26f2edbaf4f51a1a65f09b6df22f57bdf6e9f6d9
[deliverable/linux.git] / kernel / cgroup.c
1 /*
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29 #include <linux/cgroup.h>
30 #include <linux/cred.h>
31 #include <linux/ctype.h>
32 #include <linux/errno.h>
33 #include <linux/fs.h>
34 #include <linux/init_task.h>
35 #include <linux/kernel.h>
36 #include <linux/list.h>
37 #include <linux/mm.h>
38 #include <linux/mutex.h>
39 #include <linux/mount.h>
40 #include <linux/pagemap.h>
41 #include <linux/proc_fs.h>
42 #include <linux/rcupdate.h>
43 #include <linux/sched.h>
44 #include <linux/backing-dev.h>
45 #include <linux/seq_file.h>
46 #include <linux/slab.h>
47 #include <linux/magic.h>
48 #include <linux/spinlock.h>
49 #include <linux/string.h>
50 #include <linux/sort.h>
51 #include <linux/kmod.h>
52 #include <linux/module.h>
53 #include <linux/delayacct.h>
54 #include <linux/cgroupstats.h>
55 #include <linux/hash.h>
56 #include <linux/namei.h>
57 #include <linux/pid_namespace.h>
58 #include <linux/idr.h>
59 #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
60 #include <linux/eventfd.h>
61 #include <linux/poll.h>
62 #include <linux/flex_array.h> /* used in cgroup_attach_proc */
63 #include <linux/kthread.h>
64
65 #include <linux/atomic.h>
66
67 /* css deactivation bias, makes css->refcnt negative to deny new trygets */
68 #define CSS_DEACT_BIAS INT_MIN
69
70 /*
71 * cgroup_mutex is the master lock. Any modification to cgroup or its
72 * hierarchy must be performed while holding it.
73 *
74 * cgroup_root_mutex nests inside cgroup_mutex and should be held to modify
75 * cgroupfs_root of any cgroup hierarchy - subsys list, flags,
76 * release_agent_path and so on. Modifying requires both cgroup_mutex and
77 * cgroup_root_mutex. Readers can acquire either of the two. This is to
78 * break the following locking order cycle.
79 *
80 * A. cgroup_mutex -> cred_guard_mutex -> s_type->i_mutex_key -> namespace_sem
81 * B. namespace_sem -> cgroup_mutex
82 *
83 * B happens only through cgroup_show_options() and using cgroup_root_mutex
84 * breaks it.
85 */
86 static DEFINE_MUTEX(cgroup_mutex);
87 static DEFINE_MUTEX(cgroup_root_mutex);
88
89 /*
90 * Generate an array of cgroup subsystem pointers. At boot time, this is
91 * populated with the built in subsystems, and modular subsystems are
92 * registered after that. The mutable section of this array is protected by
93 * cgroup_mutex.
94 */
95 #define SUBSYS(_x) [_x ## _subsys_id] = &_x ## _subsys,
96 #define IS_SUBSYS_ENABLED(option) IS_BUILTIN(option)
97 static struct cgroup_subsys *subsys[CGROUP_SUBSYS_COUNT] = {
98 #include <linux/cgroup_subsys.h>
99 };
100
101 #define MAX_CGROUP_ROOT_NAMELEN 64
102
103 /*
104 * A cgroupfs_root represents the root of a cgroup hierarchy,
105 * and may be associated with a superblock to form an active
106 * hierarchy
107 */
108 struct cgroupfs_root {
109 struct super_block *sb;
110
111 /*
112 * The bitmask of subsystems intended to be attached to this
113 * hierarchy
114 */
115 unsigned long subsys_mask;
116
117 /* Unique id for this hierarchy. */
118 int hierarchy_id;
119
120 /* The bitmask of subsystems currently attached to this hierarchy */
121 unsigned long actual_subsys_mask;
122
123 /* A list running through the attached subsystems */
124 struct list_head subsys_list;
125
126 /* The root cgroup for this hierarchy */
127 struct cgroup top_cgroup;
128
129 /* Tracks how many cgroups are currently defined in hierarchy.*/
130 int number_of_cgroups;
131
132 /* A list running through the active hierarchies */
133 struct list_head root_list;
134
135 /* All cgroups on this root, cgroup_mutex protected */
136 struct list_head allcg_list;
137
138 /* Hierarchy-specific flags */
139 unsigned long flags;
140
141 /* The path to use for release notifications. */
142 char release_agent_path[PATH_MAX];
143
144 /* The name for this hierarchy - may be empty */
145 char name[MAX_CGROUP_ROOT_NAMELEN];
146 };
147
148 /*
149 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
150 * subsystems that are otherwise unattached - it never has more than a
151 * single cgroup, and all tasks are part of that cgroup.
152 */
153 static struct cgroupfs_root rootnode;
154
155 /*
156 * cgroupfs file entry, pointed to from leaf dentry->d_fsdata.
157 */
158 struct cfent {
159 struct list_head node;
160 struct dentry *dentry;
161 struct cftype *type;
162 };
163
164 /*
165 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
166 * cgroup_subsys->use_id != 0.
167 */
168 #define CSS_ID_MAX (65535)
169 struct css_id {
170 /*
171 * The css to which this ID points. This pointer is set to valid value
172 * after cgroup is populated. If cgroup is removed, this will be NULL.
173 * This pointer is expected to be RCU-safe because destroy()
174 * is called after synchronize_rcu(). But for safe use, css_tryget()
175 * should be used for avoiding race.
176 */
177 struct cgroup_subsys_state __rcu *css;
178 /*
179 * ID of this css.
180 */
181 unsigned short id;
182 /*
183 * Depth in hierarchy which this ID belongs to.
184 */
185 unsigned short depth;
186 /*
187 * ID is freed by RCU. (and lookup routine is RCU safe.)
188 */
189 struct rcu_head rcu_head;
190 /*
191 * Hierarchy of CSS ID belongs to.
192 */
193 unsigned short stack[0]; /* Array of Length (depth+1) */
194 };
195
196 /*
197 * cgroup_event represents events which userspace want to receive.
198 */
199 struct cgroup_event {
200 /*
201 * Cgroup which the event belongs to.
202 */
203 struct cgroup *cgrp;
204 /*
205 * Control file which the event associated.
206 */
207 struct cftype *cft;
208 /*
209 * eventfd to signal userspace about the event.
210 */
211 struct eventfd_ctx *eventfd;
212 /*
213 * Each of these stored in a list by the cgroup.
214 */
215 struct list_head list;
216 /*
217 * All fields below needed to unregister event when
218 * userspace closes eventfd.
219 */
220 poll_table pt;
221 wait_queue_head_t *wqh;
222 wait_queue_t wait;
223 struct work_struct remove;
224 };
225
226 /* The list of hierarchy roots */
227
228 static LIST_HEAD(roots);
229 static int root_count;
230
231 static DEFINE_IDA(hierarchy_ida);
232 static int next_hierarchy_id;
233 static DEFINE_SPINLOCK(hierarchy_id_lock);
234
235 /* dummytop is a shorthand for the dummy hierarchy's top cgroup */
236 #define dummytop (&rootnode.top_cgroup)
237
238 /* This flag indicates whether tasks in the fork and exit paths should
239 * check for fork/exit handlers to call. This avoids us having to do
240 * extra work in the fork/exit path if none of the subsystems need to
241 * be called.
242 */
243 static int need_forkexit_callback __read_mostly;
244
245 #ifdef CONFIG_PROVE_LOCKING
246 int cgroup_lock_is_held(void)
247 {
248 return lockdep_is_held(&cgroup_mutex);
249 }
250 #else /* #ifdef CONFIG_PROVE_LOCKING */
251 int cgroup_lock_is_held(void)
252 {
253 return mutex_is_locked(&cgroup_mutex);
254 }
255 #endif /* #else #ifdef CONFIG_PROVE_LOCKING */
256
257 EXPORT_SYMBOL_GPL(cgroup_lock_is_held);
258
259 static int css_unbias_refcnt(int refcnt)
260 {
261 return refcnt >= 0 ? refcnt : refcnt - CSS_DEACT_BIAS;
262 }
263
264 /* the current nr of refs, always >= 0 whether @css is deactivated or not */
265 static int css_refcnt(struct cgroup_subsys_state *css)
266 {
267 int v = atomic_read(&css->refcnt);
268
269 return css_unbias_refcnt(v);
270 }
271
272 /* convenient tests for these bits */
273 inline int cgroup_is_removed(const struct cgroup *cgrp)
274 {
275 return test_bit(CGRP_REMOVED, &cgrp->flags);
276 }
277
278 /* bits in struct cgroupfs_root flags field */
279 enum {
280 ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
281 ROOT_XATTR, /* supports extended attributes */
282 };
283
284 static int cgroup_is_releasable(const struct cgroup *cgrp)
285 {
286 const int bits =
287 (1 << CGRP_RELEASABLE) |
288 (1 << CGRP_NOTIFY_ON_RELEASE);
289 return (cgrp->flags & bits) == bits;
290 }
291
292 static int notify_on_release(const struct cgroup *cgrp)
293 {
294 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
295 }
296
297 static int clone_children(const struct cgroup *cgrp)
298 {
299 return test_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
300 }
301
302 /*
303 * for_each_subsys() allows you to iterate on each subsystem attached to
304 * an active hierarchy
305 */
306 #define for_each_subsys(_root, _ss) \
307 list_for_each_entry(_ss, &_root->subsys_list, sibling)
308
309 /* for_each_active_root() allows you to iterate across the active hierarchies */
310 #define for_each_active_root(_root) \
311 list_for_each_entry(_root, &roots, root_list)
312
313 static inline struct cgroup *__d_cgrp(struct dentry *dentry)
314 {
315 return dentry->d_fsdata;
316 }
317
318 static inline struct cfent *__d_cfe(struct dentry *dentry)
319 {
320 return dentry->d_fsdata;
321 }
322
323 static inline struct cftype *__d_cft(struct dentry *dentry)
324 {
325 return __d_cfe(dentry)->type;
326 }
327
328 /* the list of cgroups eligible for automatic release. Protected by
329 * release_list_lock */
330 static LIST_HEAD(release_list);
331 static DEFINE_RAW_SPINLOCK(release_list_lock);
332 static void cgroup_release_agent(struct work_struct *work);
333 static DECLARE_WORK(release_agent_work, cgroup_release_agent);
334 static void check_for_release(struct cgroup *cgrp);
335
336 /* Link structure for associating css_set objects with cgroups */
337 struct cg_cgroup_link {
338 /*
339 * List running through cg_cgroup_links associated with a
340 * cgroup, anchored on cgroup->css_sets
341 */
342 struct list_head cgrp_link_list;
343 struct cgroup *cgrp;
344 /*
345 * List running through cg_cgroup_links pointing at a
346 * single css_set object, anchored on css_set->cg_links
347 */
348 struct list_head cg_link_list;
349 struct css_set *cg;
350 };
351
352 /* The default css_set - used by init and its children prior to any
353 * hierarchies being mounted. It contains a pointer to the root state
354 * for each subsystem. Also used to anchor the list of css_sets. Not
355 * reference-counted, to improve performance when child cgroups
356 * haven't been created.
357 */
358
359 static struct css_set init_css_set;
360 static struct cg_cgroup_link init_css_set_link;
361
362 static int cgroup_init_idr(struct cgroup_subsys *ss,
363 struct cgroup_subsys_state *css);
364
365 /* css_set_lock protects the list of css_set objects, and the
366 * chain of tasks off each css_set. Nests outside task->alloc_lock
367 * due to cgroup_iter_start() */
368 static DEFINE_RWLOCK(css_set_lock);
369 static int css_set_count;
370
371 /*
372 * hash table for cgroup groups. This improves the performance to find
373 * an existing css_set. This hash doesn't (currently) take into
374 * account cgroups in empty hierarchies.
375 */
376 #define CSS_SET_HASH_BITS 7
377 #define CSS_SET_TABLE_SIZE (1 << CSS_SET_HASH_BITS)
378 static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE];
379
380 static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[])
381 {
382 int i;
383 int index;
384 unsigned long tmp = 0UL;
385
386 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
387 tmp += (unsigned long)css[i];
388 tmp = (tmp >> 16) ^ tmp;
389
390 index = hash_long(tmp, CSS_SET_HASH_BITS);
391
392 return &css_set_table[index];
393 }
394
395 /* We don't maintain the lists running through each css_set to its
396 * task until after the first call to cgroup_iter_start(). This
397 * reduces the fork()/exit() overhead for people who have cgroups
398 * compiled into their kernel but not actually in use */
399 static int use_task_css_set_links __read_mostly;
400
401 static void __put_css_set(struct css_set *cg, int taskexit)
402 {
403 struct cg_cgroup_link *link;
404 struct cg_cgroup_link *saved_link;
405 /*
406 * Ensure that the refcount doesn't hit zero while any readers
407 * can see it. Similar to atomic_dec_and_lock(), but for an
408 * rwlock
409 */
410 if (atomic_add_unless(&cg->refcount, -1, 1))
411 return;
412 write_lock(&css_set_lock);
413 if (!atomic_dec_and_test(&cg->refcount)) {
414 write_unlock(&css_set_lock);
415 return;
416 }
417
418 /* This css_set is dead. unlink it and release cgroup refcounts */
419 hlist_del(&cg->hlist);
420 css_set_count--;
421
422 list_for_each_entry_safe(link, saved_link, &cg->cg_links,
423 cg_link_list) {
424 struct cgroup *cgrp = link->cgrp;
425 list_del(&link->cg_link_list);
426 list_del(&link->cgrp_link_list);
427 if (atomic_dec_and_test(&cgrp->count) &&
428 notify_on_release(cgrp)) {
429 if (taskexit)
430 set_bit(CGRP_RELEASABLE, &cgrp->flags);
431 check_for_release(cgrp);
432 }
433
434 kfree(link);
435 }
436
437 write_unlock(&css_set_lock);
438 kfree_rcu(cg, rcu_head);
439 }
440
441 /*
442 * refcounted get/put for css_set objects
443 */
444 static inline void get_css_set(struct css_set *cg)
445 {
446 atomic_inc(&cg->refcount);
447 }
448
449 static inline void put_css_set(struct css_set *cg)
450 {
451 __put_css_set(cg, 0);
452 }
453
454 static inline void put_css_set_taskexit(struct css_set *cg)
455 {
456 __put_css_set(cg, 1);
457 }
458
459 /*
460 * compare_css_sets - helper function for find_existing_css_set().
461 * @cg: candidate css_set being tested
462 * @old_cg: existing css_set for a task
463 * @new_cgrp: cgroup that's being entered by the task
464 * @template: desired set of css pointers in css_set (pre-calculated)
465 *
466 * Returns true if "cg" matches "old_cg" except for the hierarchy
467 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
468 */
469 static bool compare_css_sets(struct css_set *cg,
470 struct css_set *old_cg,
471 struct cgroup *new_cgrp,
472 struct cgroup_subsys_state *template[])
473 {
474 struct list_head *l1, *l2;
475
476 if (memcmp(template, cg->subsys, sizeof(cg->subsys))) {
477 /* Not all subsystems matched */
478 return false;
479 }
480
481 /*
482 * Compare cgroup pointers in order to distinguish between
483 * different cgroups in heirarchies with no subsystems. We
484 * could get by with just this check alone (and skip the
485 * memcmp above) but on most setups the memcmp check will
486 * avoid the need for this more expensive check on almost all
487 * candidates.
488 */
489
490 l1 = &cg->cg_links;
491 l2 = &old_cg->cg_links;
492 while (1) {
493 struct cg_cgroup_link *cgl1, *cgl2;
494 struct cgroup *cg1, *cg2;
495
496 l1 = l1->next;
497 l2 = l2->next;
498 /* See if we reached the end - both lists are equal length. */
499 if (l1 == &cg->cg_links) {
500 BUG_ON(l2 != &old_cg->cg_links);
501 break;
502 } else {
503 BUG_ON(l2 == &old_cg->cg_links);
504 }
505 /* Locate the cgroups associated with these links. */
506 cgl1 = list_entry(l1, struct cg_cgroup_link, cg_link_list);
507 cgl2 = list_entry(l2, struct cg_cgroup_link, cg_link_list);
508 cg1 = cgl1->cgrp;
509 cg2 = cgl2->cgrp;
510 /* Hierarchies should be linked in the same order. */
511 BUG_ON(cg1->root != cg2->root);
512
513 /*
514 * If this hierarchy is the hierarchy of the cgroup
515 * that's changing, then we need to check that this
516 * css_set points to the new cgroup; if it's any other
517 * hierarchy, then this css_set should point to the
518 * same cgroup as the old css_set.
519 */
520 if (cg1->root == new_cgrp->root) {
521 if (cg1 != new_cgrp)
522 return false;
523 } else {
524 if (cg1 != cg2)
525 return false;
526 }
527 }
528 return true;
529 }
530
531 /*
532 * find_existing_css_set() is a helper for
533 * find_css_set(), and checks to see whether an existing
534 * css_set is suitable.
535 *
536 * oldcg: the cgroup group that we're using before the cgroup
537 * transition
538 *
539 * cgrp: the cgroup that we're moving into
540 *
541 * template: location in which to build the desired set of subsystem
542 * state objects for the new cgroup group
543 */
544 static struct css_set *find_existing_css_set(
545 struct css_set *oldcg,
546 struct cgroup *cgrp,
547 struct cgroup_subsys_state *template[])
548 {
549 int i;
550 struct cgroupfs_root *root = cgrp->root;
551 struct hlist_head *hhead;
552 struct hlist_node *node;
553 struct css_set *cg;
554
555 /*
556 * Build the set of subsystem state objects that we want to see in the
557 * new css_set. while subsystems can change globally, the entries here
558 * won't change, so no need for locking.
559 */
560 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
561 if (root->subsys_mask & (1UL << i)) {
562 /* Subsystem is in this hierarchy. So we want
563 * the subsystem state from the new
564 * cgroup */
565 template[i] = cgrp->subsys[i];
566 } else {
567 /* Subsystem is not in this hierarchy, so we
568 * don't want to change the subsystem state */
569 template[i] = oldcg->subsys[i];
570 }
571 }
572
573 hhead = css_set_hash(template);
574 hlist_for_each_entry(cg, node, hhead, hlist) {
575 if (!compare_css_sets(cg, oldcg, cgrp, template))
576 continue;
577
578 /* This css_set matches what we need */
579 return cg;
580 }
581
582 /* No existing cgroup group matched */
583 return NULL;
584 }
585
586 static void free_cg_links(struct list_head *tmp)
587 {
588 struct cg_cgroup_link *link;
589 struct cg_cgroup_link *saved_link;
590
591 list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
592 list_del(&link->cgrp_link_list);
593 kfree(link);
594 }
595 }
596
597 /*
598 * allocate_cg_links() allocates "count" cg_cgroup_link structures
599 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
600 * success or a negative error
601 */
602 static int allocate_cg_links(int count, struct list_head *tmp)
603 {
604 struct cg_cgroup_link *link;
605 int i;
606 INIT_LIST_HEAD(tmp);
607 for (i = 0; i < count; i++) {
608 link = kmalloc(sizeof(*link), GFP_KERNEL);
609 if (!link) {
610 free_cg_links(tmp);
611 return -ENOMEM;
612 }
613 list_add(&link->cgrp_link_list, tmp);
614 }
615 return 0;
616 }
617
618 /**
619 * link_css_set - a helper function to link a css_set to a cgroup
620 * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
621 * @cg: the css_set to be linked
622 * @cgrp: the destination cgroup
623 */
624 static void link_css_set(struct list_head *tmp_cg_links,
625 struct css_set *cg, struct cgroup *cgrp)
626 {
627 struct cg_cgroup_link *link;
628
629 BUG_ON(list_empty(tmp_cg_links));
630 link = list_first_entry(tmp_cg_links, struct cg_cgroup_link,
631 cgrp_link_list);
632 link->cg = cg;
633 link->cgrp = cgrp;
634 atomic_inc(&cgrp->count);
635 list_move(&link->cgrp_link_list, &cgrp->css_sets);
636 /*
637 * Always add links to the tail of the list so that the list
638 * is sorted by order of hierarchy creation
639 */
640 list_add_tail(&link->cg_link_list, &cg->cg_links);
641 }
642
643 /*
644 * find_css_set() takes an existing cgroup group and a
645 * cgroup object, and returns a css_set object that's
646 * equivalent to the old group, but with the given cgroup
647 * substituted into the appropriate hierarchy. Must be called with
648 * cgroup_mutex held
649 */
650 static struct css_set *find_css_set(
651 struct css_set *oldcg, struct cgroup *cgrp)
652 {
653 struct css_set *res;
654 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
655
656 struct list_head tmp_cg_links;
657
658 struct hlist_head *hhead;
659 struct cg_cgroup_link *link;
660
661 /* First see if we already have a cgroup group that matches
662 * the desired set */
663 read_lock(&css_set_lock);
664 res = find_existing_css_set(oldcg, cgrp, template);
665 if (res)
666 get_css_set(res);
667 read_unlock(&css_set_lock);
668
669 if (res)
670 return res;
671
672 res = kmalloc(sizeof(*res), GFP_KERNEL);
673 if (!res)
674 return NULL;
675
676 /* Allocate all the cg_cgroup_link objects that we'll need */
677 if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
678 kfree(res);
679 return NULL;
680 }
681
682 atomic_set(&res->refcount, 1);
683 INIT_LIST_HEAD(&res->cg_links);
684 INIT_LIST_HEAD(&res->tasks);
685 INIT_HLIST_NODE(&res->hlist);
686
687 /* Copy the set of subsystem state objects generated in
688 * find_existing_css_set() */
689 memcpy(res->subsys, template, sizeof(res->subsys));
690
691 write_lock(&css_set_lock);
692 /* Add reference counts and links from the new css_set. */
693 list_for_each_entry(link, &oldcg->cg_links, cg_link_list) {
694 struct cgroup *c = link->cgrp;
695 if (c->root == cgrp->root)
696 c = cgrp;
697 link_css_set(&tmp_cg_links, res, c);
698 }
699
700 BUG_ON(!list_empty(&tmp_cg_links));
701
702 css_set_count++;
703
704 /* Add this cgroup group to the hash table */
705 hhead = css_set_hash(res->subsys);
706 hlist_add_head(&res->hlist, hhead);
707
708 write_unlock(&css_set_lock);
709
710 return res;
711 }
712
713 /*
714 * Return the cgroup for "task" from the given hierarchy. Must be
715 * called with cgroup_mutex held.
716 */
717 static struct cgroup *task_cgroup_from_root(struct task_struct *task,
718 struct cgroupfs_root *root)
719 {
720 struct css_set *css;
721 struct cgroup *res = NULL;
722
723 BUG_ON(!mutex_is_locked(&cgroup_mutex));
724 read_lock(&css_set_lock);
725 /*
726 * No need to lock the task - since we hold cgroup_mutex the
727 * task can't change groups, so the only thing that can happen
728 * is that it exits and its css is set back to init_css_set.
