Merge branch 'next' of git://git.infradead.org/users/pcmoore/selinux into next
[deliverable/linux.git] / kernel / bpf / core.c
1 /*
2 * Linux Socket Filter - Kernel level socket filtering
3 *
4 * Based on the design of the Berkeley Packet Filter. The new
5 * internal format has been designed by PLUMgrid:
6 *
7 * Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
8 *
9 * Authors:
10 *
11 * Jay Schulist <jschlst@samba.org>
12 * Alexei Starovoitov <ast@plumgrid.com>
13 * Daniel Borkmann <dborkman@redhat.com>
14 *
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * as published by the Free Software Foundation; either version
18 * 2 of the License, or (at your option) any later version.
19 *
20 * Andi Kleen - Fix a few bad bugs and races.
21 * Kris Katterjohn - Added many additional checks in bpf_check_classic()
22 */
23 #include <linux/filter.h>
24 #include <linux/skbuff.h>
25 #include <asm/unaligned.h>
26
27 /* Registers */
28 #define BPF_R0 regs[BPF_REG_0]
29 #define BPF_R1 regs[BPF_REG_1]
30 #define BPF_R2 regs[BPF_REG_2]
31 #define BPF_R3 regs[BPF_REG_3]
32 #define BPF_R4 regs[BPF_REG_4]
33 #define BPF_R5 regs[BPF_REG_5]
34 #define BPF_R6 regs[BPF_REG_6]
35 #define BPF_R7 regs[BPF_REG_7]
36 #define BPF_R8 regs[BPF_REG_8]
37 #define BPF_R9 regs[BPF_REG_9]
38 #define BPF_R10 regs[BPF_REG_10]
39
40 /* Named registers */
41 #define DST regs[insn->dst_reg]
42 #define SRC regs[insn->src_reg]
43 #define FP regs[BPF_REG_FP]
44 #define ARG1 regs[BPF_REG_ARG1]
45 #define CTX regs[BPF_REG_CTX]
46 #define IMM insn->imm
47
48 /* No hurry in this branch
49 *
50 * Exported for the bpf jit load helper.
51 */
52 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
53 {
54 u8 *ptr = NULL;
55
56 if (k >= SKF_NET_OFF)
57 ptr = skb_network_header(skb) + k - SKF_NET_OFF;
58 else if (k >= SKF_LL_OFF)
59 ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
60 if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
61 return ptr;
62
63 return NULL;
64 }
65
66 /* Base function for offset calculation. Needs to go into .text section,
67 * therefore keeping it non-static as well; will also be used by JITs
68 * anyway later on, so do not let the compiler omit it.
69 */
70 noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
71 {
72 return 0;
73 }
74
75 /**
76 * __bpf_prog_run - run eBPF program on a given context
77 * @ctx: is the data we are operating on
78 * @insn: is the array of eBPF instructions
79 *
80 * Decode and execute eBPF instructions.
