101 };
102 };
103
104 /* When fs/namei.c:getname() is called, we store the pointer in name and
105 * we don't let putname() free it (instead we free all of the saved
106 * pointers at syscall exit time).
107 *
108 * Further, in fs/namei.c:path_lookup() we store the inode and device. */
109 struct audit_names {
110 struct list_head list; /* audit_context->names_list */
111 const char *name;
112 unsigned long ino;
113 dev_t dev;
114 umode_t mode;
115 uid_t uid;
116 gid_t gid;
117 dev_t rdev;
118 u32 osid;
119 struct audit_cap_data fcap;
120 unsigned int fcap_ver;
121 int name_len; /* number of name's characters to log */
122 bool name_put; /* call __putname() for this name */
123 /*
124 * This was an allocated audit_names and not from the array of
125 * names allocated in the task audit context. Thus this name
126 * should be freed on syscall exit
127 */
128 bool should_free;
129 };
130
131 struct audit_aux_data {
132 struct audit_aux_data *next;
133 int type;
134 };
135
136 #define AUDIT_AUX_IPCPERM 0
137
138 /* Number of target pids per aux struct. */
139 #define AUDIT_AUX_PIDS 16
140
141 struct audit_aux_data_execve {
142 struct audit_aux_data d;
143 int argc;
144 int envc;
145 struct mm_struct *mm;
146 };
147
148 struct audit_aux_data_pids {
149 struct audit_aux_data d;
150 pid_t target_pid[AUDIT_AUX_PIDS];
151 uid_t target_auid[AUDIT_AUX_PIDS];
152 uid_t target_uid[AUDIT_AUX_PIDS];
153 unsigned int target_sessionid[AUDIT_AUX_PIDS];
154 u32 target_sid[AUDIT_AUX_PIDS];
155 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
156 int pid_count;
157 };
158
159 struct audit_aux_data_bprm_fcaps {
160 struct audit_aux_data d;
161 struct audit_cap_data fcap;
162 unsigned int fcap_ver;
163 struct audit_cap_data old_pcap;
164 struct audit_cap_data new_pcap;
165 };
166
167 struct audit_aux_data_capset {
168 struct audit_aux_data d;
169 pid_t pid;
170 struct audit_cap_data cap;
171 };
172
173 struct audit_tree_refs {
174 struct audit_tree_refs *next;
175 struct audit_chunk *c[31];
176 };
177
178 /* The per-task audit context. */
179 struct audit_context {
180 int dummy; /* must be the first element */
181 int in_syscall; /* 1 if task is in a syscall */
182 enum audit_state state, current_state;
183 unsigned int serial; /* serial number for record */
184 int major; /* syscall number */
185 struct timespec ctime; /* time of syscall entry */
186 unsigned long argv[4]; /* syscall arguments */
187 long return_code;/* syscall return code */
188 u64 prio;
189 int return_valid; /* return code is valid */
190 /*
191 * The names_list is the list of all audit_names collected during this
192 * syscall. The first AUDIT_NAMES entries in the names_list will
193 * actually be from the preallocated_names array for performance
194 * reasons. Except during allocation they should never be referenced
195 * through the preallocated_names array and should only be found/used
196 * by running the names_list.
197 */
198 struct audit_names preallocated_names[AUDIT_NAMES];
199 int name_count; /* total records in names_list */
200 struct list_head names_list; /* anchor for struct audit_names->list */
201 char * filterkey; /* key for rule that triggered record */
202 struct path pwd;
203 struct audit_context *previous; /* For nested syscalls */
204 struct audit_aux_data *aux;
205 struct audit_aux_data *aux_pids;
206 struct sockaddr_storage *sockaddr;
207 size_t sockaddr_len;
208 /* Save things to print about task_struct */
209 pid_t pid, ppid;
210 uid_t uid, euid, suid, fsuid;
211 gid_t gid, egid, sgid, fsgid;
212 unsigned long personality;
213 int arch;
214
215 pid_t target_pid;
216 uid_t target_auid;
217 uid_t target_uid;
218 unsigned int target_sessionid;
219 u32 target_sid;
220 char target_comm[TASK_COMM_LEN];
221
222 struct audit_tree_refs *trees, *first_trees;
223 struct list_head killed_trees;
224 int tree_count;
225
226 int type;
227 union {
228 struct {
229 int nargs;
230 long args[6];
231 } socketcall;
232 struct {
233 uid_t uid;
234 gid_t gid;
235 umode_t mode;
236 u32 osid;
237 int has_perm;
238 uid_t perm_uid;
239 gid_t perm_gid;
240 umode_t perm_mode;
241 unsigned long qbytes;
242 } ipc;
243 struct {
244 mqd_t mqdes;
245 struct mq_attr mqstat;
246 } mq_getsetattr;
247 struct {
248 mqd_t mqdes;
249 int sigev_signo;
250 } mq_notify;
251 struct {
252 mqd_t mqdes;
253 size_t msg_len;
254 unsigned int msg_prio;
255 struct timespec abs_timeout;
256 } mq_sendrecv;
257 struct {
258 int oflag;
259 umode_t mode;
260 struct mq_attr attr;
261 } mq_open;
262 struct {
263 pid_t pid;
264 struct audit_cap_data cap;
265 } capset;
266 struct {
267 int fd;
268 int flags;
269 } mmap;
270 };
271 int fds[2];
272
273 #if AUDIT_DEBUG
274 int put_count;
275 int ino_count;
276 #endif
277 };
278
279 static inline int open_arg(int flags, int mask)
280 {
281 int n = ACC_MODE(flags);
282 if (flags & (O_TRUNC | O_CREAT))
283 n |= AUDIT_PERM_WRITE;
284 return n & mask;
285 }
286
287 static int audit_match_perm(struct audit_context *ctx, int mask)
288 {
289 unsigned n;
290 if (unlikely(!ctx))
291 return 0;
292 n = ctx->major;
293
294 switch (audit_classify_syscall(ctx->arch, n)) {
295 case 0: /* native */
296 if ((mask & AUDIT_PERM_WRITE) &&
297 audit_match_class(AUDIT_CLASS_WRITE, n))
298 return 1;
299 if ((mask & AUDIT_PERM_READ) &&
300 audit_match_class(AUDIT_CLASS_READ, n))
301 return 1;
302 if ((mask & AUDIT_PERM_ATTR) &&
303 audit_match_class(AUDIT_CLASS_CHATTR, n))
304 return 1;
305 return 0;
306 case 1: /* 32bit on biarch */
307 if ((mask & AUDIT_PERM_WRITE) &&
308 audit_match_class(AUDIT_CLASS_WRITE_32, n))
309 return 1;
310 if ((mask & AUDIT_PERM_READ) &&
311 audit_match_class(AUDIT_CLASS_READ_32, n))
312 return 1;
313 if ((mask & AUDIT_PERM_ATTR) &&
314 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
315 return 1;
316 return 0;
317 case 2: /* open */
318 return mask & ACC_MODE(ctx->argv[1]);
319 case 3: /* openat */
320 return mask & ACC_MODE(ctx->argv[2]);
321 case 4: /* socketcall */
322 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
323 case 5: /* execve */
324 return mask & AUDIT_PERM_EXEC;
325 default:
326 return 0;
327 }
328 }
329
330 static int audit_match_filetype(struct audit_context *ctx, int val)
331 {
332 struct audit_names *n;
333 umode_t mode = (umode_t)val;
334
335 if (unlikely(!ctx))
336 return 0;
337
338 list_for_each_entry(n, &ctx->names_list, list) {
339 if ((n->ino != -1) &&
340 ((n->mode & S_IFMT) == mode))
341 return 1;
342 }
343
344 return 0;
345 }
346
347 /*
348 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
349 * ->first_trees points to its beginning, ->trees - to the current end of data.
350 * ->tree_count is the number of free entries in array pointed to by ->trees.
351 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
352 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
353 * it's going to remain 1-element for almost any setup) until we free context itself.
354 * References in it _are_ dropped - at the same time we free/drop aux stuff.
355 */
356
357 #ifdef CONFIG_AUDIT_TREE
358 static void audit_set_auditable(struct audit_context *ctx)
359 {
360 if (!ctx->prio) {
361 ctx->prio = 1;
362 ctx->current_state = AUDIT_RECORD_CONTEXT;
363 }
364 }
365
366 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
367 {
368 struct audit_tree_refs *p = ctx->trees;
369 int left = ctx->tree_count;
370 if (likely(left)) {
371 p->c[--left] = chunk;
372 ctx->tree_count = left;
373 return 1;
374 }
375 if (!p)
376 return 0;
377 p = p->next;
378 if (p) {
379 p->c[30] = chunk;
380 ctx->trees = p;
381 ctx->tree_count = 30;
382 return 1;
383 }
384 return 0;
385 }
386
387 static int grow_tree_refs(struct audit_context *ctx)
388 {
389 struct audit_tree_refs *p = ctx->trees;
390 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
391 if (!ctx->trees) {
392 ctx->trees = p;
393 return 0;
394 }
395 if (p)
396 p->next = ctx->trees;
397 else
398 ctx->first_trees = ctx->trees;
399 ctx->tree_count = 31;
400 return 1;
401 }
402 #endif
403
404 static void unroll_tree_refs(struct audit_context *ctx,
405 struct audit_tree_refs *p, int count)
406 {
407 #ifdef CONFIG_AUDIT_TREE
408 struct audit_tree_refs *q;
409 int n;
410 if (!p) {
411 /* we started with empty chain */
412 p = ctx->first_trees;
413 count = 31;
414 /* if the very first allocation has failed, nothing to do */
415 if (!p)
416 return;
417 }
418 n = count;
419 for (q = p; q != ctx->trees; q = q->next, n = 31) {
420 while (n--) {
421 audit_put_chunk(q->c[n]);
422 q->c[n] = NULL;
423 }
424 }
425 while (n-- > ctx->tree_count) {
426 audit_put_chunk(q->c[n]);
427 q->c[n] = NULL;
428 }
429 ctx->trees = p;
430 ctx->tree_count = count;
431 #endif
432 }
433
434 static void free_tree_refs(struct audit_context *ctx)
435 {
436 struct audit_tree_refs *p, *q;
437 for (p = ctx->first_trees; p; p = q) {
438 q = p->next;
439 kfree(p);
440 }
441 }
442
443 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
444 {
445 #ifdef CONFIG_AUDIT_TREE
446 struct audit_tree_refs *p;
447 int n;
448 if (!tree)
449 return 0;
450 /* full ones */
451 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
452 for (n = 0; n < 31; n++)
453 if (audit_tree_match(p->c[n], tree))
454 return 1;
455 }
456 /* partial */
457 if (p) {
458 for (n = ctx->tree_count; n < 31; n++)
459 if (audit_tree_match(p->c[n], tree))
460 return 1;
461 }
462 #endif
463 return 0;
464 }
465
466 /* Determine if any context name data matches a rule's watch data */
467 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
468 * otherwise.