729 */
730 css = task->cgroups;
731 if (css == &init_css_set) {
732 res = &root->top_cgroup;
733 } else {
734 struct cg_cgroup_link *link;
735 list_for_each_entry(link, &css->cg_links, cg_link_list) {
736 struct cgroup *c = link->cgrp;
737 if (c->root == root) {
738 res = c;
739 break;
740 }
741 }
742 }
743 read_unlock(&css_set_lock);
744 BUG_ON(!res);
745 return res;
746 }
747
748 /*
749 * There is one global cgroup mutex. We also require taking
750 * task_lock() when dereferencing a task's cgroup subsys pointers.
751 * See "The task_lock() exception", at the end of this comment.
752 *
753 * A task must hold cgroup_mutex to modify cgroups.
754 *
755 * Any task can increment and decrement the count field without lock.
756 * So in general, code holding cgroup_mutex can't rely on the count
757 * field not changing. However, if the count goes to zero, then only
758 * cgroup_attach_task() can increment it again. Because a count of zero
759 * means that no tasks are currently attached, therefore there is no
760 * way a task attached to that cgroup can fork (the other way to
761 * increment the count). So code holding cgroup_mutex can safely
762 * assume that if the count is zero, it will stay zero. Similarly, if
763 * a task holds cgroup_mutex on a cgroup with zero count, it
764 * knows that the cgroup won't be removed, as cgroup_rmdir()
765 * needs that mutex.
766 *
767 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
768 * (usually) take cgroup_mutex. These are the two most performance
769 * critical pieces of code here. The exception occurs on cgroup_exit(),
770 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
771 * is taken, and if the cgroup count is zero, a usermode call made
772 * to the release agent with the name of the cgroup (path relative to
773 * the root of cgroup file system) as the argument.
774 *
775 * A cgroup can only be deleted if both its 'count' of using tasks
776 * is zero, and its list of 'children' cgroups is empty. Since all
777 * tasks in the system use _some_ cgroup, and since there is always at
778 * least one task in the system (init, pid == 1), therefore, top_cgroup
779 * always has either children cgroups and/or using tasks. So we don't
780 * need a special hack to ensure that top_cgroup cannot be deleted.
781 *
782 * The task_lock() exception
783 *
784 * The need for this exception arises from the action of
785 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
786 * another. It does so using cgroup_mutex, however there are
787 * several performance critical places that need to reference
788 * task->cgroup without the expense of grabbing a system global
789 * mutex. Therefore except as noted below, when dereferencing or, as
790 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
791 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
792 * the task_struct routinely used for such matters.
793 *
794 * P.S. One more locking exception. RCU is used to guard the
795 * update of a tasks cgroup pointer by cgroup_attach_task()
796 */
797
798 /**
799 * cgroup_lock - lock out any changes to cgroup structures
800 *
801 */
802 void cgroup_lock(void)
803 {
804 mutex_lock(&cgroup_mutex);
805 }
806 EXPORT_SYMBOL_GPL(cgroup_lock);
807
808 /**
809 * cgroup_unlock - release lock on cgroup changes
810 *
811 * Undo the lock taken in a previous cgroup_lock() call.
812 */
813 void cgroup_unlock(void)
814 {
815 mutex_unlock(&cgroup_mutex);
816 }
817 EXPORT_SYMBOL_GPL(cgroup_unlock);
818
819 /*
820 * A couple of forward declarations required, due to cyclic reference loop:
821 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
822 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
823 * -> cgroup_mkdir.
824 */
825
826 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode);
827 static struct dentry *cgroup_lookup(struct inode *, struct dentry *, unsigned int);
828 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
829 static int cgroup_populate_dir(struct cgroup *cgrp, bool base_files,
830 unsigned long subsys_mask);
831 static const struct inode_operations cgroup_dir_inode_operations;
832 static const struct file_operations proc_cgroupstats_operations;
833
834 static struct backing_dev_info cgroup_backing_dev_info = {
835 .name = "cgroup",
836 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
837 };
838
839 static int alloc_css_id(struct cgroup_subsys *ss,
840 struct cgroup *parent, struct cgroup *child);
841
842 static struct inode *cgroup_new_inode(umode_t mode, struct super_block *sb)
843 {
844 struct inode *inode = new_inode(sb);
845
846 if (inode) {
847 inode->i_ino = get_next_ino();
848 inode->i_mode = mode;
849 inode->i_uid = current_fsuid();
850 inode->i_gid = current_fsgid();
851 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
852 inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
853 }
854 return inode;
855 }
856
857 static void cgroup_diput(struct dentry *dentry, struct inode *inode)
858 {
859 /* is dentry a directory ? if so, kfree() associated cgroup */
860 if (S_ISDIR(inode->i_mode)) {
861 struct cgroup *cgrp = dentry->d_fsdata;
862 struct cgroup_subsys *ss;
863 BUG_ON(!(cgroup_is_removed(cgrp)));
864 /* It's possible for external users to be holding css
865 * reference counts on a cgroup; css_put() needs to
866 * be able to access the cgroup after decrementing
867 * the reference count in order to know if it needs to
868 * queue the cgroup to be handled by the release
869 * agent */
870 synchronize_rcu();
871
872 mutex_lock(&cgroup_mutex);
873 /*
874 * Release the subsystem state objects.
875 */
876 for_each_subsys(cgrp->root, ss)
877 ss->destroy(cgrp);
878
879 cgrp->root->number_of_cgroups--;
880 mutex_unlock(&cgroup_mutex);
881
882 /*
883 * Drop the active superblock reference that we took when we
884 * created the cgroup
885 */
886 deactivate_super(cgrp->root->sb);
887
888 /*
889 * if we're getting rid of the cgroup, refcount should ensure
890 * that there are no pidlists left.
891 */
892 BUG_ON(!list_empty(&cgrp->pidlists));
893
894 simple_xattrs_free(&cgrp->xattrs);
895
896 kfree_rcu(cgrp, rcu_head);
897 } else {
898 struct cfent *cfe = __d_cfe(dentry);
899 struct cgroup *cgrp = dentry->d_parent->d_fsdata;
900 struct cftype *cft = cfe->type;
901
902 WARN_ONCE(!list_empty(&cfe->node) &&
903 cgrp != &cgrp->root->top_cgroup,
904 "cfe still linked for %s\n", cfe->type->name);
905 kfree(cfe);
906 simple_xattrs_free(&cft->xattrs);
907 }
908 iput(inode);
909 }
910
911 static int cgroup_delete(const struct dentry *d)
912 {
913 return 1;
914 }
915
916 static void remove_dir(struct dentry *d)
917 {
918 struct dentry *parent = dget(d->d_parent);
919
920 d_delete(d);
921 simple_rmdir(parent->d_inode, d);
922 dput(parent);
923 }
924
925 static int cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
926 {
927 struct cfent *cfe;
928
929 lockdep_assert_held(&cgrp->dentry->d_inode->i_mutex);
930 lockdep_assert_held(&cgroup_mutex);
931
932 list_for_each_entry(cfe, &cgrp->files, node) {
933 struct dentry *d = cfe->dentry;
934
935 if (cft && cfe->type != cft)
936 continue;
937
938 dget(d);
939 d_delete(d);
940 simple_unlink(cgrp->dentry->d_inode, d);
941 list_del_init(&cfe->node);
942 dput(d);
943
944 return 0;
945 }
946 return -ENOENT;
947 }
948
949 /**
950 * cgroup_clear_directory - selective removal of base and subsystem files
951 * @dir: directory containing the files
952 * @base_files: true if the base files should be removed
953 * @subsys_mask: mask of the subsystem ids whose files should be removed
954 */
955 static void cgroup_clear_directory(struct dentry *dir, bool base_files,
956 unsigned long subsys_mask)
957 {
958 struct cgroup *cgrp = __d_cgrp(dir);
959 struct cgroup_subsys *ss;
960
961 for_each_subsys(cgrp->root, ss) {
962 struct cftype_set *set;
963 if (!test_bit(ss->subsys_id, &subsys_mask))
964 continue;
965 list_for_each_entry(set, &ss->cftsets, node)
966 cgroup_rm_file(cgrp, set->cfts);
967 }
968 if (base_files) {
969 while (!list_empty(&cgrp->files))
970 cgroup_rm_file(cgrp, NULL);
971 }
972 }
973
974 /*
975 * NOTE : the dentry must have been dget()'ed
976 */
977 static void cgroup_d_remove_dir(struct dentry *dentry)
978 {
979 struct dentry *parent;
980 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
981
982 cgroup_clear_directory(dentry, true, root->subsys_mask);
983
984 parent = dentry->d_parent;
985 spin_lock(&parent->d_lock);
986 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
987 list_del_init(&dentry->d_u.d_child);
988 spin_unlock(&dentry->d_lock);
989 spin_unlock(&parent->d_lock);
990 remove_dir(dentry);
991 }
992
993 /*
994 * Call with cgroup_mutex held. Drops reference counts on modules, including
995 * any duplicate ones that parse_cgroupfs_options took. If this function
996 * returns an error, no reference counts are touched.
997 */
998 static int rebind_subsystems(struct cgroupfs_root *root,
999 unsigned long final_subsys_mask)
1000 {
1001 unsigned long added_mask, removed_mask;
1002 struct cgroup *cgrp = &root->top_cgroup;
1003 int i;
1004
1005 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1006 BUG_ON(!mutex_is_locked(&cgroup_root_mutex));
1007
1008 removed_mask = root->actual_subsys_mask & ~final_subsys_mask;
1009 added_mask = final_subsys_mask & ~root->actual_subsys_mask;
1010 /* Check that any added subsystems are currently free */
1011 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1012 unsigned long bit = 1UL << i;
1013 struct cgroup_subsys *ss = subsys[i];
1014 if (!(bit & added_mask))
1015 continue;
1016 /*
1017 * Nobody should tell us to do a subsys that doesn't exist:
1018 * parse_cgroupfs_options should catch that case and refcounts
1019 * ensure that subsystems won't disappear once selected.
1020 */
1021 BUG_ON(ss == NULL);
1022 if (ss->root != &rootnode) {
1023 /* Subsystem isn't free */
1024 return -EBUSY;
1025 }
1026 }
1027
1028 /* Currently we don't handle adding/removing subsystems when
1029 * any child cgroups exist. This is theoretically supportable
1030 * but involves complex error handling, so it's being left until
1031 * later */
1032 if (root->number_of_cgroups > 1)
1033 return -EBUSY;
1034
1035 /* Process each subsystem */
1036 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1037 struct cgroup_subsys *ss = subsys[i];
1038 unsigned long bit = 1UL << i;
1039 if (bit & added_mask) {
1040 /* We're binding this subsystem to this hierarchy */
1041 BUG_ON(ss == NULL);
1042 BUG_ON(cgrp->subsys[i]);
1043 BUG_ON(!dummytop->subsys[i]);
1044 BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
1045 cgrp->subsys[i] = dummytop->subsys[i];
1046 cgrp->subsys[i]->cgroup = cgrp;
1047 list_move(&ss->sibling, &root->subsys_list);
1048 ss->root = root;
1049 if (ss->bind)
1050 ss->bind(cgrp);
1051 /* refcount was already taken, and we're keeping it */
1052 } else if (bit & removed_mask) {
1053 /* We're removing this subsystem */
1054 BUG_ON(ss == NULL);
1055 BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
1056 BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
1057 if (ss->bind)
1058 ss->bind(dummytop);
1059 dummytop->subsys[i]->cgroup = dummytop;
1060 cgrp->subsys[i] = NULL;
1061 subsys[i]->root = &rootnode;
1062 list_move(&ss->sibling, &rootnode.subsys_list);
1063 /* subsystem is now free - drop reference on module */
1064 module_put(ss->module);
1065 } else if (bit & final_subsys_mask) {
1066 /* Subsystem state should already exist */
1067 BUG_ON(ss == NULL);
1068 BUG_ON(!cgrp->subsys[i]);
1069 /*
1070 * a refcount was taken, but we already had one, so
1071 * drop the extra reference.
1072 */
1073 module_put(ss->module);
1074 #ifdef CONFIG_MODULE_UNLOAD
1075 BUG_ON(ss->module && !module_refcount(ss->module));
1076 #endif
1077 } else {
1078 /* Subsystem state shouldn't exist */
1079 BUG_ON(cgrp->subsys[i]);
1080 }
1081 }
1082 root->subsys_mask = root->actual_subsys_mask = final_subsys_mask;
1083 synchronize_rcu();
1084
1085 return 0;
1086 }
1087
1088 static int cgroup_show_options(struct seq_file *seq, struct dentry *dentry)
1089 {
1090 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
1091 struct cgroup_subsys *ss;
1092
1093 mutex_lock(&cgroup_root_mutex);
1094 for_each_subsys(root, ss)
1095 seq_printf(seq, ",%s", ss->name);
1096 if (test_bit(ROOT_NOPREFIX, &root->flags))
1097 seq_puts(seq, ",noprefix");
1098 if (test_bit(ROOT_XATTR, &root->flags))
1099 seq_puts(seq, ",xattr");
1100 if (strlen(root->release_agent_path))
1101 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
1102 if (clone_children(&root->top_cgroup))
1103 seq_puts(seq, ",clone_children");
1104 if (strlen(root->name))
1105 seq_printf(seq, ",name=%s", root->name);
1106 mutex_unlock(&cgroup_root_mutex);
1107 return 0;
1108 }
1109
1110 struct cgroup_sb_opts {
1111 unsigned long subsys_mask;
1112 unsigned long flags;
1113 char *release_agent;
1114 bool clone_children;
1115 char *name;
1116 /* User explicitly requested empty subsystem */
1117 bool none;
1118
1119 struct cgroupfs_root *new_root;
1120
1121 };
1122
1123 /*
1124 * Convert a hierarchy specifier into a bitmask of subsystems and flags. Call
1125 * with cgroup_mutex held to protect the subsys[] array. This function takes
1126 * refcounts on subsystems to be used, unless it returns error, in which case
1127 * no refcounts are taken.
1128 */
1129 static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
1130 {
1131 char *token, *o = data;
1132 bool all_ss = false, one_ss = false;
1133 unsigned long mask = (unsigned long)-1;
1134 int i;
1135 bool module_pin_failed = false;
1136
1137 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1138
1139 #ifdef CONFIG_CPUSETS
1140 mask = ~(1UL << cpuset_subsys_id);
1141 #endif
1142
1143 memset(opts, 0, sizeof(*opts));
1144
1145 while ((token = strsep(&o, ",")) != NULL) {
1146 if (!*token)
1147 return -EINVAL;
1148 if (!strcmp(token, "none")) {
1149 /* Explicitly have no subsystems */
1150 opts->none = true;
1151 continue;
1152 }
1153 if (!strcmp(token, "all")) {
1154 /* Mutually exclusive option 'all' + subsystem name */
1155 if (one_ss)
1156 return -EINVAL;
1157 all_ss = true;
1158 continue;
1159 }
1160 if (!strcmp(token, "noprefix")) {
1161 set_bit(ROOT_NOPREFIX, &opts->flags);
1162 continue;
1163 }
1164 if (!strcmp(token, "clone_children")) {
1165 opts->clone_children = true;
1166 continue;
1167 }
1168 if (!strcmp(token, "xattr")) {
1169 set_bit(ROOT_XATTR, &opts->flags);
1170 continue;
1171 }
1172 if (!strncmp(token, "release_agent=", 14)) {
1173 /* Specifying two release agents is forbidden */
1174 if (opts->release_agent)
1175 return -EINVAL;
1176 opts->release_agent =
1177 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
1178 if (!opts->release_agent)
1179 return -ENOMEM;
1180 continue;
1181 }
1182 if (!strncmp(token, "name=", 5)) {
1183 const char *name = token + 5;
1184 /* Can't specify an empty name */
1185 if (!strlen(name))
1186 return -EINVAL;
1187 /* Must match [\w.-]+ */
1188 for (i = 0; i < strlen(name); i++) {
1189 char c = name[i];
1190 if (isalnum(c))
1191 continue;
1192 if ((c == '.') || (c == '-') || (c == '_'))
1193 continue;
1194 return -EINVAL;
1195 }
1196 /* Specifying two names is forbidden */
1197 if (opts->name)
1198 return -EINVAL;
1199 opts->name = kstrndup(name,
1200 MAX_CGROUP_ROOT_NAMELEN - 1,
1201 GFP_KERNEL);
1202 if (!opts->name)
1203 return -ENOMEM;
1204
1205 continue;
1206 }
1207
1208 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1209 struct cgroup_subsys *ss = subsys[i];
1210 if (ss == NULL)
1211 continue;
1212 if (strcmp(token, ss->name))
1213 continue;
1214 if (ss->disabled)
1215 continue;
1216
1217 /* Mutually exclusive option 'all' + subsystem name */
1218 if (all_ss)
1219 return -EINVAL;
1220 set_bit(i, &opts->subsys_mask);
1221 one_ss = true;
1222
1223 break;
1224 }
1225 if (i == CGROUP_SUBSYS_COUNT)
1226 return -ENOENT;
1227 }
1228
1229 /*
1230 * If the 'all' option was specified select all the subsystems,
1231 * otherwise if 'none', 'name=' and a subsystem name options
1232 * were not specified, let's default to 'all'
1233 */
1234 if (all_ss || (!one_ss && !opts->none && !opts->name)) {
1235 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1236 struct cgroup_subsys *ss = subsys[i];
1237 if (ss == NULL)
1238 continue;
1239 if (ss->disabled)
1240 continue;
1241 set_bit(i, &opts->subsys_mask);
1242 }
1243 }
1244
1245 /* Consistency checks */
1246
1247 /*
1248 * Option noprefix was introduced just for backward compatibility
1249 * with the old cpuset, so we allow noprefix only if mounting just
1250 * the cpuset subsystem.
1251 */
1252 if (test_bit(ROOT_NOPREFIX, &opts->flags) &&
1253 (opts->subsys_mask & mask))
1254 return -EINVAL;
1255
1256
1257 /* Can't specify "none" and some subsystems */
1258 if (opts->subsys_mask && opts->none)
1259 return -EINVAL;
1260
1261 /*
1262 * We either have to specify by name or by subsystems. (So all
1263 * empty hierarchies must have a name).
1264 */
1265 if (!opts->subsys_mask && !opts->name)
1266 return -EINVAL;
1267
1268 /*
1269 * Grab references on all the modules we'll need, so the subsystems
1270 * don't dance around before rebind_subsystems attaches them. This may
1271 * take duplicate reference counts on a subsystem that's already used,
1272 * but rebind_subsystems handles this case.
1273 */
1274 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1275 unsigned long bit = 1UL << i;
1276
1277 if (!(bit & opts->subsys_mask))
1278 continue;
1279 if (!try_module_get(subsys[i]->module)) {
1280 module_pin_failed = true;
1281 break;
1282 }
1283 }
1284 if (module_pin_failed) {
1285 /*
1286 * oops, one of the modules was going away. this means that we
1287 * raced with a module_delete call, and to the user this is
1288 * essentially a "subsystem doesn't exist" case.
