memcg: let css_get_next() rely upon rcu_read_lock()
[deliverable/linux.git] / kernel / cgroup.c
1 /*
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29 #include <linux/cgroup.h>
30 #include <linux/cred.h>
31 #include <linux/ctype.h>
32 #include <linux/errno.h>
33 #include <linux/fs.h>
34 #include <linux/init_task.h>
35 #include <linux/kernel.h>
36 #include <linux/list.h>
37 #include <linux/mm.h>
38 #include <linux/mutex.h>
39 #include <linux/mount.h>
40 #include <linux/pagemap.h>
41 #include <linux/proc_fs.h>
42 #include <linux/rcupdate.h>
43 #include <linux/sched.h>
44 #include <linux/backing-dev.h>
45 #include <linux/seq_file.h>
46 #include <linux/slab.h>
47 #include <linux/magic.h>
48 #include <linux/spinlock.h>
49 #include <linux/string.h>
50 #include <linux/sort.h>
51 #include <linux/kmod.h>
52 #include <linux/module.h>
53 #include <linux/delayacct.h>
54 #include <linux/cgroupstats.h>
55 #include <linux/hash.h>
56 #include <linux/namei.h>
57 #include <linux/pid_namespace.h>
58 #include <linux/idr.h>
59 #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
60 #include <linux/eventfd.h>
61 #include <linux/poll.h>
62 #include <linux/flex_array.h> /* used in cgroup_attach_proc */
63
64 #include <linux/atomic.h>
65
66 /*
67 * cgroup_mutex is the master lock. Any modification to cgroup or its
68 * hierarchy must be performed while holding it.
69 *
70 * cgroup_root_mutex nests inside cgroup_mutex and should be held to modify
71 * cgroupfs_root of any cgroup hierarchy - subsys list, flags,
72 * release_agent_path and so on. Modifying requires both cgroup_mutex and
73 * cgroup_root_mutex. Readers can acquire either of the two. This is to
74 * break the following locking order cycle.
75 *
76 * A. cgroup_mutex -> cred_guard_mutex -> s_type->i_mutex_key -> namespace_sem
77 * B. namespace_sem -> cgroup_mutex
78 *
79 * B happens only through cgroup_show_options() and using cgroup_root_mutex
80 * breaks it.
81 */
82 static DEFINE_MUTEX(cgroup_mutex);
83 static DEFINE_MUTEX(cgroup_root_mutex);
84
85 /*
86 * Generate an array of cgroup subsystem pointers. At boot time, this is
87 * populated up to CGROUP_BUILTIN_SUBSYS_COUNT, and modular subsystems are
88 * registered after that. The mutable section of this array is protected by
89 * cgroup_mutex.
90 */
91 #define SUBSYS(_x) &_x ## _subsys,
92 static struct cgroup_subsys *subsys[CGROUP_SUBSYS_COUNT] = {
93 #include <linux/cgroup_subsys.h>
94 };
95
96 #define MAX_CGROUP_ROOT_NAMELEN 64
97
98 /*
99 * A cgroupfs_root represents the root of a cgroup hierarchy,
100 * and may be associated with a superblock to form an active
101 * hierarchy
102 */
103 struct cgroupfs_root {
104 struct super_block *sb;
105
106 /*
107 * The bitmask of subsystems intended to be attached to this
108 * hierarchy
109 */
110 unsigned long subsys_bits;
111
112 /* Unique id for this hierarchy. */
113 int hierarchy_id;
114
115 /* The bitmask of subsystems currently attached to this hierarchy */
116 unsigned long actual_subsys_bits;
117
118 /* A list running through the attached subsystems */
119 struct list_head subsys_list;
120
121 /* The root cgroup for this hierarchy */
122 struct cgroup top_cgroup;
123
124 /* Tracks how many cgroups are currently defined in hierarchy.*/
125 int number_of_cgroups;
126
127 /* A list running through the active hierarchies */
128 struct list_head root_list;
129
130 /* Hierarchy-specific flags */
131 unsigned long flags;
132
133 /* The path to use for release notifications. */
134 char release_agent_path[PATH_MAX];
135
136 /* The name for this hierarchy - may be empty */
137 char name[MAX_CGROUP_ROOT_NAMELEN];
138 };
139
140 /*
141 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
142 * subsystems that are otherwise unattached - it never has more than a
143 * single cgroup, and all tasks are part of that cgroup.
144 */
145 static struct cgroupfs_root rootnode;
146
147 /*
148 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
149 * cgroup_subsys->use_id != 0.
150 */
151 #define CSS_ID_MAX (65535)
152 struct css_id {
153 /*
154 * The css to which this ID points. This pointer is set to valid value
155 * after cgroup is populated. If cgroup is removed, this will be NULL.
156 * This pointer is expected to be RCU-safe because destroy()
157 * is called after synchronize_rcu(). But for safe use, css_is_removed()
158 * css_tryget() should be used for avoiding race.
159 */
160 struct cgroup_subsys_state __rcu *css;
161 /*
162 * ID of this css.
163 */
164 unsigned short id;
165 /*
166 * Depth in hierarchy which this ID belongs to.
167 */
168 unsigned short depth;
169 /*
170 * ID is freed by RCU. (and lookup routine is RCU safe.)
171 */
172 struct rcu_head rcu_head;
173 /*
174 * Hierarchy of CSS ID belongs to.
175 */
176 unsigned short stack[0]; /* Array of Length (depth+1) */
177 };
178
179 /*
180 * cgroup_event represents events which userspace want to receive.
181 */
182 struct cgroup_event {
183 /*
184 * Cgroup which the event belongs to.
185 */
186 struct cgroup *cgrp;
187 /*
188 * Control file which the event associated.
189 */
190 struct cftype *cft;
191 /*
192 * eventfd to signal userspace about the event.
193 */
194 struct eventfd_ctx *eventfd;
195 /*
196 * Each of these stored in a list by the cgroup.
197 */
198 struct list_head list;
199 /*
200 * All fields below needed to unregister event when
201 * userspace closes eventfd.
202 */
203 poll_table pt;
204 wait_queue_head_t *wqh;
205 wait_queue_t wait;
206 struct work_struct remove;
207 };
208
209 /* The list of hierarchy roots */
210
211 static LIST_HEAD(roots);
212 static int root_count;
213
214 static DEFINE_IDA(hierarchy_ida);
215 static int next_hierarchy_id;
216 static DEFINE_SPINLOCK(hierarchy_id_lock);
217
218 /* dummytop is a shorthand for the dummy hierarchy's top cgroup */
219 #define dummytop (&rootnode.top_cgroup)
220
221 /* This flag indicates whether tasks in the fork and exit paths should
222 * check for fork/exit handlers to call. This avoids us having to do
223 * extra work in the fork/exit path if none of the subsystems need to
224 * be called.
225 */
226 static int need_forkexit_callback __read_mostly;
227
228 #ifdef CONFIG_PROVE_LOCKING
229 int cgroup_lock_is_held(void)
230 {
231 return lockdep_is_held(&cgroup_mutex);
232 }
233 #else /* #ifdef CONFIG_PROVE_LOCKING */
234 int cgroup_lock_is_held(void)
235 {
236 return mutex_is_locked(&cgroup_mutex);
237 }
238 #endif /* #else #ifdef CONFIG_PROVE_LOCKING */
239
240 EXPORT_SYMBOL_GPL(cgroup_lock_is_held);
241
242 /* convenient tests for these bits */
243 inline int cgroup_is_removed(const struct cgroup *cgrp)
244 {
245 return test_bit(CGRP_REMOVED, &cgrp->flags);
246 }
247
248 /* bits in struct cgroupfs_root flags field */
249 enum {
250 ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
251 };
252
253 static int cgroup_is_releasable(const struct cgroup *cgrp)
254 {
255 const int bits =
256 (1 << CGRP_RELEASABLE) |
257 (1 << CGRP_NOTIFY_ON_RELEASE);
258 return (cgrp->flags & bits) == bits;
259 }
260
261 static int notify_on_release(const struct cgroup *cgrp)
262 {
263 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
264 }
265
266 static int clone_children(const struct cgroup *cgrp)
267 {
268 return test_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
269 }
270
271 /*
272 * for_each_subsys() allows you to iterate on each subsystem attached to
273 * an active hierarchy
274 */
275 #define for_each_subsys(_root, _ss) \
276 list_for_each_entry(_ss, &_root->subsys_list, sibling)
277
278 /* for_each_active_root() allows you to iterate across the active hierarchies */
279 #define for_each_active_root(_root) \
280 list_for_each_entry(_root, &roots, root_list)
281
282 /* the list of cgroups eligible for automatic release. Protected by
283 * release_list_lock */
284 static LIST_HEAD(release_list);
285 static DEFINE_RAW_SPINLOCK(release_list_lock);
286 static void cgroup_release_agent(struct work_struct *work);
287 static DECLARE_WORK(release_agent_work, cgroup_release_agent);
288 static void check_for_release(struct cgroup *cgrp);
289
290 /* Link structure for associating css_set objects with cgroups */
291 struct cg_cgroup_link {
292 /*
293 * List running through cg_cgroup_links associated with a
294 * cgroup, anchored on cgroup->css_sets
295 */
296 struct list_head cgrp_link_list;
297 struct cgroup *cgrp;
298 /*
299 * List running through cg_cgroup_links pointing at a
300 * single css_set object, anchored on css_set->cg_links
301 */
302 struct list_head cg_link_list;
303 struct css_set *cg;
304 };
305
306 /* The default css_set - used by init and its children prior to any
307 * hierarchies being mounted. It contains a pointer to the root state
308 * for each subsystem. Also used to anchor the list of css_sets. Not
309 * reference-counted, to improve performance when child cgroups
310 * haven't been created.
311 */
312
313 static struct css_set init_css_set;
314 static struct cg_cgroup_link init_css_set_link;
315
316 static int cgroup_init_idr(struct cgroup_subsys *ss,
317 struct cgroup_subsys_state *css);
318
319 /* css_set_lock protects the list of css_set objects, and the
320 * chain of tasks off each css_set. Nests outside task->alloc_lock
321 * due to cgroup_iter_start() */
322 static DEFINE_RWLOCK(css_set_lock);
323 static int css_set_count;
324
325 /*
326 * hash table for cgroup groups. This improves the performance to find
327 * an existing css_set. This hash doesn't (currently) take into
328 * account cgroups in empty hierarchies.
329 */
330 #define CSS_SET_HASH_BITS 7
331 #define CSS_SET_TABLE_SIZE (1 << CSS_SET_HASH_BITS)
332 static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE];
333
334 static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[])
335 {
336 int i;
337 int index;
338 unsigned long tmp = 0UL;
339
340 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
341 tmp += (unsigned long)css[i];
342 tmp = (tmp >> 16) ^ tmp;
343
344 index = hash_long(tmp, CSS_SET_HASH_BITS);
345
346 return &css_set_table[index];
347 }
348
349 /* We don't maintain the lists running through each css_set to its
350 * task until after the first call to cgroup_iter_start(). This
351 * reduces the fork()/exit() overhead for people who have cgroups
352 * compiled into their kernel but not actually in use */
353 static int use_task_css_set_links __read_mostly;
354
355 static void __put_css_set(struct css_set *cg, int taskexit)
356 {
357 struct cg_cgroup_link *link;
358 struct cg_cgroup_link *saved_link;
359 /*
360 * Ensure that the refcount doesn't hit zero while any readers
361 * can see it. Similar to atomic_dec_and_lock(), but for an
362 * rwlock
363 */
364 if (atomic_add_unless(&cg->refcount, -1, 1))
365 return;
366 write_lock(&css_set_lock);
367 if (!atomic_dec_and_test(&cg->refcount)) {
368 write_unlock(&css_set_lock);
369 return;
370 }
371
372 /* This css_set is dead. unlink it and release cgroup refcounts */
373 hlist_del(&cg->hlist);
374 css_set_count--;
375
376 list_for_each_entry_safe(link, saved_link, &cg->cg_links,
377 cg_link_list) {
378 struct cgroup *cgrp = link->cgrp;
379 list_del(&link->cg_link_list);
380 list_del(&link->cgrp_link_list);
381 if (atomic_dec_and_test(&cgrp->count) &&
382 notify_on_release(cgrp)) {
383 if (taskexit)
384 set_bit(CGRP_RELEASABLE, &cgrp->flags);
385 check_for_release(cgrp);
386 }
387
388 kfree(link);
389 }
390
391 write_unlock(&css_set_lock);
392 kfree_rcu(cg, rcu_head);
393 }
394
395 /*
396 * refcounted get/put for css_set objects
397 */
398 static inline void get_css_set(struct css_set *cg)
399 {
400 atomic_inc(&cg->refcount);
401 }
402
403 static inline void put_css_set(struct css_set *cg)
404 {
405 __put_css_set(cg, 0);
406 }
407
408 static inline void put_css_set_taskexit(struct css_set *cg)
409 {
410 __put_css_set(cg, 1);
411 }
412
413 /*
414 * compare_css_sets - helper function for find_existing_css_set().
415 * @cg: candidate css_set being tested
416 * @old_cg: existing css_set for a task
417 * @new_cgrp: cgroup that's being entered by the task
418 * @template: desired set of css pointers in css_set (pre-calculated)
419 *
420 * Returns true if "cg" matches "old_cg" except for the hierarchy
421 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
422 */
423 static bool compare_css_sets(struct css_set *cg,
424 struct css_set *old_cg,
425 struct cgroup *new_cgrp,
426 struct cgroup_subsys_state *template[])
427 {
428 struct list_head *l1, *l2;
429
430 if (memcmp(template, cg->subsys, sizeof(cg->subsys))) {
431 /* Not all subsystems matched */
432 return false;
433 }
434
435 /*
436 * Compare cgroup pointers in order to distinguish between
437 * different cgroups in heirarchies with no subsystems. We
438 * could get by with just this check alone (and skip the
439 * memcmp above) but on most setups the memcmp check will
440 * avoid the need for this more expensive check on almost all
441 * candidates.
442 */
443
444 l1 = &cg->cg_links;
445 l2 = &old_cg->cg_links;
446 while (1) {
447 struct cg_cgroup_link *cgl1, *cgl2;
448 struct cgroup *cg1, *cg2;
449
450 l1 = l1->next;
451 l2 = l2->next;
452 /* See if we reached the end - both lists are equal length. */
453 if (l1 == &cg->cg_links) {
454 BUG_ON(l2 != &old_cg->cg_links);
455 break;
456 } else {
457 BUG_ON(l2 == &old_cg->cg_links);
458 }
459 /* Locate the cgroups associated with these links. */
460 cgl1 = list_entry(l1, struct cg_cgroup_link, cg_link_list);
461 cgl2 = list_entry(l2, struct cg_cgroup_link, cg_link_list);
462 cg1 = cgl1->cgrp;
463 cg2 = cgl2->cgrp;
464 /* Hierarchies should be linked in the same order. */
465 BUG_ON(cg1->root != cg2->root);
466
467 /*
468 * If this hierarchy is the hierarchy of the cgroup
469 * that's changing, then we need to check that this
470 * css_set points to the new cgroup; if it's any other
471 * hierarchy, then this css_set should point to the
472 * same cgroup as the old css_set.
473 */
474 if (cg1->root == new_cgrp->root) {
475 if (cg1 != new_cgrp)
476 return false;
477 } else {
478 if (cg1 != cg2)
479 return false;
480 }
481 }
482 return true;
483 }
484
485 /*
486 * find_existing_css_set() is a helper for
487 * find_css_set(), and checks to see whether an existing
488 * css_set is suitable.
489 *
490 * oldcg: the cgroup group that we're using before the cgroup
491 * transition
492 *
493 * cgrp: the cgroup that we're moving into
494 *
495 * template: location in which to build the desired set of subsystem
496 * state objects for the new cgroup group
497 */
498 static struct css_set *find_existing_css_set(
499 struct css_set *oldcg,
500 struct cgroup *cgrp,
501 struct cgroup_subsys_state *template[])
502 {
503 int i;
504 struct cgroupfs_root *root = cgrp->root;
505 struct hlist_head *hhead;
506 struct hlist_node *node;
507 struct css_set *cg;
508
509 /*
510 * Build the set of subsystem state objects that we want to see in the
511 * new css_set. while subsystems can change globally, the entries here
512 * won't change, so no need for locking.
513 */
514 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
515 if (root->subsys_bits & (1UL << i)) {
516 /* Subsystem is in this hierarchy. So we want
517 * the subsystem state from the new
518 * cgroup */
519 template[i] = cgrp->subsys[i];
520 } else {
521 /* Subsystem is not in this hierarchy, so we
522 * don't want to change the subsystem state */
523 template[i] = oldcg->subsys[i];
524 }
525 }
526
527 hhead = css_set_hash(template);
528 hlist_for_each_entry(cg, node, hhead, hlist) {
529 if (!compare_css_sets(cg, oldcg, cgrp, template))
530 continue;
531
532 /* This css_set matches what we need */
533 return cg;
534 }
535
536 /* No existing cgroup group matched */
537 return NULL;
538 }
539
540 static void free_cg_links(struct list_head *tmp)
541 {
542 struct cg_cgroup_link *link;
543 struct cg_cgroup_link *saved_link;
544
545 list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
546 list_del(&link->cgrp_link_list);
547 kfree(link);
548 }
549 }
550
551 /*
552 * allocate_cg_links() allocates "count" cg_cgroup_link structures
553 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
554 * success or a negative error
555 */
556 static int allocate_cg_links(int count, struct list_head *tmp)
557 {
558 struct cg_cgroup_link *link;
559 int i;
560 INIT_LIST_HEAD(tmp);
561 for (i = 0; i < count; i++) {
562 link = kmalloc(sizeof(*link), GFP_KERNEL);
563 if (!link) {
564 free_cg_links(tmp);
565 return -ENOMEM;
566 }
567 list_add(&link->cgrp_link_list, tmp);
568 }
569 return 0;
570 }
571
572 /**
573 * link_css_set - a helper function to link a css_set to a cgroup
574 * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
575 * @cg: the css_set to be linked
576 * @cgrp: the destination cgroup
577 */
578 static void link_css_set(struct list_head *tmp_cg_links,
579 struct css_set *cg, struct cgroup *cgrp)
580 {
581 struct cg_cgroup_link *link;
582
583 BUG_ON(list_empty(tmp_cg_links));
584 link = list_first_entry(tmp_cg_links, struct cg_cgroup_link,
585 cgrp_link_list);
586 link->cg = cg;
587 link->cgrp = cgrp;
588 atomic_inc(&cgrp->count);
589 list_move(&link->cgrp_link_list, &cgrp->css_sets);
590 /*
591 * Always add links to the tail of the list so that the list
592 * is sorted by order of hierarchy creation
593 */
594 list_add_tail(&link->cg_link_list, &cg->cg_links);
595 }
596
597 /*
598 * find_css_set() takes an existing cgroup group and a
599 * cgroup object, and returns a css_set object that's
600 * equivalent to the old group, but with the given cgroup
601 * substituted into the appropriate hierarchy. Must be called with
602 * cgroup_mutex held
603 */
604 static struct css_set *find_css_set(
605 struct css_set *oldcg, struct cgroup *cgrp)
606 {
607 struct css_set *res;
608 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
609
610 struct list_head tmp_cg_links;
611
612 struct hlist_head *hhead;
613 struct cg_cgroup_link *link;
614
615 /* First see if we already have a cgroup group that matches
616 * the desired set */
617 read_lock(&css_set_lock);
618 res = find_existing_css_set(oldcg, cgrp, template);
619 if (res)
620 get_css_set(res);
621 read_unlock(&css_set_lock);
622
623 if (res)
624 return res;
625
626 res = kmalloc(sizeof(*res), GFP_KERNEL);
627 if (!res)
628 return NULL;
629
630 /* Allocate all the cg_cgroup_link objects that we'll need */
631 if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
632 kfree(res);
633 return NULL;
634 }
635
636 atomic_set(&res->refcount, 1);
637 INIT_LIST_HEAD(&res->cg_links);
638 INIT_LIST_HEAD(&res->tasks);
639 INIT_HLIST_NODE(&res->hlist);
640
641 /* Copy the set of subsystem state objects generated in
642 * find_existing_css_set() */
643 memcpy(res->subsys, template, sizeof(res->subsys));
644
645 write_lock(&css_set_lock);
646 /* Add reference counts and links from the new css_set. */
647 list_for_each_entry(link, &oldcg->cg_links, cg_link_list) {
648 struct cgroup *c = link->cgrp;
649 if (c->root == cgrp->root)
650 c = cgrp;
651 link_css_set(&tmp_cg_links, res, c);
652 }
653
654 BUG_ON(!list_empty(&tmp_cg_links));
655
656 css_set_count++;
657
658 /* Add this cgroup group to the hash table */
659 hhead = css_set_hash(res->subsys);
660 hlist_add_head(&res->hlist, hhead);
661
662 write_unlock(&css_set_lock);
663
664 return res;
665 }
666
667 /*
668 * Return the cgroup for "task" from the given hierarchy. Must be
669 * called with cgroup_mutex held.
670 */
671 static struct cgroup *task_cgroup_from_root(struct task_struct *task,
672 struct cgroupfs_root *root)
673 {
674 struct css_set *css;
675 struct cgroup *res = NULL;
676
677 BUG_ON(!mutex_is_locked(&cgroup_mutex));
678 read_lock(&css_set_lock);
679 /*
680 * No need to lock the task - since we hold cgroup_mutex the
681 * task can't change groups, so the only thing that can happen
682 * is that it exits and its css is set back to init_css_set.
683 */
684 css = task->cgroups;
685 if (css == &init_css_set) {
686 res = &root->top_cgroup;
687 } else {
688 struct cg_cgroup_link *link;
689 list_for_each_entry(link, &css->cg_links, cg_link_list) {
690 struct cgroup *c = link->cgrp;
691 if (c->root == root) {
692 res = c;
693 break;
694 }
695 }
696 }
697 read_unlock(&css_set_lock);
698 BUG_ON(!res);
699 return res;
700 }
701
702 /*
703 * There is one global cgroup mutex. We also require taking
704 * task_lock() when dereferencing a task's cgroup subsys pointers.