469 *
470 * If task_creation is true, this is an explicit indication that we are
471 * filtering a task rule at task creation time. This and tsk == current are
472 * the only situations where tsk->cred may be accessed without an rcu read lock.
473 */
474 static int audit_filter_rules(struct task_struct *tsk,
475 struct audit_krule *rule,
476 struct audit_context *ctx,
477 struct audit_names *name,
478 enum audit_state *state,
479 bool task_creation)
480 {
481 const struct cred *cred;
482 int i, need_sid = 1;
483 u32 sid;
484
485 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
486
487 for (i = 0; i < rule->field_count; i++) {
488 struct audit_field *f = &rule->fields[i];
489 struct audit_names *n;
490 int result = 0;
491
492 switch (f->type) {
493 case AUDIT_PID:
494 result = audit_comparator(tsk->pid, f->op, f->val);
495 break;
496 case AUDIT_PPID:
497 if (ctx) {
498 if (!ctx->ppid)
499 ctx->ppid = sys_getppid();
500 result = audit_comparator(ctx->ppid, f->op, f->val);
501 }
502 break;
503 case AUDIT_UID:
504 result = audit_comparator(cred->uid, f->op, f->val);
505 break;
506 case AUDIT_EUID:
507 result = audit_comparator(cred->euid, f->op, f->val);
508 break;
509 case AUDIT_SUID:
510 result = audit_comparator(cred->suid, f->op, f->val);
511 break;
512 case AUDIT_FSUID:
513 result = audit_comparator(cred->fsuid, f->op, f->val);
514 break;
515 case AUDIT_GID:
516 result = audit_comparator(cred->gid, f->op, f->val);
517 break;
518 case AUDIT_EGID:
519 result = audit_comparator(cred->egid, f->op, f->val);
520 break;
521 case AUDIT_SGID:
522 result = audit_comparator(cred->sgid, f->op, f->val);
523 break;
524 case AUDIT_FSGID:
525 result = audit_comparator(cred->fsgid, f->op, f->val);
526 break;
527 case AUDIT_PERS:
528 result = audit_comparator(tsk->personality, f->op, f->val);
529 break;
530 case AUDIT_ARCH:
531 if (ctx)
532 result = audit_comparator(ctx->arch, f->op, f->val);
533 break;
534
535 case AUDIT_EXIT:
536 if (ctx && ctx->return_valid)
537 result = audit_comparator(ctx->return_code, f->op, f->val);
538 break;
539 case AUDIT_SUCCESS:
540 if (ctx && ctx->return_valid) {
541 if (f->val)
542 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
543 else
544 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
545 }
546 break;
547 case AUDIT_DEVMAJOR:
548 if (name) {
549 if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
550 audit_comparator(MAJOR(name->rdev), f->op, f->val))
551 ++result;
552 } else if (ctx) {
553 list_for_each_entry(n, &ctx->names_list, list) {
554 if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
555 audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
556 ++result;
557 break;
558 }
559 }
560 }
561 break;
562 case AUDIT_DEVMINOR:
563 if (name) {
564 if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
565 audit_comparator(MINOR(name->rdev), f->op, f->val))
566 ++result;
567 } else if (ctx) {
568 list_for_each_entry(n, &ctx->names_list, list) {
569 if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
570 audit_comparator(MINOR(n->rdev), f->op, f->val)) {
571 ++result;
572 break;
573 }
574 }
575 }
576 break;
577 case AUDIT_INODE:
578 if (name)
579 result = (name->ino == f->val);
580 else if (ctx) {
581 list_for_each_entry(n, &ctx->names_list, list) {
582 if (audit_comparator(n->ino, f->op, f->val)) {
583 ++result;
584 break;
585 }
586 }
587 }
588 break;
589 case AUDIT_OBJ_UID:
590 if (name) {
591 result = audit_comparator(name->uid, f->op, f->val);
592 } else if (ctx) {
593 list_for_each_entry(n, &ctx->names_list, list) {
594 if (audit_comparator(n->uid, f->op, f->val)) {
595 ++result;
596 break;
597 }
598 }
599 }
600 break;
601 case AUDIT_WATCH:
602 if (name)
603 result = audit_watch_compare(rule->watch, name->ino, name->dev);
604 break;
605 case AUDIT_DIR:
606 if (ctx)
607 result = match_tree_refs(ctx, rule->tree);
608 break;
609 case AUDIT_LOGINUID:
610 result = 0;
611 if (ctx)
612 result = audit_comparator(tsk->loginuid, f->op, f->val);
613 break;
614 case AUDIT_SUBJ_USER:
615 case AUDIT_SUBJ_ROLE:
616 case AUDIT_SUBJ_TYPE:
617 case AUDIT_SUBJ_SEN:
618 case AUDIT_SUBJ_CLR:
619 /* NOTE: this may return negative values indicating
620 a temporary error. We simply treat this as a
621 match for now to avoid losing information that
622 may be wanted. An error message will also be
623 logged upon error */
624 if (f->lsm_rule) {
625 if (need_sid) {
626 security_task_getsecid(tsk, &sid);
627 need_sid = 0;
628 }
629 result = security_audit_rule_match(sid, f->type,
630 f->op,
631 f->lsm_rule,
632 ctx);
633 }
634 break;
635 case AUDIT_OBJ_USER:
636 case AUDIT_OBJ_ROLE:
637 case AUDIT_OBJ_TYPE:
638 case AUDIT_OBJ_LEV_LOW:
639 case AUDIT_OBJ_LEV_HIGH:
640 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
641 also applies here */
642 if (f->lsm_rule) {
643 /* Find files that match */
644 if (name) {
645 result = security_audit_rule_match(
646 name->osid, f->type, f->op,
647 f->lsm_rule, ctx);
648 } else if (ctx) {
649 list_for_each_entry(n, &ctx->names_list, list) {
650 if (security_audit_rule_match(n->osid, f->type,
651 f->op, f->lsm_rule,
652 ctx)) {
653 ++result;
654 break;
655 }
656 }
657 }
658 /* Find ipc objects that match */
659 if (!ctx || ctx->type != AUDIT_IPC)
660 break;
661 if (security_audit_rule_match(ctx->ipc.osid,
662 f->type, f->op,
663 f->lsm_rule, ctx))
664 ++result;
665 }
666 break;
667 case AUDIT_ARG0:
668 case AUDIT_ARG1:
669 case AUDIT_ARG2:
670 case AUDIT_ARG3:
671 if (ctx)
672 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
673 break;
674 case AUDIT_FILTERKEY:
675 /* ignore this field for filtering */
676 result = 1;
677 break;
678 case AUDIT_PERM:
679 result = audit_match_perm(ctx, f->val);
680 break;
681 case AUDIT_FILETYPE:
682 result = audit_match_filetype(ctx, f->val);
683 break;
684 }
685
686 if (!result)
687 return 0;
688 }
689
690 if (ctx) {
691 if (rule->prio <= ctx->prio)
692 return 0;
693 if (rule->filterkey) {
694 kfree(ctx->filterkey);
695 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
696 }
697 ctx->prio = rule->prio;
698 }
699 switch (rule->action) {
700 case AUDIT_NEVER: *state = AUDIT_DISABLED; break;
701 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break;
702 }
703 return 1;
704 }
705
706 /* At process creation time, we can determine if system-call auditing is
707 * completely disabled for this task. Since we only have the task
708 * structure at this point, we can only check uid and gid.
709 */
710 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
711 {
712 struct audit_entry *e;
713 enum audit_state state;
714
715 rcu_read_lock();
716 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
717 if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
718 &state, true)) {
719 if (state == AUDIT_RECORD_CONTEXT)
720 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
721 rcu_read_unlock();
722 return state;
723 }
724 }
725 rcu_read_unlock();
726 return AUDIT_BUILD_CONTEXT;
727 }
728
729 /* At syscall entry and exit time, this filter is called if the
730 * audit_state is not low enough that auditing cannot take place, but is
731 * also not high enough that we already know we have to write an audit
732 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
733 */
734 static enum audit_state audit_filter_syscall(struct task_struct *tsk,
735 struct audit_context *ctx,
736 struct list_head *list)
737 {
738 struct audit_entry *e;
739 enum audit_state state;
740
741 if (audit_pid && tsk->tgid == audit_pid)
742 return AUDIT_DISABLED;
743
744 rcu_read_lock();
745 if (!list_empty(list)) {
746 int word = AUDIT_WORD(ctx->major);
747 int bit = AUDIT_BIT(ctx->major);
748
749 list_for_each_entry_rcu(e, list, list) {
750 if ((e->rule.mask[word] & bit) == bit &&
751 audit_filter_rules(tsk, &e->rule, ctx, NULL,
752 &state, false)) {
753 rcu_read_unlock();
754 ctx->current_state = state;
755 return state;
756 }
757 }
758 }
759 rcu_read_unlock();
760 return AUDIT_BUILD_CONTEXT;
761 }
762
763 /*
764 * Given an audit_name check the inode hash table to see if they match.