1289 */
1290 for (i--; i >= 0; i--) {
1291 /* drop refcounts only on the ones we took */
1292 unsigned long bit = 1UL << i;
1293
1294 if (!(bit & opts->subsys_mask))
1295 continue;
1296 module_put(subsys[i]->module);
1297 }
1298 return -ENOENT;
1299 }
1300
1301 return 0;
1302 }
1303
1304 static void drop_parsed_module_refcounts(unsigned long subsys_mask)
1305 {
1306 int i;
1307 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1308 unsigned long bit = 1UL << i;
1309
1310 if (!(bit & subsys_mask))
1311 continue;
1312 module_put(subsys[i]->module);
1313 }
1314 }
1315
1316 static int cgroup_remount(struct super_block *sb, int *flags, char *data)
1317 {
1318 int ret = 0;
1319 struct cgroupfs_root *root = sb->s_fs_info;
1320 struct cgroup *cgrp = &root->top_cgroup;
1321 struct cgroup_sb_opts opts;
1322 unsigned long added_mask, removed_mask;
1323
1324 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
1325 mutex_lock(&cgroup_mutex);
1326 mutex_lock(&cgroup_root_mutex);
1327
1328 /* See what subsystems are wanted */
1329 ret = parse_cgroupfs_options(data, &opts);
1330 if (ret)
1331 goto out_unlock;
1332
1333 /* See feature-removal-schedule.txt */
1334 if (opts.subsys_mask != root->actual_subsys_mask || opts.release_agent)
1335 pr_warning("cgroup: option changes via remount are deprecated (pid=%d comm=%s)\n",
1336 task_tgid_nr(current), current->comm);
1337
1338 added_mask = opts.subsys_mask & ~root->subsys_mask;
1339 removed_mask = root->subsys_mask & ~opts.subsys_mask;
1340
1341 /* Don't allow flags or name to change at remount */
1342 if (opts.flags != root->flags ||
1343 (opts.name && strcmp(opts.name, root->name))) {
1344 ret = -EINVAL;
1345 drop_parsed_module_refcounts(opts.subsys_mask);
1346 goto out_unlock;
1347 }
1348
1349 ret = rebind_subsystems(root, opts.subsys_mask);
1350 if (ret) {
1351 drop_parsed_module_refcounts(opts.subsys_mask);
1352 goto out_unlock;
1353 }
1354
1355 /* clear out any existing files and repopulate subsystem files */
1356 cgroup_clear_directory(cgrp->dentry, false, removed_mask);
1357 /* re-populate subsystem files */
1358 cgroup_populate_dir(cgrp, false, added_mask);
1359
1360 if (opts.release_agent)
1361 strcpy(root->release_agent_path, opts.release_agent);
1362 out_unlock:
1363 kfree(opts.release_agent);
1364 kfree(opts.name);
1365 mutex_unlock(&cgroup_root_mutex);
1366 mutex_unlock(&cgroup_mutex);
1367 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
1368 return ret;
1369 }
1370
1371 static const struct super_operations cgroup_ops = {
1372 .statfs = simple_statfs,
1373 .drop_inode = generic_delete_inode,
1374 .show_options = cgroup_show_options,
1375 .remount_fs = cgroup_remount,
1376 };
1377
1378 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1379 {
1380 INIT_LIST_HEAD(&cgrp->sibling);
1381 INIT_LIST_HEAD(&cgrp->children);
1382 INIT_LIST_HEAD(&cgrp->files);
1383 INIT_LIST_HEAD(&cgrp->css_sets);
1384 INIT_LIST_HEAD(&cgrp->release_list);
1385 INIT_LIST_HEAD(&cgrp->pidlists);
1386 mutex_init(&cgrp->pidlist_mutex);
1387 INIT_LIST_HEAD(&cgrp->event_list);
1388 spin_lock_init(&cgrp->event_list_lock);
1389 simple_xattrs_init(&cgrp->xattrs);
1390 }
1391
1392 static void init_cgroup_root(struct cgroupfs_root *root)
1393 {
1394 struct cgroup *cgrp = &root->top_cgroup;
1395
1396 INIT_LIST_HEAD(&root->subsys_list);
1397 INIT_LIST_HEAD(&root->root_list);
1398 INIT_LIST_HEAD(&root->allcg_list);
1399 root->number_of_cgroups = 1;
1400 cgrp->root = root;
1401 cgrp->top_cgroup = cgrp;
1402 list_add_tail(&cgrp->allcg_node, &root->allcg_list);
1403 init_cgroup_housekeeping(cgrp);
1404 }
1405
1406 static bool init_root_id(struct cgroupfs_root *root)
1407 {
1408 int ret = 0;
1409
1410 do {
1411 if (!ida_pre_get(&hierarchy_ida, GFP_KERNEL))
1412 return false;
1413 spin_lock(&hierarchy_id_lock);
1414 /* Try to allocate the next unused ID */
1415 ret = ida_get_new_above(&hierarchy_ida, next_hierarchy_id,
1416 &root->hierarchy_id);
1417 if (ret == -ENOSPC)
1418 /* Try again starting from 0 */
1419 ret = ida_get_new(&hierarchy_ida, &root->hierarchy_id);
1420 if (!ret) {
1421 next_hierarchy_id = root->hierarchy_id + 1;
1422 } else if (ret != -EAGAIN) {
1423 /* Can only get here if the 31-bit IDR is full ... */
1424 BUG_ON(ret);
1425 }
1426 spin_unlock(&hierarchy_id_lock);
1427 } while (ret);
1428 return true;
1429 }
1430
1431 static int cgroup_test_super(struct super_block *sb, void *data)
1432 {
1433 struct cgroup_sb_opts *opts = data;
1434 struct cgroupfs_root *root = sb->s_fs_info;
1435
1436 /* If we asked for a name then it must match */
1437 if (opts->name && strcmp(opts->name, root->name))
1438 return 0;
1439
1440 /*
1441 * If we asked for subsystems (or explicitly for no
1442 * subsystems) then they must match
1443 */
1444 if ((opts->subsys_mask || opts->none)
1445 && (opts->subsys_mask != root->subsys_mask))
1446 return 0;
1447
1448 return 1;
1449 }
1450
1451 static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
1452 {
1453 struct cgroupfs_root *root;
1454
1455 if (!opts->subsys_mask && !opts->none)
1456 return NULL;
1457
1458 root = kzalloc(sizeof(*root), GFP_KERNEL);
1459 if (!root)
1460 return ERR_PTR(-ENOMEM);
1461
1462 if (!init_root_id(root)) {
1463 kfree(root);
1464 return ERR_PTR(-ENOMEM);
1465 }
1466 init_cgroup_root(root);
1467
1468 root->subsys_mask = opts->subsys_mask;
1469 root->flags = opts->flags;
1470 if (opts->release_agent)
1471 strcpy(root->release_agent_path, opts->release_agent);
1472 if (opts->name)
1473 strcpy(root->name, opts->name);
1474 if (opts->clone_children)
1475 set_bit(CGRP_CLONE_CHILDREN, &root->top_cgroup.flags);
1476 return root;
1477 }
1478
1479 static void cgroup_drop_root(struct cgroupfs_root *root)
1480 {
1481 if (!root)
1482 return;
1483
1484 BUG_ON(!root->hierarchy_id);
1485 spin_lock(&hierarchy_id_lock);
1486 ida_remove(&hierarchy_ida, root->hierarchy_id);
1487 spin_unlock(&hierarchy_id_lock);
1488 kfree(root);
1489 }
1490
1491 static int cgroup_set_super(struct super_block *sb, void *data)
1492 {
1493 int ret;
1494 struct cgroup_sb_opts *opts = data;
1495
1496 /* If we don't have a new root, we can't set up a new sb */
1497 if (!opts->new_root)
1498 return -EINVAL;
1499
1500 BUG_ON(!opts->subsys_mask && !opts->none);
1501
1502 ret = set_anon_super(sb, NULL);
1503 if (ret)
1504 return ret;
1505
1506 sb->s_fs_info = opts->new_root;
1507 opts->new_root->sb = sb;
1508
1509 sb->s_blocksize = PAGE_CACHE_SIZE;
1510 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
1511 sb->s_magic = CGROUP_SUPER_MAGIC;
1512 sb->s_op = &cgroup_ops;
1513
1514 return 0;
1515 }
1516
1517 static int cgroup_get_rootdir(struct super_block *sb)
1518 {
1519 static const struct dentry_operations cgroup_dops = {
1520 .d_iput = cgroup_diput,
1521 .d_delete = cgroup_delete,
1522 };
1523
1524 struct inode *inode =
1525 cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
1526
1527 if (!inode)
1528 return -ENOMEM;
1529
1530 inode->i_fop = &simple_dir_operations;
1531 inode->i_op = &cgroup_dir_inode_operations;
1532 /* directories start off with i_nlink == 2 (for "." entry) */
1533 inc_nlink(inode);
1534 sb->s_root = d_make_root(inode);
1535 if (!sb->s_root)
1536 return -ENOMEM;
1537 /* for everything else we want ->d_op set */
1538 sb->s_d_op = &cgroup_dops;
1539 return 0;
1540 }
1541
1542 static struct dentry *cgroup_mount(struct file_system_type *fs_type,
1543 int flags, const char *unused_dev_name,
1544 void *data)
1545 {
1546 struct cgroup_sb_opts opts;
1547 struct cgroupfs_root *root;
1548 int ret = 0;
1549 struct super_block *sb;
1550 struct cgroupfs_root *new_root;
1551 struct inode *inode;
1552
1553 /* First find the desired set of subsystems */
1554 mutex_lock(&cgroup_mutex);
1555 ret = parse_cgroupfs_options(data, &opts);
1556 mutex_unlock(&cgroup_mutex);
1557 if (ret)
1558 goto out_err;
1559
1560 /*
1561 * Allocate a new cgroup root. We may not need it if we're
1562 * reusing an existing hierarchy.
1563 */
1564 new_root = cgroup_root_from_opts(&opts);
1565 if (IS_ERR(new_root)) {
1566 ret = PTR_ERR(new_root);
1567 goto drop_modules;
1568 }
1569 opts.new_root = new_root;
1570
1571 /* Locate an existing or new sb for this hierarchy */
1572 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, 0, &opts);
1573 if (IS_ERR(sb)) {
1574 ret = PTR_ERR(sb);
1575 cgroup_drop_root(opts.new_root);
1576 goto drop_modules;
1577 }
1578
1579 root = sb->s_fs_info;
1580 BUG_ON(!root);
1581 if (root == opts.new_root) {
1582 /* We used the new root structure, so this is a new hierarchy */
1583 struct list_head tmp_cg_links;
1584 struct cgroup *root_cgrp = &root->top_cgroup;
1585 struct cgroupfs_root *existing_root;
1586 const struct cred *cred;
1587 int i;
1588
1589 BUG_ON(sb->s_root != NULL);
1590
1591 ret = cgroup_get_rootdir(sb);
1592 if (ret)
1593 goto drop_new_super;
1594 inode = sb->s_root->d_inode;
1595
1596 mutex_lock(&inode->i_mutex);
1597 mutex_lock(&cgroup_mutex);
1598 mutex_lock(&cgroup_root_mutex);
1599
1600 /* Check for name clashes with existing mounts */
1601 ret = -EBUSY;
1602 if (strlen(root->name))
1603 for_each_active_root(existing_root)
1604 if (!strcmp(existing_root->name, root->name))
1605 goto unlock_drop;
1606
1607 /*
1608 * We're accessing css_set_count without locking
1609 * css_set_lock here, but that's OK - it can only be
1610 * increased by someone holding cgroup_lock, and
1611 * that's us. The worst that can happen is that we
1612 * have some link structures left over
1613 */
1614 ret = allocate_cg_links(css_set_count, &tmp_cg_links);
1615 if (ret)
1616 goto unlock_drop;
1617
1618 ret = rebind_subsystems(root, root->subsys_mask);
1619 if (ret == -EBUSY) {
1620 free_cg_links(&tmp_cg_links);
1621 goto unlock_drop;
1622 }
1623 /*
1624 * There must be no failure case after here, since rebinding
1625 * takes care of subsystems' refcounts, which are explicitly
1626 * dropped in the failure exit path.
1627 */
1628
1629 /* EBUSY should be the only error here */
1630 BUG_ON(ret);
1631
1632 list_add(&root->root_list, &roots);
1633 root_count++;
1634
1635 sb->s_root->d_fsdata = root_cgrp;
1636 root->top_cgroup.dentry = sb->s_root;
1637
1638 /* Link the top cgroup in this hierarchy into all
1639 * the css_set objects */
1640 write_lock(&css_set_lock);
1641 for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
1642 struct hlist_head *hhead = &css_set_table[i];
1643 struct hlist_node *node;
1644 struct css_set *cg;
1645
1646 hlist_for_each_entry(cg, node, hhead, hlist)
1647 link_css_set(&tmp_cg_links, cg, root_cgrp);
1648 }
1649 write_unlock(&css_set_lock);
1650
1651 free_cg_links(&tmp_cg_links);
1652
1653 BUG_ON(!list_empty(&root_cgrp->sibling));
1654 BUG_ON(!list_empty(&root_cgrp->children));
1655 BUG_ON(root->number_of_cgroups != 1);
1656
1657 cred = override_creds(&init_cred);
1658 cgroup_populate_dir(root_cgrp, true, root->subsys_mask);
1659 revert_creds(cred);
1660 mutex_unlock(&cgroup_root_mutex);
1661 mutex_unlock(&cgroup_mutex);
1662 mutex_unlock(&inode->i_mutex);
1663 } else {
1664 /*
1665 * We re-used an existing hierarchy - the new root (if
1666 * any) is not needed
1667 */
1668 cgroup_drop_root(opts.new_root);
1669 /* no subsys rebinding, so refcounts don't change */
1670 drop_parsed_module_refcounts(opts.subsys_mask);
1671 }
1672
1673 kfree(opts.release_agent);
1674 kfree(opts.name);
1675 return dget(sb->s_root);
1676
1677 unlock_drop:
1678 mutex_unlock(&cgroup_root_mutex);
1679 mutex_unlock(&cgroup_mutex);
1680 mutex_unlock(&inode->i_mutex);
1681 drop_new_super:
1682 deactivate_locked_super(sb);
1683 drop_modules:
1684 drop_parsed_module_refcounts(opts.subsys_mask);
1685 out_err:
1686 kfree(opts.release_agent);
1687 kfree(opts.name);
1688 return ERR_PTR(ret);
1689 }
1690
1691 static void cgroup_kill_sb(struct super_block *sb) {
1692 struct cgroupfs_root *root = sb->s_fs_info;
1693 struct cgroup *cgrp = &root->top_cgroup;
1694 int ret;
1695 struct cg_cgroup_link *link;
1696 struct cg_cgroup_link *saved_link;
1697
1698 BUG_ON(!root);
1699
1700 BUG_ON(root->number_of_cgroups != 1);
1701 BUG_ON(!list_empty(&cgrp->children));
1702 BUG_ON(!list_empty(&cgrp->sibling));
1703
1704 mutex_lock(&cgroup_mutex);
1705 mutex_lock(&cgroup_root_mutex);
1706
1707 /* Rebind all subsystems back to the default hierarchy */
1708 ret = rebind_subsystems(root, 0);
1709 /* Shouldn't be able to fail ... */
1710 BUG_ON(ret);
1711
1712 /*
1713 * Release all the links from css_sets to this hierarchy's
1714 * root cgroup
1715 */
1716 write_lock(&css_set_lock);
1717
1718 list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
1719 cgrp_link_list) {
1720 list_del(&link->cg_link_list);
1721 list_del(&link->cgrp_link_list);
1722 kfree(link);
1723 }
1724 write_unlock(&css_set_lock);
1725
1726 if (!list_empty(&root->root_list)) {
1727 list_del(&root->root_list);
1728 root_count--;
1729 }
1730
1731 mutex_unlock(&cgroup_root_mutex);
1732 mutex_unlock(&cgroup_mutex);
1733
1734 simple_xattrs_free(&cgrp->xattrs);
1735
1736 kill_litter_super(sb);
1737 cgroup_drop_root(root);
1738 }
1739
1740 static struct file_system_type cgroup_fs_type = {
1741 .name = "cgroup",
1742 .mount = cgroup_mount,
1743 .kill_sb = cgroup_kill_sb,
1744 };
1745
1746 static struct kobject *cgroup_kobj;
1747
1748 /**
1749 * cgroup_path - generate the path of a cgroup
1750 * @cgrp: the cgroup in question
1751 * @buf: the buffer to write the path into
1752 * @buflen: the length of the buffer
1753 *
1754 * Called with cgroup_mutex held or else with an RCU-protected cgroup
1755 * reference. Writes path of cgroup into buf. Returns 0 on success,
1756 * -errno on error.
1757 */
1758 int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1759 {
1760 char *start;
1761 struct dentry *dentry = rcu_dereference_check(cgrp->dentry,
1762 cgroup_lock_is_held());
1763
1764 if (!dentry || cgrp == dummytop) {
1765 /*
1766 * Inactive subsystems have no dentry for their root
1767 * cgroup
1768 */
1769 strcpy(buf, "/");
1770 return 0;
1771 }
1772
1773 start = buf + buflen - 1;
1774
1775 *start = '\0';
1776 for (;;) {
1777 int len = dentry->d_name.len;
1778
1779 if ((start -= len) < buf)
1780 return -ENAMETOOLONG;
1781 memcpy(start, dentry->d_name.name, len);
1782 cgrp = cgrp->parent;
1783 if (!cgrp)
1784 break;
1785
1786 dentry = rcu_dereference_check(cgrp->dentry,
1787 cgroup_lock_is_held());
1788 if (!cgrp->parent)
1789 continue;
1790 if (--start < buf)
1791 return -ENAMETOOLONG;
1792 *start = '/';
1793 }
1794 memmove(buf, start, buf + buflen - start);
1795 return 0;
1796 }
1797 EXPORT_SYMBOL_GPL(cgroup_path);
1798
1799 /*
1800 * Control Group taskset
1801 */
1802 struct task_and_cgroup {
1803 struct task_struct *task;
1804 struct cgroup *cgrp;
1805 struct css_set *cg;
1806 };
1807
1808 struct cgroup_taskset {
1809 struct task_and_cgroup single;
1810 struct flex_array *tc_array;
1811 int tc_array_len;
1812 int idx;
1813 struct cgroup *cur_cgrp;
1814 };
1815
1816 /**
1817 * cgroup_taskset_first - reset taskset and return the first task
1818 * @tset: taskset of interest
1819 *
1820 * @tset iteration is initialized and the first task is returned.
1821 */
1822 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
1823 {
1824 if (tset->tc_array) {
1825 tset->idx = 0;
1826 return cgroup_taskset_next(tset);
1827 } else {
1828 tset->cur_cgrp = tset->single.cgrp;
1829 return tset->single.task;
1830 }
1831 }
1832 EXPORT_SYMBOL_GPL(cgroup_taskset_first);
1833
1834 /**
1835 * cgroup_taskset_next - iterate to the next task in taskset
1836 * @tset: taskset of interest
1837 *
1838 * Return the next task in @tset. Iteration must have been initialized
1839 * with cgroup_taskset_first().
1840 */
1841 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
1842 {
1843 struct task_and_cgroup *tc;
1844
1845 if (!tset->tc_array || tset->idx >= tset->tc_array_len)
1846 return NULL;
1847
1848 tc = flex_array_get(tset->tc_array, tset->idx++);
1849 tset->cur_cgrp = tc->cgrp;
1850 return tc->task;
1851 }
1852 EXPORT_SYMBOL_GPL(cgroup_taskset_next);
1853
1854 /**
1855 * cgroup_taskset_cur_cgroup - return the matching cgroup for the current task
1856 * @tset: taskset of interest
1857 *
1858 * Return the cgroup for the current (last returned) task of @tset. This
1859 * function must be preceded by either cgroup_taskset_first() or
1860 * cgroup_taskset_next().
1861 */
1862 struct cgroup *cgroup_taskset_cur_cgroup(struct cgroup_taskset *tset)
1863 {
1864 return tset->cur_cgrp;
1865 }
1866 EXPORT_SYMBOL_GPL(cgroup_taskset_cur_cgroup);
1867
1868 /**
1869 * cgroup_taskset_size - return the number of tasks in taskset
1870 * @tset: taskset of interest
1871 */
1872 int cgroup_taskset_size(struct cgroup_taskset *tset)
1873 {
1874 return tset->tc_array ? tset->tc_array_len : 1;
1875 }
1876 EXPORT_SYMBOL_GPL(cgroup_taskset_size);
1877
1878
1879 /*
1880 * cgroup_task_migrate - move a task from one cgroup to another.
1881 *
1882 * 'guarantee' is set if the caller promises that a new css_set for the task
1883 * will already exist. If not set, this function might sleep, and can fail with
1884 * -ENOMEM. Must be called with cgroup_mutex and threadgroup locked.
1885 */
1886 static void cgroup_task_migrate(struct cgroup *cgrp, struct cgroup *oldcgrp,
1887 struct task_struct *tsk, struct css_set *newcg)
1888 {
1889 struct css_set *oldcg;
1890
1891 /*
1892 * We are synchronized through threadgroup_lock() against PF_EXITING
1893 * setting such that we can't race against cgroup_exit() changing the
1894 * css_set to init_css_set and dropping the old one.
1895 */
1896 WARN_ON_ONCE(tsk->flags & PF_EXITING);
1897 oldcg = tsk->cgroups;
1898
1899 task_lock(tsk);
1900 rcu_assign_pointer(tsk->cgroups, newcg);
1901 task_unlock(tsk);
1902
1903 /* Update the css_set linked lists if we're using them */
1904 write_lock(&css_set_lock);
1905 if (!list_empty(&tsk->cg_list))
1906 list_move(&tsk->cg_list, &newcg->tasks);
1907 write_unlock(&css_set_lock);
1908
1909 /*
1910 * We just gained a reference on oldcg by taking it from the task. As
1911 * trading it for newcg is protected by cgroup_mutex, we're safe to drop
1912 * it here; it will be freed under RCU.
1913 */
1914 set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
1915 put_css_set(oldcg);
1916 }
1917
1918 /**
1919 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
1920 * @cgrp: the cgroup the task is attaching to
1921 * @tsk: the task to be attached
1922 *
1923 * Call with cgroup_mutex and threadgroup locked. May take task_lock of
1924 * @tsk during call.
1925 */
1926 int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
1927 {
1928 int retval = 0;
1929 struct cgroup_subsys *ss, *failed_ss = NULL;
1930 struct cgroup *oldcgrp;
1931 struct cgroupfs_root *root = cgrp->root;
1932 struct cgroup_taskset tset = { };
1933 struct css_set *newcg;
1934
1935 /* @tsk either already exited or can't exit until the end */
1936 if (tsk->flags & PF_EXITING)
1937 return -ESRCH;
1938
1939 /* Nothing to do if the task is already in that cgroup */
1940 oldcgrp = task_cgroup_from_root(tsk, root);
1941 if (cgrp == oldcgrp)
1942 return 0;
1943
1944 tset.single.task = tsk;
1945 tset.single.cgrp = oldcgrp;
1946
1947 for_each_subsys(root, ss) {
1948 if (ss->can_attach) {
1949 retval = ss->can_attach(cgrp, &tset);
1950 if (retval) {
1951 /*
1952 * Remember on which subsystem the can_attach()
1953 * failed, so that we only call cancel_attach()
1954 * against the subsystems whose can_attach()
1955 * succeeded. (See below)
1956 */
1957 failed_ss = ss;
1958 goto out;
1959 }
1960 }
1961 }
1962
1963 newcg = find_css_set(tsk->cgroups, cgrp);
1964 if (!newcg) {
1965 retval = -ENOMEM;
1966 goto out;
1967 }
1968
1969 cgroup_task_migrate(cgrp, oldcgrp, tsk, newcg);
1970
1971 for_each_subsys(root, ss) {
1972 if (ss->attach)
1973 ss->attach(cgrp, &tset);
1974 }
1975
1976 synchronize_rcu();
1977 out:
1978 if (retval) {
1979 for_each_subsys(root, ss) {
1980 if (ss == failed_ss)
1981 /*
1982 * This subsystem was the one that failed the
1983 * can_attach() check earlier, so we don't need
1984 * to call cancel_attach() against it or any
1985 * remaining subsystems.
1986 */
1987 break;
1988 if (ss->cancel_attach)
1989 ss->cancel_attach(cgrp, &tset);
1990 }
1991 }
1992 return retval;
1993 }
1994
1995 /**
1996 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
1997 * @from: attach to all cgroups of a given task
1998 * @tsk: the task to be attached
1999 */
2000 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2001 {
2002 struct cgroupfs_root *root;
2003 int retval = 0;
2004
2005 cgroup_lock();
2006 for_each_active_root(root) {
2007 struct cgroup *from_cg = task_cgroup_from_root(from, root);
2008
2009 retval = cgroup_attach_task(from_cg, tsk);
2010 if (retval)
2011 break;
2012 }
2013 cgroup_unlock();
2014
2015 return retval;
2016 }
2017 EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2018
2019 /**
2020 * cgroup_attach_proc - attach all threads in a threadgroup to a cgroup
2021 * @cgrp: the cgroup to attach to
2022 * @leader: the threadgroup leader task_struct of the group to be attached
2023 *
2024 * Call holding cgroup_mutex and the group_rwsem of the leader. Will take
2025 * task_lock of each thread in leader's threadgroup individually in turn.
2026 */
2027 static int cgroup_attach_proc(struct cgroup *cgrp, struct task_struct *leader)
2028 {
2029 int retval, i, group_size;
2030 struct cgroup_subsys *ss, *failed_ss = NULL;
2031 /* guaranteed to be initialized later, but the compiler needs this */
2032 struct cgroupfs_root *root = cgrp->root;
2033 /* threadgroup list cursor and array */
2034 struct task_struct *tsk;
2035 struct task_and_cgroup *tc;
2036 struct flex_array *group;
2037 struct cgroup_taskset tset = { };
2038
2039 /*
2040 * step 0: in order to do expensive, possibly blocking operations for
2041 * every thread, we cannot iterate the thread group list, since it needs
2042 * rcu or tasklist locked. instead, build an array of all threads in the
2043 * group - group_rwsem prevents new threads from appearing, and if
2044 * threads exit, this will just be an over-estimate.
2045 */
2046 group_size = get_nr_threads(leader);
2047 /* flex_array supports very large thread-groups better than kmalloc. */
2048 group = flex_array_alloc(sizeof(*tc), group_size, GFP_KERNEL);
2049 if (!group)
2050 return -ENOMEM;
2051 /* pre-allocate to guarantee space while iterating in rcu read-side. */
2052 retval = flex_array_prealloc(group, 0, group_size - 1, GFP_KERNEL);
2053 if (retval)
2054 goto out_free_group_list;
2055
2056 tsk = leader;
2057 i = 0;
2058 /*
2059 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2060 * already PF_EXITING could be freed from underneath us unless we
2061 * take an rcu_read_lock.
