cgroup: use rculist ops for cgroup->children
[deliverable/linux.git] / kernel / cgroup.c
1 /*
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29 #include <linux/cgroup.h>
30 #include <linux/cred.h>
31 #include <linux/ctype.h>
32 #include <linux/errno.h>
33 #include <linux/fs.h>
34 #include <linux/init_task.h>
35 #include <linux/kernel.h>
36 #include <linux/list.h>
37 #include <linux/mm.h>
38 #include <linux/mutex.h>
39 #include <linux/mount.h>
40 #include <linux/pagemap.h>
41 #include <linux/proc_fs.h>
42 #include <linux/rcupdate.h>
43 #include <linux/sched.h>
44 #include <linux/backing-dev.h>
45 #include <linux/seq_file.h>
46 #include <linux/slab.h>
47 #include <linux/magic.h>
48 #include <linux/spinlock.h>
49 #include <linux/string.h>
50 #include <linux/sort.h>
51 #include <linux/kmod.h>
52 #include <linux/module.h>
53 #include <linux/delayacct.h>
54 #include <linux/cgroupstats.h>
55 #include <linux/hash.h>
56 #include <linux/namei.h>
57 #include <linux/pid_namespace.h>
58 #include <linux/idr.h>
59 #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
60 #include <linux/eventfd.h>
61 #include <linux/poll.h>
62 #include <linux/flex_array.h> /* used in cgroup_attach_proc */
63 #include <linux/kthread.h>
64
65 #include <linux/atomic.h>
66
67 /* css deactivation bias, makes css->refcnt negative to deny new trygets */
68 #define CSS_DEACT_BIAS INT_MIN
69
70 /*
71 * cgroup_mutex is the master lock. Any modification to cgroup or its
72 * hierarchy must be performed while holding it.
73 *
74 * cgroup_root_mutex nests inside cgroup_mutex and should be held to modify
75 * cgroupfs_root of any cgroup hierarchy - subsys list, flags,
76 * release_agent_path and so on. Modifying requires both cgroup_mutex and
77 * cgroup_root_mutex. Readers can acquire either of the two. This is to
78 * break the following locking order cycle.
79 *
80 * A. cgroup_mutex -> cred_guard_mutex -> s_type->i_mutex_key -> namespace_sem
81 * B. namespace_sem -> cgroup_mutex
82 *
83 * B happens only through cgroup_show_options() and using cgroup_root_mutex
84 * breaks it.
85 */
86 static DEFINE_MUTEX(cgroup_mutex);
87 static DEFINE_MUTEX(cgroup_root_mutex);
88
89 /*
90 * Generate an array of cgroup subsystem pointers. At boot time, this is
91 * populated with the built in subsystems, and modular subsystems are
92 * registered after that. The mutable section of this array is protected by
93 * cgroup_mutex.
94 */
95 #define SUBSYS(_x) [_x ## _subsys_id] = &_x ## _subsys,
96 #define IS_SUBSYS_ENABLED(option) IS_BUILTIN(option)
97 static struct cgroup_subsys *subsys[CGROUP_SUBSYS_COUNT] = {
98 #include <linux/cgroup_subsys.h>
99 };
100
101 #define MAX_CGROUP_ROOT_NAMELEN 64
102
103 /*
104 * A cgroupfs_root represents the root of a cgroup hierarchy,
105 * and may be associated with a superblock to form an active
106 * hierarchy
107 */
108 struct cgroupfs_root {
109 struct super_block *sb;
110
111 /*
112 * The bitmask of subsystems intended to be attached to this
113 * hierarchy
114 */
115 unsigned long subsys_mask;
116
117 /* Unique id for this hierarchy. */
118 int hierarchy_id;
119
120 /* The bitmask of subsystems currently attached to this hierarchy */
121 unsigned long actual_subsys_mask;
122
123 /* A list running through the attached subsystems */
124 struct list_head subsys_list;
125
126 /* The root cgroup for this hierarchy */
127 struct cgroup top_cgroup;
128
129 /* Tracks how many cgroups are currently defined in hierarchy.*/
130 int number_of_cgroups;
131
132 /* A list running through the active hierarchies */
133 struct list_head root_list;
134
135 /* All cgroups on this root, cgroup_mutex protected */
136 struct list_head allcg_list;
137
138 /* Hierarchy-specific flags */
139 unsigned long flags;
140
141 /* The path to use for release notifications. */
142 char release_agent_path[PATH_MAX];
143
144 /* The name for this hierarchy - may be empty */
145 char name[MAX_CGROUP_ROOT_NAMELEN];
146 };
147
148 /*
149 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
150 * subsystems that are otherwise unattached - it never has more than a
151 * single cgroup, and all tasks are part of that cgroup.
152 */
153 static struct cgroupfs_root rootnode;
154
155 /*
156 * cgroupfs file entry, pointed to from leaf dentry->d_fsdata.
157 */
158 struct cfent {
159 struct list_head node;
160 struct dentry *dentry;
161 struct cftype *type;
162 };
163
164 /*
165 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
166 * cgroup_subsys->use_id != 0.
167 */
168 #define CSS_ID_MAX (65535)
169 struct css_id {
170 /*
171 * The css to which this ID points. This pointer is set to valid value
172 * after cgroup is populated. If cgroup is removed, this will be NULL.
173 * This pointer is expected to be RCU-safe because destroy()
174 * is called after synchronize_rcu(). But for safe use, css_tryget()
175 * should be used for avoiding race.
176 */
177 struct cgroup_subsys_state __rcu *css;
178 /*
179 * ID of this css.
180 */
181 unsigned short id;
182 /*
183 * Depth in hierarchy which this ID belongs to.
184 */
185 unsigned short depth;
186 /*
187 * ID is freed by RCU. (and lookup routine is RCU safe.)
188 */
189 struct rcu_head rcu_head;
190 /*
191 * Hierarchy of CSS ID belongs to.
192 */
193 unsigned short stack[0]; /* Array of Length (depth+1) */
194 };
195
196 /*
197 * cgroup_event represents events which userspace want to receive.
198 */
199 struct cgroup_event {
200 /*
201 * Cgroup which the event belongs to.
202 */
203 struct cgroup *cgrp;
204 /*
205 * Control file which the event associated.
206 */
207 struct cftype *cft;
208 /*
209 * eventfd to signal userspace about the event.
210 */
211 struct eventfd_ctx *eventfd;
212 /*
213 * Each of these stored in a list by the cgroup.
214 */
215 struct list_head list;
216 /*
217 * All fields below needed to unregister event when
218 * userspace closes eventfd.
219 */
220 poll_table pt;
221 wait_queue_head_t *wqh;
222 wait_queue_t wait;
223 struct work_struct remove;
224 };
225
226 /* The list of hierarchy roots */
227
228 static LIST_HEAD(roots);
229 static int root_count;
230
231 static DEFINE_IDA(hierarchy_ida);
232 static int next_hierarchy_id;
233 static DEFINE_SPINLOCK(hierarchy_id_lock);
234
235 /* dummytop is a shorthand for the dummy hierarchy's top cgroup */
236 #define dummytop (&rootnode.top_cgroup)
237
238 /* This flag indicates whether tasks in the fork and exit paths should
239 * check for fork/exit handlers to call. This avoids us having to do
240 * extra work in the fork/exit path if none of the subsystems need to
241 * be called.
242 */
243 static int need_forkexit_callback __read_mostly;
244
245 #ifdef CONFIG_PROVE_LOCKING
246 int cgroup_lock_is_held(void)
247 {
248 return lockdep_is_held(&cgroup_mutex);
249 }
250 #else /* #ifdef CONFIG_PROVE_LOCKING */
251 int cgroup_lock_is_held(void)
252 {
253 return mutex_is_locked(&cgroup_mutex);
254 }
255 #endif /* #else #ifdef CONFIG_PROVE_LOCKING */
256
257 EXPORT_SYMBOL_GPL(cgroup_lock_is_held);
258
259 static int css_unbias_refcnt(int refcnt)
260 {
261 return refcnt >= 0 ? refcnt : refcnt - CSS_DEACT_BIAS;
262 }
263
264 /* the current nr of refs, always >= 0 whether @css is deactivated or not */
265 static int css_refcnt(struct cgroup_subsys_state *css)
266 {
267 int v = atomic_read(&css->refcnt);
268
269 return css_unbias_refcnt(v);
270 }
271
272 /* convenient tests for these bits */
273 inline int cgroup_is_removed(const struct cgroup *cgrp)
274 {
275 return test_bit(CGRP_REMOVED, &cgrp->flags);
276 }
277
278 /* bits in struct cgroupfs_root flags field */
279 enum {
280 ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
281 ROOT_XATTR, /* supports extended attributes */
282 };
283
284 static int cgroup_is_releasable(const struct cgroup *cgrp)
285 {
286 const int bits =
287 (1 << CGRP_RELEASABLE) |
288 (1 << CGRP_NOTIFY_ON_RELEASE);
289 return (cgrp->flags & bits) == bits;
290 }
291
292 static int notify_on_release(const struct cgroup *cgrp)
293 {
294 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
295 }
296
297 static int clone_children(const struct cgroup *cgrp)
298 {
299 return test_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
300 }
301
302 /*
303 * for_each_subsys() allows you to iterate on each subsystem attached to
304 * an active hierarchy
305 */
306 #define for_each_subsys(_root, _ss) \
307 list_for_each_entry(_ss, &_root->subsys_list, sibling)
308
309 /* for_each_active_root() allows you to iterate across the active hierarchies */
310 #define for_each_active_root(_root) \
311 list_for_each_entry(_root, &roots, root_list)
312
313 static inline struct cgroup *__d_cgrp(struct dentry *dentry)
314 {
315 return dentry->d_fsdata;
316 }
317
318 static inline struct cfent *__d_cfe(struct dentry *dentry)
319 {
320 return dentry->d_fsdata;
321 }
322
323 static inline struct cftype *__d_cft(struct dentry *dentry)
324 {
325 return __d_cfe(dentry)->type;
326 }
327
328 /* the list of cgroups eligible for automatic release. Protected by
329 * release_list_lock */
330 static LIST_HEAD(release_list);
331 static DEFINE_RAW_SPINLOCK(release_list_lock);
332 static void cgroup_release_agent(struct work_struct *work);
333 static DECLARE_WORK(release_agent_work, cgroup_release_agent);
334 static void check_for_release(struct cgroup *cgrp);
335
336 /* Link structure for associating css_set objects with cgroups */
337 struct cg_cgroup_link {
338 /*
339 * List running through cg_cgroup_links associated with a
340 * cgroup, anchored on cgroup->css_sets
341 */
342 struct list_head cgrp_link_list;
343 struct cgroup *cgrp;
344 /*
345 * List running through cg_cgroup_links pointing at a
346 * single css_set object, anchored on css_set->cg_links
347 */
348 struct list_head cg_link_list;
349 struct css_set *cg;
350 };
351
352 /* The default css_set - used by init and its children prior to any
353 * hierarchies being mounted. It contains a pointer to the root state
354 * for each subsystem. Also used to anchor the list of css_sets. Not
355 * reference-counted, to improve performance when child cgroups
356 * haven't been created.
357 */
358
359 static struct css_set init_css_set;
360 static struct cg_cgroup_link init_css_set_link;
361
362 static int cgroup_init_idr(struct cgroup_subsys *ss,
363 struct cgroup_subsys_state *css);
364
365 /* css_set_lock protects the list of css_set objects, and the
366 * chain of tasks off each css_set. Nests outside task->alloc_lock
367 * due to cgroup_iter_start() */
368 static DEFINE_RWLOCK(css_set_lock);
369 static int css_set_count;
370
371 /*
372 * hash table for cgroup groups. This improves the performance to find
373 * an existing css_set. This hash doesn't (currently) take into
374 * account cgroups in empty hierarchies.
375 */
376 #define CSS_SET_HASH_BITS 7
377 #define CSS_SET_TABLE_SIZE (1 << CSS_SET_HASH_BITS)
378 static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE];
379
380 static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[])
381 {
382 int i;
383 int index;
384 unsigned long tmp = 0UL;
385
386 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
387 tmp += (unsigned long)css[i];
388 tmp = (tmp >> 16) ^ tmp;
389
390 index = hash_long(tmp, CSS_SET_HASH_BITS);
391
392 return &css_set_table[index];
393 }
394
395 /* We don't maintain the lists running through each css_set to its
396 * task until after the first call to cgroup_iter_start(). This
397 * reduces the fork()/exit() overhead for people who have cgroups
398 * compiled into their kernel but not actually in use */
399 static int use_task_css_set_links __read_mostly;
400
401 static void __put_css_set(struct css_set *cg, int taskexit)
402 {
403 struct cg_cgroup_link *link;
404 struct cg_cgroup_link *saved_link;
405 /*
406 * Ensure that the refcount doesn't hit zero while any readers
407 * can see it. Similar to atomic_dec_and_lock(), but for an
408 * rwlock
409 */
410 if (atomic_add_unless(&cg->refcount, -1, 1))
411 return;
412 write_lock(&css_set_lock);
413 if (!atomic_dec_and_test(&cg->refcount)) {
414 write_unlock(&css_set_lock);
415 return;
416 }
417
418 /* This css_set is dead. unlink it and release cgroup refcounts */
419 hlist_del(&cg->hlist);
420 css_set_count--;
421
422 list_for_each_entry_safe(link, saved_link, &cg->cg_links,
423 cg_link_list) {
424 struct cgroup *cgrp = link->cgrp;
425 list_del(&link->cg_link_list);
426 list_del(&link->cgrp_link_list);
427 if (atomic_dec_and_test(&cgrp->count) &&
428 notify_on_release(cgrp)) {
429 if (taskexit)
430 set_bit(CGRP_RELEASABLE, &cgrp->flags);
431 check_for_release(cgrp);
432 }
433
434 kfree(link);
435 }
436
437 write_unlock(&css_set_lock);
438 kfree_rcu(cg, rcu_head);
439 }
440
441 /*
442 * refcounted get/put for css_set objects
443 */
444 static inline void get_css_set(struct css_set *cg)
445 {
446 atomic_inc(&cg->refcount);
447 }
448
449 static inline void put_css_set(struct css_set *cg)
450 {
451 __put_css_set(cg, 0);
452 }
453
454 static inline void put_css_set_taskexit(struct css_set *cg)
455 {
456 __put_css_set(cg, 1);
457 }
458
459 /*
460 * compare_css_sets - helper function for find_existing_css_set().
461 * @cg: candidate css_set being tested
462 * @old_cg: existing css_set for a task
463 * @new_cgrp: cgroup that's being entered by the task
464 * @template: desired set of css pointers in css_set (pre-calculated)
465 *
466 * Returns true if "cg" matches "old_cg" except for the hierarchy
467 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
468 */
469 static bool compare_css_sets(struct css_set *cg,
470 struct css_set *old_cg,
471 struct cgroup *new_cgrp,
472 struct cgroup_subsys_state *template[])
473 {
474 struct list_head *l1, *l2;
475
476 if (memcmp(template, cg->subsys, sizeof(cg->subsys))) {
477 /* Not all subsystems matched */
478 return false;
479 }
480
481 /*
482 * Compare cgroup pointers in order to distinguish between
483 * different cgroups in heirarchies with no subsystems. We
484 * could get by with just this check alone (and skip the
485 * memcmp above) but on most setups the memcmp check will
486 * avoid the need for this more expensive check on almost all
487 * candidates.
488 */
489
490 l1 = &cg->cg_links;
491 l2 = &old_cg->cg_links;
492 while (1) {
493 struct cg_cgroup_link *cgl1, *cgl2;
494 struct cgroup *cg1, *cg2;
495
496 l1 = l1->next;
497 l2 = l2->next;
498 /* See if we reached the end - both lists are equal length. */
499 if (l1 == &cg->cg_links) {
500 BUG_ON(l2 != &old_cg->cg_links);
501 break;
502 } else {
503 BUG_ON(l2 == &old_cg->cg_links);
504 }
505 /* Locate the cgroups associated with these links. */
506 cgl1 = list_entry(l1, struct cg_cgroup_link, cg_link_list);
507 cgl2 = list_entry(l2, struct cg_cgroup_link, cg_link_list);
508 cg1 = cgl1->cgrp;
509 cg2 = cgl2->cgrp;
510 /* Hierarchies should be linked in the same order. */
511 BUG_ON(cg1->root != cg2->root);
512
513 /*
514 * If this hierarchy is the hierarchy of the cgroup
515 * that's changing, then we need to check that this
516 * css_set points to the new cgroup; if it's any other
517 * hierarchy, then this css_set should point to the
518 * same cgroup as the old css_set.
519 */
520 if (cg1->root == new_cgrp->root) {
521 if (cg1 != new_cgrp)
522 return false;
523 } else {
524 if (cg1 != cg2)
525 return false;
526 }
527 }
528 return true;
529 }
530
531 /*
532 * find_existing_css_set() is a helper for
533 * find_css_set(), and checks to see whether an existing
534 * css_set is suitable.
535 *
536 * oldcg: the cgroup group that we're using before the cgroup
537 * transition
538 *
539 * cgrp: the cgroup that we're moving into
540 *
541 * template: location in which to build the desired set of subsystem
542 * state objects for the new cgroup group
543 */
544 static struct css_set *find_existing_css_set(
545 struct css_set *oldcg,
546 struct cgroup *cgrp,
547 struct cgroup_subsys_state *template[])
548 {
549 int i;
550 struct cgroupfs_root *root = cgrp->root;
551 struct hlist_head *hhead;
552 struct hlist_node *node;
553 struct css_set *cg;
554
555 /*
556 * Build the set of subsystem state objects that we want to see in the
557 * new css_set. while subsystems can change globally, the entries here
558 * won't change, so no need for locking.
559 */
560 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
561 if (root->subsys_mask & (1UL << i)) {
562 /* Subsystem is in this hierarchy. So we want
563 * the subsystem state from the new
564 * cgroup */
565 template[i] = cgrp->subsys[i];
566 } else {
567 /* Subsystem is not in this hierarchy, so we
568 * don't want to change the subsystem state */
569 template[i] = oldcg->subsys[i];
570 }
571 }
572
573 hhead = css_set_hash(template);
574 hlist_for_each_entry(cg, node, hhead, hlist) {
575 if (!compare_css_sets(cg, oldcg, cgrp, template))
576 continue;
577
578 /* This css_set matches what we need */
579 return cg;
580 }
581
582 /* No existing cgroup group matched */
583 return NULL;
584 }
585
586 static void free_cg_links(struct list_head *tmp)
587 {
588 struct cg_cgroup_link *link;
589 struct cg_cgroup_link *saved_link;
590
591 list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
592 list_del(&link->cgrp_link_list);
593 kfree(link);
594 }
595 }
596
597 /*
598 * allocate_cg_links() allocates "count" cg_cgroup_link structures
599 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
600 * success or a negative error
601 */
602 static int allocate_cg_links(int count, struct list_head *tmp)
603 {
604 struct cg_cgroup_link *link;
605 int i;
606 INIT_LIST_HEAD(tmp);
607 for (i = 0; i < count; i++) {
608 link = kmalloc(sizeof(*link), GFP_KERNEL);
609 if (!link) {
610 free_cg_links(tmp);
611 return -ENOMEM;
612 }
613 list_add(&link->cgrp_link_list, tmp);
614 }
615 return 0;
616 }
617
618 /**
619 * link_css_set - a helper function to link a css_set to a cgroup
620 * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
621 * @cg: the css_set to be linked
622 * @cgrp: the destination cgroup
623 */
624 static void link_css_set(struct list_head *tmp_cg_links,
625 struct css_set *cg, struct cgroup *cgrp)
626 {
627 struct cg_cgroup_link *link;
628
629 BUG_ON(list_empty(tmp_cg_links));
630 link = list_first_entry(tmp_cg_links, struct cg_cgroup_link,
631 cgrp_link_list);
632 link->cg = cg;
633 link->cgrp = cgrp;
634 atomic_inc(&cgrp->count);
635 list_move(&link->cgrp_link_list, &cgrp->css_sets);
636 /*
637 * Always add links to the tail of the list so that the list
638 * is sorted by order of hierarchy creation
639 */
640 list_add_tail(&link->cg_link_list, &cg->cg_links);
641 }
642
643 /*
644 * find_css_set() takes an existing cgroup group and a
645 * cgroup object, and returns a css_set object that's
646 * equivalent to the old group, but with the given cgroup
647 * substituted into the appropriate hierarchy. Must be called with
648 * cgroup_mutex held
649 */
650 static struct css_set *find_css_set(
651 struct css_set *oldcg, struct cgroup *cgrp)
652 {
653 struct css_set *res;
654 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
655
656 struct list_head tmp_cg_links;
657
658 struct hlist_head *hhead;
659 struct cg_cgroup_link *link;
660
661 /* First see if we already have a cgroup group that matches
662 * the desired set */
663 read_lock(&css_set_lock);
664 res = find_existing_css_set(oldcg, cgrp, template);
665 if (res)
666 get_css_set(res);
667 read_unlock(&css_set_lock);
668
669 if (res)
670 return res;
671
672 res = kmalloc(sizeof(*res), GFP_KERNEL);
673 if (!res)
674 return NULL;
675
676 /* Allocate all the cg_cgroup_link objects that we'll need */
677 if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
678 kfree(res);
679 return NULL;
680 }
681
682 atomic_set(&res->refcount, 1);
683 INIT_LIST_HEAD(&res->cg_links);
684 INIT_LIST_HEAD(&res->tasks);
685 INIT_HLIST_NODE(&res->hlist);
686
687 /* Copy the set of subsystem state objects generated in
688 * find_existing_css_set() */
689 memcpy(res->subsys, template, sizeof(res->subsys));
690
691 write_lock(&css_set_lock);
692 /* Add reference counts and links from the new css_set. */
693 list_for_each_entry(link, &oldcg->cg_links, cg_link_list) {
694 struct cgroup *c = link->cgrp;
695 if (c->root == cgrp->root)
696 c = cgrp;
697 link_css_set(&tmp_cg_links, res, c);
698 }
699
700 BUG_ON(!list_empty(&tmp_cg_links));
701
702 css_set_count++;
703
704 /* Add this cgroup group to the hash table */
705 hhead = css_set_hash(res->subsys);
706 hlist_add_head(&res->hlist, hhead);
707
708 write_unlock(&css_set_lock);
709
710 return res;
711 }
712
713 /*
714 * Return the cgroup for "task" from the given hierarchy. Must be
715 * called with cgroup_mutex held.
716 */
717 static struct cgroup *task_cgroup_from_root(struct task_struct *task,
718 struct cgroupfs_root *root)
719 {
720 struct css_set *css;
721 struct cgroup *res = NULL;
722
723 BUG_ON(!mutex_is_locked(&cgroup_mutex));
724 read_lock(&css_set_lock);
725 /*
726 * No need to lock the task - since we hold cgroup_mutex the
727 * task can't change groups, so the only thing that can happen
728 * is that it exits and its css is set back to init_css_set.
