cgroup: factor out cgroup_setup_root() from cgroup_mount()
[deliverable/linux.git] / kernel / cgroup.c
1 /*
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29 #include <linux/cgroup.h>
30 #include <linux/cred.h>
31 #include <linux/ctype.h>
32 #include <linux/errno.h>
33 #include <linux/init_task.h>
34 #include <linux/kernel.h>
35 #include <linux/list.h>
36 #include <linux/mm.h>
37 #include <linux/mutex.h>
38 #include <linux/mount.h>
39 #include <linux/pagemap.h>
40 #include <linux/proc_fs.h>
41 #include <linux/rcupdate.h>
42 #include <linux/sched.h>
43 #include <linux/backing-dev.h>
44 #include <linux/slab.h>
45 #include <linux/magic.h>
46 #include <linux/spinlock.h>
47 #include <linux/string.h>
48 #include <linux/sort.h>
49 #include <linux/kmod.h>
50 #include <linux/delayacct.h>
51 #include <linux/cgroupstats.h>
52 #include <linux/hashtable.h>
53 #include <linux/namei.h>
54 #include <linux/pid_namespace.h>
55 #include <linux/idr.h>
56 #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
57 #include <linux/flex_array.h> /* used in cgroup_attach_task */
58 #include <linux/kthread.h>
59
60 #include <linux/atomic.h>
61
62 /*
63 * pidlists linger the following amount before being destroyed. The goal
64 * is avoiding frequent destruction in the middle of consecutive read calls
65 * Expiring in the middle is a performance problem not a correctness one.
66 * 1 sec should be enough.
67 */
68 #define CGROUP_PIDLIST_DESTROY_DELAY HZ
69
70 /*
71 * cgroup_tree_mutex nests above cgroup_mutex and protects cftypes, file
72 * creation/removal and hierarchy changing operations including cgroup
73 * creation, removal, css association and controller rebinding. This outer
74 * lock is needed mainly to resolve the circular dependency between kernfs
75 * active ref and cgroup_mutex. cgroup_tree_mutex nests above both.
76 */
77 static DEFINE_MUTEX(cgroup_tree_mutex);
78
79 /*
80 * cgroup_mutex is the master lock. Any modification to cgroup or its
81 * hierarchy must be performed while holding it.
82 */
83 #ifdef CONFIG_PROVE_RCU
84 DEFINE_MUTEX(cgroup_mutex);
85 EXPORT_SYMBOL_GPL(cgroup_mutex); /* only for lockdep */
86 #else
87 static DEFINE_MUTEX(cgroup_mutex);
88 #endif
89
90 /*
91 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
92 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
93 */
94 static DEFINE_SPINLOCK(release_agent_path_lock);
95
96 #define cgroup_assert_mutexes_or_rcu_locked() \
97 rcu_lockdep_assert(rcu_read_lock_held() || \
98 lockdep_is_held(&cgroup_tree_mutex) || \
99 lockdep_is_held(&cgroup_mutex), \
100 "cgroup_[tree_]mutex or RCU read lock required");
101
102 /*
103 * cgroup destruction makes heavy use of work items and there can be a lot
104 * of concurrent destructions. Use a separate workqueue so that cgroup
105 * destruction work items don't end up filling up max_active of system_wq
106 * which may lead to deadlock.
107 */
108 static struct workqueue_struct *cgroup_destroy_wq;
109
110 /*
111 * pidlist destructions need to be flushed on cgroup destruction. Use a
112 * separate workqueue as flush domain.
113 */
114 static struct workqueue_struct *cgroup_pidlist_destroy_wq;
115
116 /* generate an array of cgroup subsystem pointers */
117 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
118 static struct cgroup_subsys *cgroup_subsys[] = {
119 #include <linux/cgroup_subsys.h>
120 };
121 #undef SUBSYS
122
123 /* array of cgroup subsystem names */
124 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
125 static const char *cgroup_subsys_name[] = {
126 #include <linux/cgroup_subsys.h>
127 };
128 #undef SUBSYS
129
130 /*
131 * The dummy hierarchy, reserved for the subsystems that are otherwise
132 * unattached - it never has more than a single cgroup, and all tasks are
133 * part of that cgroup.
134 */
135 static struct cgroupfs_root cgroup_dummy_root;
136
137 /* dummy_top is a shorthand for the dummy hierarchy's top cgroup */
138 static struct cgroup * const cgroup_dummy_top = &cgroup_dummy_root.top_cgroup;
139
140 /* The list of hierarchy roots */
141
142 static LIST_HEAD(cgroup_roots);
143 static int cgroup_root_count;
144
145 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
146 static DEFINE_IDR(cgroup_hierarchy_idr);
147
148 static struct cgroup_name root_cgroup_name = { .name = "/" };
149
150 /*
151 * Assign a monotonically increasing serial number to cgroups. It
152 * guarantees cgroups with bigger numbers are newer than those with smaller
153 * numbers. Also, as cgroups are always appended to the parent's
154 * ->children list, it guarantees that sibling cgroups are always sorted in
155 * the ascending serial number order on the list. Protected by
156 * cgroup_mutex.
157 */
158 static u64 cgroup_serial_nr_next = 1;
159
160 /* This flag indicates whether tasks in the fork and exit paths should
161 * check for fork/exit handlers to call. This avoids us having to do
162 * extra work in the fork/exit path if none of the subsystems need to
163 * be called.
164 */
165 static int need_forkexit_callback __read_mostly;
166
167 static struct cftype cgroup_base_files[];
168
169 static void cgroup_destroy_css_killed(struct cgroup *cgrp);
170 static int cgroup_destroy_locked(struct cgroup *cgrp);
171 static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
172 bool is_add);
173 static int cgroup_file_release(struct inode *inode, struct file *file);
174 static void cgroup_pidlist_destroy_all(struct cgroup *cgrp);
175
176 /**
177 * cgroup_css - obtain a cgroup's css for the specified subsystem
178 * @cgrp: the cgroup of interest
179 * @ss: the subsystem of interest (%NULL returns the dummy_css)
180 *
181 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
182 * function must be called either under cgroup_mutex or rcu_read_lock() and
183 * the caller is responsible for pinning the returned css if it wants to
184 * keep accessing it outside the said locks. This function may return
185 * %NULL if @cgrp doesn't have @subsys_id enabled.
186 */
187 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
188 struct cgroup_subsys *ss)
189 {
190 if (ss)
191 return rcu_dereference_check(cgrp->subsys[ss->id],
192 lockdep_is_held(&cgroup_tree_mutex) ||
193 lockdep_is_held(&cgroup_mutex));
194 else
195 return &cgrp->dummy_css;
196 }
197
198 /* convenient tests for these bits */
199 static inline bool cgroup_is_dead(const struct cgroup *cgrp)
200 {
201 return test_bit(CGRP_DEAD, &cgrp->flags);
202 }
203
204 /**
205 * cgroup_is_descendant - test ancestry
206 * @cgrp: the cgroup to be tested
207 * @ancestor: possible ancestor of @cgrp
208 *
209 * Test whether @cgrp is a descendant of @ancestor. It also returns %true
210 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
211 * and @ancestor are accessible.
212 */
213 bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
214 {
215 while (cgrp) {
216 if (cgrp == ancestor)
217 return true;
218 cgrp = cgrp->parent;
219 }
220 return false;
221 }
222 EXPORT_SYMBOL_GPL(cgroup_is_descendant);
223
224 static int cgroup_is_releasable(const struct cgroup *cgrp)
225 {
226 const int bits =
227 (1 << CGRP_RELEASABLE) |
228 (1 << CGRP_NOTIFY_ON_RELEASE);
229 return (cgrp->flags & bits) == bits;
230 }
231
232 static int notify_on_release(const struct cgroup *cgrp)
233 {
234 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
235 }
236
237 /**
238 * for_each_css - iterate all css's of a cgroup
239 * @css: the iteration cursor
240 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
241 * @cgrp: the target cgroup to iterate css's of
242 *
243 * Should be called under cgroup_mutex.
244 */
245 #define for_each_css(css, ssid, cgrp) \
246 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
247 if (!((css) = rcu_dereference_check( \
248 (cgrp)->subsys[(ssid)], \
249 lockdep_is_held(&cgroup_tree_mutex) || \
250 lockdep_is_held(&cgroup_mutex)))) { } \
251 else
252
253 /**
254 * for_each_subsys - iterate all enabled cgroup subsystems
255 * @ss: the iteration cursor
256 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
257 */
258 #define for_each_subsys(ss, ssid) \
259 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
260 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
261
262 /* iterate across the active hierarchies */
263 #define for_each_active_root(root) \
264 list_for_each_entry((root), &cgroup_roots, root_list)
265
266 static inline struct cgroup *__d_cgrp(struct dentry *dentry)
267 {
268 return dentry->d_fsdata;
269 }
270
271 static inline struct cfent *__d_cfe(struct dentry *dentry)
272 {
273 return dentry->d_fsdata;
274 }
275
276 static inline struct cftype *__d_cft(struct dentry *dentry)
277 {
278 return __d_cfe(dentry)->type;
279 }
280
281 /**
282 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
283 * @cgrp: the cgroup to be checked for liveness
284 *
285 * On success, returns true; the mutex should be later unlocked. On
286 * failure returns false with no lock held.
287 */
288 static bool cgroup_lock_live_group(struct cgroup *cgrp)
289 {
290 mutex_lock(&cgroup_mutex);
291 if (cgroup_is_dead(cgrp)) {
292 mutex_unlock(&cgroup_mutex);
293 return false;
294 }
295 return true;
296 }
297
298 /* the list of cgroups eligible for automatic release. Protected by
299 * release_list_lock */
300 static LIST_HEAD(release_list);
301 static DEFINE_RAW_SPINLOCK(release_list_lock);
302 static void cgroup_release_agent(struct work_struct *work);
303 static DECLARE_WORK(release_agent_work, cgroup_release_agent);
304 static void check_for_release(struct cgroup *cgrp);
305
306 /*
307 * A cgroup can be associated with multiple css_sets as different tasks may
308 * belong to different cgroups on different hierarchies. In the other
309 * direction, a css_set is naturally associated with multiple cgroups.
310 * This M:N relationship is represented by the following link structure
311 * which exists for each association and allows traversing the associations
312 * from both sides.
313 */
314 struct cgrp_cset_link {
315 /* the cgroup and css_set this link associates */
316 struct cgroup *cgrp;
317 struct css_set *cset;
318
319 /* list of cgrp_cset_links anchored at cgrp->cset_links */
320 struct list_head cset_link;
321
322 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
323 struct list_head cgrp_link;
324 };
325
326 /* The default css_set - used by init and its children prior to any
327 * hierarchies being mounted. It contains a pointer to the root state
328 * for each subsystem. Also used to anchor the list of css_sets. Not
329 * reference-counted, to improve performance when child cgroups
330 * haven't been created.
331 */
332
333 static struct css_set init_css_set;
334 static struct cgrp_cset_link init_cgrp_cset_link;
335
336 /*
337 * css_set_lock protects the list of css_set objects, and the chain of
338 * tasks off each css_set. Nests outside task->alloc_lock due to
339 * css_task_iter_start().
340 */
341 static DEFINE_RWLOCK(css_set_lock);
342 static int css_set_count;
343
344 /*
345 * hash table for cgroup groups. This improves the performance to find
346 * an existing css_set. This hash doesn't (currently) take into
347 * account cgroups in empty hierarchies.
348 */
349 #define CSS_SET_HASH_BITS 7
350 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
351
352 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
353 {
354 unsigned long key = 0UL;
355 struct cgroup_subsys *ss;
356 int i;
357
358 for_each_subsys(ss, i)
359 key += (unsigned long)css[i];
360 key = (key >> 16) ^ key;
361
362 return key;
363 }
364
365 /*
366 * We don't maintain the lists running through each css_set to its task
367 * until after the first call to css_task_iter_start(). This reduces the
368 * fork()/exit() overhead for people who have cgroups compiled into their
369 * kernel but not actually in use.
370 */
371 static int use_task_css_set_links __read_mostly;
372
373 static void __put_css_set(struct css_set *cset, int taskexit)
374 {
375 struct cgrp_cset_link *link, *tmp_link;
376
377 /*
378 * Ensure that the refcount doesn't hit zero while any readers
379 * can see it. Similar to atomic_dec_and_lock(), but for an
380 * rwlock
381 */
382 if (atomic_add_unless(&cset->refcount, -1, 1))
383 return;
384 write_lock(&css_set_lock);
385 if (!atomic_dec_and_test(&cset->refcount)) {
386 write_unlock(&css_set_lock);
387 return;
388 }
389
390 /* This css_set is dead. unlink it and release cgroup refcounts */
391 hash_del(&cset->hlist);
392 css_set_count--;
393
394 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
395 struct cgroup *cgrp = link->cgrp;
396
397 list_del(&link->cset_link);
398 list_del(&link->cgrp_link);
399
400 /* @cgrp can't go away while we're holding css_set_lock */
401 if (list_empty(&cgrp->cset_links) && notify_on_release(cgrp)) {
402 if (taskexit)
403 set_bit(CGRP_RELEASABLE, &cgrp->flags);
404 check_for_release(cgrp);
405 }
406
407 kfree(link);
408 }
409
410 write_unlock(&css_set_lock);
411 kfree_rcu(cset, rcu_head);
412 }
413
414 /*
415 * refcounted get/put for css_set objects
416 */
417 static inline void get_css_set(struct css_set *cset)
418 {
419 atomic_inc(&cset->refcount);
420 }
421
422 static inline void put_css_set(struct css_set *cset)
423 {
424 __put_css_set(cset, 0);
425 }
426
427 static inline void put_css_set_taskexit(struct css_set *cset)
428 {
429 __put_css_set(cset, 1);
430 }
431
432 /**
433 * compare_css_sets - helper function for find_existing_css_set().
434 * @cset: candidate css_set being tested
435 * @old_cset: existing css_set for a task
436 * @new_cgrp: cgroup that's being entered by the task
437 * @template: desired set of css pointers in css_set (pre-calculated)
438 *
439 * Returns true if "cset" matches "old_cset" except for the hierarchy
440 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
441 */
442 static bool compare_css_sets(struct css_set *cset,
443 struct css_set *old_cset,
444 struct cgroup *new_cgrp,
445 struct cgroup_subsys_state *template[])
446 {
447 struct list_head *l1, *l2;
448
449 if (memcmp(template, cset->subsys, sizeof(cset->subsys))) {
450 /* Not all subsystems matched */
451 return false;
452 }
453
454 /*
455 * Compare cgroup pointers in order to distinguish between
456 * different cgroups in heirarchies with no subsystems. We
457 * could get by with just this check alone (and skip the
458 * memcmp above) but on most setups the memcmp check will
459 * avoid the need for this more expensive check on almost all
460 * candidates.
461 */
462
463 l1 = &cset->cgrp_links;
464 l2 = &old_cset->cgrp_links;
465 while (1) {
466 struct cgrp_cset_link *link1, *link2;
467 struct cgroup *cgrp1, *cgrp2;
468
469 l1 = l1->next;
470 l2 = l2->next;
471 /* See if we reached the end - both lists are equal length. */
472 if (l1 == &cset->cgrp_links) {
473 BUG_ON(l2 != &old_cset->cgrp_links);
474 break;
475 } else {
476 BUG_ON(l2 == &old_cset->cgrp_links);
477 }
478 /* Locate the cgroups associated with these links. */
479 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
480 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
481 cgrp1 = link1->cgrp;
482 cgrp2 = link2->cgrp;
483 /* Hierarchies should be linked in the same order. */
484 BUG_ON(cgrp1->root != cgrp2->root);
485
486 /*
487 * If this hierarchy is the hierarchy of the cgroup
488 * that's changing, then we need to check that this
489 * css_set points to the new cgroup; if it's any other
490 * hierarchy, then this css_set should point to the
491 * same cgroup as the old css_set.
492 */
493 if (cgrp1->root == new_cgrp->root) {
494 if (cgrp1 != new_cgrp)
495 return false;
496 } else {
497 if (cgrp1 != cgrp2)
498 return false;
499 }
500 }
501 return true;
502 }
503
504 /**
505 * find_existing_css_set - init css array and find the matching css_set
506 * @old_cset: the css_set that we're using before the cgroup transition
507 * @cgrp: the cgroup that we're moving into
508 * @template: out param for the new set of csses, should be clear on entry
509 */
510 static struct css_set *find_existing_css_set(struct css_set *old_cset,
511 struct cgroup *cgrp,
512 struct cgroup_subsys_state *template[])
513 {
514 struct cgroupfs_root *root = cgrp->root;
515 struct cgroup_subsys *ss;
516 struct css_set *cset;
517 unsigned long key;
518 int i;
519
520 /*
521 * Build the set of subsystem state objects that we want to see in the
522 * new css_set. while subsystems can change globally, the entries here
523 * won't change, so no need for locking.
524 */
525 for_each_subsys(ss, i) {
526 if (root->subsys_mask & (1UL << i)) {
527 /* Subsystem is in this hierarchy. So we want
528 * the subsystem state from the new
529 * cgroup */
530 template[i] = cgroup_css(cgrp, ss);
531 } else {
532 /* Subsystem is not in this hierarchy, so we
533 * don't want to change the subsystem state */
534 template[i] = old_cset->subsys[i];
535 }
536 }
537
538 key = css_set_hash(template);
539 hash_for_each_possible(css_set_table, cset, hlist, key) {
540 if (!compare_css_sets(cset, old_cset, cgrp, template))
541 continue;
542
543 /* This css_set matches what we need */
544 return cset;
545 }
546
547 /* No existing cgroup group matched */
548 return NULL;
549 }
550
551 static void free_cgrp_cset_links(struct list_head *links_to_free)
552 {
553 struct cgrp_cset_link *link, *tmp_link;
554
555 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
556 list_del(&link->cset_link);
557 kfree(link);
558 }
559 }
560
561 /**
562 * allocate_cgrp_cset_links - allocate cgrp_cset_links
563 * @count: the number of links to allocate
564 * @tmp_links: list_head the allocated links are put on
565 *
566 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
567 * through ->cset_link. Returns 0 on success or -errno.
568 */
569 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
570 {
571 struct cgrp_cset_link *link;
572 int i;
573
574 INIT_LIST_HEAD(tmp_links);
575
576 for (i = 0; i < count; i++) {
577 link = kzalloc(sizeof(*link), GFP_KERNEL);
578 if (!link) {
579 free_cgrp_cset_links(tmp_links);
580 return -ENOMEM;
581 }
582 list_add(&link->cset_link, tmp_links);
583 }
584 return 0;
585 }
586
587 /**
588 * link_css_set - a helper function to link a css_set to a cgroup
589 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
590 * @cset: the css_set to be linked
591 * @cgrp: the destination cgroup
592 */
593 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
594 struct cgroup *cgrp)
595 {
596 struct cgrp_cset_link *link;
597
598 BUG_ON(list_empty(tmp_links));
599 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
600 link->cset = cset;
601 link->cgrp = cgrp;
602 list_move(&link->cset_link, &cgrp->cset_links);
603 /*
604 * Always add links to the tail of the list so that the list
605 * is sorted by order of hierarchy creation
606 */
607 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
608 }
609
610 /**
611 * find_css_set - return a new css_set with one cgroup updated
612 * @old_cset: the baseline css_set
613 * @cgrp: the cgroup to be updated
614 *
615 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
616 * substituted into the appropriate hierarchy.
617 */
618 static struct css_set *find_css_set(struct css_set *old_cset,
619 struct cgroup *cgrp)
620 {
621 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
622 struct css_set *cset;
623 struct list_head tmp_links;
624 struct cgrp_cset_link *link;
625 unsigned long key;
626
627 lockdep_assert_held(&cgroup_mutex);
628
629 /* First see if we already have a cgroup group that matches
630 * the desired set */
631 read_lock(&css_set_lock);
632 cset = find_existing_css_set(old_cset, cgrp, template);
633 if (cset)
634 get_css_set(cset);
635 read_unlock(&css_set_lock);
636
637 if (cset)
638 return cset;
639
640 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
641 if (!cset)
642 return NULL;
643
644 /* Allocate all the cgrp_cset_link objects that we'll need */
645 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
646 kfree(cset);
647 return NULL;
648 }
649
650 atomic_set(&cset->refcount, 1);
651 INIT_LIST_HEAD(&cset->cgrp_links);
652 INIT_LIST_HEAD(&cset->tasks);
653 INIT_HLIST_NODE(&cset->hlist);
654
655 /* Copy the set of subsystem state objects generated in
656 * find_existing_css_set() */
657 memcpy(cset->subsys, template, sizeof(cset->subsys));
658
659 write_lock(&css_set_lock);
660 /* Add reference counts and links from the new css_set. */
661 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
662 struct cgroup *c = link->cgrp;
663
664 if (c->root == cgrp->root)
665 c = cgrp;
666 link_css_set(&tmp_links, cset, c);
667 }
668
669 BUG_ON(!list_empty(&tmp_links));
670
671 css_set_count++;
672
673 /* Add this cgroup group to the hash table */
674 key = css_set_hash(cset->subsys);
675 hash_add(css_set_table, &cset->hlist, key);
676
677 write_unlock(&css_set_lock);
678
679 return cset;
680 }
681
682 /*
683 * Return the cgroup for "task" from the given hierarchy. Must be
684 * called with cgroup_mutex held.
685 */
686 static struct cgroup *task_cgroup_from_root(struct task_struct *task,
687 struct cgroupfs_root *root)
688 {
689 struct css_set *cset;
690 struct cgroup *res = NULL;
691
692 BUG_ON(!mutex_is_locked(&cgroup_mutex));
693 read_lock(&css_set_lock);
694 /*
695 * No need to lock the task - since we hold cgroup_mutex the
696 * task can't change groups, so the only thing that can happen
697 * is that it exits and its css is set back to init_css_set.
698 */
699 cset = task_css_set(task);
700 if (cset == &init_css_set) {
701 res = &root->top_cgroup;
702 } else {
703 struct cgrp_cset_link *link;
704
705 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
706 struct cgroup *c = link->cgrp;
707
708 if (c->root == root) {
709 res = c;
710 break;
711 }
712 }
713 }
714 read_unlock(&css_set_lock);
715 BUG_ON(!res);
716 return res;
717 }
718
719 /*
720 * There is one global cgroup mutex. We also require taking
721 * task_lock() when dereferencing a task's cgroup subsys pointers.