765 * Called holding the rcu read lock to protect the use of audit_inode_hash
766 */
767 static int audit_filter_inode_name(struct task_struct *tsk,
768 struct audit_names *n,
769 struct audit_context *ctx) {
770 int word, bit;
771 int h = audit_hash_ino((u32)n->ino);
772 struct list_head *list = &audit_inode_hash[h];
773 struct audit_entry *e;
774 enum audit_state state;
775
776 word = AUDIT_WORD(ctx->major);
777 bit = AUDIT_BIT(ctx->major);
778
779 if (list_empty(list))
780 return 0;
781
782 list_for_each_entry_rcu(e, list, list) {
783 if ((e->rule.mask[word] & bit) == bit &&
784 audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
785 ctx->current_state = state;
786 return 1;
787 }
788 }
789
790 return 0;
791 }
792
793 /* At syscall exit time, this filter is called if any audit_names have been
794 * collected during syscall processing. We only check rules in sublists at hash
795 * buckets applicable to the inode numbers in audit_names.
796 * Regarding audit_state, same rules apply as for audit_filter_syscall().
797 */
798 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
799 {
800 struct audit_names *n;
801
802 if (audit_pid && tsk->tgid == audit_pid)
803 return;
804
805 rcu_read_lock();
806
807 list_for_each_entry(n, &ctx->names_list, list) {
808 if (audit_filter_inode_name(tsk, n, ctx))
809 break;
810 }
811 rcu_read_unlock();
812 }
813
814 static inline struct audit_context *audit_get_context(struct task_struct *tsk,
815 int return_valid,
816 long return_code)
817 {
818 struct audit_context *context = tsk->audit_context;
819
820 if (!context)
821 return NULL;
822 context->return_valid = return_valid;
823
824 /*
825 * we need to fix up the return code in the audit logs if the actual
826 * return codes are later going to be fixed up by the arch specific
827 * signal handlers
828 *
829 * This is actually a test for:
830 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
831 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
832 *
833 * but is faster than a bunch of ||
834 */
835 if (unlikely(return_code <= -ERESTARTSYS) &&
836 (return_code >= -ERESTART_RESTARTBLOCK) &&
837 (return_code != -ENOIOCTLCMD))
838 context->return_code = -EINTR;
839 else
840 context->return_code = return_code;
841
842 if (context->in_syscall && !context->dummy) {
843 audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
844 audit_filter_inodes(tsk, context);
845 }
846
847 tsk->audit_context = NULL;
848 return context;
849 }
850
851 static inline void audit_free_names(struct audit_context *context)
852 {
853 struct audit_names *n, *next;
854
855 #if AUDIT_DEBUG == 2
856 if (context->put_count + context->ino_count != context->name_count) {
857 printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
858 " name_count=%d put_count=%d"
859 " ino_count=%d [NOT freeing]\n",
860 __FILE__, __LINE__,
861 context->serial, context->major, context->in_syscall,
862 context->name_count, context->put_count,
863 context->ino_count);
864 list_for_each_entry(n, &context->names_list, list) {
865 printk(KERN_ERR "names[%d] = %p = %s\n", i,
866 n->name, n->name ?: "(null)");
867 }
868 dump_stack();
869 return;
870 }
871 #endif
872 #if AUDIT_DEBUG
873 context->put_count = 0;
874 context->ino_count = 0;
875 #endif
876
877 list_for_each_entry_safe(n, next, &context->names_list, list) {
878 list_del(&n->list);
879 if (n->name && n->name_put)
880 __putname(n->name);
881 if (n->should_free)
882 kfree(n);
883 }
884 context->name_count = 0;
885 path_put(&context->pwd);
886 context->pwd.dentry = NULL;
887 context->pwd.mnt = NULL;
888 }
889
890 static inline void audit_free_aux(struct audit_context *context)
891 {
892 struct audit_aux_data *aux;
893
894 while ((aux = context->aux)) {
895 context->aux = aux->next;
896 kfree(aux);
897 }
898 while ((aux = context->aux_pids)) {
899 context->aux_pids = aux->next;
900 kfree(aux);
901 }
902 }
903
904 static inline void audit_zero_context(struct audit_context *context,
905 enum audit_state state)
906 {
907 memset(context, 0, sizeof(*context));
908 context->state = state;
909 context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
910 }
911
912 static inline struct audit_context *audit_alloc_context(enum audit_state state)
913 {
914 struct audit_context *context;
915
916 if (!(context = kmalloc(sizeof(*context), GFP_KERNEL)))
917 return NULL;
918 audit_zero_context(context, state);
919 INIT_LIST_HEAD(&context->killed_trees);
920 INIT_LIST_HEAD(&context->names_list);
921 return context;
922 }
923
924 /**
925 * audit_alloc - allocate an audit context block for a task
926 * @tsk: task
927 *
928 * Filter on the task information and allocate a per-task audit context
929 * if necessary. Doing so turns on system call auditing for the
930 * specified task. This is called from copy_process, so no lock is
931 * needed.
932 */
933 int audit_alloc(struct task_struct *tsk)
934 {
935 struct audit_context *context;
936 enum audit_state state;
937 char *key = NULL;
938
939 if (likely(!audit_ever_enabled))
940 return 0; /* Return if not auditing. */
941
942 state = audit_filter_task(tsk, &key);
943 if (state == AUDIT_DISABLED)
944 return 0;
945
946 if (!(context = audit_alloc_context(state))) {
947 kfree(key);
948 audit_log_lost("out of memory in audit_alloc");
949 return -ENOMEM;
950 }
951 context->filterkey = key;
952
953 tsk->audit_context = context;
954 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
955 return 0;
956 }
957
958 static inline void audit_free_context(struct audit_context *context)
959 {
960 struct audit_context *previous;
961 int count = 0;
962
963 do {
964 previous = context->previous;
965 if (previous || (count && count < 10)) {
966 ++count;
967 printk(KERN_ERR "audit(:%d): major=%d name_count=%d:"
968 " freeing multiple contexts (%d)\n",
969 context->serial, context->major,
970 context->name_count, count);
971 }
972 audit_free_names(context);
973 unroll_tree_refs(context, NULL, 0);
974 free_tree_refs(context);
975 audit_free_aux(context);
976 kfree(context->filterkey);
977 kfree(context->sockaddr);
978 kfree(context);
979 context = previous;
980 } while (context);
981 if (count >= 10)
982 printk(KERN_ERR "audit: freed %d contexts\n", count);
983 }
984
985 void audit_log_task_context(struct audit_buffer *ab)
986 {
987 char *ctx = NULL;
988 unsigned len;
989 int error;
990 u32 sid;
991
992 security_task_getsecid(current, &sid);
993 if (!sid)
994 return;
995
996 error = security_secid_to_secctx(sid, &ctx, &len);
997 if (error) {
998 if (error != -EINVAL)
999 goto error_path;
1000 return;
1001 }
1002
1003 audit_log_format(ab, " subj=%s", ctx);
1004 security_release_secctx(ctx, len);
1005 return;
1006
1007 error_path:
1008 audit_panic("error in audit_log_task_context");
1009 return;
1010 }
1011
1012 EXPORT_SYMBOL(audit_log_task_context);
1013
1014 static void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
1015 {
1016 char name[sizeof(tsk->comm)];
1017 struct mm_struct *mm = tsk->mm;
1018 struct vm_area_struct *vma;
1019
1020 /* tsk == current */
1021
1022 get_task_comm(name, tsk);
1023 audit_log_format(ab, " comm=");
1024 audit_log_untrustedstring(ab, name);
1025
1026 if (mm) {
1027 down_read(&mm->mmap_sem);
1028 vma = mm->mmap;
1029 while (vma) {
1030 if ((vma->vm_flags & VM_EXECUTABLE) &&
1031 vma->vm_file) {
1032 audit_log_d_path(ab, "exe=",
1033 &vma->vm_file->f_path);
1034 break;
1035 }
1036 vma = vma->vm_next;
1037 }
1038 up_read(&mm->mmap_sem);
1039 }
1040 audit_log_task_context(ab);
1041 }
1042
1043 static int audit_log_pid_context(struct audit_context *context, pid_t pid,
1044 uid_t auid, uid_t uid, unsigned int sessionid,
1045 u32 sid, char *comm)
1046 {
1047 struct audit_buffer *ab;
1048 char *ctx = NULL;
1049 u32 len;
1050 int rc = 0;
1051
1052 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
1053 if (!ab)
1054 return rc;
1055
1056 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, auid,
1057 uid, sessionid);
1058 if (security_secid_to_secctx(sid, &ctx, &len)) {
1059 audit_log_format(ab, " obj=(none)");
1060 rc = 1;
1061 } else {
1062 audit_log_format(ab, " obj=%s", ctx);
1063 security_release_secctx(ctx, len);
1064 }
1065 audit_log_format(ab, " ocomm=");
1066 audit_log_untrustedstring(ab, comm);
1067 audit_log_end(ab);
1068
1069 return rc;
1070 }
1071
1072 /*
1073 * to_send and len_sent accounting are very loose estimates. We aren't
1074 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
1075 * within about 500 bytes (next page boundary)
1076 *
1077 * why snprintf? an int is up to 12 digits long. if we just assumed when
1078 * logging that a[%d]= was going to be 16 characters long we would be wasting
1079 * space in every audit message. In one 7500 byte message we can log up to
1080 * about 1000 min size arguments. That comes down to about 50% waste of space
1081 * if we didn't do the snprintf to find out how long arg_num_len was.
