Merge branch 'bpf-event-output-helper-improvements'
[deliverable/linux.git] / kernel / cgroup.c
1 /*
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/cgroup.h>
32 #include <linux/cred.h>
33 #include <linux/ctype.h>
34 #include <linux/errno.h>
35 #include <linux/init_task.h>
36 #include <linux/kernel.h>
37 #include <linux/list.h>
38 #include <linux/magic.h>
39 #include <linux/mm.h>
40 #include <linux/mutex.h>
41 #include <linux/mount.h>
42 #include <linux/pagemap.h>
43 #include <linux/proc_fs.h>
44 #include <linux/rcupdate.h>
45 #include <linux/sched.h>
46 #include <linux/slab.h>
47 #include <linux/spinlock.h>
48 #include <linux/percpu-rwsem.h>
49 #include <linux/string.h>
50 #include <linux/sort.h>
51 #include <linux/kmod.h>
52 #include <linux/delayacct.h>
53 #include <linux/cgroupstats.h>
54 #include <linux/hashtable.h>
55 #include <linux/pid_namespace.h>
56 #include <linux/idr.h>
57 #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
58 #include <linux/kthread.h>
59 #include <linux/delay.h>
60 #include <linux/atomic.h>
61 #include <linux/cpuset.h>
62 #include <linux/proc_ns.h>
63 #include <linux/nsproxy.h>
64 #include <linux/proc_ns.h>
65 #include <linux/file.h>
66 #include <net/sock.h>
67
68 /*
69 * pidlists linger the following amount before being destroyed. The goal
70 * is avoiding frequent destruction in the middle of consecutive read calls
71 * Expiring in the middle is a performance problem not a correctness one.
72 * 1 sec should be enough.
73 */
74 #define CGROUP_PIDLIST_DESTROY_DELAY HZ
75
76 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
77 MAX_CFTYPE_NAME + 2)
78
79 /*
80 * cgroup_mutex is the master lock. Any modification to cgroup or its
81 * hierarchy must be performed while holding it.
82 *
83 * css_set_lock protects task->cgroups pointer, the list of css_set
84 * objects, and the chain of tasks off each css_set.
85 *
86 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
87 * cgroup.h can use them for lockdep annotations.
88 */
89 #ifdef CONFIG_PROVE_RCU
90 DEFINE_MUTEX(cgroup_mutex);
91 DEFINE_SPINLOCK(css_set_lock);
92 EXPORT_SYMBOL_GPL(cgroup_mutex);
93 EXPORT_SYMBOL_GPL(css_set_lock);
94 #else
95 static DEFINE_MUTEX(cgroup_mutex);
96 static DEFINE_SPINLOCK(css_set_lock);
97 #endif
98
99 /*
100 * Protects cgroup_idr and css_idr so that IDs can be released without
101 * grabbing cgroup_mutex.
102 */
103 static DEFINE_SPINLOCK(cgroup_idr_lock);
104
105 /*
106 * Protects cgroup_file->kn for !self csses. It synchronizes notifications
107 * against file removal/re-creation across css hiding.
108 */
109 static DEFINE_SPINLOCK(cgroup_file_kn_lock);
110
111 /*
112 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
113 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
114 */
115 static DEFINE_SPINLOCK(release_agent_path_lock);
116
117 struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
118
119 #define cgroup_assert_mutex_or_rcu_locked() \
120 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
121 !lockdep_is_held(&cgroup_mutex), \
122 "cgroup_mutex or RCU read lock required");
123
124 /*
125 * cgroup destruction makes heavy use of work items and there can be a lot
126 * of concurrent destructions. Use a separate workqueue so that cgroup
127 * destruction work items don't end up filling up max_active of system_wq
128 * which may lead to deadlock.
129 */
130 static struct workqueue_struct *cgroup_destroy_wq;
131
132 /*
133 * pidlist destructions need to be flushed on cgroup destruction. Use a
134 * separate workqueue as flush domain.
135 */
136 static struct workqueue_struct *cgroup_pidlist_destroy_wq;
137
138 /* generate an array of cgroup subsystem pointers */
139 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
140 static struct cgroup_subsys *cgroup_subsys[] = {
141 #include <linux/cgroup_subsys.h>
142 };
143 #undef SUBSYS
144
145 /* array of cgroup subsystem names */
146 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
147 static const char *cgroup_subsys_name[] = {
148 #include <linux/cgroup_subsys.h>
149 };
150 #undef SUBSYS
151
152 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
153 #define SUBSYS(_x) \
154 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \
155 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \
156 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \
157 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
158 #include <linux/cgroup_subsys.h>
159 #undef SUBSYS
160
161 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
162 static struct static_key_true *cgroup_subsys_enabled_key[] = {
163 #include <linux/cgroup_subsys.h>
164 };
165 #undef SUBSYS
166
167 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
168 static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
169 #include <linux/cgroup_subsys.h>
170 };
171 #undef SUBSYS
172
173 /*
174 * The default hierarchy, reserved for the subsystems that are otherwise
175 * unattached - it never has more than a single cgroup, and all tasks are
176 * part of that cgroup.