2062 */
2063 rcu_read_lock();
2064 do {
2065 struct task_and_cgroup ent;
2066
2067 /* @tsk either already exited or can't exit until the end */
2068 if (tsk->flags & PF_EXITING)
2069 continue;
2070
2071 /* as per above, nr_threads may decrease, but not increase. */
2072 BUG_ON(i >= group_size);
2073 ent.task = tsk;
2074 ent.cgrp = task_cgroup_from_root(tsk, root);
2075 /* nothing to do if this task is already in the cgroup */
2076 if (ent.cgrp == cgrp)
2077 continue;
2078 /*
2079 * saying GFP_ATOMIC has no effect here because we did prealloc
2080 * earlier, but it's good form to communicate our expectations.
2081 */
2082 retval = flex_array_put(group, i, &ent, GFP_ATOMIC);
2083 BUG_ON(retval != 0);
2084 i++;
2085 } while_each_thread(leader, tsk);
2086 rcu_read_unlock();
2087 /* remember the number of threads in the array for later. */
2088 group_size = i;
2089 tset.tc_array = group;
2090 tset.tc_array_len = group_size;
2091
2092 /* methods shouldn't be called if no task is actually migrating */
2093 retval = 0;
2094 if (!group_size)
2095 goto out_free_group_list;
2096
2097 /*
2098 * step 1: check that we can legitimately attach to the cgroup.
2099 */
2100 for_each_subsys(root, ss) {
2101 if (ss->can_attach) {
2102 retval = ss->can_attach(cgrp, &tset);
2103 if (retval) {
2104 failed_ss = ss;
2105 goto out_cancel_attach;
2106 }
2107 }
2108 }
2109
2110 /*
2111 * step 2: make sure css_sets exist for all threads to be migrated.
2112 * we use find_css_set, which allocates a new one if necessary.
2113 */
2114 for (i = 0; i < group_size; i++) {
2115 tc = flex_array_get(group, i);
2116 tc->cg = find_css_set(tc->task->cgroups, cgrp);
2117 if (!tc->cg) {
2118 retval = -ENOMEM;
2119 goto out_put_css_set_refs;
2120 }
2121 }
2122
2123 /*
2124 * step 3: now that we're guaranteed success wrt the css_sets,
2125 * proceed to move all tasks to the new cgroup. There are no
2126 * failure cases after here, so this is the commit point.
2127 */
2128 for (i = 0; i < group_size; i++) {
2129 tc = flex_array_get(group, i);
2130 cgroup_task_migrate(cgrp, tc->cgrp, tc->task, tc->cg);
2131 }
2132 /* nothing is sensitive to fork() after this point. */
2133
2134 /*
2135 * step 4: do subsystem attach callbacks.
2136 */
2137 for_each_subsys(root, ss) {
2138 if (ss->attach)
2139 ss->attach(cgrp, &tset);
2140 }
2141
2142 /*
2143 * step 5: success! and cleanup
2144 */
2145 synchronize_rcu();
2146 retval = 0;
2147 out_put_css_set_refs:
2148 if (retval) {
2149 for (i = 0; i < group_size; i++) {
2150 tc = flex_array_get(group, i);
2151 if (!tc->cg)
2152 break;
2153 put_css_set(tc->cg);
2154 }
2155 }
2156 out_cancel_attach:
2157 if (retval) {
2158 for_each_subsys(root, ss) {
2159 if (ss == failed_ss)
2160 break;
2161 if (ss->cancel_attach)
2162 ss->cancel_attach(cgrp, &tset);
2163 }
2164 }
2165 out_free_group_list:
2166 flex_array_free(group);
2167 return retval;
2168 }
2169
2170 /*
2171 * Find the task_struct of the task to attach by vpid and pass it along to the
2172 * function to attach either it or all tasks in its threadgroup. Will lock
2173 * cgroup_mutex and threadgroup; may take task_lock of task.
2174 */
2175 static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
2176 {
2177 struct task_struct *tsk;
2178 const struct cred *cred = current_cred(), *tcred;
2179 int ret;
2180
2181 if (!cgroup_lock_live_group(cgrp))
2182 return -ENODEV;
2183
2184 retry_find_task:
2185 rcu_read_lock();
2186 if (pid) {
2187 tsk = find_task_by_vpid(pid);
2188 if (!tsk) {
2189 rcu_read_unlock();
2190 ret= -ESRCH;
2191 goto out_unlock_cgroup;
2192 }
2193 /*
2194 * even if we're attaching all tasks in the thread group, we
2195 * only need to check permissions on one of them.
2196 */
2197 tcred = __task_cred(tsk);
2198 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2199 !uid_eq(cred->euid, tcred->uid) &&
2200 !uid_eq(cred->euid, tcred->suid)) {
2201 rcu_read_unlock();
2202 ret = -EACCES;
2203 goto out_unlock_cgroup;
2204 }
2205 } else
2206 tsk = current;
2207
2208 if (threadgroup)
2209 tsk = tsk->group_leader;
2210
2211 /*
2212 * Workqueue threads may acquire PF_THREAD_BOUND and become
2213 * trapped in a cpuset, or RT worker may be born in a cgroup
2214 * with no rt_runtime allocated. Just say no.
2215 */
2216 if (tsk == kthreadd_task || (tsk->flags & PF_THREAD_BOUND)) {
2217 ret = -EINVAL;
2218 rcu_read_unlock();
2219 goto out_unlock_cgroup;
2220 }
2221
2222 get_task_struct(tsk);
2223 rcu_read_unlock();
2224
2225 threadgroup_lock(tsk);
2226 if (threadgroup) {
2227 if (!thread_group_leader(tsk)) {
2228 /*
2229 * a race with de_thread from another thread's exec()
2230 * may strip us of our leadership, if this happens,
2231 * there is no choice but to throw this task away and
2232 * try again; this is
2233 * "double-double-toil-and-trouble-check locking".
2234 */
2235 threadgroup_unlock(tsk);
2236 put_task_struct(tsk);
2237 goto retry_find_task;
2238 }
2239 ret = cgroup_attach_proc(cgrp, tsk);
2240 } else
2241 ret = cgroup_attach_task(cgrp, tsk);
2242 threadgroup_unlock(tsk);
2243
2244 put_task_struct(tsk);
2245 out_unlock_cgroup:
2246 cgroup_unlock();
2247 return ret;
2248 }
2249
2250 static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
2251 {
2252 return attach_task_by_pid(cgrp, pid, false);
2253 }
2254
2255 static int cgroup_procs_write(struct cgroup *cgrp, struct cftype *cft, u64 tgid)
2256 {
2257 return attach_task_by_pid(cgrp, tgid, true);
2258 }
2259
2260 /**
2261 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
2262 * @cgrp: the cgroup to be checked for liveness
2263 *
2264 * On success, returns true; the lock should be later released with
2265 * cgroup_unlock(). On failure returns false with no lock held.
2266 */
2267 bool cgroup_lock_live_group(struct cgroup *cgrp)
2268 {
2269 mutex_lock(&cgroup_mutex);
2270 if (cgroup_is_removed(cgrp)) {
2271 mutex_unlock(&cgroup_mutex);
2272 return false;
2273 }
2274 return true;
2275 }
2276 EXPORT_SYMBOL_GPL(cgroup_lock_live_group);
2277
2278 static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
2279 const char *buffer)
2280 {
2281 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
2282 if (strlen(buffer) >= PATH_MAX)
2283 return -EINVAL;
2284 if (!cgroup_lock_live_group(cgrp))
2285 return -ENODEV;
2286 mutex_lock(&cgroup_root_mutex);
2287 strcpy(cgrp->root->release_agent_path, buffer);
2288 mutex_unlock(&cgroup_root_mutex);
2289 cgroup_unlock();
2290 return 0;
2291 }
2292
2293 static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
2294 struct seq_file *seq)
2295 {
2296 if (!cgroup_lock_live_group(cgrp))
2297 return -ENODEV;
2298 seq_puts(seq, cgrp->root->release_agent_path);
2299 seq_putc(seq, '\n');
2300 cgroup_unlock();
2301 return 0;
2302 }
2303
2304 /* A buffer size big enough for numbers or short strings */
2305 #define CGROUP_LOCAL_BUFFER_SIZE 64
2306
2307 static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
2308 struct file *file,
2309 const char __user *userbuf,
2310 size_t nbytes, loff_t *unused_ppos)
2311 {
2312 char buffer[CGROUP_LOCAL_BUFFER_SIZE];
2313 int retval = 0;
2314 char *end;
2315
2316 if (!nbytes)
2317 return -EINVAL;
2318 if (nbytes >= sizeof(buffer))
2319 return -E2BIG;
2320 if (copy_from_user(buffer, userbuf, nbytes))
2321 return -EFAULT;
2322
2323 buffer[nbytes] = 0; /* nul-terminate */
2324 if (cft->write_u64) {
2325 u64 val = simple_strtoull(strstrip(buffer), &end, 0);
2326 if (*end)
2327 return -EINVAL;
2328 retval = cft->write_u64(cgrp, cft, val);
2329 } else {
2330 s64 val = simple_strtoll(strstrip(buffer), &end, 0);
2331 if (*end)
2332 return -EINVAL;
2333 retval = cft->write_s64(cgrp, cft, val);
2334 }
2335 if (!retval)
2336 retval = nbytes;
2337 return retval;
2338 }
2339
2340 static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
2341 struct file *file,
2342 const char __user *userbuf,
2343 size_t nbytes, loff_t *unused_ppos)
2344 {
2345 char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
2346 int retval = 0;
2347 size_t max_bytes = cft->max_write_len;
2348 char *buffer = local_buffer;
2349
2350 if (!max_bytes)
2351 max_bytes = sizeof(local_buffer) - 1;
2352 if (nbytes >= max_bytes)
2353 return -E2BIG;
2354 /* Allocate a dynamic buffer if we need one */
2355 if (nbytes >= sizeof(local_buffer)) {
2356 buffer = kmalloc(nbytes + 1, GFP_KERNEL);
2357 if (buffer == NULL)
2358 return -ENOMEM;
2359 }
2360 if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
2361 retval = -EFAULT;
2362 goto out;
2363 }
2364
2365 buffer[nbytes] = 0; /* nul-terminate */
2366 retval = cft->write_string(cgrp, cft, strstrip(buffer));
2367 if (!retval)
2368 retval = nbytes;
2369 out:
2370 if (buffer != local_buffer)
2371 kfree(buffer);
2372 return retval;
2373 }
2374
2375 static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
2376 size_t nbytes, loff_t *ppos)
2377 {
2378 struct cftype *cft = __d_cft(file->f_dentry);
2379 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2380
2381 if (cgroup_is_removed(cgrp))
2382 return -ENODEV;
2383 if (cft->write)
2384 return cft->write(cgrp, cft, file, buf, nbytes, ppos);
2385 if (cft->write_u64 || cft->write_s64)
2386 return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
2387 if (cft->write_string)
2388 return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
2389 if (cft->trigger) {
2390 int ret = cft->trigger(cgrp, (unsigned int)cft->private);
2391 return ret ? ret : nbytes;
2392 }
2393 return -EINVAL;
2394 }
2395
2396 static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
2397 struct file *file,
2398 char __user *buf, size_t nbytes,
2399 loff_t *ppos)
2400 {
2401 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2402 u64 val = cft->read_u64(cgrp, cft);
2403 int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
2404
2405 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2406 }
2407
2408 static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
2409 struct file *file,
2410 char __user *buf, size_t nbytes,
2411 loff_t *ppos)
2412 {
2413 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2414 s64 val = cft->read_s64(cgrp, cft);
2415 int len = sprintf(tmp, "%lld\n", (long long) val);
2416
2417 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2418 }
2419
2420 static ssize_t cgroup_file_read(struct file *file, char __user *buf,
2421 size_t nbytes, loff_t *ppos)
2422 {
2423 struct cftype *cft = __d_cft(file->f_dentry);
2424 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2425
2426 if (cgroup_is_removed(cgrp))
2427 return -ENODEV;
2428
2429 if (cft->read)
2430 return cft->read(cgrp, cft, file, buf, nbytes, ppos);
2431 if (cft->read_u64)
2432 return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
2433 if (cft->read_s64)
2434 return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
2435 return -EINVAL;
2436 }
2437
2438 /*
2439 * seqfile ops/methods for returning structured data. Currently just
2440 * supports string->u64 maps, but can be extended in future.
2441 */
2442
2443 struct cgroup_seqfile_state {
2444 struct cftype *cft;
2445 struct cgroup *cgroup;
2446 };
2447
2448 static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
2449 {
2450 struct seq_file *sf = cb->state;
2451 return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
2452 }
2453
2454 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
2455 {
2456 struct cgroup_seqfile_state *state = m->private;
2457 struct cftype *cft = state->cft;
2458 if (cft->read_map) {
2459 struct cgroup_map_cb cb = {
2460 .fill = cgroup_map_add,
2461 .state = m,
2462 };
2463 return cft->read_map(state->cgroup, cft, &cb);
2464 }
2465 return cft->read_seq_string(state->cgroup, cft, m);
2466 }
2467
2468 static int cgroup_seqfile_release(struct inode *inode, struct file *file)
2469 {
2470 struct seq_file *seq = file->private_data;
2471 kfree(seq->private);
2472 return single_release(inode, file);
2473 }
2474
2475 static const struct file_operations cgroup_seqfile_operations = {
2476 .read = seq_read,
2477 .write = cgroup_file_write,
2478 .llseek = seq_lseek,
2479 .release = cgroup_seqfile_release,
2480 };
2481
2482 static int cgroup_file_open(struct inode *inode, struct file *file)
2483 {
2484 int err;
2485 struct cftype *cft;
2486
2487 err = generic_file_open(inode, file);
2488 if (err)
2489 return err;
2490 cft = __d_cft(file->f_dentry);
2491
2492 if (cft->read_map || cft->read_seq_string) {
2493 struct cgroup_seqfile_state *state =
2494 kzalloc(sizeof(*state), GFP_USER);
2495 if (!state)
2496 return -ENOMEM;
2497 state->cft = cft;
2498 state->cgroup = __d_cgrp(file->f_dentry->d_parent);
2499 file->f_op = &cgroup_seqfile_operations;
2500 err = single_open(file, cgroup_seqfile_show, state);
2501 if (err < 0)
2502 kfree(state);
2503 } else if (cft->open)
2504 err = cft->open(inode, file);
2505 else
2506 err = 0;
2507
2508 return err;
2509 }
2510
2511 static int cgroup_file_release(struct inode *inode, struct file *file)
2512 {
2513 struct cftype *cft = __d_cft(file->f_dentry);
2514 if (cft->release)
2515 return cft->release(inode, file);
2516 return 0;
2517 }
2518
2519 /*
2520 * cgroup_rename - Only allow simple rename of directories in place.
2521 */
2522 static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
2523 struct inode *new_dir, struct dentry *new_dentry)
2524 {
2525 if (!S_ISDIR(old_dentry->d_inode->i_mode))
2526 return -ENOTDIR;
2527 if (new_dentry->d_inode)
2528 return -EEXIST;
2529 if (old_dir != new_dir)
2530 return -EIO;
2531 return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
2532 }
2533
2534 static struct simple_xattrs *__d_xattrs(struct dentry *dentry)
2535 {
2536 if (S_ISDIR(dentry->d_inode->i_mode))
2537 return &__d_cgrp(dentry)->xattrs;
2538 else
2539 return &__d_cft(dentry)->xattrs;
2540 }
2541
2542 static inline int xattr_enabled(struct dentry *dentry)
2543 {
2544 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
2545 return test_bit(ROOT_XATTR, &root->flags);
2546 }
2547
2548 static bool is_valid_xattr(const char *name)
2549 {
2550 if (!strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN) ||
2551 !strncmp(name, XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN))
2552 return true;
2553 return false;
2554 }
2555
2556 static int cgroup_setxattr(struct dentry *dentry, const char *name,
2557 const void *val, size_t size, int flags)
2558 {
2559 if (!xattr_enabled(dentry))
2560 return -EOPNOTSUPP;
2561 if (!is_valid_xattr(name))
2562 return -EINVAL;
2563 return simple_xattr_set(__d_xattrs(dentry), name, val, size, flags);
2564 }
2565
2566 static int cgroup_removexattr(struct dentry *dentry, const char *name)
2567 {
2568 if (!xattr_enabled(dentry))
2569 return -EOPNOTSUPP;
2570 if (!is_valid_xattr(name))
2571 return -EINVAL;
2572 return simple_xattr_remove(__d_xattrs(dentry), name);
2573 }
2574
2575 static ssize_t cgroup_getxattr(struct dentry *dentry, const char *name,
2576 void *buf, size_t size)
2577 {
2578 if (!xattr_enabled(dentry))
2579 return -EOPNOTSUPP;
2580 if (!is_valid_xattr(name))
2581 return -EINVAL;
2582 return simple_xattr_get(__d_xattrs(dentry), name, buf, size);
2583 }
2584
2585 static ssize_t cgroup_listxattr(struct dentry *dentry, char *buf, size_t size)
2586 {
2587 if (!xattr_enabled(dentry))
2588 return -EOPNOTSUPP;
2589 return simple_xattr_list(__d_xattrs(dentry), buf, size);
2590 }
2591
2592 static const struct file_operations cgroup_file_operations = {
2593 .read = cgroup_file_read,
2594 .write = cgroup_file_write,
2595 .llseek = generic_file_llseek,
2596 .open = cgroup_file_open,
2597 .release = cgroup_file_release,
2598 };
2599
2600 static const struct inode_operations cgroup_file_inode_operations = {
2601 .setxattr = cgroup_setxattr,
2602 .getxattr = cgroup_getxattr,
2603 .listxattr = cgroup_listxattr,
2604 .removexattr = cgroup_removexattr,
2605 };
2606
2607 static const struct inode_operations cgroup_dir_inode_operations = {
2608 .lookup = cgroup_lookup,
2609 .mkdir = cgroup_mkdir,
2610 .rmdir = cgroup_rmdir,
2611 .rename = cgroup_rename,
2612 .setxattr = cgroup_setxattr,
2613 .getxattr = cgroup_getxattr,
2614 .listxattr = cgroup_listxattr,
2615 .removexattr = cgroup_removexattr,
2616 };
2617
2618 static struct dentry *cgroup_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
2619 {
2620 if (dentry->d_name.len > NAME_MAX)
2621 return ERR_PTR(-ENAMETOOLONG);
2622 d_add(dentry, NULL);
2623 return NULL;
2624 }
2625
2626 /*
2627 * Check if a file is a control file
2628 */
2629 static inline struct cftype *__file_cft(struct file *file)
2630 {
2631 if (file->f_dentry->d_inode->i_fop != &cgroup_file_operations)
2632 return ERR_PTR(-EINVAL);
2633 return __d_cft(file->f_dentry);
2634 }
2635
2636 static int cgroup_create_file(struct dentry *dentry, umode_t mode,
2637 struct super_block *sb)
2638 {
2639 struct inode *inode;
2640
2641 if (!dentry)
2642 return -ENOENT;
2643 if (dentry->d_inode)
2644 return -EEXIST;
2645
2646 inode = cgroup_new_inode(mode, sb);
2647 if (!inode)
2648 return -ENOMEM;
2649
2650 if (S_ISDIR(mode)) {
2651 inode->i_op = &cgroup_dir_inode_operations;
2652 inode->i_fop = &simple_dir_operations;
2653
2654 /* start off with i_nlink == 2 (for "." entry) */
2655 inc_nlink(inode);
2656
2657 /* start with the directory inode held, so that we can
2658 * populate it without racing with another mkdir */
2659 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
2660 } else if (S_ISREG(mode)) {
2661 inode->i_size = 0;
2662 inode->i_fop = &cgroup_file_operations;
2663 inode->i_op = &cgroup_file_inode_operations;
2664 }
2665 d_instantiate(dentry, inode);
2666 dget(dentry); /* Extra count - pin the dentry in core */
2667 return 0;
2668 }
2669
2670 /*
2671 * cgroup_create_dir - create a directory for an object.
2672 * @cgrp: the cgroup we create the directory for. It must have a valid
2673 * ->parent field. And we are going to fill its ->dentry field.
2674 * @dentry: dentry of the new cgroup
2675 * @mode: mode to set on new directory.
2676 */
2677 static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
2678 umode_t mode)
2679 {
2680 struct dentry *parent;
2681 int error = 0;
2682
2683 parent = cgrp->parent->dentry;
2684 error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
2685 if (!error) {
2686 dentry->d_fsdata = cgrp;
2687 inc_nlink(parent->d_inode);
2688 rcu_assign_pointer(cgrp->dentry, dentry);
2689 dget(dentry);
2690 }
2691 dput(dentry);
2692
2693 return error;
2694 }
2695
2696 /**
2697 * cgroup_file_mode - deduce file mode of a control file
2698 * @cft: the control file in question
2699 *
2700 * returns cft->mode if ->mode is not 0
2701 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
2702 * returns S_IRUGO if it has only a read handler
2703 * returns S_IWUSR if it has only a write hander
2704 */
2705 static umode_t cgroup_file_mode(const struct cftype *cft)
2706 {
2707 umode_t mode = 0;
2708
2709 if (cft->mode)
2710 return cft->mode;
2711
2712 if (cft->read || cft->read_u64 || cft->read_s64 ||
2713 cft->read_map || cft->read_seq_string)
2714 mode |= S_IRUGO;
2715
2716 if (cft->write || cft->write_u64 || cft->write_s64 ||
2717 cft->write_string || cft->trigger)
2718 mode |= S_IWUSR;
2719
2720 return mode;
2721 }
2722
2723 static int cgroup_add_file(struct cgroup *cgrp, struct cgroup_subsys *subsys,
2724 struct cftype *cft)
2725 {
2726 struct dentry *dir = cgrp->dentry;
2727 struct cgroup *parent = __d_cgrp(dir);
2728 struct dentry *dentry;
2729 struct cfent *cfe;
2730 int error;
2731 umode_t mode;
2732 char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
2733
2734 simple_xattrs_init(&cft->xattrs);
2735
2736 /* does @cft->flags tell us to skip creation on @cgrp? */
2737 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgrp->parent)
2738 return 0;
2739 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgrp->parent)
2740 return 0;
2741
2742 if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
2743 strcpy(name, subsys->name);
2744 strcat(name, ".");
2745 }
2746 strcat(name, cft->name);
2747
2748 BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
2749
2750 cfe = kzalloc(sizeof(*cfe), GFP_KERNEL);
2751 if (!cfe)
2752 return -ENOMEM;
2753
2754 dentry = lookup_one_len(name, dir, strlen(name));
2755 if (IS_ERR(dentry)) {
2756 error = PTR_ERR(dentry);
2757 goto out;
2758 }
2759
2760 mode = cgroup_file_mode(cft);
2761 error = cgroup_create_file(dentry, mode | S_IFREG, cgrp->root->sb);
2762 if (!error) {
2763 cfe->type = (void *)cft;
2764 cfe->dentry = dentry;
2765 dentry->d_fsdata = cfe;
2766 list_add_tail(&cfe->node, &parent->files);
2767 cfe = NULL;
2768 }
2769 dput(dentry);
2770 out:
2771 kfree(cfe);
2772 return error;
2773 }
2774
2775 static int cgroup_addrm_files(struct cgroup *cgrp, struct cgroup_subsys *subsys,
2776 struct cftype cfts[], bool is_add)
2777 {
2778 struct cftype *cft;
2779 int err, ret = 0;
2780
2781 for (cft = cfts; cft->name[0] != '\0'; cft++) {
2782 if (is_add)
2783 err = cgroup_add_file(cgrp, subsys, cft);
2784 else
2785 err = cgroup_rm_file(cgrp, cft);
2786 if (err) {
2787 pr_warning("cgroup_addrm_files: failed to %s %s, err=%d\n",
2788 is_add ? "add" : "remove", cft->name, err);
2789 ret = err;
2790 }
2791 }
2792 return ret;
2793 }
2794
2795 static DEFINE_MUTEX(cgroup_cft_mutex);
2796
2797 static void cgroup_cfts_prepare(void)
2798 __acquires(&cgroup_cft_mutex) __acquires(&cgroup_mutex)
2799 {
2800 /*
2801 * Thanks to the entanglement with vfs inode locking, we can't walk
2802 * the existing cgroups under cgroup_mutex and create files.