81 */
82 static unsigned int __bpf_prog_run(void *ctx, const struct bpf_insn *insn)
83 {
84 u64 stack[MAX_BPF_STACK / sizeof(u64)];
85 u64 regs[MAX_BPF_REG], tmp;
86 static const void *jumptable[256] = {
87 [0 ... 255] = &&default_label,
88 /* Now overwrite non-defaults ... */
89 /* 32 bit ALU operations */
90 [BPF_ALU | BPF_ADD | BPF_X] = &&ALU_ADD_X,
91 [BPF_ALU | BPF_ADD | BPF_K] = &&ALU_ADD_K,
92 [BPF_ALU | BPF_SUB | BPF_X] = &&ALU_SUB_X,
93 [BPF_ALU | BPF_SUB | BPF_K] = &&ALU_SUB_K,
94 [BPF_ALU | BPF_AND | BPF_X] = &&ALU_AND_X,
95 [BPF_ALU | BPF_AND | BPF_K] = &&ALU_AND_K,
96 [BPF_ALU | BPF_OR | BPF_X] = &&ALU_OR_X,
97 [BPF_ALU | BPF_OR | BPF_K] = &&ALU_OR_K,
98 [BPF_ALU | BPF_LSH | BPF_X] = &&ALU_LSH_X,
99 [BPF_ALU | BPF_LSH | BPF_K] = &&ALU_LSH_K,
100 [BPF_ALU | BPF_RSH | BPF_X] = &&ALU_RSH_X,
101 [BPF_ALU | BPF_RSH | BPF_K] = &&ALU_RSH_K,
102 [BPF_ALU | BPF_XOR | BPF_X] = &&ALU_XOR_X,
103 [BPF_ALU | BPF_XOR | BPF_K] = &&ALU_XOR_K,
104 [BPF_ALU | BPF_MUL | BPF_X] = &&ALU_MUL_X,
105 [BPF_ALU | BPF_MUL | BPF_K] = &&ALU_MUL_K,
106 [BPF_ALU | BPF_MOV | BPF_X] = &&ALU_MOV_X,
107 [BPF_ALU | BPF_MOV | BPF_K] = &&ALU_MOV_K,
108 [BPF_ALU | BPF_DIV | BPF_X] = &&ALU_DIV_X,
109 [BPF_ALU | BPF_DIV | BPF_K] = &&ALU_DIV_K,
110 [BPF_ALU | BPF_MOD | BPF_X] = &&ALU_MOD_X,
111 [BPF_ALU | BPF_MOD | BPF_K] = &&ALU_MOD_K,
112 [BPF_ALU | BPF_NEG] = &&ALU_NEG,
113 [BPF_ALU | BPF_END | BPF_TO_BE] = &&ALU_END_TO_BE,
114 [BPF_ALU | BPF_END | BPF_TO_LE] = &&ALU_END_TO_LE,
115 /* 64 bit ALU operations */
116 [BPF_ALU64 | BPF_ADD | BPF_X] = &&ALU64_ADD_X,
117 [BPF_ALU64 | BPF_ADD | BPF_K] = &&ALU64_ADD_K,
118 [BPF_ALU64 | BPF_SUB | BPF_X] = &&ALU64_SUB_X,
119 [BPF_ALU64 | BPF_SUB | BPF_K] = &&ALU64_SUB_K,
120 [BPF_ALU64 | BPF_AND | BPF_X] = &&ALU64_AND_X,
121 [BPF_ALU64 | BPF_AND | BPF_K] = &&ALU64_AND_K,
122 [BPF_ALU64 | BPF_OR | BPF_X] = &&ALU64_OR_X,
123 [BPF_ALU64 | BPF_OR | BPF_K] = &&ALU64_OR_K,
124 [BPF_ALU64 | BPF_LSH | BPF_X] = &&ALU64_LSH_X,
125 [BPF_ALU64 | BPF_LSH | BPF_K] = &&ALU64_LSH_K,
126 [BPF_ALU64 | BPF_RSH | BPF_X] = &&ALU64_RSH_X,
127 [BPF_ALU64 | BPF_RSH | BPF_K] = &&ALU64_RSH_K,
128 [BPF_ALU64 | BPF_XOR | BPF_X] = &&ALU64_XOR_X,
129 [BPF_ALU64 | BPF_XOR | BPF_K] = &&ALU64_XOR_K,
130 [BPF_ALU64 | BPF_MUL | BPF_X] = &&ALU64_MUL_X,
131 [BPF_ALU64 | BPF_MUL | BPF_K] = &&ALU64_MUL_K,
132 [BPF_ALU64 | BPF_MOV | BPF_X] = &&ALU64_MOV_X,
133 [BPF_ALU64 | BPF_MOV | BPF_K] = &&ALU64_MOV_K,