729 */
730 css = task->cgroups;
731 if (css == &init_css_set) {
732 res = &root->top_cgroup;
733 } else {
734 struct cg_cgroup_link *link;
735 list_for_each_entry(link, &css->cg_links, cg_link_list) {
736 struct cgroup *c = link->cgrp;
737 if (c->root == root) {
738 res = c;
739 break;
740 }
741 }
742 }
743 read_unlock(&css_set_lock);
744 BUG_ON(!res);
745 return res;
746 }
747
748 /*
749 * There is one global cgroup mutex. We also require taking
750 * task_lock() when dereferencing a task's cgroup subsys pointers.
751 * See "The task_lock() exception", at the end of this comment.
752 *
753 * A task must hold cgroup_mutex to modify cgroups.
754 *
755 * Any task can increment and decrement the count field without lock.
756 * So in general, code holding cgroup_mutex can't rely on the count
757 * field not changing. However, if the count goes to zero, then only
758 * cgroup_attach_task() can increment it again. Because a count of zero
759 * means that no tasks are currently attached, therefore there is no
760 * way a task attached to that cgroup can fork (the other way to
761 * increment the count). So code holding cgroup_mutex can safely
762 * assume that if the count is zero, it will stay zero. Similarly, if
763 * a task holds cgroup_mutex on a cgroup with zero count, it
764 * knows that the cgroup won't be removed, as cgroup_rmdir()
765 * needs that mutex.
766 *
767 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
768 * (usually) take cgroup_mutex. These are the two most performance
769 * critical pieces of code here. The exception occurs on cgroup_exit(),
770 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
771 * is taken, and if the cgroup count is zero, a usermode call made
772 * to the release agent with the name of the cgroup (path relative to
773 * the root of cgroup file system) as the argument.
774 *
775 * A cgroup can only be deleted if both its 'count' of using tasks
776 * is zero, and its list of 'children' cgroups is empty. Since all
777 * tasks in the system use _some_ cgroup, and since there is always at
778 * least one task in the system (init, pid == 1), therefore, top_cgroup
779 * always has either children cgroups and/or using tasks. So we don't
780 * need a special hack to ensure that top_cgroup cannot be deleted.
781 *
782 * The task_lock() exception
783 *
784 * The need for this exception arises from the action of
785 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
786 * another. It does so using cgroup_mutex, however there are
787 * several performance critical places that need to reference
788 * task->cgroup without the expense of grabbing a system global
789 * mutex. Therefore except as noted below, when dereferencing or, as
790 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
791 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
792 * the task_struct routinely used for such matters.
793 *
794 * P.S. One more locking exception. RCU is used to guard the
795 * update of a tasks cgroup pointer by cgroup_attach_task()
796 */
797
798 /**
799 * cgroup_lock - lock out any changes to cgroup structures
800 *
801 */
802 void cgroup_lock(void)
803 {
804 mutex_lock(&cgroup_mutex);
805 }
806 EXPORT_SYMBOL_GPL(cgroup_lock);
807
808 /**
809 * cgroup_unlock - release lock on cgroup changes
810 *
811 * Undo the lock taken in a previous cgroup_lock() call.
812 */
813 void cgroup_unlock(void)
814 {
815 mutex_unlock(&cgroup_mutex);
816 }
817 EXPORT_SYMBOL_GPL(cgroup_unlock);
818
819 /*
820 * A couple of forward declarations required, due to cyclic reference loop:
821 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
822 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
823 * -> cgroup_mkdir.
824 */
825
826 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode);
827 static struct dentry *cgroup_lookup(struct inode *, struct dentry *, unsigned int);
828 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
829 static int cgroup_populate_dir(struct cgroup *cgrp, bool base_files,
830 unsigned long subsys_mask);
831 static const struct inode_operations cgroup_dir_inode_operations;
832 static const struct file_operations proc_cgroupstats_operations;
833
834 static struct backing_dev_info cgroup_backing_dev_info = {
835 .name = "cgroup",
836 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
837 };
838
839 static int alloc_css_id(struct cgroup_subsys *ss,
840 struct cgroup *parent, struct cgroup *child);
841
842 static struct inode *cgroup_new_inode(umode_t mode, struct super_block *sb)
843 {
844 struct inode *inode = new_inode(sb);
845
846 if (inode) {
847 inode->i_ino = get_next_ino();
848 inode->i_mode = mode;
849 inode->i_uid = current_fsuid();
850 inode->i_gid = current_fsgid();
851 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
852 inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
853 }
854 return inode;
855 }
856
857 static void cgroup_diput(struct dentry *dentry, struct inode *inode)
858 {
859 /* is dentry a directory ? if so, kfree() associated cgroup */
860 if (S_ISDIR(inode->i_mode)) {
861 struct cgroup *cgrp = dentry->d_fsdata;
862 struct cgroup_subsys *ss;
863 BUG_ON(!(cgroup_is_removed(cgrp)));
864 /* It's possible for external users to be holding css
865 * reference counts on a cgroup; css_put() needs to
866 * be able to access the cgroup after decrementing
867 * the reference count in order to know if it needs to
868 * queue the cgroup to be handled by the release
869 * agent */
870 synchronize_rcu();
871
872 mutex_lock(&cgroup_mutex);
873 /*
874 * Release the subsystem state objects.
875 */
876 for_each_subsys(cgrp->root, ss)
877 ss->destroy(cgrp);
878
879 cgrp->root->number_of_cgroups--;
880 mutex_unlock(&cgroup_mutex);
881
882 /*
883 * Drop the active superblock reference that we took when we
884 * created the cgroup
885 */
886 deactivate_super(cgrp->root->sb);
887
888 /*
889 * if we're getting rid of the cgroup, refcount should ensure
890 * that there are no pidlists left.
891 */
892 BUG_ON(!list_empty(&cgrp->pidlists));
893
894 simple_xattrs_free(&cgrp->xattrs);
895
896 kfree_rcu(cgrp, rcu_head);
897 } else {
898 struct cfent *cfe = __d_cfe(dentry);
899 struct cgroup *cgrp = dentry->d_parent->d_fsdata;
900 struct cftype *cft = cfe->type;
901
902 WARN_ONCE(!list_empty(&cfe->node) &&
903 cgrp != &cgrp->root->top_cgroup,
904 "cfe still linked for %s\n", cfe->type->name);
905 kfree(cfe);
906 simple_xattrs_free(&cft->xattrs);
907 }
908 iput(inode);
909 }
910
911 static int cgroup_delete(const struct dentry *d)
912 {
913 return 1;
914 }
915
916 static void remove_dir(struct dentry *d)
917 {
918 struct dentry *parent = dget(d->d_parent);
919
920 d_delete(d);
921 simple_rmdir(parent->d_inode, d);
922 dput(parent);
923 }
924
925 static int cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
926 {
927 struct cfent *cfe;
928
929 lockdep_assert_held(&cgrp->dentry->d_inode->i_mutex);
930 lockdep_assert_held(&cgroup_mutex);
931
932 list_for_each_entry(cfe, &cgrp->files, node) {
933 struct dentry *d = cfe->dentry;
934
935 if (cft && cfe->type != cft)
936 continue;
937
938 dget(d);
939 d_delete(d);
940 simple_unlink(cgrp->dentry->d_inode, d);
941 list_del_init(&cfe->node);
942 dput(d);
943
944 return 0;
945 }
946 return -ENOENT;
947 }
948
949 /**
950 * cgroup_clear_directory - selective removal of base and subsystem files
951 * @dir: directory containing the files
952 * @base_files: true if the base files should be removed
953 * @subsys_mask: mask of the subsystem ids whose files should be removed
954 */
955 static void cgroup_clear_directory(struct dentry *dir, bool base_files,
956 unsigned long subsys_mask)
957 {
958 struct cgroup *cgrp = __d_cgrp(dir);
959 struct cgroup_subsys *ss;
960
961 for_each_subsys(cgrp->root, ss) {
962 struct cftype_set *set;
963 if (!test_bit(ss->subsys_id, &subsys_mask))
964 continue;
965 list_for_each_entry(set, &ss->cftsets, node)
966 cgroup_rm_file(cgrp, set->cfts);
967 }
968 if (base_files) {
969 while (!list_empty(&cgrp->files))
970 cgroup_rm_file(cgrp, NULL);
971 }
972 }
973
974 /*
975 * NOTE : the dentry must have been dget()'ed
976 */
977 static void cgroup_d_remove_dir(struct dentry *dentry)
978 {
979 struct dentry *parent;
980 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
981
982 cgroup_clear_directory(dentry, true, root->subsys_mask);
983
984 parent = dentry->d_parent;
985 spin_lock(&parent->d_lock);
986 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
987 list_del_init(&dentry->d_u.d_child);
988 spin_unlock(&dentry->d_lock);
989 spin_unlock(&parent->d_lock);
990 remove_dir(dentry);
991 }
992
993 /*
994 * Call with cgroup_mutex held. Drops reference counts on modules, including
995 * any duplicate ones that parse_cgroupfs_options took. If this function
996 * returns an error, no reference counts are touched.
997 */
998 static int rebind_subsystems(struct cgroupfs_root *root,
999 unsigned long final_subsys_mask)
1000 {
1001 unsigned long added_mask, removed_mask;
1002 struct cgroup *cgrp = &root->top_cgroup;
1003 int i;
1004
1005 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1006 BUG_ON(!mutex_is_locked(&cgroup_root_mutex));
1007
1008 removed_mask = root->actual_subsys_mask & ~final_subsys_mask;
1009 added_mask = final_subsys_mask & ~root->actual_subsys_mask;
1010 /* Check that any added subsystems are currently free */
1011 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1012 unsigned long bit = 1UL << i;
1013 struct cgroup_subsys *ss = subsys[i];
1014 if (!(bit & added_mask))
1015 continue;
1016 /*
1017 * Nobody should tell us to do a subsys that doesn't exist:
1018 * parse_cgroupfs_options should catch that case and refcounts
1019 * ensure that subsystems won't disappear once selected.
1020 */
1021 BUG_ON(ss == NULL);
1022 if (ss->root != &rootnode) {
1023 /* Subsystem isn't free */
1024 return -EBUSY;
1025 }
1026 }
1027
1028 /* Currently we don't handle adding/removing subsystems when
1029 * any child cgroups exist. This is theoretically supportable
1030 * but involves complex error handling, so it's being left until
1031 * later */
1032 if (root->number_of_cgroups > 1)
1033 return -EBUSY;
1034
1035 /* Process each subsystem */
1036 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1037 struct cgroup_subsys *ss = subsys[i];
1038 unsigned long bit = 1UL << i;
1039 if (bit & added_mask) {
1040 /* We're binding this subsystem to this hierarchy */
1041 BUG_ON(ss == NULL);
1042 BUG_ON(cgrp->subsys[i]);
1043 BUG_ON(!dummytop->subsys[i]);
1044 BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
1045 cgrp->subsys[i] = dummytop->subsys[i];
1046 cgrp->subsys[i]->cgroup = cgrp;
1047 list_move(&ss->sibling, &root->subsys_list);
1048 ss->root = root;
1049 if (ss->bind)
1050 ss->bind(cgrp);
1051 /* refcount was already taken, and we're keeping it */
1052 } else if (bit & removed_mask) {
1053 /* We're removing this subsystem */
1054 BUG_ON(ss == NULL);
1055 BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
1056 BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
1057 if (ss->bind)
1058 ss->bind(dummytop);
1059 dummytop->subsys[i]->cgroup = dummytop;
1060 cgrp->subsys[i] = NULL;
1061 subsys[i]->root = &rootnode;
1062 list_move(&ss->sibling, &rootnode.subsys_list);
1063 /* subsystem is now free - drop reference on module */
1064 module_put(ss->module);
1065 } else if (bit & final_subsys_mask) {
1066 /* Subsystem state should already exist */
1067 BUG_ON(ss == NULL);
1068 BUG_ON(!cgrp->subsys[i]);
1069 /*
1070 * a refcount was taken, but we already had one, so
1071 * drop the extra reference.
1072 */
1073 module_put(ss->module);
1074 #ifdef CONFIG_MODULE_UNLOAD
1075 BUG_ON(ss->module && !module_refcount(ss->module));
1076 #endif
1077 } else {
1078 /* Subsystem state shouldn't exist */
1079 BUG_ON(cgrp->subsys[i]);
1080 }
1081 }
1082 root->subsys_mask = root->actual_subsys_mask = final_subsys_mask;
1083 synchronize_rcu();
1084
1085 return 0;
1086 }
1087
1088 static int cgroup_show_options(struct seq_file *seq, struct dentry *dentry)
1089 {
1090 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
1091 struct cgroup_subsys *ss;
1092
1093 mutex_lock(&cgroup_root_mutex);
1094 for_each_subsys(root, ss)
1095 seq_printf(seq, ",%s", ss->name);
1096 if (test_bit(ROOT_NOPREFIX, &root->flags))
1097 seq_puts(seq, ",noprefix");
1098 if (test_bit(ROOT_XATTR, &root->flags))
1099 seq_puts(seq, ",xattr");
1100 if (strlen(root->release_agent_path))
1101 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
1102 if (clone_children(&root->top_cgroup))
1103 seq_puts(seq, ",clone_children");
1104 if (strlen(root->name))
1105 seq_printf(seq, ",name=%s", root->name);
1106 mutex_unlock(&cgroup_root_mutex);
1107 return 0;
1108 }
1109
1110 struct cgroup_sb_opts {
1111 unsigned long subsys_mask;
1112 unsigned long flags;
1113 char *release_agent;
1114 bool clone_children;
1115 char *name;
1116 /* User explicitly requested empty subsystem */
1117 bool none;
1118
1119 struct cgroupfs_root *new_root;
1120
1121 };
1122
1123 /*
1124 * Convert a hierarchy specifier into a bitmask of subsystems and flags. Call
1125 * with cgroup_mutex held to protect the subsys[] array. This function takes
1126 * refcounts on subsystems to be used, unless it returns error, in which case
1127 * no refcounts are taken.
1128 */
1129 static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
1130 {
1131 char *token, *o = data;
1132 bool all_ss = false, one_ss = false;
1133 unsigned long mask = (unsigned long)-1;
1134 int i;
1135 bool module_pin_failed = false;
1136
1137 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1138
1139 #ifdef CONFIG_CPUSETS
1140 mask = ~(1UL << cpuset_subsys_id);
1141 #endif
1142
1143 memset(opts, 0, sizeof(*opts));
1144
1145 while ((token = strsep(&o, ",")) != NULL) {
1146 if (!*token)
1147 return -EINVAL;
1148 if (!strcmp(token, "none")) {
1149 /* Explicitly have no subsystems */
1150 opts->none = true;
1151 continue;
1152 }
1153 if (!strcmp(token, "all")) {
1154 /* Mutually exclusive option 'all' + subsystem name */
1155 if (one_ss)
1156 return -EINVAL;
1157 all_ss = true;
1158 continue;
1159 }
1160 if (!strcmp(token, "noprefix")) {
1161 set_bit(ROOT_NOPREFIX, &opts->flags);
1162 continue;
1163 }
1164 if (!strcmp(token, "clone_children")) {
1165 opts->clone_children = true;
1166 continue;
1167 }
1168 if (!strcmp(token, "xattr")) {
1169 set_bit(ROOT_XATTR, &opts->flags);
1170 continue;
1171 }
1172 if (!strncmp(token, "release_agent=", 14)) {
1173 /* Specifying two release agents is forbidden */
1174 if (opts->release_agent)
1175 return -EINVAL;
1176 opts->release_agent =
1177 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
1178 if (!opts->release_agent)
1179 return -ENOMEM;
1180 continue;
1181 }
1182 if (!strncmp(token, "name=", 5)) {
1183 const char *name = token + 5;
1184 /* Can't specify an empty name */
1185 if (!strlen(name))
1186 return -EINVAL;
1187 /* Must match [\w.-]+ */
1188 for (i = 0; i < strlen(name); i++) {
1189 char c = name[i];
1190 if (isalnum(c))
1191 continue;
1192 if ((c == '.') || (c == '-') || (c == '_'))
1193 continue;
1194 return -EINVAL;
1195 }
1196 /* Specifying two names is forbidden */
1197 if (opts->name)
1198 return -EINVAL;
1199 opts->name = kstrndup(name,
1200 MAX_CGROUP_ROOT_NAMELEN - 1,
1201 GFP_KERNEL);
1202 if (!opts->name)
1203 return -ENOMEM;
1204
1205 continue;
1206 }
1207
1208 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1209 struct cgroup_subsys *ss = subsys[i];
1210 if (ss == NULL)
1211 continue;
1212 if (strcmp(token, ss->name))
1213 continue;
1214 if (ss->disabled)
1215 continue;
1216
1217 /* Mutually exclusive option 'all' + subsystem name */
1218 if (all_ss)
1219 return -EINVAL;
1220 set_bit(i, &opts->subsys_mask);
1221 one_ss = true;
1222
1223 break;
1224 }
1225 if (i == CGROUP_SUBSYS_COUNT)
1226 return -ENOENT;
1227 }
1228
1229 /*
1230 * If the 'all' option was specified select all the subsystems,
1231 * otherwise if 'none', 'name=' and a subsystem name options
1232 * were not specified, let's default to 'all'
1233 */
1234 if (all_ss || (!one_ss && !opts->none && !opts->name)) {
1235 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1236 struct cgroup_subsys *ss = subsys[i];
1237 if (ss == NULL)
1238 continue;
1239 if (ss->disabled)
1240 continue;
1241 set_bit(i, &opts->subsys_mask);
1242 }
1243 }
1244
1245 /* Consistency checks */
1246
1247 /*
1248 * Option noprefix was introduced just for backward compatibility
1249 * with the old cpuset, so we allow noprefix only if mounting just
1250 * the cpuset subsystem.
1251 */
1252 if (test_bit(ROOT_NOPREFIX, &opts->flags) &&
1253 (opts->subsys_mask & mask))
1254 return -EINVAL;
1255
1256
1257 /* Can't specify "none" and some subsystems */
1258 if (opts->subsys_mask && opts->none)
1259 return -EINVAL;
1260
1261 /*
1262 * We either have to specify by name or by subsystems. (So all
1263 * empty hierarchies must have a name).
1264 */
1265 if (!opts->subsys_mask && !opts->name)
1266 return -EINVAL;
1267
1268 /*
1269 * Grab references on all the modules we'll need, so the subsystems
1270 * don't dance around before rebind_subsystems attaches them. This may
1271 * take duplicate reference counts on a subsystem that's already used,
1272 * but rebind_subsystems handles this case.
1273 */
1274 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1275 unsigned long bit = 1UL << i;
1276
1277 if (!(bit & opts->subsys_mask))
1278 continue;
1279 if (!try_module_get(subsys[i]->module)) {
1280 module_pin_failed = true;
1281 break;
1282 }
1283 }
1284 if (module_pin_failed) {
1285 /*
1286 * oops, one of the modules was going away. this means that we
1287 * raced with a module_delete call, and to the user this is
1288 * essentially a "subsystem doesn't exist" case.