177 */
178 struct cgroup_root cgrp_dfl_root;
179 EXPORT_SYMBOL_GPL(cgrp_dfl_root);
180
181 /*
182 * The default hierarchy always exists but is hidden until mounted for the
183 * first time. This is for backward compatibility.
184 */
185 static bool cgrp_dfl_visible;
186
187 /* Controllers blocked by the commandline in v1 */
188 static u16 cgroup_no_v1_mask;
189
190 /* some controllers are not supported in the default hierarchy */
191 static u16 cgrp_dfl_inhibit_ss_mask;
192
193 /* some controllers are implicitly enabled on the default hierarchy */
194 static unsigned long cgrp_dfl_implicit_ss_mask;
195
196 /* The list of hierarchy roots */
197
198 static LIST_HEAD(cgroup_roots);
199 static int cgroup_root_count;
200
201 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
202 static DEFINE_IDR(cgroup_hierarchy_idr);
203
204 /*
205 * Assign a monotonically increasing serial number to csses. It guarantees
206 * cgroups with bigger numbers are newer than those with smaller numbers.
207 * Also, as csses are always appended to the parent's ->children list, it
208 * guarantees that sibling csses are always sorted in the ascending serial
209 * number order on the list. Protected by cgroup_mutex.
210 */
211 static u64 css_serial_nr_next = 1;
212
213 /*
214 * These bitmask flags indicate whether tasks in the fork and exit paths have
215 * fork/exit handlers to call. This avoids us having to do extra work in the
216 * fork/exit path to check which subsystems have fork/exit callbacks.
217 */
218 static u16 have_fork_callback __read_mostly;
219 static u16 have_exit_callback __read_mostly;
220 static u16 have_free_callback __read_mostly;
221
222 /* cgroup namespace for init task */
223 struct cgroup_namespace init_cgroup_ns = {
224 .count = { .counter = 2, },
225 .user_ns = &init_user_ns,
226 .ns.ops = &cgroupns_operations,
227 .ns.inum = PROC_CGROUP_INIT_INO,
228 .root_cset = &init_css_set,
229 };
230
231 /* Ditto for the can_fork callback. */
232 static u16 have_canfork_callback __read_mostly;
233
234 static struct file_system_type cgroup2_fs_type;
235 static struct cftype cgroup_dfl_base_files[];
236 static struct cftype cgroup_legacy_base_files[];
237
238 static int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask);
239 static void cgroup_lock_and_drain_offline(struct cgroup *cgrp);
240 static int cgroup_apply_control(struct cgroup *cgrp);
241 static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
242 static void css_task_iter_advance(struct css_task_iter *it);
243 static int cgroup_destroy_locked(struct cgroup *cgrp);
244 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
245 struct cgroup_subsys *ss);
246 static void css_release(struct percpu_ref *ref);
247 static void kill_css(struct cgroup_subsys_state *css);
248 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
249 struct cgroup *cgrp, struct cftype cfts[],
250 bool is_add);
251
252 /**
253 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
254 * @ssid: subsys ID of interest
255 *
256 * cgroup_subsys_enabled() can only be used with literal subsys names which
257 * is fine for individual subsystems but unsuitable for cgroup core. This
258 * is slower static_key_enabled() based test indexed by @ssid.
259 */
260 static bool cgroup_ssid_enabled(int ssid)
261 {
262 if (CGROUP_SUBSYS_COUNT == 0)
263 return false;
264
265 return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
266 }
267
268 static bool cgroup_ssid_no_v1(int ssid)
269 {
270 return cgroup_no_v1_mask & (1 << ssid);
271 }
272
273 /**
274 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
275 * @cgrp: the cgroup of interest
276 *
277 * The default hierarchy is the v2 interface of cgroup and this function
278 * can be used to test whether a cgroup is on the default hierarchy for
279 * cases where a subsystem should behave differnetly depending on the
280 * interface version.
281 *
282 * The set of behaviors which change on the default hierarchy are still
283 * being determined and the mount option is prefixed with __DEVEL__.