705 * See "The task_lock() exception", at the end of this comment.
706 *
707 * A task must hold cgroup_mutex to modify cgroups.
708 *
709 * Any task can increment and decrement the count field without lock.
710 * So in general, code holding cgroup_mutex can't rely on the count
711 * field not changing. However, if the count goes to zero, then only
712 * cgroup_attach_task() can increment it again. Because a count of zero
713 * means that no tasks are currently attached, therefore there is no
714 * way a task attached to that cgroup can fork (the other way to
715 * increment the count). So code holding cgroup_mutex can safely
716 * assume that if the count is zero, it will stay zero. Similarly, if
717 * a task holds cgroup_mutex on a cgroup with zero count, it
718 * knows that the cgroup won't be removed, as cgroup_rmdir()
719 * needs that mutex.
720 *
721 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
722 * (usually) take cgroup_mutex. These are the two most performance
723 * critical pieces of code here. The exception occurs on cgroup_exit(),
724 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
725 * is taken, and if the cgroup count is zero, a usermode call made
726 * to the release agent with the name of the cgroup (path relative to
727 * the root of cgroup file system) as the argument.
728 *
729 * A cgroup can only be deleted if both its 'count' of using tasks
730 * is zero, and its list of 'children' cgroups is empty. Since all
731 * tasks in the system use _some_ cgroup, and since there is always at
732 * least one task in the system (init, pid == 1), therefore, top_cgroup
733 * always has either children cgroups and/or using tasks. So we don't
734 * need a special hack to ensure that top_cgroup cannot be deleted.
735 *
736 * The task_lock() exception
737 *
738 * The need for this exception arises from the action of
739 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
740 * another. It does so using cgroup_mutex, however there are
741 * several performance critical places that need to reference
742 * task->cgroup without the expense of grabbing a system global
743 * mutex. Therefore except as noted below, when dereferencing or, as
744 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
745 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
746 * the task_struct routinely used for such matters.
747 *
748 * P.S. One more locking exception. RCU is used to guard the
749 * update of a tasks cgroup pointer by cgroup_attach_task()
750 */
751
752 /**
753 * cgroup_lock - lock out any changes to cgroup structures
754 *
755 */
756 void cgroup_lock(void)
757 {
758 mutex_lock(&cgroup_mutex);
759 }
760 EXPORT_SYMBOL_GPL(cgroup_lock);
761
762 /**
763 * cgroup_unlock - release lock on cgroup changes
764 *
765 * Undo the lock taken in a previous cgroup_lock() call.
766 */
767 void cgroup_unlock(void)
768 {
769 mutex_unlock(&cgroup_mutex);
770 }
771 EXPORT_SYMBOL_GPL(cgroup_unlock);
772
773 /*
774 * A couple of forward declarations required, due to cyclic reference loop:
775 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
776 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
777 * -> cgroup_mkdir.
778 */
779
780 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode);
781 static struct dentry *cgroup_lookup(struct inode *, struct dentry *, struct nameidata *);
782 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
783 static int cgroup_populate_dir(struct cgroup *cgrp);
784 static const struct inode_operations cgroup_dir_inode_operations;
785 static const struct file_operations proc_cgroupstats_operations;
786
787 static struct backing_dev_info cgroup_backing_dev_info = {
788 .name = "cgroup",
789 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
790 };
791
792 static int alloc_css_id(struct cgroup_subsys *ss,
793 struct cgroup *parent, struct cgroup *child);
794
795 static struct inode *cgroup_new_inode(umode_t mode, struct super_block *sb)
796 {
797 struct inode *inode = new_inode(sb);
798
799 if (inode) {
800 inode->i_ino = get_next_ino();
801 inode->i_mode = mode;
802 inode->i_uid = current_fsuid();
803 inode->i_gid = current_fsgid();
804 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
805 inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
806 }
807 return inode;
808 }
809
810 /*
811 * Call subsys's pre_destroy handler.
812 * This is called before css refcnt check.
813 */
814 static int cgroup_call_pre_destroy(struct cgroup *cgrp)
815 {
816 struct cgroup_subsys *ss;
817 int ret = 0;
818
819 for_each_subsys(cgrp->root, ss)
820 if (ss->pre_destroy) {
821 ret = ss->pre_destroy(cgrp);
822 if (ret)
823 break;
824 }
825
826 return ret;
827 }
828
829 static void cgroup_diput(struct dentry *dentry, struct inode *inode)
830 {
831 /* is dentry a directory ? if so, kfree() associated cgroup */
832 if (S_ISDIR(inode->i_mode)) {
833 struct cgroup *cgrp = dentry->d_fsdata;
834 struct cgroup_subsys *ss;
835 BUG_ON(!(cgroup_is_removed(cgrp)));
836 /* It's possible for external users to be holding css
837 * reference counts on a cgroup; css_put() needs to
838 * be able to access the cgroup after decrementing
839 * the reference count in order to know if it needs to
840 * queue the cgroup to be handled by the release
841 * agent */
842 synchronize_rcu();
843
844 mutex_lock(&cgroup_mutex);
845 /*
846 * Release the subsystem state objects.
847 */
848 for_each_subsys(cgrp->root, ss)
849 ss->destroy(cgrp);
850
851 cgrp->root->number_of_cgroups--;
852 mutex_unlock(&cgroup_mutex);
853
854 /*
855 * Drop the active superblock reference that we took when we
856 * created the cgroup
857 */
858 deactivate_super(cgrp->root->sb);
859
860 /*
861 * if we're getting rid of the cgroup, refcount should ensure
862 * that there are no pidlists left.
863 */
864 BUG_ON(!list_empty(&cgrp->pidlists));
865
866 kfree_rcu(cgrp, rcu_head);
867 }
868 iput(inode);
869 }
870
871 static int cgroup_delete(const struct dentry *d)
872 {
873 return 1;
874 }
875
876 static void remove_dir(struct dentry *d)
877 {
878 struct dentry *parent = dget(d->d_parent);
879
880 d_delete(d);
881 simple_rmdir(parent->d_inode, d);
882 dput(parent);
883 }
884
885 static void cgroup_clear_directory(struct dentry *dentry)
886 {
887 struct list_head *node;
888
889 BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
890 spin_lock(&dentry->d_lock);
891 node = dentry->d_subdirs.next;
892 while (node != &dentry->d_subdirs) {
893 struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
894
895 spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
896 list_del_init(node);
897 if (d->d_inode) {
898 /* This should never be called on a cgroup
899 * directory with child cgroups */
900 BUG_ON(d->d_inode->i_mode & S_IFDIR);
901 dget_dlock(d);
902 spin_unlock(&d->d_lock);
903 spin_unlock(&dentry->d_lock);
904 d_delete(d);
905 simple_unlink(dentry->d_inode, d);
906 dput(d);
907 spin_lock(&dentry->d_lock);
908 } else
909 spin_unlock(&d->d_lock);
910 node = dentry->d_subdirs.next;
911 }
912 spin_unlock(&dentry->d_lock);
913 }
914
915 /*
916 * NOTE : the dentry must have been dget()'ed
917 */
918 static void cgroup_d_remove_dir(struct dentry *dentry)
919 {
920 struct dentry *parent;
921
922 cgroup_clear_directory(dentry);
923
924 parent = dentry->d_parent;
925 spin_lock(&parent->d_lock);
926 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
927 list_del_init(&dentry->d_u.d_child);
928 spin_unlock(&dentry->d_lock);
929 spin_unlock(&parent->d_lock);
930 remove_dir(dentry);
931 }
932
933 /*
934 * A queue for waiters to do rmdir() cgroup. A tasks will sleep when
935 * cgroup->count == 0 && list_empty(&cgroup->children) && subsys has some
936 * reference to css->refcnt. In general, this refcnt is expected to goes down
937 * to zero, soon.
938 *
939 * CGRP_WAIT_ON_RMDIR flag is set under cgroup's inode->i_mutex;
940 */
941 static DECLARE_WAIT_QUEUE_HEAD(cgroup_rmdir_waitq);
942
943 static void cgroup_wakeup_rmdir_waiter(struct cgroup *cgrp)
944 {
945 if (unlikely(test_and_clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags)))
946 wake_up_all(&cgroup_rmdir_waitq);
947 }
948
949 void cgroup_exclude_rmdir(struct cgroup_subsys_state *css)
950 {
951 css_get(css);
952 }
953
954 void cgroup_release_and_wakeup_rmdir(struct cgroup_subsys_state *css)
955 {
956 cgroup_wakeup_rmdir_waiter(css->cgroup);
957 css_put(css);
958 }
959
960 /*
961 * Call with cgroup_mutex held. Drops reference counts on modules, including
962 * any duplicate ones that parse_cgroupfs_options took. If this function
963 * returns an error, no reference counts are touched.
964 */
965 static int rebind_subsystems(struct cgroupfs_root *root,
966 unsigned long final_bits)
967 {
968 unsigned long added_bits, removed_bits;
969 struct cgroup *cgrp = &root->top_cgroup;
970 int i;
971
972 BUG_ON(!mutex_is_locked(&cgroup_mutex));
973 BUG_ON(!mutex_is_locked(&cgroup_root_mutex));
974
975 removed_bits = root->actual_subsys_bits & ~final_bits;
976 added_bits = final_bits & ~root->actual_subsys_bits;
977 /* Check that any added subsystems are currently free */
978 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
979 unsigned long bit = 1UL << i;
980 struct cgroup_subsys *ss = subsys[i];
981 if (!(bit & added_bits))
982 continue;
983 /*
984 * Nobody should tell us to do a subsys that doesn't exist:
985 * parse_cgroupfs_options should catch that case and refcounts
986 * ensure that subsystems won't disappear once selected.
987 */
988 BUG_ON(ss == NULL);
989 if (ss->root != &rootnode) {
990 /* Subsystem isn't free */
991 return -EBUSY;
992 }
993 }
994
995 /* Currently we don't handle adding/removing subsystems when
996 * any child cgroups exist. This is theoretically supportable
997 * but involves complex error handling, so it's being left until
998 * later */
999 if (root->number_of_cgroups > 1)
1000 return -EBUSY;
1001
1002 /* Process each subsystem */
1003 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1004 struct cgroup_subsys *ss = subsys[i];
1005 unsigned long bit = 1UL << i;
1006 if (bit & added_bits) {
1007 /* We're binding this subsystem to this hierarchy */
1008 BUG_ON(ss == NULL);
1009 BUG_ON(cgrp->subsys[i]);
1010 BUG_ON(!dummytop->subsys[i]);
1011 BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
1012 mutex_lock(&ss->hierarchy_mutex);
1013 cgrp->subsys[i] = dummytop->subsys[i];
1014 cgrp->subsys[i]->cgroup = cgrp;
1015 list_move(&ss->sibling, &root->subsys_list);
1016 ss->root = root;
1017 if (ss->bind)
1018 ss->bind(cgrp);
1019 mutex_unlock(&ss->hierarchy_mutex);
1020 /* refcount was already taken, and we're keeping it */
1021 } else if (bit & removed_bits) {
1022 /* We're removing this subsystem */
1023 BUG_ON(ss == NULL);
1024 BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
1025 BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
1026 mutex_lock(&ss->hierarchy_mutex);
1027 if (ss->bind)
1028 ss->bind(dummytop);
1029 dummytop->subsys[i]->cgroup = dummytop;
1030 cgrp->subsys[i] = NULL;
1031 subsys[i]->root = &rootnode;
1032 list_move(&ss->sibling, &rootnode.subsys_list);
1033 mutex_unlock(&ss->hierarchy_mutex);
1034 /* subsystem is now free - drop reference on module */
1035 module_put(ss->module);
1036 } else if (bit & final_bits) {
1037 /* Subsystem state should already exist */
1038 BUG_ON(ss == NULL);
1039 BUG_ON(!cgrp->subsys[i]);
1040 /*
1041 * a refcount was taken, but we already had one, so
1042 * drop the extra reference.
1043 */
1044 module_put(ss->module);
1045 #ifdef CONFIG_MODULE_UNLOAD
1046 BUG_ON(ss->module && !module_refcount(ss->module));
1047 #endif
1048 } else {
1049 /* Subsystem state shouldn't exist */
1050 BUG_ON(cgrp->subsys[i]);
1051 }
1052 }
1053 root->subsys_bits = root->actual_subsys_bits = final_bits;
1054 synchronize_rcu();
1055
1056 return 0;
1057 }
1058
1059 static int cgroup_show_options(struct seq_file *seq, struct dentry *dentry)
1060 {
1061 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
1062 struct cgroup_subsys *ss;
1063
1064 mutex_lock(&cgroup_root_mutex);
1065 for_each_subsys(root, ss)
1066 seq_printf(seq, ",%s", ss->name);
1067 if (test_bit(ROOT_NOPREFIX, &root->flags))
1068 seq_puts(seq, ",noprefix");
1069 if (strlen(root->release_agent_path))
1070 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
1071 if (clone_children(&root->top_cgroup))
1072 seq_puts(seq, ",clone_children");
1073 if (strlen(root->name))
1074 seq_printf(seq, ",name=%s", root->name);
1075 mutex_unlock(&cgroup_root_mutex);
1076 return 0;
1077 }
1078
1079 struct cgroup_sb_opts {
1080 unsigned long subsys_bits;
1081 unsigned long flags;
1082 char *release_agent;
1083 bool clone_children;
1084 char *name;
1085 /* User explicitly requested empty subsystem */
1086 bool none;
1087
1088 struct cgroupfs_root *new_root;
1089
1090 };
1091
1092 /*
1093 * Convert a hierarchy specifier into a bitmask of subsystems and flags. Call
1094 * with cgroup_mutex held to protect the subsys[] array. This function takes
1095 * refcounts on subsystems to be used, unless it returns error, in which case
1096 * no refcounts are taken.
1097 */
1098 static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
1099 {
1100 char *token, *o = data;
1101 bool all_ss = false, one_ss = false;
1102 unsigned long mask = (unsigned long)-1;
1103 int i;
1104 bool module_pin_failed = false;
1105
1106 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1107
1108 #ifdef CONFIG_CPUSETS
1109 mask = ~(1UL << cpuset_subsys_id);
1110 #endif
1111
1112 memset(opts, 0, sizeof(*opts));
1113
1114 while ((token = strsep(&o, ",")) != NULL) {
1115 if (!*token)
1116 return -EINVAL;
1117 if (!strcmp(token, "none")) {
1118 /* Explicitly have no subsystems */
1119 opts->none = true;
1120 continue;
1121 }
1122 if (!strcmp(token, "all")) {
1123 /* Mutually exclusive option 'all' + subsystem name */
1124 if (one_ss)
1125 return -EINVAL;
1126 all_ss = true;
1127 continue;
1128 }
1129 if (!strcmp(token, "noprefix")) {
1130 set_bit(ROOT_NOPREFIX, &opts->flags);
1131 continue;
1132 }
1133 if (!strcmp(token, "clone_children")) {
1134 opts->clone_children = true;
1135 continue;
1136 }
1137 if (!strncmp(token, "release_agent=", 14)) {
1138 /* Specifying two release agents is forbidden */
1139 if (opts->release_agent)
1140 return -EINVAL;
1141 opts->release_agent =
1142 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
1143 if (!opts->release_agent)
1144 return -ENOMEM;
1145 continue;
1146 }
1147 if (!strncmp(token, "name=", 5)) {
1148 const char *name = token + 5;
1149 /* Can't specify an empty name */
1150 if (!strlen(name))
1151 return -EINVAL;
1152 /* Must match [\w.-]+ */
1153 for (i = 0; i < strlen(name); i++) {
1154 char c = name[i];
1155 if (isalnum(c))
1156 continue;
1157 if ((c == '.') || (c == '-') || (c == '_'))
1158 continue;
1159 return -EINVAL;
1160 }
1161 /* Specifying two names is forbidden */
1162 if (opts->name)
1163 return -EINVAL;
1164 opts->name = kstrndup(name,
1165 MAX_CGROUP_ROOT_NAMELEN - 1,
1166 GFP_KERNEL);
1167 if (!opts->name)
1168 return -ENOMEM;
1169
1170 continue;
1171 }
1172
1173 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1174 struct cgroup_subsys *ss = subsys[i];
1175 if (ss == NULL)
1176 continue;
1177 if (strcmp(token, ss->name))
1178 continue;
1179 if (ss->disabled)
1180 continue;
1181
1182 /* Mutually exclusive option 'all' + subsystem name */
1183 if (all_ss)
1184 return -EINVAL;
1185 set_bit(i, &opts->subsys_bits);
1186 one_ss = true;
1187
1188 break;
1189 }
1190 if (i == CGROUP_SUBSYS_COUNT)
1191 return -ENOENT;
1192 }
1193
1194 /*
1195 * If the 'all' option was specified select all the subsystems,
1196 * otherwise if 'none', 'name=' and a subsystem name options
1197 * were not specified, let's default to 'all'
1198 */
1199 if (all_ss || (!one_ss && !opts->none && !opts->name)) {
1200 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1201 struct cgroup_subsys *ss = subsys[i];
1202 if (ss == NULL)
1203 continue;
1204 if (ss->disabled)
1205 continue;
1206 set_bit(i, &opts->subsys_bits);
1207 }
1208 }
1209
1210 /* Consistency checks */
1211
1212 /*
1213 * Option noprefix was introduced just for backward compatibility
1214 * with the old cpuset, so we allow noprefix only if mounting just
1215 * the cpuset subsystem.
1216 */
1217 if (test_bit(ROOT_NOPREFIX, &opts->flags) &&
1218 (opts->subsys_bits & mask))
1219 return -EINVAL;
1220
1221
1222 /* Can't specify "none" and some subsystems */
1223 if (opts->subsys_bits && opts->none)
1224 return -EINVAL;
1225
1226 /*
1227 * We either have to specify by name or by subsystems. (So all
1228 * empty hierarchies must have a name).
1229 */
1230 if (!opts->subsys_bits && !opts->name)
1231 return -EINVAL;
1232
1233 /*
1234 * Grab references on all the modules we'll need, so the subsystems
1235 * don't dance around before rebind_subsystems attaches them. This may
1236 * take duplicate reference counts on a subsystem that's already used,
1237 * but rebind_subsystems handles this case.
1238 */
1239 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
1240 unsigned long bit = 1UL << i;
1241
1242 if (!(bit & opts->subsys_bits))
1243 continue;
1244 if (!try_module_get(subsys[i]->module)) {
1245 module_pin_failed = true;
1246 break;
1247 }
1248 }
1249 if (module_pin_failed) {
1250 /*
1251 * oops, one of the modules was going away. this means that we
1252 * raced with a module_delete call, and to the user this is
1253 * essentially a "subsystem doesn't exist" case.