1289 */
1290 for (i--; i >= 0; i--) {
1291 /* drop refcounts only on the ones we took */
1292 unsigned long bit = 1UL << i;
1293
1294 if (!(bit & opts->subsys_mask))
1295 continue;
1296 module_put(subsys[i]->module);
1297 }
1298 return -ENOENT;
1299 }
1300
1301 return 0;
1302 }
1303
1304 static void drop_parsed_module_refcounts(unsigned long subsys_mask)
1305 {
1306 int i;
1307 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1308 unsigned long bit = 1UL << i;
1309
1310 if (!(bit & subsys_mask))
1311 continue;
1312 module_put(subsys[i]->module);
1313 }
1314 }
1315
1316 static int cgroup_remount(struct super_block *sb, int *flags, char *data)
1317 {
1318 int ret = 0;
1319 struct cgroupfs_root *root = sb->s_fs_info;
1320 struct cgroup *cgrp = &root->top_cgroup;
1321 struct cgroup_sb_opts opts;
1322 unsigned long added_mask, removed_mask;
1323
1324 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
1325 mutex_lock(&cgroup_mutex);
1326 mutex_lock(&cgroup_root_mutex);
1327
1328 /* See what subsystems are wanted */
1329 ret = parse_cgroupfs_options(data, &opts);
1330 if (ret)
1331 goto out_unlock;
1332
1333 /* See feature-removal-schedule.txt */
1334 if (opts.subsys_mask != root->actual_subsys_mask || opts.release_agent)
1335 pr_warning("cgroup: option changes via remount are deprecated (pid=%d comm=%s)\n",
1336 task_tgid_nr(current), current->comm);
1337
1338 added_mask = opts.subsys_mask & ~root->subsys_mask;
1339 removed_mask = root->subsys_mask & ~opts.subsys_mask;
1340
1341 /* Don't allow flags or name to change at remount */
1342 if (opts.flags != root->flags ||
1343 (opts.name && strcmp(opts.name, root->name))) {
1344 ret = -EINVAL;
1345 drop_parsed_module_refcounts(opts.subsys_mask);
1346 goto out_unlock;
1347 }
1348
1349 ret = rebind_subsystems(root, opts.subsys_mask);
1350 if (ret) {
1351 drop_parsed_module_refcounts(opts.subsys_mask);
1352 goto out_unlock;
1353 }
1354
1355 /* clear out any existing files and repopulate subsystem files */
1356 cgroup_clear_directory(cgrp->dentry, false, removed_mask);
1357 /* re-populate subsystem files */
1358 cgroup_populate_dir(cgrp, false, added_mask);
1359
1360 if (opts.release_agent)
1361 strcpy(root->release_agent_path, opts.release_agent);
1362 out_unlock:
1363 kfree(opts.release_agent);
1364 kfree(opts.name);
1365 mutex_unlock(&cgroup_root_mutex);
1366 mutex_unlock(&cgroup_mutex);
1367 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
1368 return ret;
1369 }
1370
1371 static const struct super_operations cgroup_ops = {
1372 .statfs = simple_statfs,
1373 .drop_inode = generic_delete_inode,
1374 .show_options = cgroup_show_options,
1375 .remount_fs = cgroup_remount,
1376 };
1377
1378 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1379 {
1380 INIT_LIST_HEAD(&cgrp->sibling);
1381 INIT_LIST_HEAD(&cgrp->children);
1382 INIT_LIST_HEAD(&cgrp->files);
1383 INIT_LIST_HEAD(&cgrp->css_sets);
1384 INIT_LIST_HEAD(&cgrp->release_list);
1385 INIT_LIST_HEAD(&cgrp->pidlists);
1386 mutex_init(&cgrp->pidlist_mutex);
1387 INIT_LIST_HEAD(&cgrp->event_list);
1388 spin_lock_init(&cgrp->event_list_lock);
1389 simple_xattrs_init(&cgrp->xattrs);
1390 }
1391
1392 static void init_cgroup_root(struct cgroupfs_root *root)
1393 {
1394 struct cgroup *cgrp = &root->top_cgroup;
1395
1396 INIT_LIST_HEAD(&root->subsys_list);
1397 INIT_LIST_HEAD(&root->root_list);
1398 INIT_LIST_HEAD(&root->allcg_list);
1399 root->number_of_cgroups = 1;
1400 cgrp->root = root;
1401 cgrp->top_cgroup = cgrp;
1402 list_add_tail(&cgrp->allcg_node, &root->allcg_list);
1403 init_cgroup_housekeeping(cgrp);
1404 }
1405
1406 static bool init_root_id(struct cgroupfs_root *root)
1407 {
1408 int ret = 0;
1409
1410 do {
1411 if (!ida_pre_get(&hierarchy_ida, GFP_KERNEL))
1412 return false;
1413 spin_lock(&hierarchy_id_lock);
1414 /* Try to allocate the next unused ID */
1415 ret = ida_get_new_above(&hierarchy_ida, next_hierarchy_id,
1416 &root->hierarchy_id);
1417 if (ret == -ENOSPC)
1418 /* Try again starting from 0 */
1419 ret = ida_get_new(&hierarchy_ida, &root->hierarchy_id);
1420 if (!ret) {
1421 next_hierarchy_id = root->hierarchy_id + 1;
1422 } else if (ret != -EAGAIN) {
1423 /* Can only get here if the 31-bit IDR is full ... */
1424 BUG_ON(ret);
1425 }
1426 spin_unlock(&hierarchy_id_lock);
1427 } while (ret);
1428 return true;
1429 }
1430
1431 static int cgroup_test_super(struct super_block *sb, void *data)
1432 {
1433 struct cgroup_sb_opts *opts = data;
1434 struct cgroupfs_root *root = sb->s_fs_info;
1435
1436 /* If we asked for a name then it must match */
1437 if (opts->name && strcmp(opts->name, root->name))
1438 return 0;
1439
1440 /*
1441 * If we asked for subsystems (or explicitly for no
1442 * subsystems) then they must match
1443 */
1444 if ((opts->subsys_mask || opts->none)
1445 && (opts->subsys_mask != root->subsys_mask))
1446 return 0;
1447
1448 return 1;
1449 }
1450
1451 static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
1452 {
1453 struct cgroupfs_root *root;
1454
1455 if (!opts->subsys_mask && !opts->none)
1456 return NULL;
1457
1458 root = kzalloc(sizeof(*root), GFP_KERNEL);
1459 if (!root)
1460 return ERR_PTR(-ENOMEM);
1461
1462 if (!init_root_id(root)) {
1463 kfree(root);
1464 return ERR_PTR(-ENOMEM);
1465 }
1466 init_cgroup_root(root);
1467
1468 root->subsys_mask = opts->subsys_mask;
1469 root->flags = opts->flags;
1470 if (opts->release_agent)
1471 strcpy(root->release_agent_path, opts->release_agent);
1472 if (opts->name)
1473 strcpy(root->name, opts->name);
1474 if (opts->clone_children)
1475 set_bit(CGRP_CLONE_CHILDREN, &root->top_cgroup.flags);
1476 return root;
1477 }
1478
1479 static void cgroup_drop_root(struct cgroupfs_root *root)
1480 {
1481 if (!root)
1482 return;
1483
1484 BUG_ON(!root->hierarchy_id);
1485 spin_lock(&hierarchy_id_lock);
1486 ida_remove(&hierarchy_ida, root->hierarchy_id);
1487 spin_unlock(&hierarchy_id_lock);
1488 kfree(root);
1489 }
1490
1491 static int cgroup_set_super(struct super_block *sb, void *data)
1492 {
1493 int ret;
1494 struct cgroup_sb_opts *opts = data;
1495
1496 /* If we don't have a new root, we can't set up a new sb */
1497 if (!opts->new_root)
1498 return -EINVAL;
1499
1500 BUG_ON(!opts->subsys_mask && !opts->none);
1501
1502 ret = set_anon_super(sb, NULL);
1503 if (ret)
1504 return ret;
1505
1506 sb->s_fs_info = opts->new_root;
1507 opts->new_root->sb = sb;
1508
1509 sb->s_blocksize = PAGE_CACHE_SIZE;
1510 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
1511 sb->s_magic = CGROUP_SUPER_MAGIC;
1512 sb->s_op = &cgroup_ops;
1513
1514 return 0;
1515 }
1516
1517 static int cgroup_get_rootdir(struct super_block *sb)
1518 {
1519 static const struct dentry_operations cgroup_dops = {
1520 .d_iput = cgroup_diput,
1521 .d_delete = cgroup_delete,
1522 };
1523
1524 struct inode *inode =
1525 cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
1526
1527 if (!inode)
1528 return -ENOMEM;
1529
1530 inode->i_fop = &simple_dir_operations;
1531 inode->i_op = &cgroup_dir_inode_operations;
1532 /* directories start off with i_nlink == 2 (for "." entry) */
1533 inc_nlink(inode);
1534 sb->s_root = d_make_root(inode);
1535 if (!sb->s_root)
1536 return -ENOMEM;
1537 /* for everything else we want ->d_op set */
1538 sb->s_d_op = &cgroup_dops;
1539 return 0;
1540 }
1541
1542 static struct dentry *cgroup_mount(struct file_system_type *fs_type,
1543 int flags, const char *unused_dev_name,
1544 void *data)
1545 {
1546 struct cgroup_sb_opts opts;
1547 struct cgroupfs_root *root;
1548 int ret = 0;
1549 struct super_block *sb;
1550 struct cgroupfs_root *new_root;
1551 struct inode *inode;
1552
1553 /* First find the desired set of subsystems */
1554 mutex_lock(&cgroup_mutex);
1555 ret = parse_cgroupfs_options(data, &opts);
1556 mutex_unlock(&cgroup_mutex);
1557 if (ret)
1558 goto out_err;
1559
1560 /*
1561 * Allocate a new cgroup root. We may not need it if we're
1562 * reusing an existing hierarchy.
1563 */
1564 new_root = cgroup_root_from_opts(&opts);
1565 if (IS_ERR(new_root)) {
1566 ret = PTR_ERR(new_root);
1567 goto drop_modules;
1568 }
1569 opts.new_root = new_root;
1570
1571 /* Locate an existing or new sb for this hierarchy */
1572 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, 0, &opts);
1573 if (IS_ERR(sb)) {
1574 ret = PTR_ERR(sb);
1575 cgroup_drop_root(opts.new_root);
1576 goto drop_modules;
1577 }
1578
1579 root = sb->s_fs_info;
1580 BUG_ON(!root);
1581 if (root == opts.new_root) {
1582 /* We used the new root structure, so this is a new hierarchy */
1583 struct list_head tmp_cg_links;
1584 struct cgroup *root_cgrp = &root->top_cgroup;
1585 struct cgroupfs_root *existing_root;
1586 const struct cred *cred;
1587 int i;
1588
1589 BUG_ON(sb->s_root != NULL);
1590
1591 ret = cgroup_get_rootdir(sb);
1592 if (ret)
1593 goto drop_new_super;
1594 inode = sb->s_root->d_inode;
1595
1596 mutex_lock(&inode->i_mutex);
1597 mutex_lock(&cgroup_mutex);
1598 mutex_lock(&cgroup_root_mutex);
1599
1600 /* Check for name clashes with existing mounts */
1601 ret = -EBUSY;
1602 if (strlen(root->name))
1603 for_each_active_root(existing_root)
1604 if (!strcmp(existing_root->name, root->name))
1605 goto unlock_drop;
1606
1607 /*
1608 * We're accessing css_set_count without locking
1609 * css_set_lock here, but that's OK - it can only be
1610 * increased by someone holding cgroup_lock, and
1611 * that's us. The worst that can happen is that we
1612 * have some link structures left over
1613 */
1614 ret = allocate_cg_links(css_set_count, &tmp_cg_links);
1615 if (ret)
1616 goto unlock_drop;
1617
1618 ret = rebind_subsystems(root, root->subsys_mask);
1619 if (ret == -EBUSY) {
1620 free_cg_links(&tmp_cg_links);
1621 goto unlock_drop;
1622 }
1623 /*
1624 * There must be no failure case after here, since rebinding
1625 * takes care of subsystems' refcounts, which are explicitly
1626 * dropped in the failure exit path.
1627 */
1628
1629 /* EBUSY should be the only error here */
1630 BUG_ON(ret);
1631
1632 list_add(&root->root_list, &roots);
1633 root_count++;
1634
1635 sb->s_root->d_fsdata = root_cgrp;
1636 root->top_cgroup.dentry = sb->s_root;
1637
1638 /* Link the top cgroup in this hierarchy into all
1639 * the css_set objects */
1640 write_lock(&css_set_lock);
1641 for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
1642 struct hlist_head *hhead = &css_set_table[i];
1643 struct hlist_node *node;
1644 struct css_set *cg;
1645
1646 hlist_for_each_entry(cg, node, hhead, hlist)
1647 link_css_set(&tmp_cg_links, cg, root_cgrp);
1648 }
1649 write_unlock(&css_set_lock);
1650
1651 free_cg_links(&tmp_cg_links);
1652
1653 BUG_ON(!list_empty(&root_cgrp->children));
1654 BUG_ON(root->number_of_cgroups != 1);
1655
1656 cred = override_creds(&init_cred);
1657 cgroup_populate_dir(root_cgrp, true, root->subsys_mask);
1658 revert_creds(cred);
1659 mutex_unlock(&cgroup_root_mutex);
1660 mutex_unlock(&cgroup_mutex);
1661 mutex_unlock(&inode->i_mutex);
1662 } else {
1663 /*
1664 * We re-used an existing hierarchy - the new root (if
1665 * any) is not needed
1666 */
1667 cgroup_drop_root(opts.new_root);
1668 /* no subsys rebinding, so refcounts don't change */
1669 drop_parsed_module_refcounts(opts.subsys_mask);
1670 }
1671
1672 kfree(opts.release_agent);
1673 kfree(opts.name);
1674 return dget(sb->s_root);
1675
1676 unlock_drop:
1677 mutex_unlock(&cgroup_root_mutex);
1678 mutex_unlock(&cgroup_mutex);
1679 mutex_unlock(&inode->i_mutex);
1680 drop_new_super:
1681 deactivate_locked_super(sb);
1682 drop_modules:
1683 drop_parsed_module_refcounts(opts.subsys_mask);
1684 out_err:
1685 kfree(opts.release_agent);
1686 kfree(opts.name);
1687 return ERR_PTR(ret);
1688 }
1689
1690 static void cgroup_kill_sb(struct super_block *sb) {
1691 struct cgroupfs_root *root = sb->s_fs_info;
1692 struct cgroup *cgrp = &root->top_cgroup;
1693 int ret;
1694 struct cg_cgroup_link *link;
1695 struct cg_cgroup_link *saved_link;
1696
1697 BUG_ON(!root);
1698
1699 BUG_ON(root->number_of_cgroups != 1);
1700 BUG_ON(!list_empty(&cgrp->children));
1701
1702 mutex_lock(&cgroup_mutex);
1703 mutex_lock(&cgroup_root_mutex);
1704
1705 /* Rebind all subsystems back to the default hierarchy */
1706 ret = rebind_subsystems(root, 0);
1707 /* Shouldn't be able to fail ... */
1708 BUG_ON(ret);
1709
1710 /*
1711 * Release all the links from css_sets to this hierarchy's
1712 * root cgroup
1713 */
1714 write_lock(&css_set_lock);
1715
1716 list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
1717 cgrp_link_list) {
1718 list_del(&link->cg_link_list);
1719 list_del(&link->cgrp_link_list);
1720 kfree(link);
1721 }
1722 write_unlock(&css_set_lock);
1723
1724 if (!list_empty(&root->root_list)) {
1725 list_del(&root->root_list);
1726 root_count--;
1727 }
1728
1729 mutex_unlock(&cgroup_root_mutex);
1730 mutex_unlock(&cgroup_mutex);
1731
1732 simple_xattrs_free(&cgrp->xattrs);
1733
1734 kill_litter_super(sb);
1735 cgroup_drop_root(root);
1736 }
1737
1738 static struct file_system_type cgroup_fs_type = {
1739 .name = "cgroup",
1740 .mount = cgroup_mount,
1741 .kill_sb = cgroup_kill_sb,
1742 };
1743
1744 static struct kobject *cgroup_kobj;
1745
1746 /**
1747 * cgroup_path - generate the path of a cgroup
1748 * @cgrp: the cgroup in question
1749 * @buf: the buffer to write the path into
1750 * @buflen: the length of the buffer
1751 *
1752 * Called with cgroup_mutex held or else with an RCU-protected cgroup
1753 * reference. Writes path of cgroup into buf. Returns 0 on success,
1754 * -errno on error.
1755 */
1756 int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1757 {
1758 char *start;
1759 struct dentry *dentry = rcu_dereference_check(cgrp->dentry,
1760 cgroup_lock_is_held());
1761
1762 if (!dentry || cgrp == dummytop) {
1763 /*
1764 * Inactive subsystems have no dentry for their root
1765 * cgroup
1766 */
1767 strcpy(buf, "/");
1768 return 0;
1769 }
1770
1771 start = buf + buflen - 1;
1772
1773 *start = '\0';
1774 for (;;) {
1775 int len = dentry->d_name.len;
1776
1777 if ((start -= len) < buf)
1778 return -ENAMETOOLONG;
1779 memcpy(start, dentry->d_name.name, len);
1780 cgrp = cgrp->parent;
1781 if (!cgrp)
1782 break;
1783
1784 dentry = rcu_dereference_check(cgrp->dentry,
1785 cgroup_lock_is_held());
1786 if (!cgrp->parent)
1787 continue;
1788 if (--start < buf)
1789 return -ENAMETOOLONG;
1790 *start = '/';
1791 }
1792 memmove(buf, start, buf + buflen - start);
1793 return 0;
1794 }
1795 EXPORT_SYMBOL_GPL(cgroup_path);
1796
1797 /*
1798 * Control Group taskset
1799 */
1800 struct task_and_cgroup {
1801 struct task_struct *task;
1802 struct cgroup *cgrp;
1803 struct css_set *cg;
1804 };
1805
1806 struct cgroup_taskset {
1807 struct task_and_cgroup single;
1808 struct flex_array *tc_array;
1809 int tc_array_len;
1810 int idx;
1811 struct cgroup *cur_cgrp;
1812 };
1813
1814 /**
1815 * cgroup_taskset_first - reset taskset and return the first task
1816 * @tset: taskset of interest
1817 *
1818 * @tset iteration is initialized and the first task is returned.
1819 */
1820 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
1821 {
1822 if (tset->tc_array) {
1823 tset->idx = 0;
1824 return cgroup_taskset_next(tset);
1825 } else {
1826 tset->cur_cgrp = tset->single.cgrp;
1827 return tset->single.task;
1828 }
1829 }
1830 EXPORT_SYMBOL_GPL(cgroup_taskset_first);
1831
1832 /**
1833 * cgroup_taskset_next - iterate to the next task in taskset
1834 * @tset: taskset of interest
1835 *
1836 * Return the next task in @tset. Iteration must have been initialized
1837 * with cgroup_taskset_first().
1838 */
1839 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
1840 {
1841 struct task_and_cgroup *tc;
1842
1843 if (!tset->tc_array || tset->idx >= tset->tc_array_len)
1844 return NULL;
1845
1846 tc = flex_array_get(tset->tc_array, tset->idx++);
1847 tset->cur_cgrp = tc->cgrp;
1848 return tc->task;
1849 }
1850 EXPORT_SYMBOL_GPL(cgroup_taskset_next);
1851
1852 /**
1853 * cgroup_taskset_cur_cgroup - return the matching cgroup for the current task
1854 * @tset: taskset of interest
1855 *
1856 * Return the cgroup for the current (last returned) task of @tset. This
1857 * function must be preceded by either cgroup_taskset_first() or
1858 * cgroup_taskset_next().
1859 */
1860 struct cgroup *cgroup_taskset_cur_cgroup(struct cgroup_taskset *tset)
1861 {
1862 return tset->cur_cgrp;
1863 }
1864 EXPORT_SYMBOL_GPL(cgroup_taskset_cur_cgroup);
1865
1866 /**
1867 * cgroup_taskset_size - return the number of tasks in taskset
1868 * @tset: taskset of interest
1869 */
1870 int cgroup_taskset_size(struct cgroup_taskset *tset)
1871 {
1872 return tset->tc_array ? tset->tc_array_len : 1;
1873 }
1874 EXPORT_SYMBOL_GPL(cgroup_taskset_size);
1875
1876
1877 /*
1878 * cgroup_task_migrate - move a task from one cgroup to another.
1879 *
1880 * 'guarantee' is set if the caller promises that a new css_set for the task
1881 * will already exist. If not set, this function might sleep, and can fail with
1882 * -ENOMEM. Must be called with cgroup_mutex and threadgroup locked.
1883 */
1884 static void cgroup_task_migrate(struct cgroup *cgrp, struct cgroup *oldcgrp,
1885 struct task_struct *tsk, struct css_set *newcg)
1886 {
1887 struct css_set *oldcg;
1888
1889 /*
1890 * We are synchronized through threadgroup_lock() against PF_EXITING
1891 * setting such that we can't race against cgroup_exit() changing the
1892 * css_set to init_css_set and dropping the old one.
1893 */
1894 WARN_ON_ONCE(tsk->flags & PF_EXITING);
1895 oldcg = tsk->cgroups;
1896
1897 task_lock(tsk);
1898 rcu_assign_pointer(tsk->cgroups, newcg);
1899 task_unlock(tsk);
1900
1901 /* Update the css_set linked lists if we're using them */
1902 write_lock(&css_set_lock);
1903 if (!list_empty(&tsk->cg_list))
1904 list_move(&tsk->cg_list, &newcg->tasks);
1905 write_unlock(&css_set_lock);
1906
1907 /*
1908 * We just gained a reference on oldcg by taking it from the task. As
1909 * trading it for newcg is protected by cgroup_mutex, we're safe to drop
1910 * it here; it will be freed under RCU.
1911 */
1912 set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
1913 put_css_set(oldcg);
1914 }
1915
1916 /**
1917 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
1918 * @cgrp: the cgroup the task is attaching to
1919 * @tsk: the task to be attached
1920 *
1921 * Call with cgroup_mutex and threadgroup locked. May take task_lock of
1922 * @tsk during call.
1923 */
1924 int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
1925 {
1926 int retval = 0;
1927 struct cgroup_subsys *ss, *failed_ss = NULL;
1928 struct cgroup *oldcgrp;
1929 struct cgroupfs_root *root = cgrp->root;
1930 struct cgroup_taskset tset = { };
1931 struct css_set *newcg;
1932
1933 /* @tsk either already exited or can't exit until the end */
1934 if (tsk->flags & PF_EXITING)
1935 return -ESRCH;
1936
1937 /* Nothing to do if the task is already in that cgroup */
1938 oldcgrp = task_cgroup_from_root(tsk, root);
1939 if (cgrp == oldcgrp)
1940 return 0;
1941
1942 tset.single.task = tsk;
1943 tset.single.cgrp = oldcgrp;
1944
1945 for_each_subsys(root, ss) {
1946 if (ss->can_attach) {
1947 retval = ss->can_attach(cgrp, &tset);
1948 if (retval) {
1949 /*
1950 * Remember on which subsystem the can_attach()
1951 * failed, so that we only call cancel_attach()
1952 * against the subsystems whose can_attach()
1953 * succeeded. (See below)
1954 */
1955 failed_ss = ss;
1956 goto out;
1957 }
1958 }
1959 }
1960
1961 newcg = find_css_set(tsk->cgroups, cgrp);
1962 if (!newcg) {
1963 retval = -ENOMEM;
1964 goto out;
1965 }
1966
1967 cgroup_task_migrate(cgrp, oldcgrp, tsk, newcg);
1968
1969 for_each_subsys(root, ss) {
1970 if (ss->attach)
1971 ss->attach(cgrp, &tset);
1972 }
1973
1974 synchronize_rcu();
1975 out:
1976 if (retval) {
1977 for_each_subsys(root, ss) {
1978 if (ss == failed_ss)
1979 /*
1980 * This subsystem was the one that failed the
1981 * can_attach() check earlier, so we don't need
1982 * to call cancel_attach() against it or any
1983 * remaining subsystems.
1984 */
1985 break;
1986 if (ss->cancel_attach)
1987 ss->cancel_attach(cgrp, &tset);
1988 }
1989 }
1990 return retval;
1991 }
1992
1993 /**
1994 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
1995 * @from: attach to all cgroups of a given task
1996 * @tsk: the task to be attached
1997 */
1998 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
1999 {
2000 struct cgroupfs_root *root;
2001 int retval = 0;
2002
2003 cgroup_lock();
2004 for_each_active_root(root) {
2005 struct cgroup *from_cg = task_cgroup_from_root(from, root);
2006
2007 retval = cgroup_attach_task(from_cg, tsk);
2008 if (retval)
2009 break;
2010 }
2011 cgroup_unlock();
2012
2013 return retval;
2014 }
2015 EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2016
2017 /**
2018 * cgroup_attach_proc - attach all threads in a threadgroup to a cgroup
2019 * @cgrp: the cgroup to attach to
2020 * @leader: the threadgroup leader task_struct of the group to be attached
2021 *
2022 * Call holding cgroup_mutex and the group_rwsem of the leader. Will take
2023 * task_lock of each thread in leader's threadgroup individually in turn.
2024 */
2025 static int cgroup_attach_proc(struct cgroup *cgrp, struct task_struct *leader)
2026 {
2027 int retval, i, group_size;
2028 struct cgroup_subsys *ss, *failed_ss = NULL;
2029 /* guaranteed to be initialized later, but the compiler needs this */
2030 struct cgroupfs_root *root = cgrp->root;
2031 /* threadgroup list cursor and array */
2032 struct task_struct *tsk;
2033 struct task_and_cgroup *tc;
2034 struct flex_array *group;
2035 struct cgroup_taskset tset = { };
2036
2037 /*
2038 * step 0: in order to do expensive, possibly blocking operations for
2039 * every thread, we cannot iterate the thread group list, since it needs
2040 * rcu or tasklist locked. instead, build an array of all threads in the
2041 * group - group_rwsem prevents new threads from appearing, and if
2042 * threads exit, this will just be an over-estimate.
2043 */
2044 group_size = get_nr_threads(leader);
2045 /* flex_array supports very large thread-groups better than kmalloc. */
2046 group = flex_array_alloc(sizeof(*tc), group_size, GFP_KERNEL);
2047 if (!group)
2048 return -ENOMEM;
2049 /* pre-allocate to guarantee space while iterating in rcu read-side. */
2050 retval = flex_array_prealloc(group, 0, group_size - 1, GFP_KERNEL);
2051 if (retval)
2052 goto out_free_group_list;
2053
2054 tsk = leader;
2055 i = 0;
2056 /*
2057 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2058 * already PF_EXITING could be freed from underneath us unless we
2059 * take an rcu_read_lock.