2803 * Instead, we increment reference on all cgroups and build list of
2804 * them using @cgrp->cft_q_node. Grab cgroup_cft_mutex to ensure
2805 * exclusive access to the field.
2806 */
2807 mutex_lock(&cgroup_cft_mutex);
2808 mutex_lock(&cgroup_mutex);
2809 }
2810
2811 static void cgroup_cfts_commit(struct cgroup_subsys *ss,
2812 struct cftype *cfts, bool is_add)
2813 __releases(&cgroup_mutex) __releases(&cgroup_cft_mutex)
2814 {
2815 LIST_HEAD(pending);
2816 struct cgroup *cgrp, *n;
2817
2818 /* %NULL @cfts indicates abort and don't bother if @ss isn't attached */
2819 if (cfts && ss->root != &rootnode) {
2820 list_for_each_entry(cgrp, &ss->root->allcg_list, allcg_node) {
2821 dget(cgrp->dentry);
2822 list_add_tail(&cgrp->cft_q_node, &pending);
2823 }
2824 }
2825
2826 mutex_unlock(&cgroup_mutex);
2827
2828 /*
2829 * All new cgroups will see @cfts update on @ss->cftsets. Add/rm
2830 * files for all cgroups which were created before.
2831 */
2832 list_for_each_entry_safe(cgrp, n, &pending, cft_q_node) {
2833 struct inode *inode = cgrp->dentry->d_inode;
2834
2835 mutex_lock(&inode->i_mutex);
2836 mutex_lock(&cgroup_mutex);
2837 if (!cgroup_is_removed(cgrp))
2838 cgroup_addrm_files(cgrp, ss, cfts, is_add);
2839 mutex_unlock(&cgroup_mutex);
2840 mutex_unlock(&inode->i_mutex);
2841
2842 list_del_init(&cgrp->cft_q_node);
2843 dput(cgrp->dentry);
2844 }
2845
2846 mutex_unlock(&cgroup_cft_mutex);
2847 }
2848
2849 /**
2850 * cgroup_add_cftypes - add an array of cftypes to a subsystem
2851 * @ss: target cgroup subsystem
2852 * @cfts: zero-length name terminated array of cftypes
2853 *
2854 * Register @cfts to @ss. Files described by @cfts are created for all
2855 * existing cgroups to which @ss is attached and all future cgroups will
2856 * have them too. This function can be called anytime whether @ss is
2857 * attached or not.
2858 *
2859 * Returns 0 on successful registration, -errno on failure. Note that this
2860 * function currently returns 0 as long as @cfts registration is successful
2861 * even if some file creation attempts on existing cgroups fail.
2862 */
2863 int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2864 {
2865 struct cftype_set *set;
2866
2867 set = kzalloc(sizeof(*set), GFP_KERNEL);
2868 if (!set)
2869 return -ENOMEM;
2870
2871 cgroup_cfts_prepare();
2872 set->cfts = cfts;
2873 list_add_tail(&set->node, &ss->cftsets);
2874 cgroup_cfts_commit(ss, cfts, true);
2875
2876 return 0;
2877 }
2878 EXPORT_SYMBOL_GPL(cgroup_add_cftypes);
2879
2880 /**
2881 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
2882 * @ss: target cgroup subsystem
2883 * @cfts: zero-length name terminated array of cftypes
2884 *
2885 * Unregister @cfts from @ss. Files described by @cfts are removed from
2886 * all existing cgroups to which @ss is attached and all future cgroups
2887 * won't have them either. This function can be called anytime whether @ss
2888 * is attached or not.
2889 *
2890 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2891 * registered with @ss.
2892 */
2893 int cgroup_rm_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2894 {
2895 struct cftype_set *set;
2896
2897 cgroup_cfts_prepare();
2898
2899 list_for_each_entry(set, &ss->cftsets, node) {
2900 if (set->cfts == cfts) {
2901 list_del_init(&set->node);
2902 cgroup_cfts_commit(ss, cfts, false);
2903 return 0;
2904 }
2905 }
2906
2907 cgroup_cfts_commit(ss, NULL, false);
2908 return -ENOENT;
2909 }
2910
2911 /**
2912 * cgroup_task_count - count the number of tasks in a cgroup.
2913 * @cgrp: the cgroup in question
2914 *
2915 * Return the number of tasks in the cgroup.
2916 */
2917 int cgroup_task_count(const struct cgroup *cgrp)
2918 {
2919 int count = 0;
2920 struct cg_cgroup_link *link;
2921
2922 read_lock(&css_set_lock);
2923 list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
2924 count += atomic_read(&link->cg->refcount);
2925 }
2926 read_unlock(&css_set_lock);
2927 return count;
2928 }
2929
2930 /*
2931 * Advance a list_head iterator. The iterator should be positioned at
2932 * the start of a css_set
2933 */
2934 static void cgroup_advance_iter(struct cgroup *cgrp,
2935 struct cgroup_iter *it)
2936 {
2937 struct list_head *l = it->cg_link;
2938 struct cg_cgroup_link *link;
2939 struct css_set *cg;
2940
2941 /* Advance to the next non-empty css_set */
2942 do {
2943 l = l->next;
2944 if (l == &cgrp->css_sets) {
2945 it->cg_link = NULL;
2946 return;
2947 }
2948 link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
2949 cg = link->cg;
2950 } while (list_empty(&cg->tasks));
2951 it->cg_link = l;
2952 it->task = cg->tasks.next;
2953 }
2954
2955 /*
2956 * To reduce the fork() overhead for systems that are not actually
2957 * using their cgroups capability, we don't maintain the lists running
2958 * through each css_set to its tasks until we see the list actually
2959 * used - in other words after the first call to cgroup_iter_start().
2960 */
2961 static void cgroup_enable_task_cg_lists(void)
2962 {
2963 struct task_struct *p, *g;
2964 write_lock(&css_set_lock);
2965 use_task_css_set_links = 1;
2966 /*
2967 * We need tasklist_lock because RCU is not safe against
2968 * while_each_thread(). Besides, a forking task that has passed
2969 * cgroup_post_fork() without seeing use_task_css_set_links = 1
2970 * is not guaranteed to have its child immediately visible in the
2971 * tasklist if we walk through it with RCU.
2972 */
2973 read_lock(&tasklist_lock);
2974 do_each_thread(g, p) {
2975 task_lock(p);
2976 /*
2977 * We should check if the process is exiting, otherwise
2978 * it will race with cgroup_exit() in that the list
2979 * entry won't be deleted though the process has exited.
2980 */
2981 if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
2982 list_add(&p->cg_list, &p->cgroups->tasks);
2983 task_unlock(p);
2984 } while_each_thread(g, p);
2985 read_unlock(&tasklist_lock);
2986 write_unlock(&css_set_lock);
2987 }
2988
2989 void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
2990 __acquires(css_set_lock)
2991 {
2992 /*
2993 * The first time anyone tries to iterate across a cgroup,
2994 * we need to enable the list linking each css_set to its
2995 * tasks, and fix up all existing tasks.
2996 */
2997 if (!use_task_css_set_links)
2998 cgroup_enable_task_cg_lists();
2999
3000 read_lock(&css_set_lock);
3001 it->cg_link = &cgrp->css_sets;
3002 cgroup_advance_iter(cgrp, it);
3003 }
3004
3005 struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
3006 struct cgroup_iter *it)
3007 {
3008 struct task_struct *res;
3009 struct list_head *l = it->task;
3010 struct cg_cgroup_link *link;
3011
3012 /* If the iterator cg is NULL, we have no tasks */
3013 if (!it->cg_link)
3014 return NULL;
3015 res = list_entry(l, struct task_struct, cg_list);
3016 /* Advance iterator to find next entry */
3017 l = l->next;
3018 link = list_entry(it->cg_link, struct cg_cgroup_link, cgrp_link_list);
3019 if (l == &link->cg->tasks) {
3020 /* We reached the end of this task list - move on to
3021 * the next cg_cgroup_link */
3022 cgroup_advance_iter(cgrp, it);
3023 } else {
3024 it->task = l;
3025 }
3026 return res;
3027 }
3028
3029 void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
3030 __releases(css_set_lock)
3031 {
3032 read_unlock(&css_set_lock);
3033 }
3034
3035 static inline int started_after_time(struct task_struct *t1,
3036 struct timespec *time,
3037 struct task_struct *t2)
3038 {
3039 int start_diff = timespec_compare(&t1->start_time, time);
3040 if (start_diff > 0) {
3041 return 1;
3042 } else if (start_diff < 0) {
3043 return 0;
3044 } else {
3045 /*
3046 * Arbitrarily, if two processes started at the same
3047 * time, we'll say that the lower pointer value
3048 * started first. Note that t2 may have exited by now
3049 * so this may not be a valid pointer any longer, but
3050 * that's fine - it still serves to distinguish
3051 * between two tasks started (effectively) simultaneously.
3052 */
3053 return t1 > t2;
3054 }
3055 }
3056
3057 /*
3058 * This function is a callback from heap_insert() and is used to order
3059 * the heap.
3060 * In this case we order the heap in descending task start time.
3061 */
3062 static inline int started_after(void *p1, void *p2)
3063 {
3064 struct task_struct *t1 = p1;
3065 struct task_struct *t2 = p2;
3066 return started_after_time(t1, &t2->start_time, t2);
3067 }
3068
3069 /**
3070 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
3071 * @scan: struct cgroup_scanner containing arguments for the scan
3072 *
3073 * Arguments include pointers to callback functions test_task() and
3074 * process_task().
3075 * Iterate through all the tasks in a cgroup, calling test_task() for each,
3076 * and if it returns true, call process_task() for it also.
3077 * The test_task pointer may be NULL, meaning always true (select all tasks).
3078 * Effectively duplicates cgroup_iter_{start,next,end}()
3079 * but does not lock css_set_lock for the call to process_task().
3080 * The struct cgroup_scanner may be embedded in any structure of the caller's
3081 * creation.
3082 * It is guaranteed that process_task() will act on every task that
3083 * is a member of the cgroup for the duration of this call. This
3084 * function may or may not call process_task() for tasks that exit
3085 * or move to a different cgroup during the call, or are forked or
3086 * move into the cgroup during the call.
3087 *
3088 * Note that test_task() may be called with locks held, and may in some
3089 * situations be called multiple times for the same task, so it should
3090 * be cheap.
3091 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
3092 * pre-allocated and will be used for heap operations (and its "gt" member will
3093 * be overwritten), else a temporary heap will be used (allocation of which
3094 * may cause this function to fail).
3095 */
3096 int cgroup_scan_tasks(struct cgroup_scanner *scan)
3097 {
3098 int retval, i;
3099 struct cgroup_iter it;
3100 struct task_struct *p, *dropped;
3101 /* Never dereference latest_task, since it's not refcounted */
3102 struct task_struct *latest_task = NULL;
3103 struct ptr_heap tmp_heap;
3104 struct ptr_heap *heap;
3105 struct timespec latest_time = { 0, 0 };
3106
3107 if (scan->heap) {
3108 /* The caller supplied our heap and pre-allocated its memory */
3109 heap = scan->heap;
3110 heap->gt = &started_after;
3111 } else {
3112 /* We need to allocate our own heap memory */
3113 heap = &tmp_heap;
3114 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
3115 if (retval)
3116 /* cannot allocate the heap */
3117 return retval;
3118 }
3119
3120 again:
3121 /*
3122 * Scan tasks in the cgroup, using the scanner's "test_task" callback
3123 * to determine which are of interest, and using the scanner's
3124 * "process_task" callback to process any of them that need an update.
3125 * Since we don't want to hold any locks during the task updates,
3126 * gather tasks to be processed in a heap structure.
3127 * The heap is sorted by descending task start time.
3128 * If the statically-sized heap fills up, we overflow tasks that
3129 * started later, and in future iterations only consider tasks that
3130 * started after the latest task in the previous pass. This
3131 * guarantees forward progress and that we don't miss any tasks.
3132 */
3133 heap->size = 0;
3134 cgroup_iter_start(scan->cg, &it);
3135 while ((p = cgroup_iter_next(scan->cg, &it))) {
3136 /*
3137 * Only affect tasks that qualify per the caller's callback,
3138 * if he provided one
3139 */
3140 if (scan->test_task && !scan->test_task(p, scan))
3141 continue;
3142 /*
3143 * Only process tasks that started after the last task
3144 * we processed
3145 */
3146 if (!started_after_time(p, &latest_time, latest_task))
3147 continue;
3148 dropped = heap_insert(heap, p);
3149 if (dropped == NULL) {
3150 /*
3151 * The new task was inserted; the heap wasn't
3152 * previously full
3153 */
3154 get_task_struct(p);
3155 } else if (dropped != p) {
3156 /*
3157 * The new task was inserted, and pushed out a
3158 * different task
3159 */
3160 get_task_struct(p);
3161 put_task_struct(dropped);
3162 }
3163 /*
3164 * Else the new task was newer than anything already in
3165 * the heap and wasn't inserted
3166 */
3167 }
3168 cgroup_iter_end(scan->cg, &it);
3169
3170 if (heap->size) {
3171 for (i = 0; i < heap->size; i++) {
3172 struct task_struct *q = heap->ptrs[i];
3173 if (i == 0) {
3174 latest_time = q->start_time;
3175 latest_task = q;
3176 }
3177 /* Process the task per the caller's callback */
3178 scan->process_task(q, scan);
3179 put_task_struct(q);
3180 }
3181 /*
3182 * If we had to process any tasks at all, scan again
3183 * in case some of them were in the middle of forking
3184 * children that didn't get processed.
3185 * Not the most efficient way to do it, but it avoids
3186 * having to take callback_mutex in the fork path
3187 */
3188 goto again;
3189 }
3190 if (heap == &tmp_heap)
3191 heap_free(&tmp_heap);
3192 return 0;
3193 }
3194
3195 /*
3196 * Stuff for reading the 'tasks'/'procs' files.
3197 *
3198 * Reading this file can return large amounts of data if a cgroup has
3199 * *lots* of attached tasks. So it may need several calls to read(),
3200 * but we cannot guarantee that the information we produce is correct
3201 * unless we produce it entirely atomically.
3202 *
3203 */
3204
3205 /* which pidlist file are we talking about? */
3206 enum cgroup_filetype {
3207 CGROUP_FILE_PROCS,
3208 CGROUP_FILE_TASKS,
3209 };
3210
3211 /*
3212 * A pidlist is a list of pids that virtually represents the contents of one
3213 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
3214 * a pair (one each for procs, tasks) for each pid namespace that's relevant
3215 * to the cgroup.
3216 */
3217 struct cgroup_pidlist {
3218 /*
3219 * used to find which pidlist is wanted. doesn't change as long as
3220 * this particular list stays in the list.
3221 */
3222 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
3223 /* array of xids */
3224 pid_t *list;
3225 /* how many elements the above list has */
3226 int length;
3227 /* how many files are using the current array */
3228 int use_count;
3229 /* each of these stored in a list by its cgroup */
3230 struct list_head links;
3231 /* pointer to the cgroup we belong to, for list removal purposes */
3232 struct cgroup *owner;
3233 /* protects the other fields */
3234 struct rw_semaphore mutex;
3235 };
3236
3237 /*
3238 * The following two functions "fix" the issue where there are more pids
3239 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3240 * TODO: replace with a kernel-wide solution to this problem
3241 */
3242 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
3243 static void *pidlist_allocate(int count)
3244 {
3245 if (PIDLIST_TOO_LARGE(count))
3246 return vmalloc(count * sizeof(pid_t));
3247 else
3248 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
3249 }
3250 static void pidlist_free(void *p)
3251 {
3252 if (is_vmalloc_addr(p))
3253 vfree(p);
3254 else
3255 kfree(p);
3256 }
3257 static void *pidlist_resize(void *p, int newcount)
3258 {
3259 void *newlist;
3260 /* note: if new alloc fails, old p will still be valid either way */
3261 if (is_vmalloc_addr(p)) {
3262 newlist = vmalloc(newcount * sizeof(pid_t));
3263 if (!newlist)
3264 return NULL;
3265 memcpy(newlist, p, newcount * sizeof(pid_t));
3266 vfree(p);
3267 } else {
3268 newlist = krealloc(p, newcount * sizeof(pid_t), GFP_KERNEL);
3269 }
3270 return newlist;
3271 }
3272
3273 /*
3274 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
3275 * If the new stripped list is sufficiently smaller and there's enough memory
3276 * to allocate a new buffer, will let go of the unneeded memory. Returns the
3277 * number of unique elements.
3278 */
3279 /* is the size difference enough that we should re-allocate the array? */
3280 #define PIDLIST_REALLOC_DIFFERENCE(old, new) ((old) - PAGE_SIZE >= (new))
3281 static int pidlist_uniq(pid_t **p, int length)
3282 {
3283 int src, dest = 1;
3284 pid_t *list = *p;
3285 pid_t *newlist;
3286
3287 /*
3288 * we presume the 0th element is unique, so i starts at 1. trivial
3289 * edge cases first; no work needs to be done for either
3290 */
3291 if (length == 0 || length == 1)
3292 return length;
3293 /* src and dest walk down the list; dest counts unique elements */
3294 for (src = 1; src < length; src++) {
3295 /* find next unique element */
3296 while (list[src] == list[src-1]) {
3297 src++;
3298 if (src == length)
3299 goto after;
3300 }
3301 /* dest always points to where the next unique element goes */
3302 list[dest] = list[src];
3303 dest++;
3304 }
3305 after:
3306 /*
3307 * if the length difference is large enough, we want to allocate a
3308 * smaller buffer to save memory. if this fails due to out of memory,
3309 * we'll just stay with what we've got.
3310 */
3311 if (PIDLIST_REALLOC_DIFFERENCE(length, dest)) {
3312 newlist = pidlist_resize(list, dest);
3313 if (newlist)
3314 *p = newlist;
3315 }
3316 return dest;
3317 }
3318
3319 static int cmppid(const void *a, const void *b)
3320 {
3321 return *(pid_t *)a - *(pid_t *)b;
3322 }
3323
3324 /*
3325 * find the appropriate pidlist for our purpose (given procs vs tasks)
3326 * returns with the lock on that pidlist already held, and takes care
3327 * of the use count, or returns NULL with no locks held if we're out of
3328 * memory.
3329 */
3330 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3331 enum cgroup_filetype type)
3332 {
3333 struct cgroup_pidlist *l;
3334 /* don't need task_nsproxy() if we're looking at ourself */
3335 struct pid_namespace *ns = current->nsproxy->pid_ns;
3336
3337 /*
3338 * We can't drop the pidlist_mutex before taking the l->mutex in case
3339 * the last ref-holder is trying to remove l from the list at the same
3340 * time. Holding the pidlist_mutex precludes somebody taking whichever
3341 * list we find out from under us - compare release_pid_array().
3342 */
3343 mutex_lock(&cgrp->pidlist_mutex);
3344 list_for_each_entry(l, &cgrp->pidlists, links) {
3345 if (l->key.type == type && l->key.ns == ns) {
3346 /* make sure l doesn't vanish out from under us */
3347 down_write(&l->mutex);
3348 mutex_unlock(&cgrp->pidlist_mutex);
3349 return l;
3350 }
3351 }
3352 /* entry not found; create a new one */
3353 l = kmalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
3354 if (!l) {
3355 mutex_unlock(&cgrp->pidlist_mutex);
3356 return l;
3357 }
3358 init_rwsem(&l->mutex);
3359 down_write(&l->mutex);
3360 l->key.type = type;
3361 l->key.ns = get_pid_ns(ns);
3362 l->use_count = 0; /* don't increment here */
3363 l->list = NULL;
3364 l->owner = cgrp;
3365 list_add(&l->links, &cgrp->pidlists);
3366 mutex_unlock(&cgrp->pidlist_mutex);
3367 return l;
3368 }
3369
3370 /*
3371 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3372 */
3373 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3374 struct cgroup_pidlist **lp)
3375 {
3376 pid_t *array;
3377 int length;
3378 int pid, n = 0; /* used for populating the array */
3379 struct cgroup_iter it;
3380 struct task_struct *tsk;
3381 struct cgroup_pidlist *l;
3382
3383 /*
3384 * If cgroup gets more users after we read count, we won't have
3385 * enough space - tough. This race is indistinguishable to the
3386 * caller from the case that the additional cgroup users didn't
3387 * show up until sometime later on.
3388 */
3389 length = cgroup_task_count(cgrp);
3390 array = pidlist_allocate(length);
3391 if (!array)
3392 return -ENOMEM;
3393 /* now, populate the array */
3394 cgroup_iter_start(cgrp, &it);
3395 while ((tsk = cgroup_iter_next(cgrp, &it))) {
3396 if (unlikely(n == length))
3397 break;
3398 /* get tgid or pid for procs or tasks file respectively */
3399 if (type == CGROUP_FILE_PROCS)
3400 pid = task_tgid_vnr(tsk);
3401 else
3402 pid = task_pid_vnr(tsk);
3403 if (pid > 0) /* make sure to only use valid results */
3404 array[n++] = pid;
3405 }
3406 cgroup_iter_end(cgrp, &it);
3407 length = n;
3408 /* now sort & (if procs) strip out duplicates */
3409 sort(array, length, sizeof(pid_t), cmppid, NULL);
3410 if (type == CGROUP_FILE_PROCS)
3411 length = pidlist_uniq(&array, length);
3412 l = cgroup_pidlist_find(cgrp, type);
3413 if (!l) {
3414 pidlist_free(array);
3415 return -ENOMEM;
3416 }
3417 /* store array, freeing old if necessary - lock already held */
3418 pidlist_free(l->list);
3419 l->list = array;
3420 l->length = length;
3421 l->use_count++;
3422 up_write(&l->mutex);
3423 *lp = l;
3424 return 0;
3425 }
3426
3427 /**
3428 * cgroupstats_build - build and fill cgroupstats
3429 * @stats: cgroupstats to fill information into
3430 * @dentry: A dentry entry belonging to the cgroup for which stats have
3431 * been requested.