1082 */
1083 static int audit_log_single_execve_arg(struct audit_context *context,
1084 struct audit_buffer **ab,
1085 int arg_num,
1086 size_t *len_sent,
1087 const char __user *p,
1088 char *buf)
1089 {
1090 char arg_num_len_buf[12];
1091 const char __user *tmp_p = p;
1092 /* how many digits are in arg_num? 5 is the length of ' a=""' */
1093 size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 5;
1094 size_t len, len_left, to_send;
1095 size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
1096 unsigned int i, has_cntl = 0, too_long = 0;
1097 int ret;
1098
1099 /* strnlen_user includes the null we don't want to send */
1100 len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1101
1102 /*
1103 * We just created this mm, if we can't find the strings
1104 * we just copied into it something is _very_ wrong. Similar
1105 * for strings that are too long, we should not have created
1106 * any.
1107 */
1108 if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
1109 WARN_ON(1);
1110 send_sig(SIGKILL, current, 0);
1111 return -1;
1112 }
1113
1114 /* walk the whole argument looking for non-ascii chars */
1115 do {
1116 if (len_left > MAX_EXECVE_AUDIT_LEN)
1117 to_send = MAX_EXECVE_AUDIT_LEN;
1118 else
1119 to_send = len_left;
1120 ret = copy_from_user(buf, tmp_p, to_send);
1121 /*
1122 * There is no reason for this copy to be short. We just
1123 * copied them here, and the mm hasn't been exposed to user-
1124 * space yet.
1125 */
1126 if (ret) {
1127 WARN_ON(1);
1128 send_sig(SIGKILL, current, 0);
1129 return -1;
1130 }
1131 buf[to_send] = '\0';
1132 has_cntl = audit_string_contains_control(buf, to_send);
1133 if (has_cntl) {
1134 /*
1135 * hex messages get logged as 2 bytes, so we can only
1136 * send half as much in each message
1137 */
1138 max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
1139 break;
1140 }
1141 len_left -= to_send;
1142 tmp_p += to_send;
1143 } while (len_left > 0);
1144
1145 len_left = len;
1146
1147 if (len > max_execve_audit_len)
1148 too_long = 1;
1149
1150 /* rewalk the argument actually logging the message */
1151 for (i = 0; len_left > 0; i++) {
1152 int room_left;
1153
1154 if (len_left > max_execve_audit_len)
1155 to_send = max_execve_audit_len;
1156 else
1157 to_send = len_left;
1158
1159 /* do we have space left to send this argument in this ab? */
1160 room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1161 if (has_cntl)
1162 room_left -= (to_send * 2);
1163 else
1164 room_left -= to_send;
1165 if (room_left < 0) {
1166 *len_sent = 0;
1167 audit_log_end(*ab);
1168 *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1169 if (!*ab)
1170 return 0;
1171 }
1172
1173 /*
1174 * first record needs to say how long the original string was
1175 * so we can be sure nothing was lost.
1176 */
1177 if ((i == 0) && (too_long))
1178 audit_log_format(*ab, " a%d_len=%zu", arg_num,
1179 has_cntl ? 2*len : len);
1180
1181 /*
1182 * normally arguments are small enough to fit and we already
1183 * filled buf above when we checked for control characters
1184 * so don't bother with another copy_from_user
1185 */
1186 if (len >= max_execve_audit_len)
1187 ret = copy_from_user(buf, p, to_send);
1188 else
1189 ret = 0;
1190 if (ret) {
1191 WARN_ON(1);
1192 send_sig(SIGKILL, current, 0);
1193 return -1;
1194 }
1195 buf[to_send] = '\0';
1196
1197 /* actually log it */
1198 audit_log_format(*ab, " a%d", arg_num);
1199 if (too_long)
1200 audit_log_format(*ab, "[%d]", i);
1201 audit_log_format(*ab, "=");
1202 if (has_cntl)
1203 audit_log_n_hex(*ab, buf, to_send);
1204 else
1205 audit_log_string(*ab, buf);
1206
1207 p += to_send;
1208 len_left -= to_send;
1209 *len_sent += arg_num_len;
1210 if (has_cntl)
1211 *len_sent += to_send * 2;
1212 else
1213 *len_sent += to_send;
1214 }
1215 /* include the null we didn't log */
1216 return len + 1;
1217 }
1218
1219 static void audit_log_execve_info(struct audit_context *context,
1220 struct audit_buffer **ab,
1221 struct audit_aux_data_execve *axi)
1222 {
1223 int i;
1224 size_t len, len_sent = 0;
1225 const char __user *p;
1226 char *buf;
1227
1228 if (axi->mm != current->mm)
1229 return; /* execve failed, no additional info */
1230
1231 p = (const char __user *)axi->mm->arg_start;
1232
1233 audit_log_format(*ab, "argc=%d", axi->argc);
1234
1235 /*
1236 * we need some kernel buffer to hold the userspace args. Just
1237 * allocate one big one rather than allocating one of the right size
1238 * for every single argument inside audit_log_single_execve_arg()
1239 * should be <8k allocation so should be pretty safe.
1240 */
1241 buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1242 if (!buf) {
1243 audit_panic("out of memory for argv string\n");
1244 return;
1245 }
1246
1247 for (i = 0; i < axi->argc; i++) {
1248 len = audit_log_single_execve_arg(context, ab, i,
1249 &len_sent, p, buf);
1250 if (len <= 0)
1251 break;
1252 p += len;
1253 }
1254 kfree(buf);
1255 }
1256
1257 static void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1258 {
1259 int i;
1260
1261 audit_log_format(ab, " %s=", prefix);
1262 CAP_FOR_EACH_U32(i) {
1263 audit_log_format(ab, "%08x", cap->cap[(_KERNEL_CAPABILITY_U32S-1) - i]);
1264 }
1265 }
1266
1267 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1268 {
1269 kernel_cap_t *perm = &name->fcap.permitted;
1270 kernel_cap_t *inh = &name->fcap.inheritable;
1271 int log = 0;
1272
1273 if (!cap_isclear(*perm)) {
1274 audit_log_cap(ab, "cap_fp", perm);
1275 log = 1;
1276 }
1277 if (!cap_isclear(*inh)) {
1278 audit_log_cap(ab, "cap_fi", inh);
1279 log = 1;
1280 }
1281
1282 if (log)
1283 audit_log_format(ab, " cap_fe=%d cap_fver=%x", name->fcap.fE, name->fcap_ver);
1284 }
1285
1286 static void show_special(struct audit_context *context, int *call_panic)
1287 {
1288 struct audit_buffer *ab;
1289 int i;
1290
1291 ab = audit_log_start(context, GFP_KERNEL, context->type);
1292 if (!ab)
1293 return;
1294
1295 switch (context->type) {
1296 case AUDIT_SOCKETCALL: {
1297 int nargs = context->socketcall.nargs;
1298 audit_log_format(ab, "nargs=%d", nargs);
1299 for (i = 0; i < nargs; i++)
1300 audit_log_format(ab, " a%d=%lx", i,
1301 context->socketcall.args[i]);
1302 break; }
1303 case AUDIT_IPC: {
1304 u32 osid = context->ipc.osid;
1305
1306 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1307 context->ipc.uid, context->ipc.gid, context->ipc.mode);
1308 if (osid) {
1309 char *ctx = NULL;
1310 u32 len;
1311 if (security_secid_to_secctx(osid, &ctx, &len)) {
1312 audit_log_format(ab, " osid=%u", osid);
1313 *call_panic = 1;
1314 } else {
1315 audit_log_format(ab, " obj=%s", ctx);
1316 security_release_secctx(ctx, len);
1317 }
1318 }
1319 if (context->ipc.has_perm) {
1320 audit_log_end(ab);
1321 ab = audit_log_start(context, GFP_KERNEL,
1322 AUDIT_IPC_SET_PERM);
1323 audit_log_format(ab,
1324 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1325 context->ipc.qbytes,
1326 context->ipc.perm_uid,
1327 context->ipc.perm_gid,
1328 context->ipc.perm_mode);
1329 if (!ab)
1330 return;
1331 }
1332 break; }
1333 case AUDIT_MQ_OPEN: {
1334 audit_log_format(ab,
1335 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1336 "mq_msgsize=%ld mq_curmsgs=%ld",
1337 context->mq_open.oflag, context->mq_open.mode,
1338 context->mq_open.attr.mq_flags,
1339 context->mq_open.attr.mq_maxmsg,
1340 context->mq_open.attr.mq_msgsize,
1341 context->mq_open.attr.mq_curmsgs);
1342 break; }
1343 case AUDIT_MQ_SENDRECV: {
1344 audit_log_format(ab,
1345 "mqdes=%d msg_len=%zd msg_prio=%u "
1346 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1347 context->mq_sendrecv.mqdes,
1348 context->mq_sendrecv.msg_len,
1349 context->mq_sendrecv.msg_prio,
1350 context->mq_sendrecv.abs_timeout.tv_sec,
1351 context->mq_sendrecv.abs_timeout.tv_nsec);
1352 break; }
1353 case AUDIT_MQ_NOTIFY: {
1354 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1355 context->mq_notify.mqdes,
1356 context->mq_notify.sigev_signo);
1357 break; }
1358 case AUDIT_MQ_GETSETATTR: {
1359 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1360 audit_log_format(ab,
1361 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1362 "mq_curmsgs=%ld ",
1363 context->mq_getsetattr.mqdes,
1364 attr->mq_flags, attr->mq_maxmsg,
1365 attr->mq_msgsize, attr->mq_curmsgs);
1366 break; }
1367 case AUDIT_CAPSET: {
1368 audit_log_format(ab, "pid=%d", context->capset.pid);
1369 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1370 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1371 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1372 break; }
1373 case AUDIT_MMAP: {
1374 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1375 context->mmap.flags);
1376 break; }
1377 }
1378 audit_log_end(ab);
1379 }
1380
1381 static void audit_log_name(struct audit_context *context, struct audit_names *n,
1382 int record_num, int *call_panic)
1383 {
1384 struct audit_buffer *ab;
1385 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1386 if (!ab)