2060 */
2061 rcu_read_lock();
2062 do {
2063 struct task_and_cgroup ent;
2064
2065 /* @tsk either already exited or can't exit until the end */
2066 if (tsk->flags & PF_EXITING)
2067 continue;
2068
2069 /* as per above, nr_threads may decrease, but not increase. */
2070 BUG_ON(i >= group_size);
2071 ent.task = tsk;
2072 ent.cgrp = task_cgroup_from_root(tsk, root);
2073 /* nothing to do if this task is already in the cgroup */
2074 if (ent.cgrp == cgrp)
2075 continue;
2076 /*
2077 * saying GFP_ATOMIC has no effect here because we did prealloc
2078 * earlier, but it's good form to communicate our expectations.
2079 */
2080 retval = flex_array_put(group, i, &ent, GFP_ATOMIC);
2081 BUG_ON(retval != 0);
2082 i++;
2083 } while_each_thread(leader, tsk);
2084 rcu_read_unlock();
2085 /* remember the number of threads in the array for later. */
2086 group_size = i;
2087 tset.tc_array = group;
2088 tset.tc_array_len = group_size;
2089
2090 /* methods shouldn't be called if no task is actually migrating */
2091 retval = 0;
2092 if (!group_size)
2093 goto out_free_group_list;
2094
2095 /*
2096 * step 1: check that we can legitimately attach to the cgroup.
2097 */
2098 for_each_subsys(root, ss) {
2099 if (ss->can_attach) {
2100 retval = ss->can_attach(cgrp, &tset);
2101 if (retval) {
2102 failed_ss = ss;
2103 goto out_cancel_attach;
2104 }
2105 }
2106 }
2107
2108 /*
2109 * step 2: make sure css_sets exist for all threads to be migrated.
2110 * we use find_css_set, which allocates a new one if necessary.
2111 */
2112 for (i = 0; i < group_size; i++) {
2113 tc = flex_array_get(group, i);
2114 tc->cg = find_css_set(tc->task->cgroups, cgrp);
2115 if (!tc->cg) {
2116 retval = -ENOMEM;
2117 goto out_put_css_set_refs;
2118 }
2119 }
2120
2121 /*
2122 * step 3: now that we're guaranteed success wrt the css_sets,
2123 * proceed to move all tasks to the new cgroup. There are no
2124 * failure cases after here, so this is the commit point.
2125 */
2126 for (i = 0; i < group_size; i++) {
2127 tc = flex_array_get(group, i);
2128 cgroup_task_migrate(cgrp, tc->cgrp, tc->task, tc->cg);
2129 }
2130 /* nothing is sensitive to fork() after this point. */
2131
2132 /*
2133 * step 4: do subsystem attach callbacks.
2134 */
2135 for_each_subsys(root, ss) {
2136 if (ss->attach)
2137 ss->attach(cgrp, &tset);
2138 }
2139
2140 /*
2141 * step 5: success! and cleanup
2142 */
2143 synchronize_rcu();
2144 retval = 0;
2145 out_put_css_set_refs:
2146 if (retval) {
2147 for (i = 0; i < group_size; i++) {
2148 tc = flex_array_get(group, i);
2149 if (!tc->cg)
2150 break;
2151 put_css_set(tc->cg);
2152 }
2153 }
2154 out_cancel_attach:
2155 if (retval) {
2156 for_each_subsys(root, ss) {
2157 if (ss == failed_ss)
2158 break;
2159 if (ss->cancel_attach)
2160 ss->cancel_attach(cgrp, &tset);
2161 }
2162 }
2163 out_free_group_list:
2164 flex_array_free(group);
2165 return retval;
2166 }
2167
2168 /*
2169 * Find the task_struct of the task to attach by vpid and pass it along to the
2170 * function to attach either it or all tasks in its threadgroup. Will lock
2171 * cgroup_mutex and threadgroup; may take task_lock of task.
2172 */
2173 static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
2174 {
2175 struct task_struct *tsk;
2176 const struct cred *cred = current_cred(), *tcred;
2177 int ret;
2178
2179 if (!cgroup_lock_live_group(cgrp))
2180 return -ENODEV;
2181
2182 retry_find_task:
2183 rcu_read_lock();
2184 if (pid) {
2185 tsk = find_task_by_vpid(pid);
2186 if (!tsk) {
2187 rcu_read_unlock();
2188 ret= -ESRCH;
2189 goto out_unlock_cgroup;
2190 }
2191 /*
2192 * even if we're attaching all tasks in the thread group, we
2193 * only need to check permissions on one of them.
2194 */
2195 tcred = __task_cred(tsk);
2196 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2197 !uid_eq(cred->euid, tcred->uid) &&
2198 !uid_eq(cred->euid, tcred->suid)) {
2199 rcu_read_unlock();
2200 ret = -EACCES;
2201 goto out_unlock_cgroup;
2202 }
2203 } else
2204 tsk = current;
2205
2206 if (threadgroup)
2207 tsk = tsk->group_leader;
2208
2209 /*
2210 * Workqueue threads may acquire PF_THREAD_BOUND and become
2211 * trapped in a cpuset, or RT worker may be born in a cgroup
2212 * with no rt_runtime allocated. Just say no.
2213 */
2214 if (tsk == kthreadd_task || (tsk->flags & PF_THREAD_BOUND)) {
2215 ret = -EINVAL;
2216 rcu_read_unlock();
2217 goto out_unlock_cgroup;
2218 }
2219
2220 get_task_struct(tsk);
2221 rcu_read_unlock();
2222
2223 threadgroup_lock(tsk);
2224 if (threadgroup) {
2225 if (!thread_group_leader(tsk)) {
2226 /*
2227 * a race with de_thread from another thread's exec()
2228 * may strip us of our leadership, if this happens,
2229 * there is no choice but to throw this task away and
2230 * try again; this is
2231 * "double-double-toil-and-trouble-check locking".
2232 */
2233 threadgroup_unlock(tsk);
2234 put_task_struct(tsk);
2235 goto retry_find_task;
2236 }
2237 ret = cgroup_attach_proc(cgrp, tsk);
2238 } else
2239 ret = cgroup_attach_task(cgrp, tsk);
2240 threadgroup_unlock(tsk);
2241
2242 put_task_struct(tsk);
2243 out_unlock_cgroup:
2244 cgroup_unlock();
2245 return ret;
2246 }
2247
2248 static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
2249 {
2250 return attach_task_by_pid(cgrp, pid, false);
2251 }
2252
2253 static int cgroup_procs_write(struct cgroup *cgrp, struct cftype *cft, u64 tgid)
2254 {
2255 return attach_task_by_pid(cgrp, tgid, true);
2256 }
2257
2258 /**
2259 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
2260 * @cgrp: the cgroup to be checked for liveness
2261 *
2262 * On success, returns true; the lock should be later released with
2263 * cgroup_unlock(). On failure returns false with no lock held.
2264 */
2265 bool cgroup_lock_live_group(struct cgroup *cgrp)
2266 {
2267 mutex_lock(&cgroup_mutex);
2268 if (cgroup_is_removed(cgrp)) {
2269 mutex_unlock(&cgroup_mutex);
2270 return false;
2271 }
2272 return true;
2273 }
2274 EXPORT_SYMBOL_GPL(cgroup_lock_live_group);
2275
2276 static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
2277 const char *buffer)
2278 {
2279 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
2280 if (strlen(buffer) >= PATH_MAX)
2281 return -EINVAL;
2282 if (!cgroup_lock_live_group(cgrp))
2283 return -ENODEV;
2284 mutex_lock(&cgroup_root_mutex);
2285 strcpy(cgrp->root->release_agent_path, buffer);
2286 mutex_unlock(&cgroup_root_mutex);
2287 cgroup_unlock();
2288 return 0;
2289 }
2290
2291 static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
2292 struct seq_file *seq)
2293 {
2294 if (!cgroup_lock_live_group(cgrp))
2295 return -ENODEV;
2296 seq_puts(seq, cgrp->root->release_agent_path);
2297 seq_putc(seq, '\n');
2298 cgroup_unlock();
2299 return 0;
2300 }
2301
2302 /* A buffer size big enough for numbers or short strings */
2303 #define CGROUP_LOCAL_BUFFER_SIZE 64
2304
2305 static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
2306 struct file *file,
2307 const char __user *userbuf,
2308 size_t nbytes, loff_t *unused_ppos)
2309 {
2310 char buffer[CGROUP_LOCAL_BUFFER_SIZE];
2311 int retval = 0;
2312 char *end;
2313
2314 if (!nbytes)
2315 return -EINVAL;
2316 if (nbytes >= sizeof(buffer))
2317 return -E2BIG;
2318 if (copy_from_user(buffer, userbuf, nbytes))
2319 return -EFAULT;
2320
2321 buffer[nbytes] = 0; /* nul-terminate */
2322 if (cft->write_u64) {
2323 u64 val = simple_strtoull(strstrip(buffer), &end, 0);
2324 if (*end)
2325 return -EINVAL;
2326 retval = cft->write_u64(cgrp, cft, val);
2327 } else {
2328 s64 val = simple_strtoll(strstrip(buffer), &end, 0);
2329 if (*end)
2330 return -EINVAL;
2331 retval = cft->write_s64(cgrp, cft, val);
2332 }
2333 if (!retval)
2334 retval = nbytes;
2335 return retval;
2336 }
2337
2338 static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
2339 struct file *file,
2340 const char __user *userbuf,
2341 size_t nbytes, loff_t *unused_ppos)
2342 {
2343 char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
2344 int retval = 0;
2345 size_t max_bytes = cft->max_write_len;
2346 char *buffer = local_buffer;
2347
2348 if (!max_bytes)
2349 max_bytes = sizeof(local_buffer) - 1;
2350 if (nbytes >= max_bytes)
2351 return -E2BIG;
2352 /* Allocate a dynamic buffer if we need one */
2353 if (nbytes >= sizeof(local_buffer)) {
2354 buffer = kmalloc(nbytes + 1, GFP_KERNEL);
2355 if (buffer == NULL)
2356 return -ENOMEM;
2357 }
2358 if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
2359 retval = -EFAULT;
2360 goto out;
2361 }
2362
2363 buffer[nbytes] = 0; /* nul-terminate */
2364 retval = cft->write_string(cgrp, cft, strstrip(buffer));
2365 if (!retval)
2366 retval = nbytes;
2367 out:
2368 if (buffer != local_buffer)
2369 kfree(buffer);
2370 return retval;
2371 }
2372
2373 static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
2374 size_t nbytes, loff_t *ppos)
2375 {
2376 struct cftype *cft = __d_cft(file->f_dentry);
2377 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2378
2379 if (cgroup_is_removed(cgrp))
2380 return -ENODEV;
2381 if (cft->write)
2382 return cft->write(cgrp, cft, file, buf, nbytes, ppos);
2383 if (cft->write_u64 || cft->write_s64)
2384 return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
2385 if (cft->write_string)
2386 return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
2387 if (cft->trigger) {
2388 int ret = cft->trigger(cgrp, (unsigned int)cft->private);
2389 return ret ? ret : nbytes;
2390 }
2391 return -EINVAL;
2392 }
2393
2394 static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
2395 struct file *file,
2396 char __user *buf, size_t nbytes,
2397 loff_t *ppos)
2398 {
2399 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2400 u64 val = cft->read_u64(cgrp, cft);
2401 int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
2402
2403 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2404 }
2405
2406 static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
2407 struct file *file,
2408 char __user *buf, size_t nbytes,
2409 loff_t *ppos)
2410 {
2411 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2412 s64 val = cft->read_s64(cgrp, cft);
2413 int len = sprintf(tmp, "%lld\n", (long long) val);
2414
2415 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2416 }
2417
2418 static ssize_t cgroup_file_read(struct file *file, char __user *buf,
2419 size_t nbytes, loff_t *ppos)
2420 {
2421 struct cftype *cft = __d_cft(file->f_dentry);
2422 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2423
2424 if (cgroup_is_removed(cgrp))
2425 return -ENODEV;
2426
2427 if (cft->read)
2428 return cft->read(cgrp, cft, file, buf, nbytes, ppos);
2429 if (cft->read_u64)
2430 return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
2431 if (cft->read_s64)
2432 return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
2433 return -EINVAL;
2434 }
2435
2436 /*
2437 * seqfile ops/methods for returning structured data. Currently just
2438 * supports string->u64 maps, but can be extended in future.
2439 */
2440
2441 struct cgroup_seqfile_state {
2442 struct cftype *cft;
2443 struct cgroup *cgroup;
2444 };
2445
2446 static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
2447 {
2448 struct seq_file *sf = cb->state;
2449 return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
2450 }
2451
2452 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
2453 {
2454 struct cgroup_seqfile_state *state = m->private;
2455 struct cftype *cft = state->cft;
2456 if (cft->read_map) {
2457 struct cgroup_map_cb cb = {
2458 .fill = cgroup_map_add,
2459 .state = m,
2460 };
2461 return cft->read_map(state->cgroup, cft, &cb);
2462 }
2463 return cft->read_seq_string(state->cgroup, cft, m);
2464 }
2465
2466 static int cgroup_seqfile_release(struct inode *inode, struct file *file)
2467 {
2468 struct seq_file *seq = file->private_data;
2469 kfree(seq->private);
2470 return single_release(inode, file);
2471 }
2472
2473 static const struct file_operations cgroup_seqfile_operations = {
2474 .read = seq_read,
2475 .write = cgroup_file_write,
2476 .llseek = seq_lseek,
2477 .release = cgroup_seqfile_release,
2478 };
2479
2480 static int cgroup_file_open(struct inode *inode, struct file *file)
2481 {
2482 int err;
2483 struct cftype *cft;
2484
2485 err = generic_file_open(inode, file);
2486 if (err)
2487 return err;
2488 cft = __d_cft(file->f_dentry);
2489
2490 if (cft->read_map || cft->read_seq_string) {
2491 struct cgroup_seqfile_state *state =
2492 kzalloc(sizeof(*state), GFP_USER);
2493 if (!state)
2494 return -ENOMEM;
2495 state->cft = cft;
2496 state->cgroup = __d_cgrp(file->f_dentry->d_parent);
2497 file->f_op = &cgroup_seqfile_operations;
2498 err = single_open(file, cgroup_seqfile_show, state);
2499 if (err < 0)
2500 kfree(state);
2501 } else if (cft->open)
2502 err = cft->open(inode, file);
2503 else
2504 err = 0;
2505
2506 return err;
2507 }
2508
2509 static int cgroup_file_release(struct inode *inode, struct file *file)
2510 {
2511 struct cftype *cft = __d_cft(file->f_dentry);
2512 if (cft->release)
2513 return cft->release(inode, file);
2514 return 0;
2515 }
2516
2517 /*
2518 * cgroup_rename - Only allow simple rename of directories in place.
2519 */
2520 static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
2521 struct inode *new_dir, struct dentry *new_dentry)
2522 {
2523 if (!S_ISDIR(old_dentry->d_inode->i_mode))
2524 return -ENOTDIR;
2525 if (new_dentry->d_inode)
2526 return -EEXIST;
2527 if (old_dir != new_dir)
2528 return -EIO;
2529 return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
2530 }
2531
2532 static struct simple_xattrs *__d_xattrs(struct dentry *dentry)
2533 {
2534 if (S_ISDIR(dentry->d_inode->i_mode))
2535 return &__d_cgrp(dentry)->xattrs;
2536 else
2537 return &__d_cft(dentry)->xattrs;
2538 }
2539
2540 static inline int xattr_enabled(struct dentry *dentry)
2541 {
2542 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
2543 return test_bit(ROOT_XATTR, &root->flags);
2544 }
2545
2546 static bool is_valid_xattr(const char *name)
2547 {
2548 if (!strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN) ||
2549 !strncmp(name, XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN))
2550 return true;
2551 return false;
2552 }
2553
2554 static int cgroup_setxattr(struct dentry *dentry, const char *name,
2555 const void *val, size_t size, int flags)
2556 {
2557 if (!xattr_enabled(dentry))
2558 return -EOPNOTSUPP;
2559 if (!is_valid_xattr(name))
2560 return -EINVAL;
2561 return simple_xattr_set(__d_xattrs(dentry), name, val, size, flags);
2562 }
2563
2564 static int cgroup_removexattr(struct dentry *dentry, const char *name)
2565 {
2566 if (!xattr_enabled(dentry))
2567 return -EOPNOTSUPP;
2568 if (!is_valid_xattr(name))
2569 return -EINVAL;
2570 return simple_xattr_remove(__d_xattrs(dentry), name);
2571 }
2572
2573 static ssize_t cgroup_getxattr(struct dentry *dentry, const char *name,
2574 void *buf, size_t size)
2575 {
2576 if (!xattr_enabled(dentry))
2577 return -EOPNOTSUPP;
2578 if (!is_valid_xattr(name))
2579 return -EINVAL;
2580 return simple_xattr_get(__d_xattrs(dentry), name, buf, size);
2581 }
2582
2583 static ssize_t cgroup_listxattr(struct dentry *dentry, char *buf, size_t size)
2584 {
2585 if (!xattr_enabled(dentry))
2586 return -EOPNOTSUPP;
2587 return simple_xattr_list(__d_xattrs(dentry), buf, size);
2588 }
2589
2590 static const struct file_operations cgroup_file_operations = {
2591 .read = cgroup_file_read,
2592 .write = cgroup_file_write,
2593 .llseek = generic_file_llseek,
2594 .open = cgroup_file_open,
2595 .release = cgroup_file_release,
2596 };
2597
2598 static const struct inode_operations cgroup_file_inode_operations = {
2599 .setxattr = cgroup_setxattr,
2600 .getxattr = cgroup_getxattr,
2601 .listxattr = cgroup_listxattr,
2602 .removexattr = cgroup_removexattr,
2603 };
2604
2605 static const struct inode_operations cgroup_dir_inode_operations = {
2606 .lookup = cgroup_lookup,
2607 .mkdir = cgroup_mkdir,
2608 .rmdir = cgroup_rmdir,
2609 .rename = cgroup_rename,
2610 .setxattr = cgroup_setxattr,
2611 .getxattr = cgroup_getxattr,
2612 .listxattr = cgroup_listxattr,
2613 .removexattr = cgroup_removexattr,
2614 };
2615
2616 static struct dentry *cgroup_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
2617 {
2618 if (dentry->d_name.len > NAME_MAX)
2619 return ERR_PTR(-ENAMETOOLONG);
2620 d_add(dentry, NULL);
2621 return NULL;
2622 }
2623
2624 /*
2625 * Check if a file is a control file
2626 */
2627 static inline struct cftype *__file_cft(struct file *file)
2628 {
2629 if (file->f_dentry->d_inode->i_fop != &cgroup_file_operations)
2630 return ERR_PTR(-EINVAL);
2631 return __d_cft(file->f_dentry);
2632 }
2633
2634 static int cgroup_create_file(struct dentry *dentry, umode_t mode,
2635 struct super_block *sb)
2636 {
2637 struct inode *inode;
2638
2639 if (!dentry)
2640 return -ENOENT;
2641 if (dentry->d_inode)
2642 return -EEXIST;
2643
2644 inode = cgroup_new_inode(mode, sb);
2645 if (!inode)
2646 return -ENOMEM;
2647
2648 if (S_ISDIR(mode)) {
2649 inode->i_op = &cgroup_dir_inode_operations;
2650 inode->i_fop = &simple_dir_operations;
2651
2652 /* start off with i_nlink == 2 (for "." entry) */
2653 inc_nlink(inode);
2654
2655 /* start with the directory inode held, so that we can
2656 * populate it without racing with another mkdir */
2657 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
2658 } else if (S_ISREG(mode)) {
2659 inode->i_size = 0;
2660 inode->i_fop = &cgroup_file_operations;
2661 inode->i_op = &cgroup_file_inode_operations;
2662 }
2663 d_instantiate(dentry, inode);
2664 dget(dentry); /* Extra count - pin the dentry in core */
2665 return 0;
2666 }
2667
2668 /*
2669 * cgroup_create_dir - create a directory for an object.
2670 * @cgrp: the cgroup we create the directory for. It must have a valid
2671 * ->parent field. And we are going to fill its ->dentry field.
2672 * @dentry: dentry of the new cgroup
2673 * @mode: mode to set on new directory.
2674 */
2675 static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
2676 umode_t mode)
2677 {
2678 struct dentry *parent;
2679 int error = 0;
2680
2681 parent = cgrp->parent->dentry;
2682 error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
2683 if (!error) {
2684 dentry->d_fsdata = cgrp;
2685 inc_nlink(parent->d_inode);
2686 rcu_assign_pointer(cgrp->dentry, dentry);
2687 dget(dentry);
2688 }
2689 dput(dentry);
2690
2691 return error;
2692 }
2693
2694 /**
2695 * cgroup_file_mode - deduce file mode of a control file
2696 * @cft: the control file in question
2697 *
2698 * returns cft->mode if ->mode is not 0
2699 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
2700 * returns S_IRUGO if it has only a read handler
2701 * returns S_IWUSR if it has only a write hander
2702 */
2703 static umode_t cgroup_file_mode(const struct cftype *cft)
2704 {
2705 umode_t mode = 0;
2706
2707 if (cft->mode)
2708 return cft->mode;
2709
2710 if (cft->read || cft->read_u64 || cft->read_s64 ||
2711 cft->read_map || cft->read_seq_string)
2712 mode |= S_IRUGO;
2713
2714 if (cft->write || cft->write_u64 || cft->write_s64 ||
2715 cft->write_string || cft->trigger)
2716 mode |= S_IWUSR;
2717
2718 return mode;
2719 }
2720
2721 static int cgroup_add_file(struct cgroup *cgrp, struct cgroup_subsys *subsys,
2722 struct cftype *cft)
2723 {
2724 struct dentry *dir = cgrp->dentry;
2725 struct cgroup *parent = __d_cgrp(dir);
2726 struct dentry *dentry;
2727 struct cfent *cfe;
2728 int error;
2729 umode_t mode;
2730 char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
2731
2732 simple_xattrs_init(&cft->xattrs);
2733
2734 /* does @cft->flags tell us to skip creation on @cgrp? */
2735 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgrp->parent)
2736 return 0;
2737 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgrp->parent)
2738 return 0;
2739
2740 if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
2741 strcpy(name, subsys->name);
2742 strcat(name, ".");
2743 }
2744 strcat(name, cft->name);
2745
2746 BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
2747
2748 cfe = kzalloc(sizeof(*cfe), GFP_KERNEL);
2749 if (!cfe)
2750 return -ENOMEM;
2751
2752 dentry = lookup_one_len(name, dir, strlen(name));
2753 if (IS_ERR(dentry)) {
2754 error = PTR_ERR(dentry);
2755 goto out;
2756 }
2757
2758 mode = cgroup_file_mode(cft);
2759 error = cgroup_create_file(dentry, mode | S_IFREG, cgrp->root->sb);
2760 if (!error) {
2761 cfe->type = (void *)cft;
2762 cfe->dentry = dentry;
2763 dentry->d_fsdata = cfe;
2764 list_add_tail(&cfe->node, &parent->files);
2765 cfe = NULL;
2766 }
2767 dput(dentry);
2768 out:
2769 kfree(cfe);
2770 return error;
2771 }
2772
2773 static int cgroup_addrm_files(struct cgroup *cgrp, struct cgroup_subsys *subsys,
2774 struct cftype cfts[], bool is_add)
2775 {
2776 struct cftype *cft;
2777 int err, ret = 0;
2778
2779 for (cft = cfts; cft->name[0] != '\0'; cft++) {
2780 if (is_add)
2781 err = cgroup_add_file(cgrp, subsys, cft);
2782 else
2783 err = cgroup_rm_file(cgrp, cft);
2784 if (err) {
2785 pr_warning("cgroup_addrm_files: failed to %s %s, err=%d\n",
2786 is_add ? "add" : "remove", cft->name, err);
2787 ret = err;
2788 }
2789 }
2790 return ret;
2791 }
2792
2793 static DEFINE_MUTEX(cgroup_cft_mutex);
2794
2795 static void cgroup_cfts_prepare(void)
2796 __acquires(&cgroup_cft_mutex) __acquires(&cgroup_mutex)
2797 {
2798 /*
2799 * Thanks to the entanglement with vfs inode locking, we can't walk
2800 * the existing cgroups under cgroup_mutex and create files.