722 * See "The task_lock() exception", at the end of this comment.
723 *
724 * A task must hold cgroup_mutex to modify cgroups.
725 *
726 * Any task can increment and decrement the count field without lock.
727 * So in general, code holding cgroup_mutex can't rely on the count
728 * field not changing. However, if the count goes to zero, then only
729 * cgroup_attach_task() can increment it again. Because a count of zero
730 * means that no tasks are currently attached, therefore there is no
731 * way a task attached to that cgroup can fork (the other way to
732 * increment the count). So code holding cgroup_mutex can safely
733 * assume that if the count is zero, it will stay zero. Similarly, if
734 * a task holds cgroup_mutex on a cgroup with zero count, it
735 * knows that the cgroup won't be removed, as cgroup_rmdir()
736 * needs that mutex.
737 *
738 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
739 * (usually) take cgroup_mutex. These are the two most performance
740 * critical pieces of code here. The exception occurs on cgroup_exit(),
741 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
742 * is taken, and if the cgroup count is zero, a usermode call made
743 * to the release agent with the name of the cgroup (path relative to
744 * the root of cgroup file system) as the argument.
745 *
746 * A cgroup can only be deleted if both its 'count' of using tasks
747 * is zero, and its list of 'children' cgroups is empty. Since all
748 * tasks in the system use _some_ cgroup, and since there is always at
749 * least one task in the system (init, pid == 1), therefore, top_cgroup
750 * always has either children cgroups and/or using tasks. So we don't
751 * need a special hack to ensure that top_cgroup cannot be deleted.
752 *
753 * The task_lock() exception
754 *
755 * The need for this exception arises from the action of
756 * cgroup_attach_task(), which overwrites one task's cgroup pointer with
757 * another. It does so using cgroup_mutex, however there are
758 * several performance critical places that need to reference
759 * task->cgroup without the expense of grabbing a system global
760 * mutex. Therefore except as noted below, when dereferencing or, as
761 * in cgroup_attach_task(), modifying a task's cgroup pointer we use
762 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
763 * the task_struct routinely used for such matters.
764 *
765 * P.S. One more locking exception. RCU is used to guard the
766 * update of a tasks cgroup pointer by cgroup_attach_task()
767 */
768
769 /*
770 * A couple of forward declarations required, due to cyclic reference loop:
771 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
772 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
773 * -> cgroup_mkdir.
774 */
775
776 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode);
777 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
778 static int cgroup_populate_dir(struct cgroup *cgrp, unsigned long subsys_mask);
779 static const struct inode_operations cgroup_dir_inode_operations;
780 static const struct file_operations proc_cgroupstats_operations;
781
782 static struct backing_dev_info cgroup_backing_dev_info = {
783 .name = "cgroup",
784 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
785 };
786
787 static struct inode *cgroup_new_inode(umode_t mode, struct super_block *sb)
788 {
789 struct inode *inode = new_inode(sb);
790
791 if (inode) {
792 inode->i_ino = get_next_ino();
793 inode->i_mode = mode;
794 inode->i_uid = current_fsuid();
795 inode->i_gid = current_fsgid();
796 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
797 inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
798 }
799 return inode;
800 }
801
802 static struct cgroup_name *cgroup_alloc_name(struct dentry *dentry)
803 {
804 struct cgroup_name *name;
805
806 name = kmalloc(sizeof(*name) + dentry->d_name.len + 1, GFP_KERNEL);
807 if (!name)
808 return NULL;
809 strcpy(name->name, dentry->d_name.name);
810 return name;
811 }
812
813 static void cgroup_free_fn(struct work_struct *work)
814 {
815 struct cgroup *cgrp = container_of(work, struct cgroup, destroy_work);
816
817 mutex_lock(&cgroup_mutex);
818 cgrp->root->number_of_cgroups--;
819 mutex_unlock(&cgroup_mutex);
820
821 /*
822 * We get a ref to the parent's dentry, and put the ref when
823 * this cgroup is being freed, so it's guaranteed that the
824 * parent won't be destroyed before its children.
825 */
826 dput(cgrp->parent->dentry);
827
828 /*
829 * Drop the active superblock reference that we took when we
830 * created the cgroup. This will free cgrp->root, if we are
831 * holding the last reference to @sb.
832 */
833 deactivate_super(cgrp->root->sb);
834
835 cgroup_pidlist_destroy_all(cgrp);
836
837 simple_xattrs_free(&cgrp->xattrs);
838
839 kfree(rcu_dereference_raw(cgrp->name));
840 kfree(cgrp);
841 }
842
843 static void cgroup_free_rcu(struct rcu_head *head)
844 {
845 struct cgroup *cgrp = container_of(head, struct cgroup, rcu_head);
846
847 INIT_WORK(&cgrp->destroy_work, cgroup_free_fn);
848 queue_work(cgroup_destroy_wq, &cgrp->destroy_work);
849 }
850
851 static void cgroup_diput(struct dentry *dentry, struct inode *inode)
852 {
853 /* is dentry a directory ? if so, kfree() associated cgroup */
854 if (S_ISDIR(inode->i_mode)) {
855 struct cgroup *cgrp = dentry->d_fsdata;
856
857 BUG_ON(!(cgroup_is_dead(cgrp)));
858
859 /*
860 * XXX: cgrp->id is only used to look up css's. As cgroup
861 * and css's lifetimes will be decoupled, it should be made
862 * per-subsystem and moved to css->id so that lookups are
863 * successful until the target css is released.
864 */
865 mutex_lock(&cgroup_mutex);
866 idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
867 mutex_unlock(&cgroup_mutex);
868 cgrp->id = -1;
869
870 call_rcu(&cgrp->rcu_head, cgroup_free_rcu);
871 } else {
872 struct cfent *cfe = __d_cfe(dentry);
873 struct cgroup *cgrp = dentry->d_parent->d_fsdata;
874
875 WARN_ONCE(!list_empty(&cfe->node) &&
876 cgrp != &cgrp->root->top_cgroup,
877 "cfe still linked for %s\n", cfe->type->name);
878 simple_xattrs_free(&cfe->xattrs);
879 kfree(cfe);
880 }
881 iput(inode);
882 }
883
884 static void remove_dir(struct dentry *d)
885 {
886 struct dentry *parent = dget(d->d_parent);
887
888 d_delete(d);
889 simple_rmdir(parent->d_inode, d);
890 dput(parent);
891 }
892
893 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
894 {
895 struct cfent *cfe;
896
897 lockdep_assert_held(&cgrp->dentry->d_inode->i_mutex);
898 lockdep_assert_held(&cgroup_tree_mutex);
899
900 /*
901 * If we're doing cleanup due to failure of cgroup_create(),
902 * the corresponding @cfe may not exist.
903 */
904 list_for_each_entry(cfe, &cgrp->files, node) {
905 struct dentry *d = cfe->dentry;
906
907 if (cft && cfe->type != cft)
908 continue;
909
910 dget(d);
911 d_delete(d);
912 simple_unlink(cgrp->dentry->d_inode, d);
913 list_del_init(&cfe->node);
914 dput(d);
915
916 break;
917 }
918 }
919
920 /**
921 * cgroup_clear_dir - remove subsys files in a cgroup directory
922 * @cgrp: target cgroup
923 * @subsys_mask: mask of the subsystem ids whose files should be removed
924 */
925 static void cgroup_clear_dir(struct cgroup *cgrp, unsigned long subsys_mask)
926 {
927 struct cgroup_subsys *ss;
928 int i;
929
930 for_each_subsys(ss, i) {
931 struct cftype_set *set;
932
933 if (!test_bit(i, &subsys_mask))
934 continue;
935 list_for_each_entry(set, &ss->cftsets, node)
936 cgroup_addrm_files(cgrp, set->cfts, false);
937 }
938 }
939
940 /*
941 * NOTE : the dentry must have been dget()'ed
942 */
943 static void cgroup_d_remove_dir(struct dentry *dentry)
944 {
945 struct dentry *parent;
946
947 parent = dentry->d_parent;
948 spin_lock(&parent->d_lock);
949 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
950 list_del_init(&dentry->d_u.d_child);
951 spin_unlock(&dentry->d_lock);
952 spin_unlock(&parent->d_lock);
953 remove_dir(dentry);
954 }
955
956 static int rebind_subsystems(struct cgroupfs_root *root,
957 unsigned long added_mask, unsigned removed_mask)
958 {
959 struct cgroup *cgrp = &root->top_cgroup;
960 struct cgroup_subsys *ss;
961 int i, ret;
962
963 lockdep_assert_held(&cgroup_tree_mutex);
964 lockdep_assert_held(&cgroup_mutex);
965
966 /* Check that any added subsystems are currently free */
967 for_each_subsys(ss, i)
968 if ((added_mask & (1 << i)) && ss->root != &cgroup_dummy_root)
969 return -EBUSY;
970
971 ret = cgroup_populate_dir(cgrp, added_mask);
972 if (ret)
973 return ret;
974
975 /*
976 * Nothing can fail from this point on. Remove files for the
977 * removed subsystems and rebind each subsystem.
978 */
979 mutex_unlock(&cgroup_mutex);
980 cgroup_clear_dir(cgrp, removed_mask);
981 mutex_lock(&cgroup_mutex);
982
983 for_each_subsys(ss, i) {
984 unsigned long bit = 1UL << i;
985
986 if (bit & added_mask) {
987 /* We're binding this subsystem to this hierarchy */
988 BUG_ON(cgroup_css(cgrp, ss));
989 BUG_ON(!cgroup_css(cgroup_dummy_top, ss));
990 BUG_ON(cgroup_css(cgroup_dummy_top, ss)->cgroup != cgroup_dummy_top);
991
992 rcu_assign_pointer(cgrp->subsys[i],
993 cgroup_css(cgroup_dummy_top, ss));
994 cgroup_css(cgrp, ss)->cgroup = cgrp;
995
996 ss->root = root;
997 if (ss->bind)
998 ss->bind(cgroup_css(cgrp, ss));
999
1000 /* refcount was already taken, and we're keeping it */
1001 root->subsys_mask |= bit;
1002 } else if (bit & removed_mask) {
1003 /* We're removing this subsystem */
1004 BUG_ON(cgroup_css(cgrp, ss) != cgroup_css(cgroup_dummy_top, ss));
1005 BUG_ON(cgroup_css(cgrp, ss)->cgroup != cgrp);
1006
1007 if (ss->bind)
1008 ss->bind(cgroup_css(cgroup_dummy_top, ss));
1009
1010 cgroup_css(cgroup_dummy_top, ss)->cgroup = cgroup_dummy_top;
1011 RCU_INIT_POINTER(cgrp->subsys[i], NULL);
1012
1013 cgroup_subsys[i]->root = &cgroup_dummy_root;
1014 root->subsys_mask &= ~bit;
1015 }
1016 }
1017
1018 /*
1019 * Mark @root has finished binding subsystems. @root->subsys_mask
1020 * now matches the bound subsystems.
1021 */
1022 root->flags |= CGRP_ROOT_SUBSYS_BOUND;
1023
1024 return 0;
1025 }
1026
1027 static int cgroup_show_options(struct seq_file *seq, struct dentry *dentry)
1028 {
1029 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
1030 struct cgroup_subsys *ss;
1031 int ssid;
1032
1033 for_each_subsys(ss, ssid)
1034 if (root->subsys_mask & (1 << ssid))
1035 seq_printf(seq, ",%s", ss->name);
1036 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR)
1037 seq_puts(seq, ",sane_behavior");
1038 if (root->flags & CGRP_ROOT_NOPREFIX)
1039 seq_puts(seq, ",noprefix");
1040 if (root->flags & CGRP_ROOT_XATTR)
1041 seq_puts(seq, ",xattr");
1042
1043 spin_lock(&release_agent_path_lock);
1044 if (strlen(root->release_agent_path))
1045 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
1046 spin_unlock(&release_agent_path_lock);
1047
1048 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags))
1049 seq_puts(seq, ",clone_children");
1050 if (strlen(root->name))
1051 seq_printf(seq, ",name=%s", root->name);
1052 return 0;
1053 }
1054
1055 struct cgroup_sb_opts {
1056 unsigned long subsys_mask;
1057 unsigned long flags;
1058 char *release_agent;
1059 bool cpuset_clone_children;
1060 char *name;
1061 /* User explicitly requested empty subsystem */
1062 bool none;
1063
1064 struct cgroupfs_root *new_root;
1065
1066 };
1067
1068 /*
1069 * Convert a hierarchy specifier into a bitmask of subsystems and
1070 * flags. Call with cgroup_mutex held to protect the cgroup_subsys[]
1071 * array. This function takes refcounts on subsystems to be used, unless it
1072 * returns error, in which case no refcounts are taken.
1073 */
1074 static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
1075 {
1076 char *token, *o = data;
1077 bool all_ss = false, one_ss = false;
1078 unsigned long mask = (unsigned long)-1;
1079 struct cgroup_subsys *ss;
1080 int i;
1081
1082 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1083
1084 #ifdef CONFIG_CPUSETS
1085 mask = ~(1UL << cpuset_cgrp_id);
1086 #endif
1087
1088 memset(opts, 0, sizeof(*opts));
1089
1090 while ((token = strsep(&o, ",")) != NULL) {
1091 if (!*token)
1092 return -EINVAL;
1093 if (!strcmp(token, "none")) {
1094 /* Explicitly have no subsystems */
1095 opts->none = true;
1096 continue;
1097 }
1098 if (!strcmp(token, "all")) {
1099 /* Mutually exclusive option 'all' + subsystem name */
1100 if (one_ss)
1101 return -EINVAL;
1102 all_ss = true;
1103 continue;
1104 }
1105 if (!strcmp(token, "__DEVEL__sane_behavior")) {
1106 opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
1107 continue;
1108 }
1109 if (!strcmp(token, "noprefix")) {
1110 opts->flags |= CGRP_ROOT_NOPREFIX;
1111 continue;
1112 }
1113 if (!strcmp(token, "clone_children")) {
1114 opts->cpuset_clone_children = true;
1115 continue;
1116 }
1117 if (!strcmp(token, "xattr")) {
1118 opts->flags |= CGRP_ROOT_XATTR;
1119 continue;
1120 }
1121 if (!strncmp(token, "release_agent=", 14)) {
1122 /* Specifying two release agents is forbidden */
1123 if (opts->release_agent)
1124 return -EINVAL;
1125 opts->release_agent =
1126 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
1127 if (!opts->release_agent)
1128 return -ENOMEM;
1129 continue;
1130 }
1131 if (!strncmp(token, "name=", 5)) {
1132 const char *name = token + 5;
1133 /* Can't specify an empty name */
1134 if (!strlen(name))
1135 return -EINVAL;
1136 /* Must match [\w.-]+ */
1137 for (i = 0; i < strlen(name); i++) {
1138 char c = name[i];
1139 if (isalnum(c))
1140 continue;
1141 if ((c == '.') || (c == '-') || (c == '_'))
1142 continue;
1143 return -EINVAL;
1144 }
1145 /* Specifying two names is forbidden */
1146 if (opts->name)
1147 return -EINVAL;
1148 opts->name = kstrndup(name,
1149 MAX_CGROUP_ROOT_NAMELEN - 1,
1150 GFP_KERNEL);
1151 if (!opts->name)
1152 return -ENOMEM;
1153
1154 continue;
1155 }
1156
1157 for_each_subsys(ss, i) {
1158 if (strcmp(token, ss->name))
1159 continue;
1160 if (ss->disabled)
1161 continue;
1162
1163 /* Mutually exclusive option 'all' + subsystem name */
1164 if (all_ss)
1165 return -EINVAL;
1166 set_bit(i, &opts->subsys_mask);
1167 one_ss = true;
1168
1169 break;
1170 }
1171 if (i == CGROUP_SUBSYS_COUNT)
1172 return -ENOENT;
1173 }
1174
1175 /*
1176 * If the 'all' option was specified select all the subsystems,
1177 * otherwise if 'none', 'name=' and a subsystem name options
1178 * were not specified, let's default to 'all'
1179 */
1180 if (all_ss || (!one_ss && !opts->none && !opts->name))
1181 for_each_subsys(ss, i)
1182 if (!ss->disabled)
1183 set_bit(i, &opts->subsys_mask);
1184
1185 /* Consistency checks */
1186
1187 if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1188 pr_warning("cgroup: sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
1189
1190 if (opts->flags & CGRP_ROOT_NOPREFIX) {
1191 pr_err("cgroup: sane_behavior: noprefix is not allowed\n");
1192 return -EINVAL;
1193 }
1194
1195 if (opts->cpuset_clone_children) {
1196 pr_err("cgroup: sane_behavior: clone_children is not allowed\n");
1197 return -EINVAL;
1198 }
1199 }
1200
1201 /*
1202 * Option noprefix was introduced just for backward compatibility
1203 * with the old cpuset, so we allow noprefix only if mounting just
1204 * the cpuset subsystem.
1205 */
1206 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
1207 return -EINVAL;
1208
1209
1210 /* Can't specify "none" and some subsystems */
1211 if (opts->subsys_mask && opts->none)
1212 return -EINVAL;
1213
1214 /*
1215 * We either have to specify by name or by subsystems. (So all
1216 * empty hierarchies must have a name).
1217 */
1218 if (!opts->subsys_mask && !opts->name)
1219 return -EINVAL;
1220
1221 return 0;
1222 }
1223
1224 static int cgroup_remount(struct super_block *sb, int *flags, char *data)
1225 {
1226 int ret = 0;
1227 struct cgroupfs_root *root = sb->s_fs_info;
1228 struct cgroup *cgrp = &root->top_cgroup;
1229 struct cgroup_sb_opts opts;
1230 unsigned long added_mask, removed_mask;
1231
1232 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1233 pr_err("cgroup: sane_behavior: remount is not allowed\n");
1234 return -EINVAL;
1235 }
1236
1237 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
1238 mutex_lock(&cgroup_tree_mutex);
1239 mutex_lock(&cgroup_mutex);
1240
1241 /* See what subsystems are wanted */
1242 ret = parse_cgroupfs_options(data, &opts);
1243 if (ret)
1244 goto out_unlock;
1245
1246 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
1247 pr_warning("cgroup: option changes via remount are deprecated (pid=%d comm=%s)\n",
1248 task_tgid_nr(current), current->comm);
1249
1250 added_mask = opts.subsys_mask & ~root->subsys_mask;
1251 removed_mask = root->subsys_mask & ~opts.subsys_mask;
1252
1253 /* Don't allow flags or name to change at remount */
1254 if (((opts.flags ^ root->flags) & CGRP_ROOT_OPTION_MASK) ||
1255 (opts.name && strcmp(opts.name, root->name))) {
1256 pr_err("cgroup: option or name mismatch, new: 0x%lx \"%s\", old: 0x%lx \"%s\"\n",
1257 opts.flags & CGRP_ROOT_OPTION_MASK, opts.name ?: "",
1258 root->flags & CGRP_ROOT_OPTION_MASK, root->name);
1259 ret = -EINVAL;
1260 goto out_unlock;
1261 }
1262
1263 /* remounting is not allowed for populated hierarchies */
1264 if (root->number_of_cgroups > 1) {
1265 ret = -EBUSY;
1266 goto out_unlock;
1267 }
1268
1269 ret = rebind_subsystems(root, added_mask, removed_mask);
1270 if (ret)
1271 goto out_unlock;
1272
1273 if (opts.release_agent) {
1274 spin_lock(&release_agent_path_lock);
1275 strcpy(root->release_agent_path, opts.release_agent);
1276 spin_unlock(&release_agent_path_lock);
1277 }
1278 out_unlock:
1279 kfree(opts.release_agent);
1280 kfree(opts.name);
1281 mutex_unlock(&cgroup_mutex);
1282 mutex_unlock(&cgroup_tree_mutex);
1283 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
1284 return ret;
1285 }
1286
1287 static const struct super_operations cgroup_ops = {
1288 .statfs = simple_statfs,
1289 .drop_inode = generic_delete_inode,
1290 .show_options = cgroup_show_options,
1291 .remount_fs = cgroup_remount,
1292 };
1293
1294 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1295 {
1296 INIT_LIST_HEAD(&cgrp->sibling);
1297 INIT_LIST_HEAD(&cgrp->children);
1298 INIT_LIST_HEAD(&cgrp->files);
1299 INIT_LIST_HEAD(&cgrp->cset_links);
1300 INIT_LIST_HEAD(&cgrp->release_list);
1301 INIT_LIST_HEAD(&cgrp->pidlists);
1302 mutex_init(&cgrp->pidlist_mutex);
1303 cgrp->dummy_css.cgroup = cgrp;
1304 simple_xattrs_init(&cgrp->xattrs);
1305 }
1306
1307 static void init_cgroup_root(struct cgroupfs_root *root)
1308 {
1309 struct cgroup *cgrp = &root->top_cgroup;
1310
1311 INIT_LIST_HEAD(&root->root_list);
1312 root->number_of_cgroups = 1;
1313 cgrp->root = root;
1314 RCU_INIT_POINTER(cgrp->name, &root_cgroup_name);
1315 init_cgroup_housekeeping(cgrp);
1316 idr_init(&root->cgroup_idr);
1317 }
1318
1319 static int cgroup_init_root_id(struct cgroupfs_root *root, int start, int end)
1320 {
1321 int id;
1322
1323 lockdep_assert_held(&cgroup_mutex);
1324
1325 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, start, end,
1326 GFP_KERNEL);
1327 if (id < 0)
1328 return id;
1329
1330 root->hierarchy_id = id;
1331 return 0;
1332 }
1333
1334 static void cgroup_exit_root_id(struct cgroupfs_root *root)
1335 {
1336 lockdep_assert_held(&cgroup_mutex);
1337
1338 if (root->hierarchy_id) {
1339 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1340 root->hierarchy_id = 0;
1341 }
1342 }
1343
1344 static int cgroup_test_super(struct super_block *sb, void *data)
1345 {
1346 struct cgroup_sb_opts *opts = data;
1347 struct cgroupfs_root *root = sb->s_fs_info;
1348
1349 /* If we asked for a name then it must match */
1350 if (opts->name && strcmp(opts->name, root->name))
1351 return 0;
1352
1353 /*
1354 * If we asked for subsystems (or explicitly for no
1355 * subsystems) then they must match
1356 */
1357 if ((opts->subsys_mask || opts->none)
1358 && (opts->subsys_mask != root->subsys_mask))
1359 return 0;
1360
1361 return 1;
1362 }
1363
1364 static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
1365 {
1366 struct cgroupfs_root *root;
1367
1368 if (!opts->subsys_mask && !opts->none)
1369 return NULL;
1370
1371 root = kzalloc(sizeof(*root), GFP_KERNEL);
1372 if (!root)
1373 return ERR_PTR(-ENOMEM);
1374
1375 init_cgroup_root(root);
1376
1377 /*
1378 * We need to set @root->subsys_mask now so that @root can be
1379 * matched by cgroup_test_super() before it finishes
1380 * initialization; otherwise, competing mounts with the same
1381 * options may try to bind the same subsystems instead of waiting
1382 * for the first one leading to unexpected mount errors.