3432 *
3433 * Build and fill cgroupstats so that taskstats can export it to user
3434 * space.
3435 */
3436 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
3437 {
3438 int ret = -EINVAL;
3439 struct cgroup *cgrp;
3440 struct cgroup_iter it;
3441 struct task_struct *tsk;
3442
3443 /*
3444 * Validate dentry by checking the superblock operations,
3445 * and make sure it's a directory.
3446 */
3447 if (dentry->d_sb->s_op != &cgroup_ops ||
3448 !S_ISDIR(dentry->d_inode->i_mode))
3449 goto err;
3450
3451 ret = 0;
3452 cgrp = dentry->d_fsdata;
3453
3454 cgroup_iter_start(cgrp, &it);
3455 while ((tsk = cgroup_iter_next(cgrp, &it))) {
3456 switch (tsk->state) {
3457 case TASK_RUNNING:
3458 stats->nr_running++;
3459 break;
3460 case TASK_INTERRUPTIBLE:
3461 stats->nr_sleeping++;
3462 break;
3463 case TASK_UNINTERRUPTIBLE:
3464 stats->nr_uninterruptible++;
3465 break;
3466 case TASK_STOPPED:
3467 stats->nr_stopped++;
3468 break;
3469 default:
3470 if (delayacct_is_task_waiting_on_io(tsk))
3471 stats->nr_io_wait++;
3472 break;
3473 }
3474 }
3475 cgroup_iter_end(cgrp, &it);
3476
3477 err:
3478 return ret;
3479 }
3480
3481
3482 /*
3483 * seq_file methods for the tasks/procs files. The seq_file position is the
3484 * next pid to display; the seq_file iterator is a pointer to the pid
3485 * in the cgroup->l->list array.
3486 */
3487
3488 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
3489 {
3490 /*
3491 * Initially we receive a position value that corresponds to
3492 * one more than the last pid shown (or 0 on the first call or
3493 * after a seek to the start). Use a binary-search to find the
3494 * next pid to display, if any
3495 */
3496 struct cgroup_pidlist *l = s->private;
3497 int index = 0, pid = *pos;
3498 int *iter;
3499
3500 down_read(&l->mutex);
3501 if (pid) {
3502 int end = l->length;
3503
3504 while (index < end) {
3505 int mid = (index + end) / 2;
3506 if (l->list[mid] == pid) {
3507 index = mid;
3508 break;
3509 } else if (l->list[mid] <= pid)
3510 index = mid + 1;
3511 else
3512 end = mid;
3513 }
3514 }
3515 /* If we're off the end of the array, we're done */
3516 if (index >= l->length)
3517 return NULL;
3518 /* Update the abstract position to be the actual pid that we found */
3519 iter = l->list + index;
3520 *pos = *iter;
3521 return iter;
3522 }
3523
3524 static void cgroup_pidlist_stop(struct seq_file *s, void *v)
3525 {
3526 struct cgroup_pidlist *l = s->private;
3527 up_read(&l->mutex);
3528 }
3529
3530 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
3531 {
3532 struct cgroup_pidlist *l = s->private;
3533 pid_t *p = v;
3534 pid_t *end = l->list + l->length;
3535 /*
3536 * Advance to the next pid in the array. If this goes off the
3537 * end, we're done
3538 */
3539 p++;
3540 if (p >= end) {
3541 return NULL;
3542 } else {
3543 *pos = *p;
3544 return p;
3545 }
3546 }
3547
3548 static int cgroup_pidlist_show(struct seq_file *s, void *v)
3549 {
3550 return seq_printf(s, "%d\n", *(int *)v);
3551 }
3552
3553 /*
3554 * seq_operations functions for iterating on pidlists through seq_file -
3555 * independent of whether it's tasks or procs
3556 */
3557 static const struct seq_operations cgroup_pidlist_seq_operations = {
3558 .start = cgroup_pidlist_start,
3559 .stop = cgroup_pidlist_stop,
3560 .next = cgroup_pidlist_next,
3561 .show = cgroup_pidlist_show,
3562 };
3563
3564 static void cgroup_release_pid_array(struct cgroup_pidlist *l)
3565 {
3566 /*
3567 * the case where we're the last user of this particular pidlist will
3568 * have us remove it from the cgroup's list, which entails taking the
3569 * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
3570 * pidlist_mutex, we have to take pidlist_mutex first.
3571 */
3572 mutex_lock(&l->owner->pidlist_mutex);
3573 down_write(&l->mutex);
3574 BUG_ON(!l->use_count);
3575 if (!--l->use_count) {
3576 /* we're the last user if refcount is 0; remove and free */
3577 list_del(&l->links);
3578 mutex_unlock(&l->owner->pidlist_mutex);
3579 pidlist_free(l->list);
3580 put_pid_ns(l->key.ns);
3581 up_write(&l->mutex);
3582 kfree(l);
3583 return;
3584 }
3585 mutex_unlock(&l->owner->pidlist_mutex);
3586 up_write(&l->mutex);
3587 }
3588
3589 static int cgroup_pidlist_release(struct inode *inode, struct file *file)
3590 {
3591 struct cgroup_pidlist *l;
3592 if (!(file->f_mode & FMODE_READ))
3593 return 0;
3594 /*
3595 * the seq_file will only be initialized if the file was opened for
3596 * reading; hence we check if it's not null only in that case.
3597 */
3598 l = ((struct seq_file *)file->private_data)->private;
3599 cgroup_release_pid_array(l);
3600 return seq_release(inode, file);
3601 }
3602
3603 static const struct file_operations cgroup_pidlist_operations = {
3604 .read = seq_read,
3605 .llseek = seq_lseek,
3606 .write = cgroup_file_write,
3607 .release = cgroup_pidlist_release,
3608 };
3609
3610 /*
3611 * The following functions handle opens on a file that displays a pidlist
3612 * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
3613 * in the cgroup.
3614 */
3615 /* helper function for the two below it */
3616 static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type)
3617 {
3618 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
3619 struct cgroup_pidlist *l;
3620 int retval;
3621
3622 /* Nothing to do for write-only files */
3623 if (!(file->f_mode & FMODE_READ))
3624 return 0;
3625
3626 /* have the array populated */
3627 retval = pidlist_array_load(cgrp, type, &l);
3628 if (retval)
3629 return retval;
3630 /* configure file information */
3631 file->f_op = &cgroup_pidlist_operations;
3632
3633 retval = seq_open(file, &cgroup_pidlist_seq_operations);
3634 if (retval) {
3635 cgroup_release_pid_array(l);
3636 return retval;
3637 }
3638 ((struct seq_file *)file->private_data)->private = l;
3639 return 0;
3640 }
3641 static int cgroup_tasks_open(struct inode *unused, struct file *file)
3642 {
3643 return cgroup_pidlist_open(file, CGROUP_FILE_TASKS);
3644 }
3645 static int cgroup_procs_open(struct inode *unused, struct file *file)
3646 {
3647 return cgroup_pidlist_open(file, CGROUP_FILE_PROCS);
3648 }
3649
3650 static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
3651 struct cftype *cft)
3652 {
3653 return notify_on_release(cgrp);
3654 }
3655
3656 static int cgroup_write_notify_on_release(struct cgroup *cgrp,
3657 struct cftype *cft,
3658 u64 val)
3659 {
3660 clear_bit(CGRP_RELEASABLE, &cgrp->flags);
3661 if (val)
3662 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3663 else
3664 clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3665 return 0;
3666 }
3667
3668 /*
3669 * Unregister event and free resources.
3670 *
3671 * Gets called from workqueue.
3672 */
3673 static void cgroup_event_remove(struct work_struct *work)
3674 {
3675 struct cgroup_event *event = container_of(work, struct cgroup_event,
3676 remove);
3677 struct cgroup *cgrp = event->cgrp;
3678
3679 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3680
3681 eventfd_ctx_put(event->eventfd);
3682 kfree(event);
3683 dput(cgrp->dentry);
3684 }
3685
3686 /*
3687 * Gets called on POLLHUP on eventfd when user closes it.
3688 *
3689 * Called with wqh->lock held and interrupts disabled.
3690 */
3691 static int cgroup_event_wake(wait_queue_t *wait, unsigned mode,
3692 int sync, void *key)
3693 {
3694 struct cgroup_event *event = container_of(wait,
3695 struct cgroup_event, wait);
3696 struct cgroup *cgrp = event->cgrp;
3697 unsigned long flags = (unsigned long)key;
3698
3699 if (flags & POLLHUP) {
3700 __remove_wait_queue(event->wqh, &event->wait);
3701 spin_lock(&cgrp->event_list_lock);
3702 list_del(&event->list);
3703 spin_unlock(&cgrp->event_list_lock);
3704 /*
3705 * We are in atomic context, but cgroup_event_remove() may
3706 * sleep, so we have to call it in workqueue.
3707 */
3708 schedule_work(&event->remove);
3709 }
3710
3711 return 0;
3712 }
3713
3714 static void cgroup_event_ptable_queue_proc(struct file *file,
3715 wait_queue_head_t *wqh, poll_table *pt)
3716 {
3717 struct cgroup_event *event = container_of(pt,
3718 struct cgroup_event, pt);
3719
3720 event->wqh = wqh;
3721 add_wait_queue(wqh, &event->wait);
3722 }
3723
3724 /*
3725 * Parse input and register new cgroup event handler.
3726 *
3727 * Input must be in format '<event_fd> <control_fd> <args>'.
3728 * Interpretation of args is defined by control file implementation.
3729 */
3730 static int cgroup_write_event_control(struct cgroup *cgrp, struct cftype *cft,
3731 const char *buffer)
3732 {
3733 struct cgroup_event *event = NULL;
3734 unsigned int efd, cfd;
3735 struct file *efile = NULL;
3736 struct file *cfile = NULL;
3737 char *endp;
3738 int ret;
3739
3740 efd = simple_strtoul(buffer, &endp, 10);
3741 if (*endp != ' ')
3742 return -EINVAL;
3743 buffer = endp + 1;
3744
3745 cfd = simple_strtoul(buffer, &endp, 10);
3746 if ((*endp != ' ') && (*endp != '\0'))
3747 return -EINVAL;
3748 buffer = endp + 1;
3749
3750 event = kzalloc(sizeof(*event), GFP_KERNEL);
3751 if (!event)
3752 return -ENOMEM;
3753 event->cgrp = cgrp;
3754 INIT_LIST_HEAD(&event->list);
3755 init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc);
3756 init_waitqueue_func_entry(&event->wait, cgroup_event_wake);
3757 INIT_WORK(&event->remove, cgroup_event_remove);
3758
3759 efile = eventfd_fget(efd);
3760 if (IS_ERR(efile)) {
3761 ret = PTR_ERR(efile);
3762 goto fail;
3763 }
3764
3765 event->eventfd = eventfd_ctx_fileget(efile);
3766 if (IS_ERR(event->eventfd)) {
3767 ret = PTR_ERR(event->eventfd);
3768 goto fail;
3769 }
3770
3771 cfile = fget(cfd);
3772 if (!cfile) {
3773 ret = -EBADF;
3774 goto fail;
3775 }
3776
3777 /* the process need read permission on control file */
3778 /* AV: shouldn't we check that it's been opened for read instead? */
3779 ret = inode_permission(cfile->f_path.dentry->d_inode, MAY_READ);
3780 if (ret < 0)
3781 goto fail;
3782
3783 event->cft = __file_cft(cfile);
3784 if (IS_ERR(event->cft)) {
3785 ret = PTR_ERR(event->cft);
3786 goto fail;
3787 }
3788
3789 if (!event->cft->register_event || !event->cft->unregister_event) {
3790 ret = -EINVAL;
3791 goto fail;
3792 }
3793
3794 ret = event->cft->register_event(cgrp, event->cft,
3795 event->eventfd, buffer);
3796 if (ret)
3797 goto fail;
3798
3799 if (efile->f_op->poll(efile, &event->pt) & POLLHUP) {
3800 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3801 ret = 0;
3802 goto fail;
3803 }
3804
3805 /*
3806 * Events should be removed after rmdir of cgroup directory, but before
3807 * destroying subsystem state objects. Let's take reference to cgroup
3808 * directory dentry to do that.
3809 */
3810 dget(cgrp->dentry);
3811
3812 spin_lock(&cgrp->event_list_lock);
3813 list_add(&event->list, &cgrp->event_list);
3814 spin_unlock(&cgrp->event_list_lock);
3815
3816 fput(cfile);
3817 fput(efile);
3818
3819 return 0;
3820
3821 fail:
3822 if (cfile)
3823 fput(cfile);
3824
3825 if (event && event->eventfd && !IS_ERR(event->eventfd))
3826 eventfd_ctx_put(event->eventfd);
3827
3828 if (!IS_ERR_OR_NULL(efile))
3829 fput(efile);
3830
3831 kfree(event);
3832
3833 return ret;
3834 }
3835
3836 static u64 cgroup_clone_children_read(struct cgroup *cgrp,
3837 struct cftype *cft)
3838 {
3839 return clone_children(cgrp);
3840 }
3841
3842 static int cgroup_clone_children_write(struct cgroup *cgrp,
3843 struct cftype *cft,
3844 u64 val)
3845 {
3846 if (val)
3847 set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3848 else
3849 clear_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3850 return 0;
3851 }
3852
3853 /*
3854 * for the common functions, 'private' gives the type of file
3855 */
3856 /* for hysterical raisins, we can't put this on the older files */
3857 #define CGROUP_FILE_GENERIC_PREFIX "cgroup."
3858 static struct cftype files[] = {
3859 {
3860 .name = "tasks",
3861 .open = cgroup_tasks_open,
3862 .write_u64 = cgroup_tasks_write,
3863 .release = cgroup_pidlist_release,
3864 .mode = S_IRUGO | S_IWUSR,
3865 },
3866 {
3867 .name = CGROUP_FILE_GENERIC_PREFIX "procs",
3868 .open = cgroup_procs_open,
3869 .write_u64 = cgroup_procs_write,
3870 .release = cgroup_pidlist_release,
3871 .mode = S_IRUGO | S_IWUSR,
3872 },
3873 {
3874 .name = "notify_on_release",
3875 .read_u64 = cgroup_read_notify_on_release,
3876 .write_u64 = cgroup_write_notify_on_release,
3877 },
3878 {
3879 .name = CGROUP_FILE_GENERIC_PREFIX "event_control",
3880 .write_string = cgroup_write_event_control,
3881 .mode = S_IWUGO,
3882 },
3883 {
3884 .name = "cgroup.clone_children",
3885 .read_u64 = cgroup_clone_children_read,
3886 .write_u64 = cgroup_clone_children_write,
3887 },
3888 {
3889 .name = "release_agent",
3890 .flags = CFTYPE_ONLY_ON_ROOT,
3891 .read_seq_string = cgroup_release_agent_show,
3892 .write_string = cgroup_release_agent_write,
3893 .max_write_len = PATH_MAX,
3894 },
3895 { } /* terminate */
3896 };
3897
3898 /**
3899 * cgroup_populate_dir - selectively creation of files in a directory
3900 * @cgrp: target cgroup
3901 * @base_files: true if the base files should be added
3902 * @subsys_mask: mask of the subsystem ids whose files should be added
3903 */
3904 static int cgroup_populate_dir(struct cgroup *cgrp, bool base_files,
3905 unsigned long subsys_mask)
3906 {
3907 int err;
3908 struct cgroup_subsys *ss;
3909
3910 if (base_files) {
3911 err = cgroup_addrm_files(cgrp, NULL, files, true);
3912 if (err < 0)
3913 return err;
3914 }
3915
3916 /* process cftsets of each subsystem */
3917 for_each_subsys(cgrp->root, ss) {
3918 struct cftype_set *set;
3919 if (!test_bit(ss->subsys_id, &subsys_mask))
3920 continue;
3921
3922 list_for_each_entry(set, &ss->cftsets, node)
3923 cgroup_addrm_files(cgrp, ss, set->cfts, true);
3924 }
3925
3926 /* This cgroup is ready now */
3927 for_each_subsys(cgrp->root, ss) {
3928 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3929 /*
3930 * Update id->css pointer and make this css visible from
3931 * CSS ID functions. This pointer will be dereferened
3932 * from RCU-read-side without locks.
3933 */
3934 if (css->id)
3935 rcu_assign_pointer(css->id->css, css);
3936 }
3937
3938 return 0;
3939 }
3940
3941 static void css_dput_fn(struct work_struct *work)
3942 {
3943 struct cgroup_subsys_state *css =
3944 container_of(work, struct cgroup_subsys_state, dput_work);
3945 struct dentry *dentry = css->cgroup->dentry;
3946 struct super_block *sb = dentry->d_sb;
3947
3948 atomic_inc(&sb->s_active);
3949 dput(dentry);
3950 deactivate_super(sb);
3951 }
3952
3953 static void init_cgroup_css(struct cgroup_subsys_state *css,
3954 struct cgroup_subsys *ss,
3955 struct cgroup *cgrp)
3956 {
3957 css->cgroup = cgrp;
3958 atomic_set(&css->refcnt, 1);
3959 css->flags = 0;
3960 css->id = NULL;
3961 if (cgrp == dummytop)
3962 set_bit(CSS_ROOT, &css->flags);
3963 BUG_ON(cgrp->subsys[ss->subsys_id]);
3964 cgrp->subsys[ss->subsys_id] = css;
3965
3966 /*
3967 * css holds an extra ref to @cgrp->dentry which is put on the last
3968 * css_put(). dput() requires process context, which css_put() may
3969 * be called without. @css->dput_work will be used to invoke
3970 * dput() asynchronously from css_put().
3971 */
3972 INIT_WORK(&css->dput_work, css_dput_fn);
3973 }
3974
3975 /*
3976 * cgroup_create - create a cgroup
3977 * @parent: cgroup that will be parent of the new cgroup
3978 * @dentry: dentry of the new cgroup
3979 * @mode: mode to set on new inode
3980 *
3981 * Must be called with the mutex on the parent inode held
3982 */
3983 static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
3984 umode_t mode)
3985 {
3986 struct cgroup *cgrp;
3987 struct cgroupfs_root *root = parent->root;
3988 int err = 0;
3989 struct cgroup_subsys *ss;
3990 struct super_block *sb = root->sb;
3991
3992 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
3993 if (!cgrp)
3994 return -ENOMEM;
3995
3996 /*
3997 * Only live parents can have children. Note that the liveliness
3998 * check isn't strictly necessary because cgroup_mkdir() and
3999 * cgroup_rmdir() are fully synchronized by i_mutex; however, do it
4000 * anyway so that locking is contained inside cgroup proper and we
4001 * don't get nasty surprises if we ever grow another caller.
4002 */
4003 if (!cgroup_lock_live_group(parent)) {
4004 err = -ENODEV;
4005 goto err_free;
4006 }
4007
4008 /* Grab a reference on the superblock so the hierarchy doesn't
4009 * get deleted on unmount if there are child cgroups. This
4010 * can be done outside cgroup_mutex, since the sb can't
4011 * disappear while someone has an open control file on the
4012 * fs */
4013 atomic_inc(&sb->s_active);
4014
4015 init_cgroup_housekeeping(cgrp);
4016
4017 cgrp->parent = parent;
4018 cgrp->root = parent->root;
4019 cgrp->top_cgroup = parent->top_cgroup;
4020
4021 if (notify_on_release(parent))
4022 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4023
4024 if (clone_children(parent))
4025 set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
4026
4027 for_each_subsys(root, ss) {
4028 struct cgroup_subsys_state *css;
4029
4030 css = ss->create(cgrp);
4031 if (IS_ERR(css)) {
4032 err = PTR_ERR(css);
4033 goto err_destroy;
4034 }
4035 init_cgroup_css(css, ss, cgrp);
4036 if (ss->use_id) {
4037 err = alloc_css_id(ss, parent, cgrp);
4038 if (err)
4039 goto err_destroy;
4040 }
4041 /* At error, ->destroy() callback has to free assigned ID. */
4042 if (clone_children(parent) && ss->post_clone)
4043 ss->post_clone(cgrp);
4044
4045 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
4046 parent->parent) {
4047 pr_warning("cgroup: %s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4048 current->comm, current->pid, ss->name);
4049 if (!strcmp(ss->name, "memory"))
4050 pr_warning("cgroup: \"memory\" requires setting use_hierarchy to 1 on the root.\n");
4051 ss->warned_broken_hierarchy = true;
4052 }
4053 }
4054
4055 list_add(&cgrp->sibling, &cgrp->parent->children);
4056 root->number_of_cgroups++;
4057
4058 err = cgroup_create_dir(cgrp, dentry, mode);
4059 if (err < 0)
4060 goto err_remove;
4061
4062 for_each_subsys(root, ss) {
4063 /* each css holds a ref to the cgroup's dentry */
4064 dget(dentry);
4065
4066 /* creation succeeded, notify subsystems */
4067 if (ss->post_create)
4068 ss->post_create(cgrp);
4069 }
4070
4071 /* The cgroup directory was pre-locked for us */
4072 BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
4073
4074 list_add_tail(&cgrp->allcg_node, &root->allcg_list);
4075
4076 err = cgroup_populate_dir(cgrp, true, root->subsys_mask);
4077 /* If err < 0, we have a half-filled directory - oh well ;) */
4078
4079 mutex_unlock(&cgroup_mutex);
4080 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
4081
4082 return 0;
4083
4084 err_remove:
4085
4086 list_del(&cgrp->sibling);
4087 root->number_of_cgroups--;
4088
4089 err_destroy:
4090
4091 for_each_subsys(root, ss) {
4092 if (cgrp->subsys[ss->subsys_id])
4093 ss->destroy(cgrp);
4094 }
4095
4096 mutex_unlock(&cgroup_mutex);
4097
4098 /* Release the reference count that we took on the superblock */
4099 deactivate_super(sb);
4100 err_free:
4101 kfree(cgrp);
4102 return err;
4103 }
4104
4105 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
4106 {
4107 struct cgroup *c_parent = dentry->d_parent->d_fsdata;
4108
4109 /* the vfs holds inode->i_mutex already */
4110 return cgroup_create(c_parent, dentry, mode | S_IFDIR);
4111 }
4112
4113 /*
4114 * Check the reference count on each subsystem. Since we already
4115 * established that there are no tasks in the cgroup, if the css refcount
4116 * is also 1, then there should be no outstanding references, so the
4117 * subsystem is safe to destroy. We scan across all subsystems rather than
4118 * using the per-hierarchy linked list of mounted subsystems since we can
4119 * be called via check_for_release() with no synchronization other than
4120 * RCU, and the subsystem linked list isn't RCU-safe.