2801 * Instead, we increment reference on all cgroups and build list of
2802 * them using @cgrp->cft_q_node. Grab cgroup_cft_mutex to ensure
2803 * exclusive access to the field.
2804 */
2805 mutex_lock(&cgroup_cft_mutex);
2806 mutex_lock(&cgroup_mutex);
2807 }
2808
2809 static void cgroup_cfts_commit(struct cgroup_subsys *ss,
2810 struct cftype *cfts, bool is_add)
2811 __releases(&cgroup_mutex) __releases(&cgroup_cft_mutex)
2812 {
2813 LIST_HEAD(pending);
2814 struct cgroup *cgrp, *n;
2815
2816 /* %NULL @cfts indicates abort and don't bother if @ss isn't attached */
2817 if (cfts && ss->root != &rootnode) {
2818 list_for_each_entry(cgrp, &ss->root->allcg_list, allcg_node) {
2819 dget(cgrp->dentry);
2820 list_add_tail(&cgrp->cft_q_node, &pending);
2821 }
2822 }
2823
2824 mutex_unlock(&cgroup_mutex);
2825
2826 /*
2827 * All new cgroups will see @cfts update on @ss->cftsets. Add/rm
2828 * files for all cgroups which were created before.
2829 */
2830 list_for_each_entry_safe(cgrp, n, &pending, cft_q_node) {
2831 struct inode *inode = cgrp->dentry->d_inode;
2832
2833 mutex_lock(&inode->i_mutex);
2834 mutex_lock(&cgroup_mutex);
2835 if (!cgroup_is_removed(cgrp))
2836 cgroup_addrm_files(cgrp, ss, cfts, is_add);
2837 mutex_unlock(&cgroup_mutex);
2838 mutex_unlock(&inode->i_mutex);
2839
2840 list_del_init(&cgrp->cft_q_node);
2841 dput(cgrp->dentry);
2842 }
2843
2844 mutex_unlock(&cgroup_cft_mutex);
2845 }
2846
2847 /**
2848 * cgroup_add_cftypes - add an array of cftypes to a subsystem
2849 * @ss: target cgroup subsystem
2850 * @cfts: zero-length name terminated array of cftypes
2851 *
2852 * Register @cfts to @ss. Files described by @cfts are created for all
2853 * existing cgroups to which @ss is attached and all future cgroups will
2854 * have them too. This function can be called anytime whether @ss is
2855 * attached or not.
2856 *
2857 * Returns 0 on successful registration, -errno on failure. Note that this
2858 * function currently returns 0 as long as @cfts registration is successful
2859 * even if some file creation attempts on existing cgroups fail.
2860 */
2861 int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2862 {
2863 struct cftype_set *set;
2864
2865 set = kzalloc(sizeof(*set), GFP_KERNEL);
2866 if (!set)
2867 return -ENOMEM;
2868
2869 cgroup_cfts_prepare();
2870 set->cfts = cfts;
2871 list_add_tail(&set->node, &ss->cftsets);
2872 cgroup_cfts_commit(ss, cfts, true);
2873
2874 return 0;
2875 }
2876 EXPORT_SYMBOL_GPL(cgroup_add_cftypes);
2877
2878 /**
2879 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
2880 * @ss: target cgroup subsystem
2881 * @cfts: zero-length name terminated array of cftypes
2882 *
2883 * Unregister @cfts from @ss. Files described by @cfts are removed from
2884 * all existing cgroups to which @ss is attached and all future cgroups
2885 * won't have them either. This function can be called anytime whether @ss
2886 * is attached or not.
2887 *
2888 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2889 * registered with @ss.
2890 */
2891 int cgroup_rm_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2892 {
2893 struct cftype_set *set;
2894
2895 cgroup_cfts_prepare();
2896
2897 list_for_each_entry(set, &ss->cftsets, node) {
2898 if (set->cfts == cfts) {
2899 list_del_init(&set->node);
2900 cgroup_cfts_commit(ss, cfts, false);
2901 return 0;
2902 }
2903 }
2904
2905 cgroup_cfts_commit(ss, NULL, false);
2906 return -ENOENT;
2907 }
2908
2909 /**
2910 * cgroup_task_count - count the number of tasks in a cgroup.
2911 * @cgrp: the cgroup in question
2912 *
2913 * Return the number of tasks in the cgroup.
2914 */
2915 int cgroup_task_count(const struct cgroup *cgrp)
2916 {
2917 int count = 0;
2918 struct cg_cgroup_link *link;
2919
2920 read_lock(&css_set_lock);
2921 list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
2922 count += atomic_read(&link->cg->refcount);
2923 }
2924 read_unlock(&css_set_lock);
2925 return count;
2926 }
2927
2928 /*
2929 * Advance a list_head iterator. The iterator should be positioned at
2930 * the start of a css_set
2931 */
2932 static void cgroup_advance_iter(struct cgroup *cgrp,
2933 struct cgroup_iter *it)
2934 {
2935 struct list_head *l = it->cg_link;
2936 struct cg_cgroup_link *link;
2937 struct css_set *cg;
2938
2939 /* Advance to the next non-empty css_set */
2940 do {
2941 l = l->next;
2942 if (l == &cgrp->css_sets) {
2943 it->cg_link = NULL;
2944 return;
2945 }
2946 link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
2947 cg = link->cg;
2948 } while (list_empty(&cg->tasks));
2949 it->cg_link = l;
2950 it->task = cg->tasks.next;
2951 }
2952
2953 /*
2954 * To reduce the fork() overhead for systems that are not actually
2955 * using their cgroups capability, we don't maintain the lists running
2956 * through each css_set to its tasks until we see the list actually
2957 * used - in other words after the first call to cgroup_iter_start().
2958 */
2959 static void cgroup_enable_task_cg_lists(void)
2960 {
2961 struct task_struct *p, *g;
2962 write_lock(&css_set_lock);
2963 use_task_css_set_links = 1;
2964 /*
2965 * We need tasklist_lock because RCU is not safe against
2966 * while_each_thread(). Besides, a forking task that has passed
2967 * cgroup_post_fork() without seeing use_task_css_set_links = 1
2968 * is not guaranteed to have its child immediately visible in the
2969 * tasklist if we walk through it with RCU.
2970 */
2971 read_lock(&tasklist_lock);
2972 do_each_thread(g, p) {
2973 task_lock(p);
2974 /*
2975 * We should check if the process is exiting, otherwise
2976 * it will race with cgroup_exit() in that the list
2977 * entry won't be deleted though the process has exited.
2978 */
2979 if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
2980 list_add(&p->cg_list, &p->cgroups->tasks);
2981 task_unlock(p);
2982 } while_each_thread(g, p);
2983 read_unlock(&tasklist_lock);
2984 write_unlock(&css_set_lock);
2985 }
2986
2987 void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
2988 __acquires(css_set_lock)
2989 {
2990 /*
2991 * The first time anyone tries to iterate across a cgroup,
2992 * we need to enable the list linking each css_set to its
2993 * tasks, and fix up all existing tasks.
2994 */
2995 if (!use_task_css_set_links)
2996 cgroup_enable_task_cg_lists();
2997
2998 read_lock(&css_set_lock);
2999 it->cg_link = &cgrp->css_sets;
3000 cgroup_advance_iter(cgrp, it);
3001 }
3002
3003 struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
3004 struct cgroup_iter *it)
3005 {
3006 struct task_struct *res;
3007 struct list_head *l = it->task;
3008 struct cg_cgroup_link *link;
3009
3010 /* If the iterator cg is NULL, we have no tasks */
3011 if (!it->cg_link)
3012 return NULL;
3013 res = list_entry(l, struct task_struct, cg_list);
3014 /* Advance iterator to find next entry */
3015 l = l->next;
3016 link = list_entry(it->cg_link, struct cg_cgroup_link, cgrp_link_list);
3017 if (l == &link->cg->tasks) {
3018 /* We reached the end of this task list - move on to
3019 * the next cg_cgroup_link */
3020 cgroup_advance_iter(cgrp, it);
3021 } else {
3022 it->task = l;
3023 }
3024 return res;
3025 }
3026
3027 void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
3028 __releases(css_set_lock)
3029 {
3030 read_unlock(&css_set_lock);
3031 }
3032
3033 static inline int started_after_time(struct task_struct *t1,
3034 struct timespec *time,
3035 struct task_struct *t2)
3036 {
3037 int start_diff = timespec_compare(&t1->start_time, time);
3038 if (start_diff > 0) {
3039 return 1;
3040 } else if (start_diff < 0) {
3041 return 0;
3042 } else {
3043 /*
3044 * Arbitrarily, if two processes started at the same
3045 * time, we'll say that the lower pointer value
3046 * started first. Note that t2 may have exited by now
3047 * so this may not be a valid pointer any longer, but
3048 * that's fine - it still serves to distinguish
3049 * between two tasks started (effectively) simultaneously.
3050 */
3051 return t1 > t2;
3052 }
3053 }
3054
3055 /*
3056 * This function is a callback from heap_insert() and is used to order
3057 * the heap.
3058 * In this case we order the heap in descending task start time.
3059 */
3060 static inline int started_after(void *p1, void *p2)
3061 {
3062 struct task_struct *t1 = p1;
3063 struct task_struct *t2 = p2;
3064 return started_after_time(t1, &t2->start_time, t2);
3065 }
3066
3067 /**
3068 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
3069 * @scan: struct cgroup_scanner containing arguments for the scan
3070 *
3071 * Arguments include pointers to callback functions test_task() and
3072 * process_task().
3073 * Iterate through all the tasks in a cgroup, calling test_task() for each,
3074 * and if it returns true, call process_task() for it also.
3075 * The test_task pointer may be NULL, meaning always true (select all tasks).
3076 * Effectively duplicates cgroup_iter_{start,next,end}()
3077 * but does not lock css_set_lock for the call to process_task().
3078 * The struct cgroup_scanner may be embedded in any structure of the caller's
3079 * creation.
3080 * It is guaranteed that process_task() will act on every task that
3081 * is a member of the cgroup for the duration of this call. This
3082 * function may or may not call process_task() for tasks that exit
3083 * or move to a different cgroup during the call, or are forked or
3084 * move into the cgroup during the call.
3085 *
3086 * Note that test_task() may be called with locks held, and may in some
3087 * situations be called multiple times for the same task, so it should
3088 * be cheap.
3089 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
3090 * pre-allocated and will be used for heap operations (and its "gt" member will
3091 * be overwritten), else a temporary heap will be used (allocation of which
3092 * may cause this function to fail).
3093 */
3094 int cgroup_scan_tasks(struct cgroup_scanner *scan)
3095 {
3096 int retval, i;
3097 struct cgroup_iter it;
3098 struct task_struct *p, *dropped;
3099 /* Never dereference latest_task, since it's not refcounted */
3100 struct task_struct *latest_task = NULL;
3101 struct ptr_heap tmp_heap;
3102 struct ptr_heap *heap;
3103 struct timespec latest_time = { 0, 0 };
3104
3105 if (scan->heap) {
3106 /* The caller supplied our heap and pre-allocated its memory */
3107 heap = scan->heap;
3108 heap->gt = &started_after;
3109 } else {
3110 /* We need to allocate our own heap memory */
3111 heap = &tmp_heap;
3112 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
3113 if (retval)
3114 /* cannot allocate the heap */
3115 return retval;
3116 }
3117
3118 again:
3119 /*
3120 * Scan tasks in the cgroup, using the scanner's "test_task" callback
3121 * to determine which are of interest, and using the scanner's
3122 * "process_task" callback to process any of them that need an update.
3123 * Since we don't want to hold any locks during the task updates,
3124 * gather tasks to be processed in a heap structure.
3125 * The heap is sorted by descending task start time.
3126 * If the statically-sized heap fills up, we overflow tasks that
3127 * started later, and in future iterations only consider tasks that
3128 * started after the latest task in the previous pass. This
3129 * guarantees forward progress and that we don't miss any tasks.
3130 */
3131 heap->size = 0;
3132 cgroup_iter_start(scan->cg, &it);
3133 while ((p = cgroup_iter_next(scan->cg, &it))) {
3134 /*
3135 * Only affect tasks that qualify per the caller's callback,
3136 * if he provided one
3137 */
3138 if (scan->test_task && !scan->test_task(p, scan))
3139 continue;
3140 /*
3141 * Only process tasks that started after the last task
3142 * we processed
3143 */
3144 if (!started_after_time(p, &latest_time, latest_task))
3145 continue;
3146 dropped = heap_insert(heap, p);
3147 if (dropped == NULL) {
3148 /*
3149 * The new task was inserted; the heap wasn't
3150 * previously full
3151 */
3152 get_task_struct(p);
3153 } else if (dropped != p) {
3154 /*
3155 * The new task was inserted, and pushed out a
3156 * different task
3157 */
3158 get_task_struct(p);
3159 put_task_struct(dropped);
3160 }
3161 /*
3162 * Else the new task was newer than anything already in
3163 * the heap and wasn't inserted
3164 */
3165 }
3166 cgroup_iter_end(scan->cg, &it);
3167
3168 if (heap->size) {
3169 for (i = 0; i < heap->size; i++) {
3170 struct task_struct *q = heap->ptrs[i];
3171 if (i == 0) {
3172 latest_time = q->start_time;
3173 latest_task = q;
3174 }
3175 /* Process the task per the caller's callback */
3176 scan->process_task(q, scan);
3177 put_task_struct(q);
3178 }
3179 /*
3180 * If we had to process any tasks at all, scan again
3181 * in case some of them were in the middle of forking
3182 * children that didn't get processed.
3183 * Not the most efficient way to do it, but it avoids
3184 * having to take callback_mutex in the fork path
3185 */
3186 goto again;
3187 }
3188 if (heap == &tmp_heap)
3189 heap_free(&tmp_heap);
3190 return 0;
3191 }
3192
3193 /*
3194 * Stuff for reading the 'tasks'/'procs' files.
3195 *
3196 * Reading this file can return large amounts of data if a cgroup has
3197 * *lots* of attached tasks. So it may need several calls to read(),
3198 * but we cannot guarantee that the information we produce is correct
3199 * unless we produce it entirely atomically.
3200 *
3201 */
3202
3203 /* which pidlist file are we talking about? */
3204 enum cgroup_filetype {
3205 CGROUP_FILE_PROCS,
3206 CGROUP_FILE_TASKS,
3207 };
3208
3209 /*
3210 * A pidlist is a list of pids that virtually represents the contents of one
3211 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
3212 * a pair (one each for procs, tasks) for each pid namespace that's relevant
3213 * to the cgroup.
3214 */
3215 struct cgroup_pidlist {
3216 /*
3217 * used to find which pidlist is wanted. doesn't change as long as
3218 * this particular list stays in the list.
3219 */
3220 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
3221 /* array of xids */
3222 pid_t *list;
3223 /* how many elements the above list has */
3224 int length;
3225 /* how many files are using the current array */
3226 int use_count;
3227 /* each of these stored in a list by its cgroup */
3228 struct list_head links;
3229 /* pointer to the cgroup we belong to, for list removal purposes */
3230 struct cgroup *owner;
3231 /* protects the other fields */
3232 struct rw_semaphore mutex;
3233 };
3234
3235 /*
3236 * The following two functions "fix" the issue where there are more pids
3237 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3238 * TODO: replace with a kernel-wide solution to this problem
3239 */
3240 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
3241 static void *pidlist_allocate(int count)
3242 {
3243 if (PIDLIST_TOO_LARGE(count))
3244 return vmalloc(count * sizeof(pid_t));
3245 else
3246 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
3247 }
3248 static void pidlist_free(void *p)
3249 {
3250 if (is_vmalloc_addr(p))
3251 vfree(p);
3252 else
3253 kfree(p);
3254 }
3255 static void *pidlist_resize(void *p, int newcount)
3256 {
3257 void *newlist;
3258 /* note: if new alloc fails, old p will still be valid either way */
3259 if (is_vmalloc_addr(p)) {
3260 newlist = vmalloc(newcount * sizeof(pid_t));
3261 if (!newlist)
3262 return NULL;
3263 memcpy(newlist, p, newcount * sizeof(pid_t));
3264 vfree(p);
3265 } else {
3266 newlist = krealloc(p, newcount * sizeof(pid_t), GFP_KERNEL);
3267 }
3268 return newlist;
3269 }
3270
3271 /*
3272 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
3273 * If the new stripped list is sufficiently smaller and there's enough memory
3274 * to allocate a new buffer, will let go of the unneeded memory. Returns the
3275 * number of unique elements.
3276 */
3277 /* is the size difference enough that we should re-allocate the array? */
3278 #define PIDLIST_REALLOC_DIFFERENCE(old, new) ((old) - PAGE_SIZE >= (new))
3279 static int pidlist_uniq(pid_t **p, int length)
3280 {
3281 int src, dest = 1;
3282 pid_t *list = *p;
3283 pid_t *newlist;
3284
3285 /*
3286 * we presume the 0th element is unique, so i starts at 1. trivial
3287 * edge cases first; no work needs to be done for either
3288 */
3289 if (length == 0 || length == 1)
3290 return length;
3291 /* src and dest walk down the list; dest counts unique elements */
3292 for (src = 1; src < length; src++) {
3293 /* find next unique element */
3294 while (list[src] == list[src-1]) {
3295 src++;
3296 if (src == length)
3297 goto after;
3298 }
3299 /* dest always points to where the next unique element goes */
3300 list[dest] = list[src];
3301 dest++;
3302 }
3303 after:
3304 /*
3305 * if the length difference is large enough, we want to allocate a
3306 * smaller buffer to save memory. if this fails due to out of memory,
3307 * we'll just stay with what we've got.
3308 */
3309 if (PIDLIST_REALLOC_DIFFERENCE(length, dest)) {
3310 newlist = pidlist_resize(list, dest);
3311 if (newlist)
3312 *p = newlist;
3313 }
3314 return dest;
3315 }
3316
3317 static int cmppid(const void *a, const void *b)
3318 {
3319 return *(pid_t *)a - *(pid_t *)b;
3320 }
3321
3322 /*
3323 * find the appropriate pidlist for our purpose (given procs vs tasks)
3324 * returns with the lock on that pidlist already held, and takes care
3325 * of the use count, or returns NULL with no locks held if we're out of
3326 * memory.
3327 */
3328 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3329 enum cgroup_filetype type)
3330 {
3331 struct cgroup_pidlist *l;
3332 /* don't need task_nsproxy() if we're looking at ourself */
3333 struct pid_namespace *ns = current->nsproxy->pid_ns;
3334
3335 /*
3336 * We can't drop the pidlist_mutex before taking the l->mutex in case
3337 * the last ref-holder is trying to remove l from the list at the same
3338 * time. Holding the pidlist_mutex precludes somebody taking whichever
3339 * list we find out from under us - compare release_pid_array().
3340 */
3341 mutex_lock(&cgrp->pidlist_mutex);
3342 list_for_each_entry(l, &cgrp->pidlists, links) {
3343 if (l->key.type == type && l->key.ns == ns) {
3344 /* make sure l doesn't vanish out from under us */
3345 down_write(&l->mutex);
3346 mutex_unlock(&cgrp->pidlist_mutex);
3347 return l;
3348 }
3349 }
3350 /* entry not found; create a new one */
3351 l = kmalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
3352 if (!l) {
3353 mutex_unlock(&cgrp->pidlist_mutex);
3354 return l;
3355 }
3356 init_rwsem(&l->mutex);
3357 down_write(&l->mutex);
3358 l->key.type = type;
3359 l->key.ns = get_pid_ns(ns);
3360 l->use_count = 0; /* don't increment here */
3361 l->list = NULL;
3362 l->owner = cgrp;
3363 list_add(&l->links, &cgrp->pidlists);
3364 mutex_unlock(&cgrp->pidlist_mutex);
3365 return l;
3366 }
3367
3368 /*
3369 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3370 */
3371 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3372 struct cgroup_pidlist **lp)
3373 {
3374 pid_t *array;
3375 int length;
3376 int pid, n = 0; /* used for populating the array */
3377 struct cgroup_iter it;
3378 struct task_struct *tsk;
3379 struct cgroup_pidlist *l;
3380
3381 /*
3382 * If cgroup gets more users after we read count, we won't have
3383 * enough space - tough. This race is indistinguishable to the
3384 * caller from the case that the additional cgroup users didn't
3385 * show up until sometime later on.
3386 */
3387 length = cgroup_task_count(cgrp);
3388 array = pidlist_allocate(length);
3389 if (!array)
3390 return -ENOMEM;
3391 /* now, populate the array */
3392 cgroup_iter_start(cgrp, &it);
3393 while ((tsk = cgroup_iter_next(cgrp, &it))) {
3394 if (unlikely(n == length))
3395 break;
3396 /* get tgid or pid for procs or tasks file respectively */
3397 if (type == CGROUP_FILE_PROCS)
3398 pid = task_tgid_vnr(tsk);
3399 else
3400 pid = task_pid_vnr(tsk);
3401 if (pid > 0) /* make sure to only use valid results */
3402 array[n++] = pid;
3403 }
3404 cgroup_iter_end(cgrp, &it);
3405 length = n;
3406 /* now sort & (if procs) strip out duplicates */
3407 sort(array, length, sizeof(pid_t), cmppid, NULL);
3408 if (type == CGROUP_FILE_PROCS)
3409 length = pidlist_uniq(&array, length);
3410 l = cgroup_pidlist_find(cgrp, type);
3411 if (!l) {
3412 pidlist_free(array);
3413 return -ENOMEM;
3414 }
3415 /* store array, freeing old if necessary - lock already held */
3416 pidlist_free(l->list);
3417 l->list = array;
3418 l->length = length;
3419 l->use_count++;
3420 up_write(&l->mutex);
3421 *lp = l;
3422 return 0;
3423 }
3424
3425 /**
3426 * cgroupstats_build - build and fill cgroupstats
3427 * @stats: cgroupstats to fill information into
3428 * @dentry: A dentry entry belonging to the cgroup for which stats have
3429 * been requested.