284 *
285 * List of changed behaviors:
286 *
287 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
288 * and "name" are disallowed.
289 *
290 * - When mounting an existing superblock, mount options should match.
291 *
292 * - Remount is disallowed.
293 *
294 * - rename(2) is disallowed.
295 *
296 * - "tasks" is removed. Everything should be at process granularity. Use
297 * "cgroup.procs" instead.
298 *
299 * - "cgroup.procs" is not sorted. pids will be unique unless they got
300 * recycled inbetween reads.
301 *
302 * - "release_agent" and "notify_on_release" are removed. Replacement
303 * notification mechanism will be implemented.
304 *
305 * - "cgroup.clone_children" is removed.
306 *
307 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup
308 * and its descendants contain no task; otherwise, 1. The file also
309 * generates kernfs notification which can be monitored through poll and
310 * [di]notify when the value of the file changes.
311 *
312 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
313 * take masks of ancestors with non-empty cpus/mems, instead of being
314 * moved to an ancestor.
315 *
316 * - cpuset: a task can be moved into an empty cpuset, and again it takes
317 * masks of ancestors.
318 *
319 * - memcg: use_hierarchy is on by default and the cgroup file for the flag
320 * is not created.
321 *
322 * - blkcg: blk-throttle becomes properly hierarchical.
323 *
324 * - debug: disallowed on the default hierarchy.
325 */
326 static bool cgroup_on_dfl(const struct cgroup *cgrp)
327 {
328 return cgrp->root == &cgrp_dfl_root;
329 }
330
331 /* IDR wrappers which synchronize using cgroup_idr_lock */
332 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
333 gfp_t gfp_mask)
334 {
335 int ret;
336
337 idr_preload(gfp_mask);
338 spin_lock_bh(&cgroup_idr_lock);
339 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
340 spin_unlock_bh(&cgroup_idr_lock);
341 idr_preload_end();
342 return ret;
343 }
344
345 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
346 {
347 void *ret;
348
349 spin_lock_bh(&cgroup_idr_lock);
350 ret = idr_replace(idr, ptr, id);
351 spin_unlock_bh(&cgroup_idr_lock);
352 return ret;
353 }
354
355 static void cgroup_idr_remove(struct idr *idr, int id)
356 {
357 spin_lock_bh(&cgroup_idr_lock);
358 idr_remove(idr, id);
359 spin_unlock_bh(&cgroup_idr_lock);
360 }
361
362 static struct cgroup *cgroup_parent(struct cgroup *cgrp)
363 {
364 struct cgroup_subsys_state *parent_css = cgrp->self.parent;
365
366 if (parent_css)
367 return container_of(parent_css, struct cgroup, self);
368 return NULL;
369 }
370
371 /* subsystems visibly enabled on a cgroup */
372 static u16 cgroup_control(struct cgroup *cgrp)
373 {
374 struct cgroup *parent = cgroup_parent(cgrp);
375 u16 root_ss_mask = cgrp->root->subsys_mask;
376
377 if (parent)
378 return parent->subtree_control;
379
380 if (cgroup_on_dfl(cgrp))
381 root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
382 cgrp_dfl_implicit_ss_mask);
383 return root_ss_mask;
384 }
385
386 /* subsystems enabled on a cgroup */
387 static u16 cgroup_ss_mask(struct cgroup *cgrp)
388 {
389 struct cgroup *parent = cgroup_parent(cgrp);
390
391 if (parent)
392 return parent->subtree_ss_mask;
393
394 return cgrp->root->subsys_mask;
395 }
396
397 /**
398 * cgroup_css - obtain a cgroup's css for the specified subsystem
399 * @cgrp: the cgroup of interest
400 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
401 *
402 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
403 * function must be called either under cgroup_mutex or rcu_read_lock() and
404 * the caller is responsible for pinning the returned css if it wants to
405 * keep accessing it outside the said locks. This function may return
406 * %NULL if @cgrp doesn't have @subsys_id enabled.
407 */
408 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
409 struct cgroup_subsys *ss)
410 {
411 if (ss)
412 return rcu_dereference_check(cgrp->subsys[ss->id],
413 lockdep_is_held(&cgroup_mutex));
414 else
415 return &cgrp->self;
416 }
417
418 /**
419 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
420 * @cgrp: the cgroup of interest
421 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
422 *
423 * Similar to cgroup_css() but returns the effective css, which is defined
424 * as the matching css of the nearest ancestor including self which has @ss
425 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
426 * function is guaranteed to return non-NULL css.