1387 return; /* audit_panic has been called */
1388
1389 audit_log_format(ab, "item=%d", record_num);
1390
1391 if (n->name) {
1392 switch (n->name_len) {
1393 case AUDIT_NAME_FULL:
1394 /* log the full path */
1395 audit_log_format(ab, " name=");
1396 audit_log_untrustedstring(ab, n->name);
1397 break;
1398 case 0:
1399 /* name was specified as a relative path and the
1400 * directory component is the cwd */
1401 audit_log_d_path(ab, "name=", &context->pwd);
1402 break;
1403 default:
1404 /* log the name's directory component */
1405 audit_log_format(ab, " name=");
1406 audit_log_n_untrustedstring(ab, n->name,
1407 n->name_len);
1408 }
1409 } else
1410 audit_log_format(ab, " name=(null)");
1411
1412 if (n->ino != (unsigned long)-1) {
1413 audit_log_format(ab, " inode=%lu"
1414 " dev=%02x:%02x mode=%#ho"
1415 " ouid=%u ogid=%u rdev=%02x:%02x",
1416 n->ino,
1417 MAJOR(n->dev),
1418 MINOR(n->dev),
1419 n->mode,
1420 n->uid,
1421 n->gid,
1422 MAJOR(n->rdev),
1423 MINOR(n->rdev));
1424 }
1425 if (n->osid != 0) {
1426 char *ctx = NULL;
1427 u32 len;
1428 if (security_secid_to_secctx(
1429 n->osid, &ctx, &len)) {
1430 audit_log_format(ab, " osid=%u", n->osid);
1431 *call_panic = 2;
1432 } else {
1433 audit_log_format(ab, " obj=%s", ctx);
1434 security_release_secctx(ctx, len);
1435 }
1436 }
1437
1438 audit_log_fcaps(ab, n);
1439
1440 audit_log_end(ab);
1441 }
1442
1443 static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1444 {
1445 const struct cred *cred;
1446 int i, call_panic = 0;
1447 struct audit_buffer *ab;
1448 struct audit_aux_data *aux;
1449 const char *tty;
1450 struct audit_names *n;
1451
1452 /* tsk == current */
1453 context->pid = tsk->pid;
1454 if (!context->ppid)
1455 context->ppid = sys_getppid();
1456 cred = current_cred();
1457 context->uid = cred->uid;
1458 context->gid = cred->gid;
1459 context->euid = cred->euid;
1460 context->suid = cred->suid;
1461 context->fsuid = cred->fsuid;
1462 context->egid = cred->egid;
1463 context->sgid = cred->sgid;
1464 context->fsgid = cred->fsgid;
1465 context->personality = tsk->personality;
1466
1467 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1468 if (!ab)
1469 return; /* audit_panic has been called */
1470 audit_log_format(ab, "arch=%x syscall=%d",
1471 context->arch, context->major);
1472 if (context->personality != PER_LINUX)
1473 audit_log_format(ab, " per=%lx", context->personality);
1474 if (context->return_valid)
1475 audit_log_format(ab, " success=%s exit=%ld",
1476 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1477 context->return_code);
1478
1479 spin_lock_irq(&tsk->sighand->siglock);
1480 if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1481 tty = tsk->signal->tty->name;
1482 else
1483 tty = "(none)";
1484 spin_unlock_irq(&tsk->sighand->siglock);
1485
1486 audit_log_format(ab,
1487 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d"
1488 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
1489 " euid=%u suid=%u fsuid=%u"
1490 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1491 context->argv[0],
1492 context->argv[1],
1493 context->argv[2],
1494 context->argv[3],
1495 context->name_count,
1496 context->ppid,
1497 context->pid,
1498 tsk->loginuid,
1499 context->uid,
1500 context->gid,
1501 context->euid, context->suid, context->fsuid,
1502 context->egid, context->sgid, context->fsgid, tty,
1503 tsk->sessionid);
1504
1505
1506 audit_log_task_info(ab, tsk);
1507 audit_log_key(ab, context->filterkey);
1508 audit_log_end(ab);
1509
1510 for (aux = context->aux; aux; aux = aux->next) {
1511
1512 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1513 if (!ab)
1514 continue; /* audit_panic has been called */
1515
1516 switch (aux->type) {
1517
1518 case AUDIT_EXECVE: {
1519 struct audit_aux_data_execve *axi = (void *)aux;
1520 audit_log_execve_info(context, &ab, axi);
1521 break; }
1522
1523 case AUDIT_BPRM_FCAPS: {
1524 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1525 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1526 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1527 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1528 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1529 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1530 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1531 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1532 audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1533 audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1534 audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
1535 break; }
1536
1537 }
1538 audit_log_end(ab);
1539 }
1540
1541 if (context->type)
1542 show_special(context, &call_panic);
1543
1544 if (context->fds[0] >= 0) {
1545 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1546 if (ab) {
1547 audit_log_format(ab, "fd0=%d fd1=%d",
1548 context->fds[0], context->fds[1]);
1549 audit_log_end(ab);
1550 }
1551 }
1552
1553 if (context->sockaddr_len) {
1554 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1555 if (ab) {
1556 audit_log_format(ab, "saddr=");
1557 audit_log_n_hex(ab, (void *)context->sockaddr,
1558 context->sockaddr_len);
1559 audit_log_end(ab);
1560 }
1561 }
1562
1563 for (aux = context->aux_pids; aux; aux = aux->next) {
1564 struct audit_aux_data_pids *axs = (void *)aux;
1565
1566 for (i = 0; i < axs->pid_count; i++)
1567 if (audit_log_pid_context(context, axs->target_pid[i],
1568 axs->target_auid[i],
1569 axs->target_uid[i],
1570 axs->target_sessionid[i],
1571 axs->target_sid[i],
1572 axs->target_comm[i]))
1573 call_panic = 1;
1574 }
1575
1576 if (context->target_pid &&
1577 audit_log_pid_context(context, context->target_pid,
1578 context->target_auid, context->target_uid,
1579 context->target_sessionid,
1580 context->target_sid, context->target_comm))
1581 call_panic = 1;
1582
1583 if (context->pwd.dentry && context->pwd.mnt) {
1584 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1585 if (ab) {
1586 audit_log_d_path(ab, "cwd=", &context->pwd);
1587 audit_log_end(ab);
1588 }
1589 }
1590
1591 i = 0;
1592 list_for_each_entry(n, &context->names_list, list)
1593 audit_log_name(context, n, i++, &call_panic);
1594
1595 /* Send end of event record to help user space know we are finished */
1596 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1597 if (ab)
1598 audit_log_end(ab);
1599 if (call_panic)
1600 audit_panic("error converting sid to string");
1601 }
1602
1603 /**
1604 * audit_free - free a per-task audit context
1605 * @tsk: task whose audit context block to free
1606 *
1607 * Called from copy_process and do_exit
1608 */
1609 void __audit_free(struct task_struct *tsk)
1610 {
1611 struct audit_context *context;
1612
1613 context = audit_get_context(tsk, 0, 0);
1614 if (!context)
1615 return;
1616
1617 /* Check for system calls that do not go through the exit
1618 * function (e.g., exit_group), then free context block.
1619 * We use GFP_ATOMIC here because we might be doing this
1620 * in the context of the idle thread */
1621 /* that can happen only if we are called from do_exit() */
1622 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1623 audit_log_exit(context, tsk);
1624 if (!list_empty(&context->killed_trees))
1625 audit_kill_trees(&context->killed_trees);
1626
1627 audit_free_context(context);
1628 }
1629
1630 /**
1631 * audit_syscall_entry - fill in an audit record at syscall entry
1632 * @arch: architecture type
1633 * @major: major syscall type (function)
1634 * @a1: additional syscall register 1
1635 * @a2: additional syscall register 2
1636 * @a3: additional syscall register 3
1637 * @a4: additional syscall register 4
1638 *
1639 * Fill in audit context at syscall entry. This only happens if the
1640 * audit context was created when the task was created and the state or
1641 * filters demand the audit context be built. If the state from the
1642 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1643 * then the record will be written at syscall exit time (otherwise, it
1644 * will only be written if another part of the kernel requests that it
1645 * be written).
1646 */
1647 void __audit_syscall_entry(int arch, int major,
1648 unsigned long a1, unsigned long a2,
1649 unsigned long a3, unsigned long a4)
1650 {
1651 struct task_struct *tsk = current;
1652 struct audit_context *context = tsk->audit_context;
1653 enum audit_state state;
1654
1655 if (!context)
1656 return;
1657
1658 /*
1659 * This happens only on certain architectures that make system
1660 * calls in kernel_thread via the entry.S interface, instead of
1661 * with direct calls. (If you are porting to a new
1662 * architecture, hitting this condition can indicate that you
1663 * got the _exit/_leave calls backward in entry.S.)
1664 *
1665 * i386 no
1666 * x86_64 no
1667 * ppc64 yes (see arch/powerpc/platforms/iseries/misc.S)
1668 *
1669 * This also happens with vm86 emulation in a non-nested manner
1670 * (entries without exits), so this case must be caught.