1254 */
1255 for (i--; i >= CGROUP_BUILTIN_SUBSYS_COUNT; i--) {
1256 /* drop refcounts only on the ones we took */
1257 unsigned long bit = 1UL << i;
1258
1259 if (!(bit & opts->subsys_bits))
1260 continue;
1261 module_put(subsys[i]->module);
1262 }
1263 return -ENOENT;
1264 }
1265
1266 return 0;
1267 }
1268
1269 static void drop_parsed_module_refcounts(unsigned long subsys_bits)
1270 {
1271 int i;
1272 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
1273 unsigned long bit = 1UL << i;
1274
1275 if (!(bit & subsys_bits))
1276 continue;
1277 module_put(subsys[i]->module);
1278 }
1279 }
1280
1281 static int cgroup_remount(struct super_block *sb, int *flags, char *data)
1282 {
1283 int ret = 0;
1284 struct cgroupfs_root *root = sb->s_fs_info;
1285 struct cgroup *cgrp = &root->top_cgroup;
1286 struct cgroup_sb_opts opts;
1287
1288 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
1289 mutex_lock(&cgroup_mutex);
1290 mutex_lock(&cgroup_root_mutex);
1291
1292 /* See what subsystems are wanted */
1293 ret = parse_cgroupfs_options(data, &opts);
1294 if (ret)
1295 goto out_unlock;
1296
1297 /* Don't allow flags or name to change at remount */
1298 if (opts.flags != root->flags ||
1299 (opts.name && strcmp(opts.name, root->name))) {
1300 ret = -EINVAL;
1301 drop_parsed_module_refcounts(opts.subsys_bits);
1302 goto out_unlock;
1303 }
1304
1305 ret = rebind_subsystems(root, opts.subsys_bits);
1306 if (ret) {
1307 drop_parsed_module_refcounts(opts.subsys_bits);
1308 goto out_unlock;
1309 }
1310
1311 /* (re)populate subsystem files */
1312 cgroup_populate_dir(cgrp);
1313
1314 if (opts.release_agent)
1315 strcpy(root->release_agent_path, opts.release_agent);
1316 out_unlock:
1317 kfree(opts.release_agent);
1318 kfree(opts.name);
1319 mutex_unlock(&cgroup_root_mutex);
1320 mutex_unlock(&cgroup_mutex);
1321 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
1322 return ret;
1323 }
1324
1325 static const struct super_operations cgroup_ops = {
1326 .statfs = simple_statfs,
1327 .drop_inode = generic_delete_inode,
1328 .show_options = cgroup_show_options,
1329 .remount_fs = cgroup_remount,
1330 };
1331
1332 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1333 {
1334 INIT_LIST_HEAD(&cgrp->sibling);
1335 INIT_LIST_HEAD(&cgrp->children);
1336 INIT_LIST_HEAD(&cgrp->css_sets);
1337 INIT_LIST_HEAD(&cgrp->release_list);
1338 INIT_LIST_HEAD(&cgrp->pidlists);
1339 mutex_init(&cgrp->pidlist_mutex);
1340 INIT_LIST_HEAD(&cgrp->event_list);
1341 spin_lock_init(&cgrp->event_list_lock);
1342 }
1343
1344 static void init_cgroup_root(struct cgroupfs_root *root)
1345 {
1346 struct cgroup *cgrp = &root->top_cgroup;
1347 INIT_LIST_HEAD(&root->subsys_list);
1348 INIT_LIST_HEAD(&root->root_list);
1349 root->number_of_cgroups = 1;
1350 cgrp->root = root;
1351 cgrp->top_cgroup = cgrp;
1352 init_cgroup_housekeeping(cgrp);
1353 }
1354
1355 static bool init_root_id(struct cgroupfs_root *root)
1356 {
1357 int ret = 0;
1358
1359 do {
1360 if (!ida_pre_get(&hierarchy_ida, GFP_KERNEL))
1361 return false;
1362 spin_lock(&hierarchy_id_lock);
1363 /* Try to allocate the next unused ID */
1364 ret = ida_get_new_above(&hierarchy_ida, next_hierarchy_id,
1365 &root->hierarchy_id);
1366 if (ret == -ENOSPC)
1367 /* Try again starting from 0 */
1368 ret = ida_get_new(&hierarchy_ida, &root->hierarchy_id);
1369 if (!ret) {
1370 next_hierarchy_id = root->hierarchy_id + 1;
1371 } else if (ret != -EAGAIN) {
1372 /* Can only get here if the 31-bit IDR is full ... */
1373 BUG_ON(ret);
1374 }
1375 spin_unlock(&hierarchy_id_lock);
1376 } while (ret);
1377 return true;
1378 }
1379
1380 static int cgroup_test_super(struct super_block *sb, void *data)
1381 {
1382 struct cgroup_sb_opts *opts = data;
1383 struct cgroupfs_root *root = sb->s_fs_info;
1384
1385 /* If we asked for a name then it must match */
1386 if (opts->name && strcmp(opts->name, root->name))
1387 return 0;
1388
1389 /*
1390 * If we asked for subsystems (or explicitly for no
1391 * subsystems) then they must match
1392 */
1393 if ((opts->subsys_bits || opts->none)
1394 && (opts->subsys_bits != root->subsys_bits))
1395 return 0;
1396
1397 return 1;
1398 }
1399
1400 static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
1401 {
1402 struct cgroupfs_root *root;
1403
1404 if (!opts->subsys_bits && !opts->none)
1405 return NULL;
1406
1407 root = kzalloc(sizeof(*root), GFP_KERNEL);
1408 if (!root)
1409 return ERR_PTR(-ENOMEM);
1410
1411 if (!init_root_id(root)) {
1412 kfree(root);
1413 return ERR_PTR(-ENOMEM);
1414 }
1415 init_cgroup_root(root);
1416
1417 root->subsys_bits = opts->subsys_bits;
1418 root->flags = opts->flags;
1419 if (opts->release_agent)
1420 strcpy(root->release_agent_path, opts->release_agent);
1421 if (opts->name)
1422 strcpy(root->name, opts->name);
1423 if (opts->clone_children)
1424 set_bit(CGRP_CLONE_CHILDREN, &root->top_cgroup.flags);
1425 return root;
1426 }
1427
1428 static void cgroup_drop_root(struct cgroupfs_root *root)
1429 {
1430 if (!root)
1431 return;
1432
1433 BUG_ON(!root->hierarchy_id);
1434 spin_lock(&hierarchy_id_lock);
1435 ida_remove(&hierarchy_ida, root->hierarchy_id);
1436 spin_unlock(&hierarchy_id_lock);
1437 kfree(root);
1438 }
1439
1440 static int cgroup_set_super(struct super_block *sb, void *data)
1441 {
1442 int ret;
1443 struct cgroup_sb_opts *opts = data;
1444
1445 /* If we don't have a new root, we can't set up a new sb */
1446 if (!opts->new_root)
1447 return -EINVAL;
1448
1449 BUG_ON(!opts->subsys_bits && !opts->none);
1450
1451 ret = set_anon_super(sb, NULL);
1452 if (ret)
1453 return ret;
1454
1455 sb->s_fs_info = opts->new_root;
1456 opts->new_root->sb = sb;
1457
1458 sb->s_blocksize = PAGE_CACHE_SIZE;
1459 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
1460 sb->s_magic = CGROUP_SUPER_MAGIC;
1461 sb->s_op = &cgroup_ops;
1462
1463 return 0;
1464 }
1465
1466 static int cgroup_get_rootdir(struct super_block *sb)
1467 {
1468 static const struct dentry_operations cgroup_dops = {
1469 .d_iput = cgroup_diput,
1470 .d_delete = cgroup_delete,
1471 };
1472
1473 struct inode *inode =
1474 cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
1475 struct dentry *dentry;
1476
1477 if (!inode)
1478 return -ENOMEM;
1479
1480 inode->i_fop = &simple_dir_operations;
1481 inode->i_op = &cgroup_dir_inode_operations;
1482 /* directories start off with i_nlink == 2 (for "." entry) */
1483 inc_nlink(inode);
1484 dentry = d_alloc_root(inode);
1485 if (!dentry) {
1486 iput(inode);
1487 return -ENOMEM;
1488 }
1489 sb->s_root = dentry;
1490 /* for everything else we want ->d_op set */
1491 sb->s_d_op = &cgroup_dops;
1492 return 0;
1493 }
1494
1495 static struct dentry *cgroup_mount(struct file_system_type *fs_type,
1496 int flags, const char *unused_dev_name,
1497 void *data)
1498 {
1499 struct cgroup_sb_opts opts;
1500 struct cgroupfs_root *root;
1501 int ret = 0;
1502 struct super_block *sb;
1503 struct cgroupfs_root *new_root;
1504 struct inode *inode;
1505
1506 /* First find the desired set of subsystems */
1507 mutex_lock(&cgroup_mutex);
1508 ret = parse_cgroupfs_options(data, &opts);
1509 mutex_unlock(&cgroup_mutex);
1510 if (ret)
1511 goto out_err;
1512
1513 /*
1514 * Allocate a new cgroup root. We may not need it if we're
1515 * reusing an existing hierarchy.
1516 */
1517 new_root = cgroup_root_from_opts(&opts);
1518 if (IS_ERR(new_root)) {
1519 ret = PTR_ERR(new_root);
1520 goto drop_modules;
1521 }
1522 opts.new_root = new_root;
1523
1524 /* Locate an existing or new sb for this hierarchy */
1525 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, &opts);
1526 if (IS_ERR(sb)) {
1527 ret = PTR_ERR(sb);
1528 cgroup_drop_root(opts.new_root);
1529 goto drop_modules;
1530 }
1531
1532 root = sb->s_fs_info;
1533 BUG_ON(!root);
1534 if (root == opts.new_root) {
1535 /* We used the new root structure, so this is a new hierarchy */
1536 struct list_head tmp_cg_links;
1537 struct cgroup *root_cgrp = &root->top_cgroup;
1538 struct cgroupfs_root *existing_root;
1539 const struct cred *cred;
1540 int i;
1541
1542 BUG_ON(sb->s_root != NULL);
1543
1544 ret = cgroup_get_rootdir(sb);
1545 if (ret)
1546 goto drop_new_super;
1547 inode = sb->s_root->d_inode;
1548
1549 mutex_lock(&inode->i_mutex);
1550 mutex_lock(&cgroup_mutex);
1551 mutex_lock(&cgroup_root_mutex);
1552
1553 /* Check for name clashes with existing mounts */
1554 ret = -EBUSY;
1555 if (strlen(root->name))
1556 for_each_active_root(existing_root)
1557 if (!strcmp(existing_root->name, root->name))
1558 goto unlock_drop;
1559
1560 /*
1561 * We're accessing css_set_count without locking
1562 * css_set_lock here, but that's OK - it can only be
1563 * increased by someone holding cgroup_lock, and
1564 * that's us. The worst that can happen is that we
1565 * have some link structures left over
1566 */
1567 ret = allocate_cg_links(css_set_count, &tmp_cg_links);
1568 if (ret)
1569 goto unlock_drop;
1570
1571 ret = rebind_subsystems(root, root->subsys_bits);
1572 if (ret == -EBUSY) {
1573 free_cg_links(&tmp_cg_links);
1574 goto unlock_drop;
1575 }
1576 /*
1577 * There must be no failure case after here, since rebinding
1578 * takes care of subsystems' refcounts, which are explicitly
1579 * dropped in the failure exit path.
1580 */
1581
1582 /* EBUSY should be the only error here */
1583 BUG_ON(ret);
1584
1585 list_add(&root->root_list, &roots);
1586 root_count++;
1587
1588 sb->s_root->d_fsdata = root_cgrp;
1589 root->top_cgroup.dentry = sb->s_root;
1590
1591 /* Link the top cgroup in this hierarchy into all
1592 * the css_set objects */
1593 write_lock(&css_set_lock);
1594 for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
1595 struct hlist_head *hhead = &css_set_table[i];
1596 struct hlist_node *node;
1597 struct css_set *cg;
1598
1599 hlist_for_each_entry(cg, node, hhead, hlist)
1600 link_css_set(&tmp_cg_links, cg, root_cgrp);
1601 }
1602 write_unlock(&css_set_lock);
1603
1604 free_cg_links(&tmp_cg_links);
1605
1606 BUG_ON(!list_empty(&root_cgrp->sibling));
1607 BUG_ON(!list_empty(&root_cgrp->children));
1608 BUG_ON(root->number_of_cgroups != 1);
1609
1610 cred = override_creds(&init_cred);
1611 cgroup_populate_dir(root_cgrp);
1612 revert_creds(cred);
1613 mutex_unlock(&cgroup_root_mutex);
1614 mutex_unlock(&cgroup_mutex);
1615 mutex_unlock(&inode->i_mutex);
1616 } else {
1617 /*
1618 * We re-used an existing hierarchy - the new root (if
1619 * any) is not needed
1620 */
1621 cgroup_drop_root(opts.new_root);
1622 /* no subsys rebinding, so refcounts don't change */
1623 drop_parsed_module_refcounts(opts.subsys_bits);
1624 }
1625
1626 kfree(opts.release_agent);
1627 kfree(opts.name);
1628 return dget(sb->s_root);
1629
1630 unlock_drop:
1631 mutex_unlock(&cgroup_root_mutex);
1632 mutex_unlock(&cgroup_mutex);
1633 mutex_unlock(&inode->i_mutex);
1634 drop_new_super:
1635 deactivate_locked_super(sb);
1636 drop_modules:
1637 drop_parsed_module_refcounts(opts.subsys_bits);
1638 out_err:
1639 kfree(opts.release_agent);
1640 kfree(opts.name);
1641 return ERR_PTR(ret);
1642 }
1643
1644 static void cgroup_kill_sb(struct super_block *sb) {
1645 struct cgroupfs_root *root = sb->s_fs_info;
1646 struct cgroup *cgrp = &root->top_cgroup;
1647 int ret;
1648 struct cg_cgroup_link *link;
1649 struct cg_cgroup_link *saved_link;
1650
1651 BUG_ON(!root);
1652
1653 BUG_ON(root->number_of_cgroups != 1);
1654 BUG_ON(!list_empty(&cgrp->children));
1655 BUG_ON(!list_empty(&cgrp->sibling));
1656
1657 mutex_lock(&cgroup_mutex);
1658 mutex_lock(&cgroup_root_mutex);
1659
1660 /* Rebind all subsystems back to the default hierarchy */
1661 ret = rebind_subsystems(root, 0);
1662 /* Shouldn't be able to fail ... */
1663 BUG_ON(ret);
1664
1665 /*
1666 * Release all the links from css_sets to this hierarchy's
1667 * root cgroup
1668 */
1669 write_lock(&css_set_lock);
1670
1671 list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
1672 cgrp_link_list) {
1673 list_del(&link->cg_link_list);
1674 list_del(&link->cgrp_link_list);
1675 kfree(link);
1676 }
1677 write_unlock(&css_set_lock);
1678
1679 if (!list_empty(&root->root_list)) {
1680 list_del(&root->root_list);
1681 root_count--;
1682 }
1683
1684 mutex_unlock(&cgroup_root_mutex);
1685 mutex_unlock(&cgroup_mutex);
1686
1687 kill_litter_super(sb);
1688 cgroup_drop_root(root);
1689 }
1690
1691 static struct file_system_type cgroup_fs_type = {
1692 .name = "cgroup",
1693 .mount = cgroup_mount,
1694 .kill_sb = cgroup_kill_sb,
1695 };
1696
1697 static struct kobject *cgroup_kobj;
1698
1699 static inline struct cgroup *__d_cgrp(struct dentry *dentry)
1700 {
1701 return dentry->d_fsdata;
1702 }
1703
1704 static inline struct cftype *__d_cft(struct dentry *dentry)
1705 {
1706 return dentry->d_fsdata;
1707 }
1708
1709 /**
1710 * cgroup_path - generate the path of a cgroup
1711 * @cgrp: the cgroup in question
1712 * @buf: the buffer to write the path into
1713 * @buflen: the length of the buffer
1714 *
1715 * Called with cgroup_mutex held or else with an RCU-protected cgroup
1716 * reference. Writes path of cgroup into buf. Returns 0 on success,
1717 * -errno on error.
1718 */
1719 int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1720 {
1721 char *start;
1722 struct dentry *dentry = rcu_dereference_check(cgrp->dentry,
1723 cgroup_lock_is_held());
1724
1725 if (!dentry || cgrp == dummytop) {
1726 /*
1727 * Inactive subsystems have no dentry for their root
1728 * cgroup
1729 */
1730 strcpy(buf, "/");
1731 return 0;
1732 }
1733
1734 start = buf + buflen;
1735
1736 *--start = '\0';
1737 for (;;) {
1738 int len = dentry->d_name.len;
1739
1740 if ((start -= len) < buf)
1741 return -ENAMETOOLONG;
1742 memcpy(start, dentry->d_name.name, len);
1743 cgrp = cgrp->parent;
1744 if (!cgrp)
1745 break;
1746
1747 dentry = rcu_dereference_check(cgrp->dentry,
1748 cgroup_lock_is_held());
1749 if (!cgrp->parent)
1750 continue;
1751 if (--start < buf)
1752 return -ENAMETOOLONG;
1753 *start = '/';
1754 }
1755 memmove(buf, start, buf + buflen - start);
1756 return 0;
1757 }
1758 EXPORT_SYMBOL_GPL(cgroup_path);
1759
1760 /*
1761 * Control Group taskset
1762 */
1763 struct task_and_cgroup {
1764 struct task_struct *task;
1765 struct cgroup *cgrp;
1766 struct css_set *cg;
1767 };
1768
1769 struct cgroup_taskset {
1770 struct task_and_cgroup single;
1771 struct flex_array *tc_array;
1772 int tc_array_len;
1773 int idx;
1774 struct cgroup *cur_cgrp;
1775 };
1776
1777 /**
1778 * cgroup_taskset_first - reset taskset and return the first task
1779 * @tset: taskset of interest
1780 *
1781 * @tset iteration is initialized and the first task is returned.
1782 */
1783 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
1784 {
1785 if (tset->tc_array) {
1786 tset->idx = 0;
1787 return cgroup_taskset_next(tset);
1788 } else {
1789 tset->cur_cgrp = tset->single.cgrp;
1790 return tset->single.task;
1791 }
1792 }
1793 EXPORT_SYMBOL_GPL(cgroup_taskset_first);
1794
1795 /**
1796 * cgroup_taskset_next - iterate to the next task in taskset
1797 * @tset: taskset of interest
1798 *
1799 * Return the next task in @tset. Iteration must have been initialized
1800 * with cgroup_taskset_first().
1801 */
1802 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
1803 {
1804 struct task_and_cgroup *tc;
1805
1806 if (!tset->tc_array || tset->idx >= tset->tc_array_len)
1807 return NULL;
1808
1809 tc = flex_array_get(tset->tc_array, tset->idx++);
1810 tset->cur_cgrp = tc->cgrp;
1811 return tc->task;
1812 }
1813 EXPORT_SYMBOL_GPL(cgroup_taskset_next);
1814
1815 /**
1816 * cgroup_taskset_cur_cgroup - return the matching cgroup for the current task
1817 * @tset: taskset of interest
1818 *
1819 * Return the cgroup for the current (last returned) task of @tset. This
1820 * function must be preceded by either cgroup_taskset_first() or
1821 * cgroup_taskset_next().
1822 */
1823 struct cgroup *cgroup_taskset_cur_cgroup(struct cgroup_taskset *tset)
1824 {
1825 return tset->cur_cgrp;
1826 }
1827 EXPORT_SYMBOL_GPL(cgroup_taskset_cur_cgroup);
1828
1829 /**
1830 * cgroup_taskset_size - return the number of tasks in taskset
1831 * @tset: taskset of interest
1832 */
1833 int cgroup_taskset_size(struct cgroup_taskset *tset)
1834 {
1835 return tset->tc_array ? tset->tc_array_len : 1;
1836 }
1837 EXPORT_SYMBOL_GPL(cgroup_taskset_size);
1838
1839
1840 /*
1841 * cgroup_task_migrate - move a task from one cgroup to another.
1842 *
1843 * 'guarantee' is set if the caller promises that a new css_set for the task
1844 * will already exist. If not set, this function might sleep, and can fail with
1845 * -ENOMEM. Must be called with cgroup_mutex and threadgroup locked.
1846 */
1847 static void cgroup_task_migrate(struct cgroup *cgrp, struct cgroup *oldcgrp,
1848 struct task_struct *tsk, struct css_set *newcg)
1849 {
1850 struct css_set *oldcg;
1851
1852 /*
1853 * We are synchronized through threadgroup_lock() against PF_EXITING
1854 * setting such that we can't race against cgroup_exit() changing the
1855 * css_set to init_css_set and dropping the old one.
1856 */
1857 WARN_ON_ONCE(tsk->flags & PF_EXITING);
1858 oldcg = tsk->cgroups;
1859
1860 task_lock(tsk);
1861 rcu_assign_pointer(tsk->cgroups, newcg);
1862 task_unlock(tsk);
1863
1864 /* Update the css_set linked lists if we're using them */
1865 write_lock(&css_set_lock);
1866 if (!list_empty(&tsk->cg_list))
1867 list_move(&tsk->cg_list, &newcg->tasks);
1868 write_unlock(&css_set_lock);
1869
1870 /*
1871 * We just gained a reference on oldcg by taking it from the task. As
1872 * trading it for newcg is protected by cgroup_mutex, we're safe to drop
1873 * it here; it will be freed under RCU.
1874 */
1875 put_css_set(oldcg);
1876
1877 set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
1878 }
1879
1880 /**
1881 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
1882 * @cgrp: the cgroup the task is attaching to
1883 * @tsk: the task to be attached
1884 *
1885 * Call with cgroup_mutex and threadgroup locked. May take task_lock of
1886 * @tsk during call.
1887 */
1888 int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
1889 {
1890 int retval;
1891 struct cgroup_subsys *ss, *failed_ss = NULL;
1892 struct cgroup *oldcgrp;
1893 struct cgroupfs_root *root = cgrp->root;
1894 struct cgroup_taskset tset = { };
1895 struct css_set *newcg;
1896
1897 /* @tsk either already exited or can't exit until the end */
1898 if (tsk->flags & PF_EXITING)
1899 return -ESRCH;
1900
1901 /* Nothing to do if the task is already in that cgroup */
1902 oldcgrp = task_cgroup_from_root(tsk, root);
1903 if (cgrp == oldcgrp)
1904 return 0;
1905
1906 tset.single.task = tsk;
1907 tset.single.cgrp = oldcgrp;
1908
1909 for_each_subsys(root, ss) {
1910 if (ss->can_attach) {
1911 retval = ss->can_attach(cgrp, &tset);
1912 if (retval) {
1913 /*
1914 * Remember on which subsystem the can_attach()
1915 * failed, so that we only call cancel_attach()
1916 * against the subsystems whose can_attach()
1917 * succeeded. (See below)
1918 */
1919 failed_ss = ss;
1920 goto out;
1921 }
1922 }
1923 }
1924
1925 newcg = find_css_set(tsk->cgroups, cgrp);
1926 if (!newcg) {
1927 retval = -ENOMEM;
1928 goto out;
1929 }
1930
1931 cgroup_task_migrate(cgrp, oldcgrp, tsk, newcg);
1932
1933 for_each_subsys(root, ss) {
1934 if (ss->attach)
1935 ss->attach(cgrp, &tset);
1936 }
1937
1938 synchronize_rcu();
1939
1940 /*
1941 * wake up rmdir() waiter. the rmdir should fail since the cgroup
1942 * is no longer empty.
1943 */
1944 cgroup_wakeup_rmdir_waiter(cgrp);
1945 out:
1946 if (retval) {
1947 for_each_subsys(root, ss) {
1948 if (ss == failed_ss)
1949 /*
1950 * This subsystem was the one that failed the
1951 * can_attach() check earlier, so we don't need
1952 * to call cancel_attach() against it or any
1953 * remaining subsystems.
1954 */
1955 break;
1956 if (ss->cancel_attach)
1957 ss->cancel_attach(cgrp, &tset);
1958 }
1959 }
1960 return retval;
1961 }
1962
1963 /**
1964 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
1965 * @from: attach to all cgroups of a given task
1966 * @tsk: the task to be attached
1967 */
1968 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
1969 {
1970 struct cgroupfs_root *root;
1971 int retval = 0;
1972
1973 cgroup_lock();
1974 for_each_active_root(root) {
1975 struct cgroup *from_cg = task_cgroup_from_root(from, root);
1976
1977 retval = cgroup_attach_task(from_cg, tsk);
1978 if (retval)
1979 break;
1980 }
1981 cgroup_unlock();
1982
1983 return retval;
1984 }
1985 EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
1986
1987 /**
1988 * cgroup_attach_proc - attach all threads in a threadgroup to a cgroup
1989 * @cgrp: the cgroup to attach to
1990 * @leader: the threadgroup leader task_struct of the group to be attached
1991 *
1992 * Call holding cgroup_mutex and the group_rwsem of the leader. Will take
1993 * task_lock of each thread in leader's threadgroup individually in turn.