427 */
428 static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
429 struct cgroup_subsys *ss)
430 {
431 lockdep_assert_held(&cgroup_mutex);
432
433 if (!ss)
434 return &cgrp->self;
435
436 /*
437 * This function is used while updating css associations and thus
438 * can't test the csses directly. Test ss_mask.
439 */
440 while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
441 cgrp = cgroup_parent(cgrp);
442 if (!cgrp)
443 return NULL;
444 }
445
446 return cgroup_css(cgrp, ss);
447 }
448
449 /**
450 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
451 * @cgrp: the cgroup of interest
452 * @ss: the subsystem of interest
453 *
454 * Find and get the effective css of @cgrp for @ss. The effective css is
455 * defined as the matching css of the nearest ancestor including self which
456 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
457 * the root css is returned, so this function always returns a valid css.
458 * The returned css must be put using css_put().
459 */
460 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
461 struct cgroup_subsys *ss)
462 {
463 struct cgroup_subsys_state *css;
464
465 rcu_read_lock();
466
467 do {
468 css = cgroup_css(cgrp, ss);
469
470 if (css && css_tryget_online(css))
471 goto out_unlock;
472 cgrp = cgroup_parent(cgrp);
473 } while (cgrp);
474
475 css = init_css_set.subsys[ss->id];
476 css_get(css);
477 out_unlock:
478 rcu_read_unlock();
479 return css;
480 }
481
482 /* convenient tests for these bits */
483 static inline bool cgroup_is_dead(const struct cgroup *cgrp)
484 {
485 return !(cgrp->self.flags & CSS_ONLINE);
486 }
487
488 static void cgroup_get(struct cgroup *cgrp)
489 {
490 WARN_ON_ONCE(cgroup_is_dead(cgrp));
491 css_get(&cgrp->self);
492 }
493
494 static bool cgroup_tryget(struct cgroup *cgrp)
495 {
496 return css_tryget(&cgrp->self);
497 }
498
499 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
500 {
501 struct cgroup *cgrp = of->kn->parent->priv;
502 struct cftype *cft = of_cft(of);
503
504 /*
505 * This is open and unprotected implementation of cgroup_css().
506 * seq_css() is only called from a kernfs file operation which has
507 * an active reference on the file. Because all the subsystem
508 * files are drained before a css is disassociated with a cgroup,
509 * the matching css from the cgroup's subsys table is guaranteed to
510 * be and stay valid until the enclosing operation is complete.
511 */
512 if (cft->ss)
513 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
514 else
515 return &cgrp->self;
516 }
517 EXPORT_SYMBOL_GPL(of_css);
518
519 static int notify_on_release(const struct cgroup *cgrp)
520 {
521 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
522 }
523
524 /**
525 * for_each_css - iterate all css's of a cgroup
526 * @css: the iteration cursor
527 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
528 * @cgrp: the target cgroup to iterate css's of
529 *
530 * Should be called under cgroup_[tree_]mutex.
531 */
532 #define for_each_css(css, ssid, cgrp) \
533 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
534 if (!((css) = rcu_dereference_check( \
535 (cgrp)->subsys[(ssid)], \
536 lockdep_is_held(&cgroup_mutex)))) { } \
537 else
538
539 /**
540 * for_each_e_css - iterate all effective css's of a cgroup
541 * @css: the iteration cursor
542 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
543 * @cgrp: the target cgroup to iterate css's of
544 *
545 * Should be called under cgroup_[tree_]mutex.
546 */
547 #define for_each_e_css(css, ssid, cgrp) \
548 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
549 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
550 ; \
551 else
552
553 /**
554 * for_each_subsys - iterate all enabled cgroup subsystems
555 * @ss: the iteration cursor
556 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
557 */
558 #define for_each_subsys(ss, ssid) \
559 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
560 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
561
562 /**
563 * do_each_subsys_mask - filter for_each_subsys with a bitmask
564 * @ss: the iteration cursor
565 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
566 * @ss_mask: the bitmask
567 *
568 * The block will only run for cases where the ssid-th bit (1 << ssid) of
569 * @ss_mask is set.