134 [BPF_ALU64 | BPF_ARSH | BPF_X] = &&ALU64_ARSH_X,
135 [BPF_ALU64 | BPF_ARSH | BPF_K] = &&ALU64_ARSH_K,
136 [BPF_ALU64 | BPF_DIV | BPF_X] = &&ALU64_DIV_X,
137 [BPF_ALU64 | BPF_DIV | BPF_K] = &&ALU64_DIV_K,
138 [BPF_ALU64 | BPF_MOD | BPF_X] = &&ALU64_MOD_X,
139 [BPF_ALU64 | BPF_MOD | BPF_K] = &&ALU64_MOD_K,
140 [BPF_ALU64 | BPF_NEG] = &&ALU64_NEG,
141 /* Call instruction */
142 [BPF_JMP | BPF_CALL] = &&JMP_CALL,
143 /* Jumps */
144 [BPF_JMP | BPF_JA] = &&JMP_JA,
145 [BPF_JMP | BPF_JEQ | BPF_X] = &&JMP_JEQ_X,
146 [BPF_JMP | BPF_JEQ | BPF_K] = &&JMP_JEQ_K,
147 [BPF_JMP | BPF_JNE | BPF_X] = &&JMP_JNE_X,
148 [BPF_JMP | BPF_JNE | BPF_K] = &&JMP_JNE_K,
149 [BPF_JMP | BPF_JGT | BPF_X] = &&JMP_JGT_X,
150 [BPF_JMP | BPF_JGT | BPF_K] = &&JMP_JGT_K,
151 [BPF_JMP | BPF_JGE | BPF_X] = &&JMP_JGE_X,
152 [BPF_JMP | BPF_JGE | BPF_K] = &&JMP_JGE_K,
153 [BPF_JMP | BPF_JSGT | BPF_X] = &&JMP_JSGT_X,
154 [BPF_JMP | BPF_JSGT | BPF_K] = &&JMP_JSGT_K,
155 [BPF_JMP | BPF_JSGE | BPF_X] = &&JMP_JSGE_X,
156 [BPF_JMP | BPF_JSGE | BPF_K] = &&JMP_JSGE_K,
157 [BPF_JMP | BPF_JSET | BPF_X] = &&JMP_JSET_X,
158 [BPF_JMP | BPF_JSET | BPF_K] = &&JMP_JSET_K,
159 /* Program return */
160 [BPF_JMP | BPF_EXIT] = &&JMP_EXIT,
161 /* Store instructions */
162 [BPF_STX | BPF_MEM | BPF_B] = &&STX_MEM_B,
163 [BPF_STX | BPF_MEM | BPF_H] = &&STX_MEM_H,
164 [BPF_STX | BPF_MEM | BPF_W] = &&STX_MEM_W,
165 [BPF_STX | BPF_MEM | BPF_DW] = &&STX_MEM_DW,
166 [BPF_STX | BPF_XADD | BPF_W] = &&STX_XADD_W,
167 [BPF_STX | BPF_XADD | BPF_DW] = &&STX_XADD_DW,
168 [BPF_ST | BPF_MEM | BPF_B] = &&ST_MEM_B,
169 [BPF_ST | BPF_MEM | BPF_H] = &&ST_MEM_H,
170 [BPF_ST | BPF_MEM | BPF_W] = &&ST_MEM_W,
171 [BPF_ST | BPF_MEM | BPF_DW] = &&ST_MEM_DW,
172 /* Load instructions */
173 [BPF_LDX | BPF_MEM | BPF_B] = &&LDX_MEM_B,
174 [BPF_LDX | BPF_MEM | BPF_H] = &&LDX_MEM_H,
175 [BPF_LDX | BPF_MEM | BPF_W] = &&LDX_MEM_W,
176 [BPF_LDX | BPF_MEM | BPF_DW] = &&LDX_MEM_DW,
177 [BPF_LD | BPF_ABS | BPF_W] = &&LD_ABS_W,
178 [BPF_LD | BPF_ABS | BPF_H] = &&LD_ABS_H,
179 [BPF_LD | BPF_ABS | BPF_B] = &&LD_ABS_B,
180 [BPF_LD | BPF_IND | BPF_W] = &&LD_IND_W,
181 [BPF_LD | BPF_IND | BPF_H] = &&LD_IND_H,
182 [BPF_LD | BPF_IND | BPF_B] = &&LD_IND_B,
183 };
184 void *ptr;
185 int off;
186
187 #define CONT ({ insn++; goto select_insn; })
188 #define CONT_JMP ({ insn++; goto select_insn; })
189
190 FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)];
191 ARG1 = (u64) (unsigned long) ctx;
192