3430 *
3431 * Build and fill cgroupstats so that taskstats can export it to user
3432 * space.
3433 */
3434 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
3435 {
3436 int ret = -EINVAL;
3437 struct cgroup *cgrp;
3438 struct cgroup_iter it;
3439 struct task_struct *tsk;
3440
3441 /*
3442 * Validate dentry by checking the superblock operations,
3443 * and make sure it's a directory.
3444 */
3445 if (dentry->d_sb->s_op != &cgroup_ops ||
3446 !S_ISDIR(dentry->d_inode->i_mode))
3447 goto err;
3448
3449 ret = 0;
3450 cgrp = dentry->d_fsdata;
3451
3452 cgroup_iter_start(cgrp, &it);
3453 while ((tsk = cgroup_iter_next(cgrp, &it))) {
3454 switch (tsk->state) {
3455 case TASK_RUNNING:
3456 stats->nr_running++;
3457 break;
3458 case TASK_INTERRUPTIBLE:
3459 stats->nr_sleeping++;
3460 break;
3461 case TASK_UNINTERRUPTIBLE:
3462 stats->nr_uninterruptible++;
3463 break;
3464 case TASK_STOPPED:
3465 stats->nr_stopped++;
3466 break;
3467 default:
3468 if (delayacct_is_task_waiting_on_io(tsk))
3469 stats->nr_io_wait++;
3470 break;
3471 }
3472 }
3473 cgroup_iter_end(cgrp, &it);
3474
3475 err:
3476 return ret;
3477 }
3478
3479
3480 /*
3481 * seq_file methods for the tasks/procs files. The seq_file position is the
3482 * next pid to display; the seq_file iterator is a pointer to the pid
3483 * in the cgroup->l->list array.
3484 */
3485
3486 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
3487 {
3488 /*
3489 * Initially we receive a position value that corresponds to
3490 * one more than the last pid shown (or 0 on the first call or
3491 * after a seek to the start). Use a binary-search to find the
3492 * next pid to display, if any
3493 */
3494 struct cgroup_pidlist *l = s->private;
3495 int index = 0, pid = *pos;
3496 int *iter;
3497
3498 down_read(&l->mutex);
3499 if (pid) {
3500 int end = l->length;
3501
3502 while (index < end) {
3503 int mid = (index + end) / 2;
3504 if (l->list[mid] == pid) {
3505 index = mid;
3506 break;
3507 } else if (l->list[mid] <= pid)
3508 index = mid + 1;
3509 else
3510 end = mid;
3511 }
3512 }
3513 /* If we're off the end of the array, we're done */
3514 if (index >= l->length)
3515 return NULL;
3516 /* Update the abstract position to be the actual pid that we found */
3517 iter = l->list + index;
3518 *pos = *iter;
3519 return iter;
3520 }
3521
3522 static void cgroup_pidlist_stop(struct seq_file *s, void *v)
3523 {
3524 struct cgroup_pidlist *l = s->private;
3525 up_read(&l->mutex);
3526 }
3527
3528 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
3529 {
3530 struct cgroup_pidlist *l = s->private;
3531 pid_t *p = v;
3532 pid_t *end = l->list + l->length;
3533 /*
3534 * Advance to the next pid in the array. If this goes off the
3535 * end, we're done
3536 */
3537 p++;
3538 if (p >= end) {
3539 return NULL;
3540 } else {
3541 *pos = *p;
3542 return p;
3543 }
3544 }
3545
3546 static int cgroup_pidlist_show(struct seq_file *s, void *v)
3547 {
3548 return seq_printf(s, "%d\n", *(int *)v);
3549 }
3550
3551 /*
3552 * seq_operations functions for iterating on pidlists through seq_file -
3553 * independent of whether it's tasks or procs
3554 */
3555 static const struct seq_operations cgroup_pidlist_seq_operations = {
3556 .start = cgroup_pidlist_start,
3557 .stop = cgroup_pidlist_stop,
3558 .next = cgroup_pidlist_next,
3559 .show = cgroup_pidlist_show,
3560 };
3561
3562 static void cgroup_release_pid_array(struct cgroup_pidlist *l)
3563 {
3564 /*
3565 * the case where we're the last user of this particular pidlist will
3566 * have us remove it from the cgroup's list, which entails taking the
3567 * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
3568 * pidlist_mutex, we have to take pidlist_mutex first.
3569 */
3570 mutex_lock(&l->owner->pidlist_mutex);
3571 down_write(&l->mutex);
3572 BUG_ON(!l->use_count);
3573 if (!--l->use_count) {
3574 /* we're the last user if refcount is 0; remove and free */
3575 list_del(&l->links);
3576 mutex_unlock(&l->owner->pidlist_mutex);
3577 pidlist_free(l->list);
3578 put_pid_ns(l->key.ns);
3579 up_write(&l->mutex);
3580 kfree(l);
3581 return;
3582 }
3583 mutex_unlock(&l->owner->pidlist_mutex);
3584 up_write(&l->mutex);
3585 }
3586
3587 static int cgroup_pidlist_release(struct inode *inode, struct file *file)
3588 {
3589 struct cgroup_pidlist *l;
3590 if (!(file->f_mode & FMODE_READ))
3591 return 0;
3592 /*
3593 * the seq_file will only be initialized if the file was opened for
3594 * reading; hence we check if it's not null only in that case.
3595 */
3596 l = ((struct seq_file *)file->private_data)->private;
3597 cgroup_release_pid_array(l);
3598 return seq_release(inode, file);
3599 }
3600
3601 static const struct file_operations cgroup_pidlist_operations = {
3602 .read = seq_read,
3603 .llseek = seq_lseek,
3604 .write = cgroup_file_write,
3605 .release = cgroup_pidlist_release,
3606 };
3607
3608 /*
3609 * The following functions handle opens on a file that displays a pidlist
3610 * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
3611 * in the cgroup.
3612 */
3613 /* helper function for the two below it */
3614 static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type)
3615 {
3616 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
3617 struct cgroup_pidlist *l;
3618 int retval;
3619
3620 /* Nothing to do for write-only files */
3621 if (!(file->f_mode & FMODE_READ))
3622 return 0;
3623
3624 /* have the array populated */
3625 retval = pidlist_array_load(cgrp, type, &l);
3626 if (retval)
3627 return retval;
3628 /* configure file information */
3629 file->f_op = &cgroup_pidlist_operations;
3630
3631 retval = seq_open(file, &cgroup_pidlist_seq_operations);
3632 if (retval) {
3633 cgroup_release_pid_array(l);
3634 return retval;
3635 }
3636 ((struct seq_file *)file->private_data)->private = l;
3637 return 0;
3638 }
3639 static int cgroup_tasks_open(struct inode *unused, struct file *file)
3640 {
3641 return cgroup_pidlist_open(file, CGROUP_FILE_TASKS);
3642 }
3643 static int cgroup_procs_open(struct inode *unused, struct file *file)
3644 {
3645 return cgroup_pidlist_open(file, CGROUP_FILE_PROCS);
3646 }
3647
3648 static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
3649 struct cftype *cft)
3650 {
3651 return notify_on_release(cgrp);
3652 }
3653
3654 static int cgroup_write_notify_on_release(struct cgroup *cgrp,
3655 struct cftype *cft,
3656 u64 val)
3657 {
3658 clear_bit(CGRP_RELEASABLE, &cgrp->flags);
3659 if (val)
3660 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3661 else
3662 clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3663 return 0;
3664 }
3665
3666 /*
3667 * Unregister event and free resources.
3668 *
3669 * Gets called from workqueue.
3670 */
3671 static void cgroup_event_remove(struct work_struct *work)
3672 {
3673 struct cgroup_event *event = container_of(work, struct cgroup_event,
3674 remove);
3675 struct cgroup *cgrp = event->cgrp;
3676
3677 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3678
3679 eventfd_ctx_put(event->eventfd);
3680 kfree(event);
3681 dput(cgrp->dentry);
3682 }
3683
3684 /*
3685 * Gets called on POLLHUP on eventfd when user closes it.
3686 *
3687 * Called with wqh->lock held and interrupts disabled.
3688 */
3689 static int cgroup_event_wake(wait_queue_t *wait, unsigned mode,
3690 int sync, void *key)
3691 {
3692 struct cgroup_event *event = container_of(wait,
3693 struct cgroup_event, wait);
3694 struct cgroup *cgrp = event->cgrp;
3695 unsigned long flags = (unsigned long)key;
3696
3697 if (flags & POLLHUP) {
3698 __remove_wait_queue(event->wqh, &event->wait);
3699 spin_lock(&cgrp->event_list_lock);
3700 list_del(&event->list);
3701 spin_unlock(&cgrp->event_list_lock);
3702 /*
3703 * We are in atomic context, but cgroup_event_remove() may
3704 * sleep, so we have to call it in workqueue.
3705 */
3706 schedule_work(&event->remove);
3707 }
3708
3709 return 0;
3710 }
3711
3712 static void cgroup_event_ptable_queue_proc(struct file *file,
3713 wait_queue_head_t *wqh, poll_table *pt)
3714 {
3715 struct cgroup_event *event = container_of(pt,
3716 struct cgroup_event, pt);
3717
3718 event->wqh = wqh;
3719 add_wait_queue(wqh, &event->wait);
3720 }
3721
3722 /*
3723 * Parse input and register new cgroup event handler.
3724 *
3725 * Input must be in format '<event_fd> <control_fd> <args>'.
3726 * Interpretation of args is defined by control file implementation.
3727 */
3728 static int cgroup_write_event_control(struct cgroup *cgrp, struct cftype *cft,
3729 const char *buffer)
3730 {
3731 struct cgroup_event *event = NULL;
3732 unsigned int efd, cfd;
3733 struct file *efile = NULL;
3734 struct file *cfile = NULL;
3735 char *endp;
3736 int ret;
3737
3738 efd = simple_strtoul(buffer, &endp, 10);
3739 if (*endp != ' ')
3740 return -EINVAL;
3741 buffer = endp + 1;
3742
3743 cfd = simple_strtoul(buffer, &endp, 10);
3744 if ((*endp != ' ') && (*endp != '\0'))
3745 return -EINVAL;
3746 buffer = endp + 1;
3747
3748 event = kzalloc(sizeof(*event), GFP_KERNEL);
3749 if (!event)
3750 return -ENOMEM;
3751 event->cgrp = cgrp;
3752 INIT_LIST_HEAD(&event->list);
3753 init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc);
3754 init_waitqueue_func_entry(&event->wait, cgroup_event_wake);
3755 INIT_WORK(&event->remove, cgroup_event_remove);
3756
3757 efile = eventfd_fget(efd);
3758 if (IS_ERR(efile)) {
3759 ret = PTR_ERR(efile);
3760 goto fail;
3761 }
3762
3763 event->eventfd = eventfd_ctx_fileget(efile);
3764 if (IS_ERR(event->eventfd)) {
3765 ret = PTR_ERR(event->eventfd);
3766 goto fail;
3767 }
3768
3769 cfile = fget(cfd);
3770 if (!cfile) {
3771 ret = -EBADF;
3772 goto fail;
3773 }
3774
3775 /* the process need read permission on control file */
3776 /* AV: shouldn't we check that it's been opened for read instead? */
3777 ret = inode_permission(cfile->f_path.dentry->d_inode, MAY_READ);
3778 if (ret < 0)
3779 goto fail;
3780
3781 event->cft = __file_cft(cfile);
3782 if (IS_ERR(event->cft)) {
3783 ret = PTR_ERR(event->cft);
3784 goto fail;
3785 }
3786
3787 if (!event->cft->register_event || !event->cft->unregister_event) {
3788 ret = -EINVAL;
3789 goto fail;
3790 }
3791
3792 ret = event->cft->register_event(cgrp, event->cft,
3793 event->eventfd, buffer);
3794 if (ret)
3795 goto fail;
3796
3797 if (efile->f_op->poll(efile, &event->pt) & POLLHUP) {
3798 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3799 ret = 0;
3800 goto fail;
3801 }
3802
3803 /*
3804 * Events should be removed after rmdir of cgroup directory, but before
3805 * destroying subsystem state objects. Let's take reference to cgroup
3806 * directory dentry to do that.
3807 */
3808 dget(cgrp->dentry);
3809
3810 spin_lock(&cgrp->event_list_lock);
3811 list_add(&event->list, &cgrp->event_list);
3812 spin_unlock(&cgrp->event_list_lock);
3813
3814 fput(cfile);
3815 fput(efile);
3816
3817 return 0;
3818
3819 fail:
3820 if (cfile)
3821 fput(cfile);
3822
3823 if (event && event->eventfd && !IS_ERR(event->eventfd))
3824 eventfd_ctx_put(event->eventfd);
3825
3826 if (!IS_ERR_OR_NULL(efile))
3827 fput(efile);
3828
3829 kfree(event);
3830
3831 return ret;
3832 }
3833
3834 static u64 cgroup_clone_children_read(struct cgroup *cgrp,
3835 struct cftype *cft)
3836 {
3837 return clone_children(cgrp);
3838 }
3839
3840 static int cgroup_clone_children_write(struct cgroup *cgrp,
3841 struct cftype *cft,
3842 u64 val)
3843 {
3844 if (val)
3845 set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3846 else
3847 clear_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3848 return 0;
3849 }
3850
3851 /*
3852 * for the common functions, 'private' gives the type of file
3853 */
3854 /* for hysterical raisins, we can't put this on the older files */
3855 #define CGROUP_FILE_GENERIC_PREFIX "cgroup."
3856 static struct cftype files[] = {
3857 {
3858 .name = "tasks",
3859 .open = cgroup_tasks_open,
3860 .write_u64 = cgroup_tasks_write,
3861 .release = cgroup_pidlist_release,
3862 .mode = S_IRUGO | S_IWUSR,
3863 },
3864 {
3865 .name = CGROUP_FILE_GENERIC_PREFIX "procs",
3866 .open = cgroup_procs_open,
3867 .write_u64 = cgroup_procs_write,
3868 .release = cgroup_pidlist_release,
3869 .mode = S_IRUGO | S_IWUSR,
3870 },
3871 {
3872 .name = "notify_on_release",
3873 .read_u64 = cgroup_read_notify_on_release,
3874 .write_u64 = cgroup_write_notify_on_release,
3875 },
3876 {
3877 .name = CGROUP_FILE_GENERIC_PREFIX "event_control",
3878 .write_string = cgroup_write_event_control,
3879 .mode = S_IWUGO,
3880 },
3881 {
3882 .name = "cgroup.clone_children",
3883 .read_u64 = cgroup_clone_children_read,
3884 .write_u64 = cgroup_clone_children_write,
3885 },
3886 {
3887 .name = "release_agent",
3888 .flags = CFTYPE_ONLY_ON_ROOT,
3889 .read_seq_string = cgroup_release_agent_show,
3890 .write_string = cgroup_release_agent_write,
3891 .max_write_len = PATH_MAX,
3892 },
3893 { } /* terminate */
3894 };
3895
3896 /**
3897 * cgroup_populate_dir - selectively creation of files in a directory
3898 * @cgrp: target cgroup
3899 * @base_files: true if the base files should be added
3900 * @subsys_mask: mask of the subsystem ids whose files should be added
3901 */
3902 static int cgroup_populate_dir(struct cgroup *cgrp, bool base_files,
3903 unsigned long subsys_mask)
3904 {
3905 int err;
3906 struct cgroup_subsys *ss;
3907
3908 if (base_files) {
3909 err = cgroup_addrm_files(cgrp, NULL, files, true);
3910 if (err < 0)
3911 return err;
3912 }
3913
3914 /* process cftsets of each subsystem */
3915 for_each_subsys(cgrp->root, ss) {
3916 struct cftype_set *set;
3917 if (!test_bit(ss->subsys_id, &subsys_mask))
3918 continue;
3919
3920 list_for_each_entry(set, &ss->cftsets, node)
3921 cgroup_addrm_files(cgrp, ss, set->cfts, true);
3922 }
3923
3924 /* This cgroup is ready now */
3925 for_each_subsys(cgrp->root, ss) {
3926 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3927 /*
3928 * Update id->css pointer and make this css visible from
3929 * CSS ID functions. This pointer will be dereferened
3930 * from RCU-read-side without locks.
3931 */
3932 if (css->id)
3933 rcu_assign_pointer(css->id->css, css);
3934 }
3935
3936 return 0;
3937 }
3938
3939 static void css_dput_fn(struct work_struct *work)
3940 {
3941 struct cgroup_subsys_state *css =
3942 container_of(work, struct cgroup_subsys_state, dput_work);
3943 struct dentry *dentry = css->cgroup->dentry;
3944 struct super_block *sb = dentry->d_sb;
3945
3946 atomic_inc(&sb->s_active);
3947 dput(dentry);
3948 deactivate_super(sb);
3949 }
3950
3951 static void init_cgroup_css(struct cgroup_subsys_state *css,
3952 struct cgroup_subsys *ss,
3953 struct cgroup *cgrp)
3954 {
3955 css->cgroup = cgrp;
3956 atomic_set(&css->refcnt, 1);
3957 css->flags = 0;
3958 css->id = NULL;
3959 if (cgrp == dummytop)
3960 set_bit(CSS_ROOT, &css->flags);
3961 BUG_ON(cgrp->subsys[ss->subsys_id]);
3962 cgrp->subsys[ss->subsys_id] = css;
3963
3964 /*
3965 * css holds an extra ref to @cgrp->dentry which is put on the last
3966 * css_put(). dput() requires process context, which css_put() may
3967 * be called without. @css->dput_work will be used to invoke
3968 * dput() asynchronously from css_put().
3969 */
3970 INIT_WORK(&css->dput_work, css_dput_fn);
3971 }
3972
3973 /*
3974 * cgroup_create - create a cgroup
3975 * @parent: cgroup that will be parent of the new cgroup
3976 * @dentry: dentry of the new cgroup
3977 * @mode: mode to set on new inode
3978 *
3979 * Must be called with the mutex on the parent inode held
3980 */
3981 static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
3982 umode_t mode)
3983 {
3984 struct cgroup *cgrp;
3985 struct cgroupfs_root *root = parent->root;
3986 int err = 0;
3987 struct cgroup_subsys *ss;
3988 struct super_block *sb = root->sb;
3989
3990 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
3991 if (!cgrp)
3992 return -ENOMEM;
3993
3994 /*
3995 * Only live parents can have children. Note that the liveliness
3996 * check isn't strictly necessary because cgroup_mkdir() and
3997 * cgroup_rmdir() are fully synchronized by i_mutex; however, do it
3998 * anyway so that locking is contained inside cgroup proper and we
3999 * don't get nasty surprises if we ever grow another caller.
4000 */
4001 if (!cgroup_lock_live_group(parent)) {
4002 err = -ENODEV;
4003 goto err_free;
4004 }
4005
4006 /* Grab a reference on the superblock so the hierarchy doesn't
4007 * get deleted on unmount if there are child cgroups. This
4008 * can be done outside cgroup_mutex, since the sb can't
4009 * disappear while someone has an open control file on the
4010 * fs */
4011 atomic_inc(&sb->s_active);
4012
4013 init_cgroup_housekeeping(cgrp);
4014
4015 cgrp->parent = parent;
4016 cgrp->root = parent->root;
4017 cgrp->top_cgroup = parent->top_cgroup;
4018
4019 if (notify_on_release(parent))
4020 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4021
4022 if (clone_children(parent))
4023 set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
4024
4025 for_each_subsys(root, ss) {
4026 struct cgroup_subsys_state *css;
4027
4028 css = ss->create(cgrp);
4029 if (IS_ERR(css)) {
4030 err = PTR_ERR(css);
4031 goto err_destroy;
4032 }
4033 init_cgroup_css(css, ss, cgrp);
4034 if (ss->use_id) {
4035 err = alloc_css_id(ss, parent, cgrp);
4036 if (err)
4037 goto err_destroy;
4038 }
4039 /* At error, ->destroy() callback has to free assigned ID. */
4040 if (clone_children(parent) && ss->post_clone)
4041 ss->post_clone(cgrp);
4042
4043 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
4044 parent->parent) {
4045 pr_warning("cgroup: %s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4046 current->comm, current->pid, ss->name);
4047 if (!strcmp(ss->name, "memory"))
4048 pr_warning("cgroup: \"memory\" requires setting use_hierarchy to 1 on the root.\n");
4049 ss->warned_broken_hierarchy = true;
4050 }
4051 }
4052
4053 list_add_tail_rcu(&cgrp->sibling, &cgrp->parent->children);
4054 root->number_of_cgroups++;
4055
4056 err = cgroup_create_dir(cgrp, dentry, mode);
4057 if (err < 0)
4058 goto err_remove;
4059
4060 for_each_subsys(root, ss) {
4061 /* each css holds a ref to the cgroup's dentry */
4062 dget(dentry);
4063
4064 /* creation succeeded, notify subsystems */
4065 if (ss->post_create)
4066 ss->post_create(cgrp);
4067 }
4068
4069 /* The cgroup directory was pre-locked for us */
4070 BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
4071
4072 list_add_tail(&cgrp->allcg_node, &root->allcg_list);
4073
4074 err = cgroup_populate_dir(cgrp, true, root->subsys_mask);
4075 /* If err < 0, we have a half-filled directory - oh well ;) */
4076
4077 mutex_unlock(&cgroup_mutex);
4078 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
4079
4080 return 0;
4081
4082 err_remove:
4083
4084 list_del_rcu(&cgrp->sibling);
4085 root->number_of_cgroups--;
4086
4087 err_destroy:
4088
4089 for_each_subsys(root, ss) {
4090 if (cgrp->subsys[ss->subsys_id])
4091 ss->destroy(cgrp);
4092 }
4093
4094 mutex_unlock(&cgroup_mutex);
4095
4096 /* Release the reference count that we took on the superblock */
4097 deactivate_super(sb);
4098 err_free:
4099 kfree(cgrp);
4100 return err;
4101 }
4102
4103 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
4104 {
4105 struct cgroup *c_parent = dentry->d_parent->d_fsdata;
4106
4107 /* the vfs holds inode->i_mutex already */
4108 return cgroup_create(c_parent, dentry, mode | S_IFDIR);
4109 }
4110
4111 /*
4112 * Check the reference count on each subsystem. Since we already
4113 * established that there are no tasks in the cgroup, if the css refcount
4114 * is also 1, then there should be no outstanding references, so the
4115 * subsystem is safe to destroy. We scan across all subsystems rather than
4116 * using the per-hierarchy linked list of mounted subsystems since we can
4117 * be called via check_for_release() with no synchronization other than
4118 * RCU, and the subsystem linked list isn't RCU-safe.