570 */
571 #define do_each_subsys_mask(ss, ssid, ss_mask) do { \
572 unsigned long __ss_mask = (ss_mask); \
573 if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */ \
574 (ssid) = 0; \
575 break; \
576 } \
577 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \
578 (ss) = cgroup_subsys[ssid]; \
579 {
580
581 #define while_each_subsys_mask() \
582 } \
583 } \
584 } while (false)
585
586 /* iterate across the hierarchies */
587 #define for_each_root(root) \
588 list_for_each_entry((root), &cgroup_roots, root_list)
589
590 /* iterate over child cgrps, lock should be held throughout iteration */
591 #define cgroup_for_each_live_child(child, cgrp) \
592 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
593 if (({ lockdep_assert_held(&cgroup_mutex); \
594 cgroup_is_dead(child); })) \
595 ; \
596 else
597
598 /* walk live descendants in preorder */
599 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \
600 css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \
601 if (({ lockdep_assert_held(&cgroup_mutex); \
602 (dsct) = (d_css)->cgroup; \
603 cgroup_is_dead(dsct); })) \
604 ; \
605 else
606
607 /* walk live descendants in postorder */
608 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \
609 css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \
610 if (({ lockdep_assert_held(&cgroup_mutex); \
611 (dsct) = (d_css)->cgroup; \
612 cgroup_is_dead(dsct); })) \
613 ; \
614 else
615
616 static void cgroup_release_agent(struct work_struct *work);
617 static void check_for_release(struct cgroup *cgrp);
618
619 /*
620 * A cgroup can be associated with multiple css_sets as different tasks may
621 * belong to different cgroups on different hierarchies. In the other
622 * direction, a css_set is naturally associated with multiple cgroups.
623 * This M:N relationship is represented by the following link structure
624 * which exists for each association and allows traversing the associations
625 * from both sides.
626 */
627 struct cgrp_cset_link {
628 /* the cgroup and css_set this link associates */
629 struct cgroup *cgrp;
630 struct css_set *cset;
631
632 /* list of cgrp_cset_links anchored at cgrp->cset_links */
633 struct list_head cset_link;
634
635 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
636 struct list_head cgrp_link;
637 };
638
639 /*
640 * The default css_set - used by init and its children prior to any
641 * hierarchies being mounted. It contains a pointer to the root state
642 * for each subsystem. Also used to anchor the list of css_sets. Not
643 * reference-counted, to improve performance when child cgroups
644 * haven't been created.
645 */
646 struct css_set init_css_set = {
647 .refcount = ATOMIC_INIT(1),
648 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
649 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
650 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
651 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
652 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
653 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters),
654 };
655
656 static int css_set_count = 1; /* 1 for init_css_set */
657
658 /**
659 * css_set_populated - does a css_set contain any tasks?
660 * @cset: target css_set
661 */
662 static bool css_set_populated(struct css_set *cset)
663 {
664 lockdep_assert_held(&css_set_lock);
665
666 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
667 }
668
669 /**
670 * cgroup_update_populated - updated populated count of a cgroup
671 * @cgrp: the target cgroup
672 * @populated: inc or dec populated count
673 *
674 * One of the css_sets associated with @cgrp is either getting its first
675 * task or losing the last. Update @cgrp->populated_cnt accordingly. The
676 * count is propagated towards root so that a given cgroup's populated_cnt
677 * is zero iff the cgroup and all its descendants don't contain any tasks.
678 *
679 * @cgrp's interface file "cgroup.populated" is zero if
680 * @cgrp->populated_cnt is zero and 1 otherwise. When @cgrp->populated_cnt
681 * changes from or to zero, userland is notified that the content of the
682 * interface file has changed. This can be used to detect when @cgrp and
683 * its descendants become populated or empty.
684 */
685 static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
686 {
687 lockdep_assert_held(&css_set_lock);
688
689 do {
690 bool trigger;
691
692 if (populated)
693 trigger = !cgrp->populated_cnt++;
694 else
695 trigger = !--cgrp->populated_cnt;
696
697 if (!trigger)
698 break;
699
700 check_for_release(cgrp);
701 cgroup_file_notify(&cgrp->events_file);
702
703 cgrp = cgroup_parent(cgrp);
704 } while (cgrp);
705 }
706
707 /**
708 * css_set_update_populated - update populated state of a css_set
709 * @cset: target css_set
710 * @populated: whether @cset is populated or depopulated
711 *
712 * @cset is either getting the first task or losing the last. Update the
713 * ->populated_cnt of all associated cgroups accordingly.
714 */
715 static void css_set_update_populated(struct css_set *cset, bool populated)
716 {
717 struct cgrp_cset_link *link;
718
719 lockdep_assert_held(&css_set_lock);
720
721 list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
722 cgroup_update_populated(link->cgrp, populated);
723 }
724
725 /**
726 * css_set_move_task - move a task from one css_set to another
727 * @task: task being moved
728 * @from_cset: css_set @task currently belongs to (may be NULL)
729 * @to_cset: new css_set @task is being moved to (may be NULL)
730 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
731 *
732 * Move @task from @from_cset to @to_cset. If @task didn't belong to any
733 * css_set, @from_cset can be NULL. If @task is being disassociated
734 * instead of moved, @to_cset can be NULL.