1994 */
1995 static int cgroup_attach_proc(struct cgroup *cgrp, struct task_struct *leader)
1996 {
1997 int retval, i, group_size;
1998 struct cgroup_subsys *ss, *failed_ss = NULL;
1999 /* guaranteed to be initialized later, but the compiler needs this */
2000 struct cgroupfs_root *root = cgrp->root;
2001 /* threadgroup list cursor and array */
2002 struct task_struct *tsk;
2003 struct task_and_cgroup *tc;
2004 struct flex_array *group;
2005 struct cgroup_taskset tset = { };
2006
2007 /*
2008 * step 0: in order to do expensive, possibly blocking operations for
2009 * every thread, we cannot iterate the thread group list, since it needs
2010 * rcu or tasklist locked. instead, build an array of all threads in the
2011 * group - group_rwsem prevents new threads from appearing, and if
2012 * threads exit, this will just be an over-estimate.
2013 */
2014 group_size = get_nr_threads(leader);
2015 /* flex_array supports very large thread-groups better than kmalloc. */
2016 group = flex_array_alloc(sizeof(*tc), group_size, GFP_KERNEL);
2017 if (!group)
2018 return -ENOMEM;
2019 /* pre-allocate to guarantee space while iterating in rcu read-side. */
2020 retval = flex_array_prealloc(group, 0, group_size - 1, GFP_KERNEL);
2021 if (retval)
2022 goto out_free_group_list;
2023
2024 tsk = leader;
2025 i = 0;
2026 /*
2027 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2028 * already PF_EXITING could be freed from underneath us unless we
2029 * take an rcu_read_lock.
2030 */
2031 rcu_read_lock();
2032 do {
2033 struct task_and_cgroup ent;
2034
2035 /* @tsk either already exited or can't exit until the end */
2036 if (tsk->flags & PF_EXITING)
2037 continue;
2038
2039 /* as per above, nr_threads may decrease, but not increase. */
2040 BUG_ON(i >= group_size);
2041 ent.task = tsk;
2042 ent.cgrp = task_cgroup_from_root(tsk, root);
2043 /* nothing to do if this task is already in the cgroup */
2044 if (ent.cgrp == cgrp)
2045 continue;
2046 /*
2047 * saying GFP_ATOMIC has no effect here because we did prealloc
2048 * earlier, but it's good form to communicate our expectations.
2049 */
2050 retval = flex_array_put(group, i, &ent, GFP_ATOMIC);
2051 BUG_ON(retval != 0);
2052 i++;
2053 } while_each_thread(leader, tsk);
2054 rcu_read_unlock();
2055 /* remember the number of threads in the array for later. */
2056 group_size = i;
2057 tset.tc_array = group;
2058 tset.tc_array_len = group_size;
2059
2060 /* methods shouldn't be called if no task is actually migrating */
2061 retval = 0;
2062 if (!group_size)
2063 goto out_free_group_list;
2064
2065 /*
2066 * step 1: check that we can legitimately attach to the cgroup.
2067 */
2068 for_each_subsys(root, ss) {
2069 if (ss->can_attach) {
2070 retval = ss->can_attach(cgrp, &tset);
2071 if (retval) {
2072 failed_ss = ss;
2073 goto out_cancel_attach;
2074 }
2075 }
2076 }
2077
2078 /*
2079 * step 2: make sure css_sets exist for all threads to be migrated.
2080 * we use find_css_set, which allocates a new one if necessary.
2081 */
2082 for (i = 0; i < group_size; i++) {
2083 tc = flex_array_get(group, i);
2084 tc->cg = find_css_set(tc->task->cgroups, cgrp);
2085 if (!tc->cg) {
2086 retval = -ENOMEM;
2087 goto out_put_css_set_refs;
2088 }
2089 }
2090
2091 /*
2092 * step 3: now that we're guaranteed success wrt the css_sets,
2093 * proceed to move all tasks to the new cgroup. There are no
2094 * failure cases after here, so this is the commit point.
2095 */
2096 for (i = 0; i < group_size; i++) {
2097 tc = flex_array_get(group, i);
2098 cgroup_task_migrate(cgrp, tc->cgrp, tc->task, tc->cg);
2099 }
2100 /* nothing is sensitive to fork() after this point. */
2101
2102 /*
2103 * step 4: do subsystem attach callbacks.
2104 */
2105 for_each_subsys(root, ss) {
2106 if (ss->attach)
2107 ss->attach(cgrp, &tset);
2108 }
2109
2110 /*
2111 * step 5: success! and cleanup
2112 */
2113 synchronize_rcu();
2114 cgroup_wakeup_rmdir_waiter(cgrp);
2115 retval = 0;
2116 out_put_css_set_refs:
2117 if (retval) {
2118 for (i = 0; i < group_size; i++) {
2119 tc = flex_array_get(group, i);
2120 if (!tc->cg)
2121 break;
2122 put_css_set(tc->cg);
2123 }
2124 }
2125 out_cancel_attach:
2126 if (retval) {
2127 for_each_subsys(root, ss) {
2128 if (ss == failed_ss)
2129 break;
2130 if (ss->cancel_attach)
2131 ss->cancel_attach(cgrp, &tset);
2132 }
2133 }
2134 out_free_group_list:
2135 flex_array_free(group);
2136 return retval;
2137 }
2138
2139 /*
2140 * Find the task_struct of the task to attach by vpid and pass it along to the
2141 * function to attach either it or all tasks in its threadgroup. Will lock
2142 * cgroup_mutex and threadgroup; may take task_lock of task.
2143 */
2144 static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
2145 {
2146 struct task_struct *tsk;
2147 const struct cred *cred = current_cred(), *tcred;
2148 int ret;
2149
2150 if (!cgroup_lock_live_group(cgrp))
2151 return -ENODEV;
2152
2153 retry_find_task:
2154 rcu_read_lock();
2155 if (pid) {
2156 tsk = find_task_by_vpid(pid);
2157 if (!tsk) {
2158 rcu_read_unlock();
2159 ret= -ESRCH;
2160 goto out_unlock_cgroup;
2161 }
2162 /*
2163 * even if we're attaching all tasks in the thread group, we
2164 * only need to check permissions on one of them.
2165 */
2166 tcred = __task_cred(tsk);
2167 if (cred->euid &&
2168 cred->euid != tcred->uid &&
2169 cred->euid != tcred->suid) {
2170 rcu_read_unlock();
2171 ret = -EACCES;
2172 goto out_unlock_cgroup;
2173 }
2174 } else
2175 tsk = current;
2176
2177 if (threadgroup)
2178 tsk = tsk->group_leader;
2179 get_task_struct(tsk);
2180 rcu_read_unlock();
2181
2182 threadgroup_lock(tsk);
2183 if (threadgroup) {
2184 if (!thread_group_leader(tsk)) {
2185 /*
2186 * a race with de_thread from another thread's exec()
2187 * may strip us of our leadership, if this happens,
2188 * there is no choice but to throw this task away and
2189 * try again; this is
2190 * "double-double-toil-and-trouble-check locking".
2191 */
2192 threadgroup_unlock(tsk);
2193 put_task_struct(tsk);
2194 goto retry_find_task;
2195 }
2196 ret = cgroup_attach_proc(cgrp, tsk);
2197 } else
2198 ret = cgroup_attach_task(cgrp, tsk);
2199 threadgroup_unlock(tsk);
2200
2201 put_task_struct(tsk);
2202 out_unlock_cgroup:
2203 cgroup_unlock();
2204 return ret;
2205 }
2206
2207 static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
2208 {
2209 return attach_task_by_pid(cgrp, pid, false);
2210 }
2211
2212 static int cgroup_procs_write(struct cgroup *cgrp, struct cftype *cft, u64 tgid)
2213 {
2214 return attach_task_by_pid(cgrp, tgid, true);
2215 }
2216
2217 /**
2218 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
2219 * @cgrp: the cgroup to be checked for liveness
2220 *
2221 * On success, returns true; the lock should be later released with
2222 * cgroup_unlock(). On failure returns false with no lock held.
2223 */
2224 bool cgroup_lock_live_group(struct cgroup *cgrp)
2225 {
2226 mutex_lock(&cgroup_mutex);
2227 if (cgroup_is_removed(cgrp)) {
2228 mutex_unlock(&cgroup_mutex);
2229 return false;
2230 }
2231 return true;
2232 }
2233 EXPORT_SYMBOL_GPL(cgroup_lock_live_group);
2234
2235 static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
2236 const char *buffer)
2237 {
2238 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
2239 if (strlen(buffer) >= PATH_MAX)
2240 return -EINVAL;
2241 if (!cgroup_lock_live_group(cgrp))
2242 return -ENODEV;
2243 mutex_lock(&cgroup_root_mutex);
2244 strcpy(cgrp->root->release_agent_path, buffer);
2245 mutex_unlock(&cgroup_root_mutex);
2246 cgroup_unlock();
2247 return 0;
2248 }
2249
2250 static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
2251 struct seq_file *seq)
2252 {
2253 if (!cgroup_lock_live_group(cgrp))
2254 return -ENODEV;
2255 seq_puts(seq, cgrp->root->release_agent_path);
2256 seq_putc(seq, '\n');
2257 cgroup_unlock();
2258 return 0;
2259 }
2260
2261 /* A buffer size big enough for numbers or short strings */
2262 #define CGROUP_LOCAL_BUFFER_SIZE 64
2263
2264 static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
2265 struct file *file,
2266 const char __user *userbuf,
2267 size_t nbytes, loff_t *unused_ppos)
2268 {
2269 char buffer[CGROUP_LOCAL_BUFFER_SIZE];
2270 int retval = 0;
2271 char *end;
2272
2273 if (!nbytes)
2274 return -EINVAL;
2275 if (nbytes >= sizeof(buffer))
2276 return -E2BIG;
2277 if (copy_from_user(buffer, userbuf, nbytes))
2278 return -EFAULT;
2279
2280 buffer[nbytes] = 0; /* nul-terminate */
2281 if (cft->write_u64) {
2282 u64 val = simple_strtoull(strstrip(buffer), &end, 0);
2283 if (*end)
2284 return -EINVAL;
2285 retval = cft->write_u64(cgrp, cft, val);
2286 } else {
2287 s64 val = simple_strtoll(strstrip(buffer), &end, 0);
2288 if (*end)
2289 return -EINVAL;
2290 retval = cft->write_s64(cgrp, cft, val);
2291 }
2292 if (!retval)
2293 retval = nbytes;
2294 return retval;
2295 }
2296
2297 static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
2298 struct file *file,
2299 const char __user *userbuf,
2300 size_t nbytes, loff_t *unused_ppos)
2301 {
2302 char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
2303 int retval = 0;
2304 size_t max_bytes = cft->max_write_len;
2305 char *buffer = local_buffer;
2306
2307 if (!max_bytes)
2308 max_bytes = sizeof(local_buffer) - 1;
2309 if (nbytes >= max_bytes)
2310 return -E2BIG;
2311 /* Allocate a dynamic buffer if we need one */
2312 if (nbytes >= sizeof(local_buffer)) {
2313 buffer = kmalloc(nbytes + 1, GFP_KERNEL);
2314 if (buffer == NULL)
2315 return -ENOMEM;
2316 }
2317 if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
2318 retval = -EFAULT;
2319 goto out;
2320 }
2321
2322 buffer[nbytes] = 0; /* nul-terminate */
2323 retval = cft->write_string(cgrp, cft, strstrip(buffer));
2324 if (!retval)
2325 retval = nbytes;
2326 out:
2327 if (buffer != local_buffer)
2328 kfree(buffer);
2329 return retval;
2330 }
2331
2332 static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
2333 size_t nbytes, loff_t *ppos)
2334 {
2335 struct cftype *cft = __d_cft(file->f_dentry);
2336 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2337
2338 if (cgroup_is_removed(cgrp))
2339 return -ENODEV;
2340 if (cft->write)
2341 return cft->write(cgrp, cft, file, buf, nbytes, ppos);
2342 if (cft->write_u64 || cft->write_s64)
2343 return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
2344 if (cft->write_string)
2345 return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
2346 if (cft->trigger) {
2347 int ret = cft->trigger(cgrp, (unsigned int)cft->private);
2348 return ret ? ret : nbytes;
2349 }
2350 return -EINVAL;
2351 }
2352
2353 static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
2354 struct file *file,
2355 char __user *buf, size_t nbytes,
2356 loff_t *ppos)
2357 {
2358 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2359 u64 val = cft->read_u64(cgrp, cft);
2360 int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
2361
2362 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2363 }
2364
2365 static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
2366 struct file *file,
2367 char __user *buf, size_t nbytes,
2368 loff_t *ppos)
2369 {
2370 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2371 s64 val = cft->read_s64(cgrp, cft);
2372 int len = sprintf(tmp, "%lld\n", (long long) val);
2373
2374 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2375 }
2376
2377 static ssize_t cgroup_file_read(struct file *file, char __user *buf,
2378 size_t nbytes, loff_t *ppos)
2379 {
2380 struct cftype *cft = __d_cft(file->f_dentry);
2381 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2382
2383 if (cgroup_is_removed(cgrp))
2384 return -ENODEV;
2385
2386 if (cft->read)
2387 return cft->read(cgrp, cft, file, buf, nbytes, ppos);
2388 if (cft->read_u64)
2389 return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
2390 if (cft->read_s64)
2391 return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
2392 return -EINVAL;
2393 }
2394
2395 /*
2396 * seqfile ops/methods for returning structured data. Currently just
2397 * supports string->u64 maps, but can be extended in future.
2398 */
2399
2400 struct cgroup_seqfile_state {
2401 struct cftype *cft;
2402 struct cgroup *cgroup;
2403 };
2404
2405 static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
2406 {
2407 struct seq_file *sf = cb->state;
2408 return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
2409 }
2410
2411 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
2412 {
2413 struct cgroup_seqfile_state *state = m->private;
2414 struct cftype *cft = state->cft;
2415 if (cft->read_map) {
2416 struct cgroup_map_cb cb = {
2417 .fill = cgroup_map_add,
2418 .state = m,
2419 };
2420 return cft->read_map(state->cgroup, cft, &cb);
2421 }
2422 return cft->read_seq_string(state->cgroup, cft, m);
2423 }
2424
2425 static int cgroup_seqfile_release(struct inode *inode, struct file *file)
2426 {
2427 struct seq_file *seq = file->private_data;
2428 kfree(seq->private);
2429 return single_release(inode, file);
2430 }
2431
2432 static const struct file_operations cgroup_seqfile_operations = {
2433 .read = seq_read,
2434 .write = cgroup_file_write,
2435 .llseek = seq_lseek,
2436 .release = cgroup_seqfile_release,
2437 };
2438
2439 static int cgroup_file_open(struct inode *inode, struct file *file)
2440 {
2441 int err;
2442 struct cftype *cft;
2443
2444 err = generic_file_open(inode, file);
2445 if (err)
2446 return err;
2447 cft = __d_cft(file->f_dentry);
2448
2449 if (cft->read_map || cft->read_seq_string) {
2450 struct cgroup_seqfile_state *state =
2451 kzalloc(sizeof(*state), GFP_USER);
2452 if (!state)
2453 return -ENOMEM;
2454 state->cft = cft;
2455 state->cgroup = __d_cgrp(file->f_dentry->d_parent);
2456 file->f_op = &cgroup_seqfile_operations;
2457 err = single_open(file, cgroup_seqfile_show, state);
2458 if (err < 0)
2459 kfree(state);
2460 } else if (cft->open)
2461 err = cft->open(inode, file);
2462 else
2463 err = 0;
2464
2465 return err;
2466 }
2467
2468 static int cgroup_file_release(struct inode *inode, struct file *file)
2469 {
2470 struct cftype *cft = __d_cft(file->f_dentry);
2471 if (cft->release)
2472 return cft->release(inode, file);
2473 return 0;
2474 }
2475
2476 /*
2477 * cgroup_rename - Only allow simple rename of directories in place.
2478 */
2479 static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
2480 struct inode *new_dir, struct dentry *new_dentry)
2481 {
2482 if (!S_ISDIR(old_dentry->d_inode->i_mode))
2483 return -ENOTDIR;
2484 if (new_dentry->d_inode)
2485 return -EEXIST;
2486 if (old_dir != new_dir)
2487 return -EIO;
2488 return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
2489 }
2490
2491 static const struct file_operations cgroup_file_operations = {
2492 .read = cgroup_file_read,
2493 .write = cgroup_file_write,
2494 .llseek = generic_file_llseek,
2495 .open = cgroup_file_open,
2496 .release = cgroup_file_release,
2497 };
2498
2499 static const struct inode_operations cgroup_dir_inode_operations = {
2500 .lookup = cgroup_lookup,
2501 .mkdir = cgroup_mkdir,
2502 .rmdir = cgroup_rmdir,
2503 .rename = cgroup_rename,
2504 };
2505
2506 static struct dentry *cgroup_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
2507 {
2508 if (dentry->d_name.len > NAME_MAX)
2509 return ERR_PTR(-ENAMETOOLONG);
2510 d_add(dentry, NULL);
2511 return NULL;
2512 }
2513
2514 /*
2515 * Check if a file is a control file
2516 */
2517 static inline struct cftype *__file_cft(struct file *file)
2518 {
2519 if (file->f_dentry->d_inode->i_fop != &cgroup_file_operations)
2520 return ERR_PTR(-EINVAL);
2521 return __d_cft(file->f_dentry);
2522 }
2523
2524 static int cgroup_create_file(struct dentry *dentry, umode_t mode,
2525 struct super_block *sb)
2526 {
2527 struct inode *inode;
2528
2529 if (!dentry)
2530 return -ENOENT;
2531 if (dentry->d_inode)
2532 return -EEXIST;
2533
2534 inode = cgroup_new_inode(mode, sb);
2535 if (!inode)
2536 return -ENOMEM;
2537
2538 if (S_ISDIR(mode)) {
2539 inode->i_op = &cgroup_dir_inode_operations;
2540 inode->i_fop = &simple_dir_operations;
2541
2542 /* start off with i_nlink == 2 (for "." entry) */
2543 inc_nlink(inode);
2544
2545 /* start with the directory inode held, so that we can
2546 * populate it without racing with another mkdir */
2547 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
2548 } else if (S_ISREG(mode)) {
2549 inode->i_size = 0;
2550 inode->i_fop = &cgroup_file_operations;
2551 }
2552 d_instantiate(dentry, inode);
2553 dget(dentry); /* Extra count - pin the dentry in core */
2554 return 0;
2555 }
2556
2557 /*
2558 * cgroup_create_dir - create a directory for an object.
2559 * @cgrp: the cgroup we create the directory for. It must have a valid
2560 * ->parent field. And we are going to fill its ->dentry field.
2561 * @dentry: dentry of the new cgroup
2562 * @mode: mode to set on new directory.
2563 */
2564 static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
2565 umode_t mode)
2566 {
2567 struct dentry *parent;
2568 int error = 0;
2569
2570 parent = cgrp->parent->dentry;
2571 error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
2572 if (!error) {
2573 dentry->d_fsdata = cgrp;
2574 inc_nlink(parent->d_inode);
2575 rcu_assign_pointer(cgrp->dentry, dentry);
2576 dget(dentry);
2577 }
2578 dput(dentry);
2579
2580 return error;
2581 }
2582
2583 /**
2584 * cgroup_file_mode - deduce file mode of a control file
2585 * @cft: the control file in question
2586 *
2587 * returns cft->mode if ->mode is not 0
2588 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
2589 * returns S_IRUGO if it has only a read handler
2590 * returns S_IWUSR if it has only a write hander
2591 */
2592 static umode_t cgroup_file_mode(const struct cftype *cft)
2593 {
2594 umode_t mode = 0;
2595
2596 if (cft->mode)
2597 return cft->mode;
2598
2599 if (cft->read || cft->read_u64 || cft->read_s64 ||
2600 cft->read_map || cft->read_seq_string)
2601 mode |= S_IRUGO;
2602
2603 if (cft->write || cft->write_u64 || cft->write_s64 ||
2604 cft->write_string || cft->trigger)
2605 mode |= S_IWUSR;
2606
2607 return mode;
2608 }
2609
2610 int cgroup_add_file(struct cgroup *cgrp,
2611 struct cgroup_subsys *subsys,
2612 const struct cftype *cft)
2613 {
2614 struct dentry *dir = cgrp->dentry;
2615 struct dentry *dentry;
2616 int error;
2617 umode_t mode;
2618
2619 char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
2620 if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
2621 strcpy(name, subsys->name);
2622 strcat(name, ".");
2623 }
2624 strcat(name, cft->name);
2625 BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
2626 dentry = lookup_one_len(name, dir, strlen(name));
2627 if (!IS_ERR(dentry)) {
2628 mode = cgroup_file_mode(cft);
2629 error = cgroup_create_file(dentry, mode | S_IFREG,
2630 cgrp->root->sb);
2631 if (!error)
2632 dentry->d_fsdata = (void *)cft;
2633 dput(dentry);
2634 } else
2635 error = PTR_ERR(dentry);
2636 return error;
2637 }
2638 EXPORT_SYMBOL_GPL(cgroup_add_file);
2639
2640 int cgroup_add_files(struct cgroup *cgrp,
2641 struct cgroup_subsys *subsys,
2642 const struct cftype cft[],
2643 int count)
2644 {
2645 int i, err;
2646 for (i = 0; i < count; i++) {
2647 err = cgroup_add_file(cgrp, subsys, &cft[i]);
2648 if (err)
2649 return err;
2650 }
2651 return 0;
2652 }
2653 EXPORT_SYMBOL_GPL(cgroup_add_files);
2654
2655 /**
2656 * cgroup_task_count - count the number of tasks in a cgroup.
2657 * @cgrp: the cgroup in question
2658 *
2659 * Return the number of tasks in the cgroup.