4119 */
4120 static int cgroup_has_css_refs(struct cgroup *cgrp)
4121 {
4122 int i;
4123
4124 /*
4125 * We won't need to lock the subsys array, because the subsystems
4126 * we're concerned about aren't going anywhere since our cgroup root
4127 * has a reference on them.
4128 */
4129 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4130 struct cgroup_subsys *ss = subsys[i];
4131 struct cgroup_subsys_state *css;
4132
4133 /* Skip subsystems not present or not in this hierarchy */
4134 if (ss == NULL || ss->root != cgrp->root)
4135 continue;
4136
4137 css = cgrp->subsys[ss->subsys_id];
4138 /*
4139 * When called from check_for_release() it's possible
4140 * that by this point the cgroup has been removed
4141 * and the css deleted. But a false-positive doesn't
4142 * matter, since it can only happen if the cgroup
4143 * has been deleted and hence no longer needs the
4144 * release agent to be called anyway.
4145 */
4146 if (css && css_refcnt(css) > 1)
4147 return 1;
4148 }
4149 return 0;
4150 }
4151
4152 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
4153 {
4154 struct cgroup *cgrp = dentry->d_fsdata;
4155 struct dentry *d;
4156 struct cgroup *parent;
4157 DEFINE_WAIT(wait);
4158 struct cgroup_event *event, *tmp;
4159 struct cgroup_subsys *ss;
4160
4161 /* the vfs holds both inode->i_mutex already */
4162 mutex_lock(&cgroup_mutex);
4163 parent = cgrp->parent;
4164 if (atomic_read(&cgrp->count) || !list_empty(&cgrp->children)) {
4165 mutex_unlock(&cgroup_mutex);
4166 return -EBUSY;
4167 }
4168
4169 /*
4170 * Block new css_tryget() by deactivating refcnt and mark @cgrp
4171 * removed. This makes future css_tryget() and child creation
4172 * attempts fail thus maintaining the removal conditions verified
4173 * above.
4174 */
4175 for_each_subsys(cgrp->root, ss) {
4176 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
4177
4178 WARN_ON(atomic_read(&css->refcnt) < 0);
4179 atomic_add(CSS_DEACT_BIAS, &css->refcnt);
4180 }
4181 set_bit(CGRP_REMOVED, &cgrp->flags);
4182
4183 /*
4184 * Tell subsystems to initate destruction. pre_destroy() should be
4185 * called with cgroup_mutex unlocked. See 3fa59dfbc3 ("cgroup: fix
4186 * potential deadlock in pre_destroy") for details.
4187 */
4188 mutex_unlock(&cgroup_mutex);
4189 for_each_subsys(cgrp->root, ss)
4190 if (ss->pre_destroy)
4191 ss->pre_destroy(cgrp);
4192 mutex_lock(&cgroup_mutex);
4193
4194 /*
4195 * Put all the base refs. Each css holds an extra reference to the
4196 * cgroup's dentry and cgroup removal proceeds regardless of css
4197 * refs. On the last put of each css, whenever that may be, the
4198 * extra dentry ref is put so that dentry destruction happens only
4199 * after all css's are released.
4200 */
4201 for_each_subsys(cgrp->root, ss)
4202 css_put(cgrp->subsys[ss->subsys_id]);
4203
4204 raw_spin_lock(&release_list_lock);
4205 if (!list_empty(&cgrp->release_list))
4206 list_del_init(&cgrp->release_list);
4207 raw_spin_unlock(&release_list_lock);
4208
4209 /* delete this cgroup from parent->children */
4210 list_del_rcu(&cgrp->sibling);
4211
4212 list_del_init(&cgrp->allcg_node);
4213
4214 d = dget(cgrp->dentry);
4215
4216 cgroup_d_remove_dir(d);
4217 dput(d);
4218
4219 set_bit(CGRP_RELEASABLE, &parent->flags);
4220 check_for_release(parent);
4221
4222 /*
4223 * Unregister events and notify userspace.
4224 * Notify userspace about cgroup removing only after rmdir of cgroup
4225 * directory to avoid race between userspace and kernelspace
4226 */
4227 spin_lock(&cgrp->event_list_lock);
4228 list_for_each_entry_safe(event, tmp, &cgrp->event_list, list) {
4229 list_del(&event->list);
4230 remove_wait_queue(event->wqh, &event->wait);
4231 eventfd_signal(event->eventfd, 1);
4232 schedule_work(&event->remove);
4233 }
4234 spin_unlock(&cgrp->event_list_lock);
4235
4236 mutex_unlock(&cgroup_mutex);
4237 return 0;
4238 }
4239
4240 static void __init_or_module cgroup_init_cftsets(struct cgroup_subsys *ss)
4241 {
4242 INIT_LIST_HEAD(&ss->cftsets);
4243
4244 /*
4245 * base_cftset is embedded in subsys itself, no need to worry about
4246 * deregistration.
4247 */
4248 if (ss->base_cftypes) {
4249 ss->base_cftset.cfts = ss->base_cftypes;
4250 list_add_tail(&ss->base_cftset.node, &ss->cftsets);
4251 }
4252 }
4253
4254 static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
4255 {
4256 struct cgroup_subsys_state *css;
4257
4258 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
4259
4260 /* init base cftset */
4261 cgroup_init_cftsets(ss);
4262
4263 /* Create the top cgroup state for this subsystem */
4264 list_add(&ss->sibling, &rootnode.subsys_list);
4265 ss->root = &rootnode;
4266 css = ss->create(dummytop);
4267 /* We don't handle early failures gracefully */
4268 BUG_ON(IS_ERR(css));
4269 init_cgroup_css(css, ss, dummytop);
4270
4271 /* Update the init_css_set to contain a subsys
4272 * pointer to this state - since the subsystem is
4273 * newly registered, all tasks and hence the
4274 * init_css_set is in the subsystem's top cgroup. */
4275 init_css_set.subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
4276
4277 need_forkexit_callback |= ss->fork || ss->exit;
4278
4279 /* At system boot, before all subsystems have been
4280 * registered, no tasks have been forked, so we don't
4281 * need to invoke fork callbacks here. */
4282 BUG_ON(!list_empty(&init_task.tasks));
4283
4284 ss->active = 1;
4285
4286 if (ss->post_create)
4287 ss->post_create(&ss->root->top_cgroup);
4288
4289 /* this function shouldn't be used with modular subsystems, since they
4290 * need to register a subsys_id, among other things */
4291 BUG_ON(ss->module);
4292 }
4293
4294 /**
4295 * cgroup_load_subsys: load and register a modular subsystem at runtime
4296 * @ss: the subsystem to load
4297 *
4298 * This function should be called in a modular subsystem's initcall. If the
4299 * subsystem is built as a module, it will be assigned a new subsys_id and set
4300 * up for use. If the subsystem is built-in anyway, work is delegated to the
4301 * simpler cgroup_init_subsys.
4302 */
4303 int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss)
4304 {
4305 int i;
4306 struct cgroup_subsys_state *css;
4307
4308 /* check name and function validity */
4309 if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN ||
4310 ss->create == NULL || ss->destroy == NULL)
4311 return -EINVAL;
4312
4313 /*
4314 * we don't support callbacks in modular subsystems. this check is
4315 * before the ss->module check for consistency; a subsystem that could
4316 * be a module should still have no callbacks even if the user isn't
4317 * compiling it as one.
4318 */
4319 if (ss->fork || ss->exit)
4320 return -EINVAL;
4321
4322 /*
4323 * an optionally modular subsystem is built-in: we want to do nothing,
4324 * since cgroup_init_subsys will have already taken care of it.
4325 */
4326 if (ss->module == NULL) {
4327 /* a sanity check */
4328 BUG_ON(subsys[ss->subsys_id] != ss);
4329 return 0;
4330 }
4331
4332 /* init base cftset */
4333 cgroup_init_cftsets(ss);
4334
4335 mutex_lock(&cgroup_mutex);
4336 subsys[ss->subsys_id] = ss;
4337
4338 /*
4339 * no ss->create seems to need anything important in the ss struct, so
4340 * this can happen first (i.e. before the rootnode attachment).
4341 */
4342 css = ss->create(dummytop);
4343 if (IS_ERR(css)) {
4344 /* failure case - need to deassign the subsys[] slot. */
4345 subsys[ss->subsys_id] = NULL;
4346 mutex_unlock(&cgroup_mutex);
4347 return PTR_ERR(css);
4348 }
4349
4350 list_add(&ss->sibling, &rootnode.subsys_list);
4351 ss->root = &rootnode;
4352
4353 /* our new subsystem will be attached to the dummy hierarchy. */
4354 init_cgroup_css(css, ss, dummytop);
4355 /* init_idr must be after init_cgroup_css because it sets css->id. */
4356 if (ss->use_id) {
4357 int ret = cgroup_init_idr(ss, css);
4358 if (ret) {
4359 dummytop->subsys[ss->subsys_id] = NULL;
4360 ss->destroy(dummytop);
4361 subsys[ss->subsys_id] = NULL;
4362 mutex_unlock(&cgroup_mutex);
4363 return ret;
4364 }
4365 }
4366
4367 /*
4368 * Now we need to entangle the css into the existing css_sets. unlike
4369 * in cgroup_init_subsys, there are now multiple css_sets, so each one
4370 * will need a new pointer to it; done by iterating the css_set_table.
4371 * furthermore, modifying the existing css_sets will corrupt the hash
4372 * table state, so each changed css_set will need its hash recomputed.
4373 * this is all done under the css_set_lock.
4374 */
4375 write_lock(&css_set_lock);
4376 for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
4377 struct css_set *cg;
4378 struct hlist_node *node, *tmp;
4379 struct hlist_head *bucket = &css_set_table[i], *new_bucket;
4380
4381 hlist_for_each_entry_safe(cg, node, tmp, bucket, hlist) {
4382 /* skip entries that we already rehashed */
4383 if (cg->subsys[ss->subsys_id])
4384 continue;
4385 /* remove existing entry */
4386 hlist_del(&cg->hlist);
4387 /* set new value */
4388 cg->subsys[ss->subsys_id] = css;
4389 /* recompute hash and restore entry */
4390 new_bucket = css_set_hash(cg->subsys);
4391 hlist_add_head(&cg->hlist, new_bucket);
4392 }
4393 }
4394 write_unlock(&css_set_lock);
4395
4396 ss->active = 1;
4397
4398 if (ss->post_create)
4399 ss->post_create(&ss->root->top_cgroup);
4400
4401 /* success! */
4402 mutex_unlock(&cgroup_mutex);
4403 return 0;
4404 }
4405 EXPORT_SYMBOL_GPL(cgroup_load_subsys);
4406
4407 /**
4408 * cgroup_unload_subsys: unload a modular subsystem
4409 * @ss: the subsystem to unload
4410 *
4411 * This function should be called in a modular subsystem's exitcall. When this
4412 * function is invoked, the refcount on the subsystem's module will be 0, so
4413 * the subsystem will not be attached to any hierarchy.
4414 */
4415 void cgroup_unload_subsys(struct cgroup_subsys *ss)
4416 {
4417 struct cg_cgroup_link *link;
4418 struct hlist_head *hhead;
4419
4420 BUG_ON(ss->module == NULL);
4421
4422 /*
4423 * we shouldn't be called if the subsystem is in use, and the use of
4424 * try_module_get in parse_cgroupfs_options should ensure that it
4425 * doesn't start being used while we're killing it off.
4426 */
4427 BUG_ON(ss->root != &rootnode);
4428
4429 mutex_lock(&cgroup_mutex);
4430 /* deassign the subsys_id */
4431 subsys[ss->subsys_id] = NULL;
4432
4433 /* remove subsystem from rootnode's list of subsystems */
4434 list_del_init(&ss->sibling);
4435
4436 /*
4437 * disentangle the css from all css_sets attached to the dummytop. as
4438 * in loading, we need to pay our respects to the hashtable gods.
4439 */
4440 write_lock(&css_set_lock);
4441 list_for_each_entry(link, &dummytop->css_sets, cgrp_link_list) {
4442 struct css_set *cg = link->cg;
4443
4444 hlist_del(&cg->hlist);
4445 BUG_ON(!cg->subsys[ss->subsys_id]);
4446 cg->subsys[ss->subsys_id] = NULL;
4447 hhead = css_set_hash(cg->subsys);
4448 hlist_add_head(&cg->hlist, hhead);
4449 }
4450 write_unlock(&css_set_lock);
4451
4452 /*
4453 * remove subsystem's css from the dummytop and free it - need to free
4454 * before marking as null because ss->destroy needs the cgrp->subsys
4455 * pointer to find their state. note that this also takes care of
4456 * freeing the css_id.
4457 */
4458 ss->destroy(dummytop);
4459 dummytop->subsys[ss->subsys_id] = NULL;
4460
4461 mutex_unlock(&cgroup_mutex);
4462 }
4463 EXPORT_SYMBOL_GPL(cgroup_unload_subsys);
4464
4465 /**
4466 * cgroup_init_early - cgroup initialization at system boot
4467 *
4468 * Initialize cgroups at system boot, and initialize any
4469 * subsystems that request early init.
4470 */
4471 int __init cgroup_init_early(void)
4472 {
4473 int i;
4474 atomic_set(&init_css_set.refcount, 1);
4475 INIT_LIST_HEAD(&init_css_set.cg_links);
4476 INIT_LIST_HEAD(&init_css_set.tasks);
4477 INIT_HLIST_NODE(&init_css_set.hlist);
4478 css_set_count = 1;
4479 init_cgroup_root(&rootnode);
4480 root_count = 1;
4481 init_task.cgroups = &init_css_set;
4482
4483 init_css_set_link.cg = &init_css_set;
4484 init_css_set_link.cgrp = dummytop;
4485 list_add(&init_css_set_link.cgrp_link_list,
4486 &rootnode.top_cgroup.css_sets);
4487 list_add(&init_css_set_link.cg_link_list,
4488 &init_css_set.cg_links);
4489
4490 for (i = 0; i < CSS_SET_TABLE_SIZE; i++)
4491 INIT_HLIST_HEAD(&css_set_table[i]);
4492
4493 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4494 struct cgroup_subsys *ss = subsys[i];
4495
4496 /* at bootup time, we don't worry about modular subsystems */
4497 if (!ss || ss->module)
4498 continue;
4499
4500 BUG_ON(!ss->name);
4501 BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
4502 BUG_ON(!ss->create);
4503 BUG_ON(!ss->destroy);
4504 if (ss->subsys_id != i) {
4505 printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
4506 ss->name, ss->subsys_id);
4507 BUG();
4508 }
4509
4510 if (ss->early_init)
4511 cgroup_init_subsys(ss);
4512 }
4513 return 0;
4514 }
4515
4516 /**
4517 * cgroup_init - cgroup initialization
4518 *
4519 * Register cgroup filesystem and /proc file, and initialize
4520 * any subsystems that didn't request early init.
4521 */
4522 int __init cgroup_init(void)
4523 {
4524 int err;
4525 int i;
4526 struct hlist_head *hhead;
4527
4528 err = bdi_init(&cgroup_backing_dev_info);
4529 if (err)
4530 return err;
4531
4532 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4533 struct cgroup_subsys *ss = subsys[i];
4534
4535 /* at bootup time, we don't worry about modular subsystems */
4536 if (!ss || ss->module)
4537 continue;
4538 if (!ss->early_init)
4539 cgroup_init_subsys(ss);
4540 if (ss->use_id)
4541 cgroup_init_idr(ss, init_css_set.subsys[ss->subsys_id]);
4542 }
4543
4544 /* Add init_css_set to the hash table */
4545 hhead = css_set_hash(init_css_set.subsys);
4546 hlist_add_head(&init_css_set.hlist, hhead);
4547 BUG_ON(!init_root_id(&rootnode));
4548
4549 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
4550 if (!cgroup_kobj) {
4551 err = -ENOMEM;
4552 goto out;
4553 }
4554
4555 err = register_filesystem(&cgroup_fs_type);
4556 if (err < 0) {
4557 kobject_put(cgroup_kobj);
4558 goto out;
4559 }
4560
4561 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
4562
4563 out:
4564 if (err)
4565 bdi_destroy(&cgroup_backing_dev_info);
4566
4567 return err;
4568 }
4569
4570 /*
4571 * proc_cgroup_show()
4572 * - Print task's cgroup paths into seq_file, one line for each hierarchy
4573 * - Used for /proc/<pid>/cgroup.
4574 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
4575 * doesn't really matter if tsk->cgroup changes after we read it,
4576 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
4577 * anyway. No need to check that tsk->cgroup != NULL, thanks to
4578 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
4579 * cgroup to top_cgroup.
4580 */
4581
4582 /* TODO: Use a proper seq_file iterator */
4583 static int proc_cgroup_show(struct seq_file *m, void *v)
4584 {
4585 struct pid *pid;
4586 struct task_struct *tsk;
4587 char *buf;
4588 int retval;
4589 struct cgroupfs_root *root;
4590
4591 retval = -ENOMEM;
4592 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4593 if (!buf)
4594 goto out;
4595
4596 retval = -ESRCH;
4597 pid = m->private;
4598 tsk = get_pid_task(pid, PIDTYPE_PID);
4599 if (!tsk)
4600 goto out_free;
4601
4602 retval = 0;
4603
4604 mutex_lock(&cgroup_mutex);
4605
4606 for_each_active_root(root) {
4607 struct cgroup_subsys *ss;
4608 struct cgroup *cgrp;
4609 int count = 0;
4610
4611 seq_printf(m, "%d:", root->hierarchy_id);
4612 for_each_subsys(root, ss)
4613 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
4614 if (strlen(root->name))
4615 seq_printf(m, "%sname=%s", count ? "," : "",
4616 root->name);
4617 seq_putc(m, ':');
4618 cgrp = task_cgroup_from_root(tsk, root);
4619 retval = cgroup_path(cgrp, buf, PAGE_SIZE);
4620 if (retval < 0)
4621 goto out_unlock;
4622 seq_puts(m, buf);
4623 seq_putc(m, '\n');
4624 }
4625
4626 out_unlock:
4627 mutex_unlock(&cgroup_mutex);
4628 put_task_struct(tsk);
4629 out_free:
4630 kfree(buf);
4631 out:
4632 return retval;
4633 }
4634
4635 static int cgroup_open(struct inode *inode, struct file *file)
4636 {
4637 struct pid *pid = PROC_I(inode)->pid;
4638 return single_open(file, proc_cgroup_show, pid);
4639 }
4640
4641 const struct file_operations proc_cgroup_operations = {
4642 .open = cgroup_open,
4643 .read = seq_read,
4644 .llseek = seq_lseek,
4645 .release = single_release,
4646 };
4647
4648 /* Display information about each subsystem and each hierarchy */
4649 static int proc_cgroupstats_show(struct seq_file *m, void *v)
4650 {
4651 int i;
4652
4653 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
4654 /*
4655 * ideally we don't want subsystems moving around while we do this.
4656 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
4657 * subsys/hierarchy state.
4658 */
4659 mutex_lock(&cgroup_mutex);
4660 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4661 struct cgroup_subsys *ss = subsys[i];
4662 if (ss == NULL)
4663 continue;
4664 seq_printf(m, "%s\t%d\t%d\t%d\n",
4665 ss->name, ss->root->hierarchy_id,
4666 ss->root->number_of_cgroups, !ss->disabled);
4667 }
4668 mutex_unlock(&cgroup_mutex);
4669 return 0;
4670 }
4671
4672 static int cgroupstats_open(struct inode *inode, struct file *file)
4673 {
4674 return single_open(file, proc_cgroupstats_show, NULL);
4675 }
4676
4677 static const struct file_operations proc_cgroupstats_operations = {
4678 .open = cgroupstats_open,
4679 .read = seq_read,
4680 .llseek = seq_lseek,
4681 .release = single_release,
4682 };
4683
4684 /**
4685 * cgroup_fork - attach newly forked task to its parents cgroup.
4686 * @child: pointer to task_struct of forking parent process.
4687 *
4688 * Description: A task inherits its parent's cgroup at fork().
4689 *
4690 * A pointer to the shared css_set was automatically copied in
4691 * fork.c by dup_task_struct(). However, we ignore that copy, since
4692 * it was not made under the protection of RCU or cgroup_mutex, so
4693 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
4694 * have already changed current->cgroups, allowing the previously
4695 * referenced cgroup group to be removed and freed.
4696 *
4697 * At the point that cgroup_fork() is called, 'current' is the parent
4698 * task, and the passed argument 'child' points to the child task.
4699 */
4700 void cgroup_fork(struct task_struct *child)
4701 {
4702 task_lock(current);
4703 child->cgroups = current->cgroups;
4704 get_css_set(child->cgroups);
4705 task_unlock(current);
4706 INIT_LIST_HEAD(&child->cg_list);
4707 }
4708
4709 /**
4710 * cgroup_post_fork - called on a new task after adding it to the task list
4711 * @child: the task in question
4712 *
4713 * Adds the task to the list running through its css_set if necessary and
4714 * call the subsystem fork() callbacks. Has to be after the task is
4715 * visible on the task list in case we race with the first call to
4716 * cgroup_iter_start() - to guarantee that the new task ends up on its
4717 * list.
4718 */
4719 void cgroup_post_fork(struct task_struct *child)
4720 {
4721 int i;
4722
4723 /*
4724 * use_task_css_set_links is set to 1 before we walk the tasklist
4725 * under the tasklist_lock and we read it here after we added the child
4726 * to the tasklist under the tasklist_lock as well. If the child wasn't
4727 * yet in the tasklist when we walked through it from
4728 * cgroup_enable_task_cg_lists(), then use_task_css_set_links value
4729 * should be visible now due to the paired locking and barriers implied
4730 * by LOCK/UNLOCK: it is written before the tasklist_lock unlock
4731 * in cgroup_enable_task_cg_lists() and read here after the tasklist_lock
4732 * lock on fork.
4733 */
4734 if (use_task_css_set_links) {
4735 write_lock(&css_set_lock);
4736 task_lock(child);
4737 if (list_empty(&child->cg_list))
4738 list_add(&child->cg_list, &child->cgroups->tasks);
4739 task_unlock(child);
4740 write_unlock(&css_set_lock);
4741 }
4742
4743 /*
4744 * Call ss->fork(). This must happen after @child is linked on
4745 * css_set; otherwise, @child might change state between ->fork()
4746 * and addition to css_set.
4747 */
4748 if (need_forkexit_callback) {
4749 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4750 struct cgroup_subsys *ss = subsys[i];
4751
4752 /*
4753 * fork/exit callbacks are supported only for
4754 * builtin subsystems and we don't need further
4755 * synchronization as they never go away.
4756 */
4757 if (!ss || ss->module)
4758 continue;
4759
4760 if (ss->fork)
4761 ss->fork(child);
4762 }
4763 }
4764 }
4765
4766 /**
4767 * cgroup_exit - detach cgroup from exiting task
4768 * @tsk: pointer to task_struct of exiting process
4769 * @run_callback: run exit callbacks?