735 *
736 * This function automatically handles populated_cnt updates and
737 * css_task_iter adjustments but the caller is responsible for managing
738 * @from_cset and @to_cset's reference counts.
739 */
740 static void css_set_move_task(struct task_struct *task,
741 struct css_set *from_cset, struct css_set *to_cset,
742 bool use_mg_tasks)
743 {
744 lockdep_assert_held(&css_set_lock);
745
746 if (to_cset && !css_set_populated(to_cset))
747 css_set_update_populated(to_cset, true);
748
749 if (from_cset) {
750 struct css_task_iter *it, *pos;
751
752 WARN_ON_ONCE(list_empty(&task->cg_list));
753
754 /*
755 * @task is leaving, advance task iterators which are
756 * pointing to it so that they can resume at the next
757 * position. Advancing an iterator might remove it from
758 * the list, use safe walk. See css_task_iter_advance*()
759 * for details.
760 */
761 list_for_each_entry_safe(it, pos, &from_cset->task_iters,
762 iters_node)
763 if (it->task_pos == &task->cg_list)
764 css_task_iter_advance(it);
765
766 list_del_init(&task->cg_list);
767 if (!css_set_populated(from_cset))
768 css_set_update_populated(from_cset, false);
769 } else {
770 WARN_ON_ONCE(!list_empty(&task->cg_list));
771 }
772
773 if (to_cset) {
774 /*
775 * We are synchronized through cgroup_threadgroup_rwsem
776 * against PF_EXITING setting such that we can't race
777 * against cgroup_exit() changing the css_set to
778 * init_css_set and dropping the old one.
779 */
780 WARN_ON_ONCE(task->flags & PF_EXITING);
781
782 rcu_assign_pointer(task->cgroups, to_cset);
783 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
784 &to_cset->tasks);
785 }
786 }
787
788 /*
789 * hash table for cgroup groups. This improves the performance to find
790 * an existing css_set. This hash doesn't (currently) take into
791 * account cgroups in empty hierarchies.
792 */
793 #define CSS_SET_HASH_BITS 7
794 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
795
796 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
797 {
798 unsigned long key = 0UL;
799 struct cgroup_subsys *ss;
800 int i;
801
802 for_each_subsys(ss, i)
803 key += (unsigned long)css[i];
804 key = (key >> 16) ^ key;
805
806 return key;
807 }
808
809 static void put_css_set_locked(struct css_set *cset)
810 {
811 struct cgrp_cset_link *link, *tmp_link;
812 struct cgroup_subsys *ss;
813 int ssid;
814
815 lockdep_assert_held(&css_set_lock);
816
817 if (!atomic_dec_and_test(&cset->refcount))
818 return;
819
820 /* This css_set is dead. unlink it and release cgroup and css refs */
821 for_each_subsys(ss, ssid) {
822 list_del(&cset->e_cset_node[ssid]);
823 css_put(cset->subsys[ssid]);
824 }
825 hash_del(&cset->hlist);
826 css_set_count--;
827
828 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
829 list_del(&link->cset_link);
830 list_del(&link->cgrp_link);
831 if (cgroup_parent(link->cgrp))
832 cgroup_put(link->cgrp);
833 kfree(link);
834 }
835
836 kfree_rcu(cset, rcu_head);
837 }
838
839 static void put_css_set(struct css_set *cset)
840 {
841 unsigned long flags;
842
843 /*
844 * Ensure that the refcount doesn't hit zero while any readers
845 * can see it. Similar to atomic_dec_and_lock(), but for an
846 * rwlock
847 */
848 if (atomic_add_unless(&cset->refcount, -1, 1))
849 return;
850
851 spin_lock_irqsave(&css_set_lock, flags);
852 put_css_set_locked(cset);
853 spin_unlock_irqrestore(&css_set_lock, flags);
854 }
855
856 /*
857 * refcounted get/put for css_set objects
858 */
859 static inline void get_css_set(struct css_set *cset)
860 {
861 atomic_inc(&cset->refcount);
862 }
863
864 /**
865 * compare_css_sets - helper function for find_existing_css_set().