1671 */
1672 if (context->in_syscall) {
1673 struct audit_context *newctx;
1674
1675 #if AUDIT_DEBUG
1676 printk(KERN_ERR
1677 "audit(:%d) pid=%d in syscall=%d;"
1678 " entering syscall=%d\n",
1679 context->serial, tsk->pid, context->major, major);
1680 #endif
1681 newctx = audit_alloc_context(context->state);
1682 if (newctx) {
1683 newctx->previous = context;
1684 context = newctx;
1685 tsk->audit_context = newctx;
1686 } else {
1687 /* If we can't alloc a new context, the best we
1688 * can do is to leak memory (any pending putname
1689 * will be lost). The only other alternative is
1690 * to abandon auditing. */
1691 audit_zero_context(context, context->state);
1692 }
1693 }
1694 BUG_ON(context->in_syscall || context->name_count);
1695
1696 if (!audit_enabled)
1697 return;
1698
1699 context->arch = arch;
1700 context->major = major;
1701 context->argv[0] = a1;
1702 context->argv[1] = a2;
1703 context->argv[2] = a3;
1704 context->argv[3] = a4;
1705
1706 state = context->state;
1707 context->dummy = !audit_n_rules;
1708 if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1709 context->prio = 0;
1710 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1711 }
1712 if (state == AUDIT_DISABLED)
1713 return;
1714
1715 context->serial = 0;
1716 context->ctime = CURRENT_TIME;
1717 context->in_syscall = 1;
1718 context->current_state = state;
1719 context->ppid = 0;
1720 }
1721
1722 /**
1723 * audit_syscall_exit - deallocate audit context after a system call
1724 * @pt_regs: syscall registers
1725 *
1726 * Tear down after system call. If the audit context has been marked as
1727 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1728 * filtering, or because some other part of the kernel write an audit
1729 * message), then write out the syscall information. In call cases,
1730 * free the names stored from getname().
1731 */
1732 void __audit_syscall_exit(int success, long return_code)
1733 {
1734 struct task_struct *tsk = current;
1735 struct audit_context *context;
1736
1737 if (success)
1738 success = AUDITSC_SUCCESS;
1739 else
1740 success = AUDITSC_FAILURE;
1741
1742 context = audit_get_context(tsk, success, return_code);
1743 if (!context)
1744 return;
1745
1746 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1747 audit_log_exit(context, tsk);
1748
1749 context->in_syscall = 0;
1750 context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1751
1752 if (!list_empty(&context->killed_trees))
1753 audit_kill_trees(&context->killed_trees);
1754
1755 if (context->previous) {
1756 struct audit_context *new_context = context->previous;
1757 context->previous = NULL;
1758 audit_free_context(context);
1759 tsk->audit_context = new_context;
1760 } else {
1761 audit_free_names(context);
1762 unroll_tree_refs(context, NULL, 0);
1763 audit_free_aux(context);
1764 context->aux = NULL;
1765 context->aux_pids = NULL;
1766 context->target_pid = 0;
1767 context->target_sid = 0;
1768 context->sockaddr_len = 0;
1769 context->type = 0;
1770 context->fds[0] = -1;
1771 if (context->state != AUDIT_RECORD_CONTEXT) {
1772 kfree(context->filterkey);
1773 context->filterkey = NULL;
1774 }
1775 tsk->audit_context = context;
1776 }
1777 }
1778
1779 static inline void handle_one(const struct inode *inode)
1780 {
1781 #ifdef CONFIG_AUDIT_TREE
1782 struct audit_context *context;
1783 struct audit_tree_refs *p;
1784 struct audit_chunk *chunk;
1785 int count;
1786 if (likely(hlist_empty(&inode->i_fsnotify_marks)))
1787 return;
1788 context = current->audit_context;
1789 p = context->trees;
1790 count = context->tree_count;
1791 rcu_read_lock();
1792 chunk = audit_tree_lookup(inode);
1793 rcu_read_unlock();
1794 if (!chunk)
1795 return;
1796 if (likely(put_tree_ref(context, chunk)))
1797 return;
1798 if (unlikely(!grow_tree_refs(context))) {
1799 printk(KERN_WARNING "out of memory, audit has lost a tree reference\n");
1800 audit_set_auditable(context);
1801 audit_put_chunk(chunk);
1802 unroll_tree_refs(context, p, count);
1803 return;
1804 }
1805 put_tree_ref(context, chunk);
1806 #endif
1807 }
1808
1809 static void handle_path(const struct dentry *dentry)
1810 {
1811 #ifdef CONFIG_AUDIT_TREE
1812 struct audit_context *context;
1813 struct audit_tree_refs *p;
1814 const struct dentry *d, *parent;
1815 struct audit_chunk *drop;
1816 unsigned long seq;
1817 int count;
1818
1819 context = current->audit_context;
1820 p = context->trees;
1821 count = context->tree_count;
1822 retry:
1823 drop = NULL;
1824 d = dentry;
1825 rcu_read_lock();
1826 seq = read_seqbegin(&rename_lock);
1827 for(;;) {
1828 struct inode *inode = d->d_inode;
1829 if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) {
1830 struct audit_chunk *chunk;
1831 chunk = audit_tree_lookup(inode);
1832 if (chunk) {
1833 if (unlikely(!put_tree_ref(context, chunk))) {
1834 drop = chunk;
1835 break;
1836 }
1837 }
1838 }
1839 parent = d->d_parent;
1840 if (parent == d)
1841 break;
1842 d = parent;
1843 }
1844 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1845 rcu_read_unlock();
1846 if (!drop) {
1847 /* just a race with rename */
1848 unroll_tree_refs(context, p, count);
1849 goto retry;
1850 }
1851 audit_put_chunk(drop);
1852 if (grow_tree_refs(context)) {
1853 /* OK, got more space */
1854 unroll_tree_refs(context, p, count);
1855 goto retry;
1856 }
1857 /* too bad */
1858 printk(KERN_WARNING
1859 "out of memory, audit has lost a tree reference\n");
1860 unroll_tree_refs(context, p, count);
1861 audit_set_auditable(context);
1862 return;
1863 }
1864 rcu_read_unlock();
1865 #endif
1866 }
1867
1868 static struct audit_names *audit_alloc_name(struct audit_context *context)
1869 {
1870 struct audit_names *aname;
1871
1872 if (context->name_count < AUDIT_NAMES) {
1873 aname = &context->preallocated_names[context->name_count];
1874 memset(aname, 0, sizeof(*aname));
1875 } else {
1876 aname = kzalloc(sizeof(*aname), GFP_NOFS);
1877 if (!aname)
1878 return NULL;
1879 aname->should_free = true;
1880 }
1881
1882 aname->ino = (unsigned long)-1;
1883 list_add_tail(&aname->list, &context->names_list);
1884
1885 context->name_count++;
1886 #if AUDIT_DEBUG
1887 context->ino_count++;
1888 #endif
1889 return aname;
1890 }
1891
1892 /**
1893 * audit_getname - add a name to the list
1894 * @name: name to add
1895 *
1896 * Add a name to the list of audit names for this context.
1897 * Called from fs/namei.c:getname().
1898 */
1899 void __audit_getname(const char *name)
1900 {
1901 struct audit_context *context = current->audit_context;
1902 struct audit_names *n;
1903
1904 if (IS_ERR(name) || !name)
1905 return;
1906
1907 if (!context->in_syscall) {
1908 #if AUDIT_DEBUG == 2
1909 printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
1910 __FILE__, __LINE__, context->serial, name);
1911 dump_stack();
1912 #endif
1913 return;
1914 }
1915
1916 n = audit_alloc_name(context);
1917 if (!n)
1918 return;
1919
1920 n->name = name;
1921 n->name_len = AUDIT_NAME_FULL;
1922 n->name_put = true;
1923
1924 if (!context->pwd.dentry)
1925 get_fs_pwd(current->fs, &context->pwd);
1926 }
1927
1928 /* audit_putname - intercept a putname request
1929 * @name: name to intercept and delay for putname
1930 *
1931 * If we have stored the name from getname in the audit context,
1932 * then we delay the putname until syscall exit.
1933 * Called from include/linux/fs.h:putname().
1934 */
1935 void audit_putname(const char *name)
1936 {
1937 struct audit_context *context = current->audit_context;
1938
1939 BUG_ON(!context);
1940 if (!context->in_syscall) {
1941 #if AUDIT_DEBUG == 2
1942 printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n",
1943 __FILE__, __LINE__, context->serial, name);
1944 if (context->name_count) {
1945 struct audit_names *n;
1946 int i;
1947
1948 list_for_each_entry(n, &context->names_list, list)
1949 printk(KERN_ERR "name[%d] = %p = %s\n", i,
1950 n->name, n->name ?: "(null)");
1951 }
1952 #endif
1953 __putname(name);
1954 }
1955 #if AUDIT_DEBUG
1956 else {
1957 ++context->put_count;
1958 if (context->put_count > context->name_count) {
1959 printk(KERN_ERR "%s:%d(:%d): major=%d"
1960 " in_syscall=%d putname(%p) name_count=%d"
1961 " put_count=%d\n",
1962 __FILE__, __LINE__,
1963 context->serial, context->major,
1964 context->in_syscall, name, context->name_count,
1965 context->put_count);
1966 dump_stack();
1967 }
1968 }
1969 #endif
1970 }
1971
1972 static inline int audit_copy_fcaps(struct audit_names *name, const struct dentry *dentry)
1973 {
1974 struct cpu_vfs_cap_data caps;
1975 int rc;
1976
1977 if (!dentry)
1978 return 0;
1979
1980 rc = get_vfs_caps_from_disk(dentry, &caps);
1981 if (rc)
1982 return rc;
1983
1984 name->fcap.permitted = caps.permitted;
1985 name->fcap.inheritable = caps.inheritable;
1986 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1987 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
1988
1989 return 0;
1990 }
1991
1992
1993 /* Copy inode data into an audit_names. */
1994 static void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
1995 const struct inode *inode)
1996 {
1997 name->ino = inode->i_ino;
1998 name->dev = inode->i_sb->s_dev;
1999 name->mode = inode->i_mode;
2000 name->uid = inode->i_uid;
2001 name->gid = inode->i_gid;
2002 name->rdev = inode->i_rdev;
2003 security_inode_getsecid(inode, &name->osid);
2004 audit_copy_fcaps(name, dentry);
2005 }
2006
2007 /**
2008 * audit_inode - store the inode and device from a lookup
2009 * @name: name being audited
2010 * @dentry: dentry being audited
2011 *
2012 * Called from fs/namei.c:path_lookup().