193 /* Registers used in classic BPF programs need to be reset first. */
194 regs[BPF_REG_A] = 0;
195 regs[BPF_REG_X] = 0;
196
197 select_insn:
198 goto *jumptable[insn->code];
199
200 /* ALU */
201 #define ALU(OPCODE, OP) \
202 ALU64_##OPCODE##_X: \
203 DST = DST OP SRC; \
204 CONT; \
205 ALU_##OPCODE##_X: \
206 DST = (u32) DST OP (u32) SRC; \
207 CONT; \
208 ALU64_##OPCODE##_K: \
209 DST = DST OP IMM; \
210 CONT; \
211 ALU_##OPCODE##_K: \
212 DST = (u32) DST OP (u32) IMM; \
213 CONT;
214
215 ALU(ADD, +)
216 ALU(SUB, -)
217 ALU(AND, &)
218 ALU(OR, |)
219 ALU(LSH, <<)
220 ALU(RSH, >>)
221 ALU(XOR, ^)
222 ALU(MUL, *)
223 #undef ALU
224 ALU_NEG:
225 DST = (u32) -DST;
226 CONT;
227 ALU64_NEG:
228 DST = -DST;
229 CONT;
230 ALU_MOV_X:
231 DST = (u32) SRC;
232 CONT;
233 ALU_MOV_K:
234 DST = (u32) IMM;
235 CONT;
236 ALU64_MOV_X:
237 DST = SRC;
238 CONT;
239 ALU64_MOV_K:
240 DST = IMM;
241 CONT;
242 ALU64_ARSH_X:
243 (*(s64 *) &DST) >>= SRC;
244 CONT;
245 ALU64_ARSH_K:
246 (*(s64 *) &DST) >>= IMM;
247 CONT;
248 ALU64_MOD_X:
249 if (unlikely(SRC == 0))
250 return 0;
251 tmp = DST;
252 DST = do_div(tmp, SRC);
253 CONT;
254 ALU_MOD_X:
255 if (unlikely(SRC == 0))
256 return 0;
257 tmp = (u32) DST;
258 DST = do_div(tmp, (u32) SRC);
259 CONT;
260 ALU64_MOD_K:
261 tmp = DST;
262 DST = do_div(tmp, IMM);
263 CONT;
264 ALU_MOD_K:
265 tmp = (u32) DST;
266 DST = do_div(tmp, (u32) IMM);
267 CONT;
268 ALU64_DIV_X:
269 if (unlikely(SRC == 0))
270 return 0;
271 do_div(DST, SRC);
272 CONT;
273 ALU_DIV_X:
274 if (unlikely(SRC == 0))
275 return 0;
276 tmp = (u32) DST;
277 do_div(tmp, (u32) SRC);
278 DST = (u32) tmp;
279 CONT;
280 ALU64_DIV_K:
281 do_div(DST, IMM);
282 CONT;
283 ALU_DIV_K:
284 tmp = (u32) DST;
285 do_div(tmp, (u32) IMM);
286 DST = (u32) tmp;
287 CONT;
288 ALU_END_TO_BE:
289 switch (IMM) {
290 case 16:
291 DST = (__force u16) cpu_to_be16(DST);
292 break;
293 case 32:
294 DST = (__force u32) cpu_to_be32(DST);
295 break;
296 case 64:
297 DST = (__force u64) cpu_to_be64(DST);
298 break;
299 }
300 CONT;
301 ALU_END_TO_LE:
302 switch (IMM) {
303 case 16:
304 DST = (__force u16) cpu_to_le16(DST);
305 break;
306 case 32:
307 DST = (__force u32) cpu_to_le32(DST);
308 break;
309 case 64:
310 DST = (__force u64) cpu_to_le64(DST);
311 break;
312 }
313 CONT;
314
315 /* CALL */
316 JMP_CALL:
317 /* Function call scratches BPF_R1-BPF_R5 registers,
318 * preserves BPF_R6-BPF_R9, and stores return value
319 * into BPF_R0.