866 * @cset: candidate css_set being tested
867 * @old_cset: existing css_set for a task
868 * @new_cgrp: cgroup that's being entered by the task
869 * @template: desired set of css pointers in css_set (pre-calculated)
870 *
871 * Returns true if "cset" matches "old_cset" except for the hierarchy
872 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
873 */
874 static bool compare_css_sets(struct css_set *cset,
875 struct css_set *old_cset,
876 struct cgroup *new_cgrp,
877 struct cgroup_subsys_state *template[])
878 {
879 struct list_head *l1, *l2;
880
881 /*
882 * On the default hierarchy, there can be csets which are
883 * associated with the same set of cgroups but different csses.
884 * Let's first ensure that csses match.
885 */
886 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
887 return false;
888
889 /*
890 * Compare cgroup pointers in order to distinguish between
891 * different cgroups in hierarchies. As different cgroups may
892 * share the same effective css, this comparison is always
893 * necessary.
894 */
895 l1 = &cset->cgrp_links;
896 l2 = &old_cset->cgrp_links;
897 while (1) {
898 struct cgrp_cset_link *link1, *link2;
899 struct cgroup *cgrp1, *cgrp2;
900
901 l1 = l1->next;
902 l2 = l2->next;
903 /* See if we reached the end - both lists are equal length. */
904 if (l1 == &cset->cgrp_links) {
905 BUG_ON(l2 != &old_cset->cgrp_links);
906 break;
907 } else {
908 BUG_ON(l2 == &old_cset->cgrp_links);
909 }
910 /* Locate the cgroups associated with these links. */
911 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
912 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
913 cgrp1 = link1->cgrp;
914 cgrp2 = link2->cgrp;
915 /* Hierarchies should be linked in the same order. */
916 BUG_ON(cgrp1->root != cgrp2->root);
917
918 /*
919 * If this hierarchy is the hierarchy of the cgroup
920 * that's changing, then we need to check that this
921 * css_set points to the new cgroup; if it's any other
922 * hierarchy, then this css_set should point to the
923 * same cgroup as the old css_set.
924 */
925 if (cgrp1->root == new_cgrp->root) {
926 if (cgrp1 != new_cgrp)
927 return false;
928 } else {
929 if (cgrp1 != cgrp2)
930 return false;
931 }
932 }
933 return true;
934 }
935
936 /**
937 * find_existing_css_set - init css array and find the matching css_set
938 * @old_cset: the css_set that we're using before the cgroup transition
939 * @cgrp: the cgroup that we're moving into
940 * @template: out param for the new set of csses, should be clear on entry
941 */
942 static struct css_set *find_existing_css_set(struct css_set *old_cset,
943 struct cgroup *cgrp,
944 struct cgroup_subsys_state *template[])
945 {
946 struct cgroup_root *root = cgrp->root;
947 struct cgroup_subsys *ss;
948 struct css_set *cset;
949 unsigned long key;
950 int i;
951
952 /*
953 * Build the set of subsystem state objects that we want to see in the
954 * new css_set. while subsystems can change globally, the entries here
955 * won't change, so no need for locking.
956 */
957 for_each_subsys(ss, i) {
958 if (root->subsys_mask & (1UL << i)) {
959 /*
960 * @ss is in this hierarchy, so we want the
961 * effective css from @cgrp.
962 */
963 template[i] = cgroup_e_css(cgrp, ss);
964 } else {
965 /*
966 * @ss is not in this hierarchy, so we don't want
967 * to change the css.
968 */
969 template[i] = old_cset->subsys[i];
970 }
971 }
972
973 key = css_set_hash(template);
974 hash_for_each_possible(css_set_table, cset, hlist, key) {
975 if (!compare_css_sets(cset, old_cset, cgrp, template))
976 continue;
977
978 /* This css_set matches what we need */
979 return cset;
980 }
981
982 /* No existing cgroup group matched */
983 return NULL;
984 }
985
986 static void free_cgrp_cset_links(struct list_head *links_to_free)
987 {
988 struct cgrp_cset_link *link, *tmp_link;
989
990 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
991 list_del(&link->cset_link);
992 kfree(link);
993 }
994 }
995
996 /**
997 * allocate_cgrp_cset_links - allocate cgrp_cset_links
998 * @count: the number of links to allocate
999 * @tmp_links: list_head the allocated links are put on
1000 *
1001 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
1002 * through ->cset_link. Returns 0 on success or -errno.