1383 * SUBSYS_BOUND will be set once actual binding is complete.
1384 */
1385 root->subsys_mask = opts->subsys_mask;
1386 root->flags = opts->flags;
1387 if (opts->release_agent)
1388 strcpy(root->release_agent_path, opts->release_agent);
1389 if (opts->name)
1390 strcpy(root->name, opts->name);
1391 if (opts->cpuset_clone_children)
1392 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags);
1393 return root;
1394 }
1395
1396 static void cgroup_free_root(struct cgroupfs_root *root)
1397 {
1398 if (root) {
1399 /* hierarhcy ID shoulid already have been released */
1400 WARN_ON_ONCE(root->hierarchy_id);
1401
1402 idr_destroy(&root->cgroup_idr);
1403 kfree(root);
1404 }
1405 }
1406
1407 static int cgroup_set_super(struct super_block *sb, void *data)
1408 {
1409 int ret;
1410 struct cgroup_sb_opts *opts = data;
1411
1412 /* If we don't have a new root, we can't set up a new sb */
1413 if (!opts->new_root)
1414 return -EINVAL;
1415
1416 BUG_ON(!opts->subsys_mask && !opts->none);
1417
1418 ret = set_anon_super(sb, NULL);
1419 if (ret)
1420 return ret;
1421
1422 sb->s_fs_info = opts->new_root;
1423 opts->new_root->sb = sb;
1424
1425 sb->s_blocksize = PAGE_CACHE_SIZE;
1426 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
1427 sb->s_magic = CGROUP_SUPER_MAGIC;
1428 sb->s_op = &cgroup_ops;
1429
1430 return 0;
1431 }
1432
1433 static int cgroup_get_rootdir(struct super_block *sb)
1434 {
1435 static const struct dentry_operations cgroup_dops = {
1436 .d_iput = cgroup_diput,
1437 .d_delete = always_delete_dentry,
1438 };
1439
1440 struct inode *inode =
1441 cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
1442
1443 if (!inode)
1444 return -ENOMEM;
1445
1446 inode->i_fop = &simple_dir_operations;
1447 inode->i_op = &cgroup_dir_inode_operations;
1448 /* directories start off with i_nlink == 2 (for "." entry) */
1449 inc_nlink(inode);
1450 sb->s_root = d_make_root(inode);
1451 if (!sb->s_root)
1452 return -ENOMEM;
1453 /* for everything else we want ->d_op set */
1454 sb->s_d_op = &cgroup_dops;
1455 return 0;
1456 }
1457
1458 static int cgroup_setup_root(struct cgroupfs_root *root)
1459 {
1460 LIST_HEAD(tmp_links);
1461 struct super_block *sb = root->sb;
1462 struct cgroup *root_cgrp = &root->top_cgroup;
1463 struct cgroupfs_root *existing_root;
1464 struct css_set *cset;
1465 struct inode *inode;
1466 const struct cred *cred;
1467 int i, ret;
1468
1469 lockdep_assert_held(&cgroup_tree_mutex);
1470 lockdep_assert_held(&cgroup_mutex);
1471 BUG_ON(sb->s_root != NULL);
1472
1473 mutex_unlock(&cgroup_mutex);
1474 mutex_unlock(&cgroup_tree_mutex);
1475
1476 ret = cgroup_get_rootdir(sb);
1477 if (ret) {
1478 mutex_lock(&cgroup_tree_mutex);
1479 mutex_lock(&cgroup_mutex);
1480 return ret;
1481 }
1482 inode = sb->s_root->d_inode;
1483
1484 mutex_lock(&inode->i_mutex);
1485 mutex_lock(&cgroup_tree_mutex);
1486 mutex_lock(&cgroup_mutex);
1487
1488 ret = idr_alloc(&root->cgroup_idr, root_cgrp, 0, 1, GFP_KERNEL);
1489 if (ret < 0)
1490 goto out_unlock;
1491 root_cgrp->id = ret;
1492
1493 /* check for name clashes with existing mounts */
1494 ret = -EBUSY;
1495 if (strlen(root->name))
1496 for_each_active_root(existing_root)
1497 if (!strcmp(existing_root->name, root->name))
1498 goto out_unlock;
1499
1500 /*
1501 * We're accessing css_set_count without locking css_set_lock here,
1502 * but that's OK - it can only be increased by someone holding
1503 * cgroup_lock, and that's us. The worst that can happen is that we
1504 * have some link structures left over
1505 */
1506 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
1507 if (ret)
1508 goto out_unlock;
1509
1510 /* ID 0 is reserved for dummy root, 1 for unified hierarchy */
1511 ret = cgroup_init_root_id(root, 2, 0);
1512 if (ret)
1513 goto out_unlock;
1514
1515 sb->s_root->d_fsdata = root_cgrp;
1516 root_cgrp->dentry = sb->s_root;
1517
1518 /*
1519 * We're inside get_sb() and will call lookup_one_len() to create
1520 * the root files, which doesn't work if SELinux is in use. The
1521 * following cred dancing somehow works around it. See 2ce9738ba
1522 * ("cgroupfs: use init_cred when populating new cgroupfs mount")
1523 * for more details.
1524 */
1525 cred = override_creds(&init_cred);
1526
1527 ret = cgroup_addrm_files(root_cgrp, cgroup_base_files, true);
1528 if (ret)
1529 goto rm_base_files;
1530
1531 ret = rebind_subsystems(root, root->subsys_mask, 0);
1532 if (ret)
1533 goto rm_base_files;
1534
1535 revert_creds(cred);
1536
1537 /*
1538 * There must be no failure case after here, since rebinding takes
1539 * care of subsystems' refcounts, which are explicitly dropped in
1540 * the failure exit path.
1541 */
1542 list_add(&root->root_list, &cgroup_roots);
1543 cgroup_root_count++;
1544
1545 /*
1546 * Link the top cgroup in this hierarchy into all the css_set
1547 * objects.
1548 */
1549 write_lock(&css_set_lock);
1550 hash_for_each(css_set_table, i, cset, hlist)
1551 link_css_set(&tmp_links, cset, root_cgrp);
1552 write_unlock(&css_set_lock);
1553
1554 BUG_ON(!list_empty(&root_cgrp->children));
1555 BUG_ON(root->number_of_cgroups != 1);
1556
1557 ret = 0;
1558 goto out_unlock;
1559
1560 rm_base_files:
1561 cgroup_addrm_files(&root->top_cgroup, cgroup_base_files, false);
1562 revert_creds(cred);
1563 cgroup_exit_root_id(root);
1564 out_unlock:
1565 mutex_unlock(&inode->i_mutex);
1566 free_cgrp_cset_links(&tmp_links);
1567 return ret;
1568 }
1569
1570 static struct dentry *cgroup_mount(struct file_system_type *fs_type,
1571 int flags, const char *unused_dev_name,
1572 void *data)
1573 {
1574 struct super_block *sb = NULL;
1575 struct cgroupfs_root *root = NULL;
1576 struct cgroup_sb_opts opts;
1577 struct cgroupfs_root *new_root;
1578 int ret;
1579
1580 mutex_lock(&cgroup_tree_mutex);
1581 mutex_lock(&cgroup_mutex);
1582
1583 /* First find the desired set of subsystems */
1584 ret = parse_cgroupfs_options(data, &opts);
1585 if (ret)
1586 goto out_unlock;
1587
1588 /*
1589 * Allocate a new cgroup root. We may not need it if we're
1590 * reusing an existing hierarchy.
1591 */
1592 new_root = cgroup_root_from_opts(&opts);
1593 if (IS_ERR(new_root)) {
1594 ret = PTR_ERR(new_root);
1595 goto out_unlock;
1596 }
1597 opts.new_root = new_root;
1598
1599 /* Locate an existing or new sb for this hierarchy */
1600 mutex_unlock(&cgroup_mutex);
1601 mutex_unlock(&cgroup_tree_mutex);
1602 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, 0, &opts);
1603 mutex_lock(&cgroup_tree_mutex);
1604 mutex_lock(&cgroup_mutex);
1605 if (IS_ERR(sb)) {
1606 ret = PTR_ERR(sb);
1607 cgroup_free_root(opts.new_root);
1608 goto out_unlock;
1609 }
1610
1611 root = sb->s_fs_info;
1612 BUG_ON(!root);
1613 if (root == opts.new_root) {
1614 ret = cgroup_setup_root(root);
1615 if (ret)
1616 goto out_unlock;
1617 } else {
1618 /*
1619 * We re-used an existing hierarchy - the new root (if
1620 * any) is not needed
1621 */
1622 cgroup_free_root(opts.new_root);
1623
1624 if ((root->flags ^ opts.flags) & CGRP_ROOT_OPTION_MASK) {
1625 if ((root->flags | opts.flags) & CGRP_ROOT_SANE_BEHAVIOR) {
1626 pr_err("cgroup: sane_behavior: new mount options should match the existing superblock\n");
1627 ret = -EINVAL;
1628 goto out_unlock;
1629 } else {
1630 pr_warning("cgroup: new mount options do not match the existing superblock, will be ignored\n");
1631 }
1632 }
1633 }
1634
1635 ret = 0;
1636 out_unlock:
1637 mutex_unlock(&cgroup_mutex);
1638 mutex_unlock(&cgroup_tree_mutex);
1639
1640 if (ret && !IS_ERR_OR_NULL(sb))
1641 deactivate_locked_super(sb);
1642
1643 kfree(opts.release_agent);
1644 kfree(opts.name);
1645
1646 if (!ret)
1647 return dget(sb->s_root);
1648 else
1649 return ERR_PTR(ret);
1650 }
1651
1652 static void cgroup_kill_sb(struct super_block *sb)
1653 {
1654 struct cgroupfs_root *root = sb->s_fs_info;
1655 struct cgroup *cgrp = &root->top_cgroup;
1656 struct cgrp_cset_link *link, *tmp_link;
1657 int ret;
1658
1659 BUG_ON(!root);
1660
1661 BUG_ON(root->number_of_cgroups != 1);
1662 BUG_ON(!list_empty(&cgrp->children));
1663
1664 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
1665 mutex_lock(&cgroup_tree_mutex);
1666 mutex_lock(&cgroup_mutex);
1667
1668 /* Rebind all subsystems back to the default hierarchy */
1669 if (root->flags & CGRP_ROOT_SUBSYS_BOUND) {
1670 ret = rebind_subsystems(root, 0, root->subsys_mask);
1671 /* Shouldn't be able to fail ... */
1672 BUG_ON(ret);
1673 }
1674
1675 /*
1676 * Release all the links from cset_links to this hierarchy's
1677 * root cgroup
1678 */
1679 write_lock(&css_set_lock);
1680
1681 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1682 list_del(&link->cset_link);
1683 list_del(&link->cgrp_link);
1684 kfree(link);
1685 }
1686 write_unlock(&css_set_lock);
1687
1688 if (!list_empty(&root->root_list)) {
1689 list_del(&root->root_list);
1690 cgroup_root_count--;
1691 }
1692
1693 cgroup_exit_root_id(root);
1694
1695 mutex_unlock(&cgroup_mutex);
1696 mutex_unlock(&cgroup_tree_mutex);
1697 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
1698
1699 simple_xattrs_free(&cgrp->xattrs);
1700
1701 kill_litter_super(sb);
1702 cgroup_free_root(root);
1703 }
1704
1705 static struct file_system_type cgroup_fs_type = {
1706 .name = "cgroup",
1707 .mount = cgroup_mount,
1708 .kill_sb = cgroup_kill_sb,
1709 };
1710
1711 static struct kobject *cgroup_kobj;
1712
1713 /**
1714 * cgroup_path - generate the path of a cgroup
1715 * @cgrp: the cgroup in question
1716 * @buf: the buffer to write the path into
1717 * @buflen: the length of the buffer
1718 *
1719 * Writes path of cgroup into buf. Returns 0 on success, -errno on error.
1720 *
1721 * We can't generate cgroup path using dentry->d_name, as accessing
1722 * dentry->name must be protected by irq-unsafe dentry->d_lock or parent
1723 * inode's i_mutex, while on the other hand cgroup_path() can be called
1724 * with some irq-safe spinlocks held.
1725 */
1726 int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1727 {
1728 int ret = -ENAMETOOLONG;
1729 char *start;
1730
1731 if (!cgrp->parent) {
1732 if (strlcpy(buf, "/", buflen) >= buflen)
1733 return -ENAMETOOLONG;
1734 return 0;
1735 }
1736
1737 start = buf + buflen - 1;
1738 *start = '\0';
1739
1740 rcu_read_lock();
1741 do {
1742 const char *name = cgroup_name(cgrp);
1743 int len;
1744
1745 len = strlen(name);
1746 if ((start -= len) < buf)
1747 goto out;
1748 memcpy(start, name, len);
1749
1750 if (--start < buf)
1751 goto out;
1752 *start = '/';
1753
1754 cgrp = cgrp->parent;
1755 } while (cgrp->parent);
1756 ret = 0;
1757 memmove(buf, start, buf + buflen - start);
1758 out:
1759 rcu_read_unlock();
1760 return ret;
1761 }
1762 EXPORT_SYMBOL_GPL(cgroup_path);
1763
1764 /**
1765 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
1766 * @task: target task
1767 * @buf: the buffer to write the path into
1768 * @buflen: the length of the buffer
1769 *
1770 * Determine @task's cgroup on the first (the one with the lowest non-zero
1771 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
1772 * function grabs cgroup_mutex and shouldn't be used inside locks used by
1773 * cgroup controller callbacks.
1774 *
1775 * Returns 0 on success, fails with -%ENAMETOOLONG if @buflen is too short.
1776 */
1777 int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
1778 {
1779 struct cgroupfs_root *root;
1780 struct cgroup *cgrp;
1781 int hierarchy_id = 1, ret = 0;
1782
1783 if (buflen < 2)
1784 return -ENAMETOOLONG;
1785
1786 mutex_lock(&cgroup_mutex);
1787
1788 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
1789
1790 if (root) {
1791 cgrp = task_cgroup_from_root(task, root);
1792 ret = cgroup_path(cgrp, buf, buflen);
1793 } else {
1794 /* if no hierarchy exists, everyone is in "/" */
1795 memcpy(buf, "/", 2);
1796 }
1797
1798 mutex_unlock(&cgroup_mutex);
1799 return ret;
1800 }
1801 EXPORT_SYMBOL_GPL(task_cgroup_path);
1802
1803 /*
1804 * Control Group taskset
1805 */
1806 struct task_and_cgroup {
1807 struct task_struct *task;
1808 struct cgroup *cgrp;
1809 struct css_set *cset;
1810 };
1811
1812 struct cgroup_taskset {
1813 struct task_and_cgroup single;
1814 struct flex_array *tc_array;
1815 int tc_array_len;
1816 int idx;
1817 struct cgroup *cur_cgrp;
1818 };
1819
1820 /**
1821 * cgroup_taskset_first - reset taskset and return the first task
1822 * @tset: taskset of interest
1823 *
1824 * @tset iteration is initialized and the first task is returned.
1825 */
1826 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
1827 {
1828 if (tset->tc_array) {
1829 tset->idx = 0;
1830 return cgroup_taskset_next(tset);
1831 } else {
1832 tset->cur_cgrp = tset->single.cgrp;
1833 return tset->single.task;
1834 }
1835 }
1836 EXPORT_SYMBOL_GPL(cgroup_taskset_first);
1837
1838 /**
1839 * cgroup_taskset_next - iterate to the next task in taskset
1840 * @tset: taskset of interest
1841 *
1842 * Return the next task in @tset. Iteration must have been initialized
1843 * with cgroup_taskset_first().
1844 */
1845 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
1846 {
1847 struct task_and_cgroup *tc;
1848
1849 if (!tset->tc_array || tset->idx >= tset->tc_array_len)
1850 return NULL;
1851
1852 tc = flex_array_get(tset->tc_array, tset->idx++);
1853 tset->cur_cgrp = tc->cgrp;
1854 return tc->task;
1855 }
1856 EXPORT_SYMBOL_GPL(cgroup_taskset_next);
1857
1858 /**
1859 * cgroup_taskset_cur_css - return the matching css for the current task
1860 * @tset: taskset of interest
1861 * @subsys_id: the ID of the target subsystem
1862 *
1863 * Return the css for the current (last returned) task of @tset for
1864 * subsystem specified by @subsys_id. This function must be preceded by
1865 * either cgroup_taskset_first() or cgroup_taskset_next().
1866 */
1867 struct cgroup_subsys_state *cgroup_taskset_cur_css(struct cgroup_taskset *tset,
1868 int subsys_id)
1869 {
1870 return cgroup_css(tset->cur_cgrp, cgroup_subsys[subsys_id]);
1871 }
1872 EXPORT_SYMBOL_GPL(cgroup_taskset_cur_css);
1873
1874 /**
1875 * cgroup_taskset_size - return the number of tasks in taskset
1876 * @tset: taskset of interest
1877 */
1878 int cgroup_taskset_size(struct cgroup_taskset *tset)
1879 {
1880 return tset->tc_array ? tset->tc_array_len : 1;
1881 }
1882 EXPORT_SYMBOL_GPL(cgroup_taskset_size);
1883
1884
1885 /*
1886 * cgroup_task_migrate - move a task from one cgroup to another.
1887 *
1888 * Must be called with cgroup_mutex and threadgroup locked.
1889 */
1890 static void cgroup_task_migrate(struct cgroup *old_cgrp,
1891 struct task_struct *tsk,
1892 struct css_set *new_cset)
1893 {
1894 struct css_set *old_cset;
1895
1896 /*
1897 * We are synchronized through threadgroup_lock() against PF_EXITING
1898 * setting such that we can't race against cgroup_exit() changing the
1899 * css_set to init_css_set and dropping the old one.
1900 */
1901 WARN_ON_ONCE(tsk->flags & PF_EXITING);
1902 old_cset = task_css_set(tsk);
1903
1904 task_lock(tsk);
1905 rcu_assign_pointer(tsk->cgroups, new_cset);
1906 task_unlock(tsk);
1907
1908 /* Update the css_set linked lists if we're using them */
1909 write_lock(&css_set_lock);
1910 if (!list_empty(&tsk->cg_list))
1911 list_move(&tsk->cg_list, &new_cset->tasks);
1912 write_unlock(&css_set_lock);
1913
1914 /*
1915 * We just gained a reference on old_cset by taking it from the
1916 * task. As trading it for new_cset is protected by cgroup_mutex,
1917 * we're safe to drop it here; it will be freed under RCU.
1918 */
1919 set_bit(CGRP_RELEASABLE, &old_cgrp->flags);
1920 put_css_set(old_cset);
1921 }
1922
1923 /**
1924 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
1925 * @cgrp: the cgroup to attach to
1926 * @tsk: the task or the leader of the threadgroup to be attached
1927 * @threadgroup: attach the whole threadgroup?
1928 *
1929 * Call holding cgroup_mutex and the group_rwsem of the leader. Will take
1930 * task_lock of @tsk or each thread in the threadgroup individually in turn.
1931 */
1932 static int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk,
1933 bool threadgroup)
1934 {
1935 int retval, i, group_size;
1936 struct cgroupfs_root *root = cgrp->root;
1937 struct cgroup_subsys_state *css, *failed_css = NULL;
1938 /* threadgroup list cursor and array */
1939 struct task_struct *leader = tsk;
1940 struct task_and_cgroup *tc;
1941 struct flex_array *group;
1942 struct cgroup_taskset tset = { };
1943
1944 /*
1945 * step 0: in order to do expensive, possibly blocking operations for
1946 * every thread, we cannot iterate the thread group list, since it needs
1947 * rcu or tasklist locked. instead, build an array of all threads in the
1948 * group - group_rwsem prevents new threads from appearing, and if
1949 * threads exit, this will just be an over-estimate.
1950 */
1951 if (threadgroup)
1952 group_size = get_nr_threads(tsk);
1953 else
1954 group_size = 1;
1955 /* flex_array supports very large thread-groups better than kmalloc. */
1956 group = flex_array_alloc(sizeof(*tc), group_size, GFP_KERNEL);
1957 if (!group)
1958 return -ENOMEM;
1959 /* pre-allocate to guarantee space while iterating in rcu read-side. */
1960 retval = flex_array_prealloc(group, 0, group_size, GFP_KERNEL);
1961 if (retval)
1962 goto out_free_group_list;
1963
1964 i = 0;
1965 /*
1966 * Prevent freeing of tasks while we take a snapshot. Tasks that are
1967 * already PF_EXITING could be freed from underneath us unless we
1968 * take an rcu_read_lock.
1969 */
1970 rcu_read_lock();
1971 do {
1972 struct task_and_cgroup ent;
1973
1974 /* @tsk either already exited or can't exit until the end */
1975 if (tsk->flags & PF_EXITING)
1976 goto next;
1977
1978 /* as per above, nr_threads may decrease, but not increase. */
1979 BUG_ON(i >= group_size);
1980 ent.task = tsk;
1981 ent.cgrp = task_cgroup_from_root(tsk, root);
1982 /* nothing to do if this task is already in the cgroup */
1983 if (ent.cgrp == cgrp)
1984 goto next;
1985 /*
1986 * saying GFP_ATOMIC has no effect here because we did prealloc
1987 * earlier, but it's good form to communicate our expectations.