320 */
321 BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
322 BPF_R4, BPF_R5);
323 CONT;
324
325 /* JMP */
326 JMP_JA:
327 insn += insn->off;
328 CONT;
329 JMP_JEQ_X:
330 if (DST == SRC) {
331 insn += insn->off;
332 CONT_JMP;
333 }
334 CONT;
335 JMP_JEQ_K:
336 if (DST == IMM) {
337 insn += insn->off;
338 CONT_JMP;
339 }
340 CONT;
341 JMP_JNE_X:
342 if (DST != SRC) {
343 insn += insn->off;
344 CONT_JMP;
345 }
346 CONT;
347 JMP_JNE_K:
348 if (DST != IMM) {
349 insn += insn->off;
350 CONT_JMP;
351 }
352 CONT;
353 JMP_JGT_X:
354 if (DST > SRC) {
355 insn += insn->off;
356 CONT_JMP;
357 }
358 CONT;
359 JMP_JGT_K:
360 if (DST > IMM) {
361 insn += insn->off;
362 CONT_JMP;
363 }
364 CONT;
365 JMP_JGE_X:
366 if (DST >= SRC) {
367 insn += insn->off;
368 CONT_JMP;
369 }
370 CONT;
371 JMP_JGE_K:
372 if (DST >= IMM) {
373 insn += insn->off;
374 CONT_JMP;
375 }
376 CONT;
377 JMP_JSGT_X:
378 if (((s64) DST) > ((s64) SRC)) {
379 insn += insn->off;
380 CONT_JMP;
381 }
382 CONT;
383 JMP_JSGT_K:
384 if (((s64) DST) > ((s64) IMM)) {
385 insn += insn->off;
386 CONT_JMP;
387 }
388 CONT;
389 JMP_JSGE_X:
390 if (((s64) DST) >= ((s64) SRC)) {
391 insn += insn->off;
392 CONT_JMP;
393 }
394 CONT;
395 JMP_JSGE_K:
396 if (((s64) DST) >= ((s64) IMM)) {
397 insn += insn->off;
398 CONT_JMP;
399 }
400 CONT;
401 JMP_JSET_X:
402 if (DST & SRC) {
403 insn += insn->off;
404 CONT_JMP;
405 }
406 CONT;
407 JMP_JSET_K:
408 if (DST & IMM) {
409 insn += insn->off;
410 CONT_JMP;
411 }
412 CONT;
413 JMP_EXIT:
414 return BPF_R0;
415
416 /* STX and ST and LDX*/
417 #define LDST(SIZEOP, SIZE) \
418 STX_MEM_##SIZEOP: \
419 *(SIZE *)(unsigned long) (DST + insn->off) = SRC; \
420 CONT; \
421 ST_MEM_##SIZEOP: \
422 *(SIZE *)(unsigned long) (DST + insn->off) = IMM; \
423 CONT; \
424 LDX_MEM_##SIZEOP: \
425 DST = *(SIZE *)(unsigned long) (SRC + insn->off); \
426 CONT;
427
428 LDST(B, u8)
429 LDST(H, u16)
430 LDST(W, u32)
431 LDST(DW, u64)
432 #undef LDST
433 STX_XADD_W: /* lock xadd *(u32 *)(dst_reg + off16) += src_reg */
434 atomic_add((u32) SRC, (atomic_t *)(unsigned long)
435 (DST + insn->off));
436 CONT;
437 STX_XADD_DW: /* lock xadd *(u64 *)(dst_reg + off16) += src_reg */
438 atomic64_add((u64) SRC, (atomic64_t *)(unsigned long)
439 (DST + insn->off));
440 CONT;
441 LD_ABS_W: /* BPF_R0 = ntohl(*(u32 *) (skb->data + imm32)) */
442 off = IMM;
443 load_word:
444 /* BPF_LD + BPD_ABS and BPF_LD + BPF_IND insns are
445 * only appearing in the programs where ctx ==
446 * skb. All programs keep 'ctx' in regs[BPF_REG_CTX]
447 * == BPF_R6, bpf_convert_filter() saves it in BPF_R6,
448 * internal BPF verifier will check that BPF_R6 ==
449 * ctx.