4121 */
4122 static int cgroup_has_css_refs(struct cgroup *cgrp)
4123 {
4124 int i;
4125
4126 /*
4127 * We won't need to lock the subsys array, because the subsystems
4128 * we're concerned about aren't going anywhere since our cgroup root
4129 * has a reference on them.
4130 */
4131 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4132 struct cgroup_subsys *ss = subsys[i];
4133 struct cgroup_subsys_state *css;
4134
4135 /* Skip subsystems not present or not in this hierarchy */
4136 if (ss == NULL || ss->root != cgrp->root)
4137 continue;
4138
4139 css = cgrp->subsys[ss->subsys_id];
4140 /*
4141 * When called from check_for_release() it's possible
4142 * that by this point the cgroup has been removed
4143 * and the css deleted. But a false-positive doesn't
4144 * matter, since it can only happen if the cgroup
4145 * has been deleted and hence no longer needs the
4146 * release agent to be called anyway.
4147 */
4148 if (css && css_refcnt(css) > 1)
4149 return 1;
4150 }
4151 return 0;
4152 }
4153
4154 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
4155 {
4156 struct cgroup *cgrp = dentry->d_fsdata;
4157 struct dentry *d;
4158 struct cgroup *parent;
4159 DEFINE_WAIT(wait);
4160 struct cgroup_event *event, *tmp;
4161 struct cgroup_subsys *ss;
4162
4163 /* the vfs holds both inode->i_mutex already */
4164 mutex_lock(&cgroup_mutex);
4165 parent = cgrp->parent;
4166 if (atomic_read(&cgrp->count) || !list_empty(&cgrp->children)) {
4167 mutex_unlock(&cgroup_mutex);
4168 return -EBUSY;
4169 }
4170
4171 /*
4172 * Block new css_tryget() by deactivating refcnt and mark @cgrp
4173 * removed. This makes future css_tryget() and child creation
4174 * attempts fail thus maintaining the removal conditions verified
4175 * above.
4176 */
4177 for_each_subsys(cgrp->root, ss) {
4178 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
4179
4180 WARN_ON(atomic_read(&css->refcnt) < 0);
4181 atomic_add(CSS_DEACT_BIAS, &css->refcnt);
4182 }
4183 set_bit(CGRP_REMOVED, &cgrp->flags);
4184
4185 /*
4186 * Tell subsystems to initate destruction. pre_destroy() should be
4187 * called with cgroup_mutex unlocked. See 3fa59dfbc3 ("cgroup: fix
4188 * potential deadlock in pre_destroy") for details.
4189 */
4190 mutex_unlock(&cgroup_mutex);
4191 for_each_subsys(cgrp->root, ss)
4192 if (ss->pre_destroy)
4193 ss->pre_destroy(cgrp);
4194 mutex_lock(&cgroup_mutex);
4195
4196 /*
4197 * Put all the base refs. Each css holds an extra reference to the
4198 * cgroup's dentry and cgroup removal proceeds regardless of css
4199 * refs. On the last put of each css, whenever that may be, the
4200 * extra dentry ref is put so that dentry destruction happens only
4201 * after all css's are released.
4202 */
4203 for_each_subsys(cgrp->root, ss)
4204 css_put(cgrp->subsys[ss->subsys_id]);
4205
4206 raw_spin_lock(&release_list_lock);
4207 if (!list_empty(&cgrp->release_list))
4208 list_del_init(&cgrp->release_list);
4209 raw_spin_unlock(&release_list_lock);
4210
4211 /* delete this cgroup from parent->children */
4212 list_del_init(&cgrp->sibling);
4213
4214 list_del_init(&cgrp->allcg_node);
4215
4216 d = dget(cgrp->dentry);
4217
4218 cgroup_d_remove_dir(d);
4219 dput(d);
4220
4221 set_bit(CGRP_RELEASABLE, &parent->flags);
4222 check_for_release(parent);
4223
4224 /*
4225 * Unregister events and notify userspace.
4226 * Notify userspace about cgroup removing only after rmdir of cgroup
4227 * directory to avoid race between userspace and kernelspace
4228 */
4229 spin_lock(&cgrp->event_list_lock);
4230 list_for_each_entry_safe(event, tmp, &cgrp->event_list, list) {
4231 list_del(&event->list);
4232 remove_wait_queue(event->wqh, &event->wait);
4233 eventfd_signal(event->eventfd, 1);
4234 schedule_work(&event->remove);
4235 }
4236 spin_unlock(&cgrp->event_list_lock);
4237
4238 mutex_unlock(&cgroup_mutex);
4239 return 0;
4240 }
4241
4242 static void __init_or_module cgroup_init_cftsets(struct cgroup_subsys *ss)
4243 {
4244 INIT_LIST_HEAD(&ss->cftsets);
4245
4246 /*
4247 * base_cftset is embedded in subsys itself, no need to worry about
4248 * deregistration.
4249 */
4250 if (ss->base_cftypes) {
4251 ss->base_cftset.cfts = ss->base_cftypes;
4252 list_add_tail(&ss->base_cftset.node, &ss->cftsets);
4253 }
4254 }
4255
4256 static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
4257 {
4258 struct cgroup_subsys_state *css;
4259
4260 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
4261
4262 /* init base cftset */
4263 cgroup_init_cftsets(ss);
4264
4265 /* Create the top cgroup state for this subsystem */
4266 list_add(&ss->sibling, &rootnode.subsys_list);
4267 ss->root = &rootnode;
4268 css = ss->create(dummytop);
4269 /* We don't handle early failures gracefully */
4270 BUG_ON(IS_ERR(css));
4271 init_cgroup_css(css, ss, dummytop);
4272
4273 /* Update the init_css_set to contain a subsys
4274 * pointer to this state - since the subsystem is
4275 * newly registered, all tasks and hence the
4276 * init_css_set is in the subsystem's top cgroup. */
4277 init_css_set.subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
4278
4279 need_forkexit_callback |= ss->fork || ss->exit;
4280
4281 /* At system boot, before all subsystems have been
4282 * registered, no tasks have been forked, so we don't
4283 * need to invoke fork callbacks here. */
4284 BUG_ON(!list_empty(&init_task.tasks));
4285
4286 ss->active = 1;
4287
4288 if (ss->post_create)
4289 ss->post_create(&ss->root->top_cgroup);
4290
4291 /* this function shouldn't be used with modular subsystems, since they
4292 * need to register a subsys_id, among other things */
4293 BUG_ON(ss->module);
4294 }
4295
4296 /**
4297 * cgroup_load_subsys: load and register a modular subsystem at runtime
4298 * @ss: the subsystem to load
4299 *
4300 * This function should be called in a modular subsystem's initcall. If the
4301 * subsystem is built as a module, it will be assigned a new subsys_id and set
4302 * up for use. If the subsystem is built-in anyway, work is delegated to the
4303 * simpler cgroup_init_subsys.
4304 */
4305 int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss)
4306 {
4307 int i;
4308 struct cgroup_subsys_state *css;
4309
4310 /* check name and function validity */
4311 if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN ||
4312 ss->create == NULL || ss->destroy == NULL)
4313 return -EINVAL;
4314
4315 /*
4316 * we don't support callbacks in modular subsystems. this check is
4317 * before the ss->module check for consistency; a subsystem that could
4318 * be a module should still have no callbacks even if the user isn't
4319 * compiling it as one.
4320 */
4321 if (ss->fork || ss->exit)
4322 return -EINVAL;
4323
4324 /*
4325 * an optionally modular subsystem is built-in: we want to do nothing,
4326 * since cgroup_init_subsys will have already taken care of it.
4327 */
4328 if (ss->module == NULL) {
4329 /* a sanity check */
4330 BUG_ON(subsys[ss->subsys_id] != ss);
4331 return 0;
4332 }
4333
4334 /* init base cftset */
4335 cgroup_init_cftsets(ss);
4336
4337 mutex_lock(&cgroup_mutex);
4338 subsys[ss->subsys_id] = ss;
4339
4340 /*
4341 * no ss->create seems to need anything important in the ss struct, so
4342 * this can happen first (i.e. before the rootnode attachment).
4343 */
4344 css = ss->create(dummytop);
4345 if (IS_ERR(css)) {
4346 /* failure case - need to deassign the subsys[] slot. */
4347 subsys[ss->subsys_id] = NULL;
4348 mutex_unlock(&cgroup_mutex);
4349 return PTR_ERR(css);
4350 }
4351
4352 list_add(&ss->sibling, &rootnode.subsys_list);
4353 ss->root = &rootnode;
4354
4355 /* our new subsystem will be attached to the dummy hierarchy. */
4356 init_cgroup_css(css, ss, dummytop);
4357 /* init_idr must be after init_cgroup_css because it sets css->id. */
4358 if (ss->use_id) {
4359 int ret = cgroup_init_idr(ss, css);
4360 if (ret) {
4361 dummytop->subsys[ss->subsys_id] = NULL;
4362 ss->destroy(dummytop);
4363 subsys[ss->subsys_id] = NULL;
4364 mutex_unlock(&cgroup_mutex);
4365 return ret;
4366 }
4367 }
4368
4369 /*
4370 * Now we need to entangle the css into the existing css_sets. unlike
4371 * in cgroup_init_subsys, there are now multiple css_sets, so each one
4372 * will need a new pointer to it; done by iterating the css_set_table.
4373 * furthermore, modifying the existing css_sets will corrupt the hash
4374 * table state, so each changed css_set will need its hash recomputed.
4375 * this is all done under the css_set_lock.
4376 */
4377 write_lock(&css_set_lock);
4378 for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
4379 struct css_set *cg;
4380 struct hlist_node *node, *tmp;
4381 struct hlist_head *bucket = &css_set_table[i], *new_bucket;
4382
4383 hlist_for_each_entry_safe(cg, node, tmp, bucket, hlist) {
4384 /* skip entries that we already rehashed */
4385 if (cg->subsys[ss->subsys_id])
4386 continue;
4387 /* remove existing entry */
4388 hlist_del(&cg->hlist);
4389 /* set new value */
4390 cg->subsys[ss->subsys_id] = css;
4391 /* recompute hash and restore entry */
4392 new_bucket = css_set_hash(cg->subsys);
4393 hlist_add_head(&cg->hlist, new_bucket);
4394 }
4395 }
4396 write_unlock(&css_set_lock);
4397
4398 ss->active = 1;
4399
4400 if (ss->post_create)
4401 ss->post_create(&ss->root->top_cgroup);
4402
4403 /* success! */
4404 mutex_unlock(&cgroup_mutex);
4405 return 0;
4406 }
4407 EXPORT_SYMBOL_GPL(cgroup_load_subsys);
4408
4409 /**
4410 * cgroup_unload_subsys: unload a modular subsystem
4411 * @ss: the subsystem to unload
4412 *
4413 * This function should be called in a modular subsystem's exitcall. When this
4414 * function is invoked, the refcount on the subsystem's module will be 0, so
4415 * the subsystem will not be attached to any hierarchy.
4416 */
4417 void cgroup_unload_subsys(struct cgroup_subsys *ss)
4418 {
4419 struct cg_cgroup_link *link;
4420 struct hlist_head *hhead;
4421
4422 BUG_ON(ss->module == NULL);
4423
4424 /*
4425 * we shouldn't be called if the subsystem is in use, and the use of
4426 * try_module_get in parse_cgroupfs_options should ensure that it
4427 * doesn't start being used while we're killing it off.
4428 */
4429 BUG_ON(ss->root != &rootnode);
4430
4431 mutex_lock(&cgroup_mutex);
4432 /* deassign the subsys_id */
4433 subsys[ss->subsys_id] = NULL;
4434
4435 /* remove subsystem from rootnode's list of subsystems */
4436 list_del_init(&ss->sibling);
4437
4438 /*
4439 * disentangle the css from all css_sets attached to the dummytop. as
4440 * in loading, we need to pay our respects to the hashtable gods.
4441 */
4442 write_lock(&css_set_lock);
4443 list_for_each_entry(link, &dummytop->css_sets, cgrp_link_list) {
4444 struct css_set *cg = link->cg;
4445
4446 hlist_del(&cg->hlist);
4447 BUG_ON(!cg->subsys[ss->subsys_id]);
4448 cg->subsys[ss->subsys_id] = NULL;
4449 hhead = css_set_hash(cg->subsys);
4450 hlist_add_head(&cg->hlist, hhead);
4451 }
4452 write_unlock(&css_set_lock);
4453
4454 /*
4455 * remove subsystem's css from the dummytop and free it - need to free
4456 * before marking as null because ss->destroy needs the cgrp->subsys
4457 * pointer to find their state. note that this also takes care of
4458 * freeing the css_id.
4459 */
4460 ss->destroy(dummytop);
4461 dummytop->subsys[ss->subsys_id] = NULL;
4462
4463 mutex_unlock(&cgroup_mutex);
4464 }
4465 EXPORT_SYMBOL_GPL(cgroup_unload_subsys);
4466
4467 /**
4468 * cgroup_init_early - cgroup initialization at system boot
4469 *
4470 * Initialize cgroups at system boot, and initialize any
4471 * subsystems that request early init.
4472 */
4473 int __init cgroup_init_early(void)
4474 {
4475 int i;
4476 atomic_set(&init_css_set.refcount, 1);
4477 INIT_LIST_HEAD(&init_css_set.cg_links);
4478 INIT_LIST_HEAD(&init_css_set.tasks);
4479 INIT_HLIST_NODE(&init_css_set.hlist);
4480 css_set_count = 1;
4481 init_cgroup_root(&rootnode);
4482 root_count = 1;
4483 init_task.cgroups = &init_css_set;
4484
4485 init_css_set_link.cg = &init_css_set;
4486 init_css_set_link.cgrp = dummytop;
4487 list_add(&init_css_set_link.cgrp_link_list,
4488 &rootnode.top_cgroup.css_sets);
4489 list_add(&init_css_set_link.cg_link_list,
4490 &init_css_set.cg_links);
4491
4492 for (i = 0; i < CSS_SET_TABLE_SIZE; i++)
4493 INIT_HLIST_HEAD(&css_set_table[i]);
4494
4495 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4496 struct cgroup_subsys *ss = subsys[i];
4497
4498 /* at bootup time, we don't worry about modular subsystems */
4499 if (!ss || ss->module)
4500 continue;
4501
4502 BUG_ON(!ss->name);
4503 BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
4504 BUG_ON(!ss->create);
4505 BUG_ON(!ss->destroy);
4506 if (ss->subsys_id != i) {
4507 printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
4508 ss->name, ss->subsys_id);
4509 BUG();
4510 }
4511
4512 if (ss->early_init)
4513 cgroup_init_subsys(ss);
4514 }
4515 return 0;
4516 }
4517
4518 /**
4519 * cgroup_init - cgroup initialization
4520 *
4521 * Register cgroup filesystem and /proc file, and initialize
4522 * any subsystems that didn't request early init.
4523 */
4524 int __init cgroup_init(void)
4525 {
4526 int err;
4527 int i;
4528 struct hlist_head *hhead;
4529
4530 err = bdi_init(&cgroup_backing_dev_info);
4531 if (err)
4532 return err;
4533
4534 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4535 struct cgroup_subsys *ss = subsys[i];
4536
4537 /* at bootup time, we don't worry about modular subsystems */
4538 if (!ss || ss->module)
4539 continue;
4540 if (!ss->early_init)
4541 cgroup_init_subsys(ss);
4542 if (ss->use_id)
4543 cgroup_init_idr(ss, init_css_set.subsys[ss->subsys_id]);
4544 }
4545
4546 /* Add init_css_set to the hash table */
4547 hhead = css_set_hash(init_css_set.subsys);
4548 hlist_add_head(&init_css_set.hlist, hhead);
4549 BUG_ON(!init_root_id(&rootnode));
4550
4551 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
4552 if (!cgroup_kobj) {
4553 err = -ENOMEM;
4554 goto out;
4555 }
4556
4557 err = register_filesystem(&cgroup_fs_type);
4558 if (err < 0) {
4559 kobject_put(cgroup_kobj);
4560 goto out;
4561 }
4562
4563 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
4564
4565 out:
4566 if (err)
4567 bdi_destroy(&cgroup_backing_dev_info);
4568
4569 return err;
4570 }
4571
4572 /*
4573 * proc_cgroup_show()
4574 * - Print task's cgroup paths into seq_file, one line for each hierarchy
4575 * - Used for /proc/<pid>/cgroup.
4576 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
4577 * doesn't really matter if tsk->cgroup changes after we read it,
4578 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
4579 * anyway. No need to check that tsk->cgroup != NULL, thanks to
4580 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
4581 * cgroup to top_cgroup.
4582 */
4583
4584 /* TODO: Use a proper seq_file iterator */
4585 static int proc_cgroup_show(struct seq_file *m, void *v)
4586 {
4587 struct pid *pid;
4588 struct task_struct *tsk;
4589 char *buf;
4590 int retval;
4591 struct cgroupfs_root *root;
4592
4593 retval = -ENOMEM;
4594 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4595 if (!buf)
4596 goto out;
4597
4598 retval = -ESRCH;
4599 pid = m->private;
4600 tsk = get_pid_task(pid, PIDTYPE_PID);
4601 if (!tsk)
4602 goto out_free;
4603
4604 retval = 0;
4605
4606 mutex_lock(&cgroup_mutex);
4607
4608 for_each_active_root(root) {
4609 struct cgroup_subsys *ss;
4610 struct cgroup *cgrp;
4611 int count = 0;
4612
4613 seq_printf(m, "%d:", root->hierarchy_id);
4614 for_each_subsys(root, ss)
4615 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
4616 if (strlen(root->name))
4617 seq_printf(m, "%sname=%s", count ? "," : "",
4618 root->name);
4619 seq_putc(m, ':');
4620 cgrp = task_cgroup_from_root(tsk, root);
4621 retval = cgroup_path(cgrp, buf, PAGE_SIZE);
4622 if (retval < 0)
4623 goto out_unlock;
4624 seq_puts(m, buf);
4625 seq_putc(m, '\n');
4626 }
4627
4628 out_unlock:
4629 mutex_unlock(&cgroup_mutex);
4630 put_task_struct(tsk);
4631 out_free:
4632 kfree(buf);
4633 out:
4634 return retval;
4635 }
4636
4637 static int cgroup_open(struct inode *inode, struct file *file)
4638 {
4639 struct pid *pid = PROC_I(inode)->pid;
4640 return single_open(file, proc_cgroup_show, pid);
4641 }
4642
4643 const struct file_operations proc_cgroup_operations = {
4644 .open = cgroup_open,
4645 .read = seq_read,
4646 .llseek = seq_lseek,
4647 .release = single_release,
4648 };
4649
4650 /* Display information about each subsystem and each hierarchy */
4651 static int proc_cgroupstats_show(struct seq_file *m, void *v)
4652 {
4653 int i;
4654
4655 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
4656 /*
4657 * ideally we don't want subsystems moving around while we do this.
4658 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
4659 * subsys/hierarchy state.
4660 */
4661 mutex_lock(&cgroup_mutex);
4662 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4663 struct cgroup_subsys *ss = subsys[i];
4664 if (ss == NULL)
4665 continue;
4666 seq_printf(m, "%s\t%d\t%d\t%d\n",
4667 ss->name, ss->root->hierarchy_id,
4668 ss->root->number_of_cgroups, !ss->disabled);
4669 }
4670 mutex_unlock(&cgroup_mutex);
4671 return 0;
4672 }
4673
4674 static int cgroupstats_open(struct inode *inode, struct file *file)
4675 {
4676 return single_open(file, proc_cgroupstats_show, NULL);
4677 }
4678
4679 static const struct file_operations proc_cgroupstats_operations = {
4680 .open = cgroupstats_open,
4681 .read = seq_read,
4682 .llseek = seq_lseek,
4683 .release = single_release,
4684 };
4685
4686 /**
4687 * cgroup_fork - attach newly forked task to its parents cgroup.
4688 * @child: pointer to task_struct of forking parent process.
4689 *
4690 * Description: A task inherits its parent's cgroup at fork().
4691 *
4692 * A pointer to the shared css_set was automatically copied in
4693 * fork.c by dup_task_struct(). However, we ignore that copy, since
4694 * it was not made under the protection of RCU or cgroup_mutex, so
4695 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
4696 * have already changed current->cgroups, allowing the previously
4697 * referenced cgroup group to be removed and freed.
4698 *
4699 * At the point that cgroup_fork() is called, 'current' is the parent
4700 * task, and the passed argument 'child' points to the child task.
4701 */
4702 void cgroup_fork(struct task_struct *child)
4703 {
4704 task_lock(current);
4705 child->cgroups = current->cgroups;
4706 get_css_set(child->cgroups);
4707 task_unlock(current);
4708 INIT_LIST_HEAD(&child->cg_list);
4709 }
4710
4711 /**
4712 * cgroup_post_fork - called on a new task after adding it to the task list
4713 * @child: the task in question
4714 *
4715 * Adds the task to the list running through its css_set if necessary and
4716 * call the subsystem fork() callbacks. Has to be after the task is
4717 * visible on the task list in case we race with the first call to
4718 * cgroup_iter_start() - to guarantee that the new task ends up on its
4719 * list.
4720 */
4721 void cgroup_post_fork(struct task_struct *child)
4722 {
4723 int i;
4724
4725 /*
4726 * use_task_css_set_links is set to 1 before we walk the tasklist
4727 * under the tasklist_lock and we read it here after we added the child
4728 * to the tasklist under the tasklist_lock as well. If the child wasn't
4729 * yet in the tasklist when we walked through it from
4730 * cgroup_enable_task_cg_lists(), then use_task_css_set_links value
4731 * should be visible now due to the paired locking and barriers implied
4732 * by LOCK/UNLOCK: it is written before the tasklist_lock unlock
4733 * in cgroup_enable_task_cg_lists() and read here after the tasklist_lock
4734 * lock on fork.
4735 */
4736 if (use_task_css_set_links) {
4737 write_lock(&css_set_lock);
4738 task_lock(child);
4739 if (list_empty(&child->cg_list))
4740 list_add(&child->cg_list, &child->cgroups->tasks);
4741 task_unlock(child);
4742 write_unlock(&css_set_lock);
4743 }
4744
4745 /*
4746 * Call ss->fork(). This must happen after @child is linked on
4747 * css_set; otherwise, @child might change state between ->fork()
4748 * and addition to css_set.
4749 */
4750 if (need_forkexit_callback) {
4751 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4752 struct cgroup_subsys *ss = subsys[i];
4753
4754 /*
4755 * fork/exit callbacks are supported only for
4756 * builtin subsystems and we don't need further
4757 * synchronization as they never go away.
4758 */
4759 if (!ss || ss->module)
4760 continue;
4761
4762 if (ss->fork)
4763 ss->fork(child);
4764 }
4765 }
4766 }
4767
4768 /**
4769 * cgroup_exit - detach cgroup from exiting task
4770 * @tsk: pointer to task_struct of exiting process
4771 * @run_callback: run exit callbacks?