4770 *
4771 * Description: Detach cgroup from @tsk and release it.
4772 *
4773 * Note that cgroups marked notify_on_release force every task in
4774 * them to take the global cgroup_mutex mutex when exiting.
4775 * This could impact scaling on very large systems. Be reluctant to
4776 * use notify_on_release cgroups where very high task exit scaling
4777 * is required on large systems.
4778 *
4779 * the_top_cgroup_hack:
4780 *
4781 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
4782 *
4783 * We call cgroup_exit() while the task is still competent to
4784 * handle notify_on_release(), then leave the task attached to the
4785 * root cgroup in each hierarchy for the remainder of its exit.
4786 *
4787 * To do this properly, we would increment the reference count on
4788 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
4789 * code we would add a second cgroup function call, to drop that
4790 * reference. This would just create an unnecessary hot spot on
4791 * the top_cgroup reference count, to no avail.
4792 *
4793 * Normally, holding a reference to a cgroup without bumping its
4794 * count is unsafe. The cgroup could go away, or someone could
4795 * attach us to a different cgroup, decrementing the count on
4796 * the first cgroup that we never incremented. But in this case,
4797 * top_cgroup isn't going away, and either task has PF_EXITING set,
4798 * which wards off any cgroup_attach_task() attempts, or task is a failed
4799 * fork, never visible to cgroup_attach_task.
4800 */
4801 void cgroup_exit(struct task_struct *tsk, int run_callbacks)
4802 {
4803 struct css_set *cg;
4804 int i;
4805
4806 /*
4807 * Unlink from the css_set task list if necessary.
4808 * Optimistically check cg_list before taking
4809 * css_set_lock
4810 */
4811 if (!list_empty(&tsk->cg_list)) {
4812 write_lock(&css_set_lock);
4813 if (!list_empty(&tsk->cg_list))
4814 list_del_init(&tsk->cg_list);
4815 write_unlock(&css_set_lock);
4816 }
4817
4818 /* Reassign the task to the init_css_set. */
4819 task_lock(tsk);
4820 cg = tsk->cgroups;
4821 tsk->cgroups = &init_css_set;
4822
4823 if (run_callbacks && need_forkexit_callback) {
4824 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4825 struct cgroup_subsys *ss = subsys[i];
4826
4827 /* modular subsystems can't use callbacks */
4828 if (!ss || ss->module)
4829 continue;
4830
4831 if (ss->exit) {
4832 struct cgroup *old_cgrp =
4833 rcu_dereference_raw(cg->subsys[i])->cgroup;
4834 struct cgroup *cgrp = task_cgroup(tsk, i);
4835 ss->exit(cgrp, old_cgrp, tsk);
4836 }
4837 }
4838 }
4839 task_unlock(tsk);
4840
4841 if (cg)
4842 put_css_set_taskexit(cg);
4843 }
4844
4845 /**
4846 * cgroup_is_descendant - see if @cgrp is a descendant of @task's cgrp
4847 * @cgrp: the cgroup in question
4848 * @task: the task in question
4849 *
4850 * See if @cgrp is a descendant of @task's cgroup in the appropriate
4851 * hierarchy.
4852 *
4853 * If we are sending in dummytop, then presumably we are creating
4854 * the top cgroup in the subsystem.
4855 *
4856 * Called only by the ns (nsproxy) cgroup.
4857 */
4858 int cgroup_is_descendant(const struct cgroup *cgrp, struct task_struct *task)
4859 {
4860 int ret;
4861 struct cgroup *target;
4862
4863 if (cgrp == dummytop)
4864 return 1;
4865
4866 target = task_cgroup_from_root(task, cgrp->root);
4867 while (cgrp != target && cgrp!= cgrp->top_cgroup)
4868 cgrp = cgrp->parent;
4869 ret = (cgrp == target);
4870 return ret;
4871 }
4872
4873 static void check_for_release(struct cgroup *cgrp)
4874 {
4875 /* All of these checks rely on RCU to keep the cgroup
4876 * structure alive */
4877 if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
4878 && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
4879 /* Control Group is currently removeable. If it's not
4880 * already queued for a userspace notification, queue
4881 * it now */
4882 int need_schedule_work = 0;
4883 raw_spin_lock(&release_list_lock);
4884 if (!cgroup_is_removed(cgrp) &&
4885 list_empty(&cgrp->release_list)) {
4886 list_add(&cgrp->release_list, &release_list);
4887 need_schedule_work = 1;
4888 }
4889 raw_spin_unlock(&release_list_lock);
4890 if (need_schedule_work)
4891 schedule_work(&release_agent_work);
4892 }
4893 }
4894
4895 /* Caller must verify that the css is not for root cgroup */
4896 bool __css_tryget(struct cgroup_subsys_state *css)
4897 {
4898 while (true) {
4899 int t, v;
4900
4901 v = css_refcnt(css);
4902 t = atomic_cmpxchg(&css->refcnt, v, v + 1);
4903 if (likely(t == v))
4904 return true;
4905 else if (t < 0)
4906 return false;
4907 cpu_relax();
4908 }
4909 }
4910 EXPORT_SYMBOL_GPL(__css_tryget);
4911
4912 /* Caller must verify that the css is not for root cgroup */
4913 void __css_put(struct cgroup_subsys_state *css)
4914 {
4915 struct cgroup *cgrp = css->cgroup;
4916 int v;
4917
4918 rcu_read_lock();
4919 v = css_unbias_refcnt(atomic_dec_return(&css->refcnt));
4920
4921 switch (v) {
4922 case 1:
4923 if (notify_on_release(cgrp)) {
4924 set_bit(CGRP_RELEASABLE, &cgrp->flags);
4925 check_for_release(cgrp);
4926 }
4927 break;
4928 case 0:
4929 schedule_work(&css->dput_work);
4930 break;
4931 }
4932 rcu_read_unlock();
4933 }
4934 EXPORT_SYMBOL_GPL(__css_put);
4935
4936 /*
4937 * Notify userspace when a cgroup is released, by running the
4938 * configured release agent with the name of the cgroup (path
4939 * relative to the root of cgroup file system) as the argument.
4940 *
4941 * Most likely, this user command will try to rmdir this cgroup.
4942 *
4943 * This races with the possibility that some other task will be
4944 * attached to this cgroup before it is removed, or that some other
4945 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
4946 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
4947 * unused, and this cgroup will be reprieved from its death sentence,
4948 * to continue to serve a useful existence. Next time it's released,
4949 * we will get notified again, if it still has 'notify_on_release' set.
4950 *
4951 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
4952 * means only wait until the task is successfully execve()'d. The
4953 * separate release agent task is forked by call_usermodehelper(),
4954 * then control in this thread returns here, without waiting for the
4955 * release agent task. We don't bother to wait because the caller of
4956 * this routine has no use for the exit status of the release agent
4957 * task, so no sense holding our caller up for that.
4958 */
4959 static void cgroup_release_agent(struct work_struct *work)
4960 {
4961 BUG_ON(work != &release_agent_work);
4962 mutex_lock(&cgroup_mutex);
4963 raw_spin_lock(&release_list_lock);
4964 while (!list_empty(&release_list)) {
4965 char *argv[3], *envp[3];
4966 int i;
4967 char *pathbuf = NULL, *agentbuf = NULL;
4968 struct cgroup *cgrp = list_entry(release_list.next,
4969 struct cgroup,
4970 release_list);
4971 list_del_init(&cgrp->release_list);
4972 raw_spin_unlock(&release_list_lock);
4973 pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4974 if (!pathbuf)
4975 goto continue_free;
4976 if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
4977 goto continue_free;
4978 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
4979 if (!agentbuf)
4980 goto continue_free;
4981
4982 i = 0;
4983 argv[i++] = agentbuf;
4984 argv[i++] = pathbuf;
4985 argv[i] = NULL;
4986
4987 i = 0;
4988 /* minimal command environment */
4989 envp[i++] = "HOME=/";
4990 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
4991 envp[i] = NULL;
4992
4993 /* Drop the lock while we invoke the usermode helper,
4994 * since the exec could involve hitting disk and hence
4995 * be a slow process */
4996 mutex_unlock(&cgroup_mutex);
4997 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
4998 mutex_lock(&cgroup_mutex);
4999 continue_free:
5000 kfree(pathbuf);
5001 kfree(agentbuf);
5002 raw_spin_lock(&release_list_lock);
5003 }
5004 raw_spin_unlock(&release_list_lock);
5005 mutex_unlock(&cgroup_mutex);
5006 }
5007
5008 static int __init cgroup_disable(char *str)
5009 {
5010 int i;
5011 char *token;
5012
5013 while ((token = strsep(&str, ",")) != NULL) {
5014 if (!*token)
5015 continue;
5016 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
5017 struct cgroup_subsys *ss = subsys[i];
5018
5019 /*
5020 * cgroup_disable, being at boot time, can't
5021 * know about module subsystems, so we don't
5022 * worry about them.
5023 */
5024 if (!ss || ss->module)
5025 continue;
5026
5027 if (!strcmp(token, ss->name)) {
5028 ss->disabled = 1;
5029 printk(KERN_INFO "Disabling %s control group"
5030 " subsystem\n", ss->name);
5031 break;
5032 }
5033 }
5034 }
5035 return 1;
5036 }
5037 __setup("cgroup_disable=", cgroup_disable);
5038
5039 /*
5040 * Functons for CSS ID.
5041 */
5042
5043 /*
5044 *To get ID other than 0, this should be called when !cgroup_is_removed().
5045 */
5046 unsigned short css_id(struct cgroup_subsys_state *css)
5047 {
5048 struct css_id *cssid;
5049
5050 /*
5051 * This css_id() can return correct value when somone has refcnt
5052 * on this or this is under rcu_read_lock(). Once css->id is allocated,
5053 * it's unchanged until freed.
5054 */
5055 cssid = rcu_dereference_check(css->id, css_refcnt(css));
5056
5057 if (cssid)
5058 return cssid->id;
5059 return 0;
5060 }
5061 EXPORT_SYMBOL_GPL(css_id);
5062
5063 unsigned short css_depth(struct cgroup_subsys_state *css)
5064 {
5065 struct css_id *cssid;
5066
5067 cssid = rcu_dereference_check(css->id, css_refcnt(css));
5068
5069 if (cssid)
5070 return cssid->depth;
5071 return 0;
5072 }
5073 EXPORT_SYMBOL_GPL(css_depth);
5074
5075 /**
5076 * css_is_ancestor - test "root" css is an ancestor of "child"
5077 * @child: the css to be tested.
5078 * @root: the css supporsed to be an ancestor of the child.
5079 *
5080 * Returns true if "root" is an ancestor of "child" in its hierarchy. Because
5081 * this function reads css->id, the caller must hold rcu_read_lock().
5082 * But, considering usual usage, the csses should be valid objects after test.
5083 * Assuming that the caller will do some action to the child if this returns
5084 * returns true, the caller must take "child";s reference count.
5085 * If "child" is valid object and this returns true, "root" is valid, too.
5086 */
5087
5088 bool css_is_ancestor(struct cgroup_subsys_state *child,
5089 const struct cgroup_subsys_state *root)
5090 {
5091 struct css_id *child_id;
5092 struct css_id *root_id;
5093
5094 child_id = rcu_dereference(child->id);
5095 if (!child_id)
5096 return false;
5097 root_id = rcu_dereference(root->id);
5098 if (!root_id)
5099 return false;
5100 if (child_id->depth < root_id->depth)
5101 return false;
5102 if (child_id->stack[root_id->depth] != root_id->id)
5103 return false;
5104 return true;
5105 }
5106
5107 void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
5108 {
5109 struct css_id *id = css->id;
5110 /* When this is called before css_id initialization, id can be NULL */
5111 if (!id)
5112 return;
5113
5114 BUG_ON(!ss->use_id);
5115
5116 rcu_assign_pointer(id->css, NULL);
5117 rcu_assign_pointer(css->id, NULL);
5118 spin_lock(&ss->id_lock);
5119 idr_remove(&ss->idr, id->id);
5120 spin_unlock(&ss->id_lock);
5121 kfree_rcu(id, rcu_head);
5122 }
5123 EXPORT_SYMBOL_GPL(free_css_id);
5124
5125 /*
5126 * This is called by init or create(). Then, calls to this function are
5127 * always serialized (By cgroup_mutex() at create()).
5128 */
5129
5130 static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
5131 {
5132 struct css_id *newid;
5133 int myid, error, size;
5134
5135 BUG_ON(!ss->use_id);
5136
5137 size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
5138 newid = kzalloc(size, GFP_KERNEL);
5139 if (!newid)
5140 return ERR_PTR(-ENOMEM);
5141 /* get id */
5142 if (unlikely(!idr_pre_get(&ss->idr, GFP_KERNEL))) {
5143 error = -ENOMEM;
5144 goto err_out;
5145 }
5146 spin_lock(&ss->id_lock);
5147 /* Don't use 0. allocates an ID of 1-65535 */
5148 error = idr_get_new_above(&ss->idr, newid, 1, &myid);
5149 spin_unlock(&ss->id_lock);
5150
5151 /* Returns error when there are no free spaces for new ID.*/
5152 if (error) {
5153 error = -ENOSPC;
5154 goto err_out;
5155 }
5156 if (myid > CSS_ID_MAX)
5157 goto remove_idr;
5158
5159 newid->id = myid;
5160 newid->depth = depth;
5161 return newid;
5162 remove_idr:
5163 error = -ENOSPC;
5164 spin_lock(&ss->id_lock);
5165 idr_remove(&ss->idr, myid);
5166 spin_unlock(&ss->id_lock);
5167 err_out:
5168 kfree(newid);
5169 return ERR_PTR(error);
5170
5171 }
5172
5173 static int __init_or_module cgroup_init_idr(struct cgroup_subsys *ss,
5174 struct cgroup_subsys_state *rootcss)
5175 {
5176 struct css_id *newid;
5177
5178 spin_lock_init(&ss->id_lock);
5179 idr_init(&ss->idr);
5180
5181 newid = get_new_cssid(ss, 0);
5182 if (IS_ERR(newid))
5183 return PTR_ERR(newid);
5184
5185 newid->stack[0] = newid->id;
5186 newid->css = rootcss;
5187 rootcss->id = newid;
5188 return 0;
5189 }
5190
5191 static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
5192 struct cgroup *child)
5193 {
5194 int subsys_id, i, depth = 0;
5195 struct cgroup_subsys_state *parent_css, *child_css;
5196 struct css_id *child_id, *parent_id;
5197
5198 subsys_id = ss->subsys_id;
5199 parent_css = parent->subsys[subsys_id];
5200 child_css = child->subsys[subsys_id];
5201 parent_id = parent_css->id;
5202 depth = parent_id->depth + 1;
5203
5204 child_id = get_new_cssid(ss, depth);
5205 if (IS_ERR(child_id))
5206 return PTR_ERR(child_id);
5207
5208 for (i = 0; i < depth; i++)
5209 child_id->stack[i] = parent_id->stack[i];
5210 child_id->stack[depth] = child_id->id;
5211 /*
5212 * child_id->css pointer will be set after this cgroup is available
5213 * see cgroup_populate_dir()
5214 */
5215 rcu_assign_pointer(child_css->id, child_id);
5216
5217 return 0;
5218 }
5219
5220 /**
5221 * css_lookup - lookup css by id
5222 * @ss: cgroup subsys to be looked into.
5223 * @id: the id
5224 *
5225 * Returns pointer to cgroup_subsys_state if there is valid one with id.
5226 * NULL if not. Should be called under rcu_read_lock()
5227 */
5228 struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
5229 {
5230 struct css_id *cssid = NULL;
5231
5232 BUG_ON(!ss->use_id);
5233 cssid = idr_find(&ss->idr, id);
5234
5235 if (unlikely(!cssid))
5236 return NULL;
5237
5238 return rcu_dereference(cssid->css);
5239 }
5240 EXPORT_SYMBOL_GPL(css_lookup);
5241
5242 /**
5243 * css_get_next - lookup next cgroup under specified hierarchy.
5244 * @ss: pointer to subsystem
5245 * @id: current position of iteration.
5246 * @root: pointer to css. search tree under this.
5247 * @foundid: position of found object.
5248 *
5249 * Search next css under the specified hierarchy of rootid. Calling under
5250 * rcu_read_lock() is necessary. Returns NULL if it reaches the end.
5251 */
5252 struct cgroup_subsys_state *
5253 css_get_next(struct cgroup_subsys *ss, int id,
5254 struct cgroup_subsys_state *root, int *foundid)
5255 {
5256 struct cgroup_subsys_state *ret = NULL;
5257 struct css_id *tmp;
5258 int tmpid;
5259 int rootid = css_id(root);
5260 int depth = css_depth(root);
5261
5262 if (!rootid)
5263 return NULL;
5264
5265 BUG_ON(!ss->use_id);
5266 WARN_ON_ONCE(!rcu_read_lock_held());
5267
5268 /* fill start point for scan */
5269 tmpid = id;
5270 while (1) {
5271 /*
5272 * scan next entry from bitmap(tree), tmpid is updated after
5273 * idr_get_next().
5274 */
5275 tmp = idr_get_next(&ss->idr, &tmpid);
5276 if (!tmp)
5277 break;
5278 if (tmp->depth >= depth && tmp->stack[depth] == rootid) {
5279 ret = rcu_dereference(tmp->css);
5280 if (ret) {
5281 *foundid = tmpid;
5282 break;
5283 }
5284 }
5285 /* continue to scan from next id */
5286 tmpid = tmpid + 1;
5287 }
5288 return ret;
5289 }
5290
5291 /*
5292 * get corresponding css from file open on cgroupfs directory
5293 */
5294 struct cgroup_subsys_state *cgroup_css_from_dir(struct file *f, int id)
5295 {
5296 struct cgroup *cgrp;
5297 struct inode *inode;
5298 struct cgroup_subsys_state *css;
5299
5300 inode = f->f_dentry->d_inode;
5301 /* check in cgroup filesystem dir */
5302 if (inode->i_op != &cgroup_dir_inode_operations)
5303 return ERR_PTR(-EBADF);
5304
5305 if (id < 0 || id >= CGROUP_SUBSYS_COUNT)
5306 return ERR_PTR(-EINVAL);
5307
5308 /* get cgroup */
5309 cgrp = __d_cgrp(f->f_dentry);
5310 css = cgrp->subsys[id];
5311 return css ? css : ERR_PTR(-ENOENT);
5312 }
5313
5314 #ifdef CONFIG_CGROUP_DEBUG
5315 static struct cgroup_subsys_state *debug_create(struct cgroup *cont)
5316 {
5317 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5318
5319 if (!css)
5320 return ERR_PTR(-ENOMEM);
5321
5322 return css;
5323 }
5324
5325 static void debug_destroy(struct cgroup *cont)
5326 {
5327 kfree(cont->subsys[debug_subsys_id]);
5328 }
5329
5330 static u64 cgroup_refcount_read(struct cgroup *cont, struct cftype *cft)
5331 {
5332 return atomic_read(&cont->count);
5333 }
5334
5335 static u64 debug_taskcount_read(struct cgroup *cont, struct cftype *cft)
5336 {
5337 return cgroup_task_count(cont);
5338 }
5339
5340 static u64 current_css_set_read(struct cgroup *cont, struct cftype *cft)
5341 {
5342 return (u64)(unsigned long)current->cgroups;
5343 }
5344
5345 static u64 current_css_set_refcount_read(struct cgroup *cont,
5346 struct cftype *cft)
5347 {
5348 u64 count;
5349
5350 rcu_read_lock();
5351 count = atomic_read(&current->cgroups->refcount);
5352 rcu_read_unlock();
5353 return count;
5354 }
5355
5356 static int current_css_set_cg_links_read(struct cgroup *cont,
5357 struct cftype *cft,
5358 struct seq_file *seq)
5359 {
5360 struct cg_cgroup_link *link;
5361 struct css_set *cg;
5362
5363 read_lock(&css_set_lock);
5364 rcu_read_lock();
5365 cg = rcu_dereference(current->cgroups);
5366 list_for_each_entry(link, &cg->cg_links, cg_link_list) {
5367 struct cgroup *c = link->cgrp;
5368 const char *name;
5369
5370 if (c->dentry)
5371 name = c->dentry->d_name.name;
5372 else
5373 name = "?";
5374 seq_printf(seq, "Root %d group %s\n",
5375 c->root->hierarchy_id, name);
5376 }
5377 rcu_read_unlock();
5378 read_unlock(&css_set_lock);
5379 return 0;
5380 }
5381
5382 #define MAX_TASKS_SHOWN_PER_CSS 25
5383 static int cgroup_css_links_read(struct cgroup *cont,
5384 struct cftype *cft,
5385 struct seq_file *seq)
5386 {
5387 struct cg_cgroup_link *link;
5388
5389 read_lock(&css_set_lock);
5390 list_for_each_entry(link, &cont->css_sets, cgrp_link_list) {
5391 struct css_set *cg = link->cg;
5392 struct task_struct *task;
5393 int count = 0;
5394 seq_printf(seq, "css_set %p\n", cg);
5395 list_for_each_entry(task, &cg->tasks, cg_list) {
5396 if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
5397 seq_puts(seq, " ...\n");
5398 break;
5399 } else {
5400 seq_printf(seq, " task %d\n",
5401 task_pid_vnr(task));
5402 }
5403 }
5404 }
5405 read_unlock(&css_set_lock);
5406 return 0;
5407 }
5408
5409 static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft)
5410 {
5411 return test_bit(CGRP_RELEASABLE, &cgrp->flags);
5412 }
5413
5414 static struct cftype debug_files[] = {
5415 {
5416 .name = "cgroup_refcount",
5417 .read_u64 = cgroup_refcount_read,
5418 },
5419 {
5420 .name = "taskcount",
5421 .read_u64 = debug_taskcount_read,
5422 },
5423
5424 {
5425 .name = "current_css_set",
5426 .read_u64 = current_css_set_read,
5427 },
5428
5429 {
5430 .name = "current_css_set_refcount",
5431 .read_u64 = current_css_set_refcount_read,
5432 },
5433
5434 {
5435 .name = "current_css_set_cg_links",
5436 .read_seq_string = current_css_set_cg_links_read,
5437 },
5438
5439 {
5440 .name = "cgroup_css_links",
5441 .read_seq_string = cgroup_css_links_read,
5442 },
5443
5444 {
5445 .name = "releasable",
5446 .read_u64 = releasable_read,
5447 },
5448
5449 { } /* terminate */
5450 };
5451
5452 struct cgroup_subsys debug_subsys = {
5453 .name = "debug",
5454 .create = debug_create,
5455 .destroy = debug_destroy,
5456 .subsys_id = debug_subsys_id,
5457 .base_cftypes = debug_files,
5458 };
5459 #endif /* CONFIG_CGROUP_DEBUG */
This page took 0.218115 seconds and 5 git commands to generate.