1988 */
1989 retval = flex_array_put(group, i, &ent, GFP_ATOMIC);
1990 BUG_ON(retval != 0);
1991 i++;
1992 next:
1993 if (!threadgroup)
1994 break;
1995 } while_each_thread(leader, tsk);
1996 rcu_read_unlock();
1997 /* remember the number of threads in the array for later. */
1998 group_size = i;
1999 tset.tc_array = group;
2000 tset.tc_array_len = group_size;
2001
2002 /* methods shouldn't be called if no task is actually migrating */
2003 retval = 0;
2004 if (!group_size)
2005 goto out_free_group_list;
2006
2007 /*
2008 * step 1: check that we can legitimately attach to the cgroup.
2009 */
2010 for_each_css(css, i, cgrp) {
2011 if (css->ss->can_attach) {
2012 retval = css->ss->can_attach(css, &tset);
2013 if (retval) {
2014 failed_css = css;
2015 goto out_cancel_attach;
2016 }
2017 }
2018 }
2019
2020 /*
2021 * step 2: make sure css_sets exist for all threads to be migrated.
2022 * we use find_css_set, which allocates a new one if necessary.
2023 */
2024 for (i = 0; i < group_size; i++) {
2025 struct css_set *old_cset;
2026
2027 tc = flex_array_get(group, i);
2028 old_cset = task_css_set(tc->task);
2029 tc->cset = find_css_set(old_cset, cgrp);
2030 if (!tc->cset) {
2031 retval = -ENOMEM;
2032 goto out_put_css_set_refs;
2033 }
2034 }
2035
2036 /*
2037 * step 3: now that we're guaranteed success wrt the css_sets,
2038 * proceed to move all tasks to the new cgroup. There are no
2039 * failure cases after here, so this is the commit point.
2040 */
2041 for (i = 0; i < group_size; i++) {
2042 tc = flex_array_get(group, i);
2043 cgroup_task_migrate(tc->cgrp, tc->task, tc->cset);
2044 }
2045 /* nothing is sensitive to fork() after this point. */
2046
2047 /*
2048 * step 4: do subsystem attach callbacks.
2049 */
2050 for_each_css(css, i, cgrp)
2051 if (css->ss->attach)
2052 css->ss->attach(css, &tset);
2053
2054 /*
2055 * step 5: success! and cleanup
2056 */
2057 retval = 0;
2058 out_put_css_set_refs:
2059 if (retval) {
2060 for (i = 0; i < group_size; i++) {
2061 tc = flex_array_get(group, i);
2062 if (!tc->cset)
2063 break;
2064 put_css_set(tc->cset);
2065 }
2066 }
2067 out_cancel_attach:
2068 if (retval) {
2069 for_each_css(css, i, cgrp) {
2070 if (css == failed_css)
2071 break;
2072 if (css->ss->cancel_attach)
2073 css->ss->cancel_attach(css, &tset);
2074 }
2075 }
2076 out_free_group_list:
2077 flex_array_free(group);
2078 return retval;
2079 }
2080
2081 /*
2082 * Find the task_struct of the task to attach by vpid and pass it along to the
2083 * function to attach either it or all tasks in its threadgroup. Will lock
2084 * cgroup_mutex and threadgroup; may take task_lock of task.
2085 */
2086 static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
2087 {
2088 struct task_struct *tsk;
2089 const struct cred *cred = current_cred(), *tcred;
2090 int ret;
2091
2092 if (!cgroup_lock_live_group(cgrp))
2093 return -ENODEV;
2094
2095 retry_find_task:
2096 rcu_read_lock();
2097 if (pid) {
2098 tsk = find_task_by_vpid(pid);
2099 if (!tsk) {
2100 rcu_read_unlock();
2101 ret = -ESRCH;
2102 goto out_unlock_cgroup;
2103 }
2104 /*
2105 * even if we're attaching all tasks in the thread group, we
2106 * only need to check permissions on one of them.
2107 */
2108 tcred = __task_cred(tsk);
2109 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2110 !uid_eq(cred->euid, tcred->uid) &&
2111 !uid_eq(cred->euid, tcred->suid)) {
2112 rcu_read_unlock();
2113 ret = -EACCES;
2114 goto out_unlock_cgroup;
2115 }
2116 } else
2117 tsk = current;
2118
2119 if (threadgroup)
2120 tsk = tsk->group_leader;
2121
2122 /*
2123 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
2124 * trapped in a cpuset, or RT worker may be born in a cgroup
2125 * with no rt_runtime allocated. Just say no.
2126 */
2127 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
2128 ret = -EINVAL;
2129 rcu_read_unlock();
2130 goto out_unlock_cgroup;
2131 }
2132
2133 get_task_struct(tsk);
2134 rcu_read_unlock();
2135
2136 threadgroup_lock(tsk);
2137 if (threadgroup) {
2138 if (!thread_group_leader(tsk)) {
2139 /*
2140 * a race with de_thread from another thread's exec()
2141 * may strip us of our leadership, if this happens,
2142 * there is no choice but to throw this task away and
2143 * try again; this is
2144 * "double-double-toil-and-trouble-check locking".
2145 */
2146 threadgroup_unlock(tsk);
2147 put_task_struct(tsk);
2148 goto retry_find_task;
2149 }
2150 }
2151
2152 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
2153
2154 threadgroup_unlock(tsk);
2155
2156 put_task_struct(tsk);
2157 out_unlock_cgroup:
2158 mutex_unlock(&cgroup_mutex);
2159 return ret;
2160 }
2161
2162 /**
2163 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2164 * @from: attach to all cgroups of a given task
2165 * @tsk: the task to be attached
2166 */
2167 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2168 {
2169 struct cgroupfs_root *root;
2170 int retval = 0;
2171
2172 mutex_lock(&cgroup_mutex);
2173 for_each_active_root(root) {
2174 struct cgroup *from_cgrp = task_cgroup_from_root(from, root);
2175
2176 retval = cgroup_attach_task(from_cgrp, tsk, false);
2177 if (retval)
2178 break;
2179 }
2180 mutex_unlock(&cgroup_mutex);
2181
2182 return retval;
2183 }
2184 EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2185
2186 static int cgroup_tasks_write(struct cgroup_subsys_state *css,
2187 struct cftype *cft, u64 pid)
2188 {
2189 return attach_task_by_pid(css->cgroup, pid, false);
2190 }
2191
2192 static int cgroup_procs_write(struct cgroup_subsys_state *css,
2193 struct cftype *cft, u64 tgid)
2194 {
2195 return attach_task_by_pid(css->cgroup, tgid, true);
2196 }
2197
2198 static int cgroup_release_agent_write(struct cgroup_subsys_state *css,
2199 struct cftype *cft, const char *buffer)
2200 {
2201 BUILD_BUG_ON(sizeof(css->cgroup->root->release_agent_path) < PATH_MAX);
2202 if (strlen(buffer) >= PATH_MAX)
2203 return -EINVAL;
2204 if (!cgroup_lock_live_group(css->cgroup))
2205 return -ENODEV;
2206 spin_lock(&release_agent_path_lock);
2207 strcpy(css->cgroup->root->release_agent_path, buffer);
2208 spin_unlock(&release_agent_path_lock);
2209 mutex_unlock(&cgroup_mutex);
2210 return 0;
2211 }
2212
2213 static int cgroup_release_agent_show(struct seq_file *seq, void *v)
2214 {
2215 struct cgroup *cgrp = seq_css(seq)->cgroup;
2216
2217 if (!cgroup_lock_live_group(cgrp))
2218 return -ENODEV;
2219 seq_puts(seq, cgrp->root->release_agent_path);
2220 seq_putc(seq, '\n');
2221 mutex_unlock(&cgroup_mutex);
2222 return 0;
2223 }
2224
2225 static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
2226 {
2227 struct cgroup *cgrp = seq_css(seq)->cgroup;
2228
2229 seq_printf(seq, "%d\n", cgroup_sane_behavior(cgrp));
2230 return 0;
2231 }
2232
2233 /* A buffer size big enough for numbers or short strings */
2234 #define CGROUP_LOCAL_BUFFER_SIZE 64
2235
2236 static ssize_t cgroup_file_write(struct file *file, const char __user *userbuf,
2237 size_t nbytes, loff_t *ppos)
2238 {
2239 struct cfent *cfe = __d_cfe(file->f_dentry);
2240 struct cftype *cft = __d_cft(file->f_dentry);
2241 struct cgroup_subsys_state *css = cfe->css;
2242 size_t max_bytes = cft->max_write_len ?: CGROUP_LOCAL_BUFFER_SIZE - 1;
2243 char *buf;
2244 int ret;
2245
2246 if (nbytes >= max_bytes)
2247 return -E2BIG;
2248
2249 buf = kmalloc(nbytes + 1, GFP_KERNEL);
2250 if (!buf)
2251 return -ENOMEM;
2252
2253 if (copy_from_user(buf, userbuf, nbytes)) {
2254 ret = -EFAULT;
2255 goto out_free;
2256 }
2257
2258 buf[nbytes] = '\0';
2259
2260 if (cft->write_string) {
2261 ret = cft->write_string(css, cft, strstrip(buf));
2262 } else if (cft->write_u64) {
2263 unsigned long long v;
2264 ret = kstrtoull(buf, 0, &v);
2265 if (!ret)
2266 ret = cft->write_u64(css, cft, v);
2267 } else if (cft->write_s64) {
2268 long long v;
2269 ret = kstrtoll(buf, 0, &v);
2270 if (!ret)
2271 ret = cft->write_s64(css, cft, v);
2272 } else if (cft->trigger) {
2273 ret = cft->trigger(css, (unsigned int)cft->private);
2274 } else {
2275 ret = -EINVAL;
2276 }
2277 out_free:
2278 kfree(buf);
2279 return ret ?: nbytes;
2280 }
2281
2282 /*
2283 * seqfile ops/methods for returning structured data. Currently just
2284 * supports string->u64 maps, but can be extended in future.
2285 */
2286
2287 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
2288 {
2289 struct cftype *cft = seq_cft(seq);
2290
2291 if (cft->seq_start) {
2292 return cft->seq_start(seq, ppos);
2293 } else {
2294 /*
2295 * The same behavior and code as single_open(). Returns
2296 * !NULL if pos is at the beginning; otherwise, NULL.
2297 */
2298 return NULL + !*ppos;
2299 }
2300 }
2301
2302 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
2303 {
2304 struct cftype *cft = seq_cft(seq);
2305
2306 if (cft->seq_next) {
2307 return cft->seq_next(seq, v, ppos);
2308 } else {
2309 /*
2310 * The same behavior and code as single_open(), always
2311 * terminate after the initial read.
2312 */
2313 ++*ppos;
2314 return NULL;
2315 }
2316 }
2317
2318 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
2319 {
2320 struct cftype *cft = seq_cft(seq);
2321
2322 if (cft->seq_stop)
2323 cft->seq_stop(seq, v);
2324 }
2325
2326 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
2327 {
2328 struct cftype *cft = seq_cft(m);
2329 struct cgroup_subsys_state *css = seq_css(m);
2330
2331 if (cft->seq_show)
2332 return cft->seq_show(m, arg);
2333
2334 if (cft->read_u64)
2335 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
2336 else if (cft->read_s64)
2337 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
2338 else
2339 return -EINVAL;
2340 return 0;
2341 }
2342
2343 static struct seq_operations cgroup_seq_operations = {
2344 .start = cgroup_seqfile_start,
2345 .next = cgroup_seqfile_next,
2346 .stop = cgroup_seqfile_stop,
2347 .show = cgroup_seqfile_show,
2348 };
2349
2350 static int cgroup_file_open(struct inode *inode, struct file *file)
2351 {
2352 struct cfent *cfe = __d_cfe(file->f_dentry);
2353 struct cftype *cft = __d_cft(file->f_dentry);
2354 struct cgroup *cgrp = __d_cgrp(cfe->dentry->d_parent);
2355 struct cgroup_subsys_state *css;
2356 struct cgroup_open_file *of;
2357 int err;
2358
2359 err = generic_file_open(inode, file);
2360 if (err)
2361 return err;
2362
2363 /*
2364 * If the file belongs to a subsystem, pin the css. Will be
2365 * unpinned either on open failure or release. This ensures that
2366 * @css stays alive for all file operations.
2367 */
2368 rcu_read_lock();
2369 css = cgroup_css(cgrp, cft->ss);
2370 if (cft->ss && !css_tryget(css))
2371 css = NULL;
2372 rcu_read_unlock();
2373
2374 if (!css)
2375 return -ENODEV;
2376
2377 /*
2378 * @cfe->css is used by read/write/close to determine the
2379 * associated css. @file->private_data would be a better place but
2380 * that's already used by seqfile. Multiple accessors may use it
2381 * simultaneously which is okay as the association never changes.
2382 */
2383 WARN_ON_ONCE(cfe->css && cfe->css != css);
2384 cfe->css = css;
2385
2386 of = __seq_open_private(file, &cgroup_seq_operations,
2387 sizeof(struct cgroup_open_file));
2388 if (of) {
2389 of->cfe = cfe;
2390 return 0;
2391 }
2392
2393 if (css->ss)
2394 css_put(css);
2395 return -ENOMEM;
2396 }
2397
2398 static int cgroup_file_release(struct inode *inode, struct file *file)
2399 {
2400 struct cfent *cfe = __d_cfe(file->f_dentry);
2401 struct cgroup_subsys_state *css = cfe->css;
2402
2403 if (css->ss)
2404 css_put(css);
2405 return seq_release_private(inode, file);
2406 }
2407
2408 /*
2409 * cgroup_rename - Only allow simple rename of directories in place.
2410 */
2411 static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
2412 struct inode *new_dir, struct dentry *new_dentry)
2413 {
2414 int ret;
2415 struct cgroup_name *name, *old_name;
2416 struct cgroup *cgrp;
2417
2418 /*
2419 * It's convinient to use parent dir's i_mutex to protected
2420 * cgrp->name.
2421 */
2422 lockdep_assert_held(&old_dir->i_mutex);
2423
2424 if (!S_ISDIR(old_dentry->d_inode->i_mode))
2425 return -ENOTDIR;
2426 if (new_dentry->d_inode)
2427 return -EEXIST;
2428 if (old_dir != new_dir)
2429 return -EIO;
2430
2431 cgrp = __d_cgrp(old_dentry);
2432
2433 /*
2434 * This isn't a proper migration and its usefulness is very
2435 * limited. Disallow if sane_behavior.
2436 */
2437 if (cgroup_sane_behavior(cgrp))
2438 return -EPERM;
2439
2440 name = cgroup_alloc_name(new_dentry);
2441 if (!name)
2442 return -ENOMEM;
2443
2444 ret = simple_rename(old_dir, old_dentry, new_dir, new_dentry);
2445 if (ret) {
2446 kfree(name);
2447 return ret;
2448 }
2449
2450 old_name = rcu_dereference_protected(cgrp->name, true);
2451 rcu_assign_pointer(cgrp->name, name);
2452
2453 kfree_rcu(old_name, rcu_head);
2454 return 0;
2455 }
2456
2457 static struct simple_xattrs *__d_xattrs(struct dentry *dentry)
2458 {
2459 if (S_ISDIR(dentry->d_inode->i_mode))
2460 return &__d_cgrp(dentry)->xattrs;
2461 else
2462 return &__d_cfe(dentry)->xattrs;
2463 }
2464
2465 static inline int xattr_enabled(struct dentry *dentry)
2466 {
2467 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
2468 return root->flags & CGRP_ROOT_XATTR;
2469 }
2470
2471 static bool is_valid_xattr(const char *name)
2472 {
2473 if (!strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN) ||
2474 !strncmp(name, XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN))
2475 return true;
2476 return false;
2477 }
2478
2479 static int cgroup_setxattr(struct dentry *dentry, const char *name,
2480 const void *val, size_t size, int flags)
2481 {
2482 if (!xattr_enabled(dentry))
2483 return -EOPNOTSUPP;
2484 if (!is_valid_xattr(name))
2485 return -EINVAL;
2486 return simple_xattr_set(__d_xattrs(dentry), name, val, size, flags);
2487 }
2488
2489 static int cgroup_removexattr(struct dentry *dentry, const char *name)
2490 {
2491 if (!xattr_enabled(dentry))
2492 return -EOPNOTSUPP;
2493 if (!is_valid_xattr(name))
2494 return -EINVAL;
2495 return simple_xattr_remove(__d_xattrs(dentry), name);
2496 }
2497
2498 static ssize_t cgroup_getxattr(struct dentry *dentry, const char *name,
2499 void *buf, size_t size)
2500 {
2501 if (!xattr_enabled(dentry))
2502 return -EOPNOTSUPP;
2503 if (!is_valid_xattr(name))
2504 return -EINVAL;
2505 return simple_xattr_get(__d_xattrs(dentry), name, buf, size);
2506 }
2507
2508 static ssize_t cgroup_listxattr(struct dentry *dentry, char *buf, size_t size)
2509 {
2510 if (!xattr_enabled(dentry))
2511 return -EOPNOTSUPP;
2512 return simple_xattr_list(__d_xattrs(dentry), buf, size);
2513 }
2514
2515 static const struct file_operations cgroup_file_operations = {
2516 .read = seq_read,
2517 .write = cgroup_file_write,
2518 .llseek = generic_file_llseek,
2519 .open = cgroup_file_open,
2520 .release = cgroup_file_release,
2521 };
2522
2523 static const struct inode_operations cgroup_file_inode_operations = {
2524 .setxattr = cgroup_setxattr,
2525 .getxattr = cgroup_getxattr,
2526 .listxattr = cgroup_listxattr,
2527 .removexattr = cgroup_removexattr,
2528 };
2529
2530 static const struct inode_operations cgroup_dir_inode_operations = {
2531 .lookup = simple_lookup,
2532 .mkdir = cgroup_mkdir,
2533 .rmdir = cgroup_rmdir,
2534 .rename = cgroup_rename,
2535 .setxattr = cgroup_setxattr,
2536 .getxattr = cgroup_getxattr,
2537 .listxattr = cgroup_listxattr,
2538 .removexattr = cgroup_removexattr,
2539 };
2540
2541 static int cgroup_create_file(struct dentry *dentry, umode_t mode,
2542 struct super_block *sb)
2543 {
2544 struct inode *inode;
2545
2546 if (!dentry)
2547 return -ENOENT;
2548 if (dentry->d_inode)
2549 return -EEXIST;
2550
2551 inode = cgroup_new_inode(mode, sb);
2552 if (!inode)
2553 return -ENOMEM;
2554
2555 if (S_ISDIR(mode)) {
2556 inode->i_op = &cgroup_dir_inode_operations;
2557 inode->i_fop = &simple_dir_operations;
2558
2559 /* start off with i_nlink == 2 (for "." entry) */
2560 inc_nlink(inode);
2561 inc_nlink(dentry->d_parent->d_inode);
2562
2563 /*
2564 * Control reaches here with cgroup_mutex held.
2565 * @inode->i_mutex should nest outside cgroup_mutex but we
2566 * want to populate it immediately without releasing
2567 * cgroup_mutex. As @inode isn't visible to anyone else
2568 * yet, trylock will always succeed without affecting
2569 * lockdep checks.
2570 */
2571 WARN_ON_ONCE(!mutex_trylock(&inode->i_mutex));
2572 } else if (S_ISREG(mode)) {
2573 inode->i_size = 0;
2574 inode->i_fop = &cgroup_file_operations;
2575 inode->i_op = &cgroup_file_inode_operations;
2576 }
2577 d_instantiate(dentry, inode);
2578 dget(dentry); /* Extra count - pin the dentry in core */
2579 return 0;
2580 }
2581
2582 /**
2583 * cgroup_file_mode - deduce file mode of a control file
2584 * @cft: the control file in question
2585 *
2586 * returns cft->mode if ->mode is not 0
2587 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
2588 * returns S_IRUGO if it has only a read handler
2589 * returns S_IWUSR if it has only a write hander
2590 */
2591 static umode_t cgroup_file_mode(const struct cftype *cft)
2592 {
2593 umode_t mode = 0;
2594
2595 if (cft->mode)
2596 return cft->mode;
2597
2598 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
2599 mode |= S_IRUGO;
2600
2601 if (cft->write_u64 || cft->write_s64 || cft->write_string ||
2602 cft->trigger)
2603 mode |= S_IWUSR;
2604
2605 return mode;
2606 }
2607
2608 static int cgroup_add_file(struct cgroup *cgrp, struct cftype *cft)
2609 {
2610 struct dentry *dir = cgrp->dentry;
2611 struct cgroup *parent = __d_cgrp(dir);
2612 struct dentry *dentry;
2613 struct cfent *cfe;
2614 int error;
2615 umode_t mode;
2616 char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
2617
2618 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
2619 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) {
2620 strcpy(name, cft->ss->name);
2621 strcat(name, ".");
2622 }
2623 strcat(name, cft->name);
2624
2625 BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
2626
2627 cfe = kzalloc(sizeof(*cfe), GFP_KERNEL);
2628 if (!cfe)
2629 return -ENOMEM;
2630
2631 dentry = lookup_one_len(name, dir, strlen(name));
2632 if (IS_ERR(dentry)) {
2633 error = PTR_ERR(dentry);
2634 goto out;
2635 }
2636
2637 cfe->type = (void *)cft;
2638 cfe->dentry = dentry;
2639 dentry->d_fsdata = cfe;
2640 simple_xattrs_init(&cfe->xattrs);
2641
2642 mode = cgroup_file_mode(cft);
2643 error = cgroup_create_file(dentry, mode | S_IFREG, cgrp->root->sb);
2644 if (!error) {
2645 list_add_tail(&cfe->node, &parent->files);
2646 cfe = NULL;
2647 }
2648 dput(dentry);
2649 out:
2650 kfree(cfe);
2651 return error;
2652 }
2653
2654 /**
2655 * cgroup_addrm_files - add or remove files to a cgroup directory
2656 * @cgrp: the target cgroup
2657 * @cfts: array of cftypes to be added
2658 * @is_add: whether to add or remove
2659 *
2660 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
2661 * For removals, this function never fails. If addition fails, this
2662 * function doesn't remove files already added. The caller is responsible
2663 * for cleaning up.