450 *
451 * BPF_ABS and BPF_IND are wrappers of function calls,
452 * so they scratch BPF_R1-BPF_R5 registers, preserve
453 * BPF_R6-BPF_R9, and store return value into BPF_R0.
454 *
455 * Implicit input:
456 * ctx == skb == BPF_R6 == CTX
457 *
458 * Explicit input:
459 * SRC == any register
460 * IMM == 32-bit immediate
461 *
462 * Output:
463 * BPF_R0 - 8/16/32-bit skb data converted to cpu endianness
464 */
465
466 ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 4, &tmp);
467 if (likely(ptr != NULL)) {
468 BPF_R0 = get_unaligned_be32(ptr);
469 CONT;
470 }
471
472 return 0;
473 LD_ABS_H: /* BPF_R0 = ntohs(*(u16 *) (skb->data + imm32)) */
474 off = IMM;
475 load_half:
476 ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 2, &tmp);
477 if (likely(ptr != NULL)) {
478 BPF_R0 = get_unaligned_be16(ptr);
479 CONT;
480 }
481
482 return 0;
483 LD_ABS_B: /* BPF_R0 = *(u8 *) (skb->data + imm32) */
484 off = IMM;
485 load_byte:
486 ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 1, &tmp);
487 if (likely(ptr != NULL)) {
488 BPF_R0 = *(u8 *)ptr;
489 CONT;
490 }
491
492 return 0;
493 LD_IND_W: /* BPF_R0 = ntohl(*(u32 *) (skb->data + src_reg + imm32)) */
494 off = IMM + SRC;
495 goto load_word;
496 LD_IND_H: /* BPF_R0 = ntohs(*(u16 *) (skb->data + src_reg + imm32)) */
497 off = IMM + SRC;
498 goto load_half;
499 LD_IND_B: /* BPF_R0 = *(u8 *) (skb->data + src_reg + imm32) */
500 off = IMM + SRC;
501 goto load_byte;
502
503 default_label:
504 /* If we ever reach this, we have a bug somewhere. */
505 WARN_RATELIMIT(1, "unknown opcode %02x\n", insn->code);
506 return 0;
507 }
508
509 void __weak bpf_int_jit_compile(struct bpf_prog *prog)
510 {
511 }
512
513 /**
514 * bpf_prog_select_runtime - select execution runtime for BPF program
515 * @fp: bpf_prog populated with internal BPF program
516 *
517 * try to JIT internal BPF program, if JIT is not available select interpreter
518 * BPF program will be executed via BPF_PROG_RUN() macro
519 */
520 void bpf_prog_select_runtime(struct bpf_prog *fp)
521 {
522 fp->bpf_func = (void *) __bpf_prog_run;
523
524 /* Probe if internal BPF can be JITed */
525 bpf_int_jit_compile(fp);
526 }
527 EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);
528
529 /* free internal BPF program */
530 void bpf_prog_free(struct bpf_prog *fp)
531 {
532 bpf_jit_free(fp);
533 }
534 EXPORT_SYMBOL_GPL(bpf_prog_free);
This page took 0.052544 seconds and 6 git commands to generate.