2660 */
2661 int cgroup_task_count(const struct cgroup *cgrp)
2662 {
2663 int count = 0;
2664 struct cg_cgroup_link *link;
2665
2666 read_lock(&css_set_lock);
2667 list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
2668 count += atomic_read(&link->cg->refcount);
2669 }
2670 read_unlock(&css_set_lock);
2671 return count;
2672 }
2673
2674 /*
2675 * Advance a list_head iterator. The iterator should be positioned at
2676 * the start of a css_set
2677 */
2678 static void cgroup_advance_iter(struct cgroup *cgrp,
2679 struct cgroup_iter *it)
2680 {
2681 struct list_head *l = it->cg_link;
2682 struct cg_cgroup_link *link;
2683 struct css_set *cg;
2684
2685 /* Advance to the next non-empty css_set */
2686 do {
2687 l = l->next;
2688 if (l == &cgrp->css_sets) {
2689 it->cg_link = NULL;
2690 return;
2691 }
2692 link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
2693 cg = link->cg;
2694 } while (list_empty(&cg->tasks));
2695 it->cg_link = l;
2696 it->task = cg->tasks.next;
2697 }
2698
2699 /*
2700 * To reduce the fork() overhead for systems that are not actually
2701 * using their cgroups capability, we don't maintain the lists running
2702 * through each css_set to its tasks until we see the list actually
2703 * used - in other words after the first call to cgroup_iter_start().
2704 */
2705 static void cgroup_enable_task_cg_lists(void)
2706 {
2707 struct task_struct *p, *g;
2708 write_lock(&css_set_lock);
2709 use_task_css_set_links = 1;
2710 /*
2711 * We need tasklist_lock because RCU is not safe against
2712 * while_each_thread(). Besides, a forking task that has passed
2713 * cgroup_post_fork() without seeing use_task_css_set_links = 1
2714 * is not guaranteed to have its child immediately visible in the
2715 * tasklist if we walk through it with RCU.
2716 */
2717 read_lock(&tasklist_lock);
2718 do_each_thread(g, p) {
2719 task_lock(p);
2720 /*
2721 * We should check if the process is exiting, otherwise
2722 * it will race with cgroup_exit() in that the list
2723 * entry won't be deleted though the process has exited.
2724 */
2725 if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
2726 list_add(&p->cg_list, &p->cgroups->tasks);
2727 task_unlock(p);
2728 } while_each_thread(g, p);
2729 read_unlock(&tasklist_lock);
2730 write_unlock(&css_set_lock);
2731 }
2732
2733 void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
2734 __acquires(css_set_lock)
2735 {
2736 /*
2737 * The first time anyone tries to iterate across a cgroup,
2738 * we need to enable the list linking each css_set to its
2739 * tasks, and fix up all existing tasks.
2740 */
2741 if (!use_task_css_set_links)
2742 cgroup_enable_task_cg_lists();
2743
2744 read_lock(&css_set_lock);
2745 it->cg_link = &cgrp->css_sets;
2746 cgroup_advance_iter(cgrp, it);
2747 }
2748
2749 struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
2750 struct cgroup_iter *it)
2751 {
2752 struct task_struct *res;
2753 struct list_head *l = it->task;
2754 struct cg_cgroup_link *link;
2755
2756 /* If the iterator cg is NULL, we have no tasks */
2757 if (!it->cg_link)
2758 return NULL;
2759 res = list_entry(l, struct task_struct, cg_list);
2760 /* Advance iterator to find next entry */
2761 l = l->next;
2762 link = list_entry(it->cg_link, struct cg_cgroup_link, cgrp_link_list);
2763 if (l == &link->cg->tasks) {
2764 /* We reached the end of this task list - move on to
2765 * the next cg_cgroup_link */
2766 cgroup_advance_iter(cgrp, it);
2767 } else {
2768 it->task = l;
2769 }
2770 return res;
2771 }
2772
2773 void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
2774 __releases(css_set_lock)
2775 {
2776 read_unlock(&css_set_lock);
2777 }
2778
2779 static inline int started_after_time(struct task_struct *t1,
2780 struct timespec *time,
2781 struct task_struct *t2)
2782 {
2783 int start_diff = timespec_compare(&t1->start_time, time);
2784 if (start_diff > 0) {
2785 return 1;
2786 } else if (start_diff < 0) {
2787 return 0;
2788 } else {
2789 /*
2790 * Arbitrarily, if two processes started at the same
2791 * time, we'll say that the lower pointer value
2792 * started first. Note that t2 may have exited by now
2793 * so this may not be a valid pointer any longer, but
2794 * that's fine - it still serves to distinguish
2795 * between two tasks started (effectively) simultaneously.
2796 */
2797 return t1 > t2;
2798 }
2799 }
2800
2801 /*
2802 * This function is a callback from heap_insert() and is used to order
2803 * the heap.
2804 * In this case we order the heap in descending task start time.
2805 */
2806 static inline int started_after(void *p1, void *p2)
2807 {
2808 struct task_struct *t1 = p1;
2809 struct task_struct *t2 = p2;
2810 return started_after_time(t1, &t2->start_time, t2);
2811 }
2812
2813 /**
2814 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
2815 * @scan: struct cgroup_scanner containing arguments for the scan
2816 *
2817 * Arguments include pointers to callback functions test_task() and
2818 * process_task().
2819 * Iterate through all the tasks in a cgroup, calling test_task() for each,
2820 * and if it returns true, call process_task() for it also.
2821 * The test_task pointer may be NULL, meaning always true (select all tasks).
2822 * Effectively duplicates cgroup_iter_{start,next,end}()
2823 * but does not lock css_set_lock for the call to process_task().
2824 * The struct cgroup_scanner may be embedded in any structure of the caller's
2825 * creation.
2826 * It is guaranteed that process_task() will act on every task that
2827 * is a member of the cgroup for the duration of this call. This
2828 * function may or may not call process_task() for tasks that exit
2829 * or move to a different cgroup during the call, or are forked or
2830 * move into the cgroup during the call.
2831 *
2832 * Note that test_task() may be called with locks held, and may in some
2833 * situations be called multiple times for the same task, so it should
2834 * be cheap.
2835 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
2836 * pre-allocated and will be used for heap operations (and its "gt" member will
2837 * be overwritten), else a temporary heap will be used (allocation of which
2838 * may cause this function to fail).
2839 */
2840 int cgroup_scan_tasks(struct cgroup_scanner *scan)
2841 {
2842 int retval, i;
2843 struct cgroup_iter it;
2844 struct task_struct *p, *dropped;
2845 /* Never dereference latest_task, since it's not refcounted */
2846 struct task_struct *latest_task = NULL;
2847 struct ptr_heap tmp_heap;
2848 struct ptr_heap *heap;
2849 struct timespec latest_time = { 0, 0 };
2850
2851 if (scan->heap) {
2852 /* The caller supplied our heap and pre-allocated its memory */
2853 heap = scan->heap;
2854 heap->gt = &started_after;
2855 } else {
2856 /* We need to allocate our own heap memory */
2857 heap = &tmp_heap;
2858 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
2859 if (retval)
2860 /* cannot allocate the heap */
2861 return retval;
2862 }
2863
2864 again:
2865 /*
2866 * Scan tasks in the cgroup, using the scanner's "test_task" callback
2867 * to determine which are of interest, and using the scanner's
2868 * "process_task" callback to process any of them that need an update.
2869 * Since we don't want to hold any locks during the task updates,
2870 * gather tasks to be processed in a heap structure.
2871 * The heap is sorted by descending task start time.
2872 * If the statically-sized heap fills up, we overflow tasks that
2873 * started later, and in future iterations only consider tasks that
2874 * started after the latest task in the previous pass. This
2875 * guarantees forward progress and that we don't miss any tasks.
2876 */
2877 heap->size = 0;
2878 cgroup_iter_start(scan->cg, &it);
2879 while ((p = cgroup_iter_next(scan->cg, &it))) {
2880 /*
2881 * Only affect tasks that qualify per the caller's callback,
2882 * if he provided one
2883 */
2884 if (scan->test_task && !scan->test_task(p, scan))
2885 continue;
2886 /*
2887 * Only process tasks that started after the last task
2888 * we processed
2889 */
2890 if (!started_after_time(p, &latest_time, latest_task))
2891 continue;
2892 dropped = heap_insert(heap, p);
2893 if (dropped == NULL) {
2894 /*
2895 * The new task was inserted; the heap wasn't
2896 * previously full
2897 */
2898 get_task_struct(p);
2899 } else if (dropped != p) {
2900 /*
2901 * The new task was inserted, and pushed out a
2902 * different task
2903 */
2904 get_task_struct(p);
2905 put_task_struct(dropped);
2906 }
2907 /*
2908 * Else the new task was newer than anything already in
2909 * the heap and wasn't inserted
2910 */
2911 }
2912 cgroup_iter_end(scan->cg, &it);
2913
2914 if (heap->size) {
2915 for (i = 0; i < heap->size; i++) {
2916 struct task_struct *q = heap->ptrs[i];
2917 if (i == 0) {
2918 latest_time = q->start_time;
2919 latest_task = q;
2920 }
2921 /* Process the task per the caller's callback */
2922 scan->process_task(q, scan);
2923 put_task_struct(q);
2924 }
2925 /*
2926 * If we had to process any tasks at all, scan again
2927 * in case some of them were in the middle of forking
2928 * children that didn't get processed.
2929 * Not the most efficient way to do it, but it avoids
2930 * having to take callback_mutex in the fork path
2931 */
2932 goto again;
2933 }
2934 if (heap == &tmp_heap)
2935 heap_free(&tmp_heap);
2936 return 0;
2937 }
2938
2939 /*
2940 * Stuff for reading the 'tasks'/'procs' files.
2941 *
2942 * Reading this file can return large amounts of data if a cgroup has
2943 * *lots* of attached tasks. So it may need several calls to read(),
2944 * but we cannot guarantee that the information we produce is correct
2945 * unless we produce it entirely atomically.
2946 *
2947 */
2948
2949 /* which pidlist file are we talking about? */
2950 enum cgroup_filetype {
2951 CGROUP_FILE_PROCS,
2952 CGROUP_FILE_TASKS,
2953 };
2954
2955 /*
2956 * A pidlist is a list of pids that virtually represents the contents of one
2957 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
2958 * a pair (one each for procs, tasks) for each pid namespace that's relevant
2959 * to the cgroup.
2960 */
2961 struct cgroup_pidlist {
2962 /*
2963 * used to find which pidlist is wanted. doesn't change as long as
2964 * this particular list stays in the list.
2965 */
2966 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
2967 /* array of xids */
2968 pid_t *list;
2969 /* how many elements the above list has */
2970 int length;
2971 /* how many files are using the current array */
2972 int use_count;
2973 /* each of these stored in a list by its cgroup */
2974 struct list_head links;
2975 /* pointer to the cgroup we belong to, for list removal purposes */
2976 struct cgroup *owner;
2977 /* protects the other fields */
2978 struct rw_semaphore mutex;
2979 };
2980
2981 /*
2982 * The following two functions "fix" the issue where there are more pids
2983 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
2984 * TODO: replace with a kernel-wide solution to this problem
2985 */
2986 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
2987 static void *pidlist_allocate(int count)
2988 {
2989 if (PIDLIST_TOO_LARGE(count))
2990 return vmalloc(count * sizeof(pid_t));
2991 else
2992 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
2993 }
2994 static void pidlist_free(void *p)
2995 {
2996 if (is_vmalloc_addr(p))
2997 vfree(p);
2998 else
2999 kfree(p);
3000 }
3001 static void *pidlist_resize(void *p, int newcount)
3002 {
3003 void *newlist;
3004 /* note: if new alloc fails, old p will still be valid either way */
3005 if (is_vmalloc_addr(p)) {
3006 newlist = vmalloc(newcount * sizeof(pid_t));
3007 if (!newlist)
3008 return NULL;
3009 memcpy(newlist, p, newcount * sizeof(pid_t));
3010 vfree(p);
3011 } else {
3012 newlist = krealloc(p, newcount * sizeof(pid_t), GFP_KERNEL);
3013 }
3014 return newlist;
3015 }
3016
3017 /*
3018 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
3019 * If the new stripped list is sufficiently smaller and there's enough memory
3020 * to allocate a new buffer, will let go of the unneeded memory. Returns the
3021 * number of unique elements.
3022 */
3023 /* is the size difference enough that we should re-allocate the array? */
3024 #define PIDLIST_REALLOC_DIFFERENCE(old, new) ((old) - PAGE_SIZE >= (new))
3025 static int pidlist_uniq(pid_t **p, int length)
3026 {
3027 int src, dest = 1;
3028 pid_t *list = *p;
3029 pid_t *newlist;
3030
3031 /*
3032 * we presume the 0th element is unique, so i starts at 1. trivial
3033 * edge cases first; no work needs to be done for either
3034 */
3035 if (length == 0 || length == 1)
3036 return length;
3037 /* src and dest walk down the list; dest counts unique elements */
3038 for (src = 1; src < length; src++) {
3039 /* find next unique element */
3040 while (list[src] == list[src-1]) {
3041 src++;
3042 if (src == length)
3043 goto after;
3044 }
3045 /* dest always points to where the next unique element goes */
3046 list[dest] = list[src];
3047 dest++;
3048 }
3049 after:
3050 /*
3051 * if the length difference is large enough, we want to allocate a
3052 * smaller buffer to save memory. if this fails due to out of memory,
3053 * we'll just stay with what we've got.
3054 */
3055 if (PIDLIST_REALLOC_DIFFERENCE(length, dest)) {
3056 newlist = pidlist_resize(list, dest);
3057 if (newlist)
3058 *p = newlist;
3059 }
3060 return dest;
3061 }
3062
3063 static int cmppid(const void *a, const void *b)
3064 {
3065 return *(pid_t *)a - *(pid_t *)b;
3066 }
3067
3068 /*
3069 * find the appropriate pidlist for our purpose (given procs vs tasks)
3070 * returns with the lock on that pidlist already held, and takes care
3071 * of the use count, or returns NULL with no locks held if we're out of
3072 * memory.
3073 */
3074 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3075 enum cgroup_filetype type)
3076 {
3077 struct cgroup_pidlist *l;
3078 /* don't need task_nsproxy() if we're looking at ourself */
3079 struct pid_namespace *ns = current->nsproxy->pid_ns;
3080
3081 /*
3082 * We can't drop the pidlist_mutex before taking the l->mutex in case
3083 * the last ref-holder is trying to remove l from the list at the same
3084 * time. Holding the pidlist_mutex precludes somebody taking whichever
3085 * list we find out from under us - compare release_pid_array().
3086 */
3087 mutex_lock(&cgrp->pidlist_mutex);
3088 list_for_each_entry(l, &cgrp->pidlists, links) {
3089 if (l->key.type == type && l->key.ns == ns) {
3090 /* make sure l doesn't vanish out from under us */
3091 down_write(&l->mutex);
3092 mutex_unlock(&cgrp->pidlist_mutex);
3093 return l;
3094 }
3095 }
3096 /* entry not found; create a new one */
3097 l = kmalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
3098 if (!l) {
3099 mutex_unlock(&cgrp->pidlist_mutex);
3100 return l;
3101 }
3102 init_rwsem(&l->mutex);
3103 down_write(&l->mutex);
3104 l->key.type = type;
3105 l->key.ns = get_pid_ns(ns);
3106 l->use_count = 0; /* don't increment here */
3107 l->list = NULL;
3108 l->owner = cgrp;
3109 list_add(&l->links, &cgrp->pidlists);
3110 mutex_unlock(&cgrp->pidlist_mutex);
3111 return l;
3112 }
3113
3114 /*
3115 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3116 */
3117 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3118 struct cgroup_pidlist **lp)
3119 {
3120 pid_t *array;
3121 int length;
3122 int pid, n = 0; /* used for populating the array */
3123 struct cgroup_iter it;
3124 struct task_struct *tsk;
3125 struct cgroup_pidlist *l;
3126
3127 /*
3128 * If cgroup gets more users after we read count, we won't have
3129 * enough space - tough. This race is indistinguishable to the
3130 * caller from the case that the additional cgroup users didn't
3131 * show up until sometime later on.
3132 */
3133 length = cgroup_task_count(cgrp);
3134 array = pidlist_allocate(length);
3135 if (!array)
3136 return -ENOMEM;
3137 /* now, populate the array */
3138 cgroup_iter_start(cgrp, &it);
3139 while ((tsk = cgroup_iter_next(cgrp, &it))) {
3140 if (unlikely(n == length))
3141 break;
3142 /* get tgid or pid for procs or tasks file respectively */
3143 if (type == CGROUP_FILE_PROCS)
3144 pid = task_tgid_vnr(tsk);
3145 else
3146 pid = task_pid_vnr(tsk);
3147 if (pid > 0) /* make sure to only use valid results */
3148 array[n++] = pid;
3149 }
3150 cgroup_iter_end(cgrp, &it);
3151 length = n;
3152 /* now sort & (if procs) strip out duplicates */
3153 sort(array, length, sizeof(pid_t), cmppid, NULL);
3154 if (type == CGROUP_FILE_PROCS)
3155 length = pidlist_uniq(&array, length);
3156 l = cgroup_pidlist_find(cgrp, type);
3157 if (!l) {
3158 pidlist_free(array);
3159 return -ENOMEM;
3160 }
3161 /* store array, freeing old if necessary - lock already held */
3162 pidlist_free(l->list);
3163 l->list = array;
3164 l->length = length;
3165 l->use_count++;
3166 up_write(&l->mutex);
3167 *lp = l;
3168 return 0;
3169 }
3170
3171 /**
3172 * cgroupstats_build - build and fill cgroupstats
3173 * @stats: cgroupstats to fill information into
3174 * @dentry: A dentry entry belonging to the cgroup for which stats have
3175 * been requested.
3176 *
3177 * Build and fill cgroupstats so that taskstats can export it to user
3178 * space.
3179 */
3180 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
3181 {
3182 int ret = -EINVAL;
3183 struct cgroup *cgrp;
3184 struct cgroup_iter it;
3185 struct task_struct *tsk;
3186
3187 /*
3188 * Validate dentry by checking the superblock operations,
3189 * and make sure it's a directory.
3190 */
3191 if (dentry->d_sb->s_op != &cgroup_ops ||
3192 !S_ISDIR(dentry->d_inode->i_mode))
3193 goto err;
3194
3195 ret = 0;
3196 cgrp = dentry->d_fsdata;
3197
3198 cgroup_iter_start(cgrp, &it);
3199 while ((tsk = cgroup_iter_next(cgrp, &it))) {
3200 switch (tsk->state) {
3201 case TASK_RUNNING:
3202 stats->nr_running++;
3203 break;
3204 case TASK_INTERRUPTIBLE:
3205 stats->nr_sleeping++;
3206 break;
3207 case TASK_UNINTERRUPTIBLE:
3208 stats->nr_uninterruptible++;
3209 break;
3210 case TASK_STOPPED:
3211 stats->nr_stopped++;
3212 break;
3213 default:
3214 if (delayacct_is_task_waiting_on_io(tsk))
3215 stats->nr_io_wait++;
3216 break;
3217 }
3218 }
3219 cgroup_iter_end(cgrp, &it);
3220
3221 err:
3222 return ret;
3223 }
3224
3225
3226 /*
3227 * seq_file methods for the tasks/procs files. The seq_file position is the
3228 * next pid to display; the seq_file iterator is a pointer to the pid
3229 * in the cgroup->l->list array.
3230 */
3231
3232 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
3233 {
3234 /*
3235 * Initially we receive a position value that corresponds to
3236 * one more than the last pid shown (or 0 on the first call or
3237 * after a seek to the start). Use a binary-search to find the
3238 * next pid to display, if any
3239 */
3240 struct cgroup_pidlist *l = s->private;
3241 int index = 0, pid = *pos;
3242 int *iter;
3243
3244 down_read(&l->mutex);
3245 if (pid) {
3246 int end = l->length;
3247
3248 while (index < end) {
3249 int mid = (index + end) / 2;
3250 if (l->list[mid] == pid) {
3251 index = mid;
3252 break;
3253 } else if (l->list[mid] <= pid)
3254 index = mid + 1;
3255 else
3256 end = mid;
3257 }
3258 }
3259 /* If we're off the end of the array, we're done */
3260 if (index >= l->length)
3261 return NULL;
3262 /* Update the abstract position to be the actual pid that we found */
3263 iter = l->list + index;
3264 *pos = *iter;
3265 return iter;
3266 }
3267
3268 static void cgroup_pidlist_stop(struct seq_file *s, void *v)
3269 {
3270 struct cgroup_pidlist *l = s->private;
3271 up_read(&l->mutex);
3272 }
3273
3274 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
3275 {
3276 struct cgroup_pidlist *l = s->private;
3277 pid_t *p = v;
3278 pid_t *end = l->list + l->length;
3279 /*
3280 * Advance to the next pid in the array. If this goes off the
3281 * end, we're done
3282 */
3283 p++;
3284 if (p >= end) {
3285 return NULL;
3286 } else {
3287 *pos = *p;
3288 return p;
3289 }
3290 }
3291
3292 static int cgroup_pidlist_show(struct seq_file *s, void *v)
3293 {
3294 return seq_printf(s, "%d\n", *(int *)v);
3295 }
3296
3297 /*
3298 * seq_operations functions for iterating on pidlists through seq_file -
3299 * independent of whether it's tasks or procs
3300 */
3301 static const struct seq_operations cgroup_pidlist_seq_operations = {
3302 .start = cgroup_pidlist_start,
3303 .stop = cgroup_pidlist_stop,
3304 .next = cgroup_pidlist_next,
3305 .show = cgroup_pidlist_show,
3306 };
3307
3308 static void cgroup_release_pid_array(struct cgroup_pidlist *l)
3309 {
3310 /*
3311 * the case where we're the last user of this particular pidlist will
3312 * have us remove it from the cgroup's list, which entails taking the
3313 * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
3314 * pidlist_mutex, we have to take pidlist_mutex first.