2664 */
2665 static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
2666 bool is_add)
2667 {
2668 struct cftype *cft;
2669 int ret;
2670
2671 lockdep_assert_held(&cgrp->dentry->d_inode->i_mutex);
2672 lockdep_assert_held(&cgroup_tree_mutex);
2673
2674 for (cft = cfts; cft->name[0] != '\0'; cft++) {
2675 /* does cft->flags tell us to skip this file on @cgrp? */
2676 if ((cft->flags & CFTYPE_INSANE) && cgroup_sane_behavior(cgrp))
2677 continue;
2678 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgrp->parent)
2679 continue;
2680 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgrp->parent)
2681 continue;
2682
2683 if (is_add) {
2684 ret = cgroup_add_file(cgrp, cft);
2685 if (ret) {
2686 pr_warn("cgroup_addrm_files: failed to add %s, err=%d\n",
2687 cft->name, ret);
2688 return ret;
2689 }
2690 } else {
2691 cgroup_rm_file(cgrp, cft);
2692 }
2693 }
2694 return 0;
2695 }
2696
2697 static void cgroup_cfts_prepare(void)
2698 __acquires(&cgroup_mutex)
2699 {
2700 /*
2701 * Thanks to the entanglement with vfs inode locking, we can't walk
2702 * the existing cgroups under cgroup_mutex and create files.
2703 * Instead, we use css_for_each_descendant_pre() and drop RCU read
2704 * lock before calling cgroup_addrm_files().
2705 */
2706 mutex_lock(&cgroup_tree_mutex);
2707 mutex_lock(&cgroup_mutex);
2708 }
2709
2710 static int cgroup_cfts_commit(struct cftype *cfts, bool is_add)
2711 __releases(&cgroup_mutex)
2712 {
2713 LIST_HEAD(pending);
2714 struct cgroup_subsys *ss = cfts[0].ss;
2715 struct cgroup *root = &ss->root->top_cgroup;
2716 struct super_block *sb = ss->root->sb;
2717 struct dentry *prev = NULL;
2718 struct inode *inode;
2719 struct cgroup_subsys_state *css;
2720 u64 update_before;
2721 int ret = 0;
2722
2723 mutex_unlock(&cgroup_mutex);
2724
2725 /* %NULL @cfts indicates abort and don't bother if @ss isn't attached */
2726 if (!cfts || ss->root == &cgroup_dummy_root ||
2727 !atomic_inc_not_zero(&sb->s_active)) {
2728 mutex_unlock(&cgroup_tree_mutex);
2729 return 0;
2730 }
2731
2732 /*
2733 * All cgroups which are created after we drop cgroup_mutex will
2734 * have the updated set of files, so we only need to update the
2735 * cgroups created before the current @cgroup_serial_nr_next.
2736 */
2737 update_before = cgroup_serial_nr_next;
2738
2739 /* add/rm files for all cgroups created before */
2740 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
2741 struct cgroup *cgrp = css->cgroup;
2742
2743 if (cgroup_is_dead(cgrp))
2744 continue;
2745
2746 inode = cgrp->dentry->d_inode;
2747 dget(cgrp->dentry);
2748 dput(prev);
2749 prev = cgrp->dentry;
2750
2751 mutex_unlock(&cgroup_tree_mutex);
2752 mutex_lock(&inode->i_mutex);
2753 mutex_lock(&cgroup_tree_mutex);
2754 if (cgrp->serial_nr < update_before && !cgroup_is_dead(cgrp))
2755 ret = cgroup_addrm_files(cgrp, cfts, is_add);
2756 mutex_unlock(&inode->i_mutex);
2757 if (ret)
2758 break;
2759 }
2760 mutex_unlock(&cgroup_tree_mutex);
2761 dput(prev);
2762 deactivate_super(sb);
2763 return ret;
2764 }
2765
2766 /**
2767 * cgroup_add_cftypes - add an array of cftypes to a subsystem
2768 * @ss: target cgroup subsystem
2769 * @cfts: zero-length name terminated array of cftypes
2770 *
2771 * Register @cfts to @ss. Files described by @cfts are created for all
2772 * existing cgroups to which @ss is attached and all future cgroups will
2773 * have them too. This function can be called anytime whether @ss is
2774 * attached or not.
2775 *
2776 * Returns 0 on successful registration, -errno on failure. Note that this
2777 * function currently returns 0 as long as @cfts registration is successful
2778 * even if some file creation attempts on existing cgroups fail.
2779 */
2780 int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2781 {
2782 struct cftype_set *set;
2783 struct cftype *cft;
2784 int ret;
2785
2786 set = kzalloc(sizeof(*set), GFP_KERNEL);
2787 if (!set)
2788 return -ENOMEM;
2789
2790 for (cft = cfts; cft->name[0] != '\0'; cft++)
2791 cft->ss = ss;
2792
2793 cgroup_cfts_prepare();
2794 set->cfts = cfts;
2795 list_add_tail(&set->node, &ss->cftsets);
2796 ret = cgroup_cfts_commit(cfts, true);
2797 if (ret)
2798 cgroup_rm_cftypes(cfts);
2799 return ret;
2800 }
2801 EXPORT_SYMBOL_GPL(cgroup_add_cftypes);
2802
2803 /**
2804 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
2805 * @cfts: zero-length name terminated array of cftypes
2806 *
2807 * Unregister @cfts. Files described by @cfts are removed from all
2808 * existing cgroups and all future cgroups won't have them either. This
2809 * function can be called anytime whether @cfts' subsys is attached or not.
2810 *
2811 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2812 * registered.
2813 */
2814 int cgroup_rm_cftypes(struct cftype *cfts)
2815 {
2816 struct cftype_set *set;
2817
2818 if (!cfts || !cfts[0].ss)
2819 return -ENOENT;
2820
2821 cgroup_cfts_prepare();
2822
2823 list_for_each_entry(set, &cfts[0].ss->cftsets, node) {
2824 if (set->cfts == cfts) {
2825 list_del(&set->node);
2826 kfree(set);
2827 cgroup_cfts_commit(cfts, false);
2828 return 0;
2829 }
2830 }
2831
2832 cgroup_cfts_commit(NULL, false);
2833 return -ENOENT;
2834 }
2835
2836 /**
2837 * cgroup_task_count - count the number of tasks in a cgroup.
2838 * @cgrp: the cgroup in question
2839 *
2840 * Return the number of tasks in the cgroup.
2841 */
2842 int cgroup_task_count(const struct cgroup *cgrp)
2843 {
2844 int count = 0;
2845 struct cgrp_cset_link *link;
2846
2847 read_lock(&css_set_lock);
2848 list_for_each_entry(link, &cgrp->cset_links, cset_link)
2849 count += atomic_read(&link->cset->refcount);
2850 read_unlock(&css_set_lock);
2851 return count;
2852 }
2853
2854 /*
2855 * To reduce the fork() overhead for systems that are not actually using
2856 * their cgroups capability, we don't maintain the lists running through
2857 * each css_set to its tasks until we see the list actually used - in other
2858 * words after the first call to css_task_iter_start().
2859 */
2860 static void cgroup_enable_task_cg_lists(void)
2861 {
2862 struct task_struct *p, *g;
2863 write_lock(&css_set_lock);
2864 use_task_css_set_links = 1;
2865 /*
2866 * We need tasklist_lock because RCU is not safe against
2867 * while_each_thread(). Besides, a forking task that has passed
2868 * cgroup_post_fork() without seeing use_task_css_set_links = 1
2869 * is not guaranteed to have its child immediately visible in the
2870 * tasklist if we walk through it with RCU.
2871 */
2872 read_lock(&tasklist_lock);
2873 do_each_thread(g, p) {
2874 task_lock(p);
2875 /*
2876 * We should check if the process is exiting, otherwise
2877 * it will race with cgroup_exit() in that the list
2878 * entry won't be deleted though the process has exited.
2879 */
2880 if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
2881 list_add(&p->cg_list, &task_css_set(p)->tasks);
2882 task_unlock(p);
2883 } while_each_thread(g, p);
2884 read_unlock(&tasklist_lock);
2885 write_unlock(&css_set_lock);
2886 }
2887
2888 /**
2889 * css_next_child - find the next child of a given css
2890 * @pos_css: the current position (%NULL to initiate traversal)
2891 * @parent_css: css whose children to walk
2892 *
2893 * This function returns the next child of @parent_css and should be called
2894 * under either cgroup_mutex or RCU read lock. The only requirement is
2895 * that @parent_css and @pos_css are accessible. The next sibling is
2896 * guaranteed to be returned regardless of their states.
2897 */
2898 struct cgroup_subsys_state *
2899 css_next_child(struct cgroup_subsys_state *pos_css,
2900 struct cgroup_subsys_state *parent_css)
2901 {
2902 struct cgroup *pos = pos_css ? pos_css->cgroup : NULL;
2903 struct cgroup *cgrp = parent_css->cgroup;
2904 struct cgroup *next;
2905
2906 cgroup_assert_mutexes_or_rcu_locked();
2907
2908 /*
2909 * @pos could already have been removed. Once a cgroup is removed,
2910 * its ->sibling.next is no longer updated when its next sibling
2911 * changes. As CGRP_DEAD assertion is serialized and happens
2912 * before the cgroup is taken off the ->sibling list, if we see it
2913 * unasserted, it's guaranteed that the next sibling hasn't
2914 * finished its grace period even if it's already removed, and thus
2915 * safe to dereference from this RCU critical section. If
2916 * ->sibling.next is inaccessible, cgroup_is_dead() is guaranteed
2917 * to be visible as %true here.
2918 *
2919 * If @pos is dead, its next pointer can't be dereferenced;
2920 * however, as each cgroup is given a monotonically increasing
2921 * unique serial number and always appended to the sibling list,
2922 * the next one can be found by walking the parent's children until
2923 * we see a cgroup with higher serial number than @pos's. While
2924 * this path can be slower, it's taken only when either the current
2925 * cgroup is removed or iteration and removal race.
2926 */
2927 if (!pos) {
2928 next = list_entry_rcu(cgrp->children.next, struct cgroup, sibling);
2929 } else if (likely(!cgroup_is_dead(pos))) {
2930 next = list_entry_rcu(pos->sibling.next, struct cgroup, sibling);
2931 } else {
2932 list_for_each_entry_rcu(next, &cgrp->children, sibling)
2933 if (next->serial_nr > pos->serial_nr)
2934 break;
2935 }
2936
2937 if (&next->sibling == &cgrp->children)
2938 return NULL;
2939
2940 return cgroup_css(next, parent_css->ss);
2941 }
2942 EXPORT_SYMBOL_GPL(css_next_child);
2943
2944 /**
2945 * css_next_descendant_pre - find the next descendant for pre-order walk
2946 * @pos: the current position (%NULL to initiate traversal)
2947 * @root: css whose descendants to walk
2948 *
2949 * To be used by css_for_each_descendant_pre(). Find the next descendant
2950 * to visit for pre-order traversal of @root's descendants. @root is
2951 * included in the iteration and the first node to be visited.
2952 *
2953 * While this function requires cgroup_mutex or RCU read locking, it
2954 * doesn't require the whole traversal to be contained in a single critical
2955 * section. This function will return the correct next descendant as long
2956 * as both @pos and @root are accessible and @pos is a descendant of @root.
2957 */
2958 struct cgroup_subsys_state *
2959 css_next_descendant_pre(struct cgroup_subsys_state *pos,
2960 struct cgroup_subsys_state *root)
2961 {
2962 struct cgroup_subsys_state *next;
2963
2964 cgroup_assert_mutexes_or_rcu_locked();
2965
2966 /* if first iteration, visit @root */
2967 if (!pos)
2968 return root;
2969
2970 /* visit the first child if exists */
2971 next = css_next_child(NULL, pos);
2972 if (next)
2973 return next;
2974
2975 /* no child, visit my or the closest ancestor's next sibling */
2976 while (pos != root) {
2977 next = css_next_child(pos, css_parent(pos));
2978 if (next)
2979 return next;
2980 pos = css_parent(pos);
2981 }
2982
2983 return NULL;
2984 }
2985 EXPORT_SYMBOL_GPL(css_next_descendant_pre);
2986
2987 /**
2988 * css_rightmost_descendant - return the rightmost descendant of a css
2989 * @pos: css of interest
2990 *
2991 * Return the rightmost descendant of @pos. If there's no descendant, @pos
2992 * is returned. This can be used during pre-order traversal to skip
2993 * subtree of @pos.
2994 *
2995 * While this function requires cgroup_mutex or RCU read locking, it
2996 * doesn't require the whole traversal to be contained in a single critical
2997 * section. This function will return the correct rightmost descendant as
2998 * long as @pos is accessible.
2999 */
3000 struct cgroup_subsys_state *
3001 css_rightmost_descendant(struct cgroup_subsys_state *pos)
3002 {
3003 struct cgroup_subsys_state *last, *tmp;
3004
3005 cgroup_assert_mutexes_or_rcu_locked();
3006
3007 do {
3008 last = pos;
3009 /* ->prev isn't RCU safe, walk ->next till the end */
3010 pos = NULL;
3011 css_for_each_child(tmp, last)
3012 pos = tmp;
3013 } while (pos);
3014
3015 return last;
3016 }
3017 EXPORT_SYMBOL_GPL(css_rightmost_descendant);
3018
3019 static struct cgroup_subsys_state *
3020 css_leftmost_descendant(struct cgroup_subsys_state *pos)
3021 {
3022 struct cgroup_subsys_state *last;
3023
3024 do {
3025 last = pos;
3026 pos = css_next_child(NULL, pos);
3027 } while (pos);
3028
3029 return last;
3030 }
3031
3032 /**
3033 * css_next_descendant_post - find the next descendant for post-order walk
3034 * @pos: the current position (%NULL to initiate traversal)
3035 * @root: css whose descendants to walk
3036 *
3037 * To be used by css_for_each_descendant_post(). Find the next descendant
3038 * to visit for post-order traversal of @root's descendants. @root is
3039 * included in the iteration and the last node to be visited.
3040 *
3041 * While this function requires cgroup_mutex or RCU read locking, it
3042 * doesn't require the whole traversal to be contained in a single critical
3043 * section. This function will return the correct next descendant as long
3044 * as both @pos and @cgroup are accessible and @pos is a descendant of
3045 * @cgroup.
3046 */
3047 struct cgroup_subsys_state *
3048 css_next_descendant_post(struct cgroup_subsys_state *pos,
3049 struct cgroup_subsys_state *root)
3050 {
3051 struct cgroup_subsys_state *next;
3052
3053 cgroup_assert_mutexes_or_rcu_locked();
3054
3055 /* if first iteration, visit leftmost descendant which may be @root */
3056 if (!pos)
3057 return css_leftmost_descendant(root);
3058
3059 /* if we visited @root, we're done */
3060 if (pos == root)
3061 return NULL;
3062
3063 /* if there's an unvisited sibling, visit its leftmost descendant */
3064 next = css_next_child(pos, css_parent(pos));
3065 if (next)
3066 return css_leftmost_descendant(next);
3067
3068 /* no sibling left, visit parent */
3069 return css_parent(pos);
3070 }
3071 EXPORT_SYMBOL_GPL(css_next_descendant_post);
3072
3073 /**
3074 * css_advance_task_iter - advance a task itererator to the next css_set
3075 * @it: the iterator to advance
3076 *
3077 * Advance @it to the next css_set to walk.
3078 */
3079 static void css_advance_task_iter(struct css_task_iter *it)
3080 {
3081 struct list_head *l = it->cset_link;
3082 struct cgrp_cset_link *link;
3083 struct css_set *cset;
3084
3085 /* Advance to the next non-empty css_set */
3086 do {
3087 l = l->next;
3088 if (l == &it->origin_css->cgroup->cset_links) {
3089 it->cset_link = NULL;
3090 return;
3091 }
3092 link = list_entry(l, struct cgrp_cset_link, cset_link);
3093 cset = link->cset;
3094 } while (list_empty(&cset->tasks));
3095 it->cset_link = l;
3096 it->task = cset->tasks.next;
3097 }
3098
3099 /**
3100 * css_task_iter_start - initiate task iteration
3101 * @css: the css to walk tasks of
3102 * @it: the task iterator to use
3103 *
3104 * Initiate iteration through the tasks of @css. The caller can call
3105 * css_task_iter_next() to walk through the tasks until the function
3106 * returns NULL. On completion of iteration, css_task_iter_end() must be
3107 * called.
3108 *
3109 * Note that this function acquires a lock which is released when the
3110 * iteration finishes. The caller can't sleep while iteration is in
3111 * progress.
3112 */
3113 void css_task_iter_start(struct cgroup_subsys_state *css,
3114 struct css_task_iter *it)
3115 __acquires(css_set_lock)
3116 {
3117 /*
3118 * The first time anyone tries to iterate across a css, we need to
3119 * enable the list linking each css_set to its tasks, and fix up
3120 * all existing tasks.
3121 */
3122 if (!use_task_css_set_links)
3123 cgroup_enable_task_cg_lists();
3124
3125 read_lock(&css_set_lock);
3126
3127 it->origin_css = css;
3128 it->cset_link = &css->cgroup->cset_links;
3129
3130 css_advance_task_iter(it);
3131 }
3132
3133 /**
3134 * css_task_iter_next - return the next task for the iterator
3135 * @it: the task iterator being iterated
3136 *
3137 * The "next" function for task iteration. @it should have been
3138 * initialized via css_task_iter_start(). Returns NULL when the iteration
3139 * reaches the end.
3140 */
3141 struct task_struct *css_task_iter_next(struct css_task_iter *it)
3142 {
3143 struct task_struct *res;
3144 struct list_head *l = it->task;
3145 struct cgrp_cset_link *link;
3146
3147 /* If the iterator cg is NULL, we have no tasks */
3148 if (!it->cset_link)
3149 return NULL;
3150 res = list_entry(l, struct task_struct, cg_list);
3151 /* Advance iterator to find next entry */
3152 l = l->next;
3153 link = list_entry(it->cset_link, struct cgrp_cset_link, cset_link);
3154 if (l == &link->cset->tasks) {
3155 /*
3156 * We reached the end of this task list - move on to the
3157 * next cgrp_cset_link.
3158 */
3159 css_advance_task_iter(it);
3160 } else {
3161 it->task = l;
3162 }
3163 return res;
3164 }
3165
3166 /**
3167 * css_task_iter_end - finish task iteration
3168 * @it: the task iterator to finish
3169 *
3170 * Finish task iteration started by css_task_iter_start().
3171 */
3172 void css_task_iter_end(struct css_task_iter *it)
3173 __releases(css_set_lock)
3174 {
3175 read_unlock(&css_set_lock);
3176 }
3177
3178 static inline int started_after_time(struct task_struct *t1,
3179 struct timespec *time,
3180 struct task_struct *t2)
3181 {
3182 int start_diff = timespec_compare(&t1->start_time, time);
3183 if (start_diff > 0) {
3184 return 1;
3185 } else if (start_diff < 0) {
3186 return 0;
3187 } else {
3188 /*
3189 * Arbitrarily, if two processes started at the same
3190 * time, we'll say that the lower pointer value
3191 * started first. Note that t2 may have exited by now
3192 * so this may not be a valid pointer any longer, but
3193 * that's fine - it still serves to distinguish
3194 * between two tasks started (effectively) simultaneously.
3195 */
3196 return t1 > t2;
3197 }
3198 }
3199
3200 /*
3201 * This function is a callback from heap_insert() and is used to order
3202 * the heap.
3203 * In this case we order the heap in descending task start time.
3204 */
3205 static inline int started_after(void *p1, void *p2)
3206 {
3207 struct task_struct *t1 = p1;
3208 struct task_struct *t2 = p2;
3209 return started_after_time(t1, &t2->start_time, t2);
3210 }
3211
3212 /**
3213 * css_scan_tasks - iterate though all the tasks in a css
3214 * @css: the css to iterate tasks of
3215 * @test: optional test callback
3216 * @process: process callback
3217 * @data: data passed to @test and @process
3218 * @heap: optional pre-allocated heap used for task iteration
3219 *
3220 * Iterate through all the tasks in @css, calling @test for each, and if it
3221 * returns %true, call @process for it also.
3222 *
3223 * @test may be NULL, meaning always true (select all tasks), which
3224 * effectively duplicates css_task_iter_{start,next,end}() but does not
3225 * lock css_set_lock for the call to @process.
3226 *
3227 * It is guaranteed that @process will act on every task that is a member
3228 * of @css for the duration of this call. This function may or may not
3229 * call @process for tasks that exit or move to a different css during the
3230 * call, or are forked or move into the css during the call.
3231 *
3232 * Note that @test may be called with locks held, and may in some
3233 * situations be called multiple times for the same task, so it should be
3234 * cheap.
3235 *
3236 * If @heap is non-NULL, a heap has been pre-allocated and will be used for
3237 * heap operations (and its "gt" member will be overwritten), else a
3238 * temporary heap will be used (allocation of which may cause this function
3239 * to fail).
3240 */
3241 int css_scan_tasks(struct cgroup_subsys_state *css,
3242 bool (*test)(struct task_struct *, void *),
3243 void (*process)(struct task_struct *, void *),
3244 void *data, struct ptr_heap *heap)
3245 {
3246 int retval, i;
3247 struct css_task_iter it;
3248 struct task_struct *p, *dropped;
3249 /* Never dereference latest_task, since it's not refcounted */
3250 struct task_struct *latest_task = NULL;
3251 struct ptr_heap tmp_heap;
3252 struct timespec latest_time = { 0, 0 };
3253
3254 if (heap) {
3255 /* The caller supplied our heap and pre-allocated its memory */
3256 heap->gt = &started_after;
3257 } else {
3258 /* We need to allocate our own heap memory */
3259 heap = &tmp_heap;
3260 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
3261 if (retval)
3262 /* cannot allocate the heap */
3263 return retval;
3264 }
3265
3266 again:
3267 /*
3268 * Scan tasks in the css, using the @test callback to determine
3269 * which are of interest, and invoking @process callback on the
3270 * ones which need an update. Since we don't want to hold any
3271 * locks during the task updates, gather tasks to be processed in a
3272 * heap structure. The heap is sorted by descending task start
3273 * time. If the statically-sized heap fills up, we overflow tasks
3274 * that started later, and in future iterations only consider tasks
3275 * that started after the latest task in the previous pass. This
3276 * guarantees forward progress and that we don't miss any tasks.