4772 *
4773 * Description: Detach cgroup from @tsk and release it.
4774 *
4775 * Note that cgroups marked notify_on_release force every task in
4776 * them to take the global cgroup_mutex mutex when exiting.
4777 * This could impact scaling on very large systems. Be reluctant to
4778 * use notify_on_release cgroups where very high task exit scaling
4779 * is required on large systems.
4780 *
4781 * the_top_cgroup_hack:
4782 *
4783 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
4784 *
4785 * We call cgroup_exit() while the task is still competent to
4786 * handle notify_on_release(), then leave the task attached to the
4787 * root cgroup in each hierarchy for the remainder of its exit.
4788 *
4789 * To do this properly, we would increment the reference count on
4790 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
4791 * code we would add a second cgroup function call, to drop that
4792 * reference. This would just create an unnecessary hot spot on
4793 * the top_cgroup reference count, to no avail.
4794 *
4795 * Normally, holding a reference to a cgroup without bumping its
4796 * count is unsafe. The cgroup could go away, or someone could
4797 * attach us to a different cgroup, decrementing the count on
4798 * the first cgroup that we never incremented. But in this case,
4799 * top_cgroup isn't going away, and either task has PF_EXITING set,
4800 * which wards off any cgroup_attach_task() attempts, or task is a failed
4801 * fork, never visible to cgroup_attach_task.
4802 */
4803 void cgroup_exit(struct task_struct *tsk, int run_callbacks)
4804 {
4805 struct css_set *cg;
4806 int i;
4807
4808 /*
4809 * Unlink from the css_set task list if necessary.
4810 * Optimistically check cg_list before taking
4811 * css_set_lock
4812 */
4813 if (!list_empty(&tsk->cg_list)) {
4814 write_lock(&css_set_lock);
4815 if (!list_empty(&tsk->cg_list))
4816 list_del_init(&tsk->cg_list);
4817 write_unlock(&css_set_lock);
4818 }
4819
4820 /* Reassign the task to the init_css_set. */
4821 task_lock(tsk);
4822 cg = tsk->cgroups;
4823 tsk->cgroups = &init_css_set;
4824
4825 if (run_callbacks && need_forkexit_callback) {
4826 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4827 struct cgroup_subsys *ss = subsys[i];
4828
4829 /* modular subsystems can't use callbacks */
4830 if (!ss || ss->module)
4831 continue;
4832
4833 if (ss->exit) {
4834 struct cgroup *old_cgrp =
4835 rcu_dereference_raw(cg->subsys[i])->cgroup;
4836 struct cgroup *cgrp = task_cgroup(tsk, i);
4837 ss->exit(cgrp, old_cgrp, tsk);
4838 }
4839 }
4840 }
4841 task_unlock(tsk);
4842
4843 if (cg)
4844 put_css_set_taskexit(cg);
4845 }
4846
4847 /**
4848 * cgroup_is_descendant - see if @cgrp is a descendant of @task's cgrp
4849 * @cgrp: the cgroup in question
4850 * @task: the task in question
4851 *
4852 * See if @cgrp is a descendant of @task's cgroup in the appropriate
4853 * hierarchy.
4854 *
4855 * If we are sending in dummytop, then presumably we are creating
4856 * the top cgroup in the subsystem.
4857 *
4858 * Called only by the ns (nsproxy) cgroup.
4859 */
4860 int cgroup_is_descendant(const struct cgroup *cgrp, struct task_struct *task)
4861 {
4862 int ret;
4863 struct cgroup *target;
4864
4865 if (cgrp == dummytop)
4866 return 1;
4867
4868 target = task_cgroup_from_root(task, cgrp->root);
4869 while (cgrp != target && cgrp!= cgrp->top_cgroup)
4870 cgrp = cgrp->parent;
4871 ret = (cgrp == target);
4872 return ret;
4873 }
4874
4875 static void check_for_release(struct cgroup *cgrp)
4876 {
4877 /* All of these checks rely on RCU to keep the cgroup
4878 * structure alive */
4879 if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
4880 && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
4881 /* Control Group is currently removeable. If it's not
4882 * already queued for a userspace notification, queue
4883 * it now */
4884 int need_schedule_work = 0;
4885 raw_spin_lock(&release_list_lock);
4886 if (!cgroup_is_removed(cgrp) &&
4887 list_empty(&cgrp->release_list)) {
4888 list_add(&cgrp->release_list, &release_list);
4889 need_schedule_work = 1;
4890 }
4891 raw_spin_unlock(&release_list_lock);
4892 if (need_schedule_work)
4893 schedule_work(&release_agent_work);
4894 }
4895 }
4896
4897 /* Caller must verify that the css is not for root cgroup */
4898 bool __css_tryget(struct cgroup_subsys_state *css)
4899 {
4900 while (true) {
4901 int t, v;
4902
4903 v = css_refcnt(css);
4904 t = atomic_cmpxchg(&css->refcnt, v, v + 1);
4905 if (likely(t == v))
4906 return true;
4907 else if (t < 0)
4908 return false;
4909 cpu_relax();
4910 }
4911 }
4912 EXPORT_SYMBOL_GPL(__css_tryget);
4913
4914 /* Caller must verify that the css is not for root cgroup */
4915 void __css_put(struct cgroup_subsys_state *css)
4916 {
4917 struct cgroup *cgrp = css->cgroup;
4918 int v;
4919
4920 rcu_read_lock();
4921 v = css_unbias_refcnt(atomic_dec_return(&css->refcnt));
4922
4923 switch (v) {
4924 case 1:
4925 if (notify_on_release(cgrp)) {
4926 set_bit(CGRP_RELEASABLE, &cgrp->flags);
4927 check_for_release(cgrp);
4928 }
4929 break;
4930 case 0:
4931 schedule_work(&css->dput_work);
4932 break;
4933 }
4934 rcu_read_unlock();
4935 }
4936 EXPORT_SYMBOL_GPL(__css_put);
4937
4938 /*
4939 * Notify userspace when a cgroup is released, by running the
4940 * configured release agent with the name of the cgroup (path
4941 * relative to the root of cgroup file system) as the argument.
4942 *
4943 * Most likely, this user command will try to rmdir this cgroup.
4944 *
4945 * This races with the possibility that some other task will be
4946 * attached to this cgroup before it is removed, or that some other
4947 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
4948 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
4949 * unused, and this cgroup will be reprieved from its death sentence,
4950 * to continue to serve a useful existence. Next time it's released,
4951 * we will get notified again, if it still has 'notify_on_release' set.
4952 *
4953 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
4954 * means only wait until the task is successfully execve()'d. The
4955 * separate release agent task is forked by call_usermodehelper(),
4956 * then control in this thread returns here, without waiting for the
4957 * release agent task. We don't bother to wait because the caller of
4958 * this routine has no use for the exit status of the release agent
4959 * task, so no sense holding our caller up for that.
4960 */
4961 static void cgroup_release_agent(struct work_struct *work)
4962 {
4963 BUG_ON(work != &release_agent_work);
4964 mutex_lock(&cgroup_mutex);
4965 raw_spin_lock(&release_list_lock);
4966 while (!list_empty(&release_list)) {
4967 char *argv[3], *envp[3];
4968 int i;
4969 char *pathbuf = NULL, *agentbuf = NULL;
4970 struct cgroup *cgrp = list_entry(release_list.next,
4971 struct cgroup,
4972 release_list);
4973 list_del_init(&cgrp->release_list);
4974 raw_spin_unlock(&release_list_lock);
4975 pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4976 if (!pathbuf)
4977 goto continue_free;
4978 if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
4979 goto continue_free;
4980 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
4981 if (!agentbuf)
4982 goto continue_free;
4983
4984 i = 0;
4985 argv[i++] = agentbuf;
4986 argv[i++] = pathbuf;
4987 argv[i] = NULL;
4988
4989 i = 0;
4990 /* minimal command environment */
4991 envp[i++] = "HOME=/";
4992 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
4993 envp[i] = NULL;
4994
4995 /* Drop the lock while we invoke the usermode helper,
4996 * since the exec could involve hitting disk and hence
4997 * be a slow process */
4998 mutex_unlock(&cgroup_mutex);
4999 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
5000 mutex_lock(&cgroup_mutex);
5001 continue_free:
5002 kfree(pathbuf);
5003 kfree(agentbuf);
5004 raw_spin_lock(&release_list_lock);
5005 }
5006 raw_spin_unlock(&release_list_lock);
5007 mutex_unlock(&cgroup_mutex);
5008 }
5009
5010 static int __init cgroup_disable(char *str)
5011 {
5012 int i;
5013 char *token;
5014
5015 while ((token = strsep(&str, ",")) != NULL) {
5016 if (!*token)
5017 continue;
5018 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
5019 struct cgroup_subsys *ss = subsys[i];
5020
5021 /*
5022 * cgroup_disable, being at boot time, can't
5023 * know about module subsystems, so we don't
5024 * worry about them.
5025 */
5026 if (!ss || ss->module)
5027 continue;
5028
5029 if (!strcmp(token, ss->name)) {
5030 ss->disabled = 1;
5031 printk(KERN_INFO "Disabling %s control group"
5032 " subsystem\n", ss->name);
5033 break;
5034 }
5035 }
5036 }
5037 return 1;
5038 }
5039 __setup("cgroup_disable=", cgroup_disable);
5040
5041 /*
5042 * Functons for CSS ID.
5043 */
5044
5045 /*
5046 *To get ID other than 0, this should be called when !cgroup_is_removed().
5047 */
5048 unsigned short css_id(struct cgroup_subsys_state *css)
5049 {
5050 struct css_id *cssid;
5051
5052 /*
5053 * This css_id() can return correct value when somone has refcnt
5054 * on this or this is under rcu_read_lock(). Once css->id is allocated,
5055 * it's unchanged until freed.
5056 */
5057 cssid = rcu_dereference_check(css->id, css_refcnt(css));
5058
5059 if (cssid)
5060 return cssid->id;
5061 return 0;
5062 }
5063 EXPORT_SYMBOL_GPL(css_id);
5064
5065 unsigned short css_depth(struct cgroup_subsys_state *css)
5066 {
5067 struct css_id *cssid;
5068
5069 cssid = rcu_dereference_check(css->id, css_refcnt(css));
5070
5071 if (cssid)
5072 return cssid->depth;
5073 return 0;
5074 }
5075 EXPORT_SYMBOL_GPL(css_depth);
5076
5077 /**
5078 * css_is_ancestor - test "root" css is an ancestor of "child"
5079 * @child: the css to be tested.
5080 * @root: the css supporsed to be an ancestor of the child.
5081 *
5082 * Returns true if "root" is an ancestor of "child" in its hierarchy. Because
5083 * this function reads css->id, the caller must hold rcu_read_lock().
5084 * But, considering usual usage, the csses should be valid objects after test.
5085 * Assuming that the caller will do some action to the child if this returns
5086 * returns true, the caller must take "child";s reference count.
5087 * If "child" is valid object and this returns true, "root" is valid, too.
5088 */
5089
5090 bool css_is_ancestor(struct cgroup_subsys_state *child,
5091 const struct cgroup_subsys_state *root)
5092 {
5093 struct css_id *child_id;
5094 struct css_id *root_id;
5095
5096 child_id = rcu_dereference(child->id);
5097 if (!child_id)
5098 return false;
5099 root_id = rcu_dereference(root->id);
5100 if (!root_id)
5101 return false;
5102 if (child_id->depth < root_id->depth)
5103 return false;
5104 if (child_id->stack[root_id->depth] != root_id->id)
5105 return false;
5106 return true;
5107 }
5108
5109 void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
5110 {
5111 struct css_id *id = css->id;
5112 /* When this is called before css_id initialization, id can be NULL */
5113 if (!id)
5114 return;
5115
5116 BUG_ON(!ss->use_id);
5117
5118 rcu_assign_pointer(id->css, NULL);
5119 rcu_assign_pointer(css->id, NULL);
5120 spin_lock(&ss->id_lock);
5121 idr_remove(&ss->idr, id->id);
5122 spin_unlock(&ss->id_lock);
5123 kfree_rcu(id, rcu_head);
5124 }
5125 EXPORT_SYMBOL_GPL(free_css_id);
5126
5127 /*
5128 * This is called by init or create(). Then, calls to this function are
5129 * always serialized (By cgroup_mutex() at create()).
5130 */
5131
5132 static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
5133 {
5134 struct css_id *newid;
5135 int myid, error, size;
5136
5137 BUG_ON(!ss->use_id);
5138
5139 size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
5140 newid = kzalloc(size, GFP_KERNEL);
5141 if (!newid)
5142 return ERR_PTR(-ENOMEM);
5143 /* get id */
5144 if (unlikely(!idr_pre_get(&ss->idr, GFP_KERNEL))) {
5145 error = -ENOMEM;
5146 goto err_out;
5147 }
5148 spin_lock(&ss->id_lock);
5149 /* Don't use 0. allocates an ID of 1-65535 */
5150 error = idr_get_new_above(&ss->idr, newid, 1, &myid);
5151 spin_unlock(&ss->id_lock);
5152
5153 /* Returns error when there are no free spaces for new ID.*/
5154 if (error) {
5155 error = -ENOSPC;
5156 goto err_out;
5157 }
5158 if (myid > CSS_ID_MAX)
5159 goto remove_idr;
5160
5161 newid->id = myid;
5162 newid->depth = depth;
5163 return newid;
5164 remove_idr:
5165 error = -ENOSPC;
5166 spin_lock(&ss->id_lock);
5167 idr_remove(&ss->idr, myid);
5168 spin_unlock(&ss->id_lock);
5169 err_out:
5170 kfree(newid);
5171 return ERR_PTR(error);
5172
5173 }
5174
5175 static int __init_or_module cgroup_init_idr(struct cgroup_subsys *ss,
5176 struct cgroup_subsys_state *rootcss)
5177 {
5178 struct css_id *newid;
5179
5180 spin_lock_init(&ss->id_lock);
5181 idr_init(&ss->idr);
5182
5183 newid = get_new_cssid(ss, 0);
5184 if (IS_ERR(newid))
5185 return PTR_ERR(newid);
5186
5187 newid->stack[0] = newid->id;
5188 newid->css = rootcss;
5189 rootcss->id = newid;
5190 return 0;
5191 }
5192
5193 static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
5194 struct cgroup *child)
5195 {
5196 int subsys_id, i, depth = 0;
5197 struct cgroup_subsys_state *parent_css, *child_css;
5198 struct css_id *child_id, *parent_id;
5199
5200 subsys_id = ss->subsys_id;
5201 parent_css = parent->subsys[subsys_id];
5202 child_css = child->subsys[subsys_id];
5203 parent_id = parent_css->id;
5204 depth = parent_id->depth + 1;
5205
5206 child_id = get_new_cssid(ss, depth);
5207 if (IS_ERR(child_id))
5208 return PTR_ERR(child_id);
5209
5210 for (i = 0; i < depth; i++)
5211 child_id->stack[i] = parent_id->stack[i];
5212 child_id->stack[depth] = child_id->id;
5213 /*
5214 * child_id->css pointer will be set after this cgroup is available
5215 * see cgroup_populate_dir()
5216 */
5217 rcu_assign_pointer(child_css->id, child_id);
5218
5219 return 0;
5220 }
5221
5222 /**
5223 * css_lookup - lookup css by id
5224 * @ss: cgroup subsys to be looked into.
5225 * @id: the id
5226 *
5227 * Returns pointer to cgroup_subsys_state if there is valid one with id.
5228 * NULL if not. Should be called under rcu_read_lock()
5229 */
5230 struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
5231 {
5232 struct css_id *cssid = NULL;
5233
5234 BUG_ON(!ss->use_id);
5235 cssid = idr_find(&ss->idr, id);
5236
5237 if (unlikely(!cssid))
5238 return NULL;
5239
5240 return rcu_dereference(cssid->css);
5241 }
5242 EXPORT_SYMBOL_GPL(css_lookup);
5243
5244 /**
5245 * css_get_next - lookup next cgroup under specified hierarchy.
5246 * @ss: pointer to subsystem
5247 * @id: current position of iteration.
5248 * @root: pointer to css. search tree under this.
5249 * @foundid: position of found object.
5250 *
5251 * Search next css under the specified hierarchy of rootid. Calling under
5252 * rcu_read_lock() is necessary. Returns NULL if it reaches the end.
5253 */
5254 struct cgroup_subsys_state *
5255 css_get_next(struct cgroup_subsys *ss, int id,
5256 struct cgroup_subsys_state *root, int *foundid)
5257 {
5258 struct cgroup_subsys_state *ret = NULL;
5259 struct css_id *tmp;
5260 int tmpid;
5261 int rootid = css_id(root);
5262 int depth = css_depth(root);
5263
5264 if (!rootid)
5265 return NULL;
5266
5267 BUG_ON(!ss->use_id);
5268 WARN_ON_ONCE(!rcu_read_lock_held());
5269
5270 /* fill start point for scan */
5271 tmpid = id;
5272 while (1) {
5273 /*
5274 * scan next entry from bitmap(tree), tmpid is updated after
5275 * idr_get_next().
5276 */
5277 tmp = idr_get_next(&ss->idr, &tmpid);
5278 if (!tmp)
5279 break;
5280 if (tmp->depth >= depth && tmp->stack[depth] == rootid) {
5281 ret = rcu_dereference(tmp->css);
5282 if (ret) {
5283 *foundid = tmpid;
5284 break;
5285 }
5286 }
5287 /* continue to scan from next id */
5288 tmpid = tmpid + 1;
5289 }
5290 return ret;
5291 }
5292
5293 /*
5294 * get corresponding css from file open on cgroupfs directory
5295 */
5296 struct cgroup_subsys_state *cgroup_css_from_dir(struct file *f, int id)
5297 {
5298 struct cgroup *cgrp;
5299 struct inode *inode;
5300 struct cgroup_subsys_state *css;
5301
5302 inode = f->f_dentry->d_inode;
5303 /* check in cgroup filesystem dir */
5304 if (inode->i_op != &cgroup_dir_inode_operations)
5305 return ERR_PTR(-EBADF);
5306
5307 if (id < 0 || id >= CGROUP_SUBSYS_COUNT)
5308 return ERR_PTR(-EINVAL);
5309
5310 /* get cgroup */
5311 cgrp = __d_cgrp(f->f_dentry);
5312 css = cgrp->subsys[id];
5313 return css ? css : ERR_PTR(-ENOENT);
5314 }
5315
5316 #ifdef CONFIG_CGROUP_DEBUG
5317 static struct cgroup_subsys_state *debug_create(struct cgroup *cont)
5318 {
5319 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5320
5321 if (!css)
5322 return ERR_PTR(-ENOMEM);
5323
5324 return css;
5325 }
5326
5327 static void debug_destroy(struct cgroup *cont)
5328 {
5329 kfree(cont->subsys[debug_subsys_id]);
5330 }
5331
5332 static u64 cgroup_refcount_read(struct cgroup *cont, struct cftype *cft)
5333 {
5334 return atomic_read(&cont->count);
5335 }
5336
5337 static u64 debug_taskcount_read(struct cgroup *cont, struct cftype *cft)
5338 {
5339 return cgroup_task_count(cont);
5340 }
5341
5342 static u64 current_css_set_read(struct cgroup *cont, struct cftype *cft)
5343 {
5344 return (u64)(unsigned long)current->cgroups;
5345 }
5346
5347 static u64 current_css_set_refcount_read(struct cgroup *cont,
5348 struct cftype *cft)
5349 {
5350 u64 count;
5351
5352 rcu_read_lock();
5353 count = atomic_read(&current->cgroups->refcount);
5354 rcu_read_unlock();
5355 return count;
5356 }
5357
5358 static int current_css_set_cg_links_read(struct cgroup *cont,
5359 struct cftype *cft,
5360 struct seq_file *seq)
5361 {
5362 struct cg_cgroup_link *link;
5363 struct css_set *cg;
5364
5365 read_lock(&css_set_lock);
5366 rcu_read_lock();
5367 cg = rcu_dereference(current->cgroups);
5368 list_for_each_entry(link, &cg->cg_links, cg_link_list) {
5369 struct cgroup *c = link->cgrp;
5370 const char *name;
5371
5372 if (c->dentry)
5373 name = c->dentry->d_name.name;
5374 else
5375 name = "?";
5376 seq_printf(seq, "Root %d group %s\n",
5377 c->root->hierarchy_id, name);
5378 }
5379 rcu_read_unlock();
5380 read_unlock(&css_set_lock);
5381 return 0;
5382 }
5383
5384 #define MAX_TASKS_SHOWN_PER_CSS 25
5385 static int cgroup_css_links_read(struct cgroup *cont,
5386 struct cftype *cft,
5387 struct seq_file *seq)
5388 {
5389 struct cg_cgroup_link *link;
5390
5391 read_lock(&css_set_lock);
5392 list_for_each_entry(link, &cont->css_sets, cgrp_link_list) {
5393 struct css_set *cg = link->cg;
5394 struct task_struct *task;
5395 int count = 0;
5396 seq_printf(seq, "css_set %p\n", cg);
5397 list_for_each_entry(task, &cg->tasks, cg_list) {
5398 if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
5399 seq_puts(seq, " ...\n");
5400 break;
5401 } else {
5402 seq_printf(seq, " task %d\n",
5403 task_pid_vnr(task));
5404 }
5405 }
5406 }
5407 read_unlock(&css_set_lock);
5408 return 0;
5409 }
5410
5411 static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft)
5412 {
5413 return test_bit(CGRP_RELEASABLE, &cgrp->flags);
5414 }
5415
5416 static struct cftype debug_files[] = {
5417 {
5418 .name = "cgroup_refcount",
5419 .read_u64 = cgroup_refcount_read,
5420 },
5421 {
5422 .name = "taskcount",
5423 .read_u64 = debug_taskcount_read,
5424 },
5425
5426 {
5427 .name = "current_css_set",
5428 .read_u64 = current_css_set_read,
5429 },
5430
5431 {
5432 .name = "current_css_set_refcount",
5433 .read_u64 = current_css_set_refcount_read,
5434 },
5435
5436 {
5437 .name = "current_css_set_cg_links",
5438 .read_seq_string = current_css_set_cg_links_read,
5439 },
5440
5441 {
5442 .name = "cgroup_css_links",
5443 .read_seq_string = cgroup_css_links_read,
5444 },
5445
5446 {
5447 .name = "releasable",
5448 .read_u64 = releasable_read,
5449 },
5450
5451 { } /* terminate */
5452 };
5453
5454 struct cgroup_subsys debug_subsys = {
5455 .name = "debug",
5456 .create = debug_create,
5457 .destroy = debug_destroy,
5458 .subsys_id = debug_subsys_id,
5459 .base_cftypes = debug_files,
5460 };
5461 #endif /* CONFIG_CGROUP_DEBUG */
This page took 0.195489 seconds and 4 git commands to generate.