3315 */
3316 mutex_lock(&l->owner->pidlist_mutex);
3317 down_write(&l->mutex);
3318 BUG_ON(!l->use_count);
3319 if (!--l->use_count) {
3320 /* we're the last user if refcount is 0; remove and free */
3321 list_del(&l->links);
3322 mutex_unlock(&l->owner->pidlist_mutex);
3323 pidlist_free(l->list);
3324 put_pid_ns(l->key.ns);
3325 up_write(&l->mutex);
3326 kfree(l);
3327 return;
3328 }
3329 mutex_unlock(&l->owner->pidlist_mutex);
3330 up_write(&l->mutex);
3331 }
3332
3333 static int cgroup_pidlist_release(struct inode *inode, struct file *file)
3334 {
3335 struct cgroup_pidlist *l;
3336 if (!(file->f_mode & FMODE_READ))
3337 return 0;
3338 /*
3339 * the seq_file will only be initialized if the file was opened for
3340 * reading; hence we check if it's not null only in that case.
3341 */
3342 l = ((struct seq_file *)file->private_data)->private;
3343 cgroup_release_pid_array(l);
3344 return seq_release(inode, file);
3345 }
3346
3347 static const struct file_operations cgroup_pidlist_operations = {
3348 .read = seq_read,
3349 .llseek = seq_lseek,
3350 .write = cgroup_file_write,
3351 .release = cgroup_pidlist_release,
3352 };
3353
3354 /*
3355 * The following functions handle opens on a file that displays a pidlist
3356 * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
3357 * in the cgroup.
3358 */
3359 /* helper function for the two below it */
3360 static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type)
3361 {
3362 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
3363 struct cgroup_pidlist *l;
3364 int retval;
3365
3366 /* Nothing to do for write-only files */
3367 if (!(file->f_mode & FMODE_READ))
3368 return 0;
3369
3370 /* have the array populated */
3371 retval = pidlist_array_load(cgrp, type, &l);
3372 if (retval)
3373 return retval;
3374 /* configure file information */
3375 file->f_op = &cgroup_pidlist_operations;
3376
3377 retval = seq_open(file, &cgroup_pidlist_seq_operations);
3378 if (retval) {
3379 cgroup_release_pid_array(l);
3380 return retval;
3381 }
3382 ((struct seq_file *)file->private_data)->private = l;
3383 return 0;
3384 }
3385 static int cgroup_tasks_open(struct inode *unused, struct file *file)
3386 {
3387 return cgroup_pidlist_open(file, CGROUP_FILE_TASKS);
3388 }
3389 static int cgroup_procs_open(struct inode *unused, struct file *file)
3390 {
3391 return cgroup_pidlist_open(file, CGROUP_FILE_PROCS);
3392 }
3393
3394 static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
3395 struct cftype *cft)
3396 {
3397 return notify_on_release(cgrp);
3398 }
3399
3400 static int cgroup_write_notify_on_release(struct cgroup *cgrp,
3401 struct cftype *cft,
3402 u64 val)
3403 {
3404 clear_bit(CGRP_RELEASABLE, &cgrp->flags);
3405 if (val)
3406 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3407 else
3408 clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3409 return 0;
3410 }
3411
3412 /*
3413 * Unregister event and free resources.
3414 *
3415 * Gets called from workqueue.
3416 */
3417 static void cgroup_event_remove(struct work_struct *work)
3418 {
3419 struct cgroup_event *event = container_of(work, struct cgroup_event,
3420 remove);
3421 struct cgroup *cgrp = event->cgrp;
3422
3423 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3424
3425 eventfd_ctx_put(event->eventfd);
3426 kfree(event);
3427 dput(cgrp->dentry);
3428 }
3429
3430 /*
3431 * Gets called on POLLHUP on eventfd when user closes it.
3432 *
3433 * Called with wqh->lock held and interrupts disabled.
3434 */
3435 static int cgroup_event_wake(wait_queue_t *wait, unsigned mode,
3436 int sync, void *key)
3437 {
3438 struct cgroup_event *event = container_of(wait,
3439 struct cgroup_event, wait);
3440 struct cgroup *cgrp = event->cgrp;
3441 unsigned long flags = (unsigned long)key;
3442
3443 if (flags & POLLHUP) {
3444 __remove_wait_queue(event->wqh, &event->wait);
3445 spin_lock(&cgrp->event_list_lock);
3446 list_del(&event->list);
3447 spin_unlock(&cgrp->event_list_lock);
3448 /*
3449 * We are in atomic context, but cgroup_event_remove() may
3450 * sleep, so we have to call it in workqueue.
3451 */
3452 schedule_work(&event->remove);
3453 }
3454
3455 return 0;
3456 }
3457
3458 static void cgroup_event_ptable_queue_proc(struct file *file,
3459 wait_queue_head_t *wqh, poll_table *pt)
3460 {
3461 struct cgroup_event *event = container_of(pt,
3462 struct cgroup_event, pt);
3463
3464 event->wqh = wqh;
3465 add_wait_queue(wqh, &event->wait);
3466 }
3467
3468 /*
3469 * Parse input and register new cgroup event handler.
3470 *
3471 * Input must be in format '<event_fd> <control_fd> <args>'.
3472 * Interpretation of args is defined by control file implementation.
3473 */
3474 static int cgroup_write_event_control(struct cgroup *cgrp, struct cftype *cft,
3475 const char *buffer)
3476 {
3477 struct cgroup_event *event = NULL;
3478 unsigned int efd, cfd;
3479 struct file *efile = NULL;
3480 struct file *cfile = NULL;
3481 char *endp;
3482 int ret;
3483
3484 efd = simple_strtoul(buffer, &endp, 10);
3485 if (*endp != ' ')
3486 return -EINVAL;
3487 buffer = endp + 1;
3488
3489 cfd = simple_strtoul(buffer, &endp, 10);
3490 if ((*endp != ' ') && (*endp != '\0'))
3491 return -EINVAL;
3492 buffer = endp + 1;
3493
3494 event = kzalloc(sizeof(*event), GFP_KERNEL);
3495 if (!event)
3496 return -ENOMEM;
3497 event->cgrp = cgrp;
3498 INIT_LIST_HEAD(&event->list);
3499 init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc);
3500 init_waitqueue_func_entry(&event->wait, cgroup_event_wake);
3501 INIT_WORK(&event->remove, cgroup_event_remove);
3502
3503 efile = eventfd_fget(efd);
3504 if (IS_ERR(efile)) {
3505 ret = PTR_ERR(efile);
3506 goto fail;
3507 }
3508
3509 event->eventfd = eventfd_ctx_fileget(efile);
3510 if (IS_ERR(event->eventfd)) {
3511 ret = PTR_ERR(event->eventfd);
3512 goto fail;
3513 }
3514
3515 cfile = fget(cfd);
3516 if (!cfile) {
3517 ret = -EBADF;
3518 goto fail;
3519 }
3520
3521 /* the process need read permission on control file */
3522 /* AV: shouldn't we check that it's been opened for read instead? */
3523 ret = inode_permission(cfile->f_path.dentry->d_inode, MAY_READ);
3524 if (ret < 0)
3525 goto fail;
3526
3527 event->cft = __file_cft(cfile);
3528 if (IS_ERR(event->cft)) {
3529 ret = PTR_ERR(event->cft);
3530 goto fail;
3531 }
3532
3533 if (!event->cft->register_event || !event->cft->unregister_event) {
3534 ret = -EINVAL;
3535 goto fail;
3536 }
3537
3538 ret = event->cft->register_event(cgrp, event->cft,
3539 event->eventfd, buffer);
3540 if (ret)
3541 goto fail;
3542
3543 if (efile->f_op->poll(efile, &event->pt) & POLLHUP) {
3544 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3545 ret = 0;
3546 goto fail;
3547 }
3548
3549 /*
3550 * Events should be removed after rmdir of cgroup directory, but before
3551 * destroying subsystem state objects. Let's take reference to cgroup
3552 * directory dentry to do that.
3553 */
3554 dget(cgrp->dentry);
3555
3556 spin_lock(&cgrp->event_list_lock);
3557 list_add(&event->list, &cgrp->event_list);
3558 spin_unlock(&cgrp->event_list_lock);
3559
3560 fput(cfile);
3561 fput(efile);
3562
3563 return 0;
3564
3565 fail:
3566 if (cfile)
3567 fput(cfile);
3568
3569 if (event && event->eventfd && !IS_ERR(event->eventfd))
3570 eventfd_ctx_put(event->eventfd);
3571
3572 if (!IS_ERR_OR_NULL(efile))
3573 fput(efile);
3574
3575 kfree(event);
3576
3577 return ret;
3578 }
3579
3580 static u64 cgroup_clone_children_read(struct cgroup *cgrp,
3581 struct cftype *cft)
3582 {
3583 return clone_children(cgrp);
3584 }
3585
3586 static int cgroup_clone_children_write(struct cgroup *cgrp,
3587 struct cftype *cft,
3588 u64 val)
3589 {
3590 if (val)
3591 set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3592 else
3593 clear_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3594 return 0;
3595 }
3596
3597 /*
3598 * for the common functions, 'private' gives the type of file
3599 */
3600 /* for hysterical raisins, we can't put this on the older files */
3601 #define CGROUP_FILE_GENERIC_PREFIX "cgroup."
3602 static struct cftype files[] = {
3603 {
3604 .name = "tasks",
3605 .open = cgroup_tasks_open,
3606 .write_u64 = cgroup_tasks_write,
3607 .release = cgroup_pidlist_release,
3608 .mode = S_IRUGO | S_IWUSR,
3609 },
3610 {
3611 .name = CGROUP_FILE_GENERIC_PREFIX "procs",
3612 .open = cgroup_procs_open,
3613 .write_u64 = cgroup_procs_write,
3614 .release = cgroup_pidlist_release,
3615 .mode = S_IRUGO | S_IWUSR,
3616 },
3617 {
3618 .name = "notify_on_release",
3619 .read_u64 = cgroup_read_notify_on_release,
3620 .write_u64 = cgroup_write_notify_on_release,
3621 },
3622 {
3623 .name = CGROUP_FILE_GENERIC_PREFIX "event_control",
3624 .write_string = cgroup_write_event_control,
3625 .mode = S_IWUGO,
3626 },
3627 {
3628 .name = "cgroup.clone_children",
3629 .read_u64 = cgroup_clone_children_read,
3630 .write_u64 = cgroup_clone_children_write,
3631 },
3632 };
3633
3634 static struct cftype cft_release_agent = {
3635 .name = "release_agent",
3636 .read_seq_string = cgroup_release_agent_show,
3637 .write_string = cgroup_release_agent_write,
3638 .max_write_len = PATH_MAX,
3639 };
3640
3641 static int cgroup_populate_dir(struct cgroup *cgrp)
3642 {
3643 int err;
3644 struct cgroup_subsys *ss;
3645
3646 /* First clear out any existing files */
3647 cgroup_clear_directory(cgrp->dentry);
3648
3649 err = cgroup_add_files(cgrp, NULL, files, ARRAY_SIZE(files));
3650 if (err < 0)
3651 return err;
3652
3653 if (cgrp == cgrp->top_cgroup) {
3654 if ((err = cgroup_add_file(cgrp, NULL, &cft_release_agent)) < 0)
3655 return err;
3656 }
3657
3658 for_each_subsys(cgrp->root, ss) {
3659 if (ss->populate && (err = ss->populate(ss, cgrp)) < 0)
3660 return err;
3661 }
3662 /* This cgroup is ready now */
3663 for_each_subsys(cgrp->root, ss) {
3664 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3665 /*
3666 * Update id->css pointer and make this css visible from
3667 * CSS ID functions. This pointer will be dereferened
3668 * from RCU-read-side without locks.
3669 */
3670 if (css->id)
3671 rcu_assign_pointer(css->id->css, css);
3672 }
3673
3674 return 0;
3675 }
3676
3677 static void init_cgroup_css(struct cgroup_subsys_state *css,
3678 struct cgroup_subsys *ss,
3679 struct cgroup *cgrp)
3680 {
3681 css->cgroup = cgrp;
3682 atomic_set(&css->refcnt, 1);
3683 css->flags = 0;
3684 css->id = NULL;
3685 if (cgrp == dummytop)
3686 set_bit(CSS_ROOT, &css->flags);
3687 BUG_ON(cgrp->subsys[ss->subsys_id]);
3688 cgrp->subsys[ss->subsys_id] = css;
3689 }
3690
3691 static void cgroup_lock_hierarchy(struct cgroupfs_root *root)
3692 {
3693 /* We need to take each hierarchy_mutex in a consistent order */
3694 int i;
3695
3696 /*
3697 * No worry about a race with rebind_subsystems that might mess up the
3698 * locking order, since both parties are under cgroup_mutex.
3699 */
3700 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3701 struct cgroup_subsys *ss = subsys[i];
3702 if (ss == NULL)
3703 continue;
3704 if (ss->root == root)
3705 mutex_lock(&ss->hierarchy_mutex);
3706 }
3707 }
3708
3709 static void cgroup_unlock_hierarchy(struct cgroupfs_root *root)
3710 {
3711 int i;
3712
3713 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3714 struct cgroup_subsys *ss = subsys[i];
3715 if (ss == NULL)
3716 continue;
3717 if (ss->root == root)
3718 mutex_unlock(&ss->hierarchy_mutex);
3719 }
3720 }
3721
3722 /*
3723 * cgroup_create - create a cgroup
3724 * @parent: cgroup that will be parent of the new cgroup
3725 * @dentry: dentry of the new cgroup
3726 * @mode: mode to set on new inode
3727 *
3728 * Must be called with the mutex on the parent inode held
3729 */
3730 static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
3731 umode_t mode)
3732 {
3733 struct cgroup *cgrp;
3734 struct cgroupfs_root *root = parent->root;
3735 int err = 0;
3736 struct cgroup_subsys *ss;
3737 struct super_block *sb = root->sb;
3738
3739 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
3740 if (!cgrp)
3741 return -ENOMEM;
3742
3743 /* Grab a reference on the superblock so the hierarchy doesn't
3744 * get deleted on unmount if there are child cgroups. This
3745 * can be done outside cgroup_mutex, since the sb can't
3746 * disappear while someone has an open control file on the
3747 * fs */
3748 atomic_inc(&sb->s_active);
3749
3750 mutex_lock(&cgroup_mutex);
3751
3752 init_cgroup_housekeeping(cgrp);
3753
3754 cgrp->parent = parent;
3755 cgrp->root = parent->root;
3756 cgrp->top_cgroup = parent->top_cgroup;
3757
3758 if (notify_on_release(parent))
3759 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3760
3761 if (clone_children(parent))
3762 set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3763
3764 for_each_subsys(root, ss) {
3765 struct cgroup_subsys_state *css = ss->create(cgrp);
3766
3767 if (IS_ERR(css)) {
3768 err = PTR_ERR(css);
3769 goto err_destroy;
3770 }
3771 init_cgroup_css(css, ss, cgrp);
3772 if (ss->use_id) {
3773 err = alloc_css_id(ss, parent, cgrp);
3774 if (err)
3775 goto err_destroy;
3776 }
3777 /* At error, ->destroy() callback has to free assigned ID. */
3778 if (clone_children(parent) && ss->post_clone)
3779 ss->post_clone(cgrp);
3780 }
3781
3782 cgroup_lock_hierarchy(root);
3783 list_add(&cgrp->sibling, &cgrp->parent->children);
3784 cgroup_unlock_hierarchy(root);
3785 root->number_of_cgroups++;
3786
3787 err = cgroup_create_dir(cgrp, dentry, mode);
3788 if (err < 0)
3789 goto err_remove;
3790
3791 /* The cgroup directory was pre-locked for us */
3792 BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
3793
3794 err = cgroup_populate_dir(cgrp);
3795 /* If err < 0, we have a half-filled directory - oh well ;) */
3796
3797 mutex_unlock(&cgroup_mutex);
3798 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
3799
3800 return 0;
3801
3802 err_remove:
3803
3804 cgroup_lock_hierarchy(root);
3805 list_del(&cgrp->sibling);
3806 cgroup_unlock_hierarchy(root);
3807 root->number_of_cgroups--;
3808
3809 err_destroy:
3810
3811 for_each_subsys(root, ss) {
3812 if (cgrp->subsys[ss->subsys_id])
3813 ss->destroy(cgrp);
3814 }
3815
3816 mutex_unlock(&cgroup_mutex);
3817
3818 /* Release the reference count that we took on the superblock */
3819 deactivate_super(sb);
3820
3821 kfree(cgrp);
3822 return err;
3823 }
3824
3825 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3826 {
3827 struct cgroup *c_parent = dentry->d_parent->d_fsdata;
3828
3829 /* the vfs holds inode->i_mutex already */
3830 return cgroup_create(c_parent, dentry, mode | S_IFDIR);
3831 }
3832
3833 static int cgroup_has_css_refs(struct cgroup *cgrp)
3834 {
3835 /* Check the reference count on each subsystem. Since we
3836 * already established that there are no tasks in the
3837 * cgroup, if the css refcount is also 1, then there should
3838 * be no outstanding references, so the subsystem is safe to
3839 * destroy. We scan across all subsystems rather than using
3840 * the per-hierarchy linked list of mounted subsystems since
3841 * we can be called via check_for_release() with no
3842 * synchronization other than RCU, and the subsystem linked
3843 * list isn't RCU-safe */
3844 int i;
3845 /*
3846 * We won't need to lock the subsys array, because the subsystems
3847 * we're concerned about aren't going anywhere since our cgroup root
3848 * has a reference on them.
3849 */
3850 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3851 struct cgroup_subsys *ss = subsys[i];
3852 struct cgroup_subsys_state *css;
3853 /* Skip subsystems not present or not in this hierarchy */
3854 if (ss == NULL || ss->root != cgrp->root)
3855 continue;
3856 css = cgrp->subsys[ss->subsys_id];
3857 /* When called from check_for_release() it's possible
3858 * that by this point the cgroup has been removed
3859 * and the css deleted. But a false-positive doesn't
3860 * matter, since it can only happen if the cgroup
3861 * has been deleted and hence no longer needs the
3862 * release agent to be called anyway. */
3863 if (css && (atomic_read(&css->refcnt) > 1))
3864 return 1;
3865 }
3866 return 0;
3867 }
3868
3869 /*
3870 * Atomically mark all (or else none) of the cgroup's CSS objects as
3871 * CSS_REMOVED. Return true on success, or false if the cgroup has
3872 * busy subsystems. Call with cgroup_mutex held
3873 */
3874
3875 static int cgroup_clear_css_refs(struct cgroup *cgrp)
3876 {
3877 struct cgroup_subsys *ss;
3878 unsigned long flags;
3879 bool failed = false;
3880 local_irq_save(flags);
3881 for_each_subsys(cgrp->root, ss) {
3882 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3883 int refcnt;
3884 while (1) {
3885 /* We can only remove a CSS with a refcnt==1 */
3886 refcnt = atomic_read(&css->refcnt);
3887 if (refcnt > 1) {
3888 failed = true;
3889 goto done;
3890 }
3891 BUG_ON(!refcnt);
3892 /*
3893 * Drop the refcnt to 0 while we check other
3894 * subsystems. This will cause any racing
3895 * css_tryget() to spin until we set the
3896 * CSS_REMOVED bits or abort
3897 */
3898 if (atomic_cmpxchg(&css->refcnt, refcnt, 0) == refcnt)
3899 break;
3900 cpu_relax();
3901 }
3902 }
3903 done:
3904 for_each_subsys(cgrp->root, ss) {
3905 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3906 if (failed) {
3907 /*
3908 * Restore old refcnt if we previously managed
3909 * to clear it from 1 to 0
3910 */
3911 if (!atomic_read(&css->refcnt))
3912 atomic_set(&css->refcnt, 1);
3913 } else {
3914 /* Commit the fact that the CSS is removed */
3915 set_bit(CSS_REMOVED, &css->flags);
3916 }
3917 }
3918 local_irq_restore(flags);
3919 return !failed;
3920 }
3921
3922 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
3923 {
3924 struct cgroup *cgrp = dentry->d_fsdata;
3925 struct dentry *d;
3926 struct cgroup *parent;
3927 DEFINE_WAIT(wait);
3928 struct cgroup_event *event, *tmp;
3929 int ret;
3930
3931 /* the vfs holds both inode->i_mutex already */
3932 again:
3933 mutex_lock(&cgroup_mutex);
3934 if (atomic_read(&cgrp->count) != 0) {
3935 mutex_unlock(&cgroup_mutex);
3936 return -EBUSY;
3937 }
3938 if (!list_empty(&cgrp->children)) {
3939 mutex_unlock(&cgroup_mutex);
3940 return -EBUSY;
3941 }
3942 mutex_unlock(&cgroup_mutex);
3943
3944 /*
3945 * In general, subsystem has no css->refcnt after pre_destroy(). But
3946 * in racy cases, subsystem may have to get css->refcnt after
3947 * pre_destroy() and it makes rmdir return with -EBUSY. This sometimes
3948 * make rmdir return -EBUSY too often. To avoid that, we use waitqueue
3949 * for cgroup's rmdir. CGRP_WAIT_ON_RMDIR is for synchronizing rmdir
3950 * and subsystem's reference count handling. Please see css_get/put
3951 * and css_tryget() and cgroup_wakeup_rmdir_waiter() implementation.
3952 */
3953 set_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3954
3955 /*
3956 * Call pre_destroy handlers of subsys. Notify subsystems
3957 * that rmdir() request comes.
3958 */
3959 ret = cgroup_call_pre_destroy(cgrp);
3960 if (ret) {
3961 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3962 return ret;
3963 }
3964
3965 mutex_lock(&cgroup_mutex);
3966 parent = cgrp->parent;
3967 if (atomic_read(&cgrp->count) || !list_empty(&cgrp->children)) {
3968 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3969 mutex_unlock(&cgroup_mutex);
3970 return -EBUSY;
3971 }
3972 prepare_to_wait(&cgroup_rmdir_waitq, &wait, TASK_INTERRUPTIBLE);
3973 if (!cgroup_clear_css_refs(cgrp)) {
3974 mutex_unlock(&cgroup_mutex);
3975 /*
3976 * Because someone may call cgroup_wakeup_rmdir_waiter() before
3977 * prepare_to_wait(), we need to check this flag.