3277 */
3278 heap->size = 0;
3279 css_task_iter_start(css, &it);
3280 while ((p = css_task_iter_next(&it))) {
3281 /*
3282 * Only affect tasks that qualify per the caller's callback,
3283 * if he provided one
3284 */
3285 if (test && !test(p, data))
3286 continue;
3287 /*
3288 * Only process tasks that started after the last task
3289 * we processed
3290 */
3291 if (!started_after_time(p, &latest_time, latest_task))
3292 continue;
3293 dropped = heap_insert(heap, p);
3294 if (dropped == NULL) {
3295 /*
3296 * The new task was inserted; the heap wasn't
3297 * previously full
3298 */
3299 get_task_struct(p);
3300 } else if (dropped != p) {
3301 /*
3302 * The new task was inserted, and pushed out a
3303 * different task
3304 */
3305 get_task_struct(p);
3306 put_task_struct(dropped);
3307 }
3308 /*
3309 * Else the new task was newer than anything already in
3310 * the heap and wasn't inserted
3311 */
3312 }
3313 css_task_iter_end(&it);
3314
3315 if (heap->size) {
3316 for (i = 0; i < heap->size; i++) {
3317 struct task_struct *q = heap->ptrs[i];
3318 if (i == 0) {
3319 latest_time = q->start_time;
3320 latest_task = q;
3321 }
3322 /* Process the task per the caller's callback */
3323 process(q, data);
3324 put_task_struct(q);
3325 }
3326 /*
3327 * If we had to process any tasks at all, scan again
3328 * in case some of them were in the middle of forking
3329 * children that didn't get processed.
3330 * Not the most efficient way to do it, but it avoids
3331 * having to take callback_mutex in the fork path
3332 */
3333 goto again;
3334 }
3335 if (heap == &tmp_heap)
3336 heap_free(&tmp_heap);
3337 return 0;
3338 }
3339
3340 static void cgroup_transfer_one_task(struct task_struct *task, void *data)
3341 {
3342 struct cgroup *new_cgroup = data;
3343
3344 mutex_lock(&cgroup_mutex);
3345 cgroup_attach_task(new_cgroup, task, false);
3346 mutex_unlock(&cgroup_mutex);
3347 }
3348
3349 /**
3350 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
3351 * @to: cgroup to which the tasks will be moved
3352 * @from: cgroup in which the tasks currently reside
3353 */
3354 int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
3355 {
3356 return css_scan_tasks(&from->dummy_css, NULL, cgroup_transfer_one_task,
3357 to, NULL);
3358 }
3359
3360 /*
3361 * Stuff for reading the 'tasks'/'procs' files.
3362 *
3363 * Reading this file can return large amounts of data if a cgroup has
3364 * *lots* of attached tasks. So it may need several calls to read(),
3365 * but we cannot guarantee that the information we produce is correct
3366 * unless we produce it entirely atomically.
3367 *
3368 */
3369
3370 /* which pidlist file are we talking about? */
3371 enum cgroup_filetype {
3372 CGROUP_FILE_PROCS,
3373 CGROUP_FILE_TASKS,
3374 };
3375
3376 /*
3377 * A pidlist is a list of pids that virtually represents the contents of one
3378 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
3379 * a pair (one each for procs, tasks) for each pid namespace that's relevant
3380 * to the cgroup.
3381 */
3382 struct cgroup_pidlist {
3383 /*
3384 * used to find which pidlist is wanted. doesn't change as long as
3385 * this particular list stays in the list.
3386 */
3387 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
3388 /* array of xids */
3389 pid_t *list;
3390 /* how many elements the above list has */
3391 int length;
3392 /* each of these stored in a list by its cgroup */
3393 struct list_head links;
3394 /* pointer to the cgroup we belong to, for list removal purposes */
3395 struct cgroup *owner;
3396 /* for delayed destruction */
3397 struct delayed_work destroy_dwork;
3398 };
3399
3400 /*
3401 * The following two functions "fix" the issue where there are more pids
3402 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3403 * TODO: replace with a kernel-wide solution to this problem
3404 */
3405 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
3406 static void *pidlist_allocate(int count)
3407 {
3408 if (PIDLIST_TOO_LARGE(count))
3409 return vmalloc(count * sizeof(pid_t));
3410 else
3411 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
3412 }
3413
3414 static void pidlist_free(void *p)
3415 {
3416 if (is_vmalloc_addr(p))
3417 vfree(p);
3418 else
3419 kfree(p);
3420 }
3421
3422 /*
3423 * Used to destroy all pidlists lingering waiting for destroy timer. None
3424 * should be left afterwards.
3425 */
3426 static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
3427 {
3428 struct cgroup_pidlist *l, *tmp_l;
3429
3430 mutex_lock(&cgrp->pidlist_mutex);
3431 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
3432 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
3433 mutex_unlock(&cgrp->pidlist_mutex);
3434
3435 flush_workqueue(cgroup_pidlist_destroy_wq);
3436 BUG_ON(!list_empty(&cgrp->pidlists));
3437 }
3438
3439 static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
3440 {
3441 struct delayed_work *dwork = to_delayed_work(work);
3442 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
3443 destroy_dwork);
3444 struct cgroup_pidlist *tofree = NULL;
3445
3446 mutex_lock(&l->owner->pidlist_mutex);
3447
3448 /*
3449 * Destroy iff we didn't get queued again. The state won't change
3450 * as destroy_dwork can only be queued while locked.
3451 */
3452 if (!delayed_work_pending(dwork)) {
3453 list_del(&l->links);
3454 pidlist_free(l->list);
3455 put_pid_ns(l->key.ns);
3456 tofree = l;
3457 }
3458
3459 mutex_unlock(&l->owner->pidlist_mutex);
3460 kfree(tofree);
3461 }
3462
3463 /*
3464 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
3465 * Returns the number of unique elements.
3466 */
3467 static int pidlist_uniq(pid_t *list, int length)
3468 {
3469 int src, dest = 1;
3470
3471 /*
3472 * we presume the 0th element is unique, so i starts at 1. trivial
3473 * edge cases first; no work needs to be done for either
3474 */
3475 if (length == 0 || length == 1)
3476 return length;
3477 /* src and dest walk down the list; dest counts unique elements */
3478 for (src = 1; src < length; src++) {
3479 /* find next unique element */
3480 while (list[src] == list[src-1]) {
3481 src++;
3482 if (src == length)
3483 goto after;
3484 }
3485 /* dest always points to where the next unique element goes */
3486 list[dest] = list[src];
3487 dest++;
3488 }
3489 after:
3490 return dest;
3491 }
3492
3493 /*
3494 * The two pid files - task and cgroup.procs - guaranteed that the result
3495 * is sorted, which forced this whole pidlist fiasco. As pid order is
3496 * different per namespace, each namespace needs differently sorted list,
3497 * making it impossible to use, for example, single rbtree of member tasks
3498 * sorted by task pointer. As pidlists can be fairly large, allocating one
3499 * per open file is dangerous, so cgroup had to implement shared pool of
3500 * pidlists keyed by cgroup and namespace.
3501 *
3502 * All this extra complexity was caused by the original implementation
3503 * committing to an entirely unnecessary property. In the long term, we
3504 * want to do away with it. Explicitly scramble sort order if
3505 * sane_behavior so that no such expectation exists in the new interface.
3506 *
3507 * Scrambling is done by swapping every two consecutive bits, which is
3508 * non-identity one-to-one mapping which disturbs sort order sufficiently.
3509 */
3510 static pid_t pid_fry(pid_t pid)
3511 {
3512 unsigned a = pid & 0x55555555;
3513 unsigned b = pid & 0xAAAAAAAA;
3514
3515 return (a << 1) | (b >> 1);
3516 }
3517
3518 static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
3519 {
3520 if (cgroup_sane_behavior(cgrp))
3521 return pid_fry(pid);
3522 else
3523 return pid;
3524 }
3525
3526 static int cmppid(const void *a, const void *b)
3527 {
3528 return *(pid_t *)a - *(pid_t *)b;
3529 }
3530
3531 static int fried_cmppid(const void *a, const void *b)
3532 {
3533 return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
3534 }
3535
3536 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3537 enum cgroup_filetype type)
3538 {
3539 struct cgroup_pidlist *l;
3540 /* don't need task_nsproxy() if we're looking at ourself */
3541 struct pid_namespace *ns = task_active_pid_ns(current);
3542
3543 lockdep_assert_held(&cgrp->pidlist_mutex);
3544
3545 list_for_each_entry(l, &cgrp->pidlists, links)
3546 if (l->key.type == type && l->key.ns == ns)
3547 return l;
3548 return NULL;
3549 }
3550
3551 /*
3552 * find the appropriate pidlist for our purpose (given procs vs tasks)
3553 * returns with the lock on that pidlist already held, and takes care
3554 * of the use count, or returns NULL with no locks held if we're out of
3555 * memory.
3556 */
3557 static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
3558 enum cgroup_filetype type)
3559 {
3560 struct cgroup_pidlist *l;
3561
3562 lockdep_assert_held(&cgrp->pidlist_mutex);
3563
3564 l = cgroup_pidlist_find(cgrp, type);
3565 if (l)
3566 return l;
3567
3568 /* entry not found; create a new one */
3569 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
3570 if (!l)
3571 return l;
3572
3573 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
3574 l->key.type = type;
3575 /* don't need task_nsproxy() if we're looking at ourself */
3576 l->key.ns = get_pid_ns(task_active_pid_ns(current));
3577 l->owner = cgrp;
3578 list_add(&l->links, &cgrp->pidlists);
3579 return l;
3580 }
3581
3582 /*
3583 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3584 */
3585 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3586 struct cgroup_pidlist **lp)
3587 {
3588 pid_t *array;
3589 int length;
3590 int pid, n = 0; /* used for populating the array */
3591 struct css_task_iter it;
3592 struct task_struct *tsk;
3593 struct cgroup_pidlist *l;
3594
3595 lockdep_assert_held(&cgrp->pidlist_mutex);
3596
3597 /*
3598 * If cgroup gets more users after we read count, we won't have
3599 * enough space - tough. This race is indistinguishable to the
3600 * caller from the case that the additional cgroup users didn't
3601 * show up until sometime later on.
3602 */
3603 length = cgroup_task_count(cgrp);
3604 array = pidlist_allocate(length);
3605 if (!array)
3606 return -ENOMEM;
3607 /* now, populate the array */
3608 css_task_iter_start(&cgrp->dummy_css, &it);
3609 while ((tsk = css_task_iter_next(&it))) {
3610 if (unlikely(n == length))
3611 break;
3612 /* get tgid or pid for procs or tasks file respectively */
3613 if (type == CGROUP_FILE_PROCS)
3614 pid = task_tgid_vnr(tsk);
3615 else
3616 pid = task_pid_vnr(tsk);
3617 if (pid > 0) /* make sure to only use valid results */
3618 array[n++] = pid;
3619 }
3620 css_task_iter_end(&it);
3621 length = n;
3622 /* now sort & (if procs) strip out duplicates */
3623 if (cgroup_sane_behavior(cgrp))
3624 sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
3625 else
3626 sort(array, length, sizeof(pid_t), cmppid, NULL);
3627 if (type == CGROUP_FILE_PROCS)
3628 length = pidlist_uniq(array, length);
3629
3630 l = cgroup_pidlist_find_create(cgrp, type);
3631 if (!l) {
3632 mutex_unlock(&cgrp->pidlist_mutex);
3633 pidlist_free(array);
3634 return -ENOMEM;
3635 }
3636
3637 /* store array, freeing old if necessary */
3638 pidlist_free(l->list);
3639 l->list = array;
3640 l->length = length;
3641 *lp = l;
3642 return 0;
3643 }
3644
3645 /**
3646 * cgroupstats_build - build and fill cgroupstats
3647 * @stats: cgroupstats to fill information into
3648 * @dentry: A dentry entry belonging to the cgroup for which stats have
3649 * been requested.
3650 *
3651 * Build and fill cgroupstats so that taskstats can export it to user
3652 * space.
3653 */
3654 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
3655 {
3656 int ret = -EINVAL;
3657 struct cgroup *cgrp;
3658 struct css_task_iter it;
3659 struct task_struct *tsk;
3660
3661 /*
3662 * Validate dentry by checking the superblock operations,
3663 * and make sure it's a directory.
3664 */
3665 if (dentry->d_sb->s_op != &cgroup_ops ||
3666 !S_ISDIR(dentry->d_inode->i_mode))
3667 goto err;
3668
3669 ret = 0;
3670 cgrp = dentry->d_fsdata;
3671
3672 css_task_iter_start(&cgrp->dummy_css, &it);
3673 while ((tsk = css_task_iter_next(&it))) {
3674 switch (tsk->state) {
3675 case TASK_RUNNING:
3676 stats->nr_running++;
3677 break;
3678 case TASK_INTERRUPTIBLE:
3679 stats->nr_sleeping++;
3680 break;
3681 case TASK_UNINTERRUPTIBLE:
3682 stats->nr_uninterruptible++;
3683 break;
3684 case TASK_STOPPED:
3685 stats->nr_stopped++;
3686 break;
3687 default:
3688 if (delayacct_is_task_waiting_on_io(tsk))
3689 stats->nr_io_wait++;
3690 break;
3691 }
3692 }
3693 css_task_iter_end(&it);
3694
3695 err:
3696 return ret;
3697 }
3698
3699
3700 /*
3701 * seq_file methods for the tasks/procs files. The seq_file position is the
3702 * next pid to display; the seq_file iterator is a pointer to the pid
3703 * in the cgroup->l->list array.
3704 */
3705
3706 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
3707 {
3708 /*
3709 * Initially we receive a position value that corresponds to
3710 * one more than the last pid shown (or 0 on the first call or
3711 * after a seek to the start). Use a binary-search to find the
3712 * next pid to display, if any
3713 */
3714 struct cgroup_open_file *of = s->private;
3715 struct cgroup *cgrp = seq_css(s)->cgroup;
3716 struct cgroup_pidlist *l;
3717 enum cgroup_filetype type = seq_cft(s)->private;
3718 int index = 0, pid = *pos;
3719 int *iter, ret;
3720
3721 mutex_lock(&cgrp->pidlist_mutex);
3722
3723 /*
3724 * !NULL @of->priv indicates that this isn't the first start()
3725 * after open. If the matching pidlist is around, we can use that.
3726 * Look for it. Note that @of->priv can't be used directly. It
3727 * could already have been destroyed.
3728 */
3729 if (of->priv)
3730 of->priv = cgroup_pidlist_find(cgrp, type);
3731
3732 /*
3733 * Either this is the first start() after open or the matching
3734 * pidlist has been destroyed inbetween. Create a new one.
3735 */
3736 if (!of->priv) {
3737 ret = pidlist_array_load(cgrp, type,
3738 (struct cgroup_pidlist **)&of->priv);
3739 if (ret)
3740 return ERR_PTR(ret);
3741 }
3742 l = of->priv;
3743
3744 if (pid) {
3745 int end = l->length;
3746
3747 while (index < end) {
3748 int mid = (index + end) / 2;
3749 if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
3750 index = mid;
3751 break;
3752 } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
3753 index = mid + 1;
3754 else
3755 end = mid;
3756 }
3757 }
3758 /* If we're off the end of the array, we're done */
3759 if (index >= l->length)
3760 return NULL;
3761 /* Update the abstract position to be the actual pid that we found */
3762 iter = l->list + index;
3763 *pos = cgroup_pid_fry(cgrp, *iter);
3764 return iter;
3765 }
3766
3767 static void cgroup_pidlist_stop(struct seq_file *s, void *v)
3768 {
3769 struct cgroup_open_file *of = s->private;
3770 struct cgroup_pidlist *l = of->priv;
3771
3772 if (l)
3773 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
3774 CGROUP_PIDLIST_DESTROY_DELAY);
3775 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
3776 }
3777
3778 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
3779 {
3780 struct cgroup_open_file *of = s->private;
3781 struct cgroup_pidlist *l = of->priv;
3782 pid_t *p = v;
3783 pid_t *end = l->list + l->length;
3784 /*
3785 * Advance to the next pid in the array. If this goes off the
3786 * end, we're done
3787 */
3788 p++;
3789 if (p >= end) {
3790 return NULL;
3791 } else {
3792 *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
3793 return p;
3794 }
3795 }
3796
3797 static int cgroup_pidlist_show(struct seq_file *s, void *v)
3798 {
3799 return seq_printf(s, "%d\n", *(int *)v);
3800 }
3801
3802 /*
3803 * seq_operations functions for iterating on pidlists through seq_file -
3804 * independent of whether it's tasks or procs
3805 */
3806 static const struct seq_operations cgroup_pidlist_seq_operations = {
3807 .start = cgroup_pidlist_start,
3808 .stop = cgroup_pidlist_stop,
3809 .next = cgroup_pidlist_next,
3810 .show = cgroup_pidlist_show,
3811 };
3812
3813 static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
3814 struct cftype *cft)
3815 {
3816 return notify_on_release(css->cgroup);
3817 }
3818
3819 static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
3820 struct cftype *cft, u64 val)
3821 {
3822 clear_bit(CGRP_RELEASABLE, &css->cgroup->flags);
3823 if (val)
3824 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
3825 else
3826 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
3827 return 0;
3828 }
3829
3830 /*
3831 * When dput() is called asynchronously, if umount has been done and
3832 * then deactivate_super() in cgroup_free_fn() kills the superblock,
3833 * there's a small window that vfs will see the root dentry with non-zero
3834 * refcnt and trigger BUG().
3835 *
3836 * That's why we hold a reference before dput() and drop it right after.
3837 */
3838 static void cgroup_dput(struct cgroup *cgrp)
3839 {
3840 struct super_block *sb = cgrp->root->sb;
3841
3842 atomic_inc(&sb->s_active);
3843 dput(cgrp->dentry);
3844 deactivate_super(sb);
3845 }
3846
3847 static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
3848 struct cftype *cft)
3849 {
3850 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
3851 }
3852
3853 static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
3854 struct cftype *cft, u64 val)
3855 {
3856 if (val)
3857 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
3858 else
3859 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
3860 return 0;
3861 }
3862
3863 static struct cftype cgroup_base_files[] = {
3864 {
3865 .name = "cgroup.procs",
3866 .seq_start = cgroup_pidlist_start,
3867 .seq_next = cgroup_pidlist_next,
3868 .seq_stop = cgroup_pidlist_stop,
3869 .seq_show = cgroup_pidlist_show,
3870 .private = CGROUP_FILE_PROCS,
3871 .write_u64 = cgroup_procs_write,
3872 .mode = S_IRUGO | S_IWUSR,
3873 },
3874 {
3875 .name = "cgroup.clone_children",
3876 .flags = CFTYPE_INSANE,
3877 .read_u64 = cgroup_clone_children_read,
3878 .write_u64 = cgroup_clone_children_write,
3879 },
3880 {
3881 .name = "cgroup.sane_behavior",
3882 .flags = CFTYPE_ONLY_ON_ROOT,
3883 .seq_show = cgroup_sane_behavior_show,
3884 },
3885
3886 /*
3887 * Historical crazy stuff. These don't have "cgroup." prefix and
3888 * don't exist if sane_behavior. If you're depending on these, be
3889 * prepared to be burned.
3890 */
3891 {
3892 .name = "tasks",
3893 .flags = CFTYPE_INSANE, /* use "procs" instead */
3894 .seq_start = cgroup_pidlist_start,
3895 .seq_next = cgroup_pidlist_next,
3896 .seq_stop = cgroup_pidlist_stop,
3897 .seq_show = cgroup_pidlist_show,
3898 .private = CGROUP_FILE_TASKS,
3899 .write_u64 = cgroup_tasks_write,
3900 .mode = S_IRUGO | S_IWUSR,
3901 },
3902 {
3903 .name = "notify_on_release",
3904 .flags = CFTYPE_INSANE,
3905 .read_u64 = cgroup_read_notify_on_release,
3906 .write_u64 = cgroup_write_notify_on_release,
3907 },
3908 {
3909 .name = "release_agent",
3910 .flags = CFTYPE_INSANE | CFTYPE_ONLY_ON_ROOT,
3911 .seq_show = cgroup_release_agent_show,
3912 .write_string = cgroup_release_agent_write,
3913 .max_write_len = PATH_MAX,
3914 },
3915 { } /* terminate */
3916 };
3917
3918 /**
3919 * cgroup_populate_dir - create subsys files in a cgroup directory
3920 * @cgrp: target cgroup
3921 * @subsys_mask: mask of the subsystem ids whose files should be added
3922 *
3923 * On failure, no file is added.
3924 */
3925 static int cgroup_populate_dir(struct cgroup *cgrp, unsigned long subsys_mask)
3926 {
3927 struct cgroup_subsys *ss;
3928 int i, ret = 0;
3929
3930 /* process cftsets of each subsystem */
3931 for_each_subsys(ss, i) {
3932 struct cftype_set *set;
3933
3934 if (!test_bit(i, &subsys_mask))
3935 continue;
3936
3937 list_for_each_entry(set, &ss->cftsets, node) {
3938 ret = cgroup_addrm_files(cgrp, set->cfts, true);
3939 if (ret < 0)
3940 goto err;
3941 }
3942 }
3943 return 0;
3944 err:
3945 cgroup_clear_dir(cgrp, subsys_mask);
3946 return ret;
3947 }
3948
3949 /*
3950 * css destruction is four-stage process.
3951 *
3952 * 1. Destruction starts. Killing of the percpu_ref is initiated.
3953 * Implemented in kill_css().