2013 */
2014 void __audit_inode(const char *name, const struct dentry *dentry)
2015 {
2016 struct audit_context *context = current->audit_context;
2017 const struct inode *inode = dentry->d_inode;
2018 struct audit_names *n;
2019
2020 if (!context->in_syscall)
2021 return;
2022
2023 list_for_each_entry_reverse(n, &context->names_list, list) {
2024 if (n->name && (n->name == name))
2025 goto out;
2026 }
2027
2028 /* unable to find the name from a previous getname() */
2029 n = audit_alloc_name(context);
2030 if (!n)
2031 return;
2032 out:
2033 handle_path(dentry);
2034 audit_copy_inode(n, dentry, inode);
2035 }
2036
2037 /**
2038 * audit_inode_child - collect inode info for created/removed objects
2039 * @dentry: dentry being audited
2040 * @parent: inode of dentry parent
2041 *
2042 * For syscalls that create or remove filesystem objects, audit_inode
2043 * can only collect information for the filesystem object's parent.
2044 * This call updates the audit context with the child's information.
2045 * Syscalls that create a new filesystem object must be hooked after
2046 * the object is created. Syscalls that remove a filesystem object
2047 * must be hooked prior, in order to capture the target inode during
2048 * unsuccessful attempts.
2049 */
2050 void __audit_inode_child(const struct dentry *dentry,
2051 const struct inode *parent)
2052 {
2053 struct audit_context *context = current->audit_context;
2054 const char *found_parent = NULL, *found_child = NULL;
2055 const struct inode *inode = dentry->d_inode;
2056 const char *dname = dentry->d_name.name;
2057 struct audit_names *n;
2058 int dirlen = 0;
2059
2060 if (!context->in_syscall)
2061 return;
2062
2063 if (inode)
2064 handle_one(inode);
2065
2066 /* parent is more likely, look for it first */
2067 list_for_each_entry(n, &context->names_list, list) {
2068 if (!n->name)
2069 continue;
2070
2071 if (n->ino == parent->i_ino &&
2072 !audit_compare_dname_path(dname, n->name, &dirlen)) {
2073 n->name_len = dirlen; /* update parent data in place */
2074 found_parent = n->name;
2075 goto add_names;
2076 }
2077 }
2078
2079 /* no matching parent, look for matching child */
2080 list_for_each_entry(n, &context->names_list, list) {
2081 if (!n->name)
2082 continue;
2083
2084 /* strcmp() is the more likely scenario */
2085 if (!strcmp(dname, n->name) ||
2086 !audit_compare_dname_path(dname, n->name, &dirlen)) {
2087 if (inode)
2088 audit_copy_inode(n, NULL, inode);
2089 else
2090 n->ino = (unsigned long)-1;
2091 found_child = n->name;
2092 goto add_names;
2093 }
2094 }
2095
2096 add_names:
2097 if (!found_parent) {
2098 n = audit_alloc_name(context);
2099 if (!n)
2100 return;
2101 audit_copy_inode(n, NULL, parent);
2102 }
2103
2104 if (!found_child) {
2105 n = audit_alloc_name(context);
2106 if (!n)
2107 return;
2108
2109 /* Re-use the name belonging to the slot for a matching parent
2110 * directory. All names for this context are relinquished in
2111 * audit_free_names() */
2112 if (found_parent) {
2113 n->name = found_parent;
2114 n->name_len = AUDIT_NAME_FULL;
2115 /* don't call __putname() */
2116 n->name_put = false;
2117 }
2118
2119 if (inode)
2120 audit_copy_inode(n, NULL, inode);
2121 }
2122 }
2123 EXPORT_SYMBOL_GPL(__audit_inode_child);
2124
2125 /**
2126 * auditsc_get_stamp - get local copies of audit_context values
2127 * @ctx: audit_context for the task
2128 * @t: timespec to store time recorded in the audit_context
2129 * @serial: serial value that is recorded in the audit_context
2130 *
2131 * Also sets the context as auditable.
2132 */
2133 int auditsc_get_stamp(struct audit_context *ctx,
2134 struct timespec *t, unsigned int *serial)
2135 {
2136 if (!ctx->in_syscall)
2137 return 0;
2138 if (!ctx->serial)
2139 ctx->serial = audit_serial();
2140 t->tv_sec = ctx->ctime.tv_sec;
2141 t->tv_nsec = ctx->ctime.tv_nsec;
2142 *serial = ctx->serial;
2143 if (!ctx->prio) {
2144 ctx->prio = 1;
2145 ctx->current_state = AUDIT_RECORD_CONTEXT;
2146 }
2147 return 1;
2148 }
2149
2150 /* global counter which is incremented every time something logs in */
2151 static atomic_t session_id = ATOMIC_INIT(0);
2152
2153 /**
2154 * audit_set_loginuid - set a task's audit_context loginuid
2155 * @task: task whose audit context is being modified
2156 * @loginuid: loginuid value
2157 *
2158 * Returns 0.
2159 *
2160 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2161 */
2162 int audit_set_loginuid(struct task_struct *task, uid_t loginuid)
2163 {
2164 unsigned int sessionid = atomic_inc_return(&session_id);
2165 struct audit_context *context = task->audit_context;
2166
2167 if (context && context->in_syscall) {
2168 struct audit_buffer *ab;
2169
2170 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
2171 if (ab) {
2172 audit_log_format(ab, "login pid=%d uid=%u "
2173 "old auid=%u new auid=%u"
2174 " old ses=%u new ses=%u",
2175 task->pid, task_uid(task),
2176 task->loginuid, loginuid,
2177 task->sessionid, sessionid);
2178 audit_log_end(ab);
2179 }
2180 }
2181 task->sessionid = sessionid;
2182 task->loginuid = loginuid;
2183 return 0;
2184 }
2185
2186 /**
2187 * __audit_mq_open - record audit data for a POSIX MQ open
2188 * @oflag: open flag
2189 * @mode: mode bits
2190 * @attr: queue attributes
2191 *
2192 */
2193 void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2194 {
2195 struct audit_context *context = current->audit_context;
2196
2197 if (attr)
2198 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2199 else
2200 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2201
2202 context->mq_open.oflag = oflag;
2203 context->mq_open.mode = mode;
2204
2205 context->type = AUDIT_MQ_OPEN;
2206 }
2207
2208 /**
2209 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2210 * @mqdes: MQ descriptor
2211 * @msg_len: Message length
2212 * @msg_prio: Message priority
2213 * @abs_timeout: Message timeout in absolute time
2214 *
2215 */
2216 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2217 const struct timespec *abs_timeout)
2218 {
2219 struct audit_context *context = current->audit_context;
2220 struct timespec *p = &context->mq_sendrecv.abs_timeout;
2221
2222 if (abs_timeout)
2223 memcpy(p, abs_timeout, sizeof(struct timespec));
2224 else
2225 memset(p, 0, sizeof(struct timespec));
2226
2227 context->mq_sendrecv.mqdes = mqdes;
2228 context->mq_sendrecv.msg_len = msg_len;
2229 context->mq_sendrecv.msg_prio = msg_prio;
2230
2231 context->type = AUDIT_MQ_SENDRECV;
2232 }
2233
2234 /**
2235 * __audit_mq_notify - record audit data for a POSIX MQ notify
2236 * @mqdes: MQ descriptor
2237 * @notification: Notification event
2238 *
2239 */
2240
2241 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2242 {
2243 struct audit_context *context = current->audit_context;
2244
2245 if (notification)
2246 context->mq_notify.sigev_signo = notification->sigev_signo;
2247 else
2248 context->mq_notify.sigev_signo = 0;
2249
2250 context->mq_notify.mqdes = mqdes;
2251 context->type = AUDIT_MQ_NOTIFY;
2252 }
2253
2254 /**
2255 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2256 * @mqdes: MQ descriptor
2257 * @mqstat: MQ flags
2258 *
2259 */
2260 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2261 {
2262 struct audit_context *context = current->audit_context;
2263 context->mq_getsetattr.mqdes = mqdes;
2264 context->mq_getsetattr.mqstat = *mqstat;
2265 context->type = AUDIT_MQ_GETSETATTR;
2266 }
2267
2268 /**
2269 * audit_ipc_obj - record audit data for ipc object
2270 * @ipcp: ipc permissions
2271 *
2272 */
2273 void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2274 {
2275 struct audit_context *context = current->audit_context;
2276 context->ipc.uid = ipcp->uid;
2277 context->ipc.gid = ipcp->gid;
2278 context->ipc.mode = ipcp->mode;
2279 context->ipc.has_perm = 0;
2280 security_ipc_getsecid(ipcp, &context->ipc.osid);
2281 context->type = AUDIT_IPC;
2282 }
2283
2284 /**
2285 * audit_ipc_set_perm - record audit data for new ipc permissions
2286 * @qbytes: msgq bytes
2287 * @uid: msgq user id
2288 * @gid: msgq group id
2289 * @mode: msgq mode (permissions)
2290 *
2291 * Called only after audit_ipc_obj().