3978 */
3979 if (test_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags))
3980 schedule();
3981 finish_wait(&cgroup_rmdir_waitq, &wait);
3982 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3983 if (signal_pending(current))
3984 return -EINTR;
3985 goto again;
3986 }
3987 /* NO css_tryget() can success after here. */
3988 finish_wait(&cgroup_rmdir_waitq, &wait);
3989 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3990
3991 raw_spin_lock(&release_list_lock);
3992 set_bit(CGRP_REMOVED, &cgrp->flags);
3993 if (!list_empty(&cgrp->release_list))
3994 list_del_init(&cgrp->release_list);
3995 raw_spin_unlock(&release_list_lock);
3996
3997 cgroup_lock_hierarchy(cgrp->root);
3998 /* delete this cgroup from parent->children */
3999 list_del_init(&cgrp->sibling);
4000 cgroup_unlock_hierarchy(cgrp->root);
4001
4002 d = dget(cgrp->dentry);
4003
4004 cgroup_d_remove_dir(d);
4005 dput(d);
4006
4007 set_bit(CGRP_RELEASABLE, &parent->flags);
4008 check_for_release(parent);
4009
4010 /*
4011 * Unregister events and notify userspace.
4012 * Notify userspace about cgroup removing only after rmdir of cgroup
4013 * directory to avoid race between userspace and kernelspace
4014 */
4015 spin_lock(&cgrp->event_list_lock);
4016 list_for_each_entry_safe(event, tmp, &cgrp->event_list, list) {
4017 list_del(&event->list);
4018 remove_wait_queue(event->wqh, &event->wait);
4019 eventfd_signal(event->eventfd, 1);
4020 schedule_work(&event->remove);
4021 }
4022 spin_unlock(&cgrp->event_list_lock);
4023
4024 mutex_unlock(&cgroup_mutex);
4025 return 0;
4026 }
4027
4028 static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
4029 {
4030 struct cgroup_subsys_state *css;
4031
4032 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
4033
4034 /* Create the top cgroup state for this subsystem */
4035 list_add(&ss->sibling, &rootnode.subsys_list);
4036 ss->root = &rootnode;
4037 css = ss->create(dummytop);
4038 /* We don't handle early failures gracefully */
4039 BUG_ON(IS_ERR(css));
4040 init_cgroup_css(css, ss, dummytop);
4041
4042 /* Update the init_css_set to contain a subsys
4043 * pointer to this state - since the subsystem is
4044 * newly registered, all tasks and hence the
4045 * init_css_set is in the subsystem's top cgroup. */
4046 init_css_set.subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
4047
4048 need_forkexit_callback |= ss->fork || ss->exit;
4049
4050 /* At system boot, before all subsystems have been
4051 * registered, no tasks have been forked, so we don't
4052 * need to invoke fork callbacks here. */
4053 BUG_ON(!list_empty(&init_task.tasks));
4054
4055 mutex_init(&ss->hierarchy_mutex);
4056 lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
4057 ss->active = 1;
4058
4059 /* this function shouldn't be used with modular subsystems, since they
4060 * need to register a subsys_id, among other things */
4061 BUG_ON(ss->module);
4062 }
4063
4064 /**
4065 * cgroup_load_subsys: load and register a modular subsystem at runtime
4066 * @ss: the subsystem to load
4067 *
4068 * This function should be called in a modular subsystem's initcall. If the
4069 * subsystem is built as a module, it will be assigned a new subsys_id and set
4070 * up for use. If the subsystem is built-in anyway, work is delegated to the
4071 * simpler cgroup_init_subsys.
4072 */
4073 int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss)
4074 {
4075 int i;
4076 struct cgroup_subsys_state *css;
4077
4078 /* check name and function validity */
4079 if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN ||
4080 ss->create == NULL || ss->destroy == NULL)
4081 return -EINVAL;
4082
4083 /*
4084 * we don't support callbacks in modular subsystems. this check is
4085 * before the ss->module check for consistency; a subsystem that could
4086 * be a module should still have no callbacks even if the user isn't
4087 * compiling it as one.
4088 */
4089 if (ss->fork || ss->exit)
4090 return -EINVAL;
4091
4092 /*
4093 * an optionally modular subsystem is built-in: we want to do nothing,
4094 * since cgroup_init_subsys will have already taken care of it.
4095 */
4096 if (ss->module == NULL) {
4097 /* a few sanity checks */
4098 BUG_ON(ss->subsys_id >= CGROUP_BUILTIN_SUBSYS_COUNT);
4099 BUG_ON(subsys[ss->subsys_id] != ss);
4100 return 0;
4101 }
4102
4103 /*
4104 * need to register a subsys id before anything else - for example,
4105 * init_cgroup_css needs it.
4106 */
4107 mutex_lock(&cgroup_mutex);
4108 /* find the first empty slot in the array */
4109 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
4110 if (subsys[i] == NULL)
4111 break;
4112 }
4113 if (i == CGROUP_SUBSYS_COUNT) {
4114 /* maximum number of subsystems already registered! */
4115 mutex_unlock(&cgroup_mutex);
4116 return -EBUSY;
4117 }
4118 /* assign ourselves the subsys_id */
4119 ss->subsys_id = i;
4120 subsys[i] = ss;
4121
4122 /*
4123 * no ss->create seems to need anything important in the ss struct, so
4124 * this can happen first (i.e. before the rootnode attachment).
4125 */
4126 css = ss->create(dummytop);
4127 if (IS_ERR(css)) {
4128 /* failure case - need to deassign the subsys[] slot. */
4129 subsys[i] = NULL;
4130 mutex_unlock(&cgroup_mutex);
4131 return PTR_ERR(css);
4132 }
4133
4134 list_add(&ss->sibling, &rootnode.subsys_list);
4135 ss->root = &rootnode;
4136
4137 /* our new subsystem will be attached to the dummy hierarchy. */
4138 init_cgroup_css(css, ss, dummytop);
4139 /* init_idr must be after init_cgroup_css because it sets css->id. */
4140 if (ss->use_id) {
4141 int ret = cgroup_init_idr(ss, css);
4142 if (ret) {
4143 dummytop->subsys[ss->subsys_id] = NULL;
4144 ss->destroy(dummytop);
4145 subsys[i] = NULL;
4146 mutex_unlock(&cgroup_mutex);
4147 return ret;
4148 }
4149 }
4150
4151 /*
4152 * Now we need to entangle the css into the existing css_sets. unlike
4153 * in cgroup_init_subsys, there are now multiple css_sets, so each one
4154 * will need a new pointer to it; done by iterating the css_set_table.
4155 * furthermore, modifying the existing css_sets will corrupt the hash
4156 * table state, so each changed css_set will need its hash recomputed.
4157 * this is all done under the css_set_lock.
4158 */
4159 write_lock(&css_set_lock);
4160 for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
4161 struct css_set *cg;
4162 struct hlist_node *node, *tmp;
4163 struct hlist_head *bucket = &css_set_table[i], *new_bucket;
4164
4165 hlist_for_each_entry_safe(cg, node, tmp, bucket, hlist) {
4166 /* skip entries that we already rehashed */
4167 if (cg->subsys[ss->subsys_id])
4168 continue;
4169 /* remove existing entry */
4170 hlist_del(&cg->hlist);
4171 /* set new value */
4172 cg->subsys[ss->subsys_id] = css;
4173 /* recompute hash and restore entry */
4174 new_bucket = css_set_hash(cg->subsys);
4175 hlist_add_head(&cg->hlist, new_bucket);
4176 }
4177 }
4178 write_unlock(&css_set_lock);
4179
4180 mutex_init(&ss->hierarchy_mutex);
4181 lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
4182 ss->active = 1;
4183
4184 /* success! */
4185 mutex_unlock(&cgroup_mutex);
4186 return 0;
4187 }
4188 EXPORT_SYMBOL_GPL(cgroup_load_subsys);
4189
4190 /**
4191 * cgroup_unload_subsys: unload a modular subsystem
4192 * @ss: the subsystem to unload
4193 *
4194 * This function should be called in a modular subsystem's exitcall. When this
4195 * function is invoked, the refcount on the subsystem's module will be 0, so
4196 * the subsystem will not be attached to any hierarchy.
4197 */
4198 void cgroup_unload_subsys(struct cgroup_subsys *ss)
4199 {
4200 struct cg_cgroup_link *link;
4201 struct hlist_head *hhead;
4202
4203 BUG_ON(ss->module == NULL);
4204
4205 /*
4206 * we shouldn't be called if the subsystem is in use, and the use of
4207 * try_module_get in parse_cgroupfs_options should ensure that it
4208 * doesn't start being used while we're killing it off.
4209 */
4210 BUG_ON(ss->root != &rootnode);
4211
4212 mutex_lock(&cgroup_mutex);
4213 /* deassign the subsys_id */
4214 BUG_ON(ss->subsys_id < CGROUP_BUILTIN_SUBSYS_COUNT);
4215 subsys[ss->subsys_id] = NULL;
4216
4217 /* remove subsystem from rootnode's list of subsystems */
4218 list_del_init(&ss->sibling);
4219
4220 /*
4221 * disentangle the css from all css_sets attached to the dummytop. as
4222 * in loading, we need to pay our respects to the hashtable gods.
4223 */
4224 write_lock(&css_set_lock);
4225 list_for_each_entry(link, &dummytop->css_sets, cgrp_link_list) {
4226 struct css_set *cg = link->cg;
4227
4228 hlist_del(&cg->hlist);
4229 BUG_ON(!cg->subsys[ss->subsys_id]);
4230 cg->subsys[ss->subsys_id] = NULL;
4231 hhead = css_set_hash(cg->subsys);
4232 hlist_add_head(&cg->hlist, hhead);
4233 }
4234 write_unlock(&css_set_lock);
4235
4236 /*
4237 * remove subsystem's css from the dummytop and free it - need to free
4238 * before marking as null because ss->destroy needs the cgrp->subsys
4239 * pointer to find their state. note that this also takes care of
4240 * freeing the css_id.
4241 */
4242 ss->destroy(dummytop);
4243 dummytop->subsys[ss->subsys_id] = NULL;
4244
4245 mutex_unlock(&cgroup_mutex);
4246 }
4247 EXPORT_SYMBOL_GPL(cgroup_unload_subsys);
4248
4249 /**
4250 * cgroup_init_early - cgroup initialization at system boot
4251 *
4252 * Initialize cgroups at system boot, and initialize any
4253 * subsystems that request early init.
4254 */
4255 int __init cgroup_init_early(void)
4256 {
4257 int i;
4258 atomic_set(&init_css_set.refcount, 1);
4259 INIT_LIST_HEAD(&init_css_set.cg_links);
4260 INIT_LIST_HEAD(&init_css_set.tasks);
4261 INIT_HLIST_NODE(&init_css_set.hlist);
4262 css_set_count = 1;
4263 init_cgroup_root(&rootnode);
4264 root_count = 1;
4265 init_task.cgroups = &init_css_set;
4266
4267 init_css_set_link.cg = &init_css_set;
4268 init_css_set_link.cgrp = dummytop;
4269 list_add(&init_css_set_link.cgrp_link_list,
4270 &rootnode.top_cgroup.css_sets);
4271 list_add(&init_css_set_link.cg_link_list,
4272 &init_css_set.cg_links);
4273
4274 for (i = 0; i < CSS_SET_TABLE_SIZE; i++)
4275 INIT_HLIST_HEAD(&css_set_table[i]);
4276
4277 /* at bootup time, we don't worry about modular subsystems */
4278 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4279 struct cgroup_subsys *ss = subsys[i];
4280
4281 BUG_ON(!ss->name);
4282 BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
4283 BUG_ON(!ss->create);
4284 BUG_ON(!ss->destroy);
4285 if (ss->subsys_id != i) {
4286 printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
4287 ss->name, ss->subsys_id);
4288 BUG();
4289 }
4290
4291 if (ss->early_init)
4292 cgroup_init_subsys(ss);
4293 }
4294 return 0;
4295 }
4296
4297 /**
4298 * cgroup_init - cgroup initialization
4299 *
4300 * Register cgroup filesystem and /proc file, and initialize
4301 * any subsystems that didn't request early init.
4302 */
4303 int __init cgroup_init(void)
4304 {
4305 int err;
4306 int i;
4307 struct hlist_head *hhead;
4308
4309 err = bdi_init(&cgroup_backing_dev_info);
4310 if (err)
4311 return err;
4312
4313 /* at bootup time, we don't worry about modular subsystems */
4314 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4315 struct cgroup_subsys *ss = subsys[i];
4316 if (!ss->early_init)
4317 cgroup_init_subsys(ss);
4318 if (ss->use_id)
4319 cgroup_init_idr(ss, init_css_set.subsys[ss->subsys_id]);
4320 }
4321
4322 /* Add init_css_set to the hash table */
4323 hhead = css_set_hash(init_css_set.subsys);
4324 hlist_add_head(&init_css_set.hlist, hhead);
4325 BUG_ON(!init_root_id(&rootnode));
4326
4327 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
4328 if (!cgroup_kobj) {
4329 err = -ENOMEM;
4330 goto out;
4331 }
4332
4333 err = register_filesystem(&cgroup_fs_type);
4334 if (err < 0) {
4335 kobject_put(cgroup_kobj);
4336 goto out;
4337 }
4338
4339 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
4340
4341 out:
4342 if (err)
4343 bdi_destroy(&cgroup_backing_dev_info);
4344
4345 return err;
4346 }
4347
4348 /*
4349 * proc_cgroup_show()
4350 * - Print task's cgroup paths into seq_file, one line for each hierarchy
4351 * - Used for /proc/<pid>/cgroup.
4352 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
4353 * doesn't really matter if tsk->cgroup changes after we read it,
4354 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
4355 * anyway. No need to check that tsk->cgroup != NULL, thanks to
4356 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
4357 * cgroup to top_cgroup.
4358 */
4359
4360 /* TODO: Use a proper seq_file iterator */
4361 static int proc_cgroup_show(struct seq_file *m, void *v)
4362 {
4363 struct pid *pid;
4364 struct task_struct *tsk;
4365 char *buf;
4366 int retval;
4367 struct cgroupfs_root *root;
4368
4369 retval = -ENOMEM;
4370 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4371 if (!buf)
4372 goto out;
4373
4374 retval = -ESRCH;
4375 pid = m->private;
4376 tsk = get_pid_task(pid, PIDTYPE_PID);
4377 if (!tsk)
4378 goto out_free;
4379
4380 retval = 0;
4381
4382 mutex_lock(&cgroup_mutex);
4383
4384 for_each_active_root(root) {
4385 struct cgroup_subsys *ss;
4386 struct cgroup *cgrp;
4387 int count = 0;
4388
4389 seq_printf(m, "%d:", root->hierarchy_id);
4390 for_each_subsys(root, ss)
4391 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
4392 if (strlen(root->name))
4393 seq_printf(m, "%sname=%s", count ? "," : "",
4394 root->name);
4395 seq_putc(m, ':');
4396 cgrp = task_cgroup_from_root(tsk, root);
4397 retval = cgroup_path(cgrp, buf, PAGE_SIZE);
4398 if (retval < 0)
4399 goto out_unlock;
4400 seq_puts(m, buf);
4401 seq_putc(m, '\n');
4402 }
4403
4404 out_unlock:
4405 mutex_unlock(&cgroup_mutex);
4406 put_task_struct(tsk);
4407 out_free:
4408 kfree(buf);
4409 out:
4410 return retval;
4411 }
4412
4413 static int cgroup_open(struct inode *inode, struct file *file)
4414 {
4415 struct pid *pid = PROC_I(inode)->pid;
4416 return single_open(file, proc_cgroup_show, pid);
4417 }
4418
4419 const struct file_operations proc_cgroup_operations = {
4420 .open = cgroup_open,
4421 .read = seq_read,
4422 .llseek = seq_lseek,
4423 .release = single_release,
4424 };
4425
4426 /* Display information about each subsystem and each hierarchy */
4427 static int proc_cgroupstats_show(struct seq_file *m, void *v)
4428 {
4429 int i;
4430
4431 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
4432 /*
4433 * ideally we don't want subsystems moving around while we do this.
4434 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
4435 * subsys/hierarchy state.
4436 */
4437 mutex_lock(&cgroup_mutex);
4438 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4439 struct cgroup_subsys *ss = subsys[i];
4440 if (ss == NULL)
4441 continue;
4442 seq_printf(m, "%s\t%d\t%d\t%d\n",
4443 ss->name, ss->root->hierarchy_id,
4444 ss->root->number_of_cgroups, !ss->disabled);
4445 }
4446 mutex_unlock(&cgroup_mutex);
4447 return 0;
4448 }
4449
4450 static int cgroupstats_open(struct inode *inode, struct file *file)
4451 {
4452 return single_open(file, proc_cgroupstats_show, NULL);
4453 }
4454
4455 static const struct file_operations proc_cgroupstats_operations = {
4456 .open = cgroupstats_open,
4457 .read = seq_read,
4458 .llseek = seq_lseek,
4459 .release = single_release,
4460 };
4461
4462 /**
4463 * cgroup_fork - attach newly forked task to its parents cgroup.
4464 * @child: pointer to task_struct of forking parent process.
4465 *
4466 * Description: A task inherits its parent's cgroup at fork().
4467 *
4468 * A pointer to the shared css_set was automatically copied in
4469 * fork.c by dup_task_struct(). However, we ignore that copy, since
4470 * it was not made under the protection of RCU, cgroup_mutex or
4471 * threadgroup_change_begin(), so it might no longer be a valid
4472 * cgroup pointer. cgroup_attach_task() might have already changed
4473 * current->cgroups, allowing the previously referenced cgroup
4474 * group to be removed and freed.
4475 *
4476 * Outside the pointer validity we also need to process the css_set
4477 * inheritance between threadgoup_change_begin() and
4478 * threadgoup_change_end(), this way there is no leak in any process
4479 * wide migration performed by cgroup_attach_proc() that could otherwise
4480 * miss a thread because it is too early or too late in the fork stage.
4481 *
4482 * At the point that cgroup_fork() is called, 'current' is the parent
4483 * task, and the passed argument 'child' points to the child task.
4484 */
4485 void cgroup_fork(struct task_struct *child)
4486 {
4487 /*
4488 * We don't need to task_lock() current because current->cgroups
4489 * can't be changed concurrently here. The parent obviously hasn't
4490 * exited and called cgroup_exit(), and we are synchronized against
4491 * cgroup migration through threadgroup_change_begin().
4492 */
4493 child->cgroups = current->cgroups;
4494 get_css_set(child->cgroups);
4495 INIT_LIST_HEAD(&child->cg_list);
4496 }
4497
4498 /**
4499 * cgroup_fork_callbacks - run fork callbacks
4500 * @child: the new task
4501 *
4502 * Called on a new task very soon before adding it to the
4503 * tasklist. No need to take any locks since no-one can
4504 * be operating on this task.
4505 */
4506 void cgroup_fork_callbacks(struct task_struct *child)
4507 {
4508 if (need_forkexit_callback) {
4509 int i;
4510 /*
4511 * forkexit callbacks are only supported for builtin
4512 * subsystems, and the builtin section of the subsys array is
4513 * immutable, so we don't need to lock the subsys array here.
4514 */
4515 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4516 struct cgroup_subsys *ss = subsys[i];
4517 if (ss->fork)
4518 ss->fork(child);
4519 }
4520 }
4521 }
4522
4523 /**
4524 * cgroup_post_fork - called on a new task after adding it to the task list
4525 * @child: the task in question
4526 *
4527 * Adds the task to the list running through its css_set if necessary.
4528 * Has to be after the task is visible on the task list in case we race
4529 * with the first call to cgroup_iter_start() - to guarantee that the
4530 * new task ends up on its list.
4531 */
4532 void cgroup_post_fork(struct task_struct *child)
4533 {
4534 /*
4535 * use_task_css_set_links is set to 1 before we walk the tasklist
4536 * under the tasklist_lock and we read it here after we added the child
4537 * to the tasklist under the tasklist_lock as well. If the child wasn't
4538 * yet in the tasklist when we walked through it from
4539 * cgroup_enable_task_cg_lists(), then use_task_css_set_links value
4540 * should be visible now due to the paired locking and barriers implied
4541 * by LOCK/UNLOCK: it is written before the tasklist_lock unlock
4542 * in cgroup_enable_task_cg_lists() and read here after the tasklist_lock
4543 * lock on fork.
4544 */
4545 if (use_task_css_set_links) {
4546 write_lock(&css_set_lock);
4547 if (list_empty(&child->cg_list)) {
4548 /*
4549 * It's safe to use child->cgroups without task_lock()
4550 * here because we are protected through
4551 * threadgroup_change_begin() against concurrent
4552 * css_set change in cgroup_task_migrate(). Also
4553 * the task can't exit at that point until
4554 * wake_up_new_task() is called, so we are protected
4555 * against cgroup_exit() setting child->cgroup to
4556 * init_css_set.
4557 */
4558 list_add(&child->cg_list, &child->cgroups->tasks);
4559 }
4560 write_unlock(&css_set_lock);
4561 }
4562 }
4563 /**
4564 * cgroup_exit - detach cgroup from exiting task
4565 * @tsk: pointer to task_struct of exiting process
4566 * @run_callback: run exit callbacks?
4567 *
4568 * Description: Detach cgroup from @tsk and release it.
4569 *
4570 * Note that cgroups marked notify_on_release force every task in
4571 * them to take the global cgroup_mutex mutex when exiting.
4572 * This could impact scaling on very large systems. Be reluctant to
4573 * use notify_on_release cgroups where very high task exit scaling
4574 * is required on large systems.
4575 *
4576 * the_top_cgroup_hack:
4577 *
4578 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
4579 *
4580 * We call cgroup_exit() while the task is still competent to
4581 * handle notify_on_release(), then leave the task attached to the
4582 * root cgroup in each hierarchy for the remainder of its exit.