3954 *
3955 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
3956 * and thus css_tryget() is guaranteed to fail, the css can be offlined
3957 * by invoking offline_css(). After offlining, the base ref is put.
3958 * Implemented in css_killed_work_fn().
3959 *
3960 * 3. When the percpu_ref reaches zero, the only possible remaining
3961 * accessors are inside RCU read sections. css_release() schedules the
3962 * RCU callback.
3963 *
3964 * 4. After the grace period, the css can be freed. Implemented in
3965 * css_free_work_fn().
3966 *
3967 * It is actually hairier because both step 2 and 4 require process context
3968 * and thus involve punting to css->destroy_work adding two additional
3969 * steps to the already complex sequence.
3970 */
3971 static void css_free_work_fn(struct work_struct *work)
3972 {
3973 struct cgroup_subsys_state *css =
3974 container_of(work, struct cgroup_subsys_state, destroy_work);
3975 struct cgroup *cgrp = css->cgroup;
3976
3977 if (css->parent)
3978 css_put(css->parent);
3979
3980 css->ss->css_free(css);
3981 cgroup_dput(cgrp);
3982 }
3983
3984 static void css_free_rcu_fn(struct rcu_head *rcu_head)
3985 {
3986 struct cgroup_subsys_state *css =
3987 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
3988
3989 /*
3990 * css holds an extra ref to @cgrp->dentry which is put on the last
3991 * css_put(). dput() requires process context which we don't have.
3992 */
3993 INIT_WORK(&css->destroy_work, css_free_work_fn);
3994 queue_work(cgroup_destroy_wq, &css->destroy_work);
3995 }
3996
3997 static void css_release(struct percpu_ref *ref)
3998 {
3999 struct cgroup_subsys_state *css =
4000 container_of(ref, struct cgroup_subsys_state, refcnt);
4001
4002 rcu_assign_pointer(css->cgroup->subsys[css->ss->id], NULL);
4003 call_rcu(&css->rcu_head, css_free_rcu_fn);
4004 }
4005
4006 static void init_css(struct cgroup_subsys_state *css, struct cgroup_subsys *ss,
4007 struct cgroup *cgrp)
4008 {
4009 css->cgroup = cgrp;
4010 css->ss = ss;
4011 css->flags = 0;
4012
4013 if (cgrp->parent)
4014 css->parent = cgroup_css(cgrp->parent, ss);
4015 else
4016 css->flags |= CSS_ROOT;
4017
4018 BUG_ON(cgroup_css(cgrp, ss));
4019 }
4020
4021 /* invoke ->css_online() on a new CSS and mark it online if successful */
4022 static int online_css(struct cgroup_subsys_state *css)
4023 {
4024 struct cgroup_subsys *ss = css->ss;
4025 int ret = 0;
4026
4027 lockdep_assert_held(&cgroup_tree_mutex);
4028 lockdep_assert_held(&cgroup_mutex);
4029
4030 if (ss->css_online)
4031 ret = ss->css_online(css);
4032 if (!ret) {
4033 css->flags |= CSS_ONLINE;
4034 css->cgroup->nr_css++;
4035 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
4036 }
4037 return ret;
4038 }
4039
4040 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
4041 static void offline_css(struct cgroup_subsys_state *css)
4042 {
4043 struct cgroup_subsys *ss = css->ss;
4044
4045 lockdep_assert_held(&cgroup_tree_mutex);
4046 lockdep_assert_held(&cgroup_mutex);
4047
4048 if (!(css->flags & CSS_ONLINE))
4049 return;
4050
4051 if (ss->css_offline)
4052 ss->css_offline(css);
4053
4054 css->flags &= ~CSS_ONLINE;
4055 css->cgroup->nr_css--;
4056 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], css);
4057 }
4058
4059 /**
4060 * create_css - create a cgroup_subsys_state
4061 * @cgrp: the cgroup new css will be associated with
4062 * @ss: the subsys of new css
4063 *
4064 * Create a new css associated with @cgrp - @ss pair. On success, the new
4065 * css is online and installed in @cgrp with all interface files created.
4066 * Returns 0 on success, -errno on failure.
4067 */
4068 static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss)
4069 {
4070 struct cgroup *parent = cgrp->parent;
4071 struct cgroup_subsys_state *css;
4072 int err;
4073
4074 lockdep_assert_held(&cgrp->dentry->d_inode->i_mutex);
4075 lockdep_assert_held(&cgroup_mutex);
4076
4077 css = ss->css_alloc(cgroup_css(parent, ss));
4078 if (IS_ERR(css))
4079 return PTR_ERR(css);
4080
4081 err = percpu_ref_init(&css->refcnt, css_release);
4082 if (err)
4083 goto err_free;
4084
4085 init_css(css, ss, cgrp);
4086
4087 err = cgroup_populate_dir(cgrp, 1 << ss->id);
4088 if (err)
4089 goto err_free;
4090
4091 err = online_css(css);
4092 if (err)
4093 goto err_free;
4094
4095 dget(cgrp->dentry);
4096 css_get(css->parent);
4097
4098 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
4099 parent->parent) {
4100 pr_warning("cgroup: %s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4101 current->comm, current->pid, ss->name);
4102 if (!strcmp(ss->name, "memory"))
4103 pr_warning("cgroup: \"memory\" requires setting use_hierarchy to 1 on the root.\n");
4104 ss->warned_broken_hierarchy = true;
4105 }
4106
4107 return 0;
4108
4109 err_free:
4110 percpu_ref_cancel_init(&css->refcnt);
4111 ss->css_free(css);
4112 return err;
4113 }
4114
4115 /*
4116 * cgroup_create - create a cgroup
4117 * @parent: cgroup that will be parent of the new cgroup
4118 * @dentry: dentry of the new cgroup
4119 * @mode: mode to set on new inode
4120 *
4121 * Must be called with the mutex on the parent inode held
4122 */
4123 static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
4124 umode_t mode)
4125 {
4126 struct cgroup *cgrp;
4127 struct cgroup_name *name;
4128 struct cgroupfs_root *root = parent->root;
4129 int ssid, err;
4130 struct cgroup_subsys *ss;
4131 struct super_block *sb = root->sb;
4132
4133 /* allocate the cgroup and its ID, 0 is reserved for the root */
4134 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
4135 if (!cgrp)
4136 return -ENOMEM;
4137
4138 name = cgroup_alloc_name(dentry);
4139 if (!name) {
4140 err = -ENOMEM;
4141 goto err_free_cgrp;
4142 }
4143 rcu_assign_pointer(cgrp->name, name);
4144
4145 mutex_lock(&cgroup_tree_mutex);
4146
4147 /*
4148 * Only live parents can have children. Note that the liveliness
4149 * check isn't strictly necessary because cgroup_mkdir() and
4150 * cgroup_rmdir() are fully synchronized by i_mutex; however, do it
4151 * anyway so that locking is contained inside cgroup proper and we
4152 * don't get nasty surprises if we ever grow another caller.
4153 */
4154 if (!cgroup_lock_live_group(parent)) {
4155 err = -ENODEV;
4156 goto err_unlock_tree;
4157 }
4158
4159 /*
4160 * Temporarily set the pointer to NULL, so idr_find() won't return
4161 * a half-baked cgroup.
4162 */
4163 cgrp->id = idr_alloc(&root->cgroup_idr, NULL, 1, 0, GFP_KERNEL);
4164 if (cgrp->id < 0) {
4165 err = -ENOMEM;
4166 goto err_unlock;
4167 }
4168
4169 /* Grab a reference on the superblock so the hierarchy doesn't
4170 * get deleted on unmount if there are child cgroups. This
4171 * can be done outside cgroup_mutex, since the sb can't
4172 * disappear while someone has an open control file on the
4173 * fs */
4174 atomic_inc(&sb->s_active);
4175
4176 init_cgroup_housekeeping(cgrp);
4177
4178 dentry->d_fsdata = cgrp;
4179 cgrp->dentry = dentry;
4180
4181 cgrp->parent = parent;
4182 cgrp->dummy_css.parent = &parent->dummy_css;
4183 cgrp->root = parent->root;
4184
4185 if (notify_on_release(parent))
4186 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4187
4188 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4189 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
4190
4191 /*
4192 * Create directory. cgroup_create_file() returns with the new
4193 * directory locked on success so that it can be populated without
4194 * dropping cgroup_mutex.
4195 */
4196 err = cgroup_create_file(dentry, S_IFDIR | mode, sb);
4197 if (err < 0)
4198 goto err_free_id;
4199 lockdep_assert_held(&dentry->d_inode->i_mutex);
4200
4201 cgrp->serial_nr = cgroup_serial_nr_next++;
4202
4203 /* allocation complete, commit to creation */
4204 list_add_tail_rcu(&cgrp->sibling, &cgrp->parent->children);
4205 root->number_of_cgroups++;
4206
4207 /* hold a ref to the parent's dentry */
4208 dget(parent->dentry);
4209
4210 /*
4211 * @cgrp is now fully operational. If something fails after this
4212 * point, it'll be released via the normal destruction path.
4213 */
4214 idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
4215
4216 err = cgroup_addrm_files(cgrp, cgroup_base_files, true);
4217 if (err)
4218 goto err_destroy;
4219
4220 /* let's create and online css's */
4221 for_each_subsys(ss, ssid) {
4222 if (root->subsys_mask & (1 << ssid)) {
4223 err = create_css(cgrp, ss);
4224 if (err)
4225 goto err_destroy;
4226 }
4227 }
4228
4229 mutex_unlock(&cgroup_mutex);
4230 mutex_unlock(&cgroup_tree_mutex);
4231 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
4232
4233 return 0;
4234
4235 err_free_id:
4236 idr_remove(&root->cgroup_idr, cgrp->id);
4237 /* Release the reference count that we took on the superblock */
4238 deactivate_super(sb);
4239 err_unlock:
4240 mutex_unlock(&cgroup_mutex);
4241 err_unlock_tree:
4242 mutex_unlock(&cgroup_tree_mutex);
4243 kfree(rcu_dereference_raw(cgrp->name));
4244 err_free_cgrp:
4245 kfree(cgrp);
4246 return err;
4247
4248 err_destroy:
4249 cgroup_destroy_locked(cgrp);
4250 mutex_unlock(&cgroup_mutex);
4251 mutex_unlock(&cgroup_tree_mutex);
4252 mutex_unlock(&dentry->d_inode->i_mutex);
4253 return err;
4254 }
4255
4256 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
4257 {
4258 struct cgroup *c_parent = dentry->d_parent->d_fsdata;
4259
4260 /* the vfs holds inode->i_mutex already */
4261 return cgroup_create(c_parent, dentry, mode | S_IFDIR);
4262 }
4263
4264 /*
4265 * This is called when the refcnt of a css is confirmed to be killed.
4266 * css_tryget() is now guaranteed to fail.
4267 */
4268 static void css_killed_work_fn(struct work_struct *work)
4269 {
4270 struct cgroup_subsys_state *css =
4271 container_of(work, struct cgroup_subsys_state, destroy_work);
4272 struct cgroup *cgrp = css->cgroup;
4273
4274 mutex_lock(&cgroup_tree_mutex);
4275 mutex_lock(&cgroup_mutex);
4276
4277 /*
4278 * css_tryget() is guaranteed to fail now. Tell subsystems to
4279 * initate destruction.
4280 */
4281 offline_css(css);
4282
4283 /*
4284 * If @cgrp is marked dead, it's waiting for refs of all css's to
4285 * be disabled before proceeding to the second phase of cgroup
4286 * destruction. If we are the last one, kick it off.
4287 */
4288 if (!cgrp->nr_css && cgroup_is_dead(cgrp))
4289 cgroup_destroy_css_killed(cgrp);
4290
4291 mutex_unlock(&cgroup_mutex);
4292 mutex_unlock(&cgroup_tree_mutex);
4293
4294 /*
4295 * Put the css refs from kill_css(). Each css holds an extra
4296 * reference to the cgroup's dentry and cgroup removal proceeds
4297 * regardless of css refs. On the last put of each css, whenever
4298 * that may be, the extra dentry ref is put so that dentry
4299 * destruction happens only after all css's are released.
4300 */
4301 css_put(css);
4302 }
4303
4304 /* css kill confirmation processing requires process context, bounce */
4305 static void css_killed_ref_fn(struct percpu_ref *ref)
4306 {
4307 struct cgroup_subsys_state *css =
4308 container_of(ref, struct cgroup_subsys_state, refcnt);
4309
4310 INIT_WORK(&css->destroy_work, css_killed_work_fn);
4311 queue_work(cgroup_destroy_wq, &css->destroy_work);
4312 }
4313
4314 /**
4315 * kill_css - destroy a css
4316 * @css: css to destroy
4317 *
4318 * This function initiates destruction of @css by removing cgroup interface
4319 * files and putting its base reference. ->css_offline() will be invoked
4320 * asynchronously once css_tryget() is guaranteed to fail and when the
4321 * reference count reaches zero, @css will be released.
4322 */
4323 static void kill_css(struct cgroup_subsys_state *css)
4324 {
4325 cgroup_clear_dir(css->cgroup, 1 << css->ss->id);
4326
4327 /*
4328 * Killing would put the base ref, but we need to keep it alive
4329 * until after ->css_offline().
4330 */
4331 css_get(css);
4332
4333 /*
4334 * cgroup core guarantees that, by the time ->css_offline() is
4335 * invoked, no new css reference will be given out via
4336 * css_tryget(). We can't simply call percpu_ref_kill() and
4337 * proceed to offlining css's because percpu_ref_kill() doesn't
4338 * guarantee that the ref is seen as killed on all CPUs on return.
4339 *
4340 * Use percpu_ref_kill_and_confirm() to get notifications as each
4341 * css is confirmed to be seen as killed on all CPUs.
4342 */
4343 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
4344 }
4345
4346 /**
4347 * cgroup_destroy_locked - the first stage of cgroup destruction
4348 * @cgrp: cgroup to be destroyed
4349 *
4350 * css's make use of percpu refcnts whose killing latency shouldn't be
4351 * exposed to userland and are RCU protected. Also, cgroup core needs to
4352 * guarantee that css_tryget() won't succeed by the time ->css_offline() is
4353 * invoked. To satisfy all the requirements, destruction is implemented in
4354 * the following two steps.
4355 *
4356 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
4357 * userland visible parts and start killing the percpu refcnts of
4358 * css's. Set up so that the next stage will be kicked off once all
4359 * the percpu refcnts are confirmed to be killed.
4360 *
4361 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
4362 * rest of destruction. Once all cgroup references are gone, the
4363 * cgroup is RCU-freed.
4364 *
4365 * This function implements s1. After this step, @cgrp is gone as far as
4366 * the userland is concerned and a new cgroup with the same name may be
4367 * created. As cgroup doesn't care about the names internally, this
4368 * doesn't cause any problem.
4369 */
4370 static int cgroup_destroy_locked(struct cgroup *cgrp)
4371 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
4372 {
4373 struct dentry *d = cgrp->dentry;
4374 struct cgroup_subsys_state *css;
4375 struct cgroup *child;
4376 bool empty;
4377 int ssid;
4378
4379 lockdep_assert_held(&d->d_inode->i_mutex);
4380 lockdep_assert_held(&cgroup_tree_mutex);
4381 lockdep_assert_held(&cgroup_mutex);
4382
4383 /*
4384 * css_set_lock synchronizes access to ->cset_links and prevents
4385 * @cgrp from being removed while __put_css_set() is in progress.
4386 */
4387 read_lock(&css_set_lock);
4388 empty = list_empty(&cgrp->cset_links);
4389 read_unlock(&css_set_lock);
4390 if (!empty)
4391 return -EBUSY;
4392
4393 /*
4394 * Make sure there's no live children. We can't test ->children
4395 * emptiness as dead children linger on it while being destroyed;
4396 * otherwise, "rmdir parent/child parent" may fail with -EBUSY.
4397 */
4398 empty = true;
4399 rcu_read_lock();
4400 list_for_each_entry_rcu(child, &cgrp->children, sibling) {
4401 empty = cgroup_is_dead(child);
4402 if (!empty)
4403 break;
4404 }
4405 rcu_read_unlock();
4406 if (!empty)
4407 return -EBUSY;
4408
4409 /*
4410 * Initiate massacre of all css's. cgroup_destroy_css_killed()
4411 * will be invoked to perform the rest of destruction once the
4412 * percpu refs of all css's are confirmed to be killed. This
4413 * involves removing the subsystem's files, drop cgroup_mutex.
4414 */
4415 mutex_unlock(&cgroup_mutex);
4416 for_each_css(css, ssid, cgrp)
4417 kill_css(css);
4418 mutex_lock(&cgroup_mutex);
4419
4420 /*
4421 * Mark @cgrp dead. This prevents further task migration and child
4422 * creation by disabling cgroup_lock_live_group(). Note that
4423 * CGRP_DEAD assertion is depended upon by css_next_child() to
4424 * resume iteration after dropping RCU read lock. See
4425 * css_next_child() for details.
4426 */
4427 set_bit(CGRP_DEAD, &cgrp->flags);
4428
4429 /* CGRP_DEAD is set, remove from ->release_list for the last time */
4430 raw_spin_lock(&release_list_lock);
4431 if (!list_empty(&cgrp->release_list))
4432 list_del_init(&cgrp->release_list);
4433 raw_spin_unlock(&release_list_lock);
4434
4435 /*
4436 * If @cgrp has css's attached, the second stage of cgroup
4437 * destruction is kicked off from css_killed_work_fn() after the
4438 * refs of all attached css's are killed. If @cgrp doesn't have
4439 * any css, we kick it off here.
4440 */
4441 if (!cgrp->nr_css)
4442 cgroup_destroy_css_killed(cgrp);
4443
4444 /*
4445 * Clear the base files and remove @cgrp directory. The removal
4446 * puts the base ref but we aren't quite done with @cgrp yet, so
4447 * hold onto it.
4448 */
4449 mutex_unlock(&cgroup_mutex);
4450 cgroup_addrm_files(cgrp, cgroup_base_files, false);
4451 dget(d);
4452 cgroup_d_remove_dir(d);
4453 mutex_lock(&cgroup_mutex);
4454
4455 return 0;
4456 };
4457
4458 /**
4459 * cgroup_destroy_css_killed - the second step of cgroup destruction
4460 * @work: cgroup->destroy_free_work
4461 *
4462 * This function is invoked from a work item for a cgroup which is being
4463 * destroyed after all css's are offlined and performs the rest of
4464 * destruction. This is the second step of destruction described in the
4465 * comment above cgroup_destroy_locked().
4466 */
4467 static void cgroup_destroy_css_killed(struct cgroup *cgrp)
4468 {
4469 struct cgroup *parent = cgrp->parent;
4470 struct dentry *d = cgrp->dentry;
4471
4472 lockdep_assert_held(&cgroup_tree_mutex);
4473 lockdep_assert_held(&cgroup_mutex);
4474
4475 /* delete this cgroup from parent->children */
4476 list_del_rcu(&cgrp->sibling);
4477
4478 dput(d);
4479
4480 set_bit(CGRP_RELEASABLE, &parent->flags);
4481 check_for_release(parent);
4482 }
4483
4484 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
4485 {
4486 int ret;
4487
4488 mutex_lock(&cgroup_tree_mutex);
4489 mutex_lock(&cgroup_mutex);
4490 ret = cgroup_destroy_locked(dentry->d_fsdata);
4491 mutex_unlock(&cgroup_mutex);
4492 mutex_unlock(&cgroup_tree_mutex);
4493
4494 return ret;
4495 }
4496
4497 static void __init cgroup_init_cftsets(struct cgroup_subsys *ss)
4498 {
4499 INIT_LIST_HEAD(&ss->cftsets);
4500
4501 /*
4502 * base_cftset is embedded in subsys itself, no need to worry about
4503 * deregistration.
4504 */
4505 if (ss->base_cftypes) {
4506 struct cftype *cft;
4507
4508 for (cft = ss->base_cftypes; cft->name[0] != '\0'; cft++)
4509 cft->ss = ss;
4510
4511 ss->base_cftset.cfts = ss->base_cftypes;
4512 list_add_tail(&ss->base_cftset.node, &ss->cftsets);
4513 }
4514 }
4515
4516 static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
4517 {
4518 struct cgroup_subsys_state *css;
4519
4520 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
4521
4522 mutex_lock(&cgroup_tree_mutex);
4523 mutex_lock(&cgroup_mutex);
4524
4525 /* init base cftset */
4526 cgroup_init_cftsets(ss);
4527
4528 /* Create the top cgroup state for this subsystem */
4529 ss->root = &cgroup_dummy_root;
4530 css = ss->css_alloc(cgroup_css(cgroup_dummy_top, ss));
4531 /* We don't handle early failures gracefully */
4532 BUG_ON(IS_ERR(css));
4533 init_css(css, ss, cgroup_dummy_top);
4534
4535 /* Update the init_css_set to contain a subsys
4536 * pointer to this state - since the subsystem is
4537 * newly registered, all tasks and hence the
4538 * init_css_set is in the subsystem's top cgroup. */
4539 init_css_set.subsys[ss->id] = css;
4540
4541 need_forkexit_callback |= ss->fork || ss->exit;
4542
4543 /* At system boot, before all subsystems have been
4544 * registered, no tasks have been forked, so we don't
4545 * need to invoke fork callbacks here. */
4546 BUG_ON(!list_empty(&init_task.tasks));
4547
4548 BUG_ON(online_css(css));
4549
4550 mutex_unlock(&cgroup_mutex);
4551 mutex_unlock(&cgroup_tree_mutex);
4552 }
4553
4554 /**
4555 * cgroup_init_early - cgroup initialization at system boot
4556 *
4557 * Initialize cgroups at system boot, and initialize any
4558 * subsystems that request early init.