2292 */
2293 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2294 {
2295 struct audit_context *context = current->audit_context;
2296
2297 context->ipc.qbytes = qbytes;
2298 context->ipc.perm_uid = uid;
2299 context->ipc.perm_gid = gid;
2300 context->ipc.perm_mode = mode;
2301 context->ipc.has_perm = 1;
2302 }
2303
2304 int __audit_bprm(struct linux_binprm *bprm)
2305 {
2306 struct audit_aux_data_execve *ax;
2307 struct audit_context *context = current->audit_context;
2308
2309 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2310 if (!ax)
2311 return -ENOMEM;
2312
2313 ax->argc = bprm->argc;
2314 ax->envc = bprm->envc;
2315 ax->mm = bprm->mm;
2316 ax->d.type = AUDIT_EXECVE;
2317 ax->d.next = context->aux;
2318 context->aux = (void *)ax;
2319 return 0;
2320 }
2321
2322
2323 /**
2324 * audit_socketcall - record audit data for sys_socketcall
2325 * @nargs: number of args
2326 * @args: args array
2327 *
2328 */
2329 void __audit_socketcall(int nargs, unsigned long *args)
2330 {
2331 struct audit_context *context = current->audit_context;
2332
2333 context->type = AUDIT_SOCKETCALL;
2334 context->socketcall.nargs = nargs;
2335 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2336 }
2337
2338 /**
2339 * __audit_fd_pair - record audit data for pipe and socketpair
2340 * @fd1: the first file descriptor
2341 * @fd2: the second file descriptor
2342 *
2343 */
2344 void __audit_fd_pair(int fd1, int fd2)
2345 {
2346 struct audit_context *context = current->audit_context;
2347 context->fds[0] = fd1;
2348 context->fds[1] = fd2;
2349 }
2350
2351 /**
2352 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2353 * @len: data length in user space
2354 * @a: data address in kernel space
2355 *
2356 * Returns 0 for success or NULL context or < 0 on error.
2357 */
2358 int __audit_sockaddr(int len, void *a)
2359 {
2360 struct audit_context *context = current->audit_context;
2361
2362 if (!context->sockaddr) {
2363 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2364 if (!p)
2365 return -ENOMEM;
2366 context->sockaddr = p;
2367 }
2368
2369 context->sockaddr_len = len;
2370 memcpy(context->sockaddr, a, len);
2371 return 0;
2372 }
2373
2374 void __audit_ptrace(struct task_struct *t)
2375 {
2376 struct audit_context *context = current->audit_context;
2377
2378 context->target_pid = t->pid;
2379 context->target_auid = audit_get_loginuid(t);
2380 context->target_uid = task_uid(t);
2381 context->target_sessionid = audit_get_sessionid(t);
2382 security_task_getsecid(t, &context->target_sid);
2383 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2384 }
2385
2386 /**
2387 * audit_signal_info - record signal info for shutting down audit subsystem
2388 * @sig: signal value
2389 * @t: task being signaled
2390 *
2391 * If the audit subsystem is being terminated, record the task (pid)
2392 * and uid that is doing that.
2393 */
2394 int __audit_signal_info(int sig, struct task_struct *t)
2395 {
2396 struct audit_aux_data_pids *axp;
2397 struct task_struct *tsk = current;
2398 struct audit_context *ctx = tsk->audit_context;
2399 uid_t uid = current_uid(), t_uid = task_uid(t);
2400
2401 if (audit_pid && t->tgid == audit_pid) {
2402 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
2403 audit_sig_pid = tsk->pid;
2404 if (tsk->loginuid != -1)
2405 audit_sig_uid = tsk->loginuid;
2406 else
2407 audit_sig_uid = uid;
2408 security_task_getsecid(tsk, &audit_sig_sid);
2409 }
2410 if (!audit_signals || audit_dummy_context())
2411 return 0;
2412 }
2413
2414 /* optimize the common case by putting first signal recipient directly
2415 * in audit_context */
2416 if (!ctx->target_pid) {
2417 ctx->target_pid = t->tgid;
2418 ctx->target_auid = audit_get_loginuid(t);
2419 ctx->target_uid = t_uid;
2420 ctx->target_sessionid = audit_get_sessionid(t);
2421 security_task_getsecid(t, &ctx->target_sid);
2422 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2423 return 0;
2424 }
2425
2426 axp = (void *)ctx->aux_pids;
2427 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2428 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2429 if (!axp)
2430 return -ENOMEM;
2431
2432 axp->d.type = AUDIT_OBJ_PID;
2433 axp->d.next = ctx->aux_pids;
2434 ctx->aux_pids = (void *)axp;
2435 }
2436 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2437
2438 axp->target_pid[axp->pid_count] = t->tgid;
2439 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2440 axp->target_uid[axp->pid_count] = t_uid;
2441 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2442 security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2443 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2444 axp->pid_count++;
2445
2446 return 0;
2447 }
2448
2449 /**
2450 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2451 * @bprm: pointer to the bprm being processed
2452 * @new: the proposed new credentials
2453 * @old: the old credentials
2454 *
2455 * Simply check if the proc already has the caps given by the file and if not
2456 * store the priv escalation info for later auditing at the end of the syscall
2457 *
2458 * -Eric
2459 */
2460 int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2461 const struct cred *new, const struct cred *old)
2462 {
2463 struct audit_aux_data_bprm_fcaps *ax;
2464 struct audit_context *context = current->audit_context;
2465 struct cpu_vfs_cap_data vcaps;
2466 struct dentry *dentry;
2467
2468 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2469 if (!ax)
2470 return -ENOMEM;
2471
2472 ax->d.type = AUDIT_BPRM_FCAPS;
2473 ax->d.next = context->aux;
2474 context->aux = (void *)ax;
2475
2476 dentry = dget(bprm->file->f_dentry);
2477 get_vfs_caps_from_disk(dentry, &vcaps);
2478 dput(dentry);
2479
2480 ax->fcap.permitted = vcaps.permitted;
2481 ax->fcap.inheritable = vcaps.inheritable;
2482 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2483 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2484
2485 ax->old_pcap.permitted = old->cap_permitted;
2486 ax->old_pcap.inheritable = old->cap_inheritable;
2487 ax->old_pcap.effective = old->cap_effective;
2488
2489 ax->new_pcap.permitted = new->cap_permitted;
2490 ax->new_pcap.inheritable = new->cap_inheritable;
2491 ax->new_pcap.effective = new->cap_effective;
2492 return 0;
2493 }
2494
2495 /**
2496 * __audit_log_capset - store information about the arguments to the capset syscall
2497 * @pid: target pid of the capset call
2498 * @new: the new credentials
2499 * @old: the old (current) credentials
2500 *
2501 * Record the aguments userspace sent to sys_capset for later printing by the
2502 * audit system if applicable
2503 */
2504 void __audit_log_capset(pid_t pid,
2505 const struct cred *new, const struct cred *old)
2506 {
2507 struct audit_context *context = current->audit_context;
2508 context->capset.pid = pid;
2509 context->capset.cap.effective = new->cap_effective;
2510 context->capset.cap.inheritable = new->cap_effective;
2511 context->capset.cap.permitted = new->cap_permitted;
2512 context->type = AUDIT_CAPSET;
2513 }
2514
2515 void __audit_mmap_fd(int fd, int flags)
2516 {
2517 struct audit_context *context = current->audit_context;
2518 context->mmap.fd = fd;
2519 context->mmap.flags = flags;
2520 context->type = AUDIT_MMAP;
2521 }
2522
2523 static void audit_log_abend(struct audit_buffer *ab, char *reason, long signr)
2524 {
2525 uid_t auid, uid;
2526 gid_t gid;
2527 unsigned int sessionid;
2528
2529 auid = audit_get_loginuid(current);
2530 sessionid = audit_get_sessionid(current);
2531 current_uid_gid(&uid, &gid);
2532
2533 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2534 auid, uid, gid, sessionid);
2535 audit_log_task_context(ab);
2536 audit_log_format(ab, " pid=%d comm=", current->pid);
2537 audit_log_untrustedstring(ab, current->comm);
2538 audit_log_format(ab, " reason=");
2539 audit_log_string(ab, reason);
2540 audit_log_format(ab, " sig=%ld", signr);
2541 }
2542 /**
2543 * audit_core_dumps - record information about processes that end abnormally
2544 * @signr: signal value
2545 *
2546 * If a process ends with a core dump, something fishy is going on and we
2547 * should record the event for investigation.
2548 */
2549 void audit_core_dumps(long signr)
2550 {
2551 struct audit_buffer *ab;
2552
2553 if (!audit_enabled)
2554 return;
2555
2556 if (signr == SIGQUIT) /* don't care for those */
2557 return;
2558
2559 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2560 audit_log_abend(ab, "memory violation", signr);
2561 audit_log_end(ab);
2562 }
2563
2564 void __audit_seccomp(unsigned long syscall)
2565 {
2566 struct audit_buffer *ab;
2567
2568 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2569 audit_log_abend(ab, "seccomp", SIGKILL);
2570 audit_log_format(ab, " syscall=%ld", syscall);
2571 audit_log_end(ab);
2572 }
2573
2574 struct list_head *audit_killed_trees(void)
2575 {
2576 struct audit_context *ctx = current->audit_context;
2577 if (likely(!ctx || !ctx->in_syscall))
2578 return NULL;
2579 return &ctx->killed_trees;
2580 }
This page took 0.085151 seconds and 6 git commands to generate.