4583 *
4584 * To do this properly, we would increment the reference count on
4585 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
4586 * code we would add a second cgroup function call, to drop that
4587 * reference. This would just create an unnecessary hot spot on
4588 * the top_cgroup reference count, to no avail.
4589 *
4590 * Normally, holding a reference to a cgroup without bumping its
4591 * count is unsafe. The cgroup could go away, or someone could
4592 * attach us to a different cgroup, decrementing the count on
4593 * the first cgroup that we never incremented. But in this case,
4594 * top_cgroup isn't going away, and either task has PF_EXITING set,
4595 * which wards off any cgroup_attach_task() attempts, or task is a failed
4596 * fork, never visible to cgroup_attach_task.
4597 */
4598 void cgroup_exit(struct task_struct *tsk, int run_callbacks)
4599 {
4600 struct css_set *cg;
4601 int i;
4602
4603 /*
4604 * Unlink from the css_set task list if necessary.
4605 * Optimistically check cg_list before taking
4606 * css_set_lock
4607 */
4608 if (!list_empty(&tsk->cg_list)) {
4609 write_lock(&css_set_lock);
4610 if (!list_empty(&tsk->cg_list))
4611 list_del_init(&tsk->cg_list);
4612 write_unlock(&css_set_lock);
4613 }
4614
4615 /* Reassign the task to the init_css_set. */
4616 task_lock(tsk);
4617 cg = tsk->cgroups;
4618 tsk->cgroups = &init_css_set;
4619
4620 if (run_callbacks && need_forkexit_callback) {
4621 /*
4622 * modular subsystems can't use callbacks, so no need to lock
4623 * the subsys array
4624 */
4625 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4626 struct cgroup_subsys *ss = subsys[i];
4627 if (ss->exit) {
4628 struct cgroup *old_cgrp =
4629 rcu_dereference_raw(cg->subsys[i])->cgroup;
4630 struct cgroup *cgrp = task_cgroup(tsk, i);
4631 ss->exit(cgrp, old_cgrp, tsk);
4632 }
4633 }
4634 }
4635 task_unlock(tsk);
4636
4637 if (cg)
4638 put_css_set_taskexit(cg);
4639 }
4640
4641 /**
4642 * cgroup_is_descendant - see if @cgrp is a descendant of @task's cgrp
4643 * @cgrp: the cgroup in question
4644 * @task: the task in question
4645 *
4646 * See if @cgrp is a descendant of @task's cgroup in the appropriate
4647 * hierarchy.
4648 *
4649 * If we are sending in dummytop, then presumably we are creating
4650 * the top cgroup in the subsystem.
4651 *
4652 * Called only by the ns (nsproxy) cgroup.
4653 */
4654 int cgroup_is_descendant(const struct cgroup *cgrp, struct task_struct *task)
4655 {
4656 int ret;
4657 struct cgroup *target;
4658
4659 if (cgrp == dummytop)
4660 return 1;
4661
4662 target = task_cgroup_from_root(task, cgrp->root);
4663 while (cgrp != target && cgrp!= cgrp->top_cgroup)
4664 cgrp = cgrp->parent;
4665 ret = (cgrp == target);
4666 return ret;
4667 }
4668
4669 static void check_for_release(struct cgroup *cgrp)
4670 {
4671 /* All of these checks rely on RCU to keep the cgroup
4672 * structure alive */
4673 if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
4674 && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
4675 /* Control Group is currently removeable. If it's not
4676 * already queued for a userspace notification, queue
4677 * it now */
4678 int need_schedule_work = 0;
4679 raw_spin_lock(&release_list_lock);
4680 if (!cgroup_is_removed(cgrp) &&
4681 list_empty(&cgrp->release_list)) {
4682 list_add(&cgrp->release_list, &release_list);
4683 need_schedule_work = 1;
4684 }
4685 raw_spin_unlock(&release_list_lock);
4686 if (need_schedule_work)
4687 schedule_work(&release_agent_work);
4688 }
4689 }
4690
4691 /* Caller must verify that the css is not for root cgroup */
4692 void __css_put(struct cgroup_subsys_state *css, int count)
4693 {
4694 struct cgroup *cgrp = css->cgroup;
4695 int val;
4696 rcu_read_lock();
4697 val = atomic_sub_return(count, &css->refcnt);
4698 if (val == 1) {
4699 if (notify_on_release(cgrp)) {
4700 set_bit(CGRP_RELEASABLE, &cgrp->flags);
4701 check_for_release(cgrp);
4702 }
4703 cgroup_wakeup_rmdir_waiter(cgrp);
4704 }
4705 rcu_read_unlock();
4706 WARN_ON_ONCE(val < 1);
4707 }
4708 EXPORT_SYMBOL_GPL(__css_put);
4709
4710 /*
4711 * Notify userspace when a cgroup is released, by running the
4712 * configured release agent with the name of the cgroup (path
4713 * relative to the root of cgroup file system) as the argument.
4714 *
4715 * Most likely, this user command will try to rmdir this cgroup.
4716 *
4717 * This races with the possibility that some other task will be
4718 * attached to this cgroup before it is removed, or that some other
4719 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
4720 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
4721 * unused, and this cgroup will be reprieved from its death sentence,
4722 * to continue to serve a useful existence. Next time it's released,
4723 * we will get notified again, if it still has 'notify_on_release' set.
4724 *
4725 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
4726 * means only wait until the task is successfully execve()'d. The
4727 * separate release agent task is forked by call_usermodehelper(),
4728 * then control in this thread returns here, without waiting for the
4729 * release agent task. We don't bother to wait because the caller of
4730 * this routine has no use for the exit status of the release agent
4731 * task, so no sense holding our caller up for that.
4732 */
4733 static void cgroup_release_agent(struct work_struct *work)
4734 {
4735 BUG_ON(work != &release_agent_work);
4736 mutex_lock(&cgroup_mutex);
4737 raw_spin_lock(&release_list_lock);
4738 while (!list_empty(&release_list)) {
4739 char *argv[3], *envp[3];
4740 int i;
4741 char *pathbuf = NULL, *agentbuf = NULL;
4742 struct cgroup *cgrp = list_entry(release_list.next,
4743 struct cgroup,
4744 release_list);
4745 list_del_init(&cgrp->release_list);
4746 raw_spin_unlock(&release_list_lock);
4747 pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4748 if (!pathbuf)
4749 goto continue_free;
4750 if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
4751 goto continue_free;
4752 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
4753 if (!agentbuf)
4754 goto continue_free;
4755
4756 i = 0;
4757 argv[i++] = agentbuf;
4758 argv[i++] = pathbuf;
4759 argv[i] = NULL;
4760
4761 i = 0;
4762 /* minimal command environment */
4763 envp[i++] = "HOME=/";
4764 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
4765 envp[i] = NULL;
4766
4767 /* Drop the lock while we invoke the usermode helper,
4768 * since the exec could involve hitting disk and hence
4769 * be a slow process */
4770 mutex_unlock(&cgroup_mutex);
4771 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
4772 mutex_lock(&cgroup_mutex);
4773 continue_free:
4774 kfree(pathbuf);
4775 kfree(agentbuf);
4776 raw_spin_lock(&release_list_lock);
4777 }
4778 raw_spin_unlock(&release_list_lock);
4779 mutex_unlock(&cgroup_mutex);
4780 }
4781
4782 static int __init cgroup_disable(char *str)
4783 {
4784 int i;
4785 char *token;
4786
4787 while ((token = strsep(&str, ",")) != NULL) {
4788 if (!*token)
4789 continue;
4790 /*
4791 * cgroup_disable, being at boot time, can't know about module
4792 * subsystems, so we don't worry about them.
4793 */
4794 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4795 struct cgroup_subsys *ss = subsys[i];
4796
4797 if (!strcmp(token, ss->name)) {
4798 ss->disabled = 1;
4799 printk(KERN_INFO "Disabling %s control group"
4800 " subsystem\n", ss->name);
4801 break;
4802 }
4803 }
4804 }
4805 return 1;
4806 }
4807 __setup("cgroup_disable=", cgroup_disable);
4808
4809 /*
4810 * Functons for CSS ID.
4811 */
4812
4813 /*
4814 *To get ID other than 0, this should be called when !cgroup_is_removed().
4815 */
4816 unsigned short css_id(struct cgroup_subsys_state *css)
4817 {
4818 struct css_id *cssid;
4819
4820 /*
4821 * This css_id() can return correct value when somone has refcnt
4822 * on this or this is under rcu_read_lock(). Once css->id is allocated,
4823 * it's unchanged until freed.
4824 */
4825 cssid = rcu_dereference_check(css->id, atomic_read(&css->refcnt));
4826
4827 if (cssid)
4828 return cssid->id;
4829 return 0;
4830 }
4831 EXPORT_SYMBOL_GPL(css_id);
4832
4833 unsigned short css_depth(struct cgroup_subsys_state *css)
4834 {
4835 struct css_id *cssid;
4836
4837 cssid = rcu_dereference_check(css->id, atomic_read(&css->refcnt));
4838
4839 if (cssid)
4840 return cssid->depth;
4841 return 0;
4842 }
4843 EXPORT_SYMBOL_GPL(css_depth);
4844
4845 /**
4846 * css_is_ancestor - test "root" css is an ancestor of "child"
4847 * @child: the css to be tested.
4848 * @root: the css supporsed to be an ancestor of the child.
4849 *
4850 * Returns true if "root" is an ancestor of "child" in its hierarchy. Because
4851 * this function reads css->id, this use rcu_dereference() and rcu_read_lock().
4852 * But, considering usual usage, the csses should be valid objects after test.
4853 * Assuming that the caller will do some action to the child if this returns
4854 * returns true, the caller must take "child";s reference count.
4855 * If "child" is valid object and this returns true, "root" is valid, too.
4856 */
4857
4858 bool css_is_ancestor(struct cgroup_subsys_state *child,
4859 const struct cgroup_subsys_state *root)
4860 {
4861 struct css_id *child_id;
4862 struct css_id *root_id;
4863 bool ret = true;
4864
4865 rcu_read_lock();
4866 child_id = rcu_dereference(child->id);
4867 root_id = rcu_dereference(root->id);
4868 if (!child_id
4869 || !root_id
4870 || (child_id->depth < root_id->depth)
4871 || (child_id->stack[root_id->depth] != root_id->id))
4872 ret = false;
4873 rcu_read_unlock();
4874 return ret;
4875 }
4876
4877 void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
4878 {
4879 struct css_id *id = css->id;
4880 /* When this is called before css_id initialization, id can be NULL */
4881 if (!id)
4882 return;
4883
4884 BUG_ON(!ss->use_id);
4885
4886 rcu_assign_pointer(id->css, NULL);
4887 rcu_assign_pointer(css->id, NULL);
4888 spin_lock(&ss->id_lock);
4889 idr_remove(&ss->idr, id->id);
4890 spin_unlock(&ss->id_lock);
4891 kfree_rcu(id, rcu_head);
4892 }
4893 EXPORT_SYMBOL_GPL(free_css_id);
4894
4895 /*
4896 * This is called by init or create(). Then, calls to this function are
4897 * always serialized (By cgroup_mutex() at create()).
4898 */
4899
4900 static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
4901 {
4902 struct css_id *newid;
4903 int myid, error, size;
4904
4905 BUG_ON(!ss->use_id);
4906
4907 size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
4908 newid = kzalloc(size, GFP_KERNEL);
4909 if (!newid)
4910 return ERR_PTR(-ENOMEM);
4911 /* get id */
4912 if (unlikely(!idr_pre_get(&ss->idr, GFP_KERNEL))) {
4913 error = -ENOMEM;
4914 goto err_out;
4915 }
4916 spin_lock(&ss->id_lock);
4917 /* Don't use 0. allocates an ID of 1-65535 */
4918 error = idr_get_new_above(&ss->idr, newid, 1, &myid);
4919 spin_unlock(&ss->id_lock);
4920
4921 /* Returns error when there are no free spaces for new ID.*/
4922 if (error) {
4923 error = -ENOSPC;
4924 goto err_out;
4925 }
4926 if (myid > CSS_ID_MAX)
4927 goto remove_idr;
4928
4929 newid->id = myid;
4930 newid->depth = depth;
4931 return newid;
4932 remove_idr:
4933 error = -ENOSPC;
4934 spin_lock(&ss->id_lock);
4935 idr_remove(&ss->idr, myid);
4936 spin_unlock(&ss->id_lock);
4937 err_out:
4938 kfree(newid);
4939 return ERR_PTR(error);
4940
4941 }
4942
4943 static int __init_or_module cgroup_init_idr(struct cgroup_subsys *ss,
4944 struct cgroup_subsys_state *rootcss)
4945 {
4946 struct css_id *newid;
4947
4948 spin_lock_init(&ss->id_lock);
4949 idr_init(&ss->idr);
4950
4951 newid = get_new_cssid(ss, 0);
4952 if (IS_ERR(newid))
4953 return PTR_ERR(newid);
4954
4955 newid->stack[0] = newid->id;
4956 newid->css = rootcss;
4957 rootcss->id = newid;
4958 return 0;
4959 }
4960
4961 static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
4962 struct cgroup *child)
4963 {
4964 int subsys_id, i, depth = 0;
4965 struct cgroup_subsys_state *parent_css, *child_css;
4966 struct css_id *child_id, *parent_id;
4967
4968 subsys_id = ss->subsys_id;
4969 parent_css = parent->subsys[subsys_id];
4970 child_css = child->subsys[subsys_id];
4971 parent_id = parent_css->id;
4972 depth = parent_id->depth + 1;
4973
4974 child_id = get_new_cssid(ss, depth);
4975 if (IS_ERR(child_id))
4976 return PTR_ERR(child_id);
4977
4978 for (i = 0; i < depth; i++)
4979 child_id->stack[i] = parent_id->stack[i];
4980 child_id->stack[depth] = child_id->id;
4981 /*
4982 * child_id->css pointer will be set after this cgroup is available
4983 * see cgroup_populate_dir()
4984 */
4985 rcu_assign_pointer(child_css->id, child_id);
4986
4987 return 0;
4988 }
4989
4990 /**
4991 * css_lookup - lookup css by id
4992 * @ss: cgroup subsys to be looked into.
4993 * @id: the id
4994 *
4995 * Returns pointer to cgroup_subsys_state if there is valid one with id.
4996 * NULL if not. Should be called under rcu_read_lock()
4997 */
4998 struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
4999 {
5000 struct css_id *cssid = NULL;
5001
5002 BUG_ON(!ss->use_id);
5003 cssid = idr_find(&ss->idr, id);
5004
5005 if (unlikely(!cssid))
5006 return NULL;
5007
5008 return rcu_dereference(cssid->css);
5009 }
5010 EXPORT_SYMBOL_GPL(css_lookup);
5011
5012 /**
5013 * css_get_next - lookup next cgroup under specified hierarchy.
5014 * @ss: pointer to subsystem
5015 * @id: current position of iteration.
5016 * @root: pointer to css. search tree under this.
5017 * @foundid: position of found object.
5018 *
5019 * Search next css under the specified hierarchy of rootid. Calling under
5020 * rcu_read_lock() is necessary. Returns NULL if it reaches the end.
5021 */
5022 struct cgroup_subsys_state *
5023 css_get_next(struct cgroup_subsys *ss, int id,
5024 struct cgroup_subsys_state *root, int *foundid)
5025 {
5026 struct cgroup_subsys_state *ret = NULL;
5027 struct css_id *tmp;
5028 int tmpid;
5029 int rootid = css_id(root);
5030 int depth = css_depth(root);
5031
5032 if (!rootid)
5033 return NULL;
5034
5035 BUG_ON(!ss->use_id);
5036 WARN_ON_ONCE(!rcu_read_lock_held());
5037
5038 /* fill start point for scan */
5039 tmpid = id;
5040 while (1) {
5041 /*
5042 * scan next entry from bitmap(tree), tmpid is updated after
5043 * idr_get_next().
5044 */
5045 tmp = idr_get_next(&ss->idr, &tmpid);
5046 if (!tmp)
5047 break;
5048 if (tmp->depth >= depth && tmp->stack[depth] == rootid) {
5049 ret = rcu_dereference(tmp->css);
5050 if (ret) {
5051 *foundid = tmpid;
5052 break;
5053 }
5054 }
5055 /* continue to scan from next id */
5056 tmpid = tmpid + 1;
5057 }
5058 return ret;
5059 }
5060
5061 /*
5062 * get corresponding css from file open on cgroupfs directory
5063 */
5064 struct cgroup_subsys_state *cgroup_css_from_dir(struct file *f, int id)
5065 {
5066 struct cgroup *cgrp;
5067 struct inode *inode;
5068 struct cgroup_subsys_state *css;
5069
5070 inode = f->f_dentry->d_inode;
5071 /* check in cgroup filesystem dir */
5072 if (inode->i_op != &cgroup_dir_inode_operations)
5073 return ERR_PTR(-EBADF);
5074
5075 if (id < 0 || id >= CGROUP_SUBSYS_COUNT)
5076 return ERR_PTR(-EINVAL);
5077
5078 /* get cgroup */
5079 cgrp = __d_cgrp(f->f_dentry);
5080 css = cgrp->subsys[id];
5081 return css ? css : ERR_PTR(-ENOENT);
5082 }
5083
5084 #ifdef CONFIG_CGROUP_DEBUG
5085 static struct cgroup_subsys_state *debug_create(struct cgroup *cont)
5086 {
5087 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5088
5089 if (!css)
5090 return ERR_PTR(-ENOMEM);
5091
5092 return css;
5093 }
5094
5095 static void debug_destroy(struct cgroup *cont)
5096 {
5097 kfree(cont->subsys[debug_subsys_id]);
5098 }
5099
5100 static u64 cgroup_refcount_read(struct cgroup *cont, struct cftype *cft)
5101 {
5102 return atomic_read(&cont->count);
5103 }
5104
5105 static u64 debug_taskcount_read(struct cgroup *cont, struct cftype *cft)
5106 {
5107 return cgroup_task_count(cont);
5108 }
5109
5110 static u64 current_css_set_read(struct cgroup *cont, struct cftype *cft)
5111 {
5112 return (u64)(unsigned long)current->cgroups;
5113 }
5114
5115 static u64 current_css_set_refcount_read(struct cgroup *cont,
5116 struct cftype *cft)
5117 {
5118 u64 count;
5119
5120 rcu_read_lock();
5121 count = atomic_read(&current->cgroups->refcount);
5122 rcu_read_unlock();
5123 return count;
5124 }
5125
5126 static int current_css_set_cg_links_read(struct cgroup *cont,
5127 struct cftype *cft,
5128 struct seq_file *seq)
5129 {
5130 struct cg_cgroup_link *link;
5131 struct css_set *cg;
5132
5133 read_lock(&css_set_lock);
5134 rcu_read_lock();
5135 cg = rcu_dereference(current->cgroups);
5136 list_for_each_entry(link, &cg->cg_links, cg_link_list) {
5137 struct cgroup *c = link->cgrp;
5138 const char *name;
5139
5140 if (c->dentry)
5141 name = c->dentry->d_name.name;
5142 else
5143 name = "?";
5144 seq_printf(seq, "Root %d group %s\n",
5145 c->root->hierarchy_id, name);
5146 }
5147 rcu_read_unlock();
5148 read_unlock(&css_set_lock);
5149 return 0;
5150 }
5151
5152 #define MAX_TASKS_SHOWN_PER_CSS 25
5153 static int cgroup_css_links_read(struct cgroup *cont,
5154 struct cftype *cft,
5155 struct seq_file *seq)
5156 {
5157 struct cg_cgroup_link *link;
5158
5159 read_lock(&css_set_lock);
5160 list_for_each_entry(link, &cont->css_sets, cgrp_link_list) {
5161 struct css_set *cg = link->cg;
5162 struct task_struct *task;
5163 int count = 0;
5164 seq_printf(seq, "css_set %p\n", cg);
5165 list_for_each_entry(task, &cg->tasks, cg_list) {
5166 if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
5167 seq_puts(seq, " ...\n");
5168 break;
5169 } else {
5170 seq_printf(seq, " task %d\n",
5171 task_pid_vnr(task));
5172 }
5173 }
5174 }
5175 read_unlock(&css_set_lock);
5176 return 0;
5177 }
5178
5179 static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft)
5180 {
5181 return test_bit(CGRP_RELEASABLE, &cgrp->flags);
5182 }
5183
5184 static struct cftype debug_files[] = {
5185 {
5186 .name = "cgroup_refcount",
5187 .read_u64 = cgroup_refcount_read,
5188 },
5189 {
5190 .name = "taskcount",
5191 .read_u64 = debug_taskcount_read,
5192 },
5193
5194 {
5195 .name = "current_css_set",
5196 .read_u64 = current_css_set_read,
5197 },
5198
5199 {
5200 .name = "current_css_set_refcount",
5201 .read_u64 = current_css_set_refcount_read,
5202 },
5203
5204 {
5205 .name = "current_css_set_cg_links",
5206 .read_seq_string = current_css_set_cg_links_read,
5207 },
5208
5209 {
5210 .name = "cgroup_css_links",
5211 .read_seq_string = cgroup_css_links_read,
5212 },
5213
5214 {
5215 .name = "releasable",
5216 .read_u64 = releasable_read,
5217 },
5218 };
5219
5220 static int debug_populate(struct cgroup_subsys *ss, struct cgroup *cont)
5221 {
5222 return cgroup_add_files(cont, ss, debug_files,
5223 ARRAY_SIZE(debug_files));
5224 }
5225
5226 struct cgroup_subsys debug_subsys = {
5227 .name = "debug",
5228 .create = debug_create,
5229 .destroy = debug_destroy,
5230 .populate = debug_populate,
5231 .subsys_id = debug_subsys_id,
5232 };
5233 #endif /* CONFIG_CGROUP_DEBUG */
This page took 0.168499 seconds and 5 git commands to generate.