4559 */
4560 int __init cgroup_init_early(void)
4561 {
4562 struct cgroup_subsys *ss;
4563 int i;
4564
4565 atomic_set(&init_css_set.refcount, 1);
4566 INIT_LIST_HEAD(&init_css_set.cgrp_links);
4567 INIT_LIST_HEAD(&init_css_set.tasks);
4568 INIT_HLIST_NODE(&init_css_set.hlist);
4569 css_set_count = 1;
4570 init_cgroup_root(&cgroup_dummy_root);
4571 cgroup_root_count = 1;
4572 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
4573
4574 init_cgrp_cset_link.cset = &init_css_set;
4575 init_cgrp_cset_link.cgrp = cgroup_dummy_top;
4576 list_add(&init_cgrp_cset_link.cset_link, &cgroup_dummy_top->cset_links);
4577 list_add(&init_cgrp_cset_link.cgrp_link, &init_css_set.cgrp_links);
4578
4579 for_each_subsys(ss, i) {
4580 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
4581 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p name:id=%d:%s\n",
4582 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
4583 ss->id, ss->name);
4584 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
4585 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
4586
4587 ss->id = i;
4588 ss->name = cgroup_subsys_name[i];
4589
4590 if (ss->early_init)
4591 cgroup_init_subsys(ss);
4592 }
4593 return 0;
4594 }
4595
4596 /**
4597 * cgroup_init - cgroup initialization
4598 *
4599 * Register cgroup filesystem and /proc file, and initialize
4600 * any subsystems that didn't request early init.
4601 */
4602 int __init cgroup_init(void)
4603 {
4604 struct cgroup_subsys *ss;
4605 unsigned long key;
4606 int i, err;
4607
4608 err = bdi_init(&cgroup_backing_dev_info);
4609 if (err)
4610 return err;
4611
4612 for_each_subsys(ss, i) {
4613 if (!ss->early_init)
4614 cgroup_init_subsys(ss);
4615 }
4616
4617 /* allocate id for the dummy hierarchy */
4618 mutex_lock(&cgroup_mutex);
4619
4620 /* Add init_css_set to the hash table */
4621 key = css_set_hash(init_css_set.subsys);
4622 hash_add(css_set_table, &init_css_set.hlist, key);
4623
4624 BUG_ON(cgroup_init_root_id(&cgroup_dummy_root, 0, 1));
4625
4626 err = idr_alloc(&cgroup_dummy_root.cgroup_idr, cgroup_dummy_top,
4627 0, 1, GFP_KERNEL);
4628 BUG_ON(err < 0);
4629
4630 mutex_unlock(&cgroup_mutex);
4631
4632 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
4633 if (!cgroup_kobj) {
4634 err = -ENOMEM;
4635 goto out;
4636 }
4637
4638 err = register_filesystem(&cgroup_fs_type);
4639 if (err < 0) {
4640 kobject_put(cgroup_kobj);
4641 goto out;
4642 }
4643
4644 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
4645
4646 out:
4647 if (err)
4648 bdi_destroy(&cgroup_backing_dev_info);
4649
4650 return err;
4651 }
4652
4653 static int __init cgroup_wq_init(void)
4654 {
4655 /*
4656 * There isn't much point in executing destruction path in
4657 * parallel. Good chunk is serialized with cgroup_mutex anyway.
4658 *
4659 * XXX: Must be ordered to make sure parent is offlined after
4660 * children. The ordering requirement is for memcg where a
4661 * parent's offline may wait for a child's leading to deadlock. In
4662 * the long term, this should be fixed from memcg side.
4663 *
4664 * We would prefer to do this in cgroup_init() above, but that
4665 * is called before init_workqueues(): so leave this until after.
4666 */
4667 cgroup_destroy_wq = alloc_ordered_workqueue("cgroup_destroy", 0);
4668 BUG_ON(!cgroup_destroy_wq);
4669
4670 /*
4671 * Used to destroy pidlists and separate to serve as flush domain.
4672 * Cap @max_active to 1 too.
4673 */
4674 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
4675 0, 1);
4676 BUG_ON(!cgroup_pidlist_destroy_wq);
4677
4678 return 0;
4679 }
4680 core_initcall(cgroup_wq_init);
4681
4682 /*
4683 * proc_cgroup_show()
4684 * - Print task's cgroup paths into seq_file, one line for each hierarchy
4685 * - Used for /proc/<pid>/cgroup.
4686 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
4687 * doesn't really matter if tsk->cgroup changes after we read it,
4688 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
4689 * anyway. No need to check that tsk->cgroup != NULL, thanks to
4690 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
4691 * cgroup to top_cgroup.
4692 */
4693
4694 /* TODO: Use a proper seq_file iterator */
4695 int proc_cgroup_show(struct seq_file *m, void *v)
4696 {
4697 struct pid *pid;
4698 struct task_struct *tsk;
4699 char *buf;
4700 int retval;
4701 struct cgroupfs_root *root;
4702
4703 retval = -ENOMEM;
4704 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4705 if (!buf)
4706 goto out;
4707
4708 retval = -ESRCH;
4709 pid = m->private;
4710 tsk = get_pid_task(pid, PIDTYPE_PID);
4711 if (!tsk)
4712 goto out_free;
4713
4714 retval = 0;
4715
4716 mutex_lock(&cgroup_mutex);
4717
4718 for_each_active_root(root) {
4719 struct cgroup_subsys *ss;
4720 struct cgroup *cgrp;
4721 int ssid, count = 0;
4722
4723 seq_printf(m, "%d:", root->hierarchy_id);
4724 for_each_subsys(ss, ssid)
4725 if (root->subsys_mask & (1 << ssid))
4726 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
4727 if (strlen(root->name))
4728 seq_printf(m, "%sname=%s", count ? "," : "",
4729 root->name);
4730 seq_putc(m, ':');
4731 cgrp = task_cgroup_from_root(tsk, root);
4732 retval = cgroup_path(cgrp, buf, PAGE_SIZE);
4733 if (retval < 0)
4734 goto out_unlock;
4735 seq_puts(m, buf);
4736 seq_putc(m, '\n');
4737 }
4738
4739 out_unlock:
4740 mutex_unlock(&cgroup_mutex);
4741 put_task_struct(tsk);
4742 out_free:
4743 kfree(buf);
4744 out:
4745 return retval;
4746 }
4747
4748 /* Display information about each subsystem and each hierarchy */
4749 static int proc_cgroupstats_show(struct seq_file *m, void *v)
4750 {
4751 struct cgroup_subsys *ss;
4752 int i;
4753
4754 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
4755 /*
4756 * ideally we don't want subsystems moving around while we do this.
4757 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
4758 * subsys/hierarchy state.
4759 */
4760 mutex_lock(&cgroup_mutex);
4761
4762 for_each_subsys(ss, i)
4763 seq_printf(m, "%s\t%d\t%d\t%d\n",
4764 ss->name, ss->root->hierarchy_id,
4765 ss->root->number_of_cgroups, !ss->disabled);
4766
4767 mutex_unlock(&cgroup_mutex);
4768 return 0;
4769 }
4770
4771 static int cgroupstats_open(struct inode *inode, struct file *file)
4772 {
4773 return single_open(file, proc_cgroupstats_show, NULL);
4774 }
4775
4776 static const struct file_operations proc_cgroupstats_operations = {
4777 .open = cgroupstats_open,
4778 .read = seq_read,
4779 .llseek = seq_lseek,
4780 .release = single_release,
4781 };
4782
4783 /**
4784 * cgroup_fork - attach newly forked task to its parents cgroup.
4785 * @child: pointer to task_struct of forking parent process.
4786 *
4787 * Description: A task inherits its parent's cgroup at fork().
4788 *
4789 * A pointer to the shared css_set was automatically copied in
4790 * fork.c by dup_task_struct(). However, we ignore that copy, since
4791 * it was not made under the protection of RCU or cgroup_mutex, so
4792 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
4793 * have already changed current->cgroups, allowing the previously
4794 * referenced cgroup group to be removed and freed.
4795 *
4796 * At the point that cgroup_fork() is called, 'current' is the parent
4797 * task, and the passed argument 'child' points to the child task.
4798 */
4799 void cgroup_fork(struct task_struct *child)
4800 {
4801 task_lock(current);
4802 get_css_set(task_css_set(current));
4803 child->cgroups = current->cgroups;
4804 task_unlock(current);
4805 INIT_LIST_HEAD(&child->cg_list);
4806 }
4807
4808 /**
4809 * cgroup_post_fork - called on a new task after adding it to the task list
4810 * @child: the task in question
4811 *
4812 * Adds the task to the list running through its css_set if necessary and
4813 * call the subsystem fork() callbacks. Has to be after the task is
4814 * visible on the task list in case we race with the first call to
4815 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
4816 * list.
4817 */
4818 void cgroup_post_fork(struct task_struct *child)
4819 {
4820 struct cgroup_subsys *ss;
4821 int i;
4822
4823 /*
4824 * use_task_css_set_links is set to 1 before we walk the tasklist
4825 * under the tasklist_lock and we read it here after we added the child
4826 * to the tasklist under the tasklist_lock as well. If the child wasn't
4827 * yet in the tasklist when we walked through it from
4828 * cgroup_enable_task_cg_lists(), then use_task_css_set_links value
4829 * should be visible now due to the paired locking and barriers implied
4830 * by LOCK/UNLOCK: it is written before the tasklist_lock unlock
4831 * in cgroup_enable_task_cg_lists() and read here after the tasklist_lock
4832 * lock on fork.
4833 */
4834 if (use_task_css_set_links) {
4835 write_lock(&css_set_lock);
4836 task_lock(child);
4837 if (list_empty(&child->cg_list))
4838 list_add(&child->cg_list, &task_css_set(child)->tasks);
4839 task_unlock(child);
4840 write_unlock(&css_set_lock);
4841 }
4842
4843 /*
4844 * Call ss->fork(). This must happen after @child is linked on
4845 * css_set; otherwise, @child might change state between ->fork()
4846 * and addition to css_set.
4847 */
4848 if (need_forkexit_callback) {
4849 for_each_subsys(ss, i)
4850 if (ss->fork)
4851 ss->fork(child);
4852 }
4853 }
4854
4855 /**
4856 * cgroup_exit - detach cgroup from exiting task
4857 * @tsk: pointer to task_struct of exiting process
4858 * @run_callback: run exit callbacks?
4859 *
4860 * Description: Detach cgroup from @tsk and release it.
4861 *
4862 * Note that cgroups marked notify_on_release force every task in
4863 * them to take the global cgroup_mutex mutex when exiting.
4864 * This could impact scaling on very large systems. Be reluctant to
4865 * use notify_on_release cgroups where very high task exit scaling
4866 * is required on large systems.
4867 *
4868 * the_top_cgroup_hack:
4869 *
4870 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
4871 *
4872 * We call cgroup_exit() while the task is still competent to
4873 * handle notify_on_release(), then leave the task attached to the
4874 * root cgroup in each hierarchy for the remainder of its exit.
4875 *
4876 * To do this properly, we would increment the reference count on
4877 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
4878 * code we would add a second cgroup function call, to drop that
4879 * reference. This would just create an unnecessary hot spot on
4880 * the top_cgroup reference count, to no avail.
4881 *
4882 * Normally, holding a reference to a cgroup without bumping its
4883 * count is unsafe. The cgroup could go away, or someone could
4884 * attach us to a different cgroup, decrementing the count on
4885 * the first cgroup that we never incremented. But in this case,
4886 * top_cgroup isn't going away, and either task has PF_EXITING set,
4887 * which wards off any cgroup_attach_task() attempts, or task is a failed
4888 * fork, never visible to cgroup_attach_task.
4889 */
4890 void cgroup_exit(struct task_struct *tsk, int run_callbacks)
4891 {
4892 struct cgroup_subsys *ss;
4893 struct css_set *cset;
4894 int i;
4895
4896 /*
4897 * Unlink from the css_set task list if necessary.
4898 * Optimistically check cg_list before taking
4899 * css_set_lock
4900 */
4901 if (!list_empty(&tsk->cg_list)) {
4902 write_lock(&css_set_lock);
4903 if (!list_empty(&tsk->cg_list))
4904 list_del_init(&tsk->cg_list);
4905 write_unlock(&css_set_lock);
4906 }
4907
4908 /* Reassign the task to the init_css_set. */
4909 task_lock(tsk);
4910 cset = task_css_set(tsk);
4911 RCU_INIT_POINTER(tsk->cgroups, &init_css_set);
4912
4913 if (run_callbacks && need_forkexit_callback) {
4914 /* see cgroup_post_fork() for details */
4915 for_each_subsys(ss, i) {
4916 if (ss->exit) {
4917 struct cgroup_subsys_state *old_css = cset->subsys[i];
4918 struct cgroup_subsys_state *css = task_css(tsk, i);
4919
4920 ss->exit(css, old_css, tsk);
4921 }
4922 }
4923 }
4924 task_unlock(tsk);
4925
4926 put_css_set_taskexit(cset);
4927 }
4928
4929 static void check_for_release(struct cgroup *cgrp)
4930 {
4931 if (cgroup_is_releasable(cgrp) &&
4932 list_empty(&cgrp->cset_links) && list_empty(&cgrp->children)) {
4933 /*
4934 * Control Group is currently removeable. If it's not
4935 * already queued for a userspace notification, queue
4936 * it now
4937 */
4938 int need_schedule_work = 0;
4939
4940 raw_spin_lock(&release_list_lock);
4941 if (!cgroup_is_dead(cgrp) &&
4942 list_empty(&cgrp->release_list)) {
4943 list_add(&cgrp->release_list, &release_list);
4944 need_schedule_work = 1;
4945 }
4946 raw_spin_unlock(&release_list_lock);
4947 if (need_schedule_work)
4948 schedule_work(&release_agent_work);
4949 }
4950 }
4951
4952 /*
4953 * Notify userspace when a cgroup is released, by running the
4954 * configured release agent with the name of the cgroup (path
4955 * relative to the root of cgroup file system) as the argument.
4956 *
4957 * Most likely, this user command will try to rmdir this cgroup.
4958 *
4959 * This races with the possibility that some other task will be
4960 * attached to this cgroup before it is removed, or that some other
4961 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
4962 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
4963 * unused, and this cgroup will be reprieved from its death sentence,
4964 * to continue to serve a useful existence. Next time it's released,
4965 * we will get notified again, if it still has 'notify_on_release' set.
4966 *
4967 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
4968 * means only wait until the task is successfully execve()'d. The
4969 * separate release agent task is forked by call_usermodehelper(),
4970 * then control in this thread returns here, without waiting for the
4971 * release agent task. We don't bother to wait because the caller of
4972 * this routine has no use for the exit status of the release agent
4973 * task, so no sense holding our caller up for that.
4974 */
4975 static void cgroup_release_agent(struct work_struct *work)
4976 {
4977 BUG_ON(work != &release_agent_work);
4978 mutex_lock(&cgroup_mutex);
4979 raw_spin_lock(&release_list_lock);
4980 while (!list_empty(&release_list)) {
4981 char *argv[3], *envp[3];
4982 int i;
4983 char *pathbuf = NULL, *agentbuf = NULL;
4984 struct cgroup *cgrp = list_entry(release_list.next,
4985 struct cgroup,
4986 release_list);
4987 list_del_init(&cgrp->release_list);
4988 raw_spin_unlock(&release_list_lock);
4989 pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4990 if (!pathbuf)
4991 goto continue_free;
4992 if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
4993 goto continue_free;
4994 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
4995 if (!agentbuf)
4996 goto continue_free;
4997
4998 i = 0;
4999 argv[i++] = agentbuf;
5000 argv[i++] = pathbuf;
5001 argv[i] = NULL;
5002
5003 i = 0;
5004 /* minimal command environment */
5005 envp[i++] = "HOME=/";
5006 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5007 envp[i] = NULL;
5008
5009 /* Drop the lock while we invoke the usermode helper,
5010 * since the exec could involve hitting disk and hence
5011 * be a slow process */
5012 mutex_unlock(&cgroup_mutex);
5013 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
5014 mutex_lock(&cgroup_mutex);
5015 continue_free:
5016 kfree(pathbuf);
5017 kfree(agentbuf);
5018 raw_spin_lock(&release_list_lock);
5019 }
5020 raw_spin_unlock(&release_list_lock);
5021 mutex_unlock(&cgroup_mutex);
5022 }
5023
5024 static int __init cgroup_disable(char *str)
5025 {
5026 struct cgroup_subsys *ss;
5027 char *token;
5028 int i;
5029
5030 while ((token = strsep(&str, ",")) != NULL) {
5031 if (!*token)
5032 continue;
5033
5034 for_each_subsys(ss, i) {
5035 if (!strcmp(token, ss->name)) {
5036 ss->disabled = 1;
5037 printk(KERN_INFO "Disabling %s control group"
5038 " subsystem\n", ss->name);
5039 break;
5040 }
5041 }
5042 }
5043 return 1;
5044 }
5045 __setup("cgroup_disable=", cgroup_disable);
5046
5047 /**
5048 * css_tryget_from_dir - get corresponding css from the dentry of a cgroup dir
5049 * @dentry: directory dentry of interest
5050 * @ss: subsystem of interest
5051 *
5052 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
5053 * to get the corresponding css and return it. If such css doesn't exist
5054 * or can't be pinned, an ERR_PTR value is returned.
5055 */
5056 struct cgroup_subsys_state *css_tryget_from_dir(struct dentry *dentry,
5057 struct cgroup_subsys *ss)
5058 {
5059 struct cgroup *cgrp;
5060 struct cgroup_subsys_state *css;
5061
5062 /* is @dentry a cgroup dir? */
5063 if (!dentry->d_inode ||
5064 dentry->d_inode->i_op != &cgroup_dir_inode_operations)
5065 return ERR_PTR(-EBADF);
5066
5067 rcu_read_lock();
5068
5069 cgrp = __d_cgrp(dentry);
5070 css = cgroup_css(cgrp, ss);
5071
5072 if (!css || !css_tryget(css))
5073 css = ERR_PTR(-ENOENT);
5074
5075 rcu_read_unlock();
5076 return css;
5077 }
5078
5079 /**
5080 * css_from_id - lookup css by id
5081 * @id: the cgroup id
5082 * @ss: cgroup subsys to be looked into
5083 *
5084 * Returns the css if there's valid one with @id, otherwise returns NULL.
5085 * Should be called under rcu_read_lock().
5086 */
5087 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
5088 {
5089 struct cgroup *cgrp;
5090
5091 cgroup_assert_mutexes_or_rcu_locked();
5092
5093 cgrp = idr_find(&ss->root->cgroup_idr, id);
5094 if (cgrp)
5095 return cgroup_css(cgrp, ss);
5096 return NULL;
5097 }
5098
5099 #ifdef CONFIG_CGROUP_DEBUG
5100 static struct cgroup_subsys_state *
5101 debug_css_alloc(struct cgroup_subsys_state *parent_css)
5102 {
5103 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5104
5105 if (!css)
5106 return ERR_PTR(-ENOMEM);
5107
5108 return css;
5109 }
5110
5111 static void debug_css_free(struct cgroup_subsys_state *css)
5112 {
5113 kfree(css);
5114 }
5115
5116 static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
5117 struct cftype *cft)
5118 {
5119 return cgroup_task_count(css->cgroup);
5120 }
5121
5122 static u64 current_css_set_read(struct cgroup_subsys_state *css,
5123 struct cftype *cft)
5124 {
5125 return (u64)(unsigned long)current->cgroups;
5126 }
5127
5128 static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
5129 struct cftype *cft)
5130 {
5131 u64 count;
5132
5133 rcu_read_lock();
5134 count = atomic_read(&task_css_set(current)->refcount);
5135 rcu_read_unlock();
5136 return count;
5137 }
5138
5139 static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
5140 {
5141 struct cgrp_cset_link *link;
5142 struct css_set *cset;
5143
5144 read_lock(&css_set_lock);
5145 rcu_read_lock();
5146 cset = rcu_dereference(current->cgroups);
5147 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
5148 struct cgroup *c = link->cgrp;
5149 const char *name;
5150
5151 if (c->dentry)
5152 name = c->dentry->d_name.name;
5153 else
5154 name = "?";
5155 seq_printf(seq, "Root %d group %s\n",
5156 c->root->hierarchy_id, name);
5157 }
5158 rcu_read_unlock();
5159 read_unlock(&css_set_lock);
5160 return 0;
5161 }
5162
5163 #define MAX_TASKS_SHOWN_PER_CSS 25
5164 static int cgroup_css_links_read(struct seq_file *seq, void *v)
5165 {
5166 struct cgroup_subsys_state *css = seq_css(seq);
5167 struct cgrp_cset_link *link;
5168
5169 read_lock(&css_set_lock);
5170 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
5171 struct css_set *cset = link->cset;
5172 struct task_struct *task;
5173 int count = 0;
5174 seq_printf(seq, "css_set %p\n", cset);
5175 list_for_each_entry(task, &cset->tasks, cg_list) {
5176 if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
5177 seq_puts(seq, " ...\n");
5178 break;
5179 } else {
5180 seq_printf(seq, " task %d\n",
5181 task_pid_vnr(task));
5182 }
5183 }
5184 }
5185 read_unlock(&css_set_lock);
5186 return 0;
5187 }
5188
5189 static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
5190 {
5191 return test_bit(CGRP_RELEASABLE, &css->cgroup->flags);
5192 }
5193
5194 static struct cftype debug_files[] = {
5195 {
5196 .name = "taskcount",
5197 .read_u64 = debug_taskcount_read,
5198 },
5199
5200 {
5201 .name = "current_css_set",
5202 .read_u64 = current_css_set_read,
5203 },
5204
5205 {
5206 .name = "current_css_set_refcount",
5207 .read_u64 = current_css_set_refcount_read,
5208 },
5209
5210 {
5211 .name = "current_css_set_cg_links",
5212 .seq_show = current_css_set_cg_links_read,
5213 },
5214
5215 {
5216 .name = "cgroup_css_links",
5217 .seq_show = cgroup_css_links_read,
5218 },
5219
5220 {
5221 .name = "releasable",
5222 .read_u64 = releasable_read,
5223 },
5224
5225 { } /* terminate */
5226 };
5227
5228 struct cgroup_subsys debug_cgrp_subsys = {
5229 .css_alloc = debug_css_alloc,
5230 .css_free = debug_css_free,
5231 .base_cftypes = debug_files,
5232 };
5233 #endif /* CONFIG_CGROUP_DEBUG */
This page took 0.161554 seconds and 5 git commands to generate.