1003 */
1004 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
1005 {
1006 struct cgrp_cset_link *link;
1007 int i;
1008
1009 INIT_LIST_HEAD(tmp_links);
1010
1011 for (i = 0; i < count; i++) {
1012 link = kzalloc(sizeof(*link), GFP_KERNEL);
1013 if (!link) {
1014 free_cgrp_cset_links(tmp_links);
1015 return -ENOMEM;
1016 }
1017 list_add(&link->cset_link, tmp_links);
1018 }
1019 return 0;
1020 }
1021
1022 /**
1023 * link_css_set - a helper function to link a css_set to a cgroup
1024 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
1025 * @cset: the css_set to be linked
1026 * @cgrp: the destination cgroup
1027 */
1028 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
1029 struct cgroup *cgrp)
1030 {
1031 struct cgrp_cset_link *link;
1032
1033 BUG_ON(list_empty(tmp_links));
1034
1035 if (cgroup_on_dfl(cgrp))
1036 cset->dfl_cgrp = cgrp;
1037
1038 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
1039 link->cset = cset;
1040 link->cgrp = cgrp;
1041
1042 /*
1043 * Always add links to the tail of the lists so that the lists are
1044 * in choronological order.
1045 */
1046 list_move_tail(&link->cset_link, &cgrp->cset_links);
1047 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
1048
1049 if (cgroup_parent(cgrp))
1050 cgroup_get(cgrp);
1051 }
1052
1053 /**
1054 * find_css_set - return a new css_set with one cgroup updated
1055 * @old_cset: the baseline css_set
1056 * @cgrp: the cgroup to be updated
1057 *
1058 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1059 * substituted into the appropriate hierarchy.
1060 */
1061 static struct css_set *find_css_set(struct css_set *old_cset,
1062 struct cgroup *cgrp)
1063 {
1064 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
1065 struct css_set *cset;
1066 struct list_head tmp_links;
1067 struct cgrp_cset_link *link;
1068 struct cgroup_subsys *ss;
1069 unsigned long key;
1070 int ssid;
1071
1072 lockdep_assert_held(&cgroup_mutex);
1073
1074 /* First see if we already have a cgroup group that matches
1075 * the desired set */
1076 spin_lock_irq(&css_set_lock);
1077 cset = find_existing_css_set(old_cset, cgrp, template);
1078 if (cset)
1079 get_css_set(cset);
1080 spin_unlock_irq(&css_set_lock);
1081
1082 if (cset)
1083 return cset;
1084
1085 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
1086 if (!cset)
1087 return NULL;
1088
1089 /* Allocate all the cgrp_cset_link objects that we'll need */
1090 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
1091 kfree(cset);
1092 return NULL;
1093 }
1094
1095 atomic_set(&cset->refcount, 1);
1096 INIT_LIST_HEAD(&cset->cgrp_links);
1097 INIT_LIST_HEAD(&cset->tasks);
1098 INIT_LIST_HEAD(&cset->mg_tasks);
1099 INIT_LIST_HEAD(&cset->mg_preload_node);
1100 INIT_LIST_HEAD(&cset->mg_node);
1101 INIT_LIST_HEAD(&cset->task_iters);
1102 INIT_HLIST_NODE(&cset->hlist);
1103
1104 /* Copy the set of subsystem state objects generated in
1105 * find_existing_css_set() */
1106 memcpy(cset->subsys, template, sizeof(cset->subsys));
1107
1108 spin_lock_irq(&css_set_lock);
1109 /* Add reference counts and links from the new css_set. */
1110 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1111 struct cgroup *c = link->cgrp;
1112
1113 if (c->root == cgrp->root)
1114 c = cgrp;
1115 link_css_set(&tmp_links, cset, c);
1116 }
1117
1118 BUG_ON(!list_empty(&tmp_links));
1119
1120 css_set_count++;
1121
1122 /* Add @cset to the hash table */
1123 key = css_set_hash(cset->subsys);
1124 hash_add(css_set_table, &cset->hlist, key);
1125
1126 for_each_subsys(ss, ssid) {
1127 struct cgroup_subsys_state *css = cset->subsys[ssid];
1128
1129 list_add_tail(&cset->e_cset_node[ssid],
1130 &css->cgroup->e_csets[ssid]);
1131 css_get(css);
1132 }
1133
1134 spin_unlock_irq(&css_set_lock);
1135
1136 return cset;
1137 }
1138
1139 static struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1140 {
1141 struct cgroup *root_cgrp = kf_root->kn->priv;
1142
1143 return root_cgrp->root;
1144 }
1145
1146 static int cgroup_init_root_id(struct cgroup_root *root)
1147 {
1148 int id;
1149
1150 lockdep_assert_held(&cgroup_mutex);
1151
1152 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1153 if (id < 0)
1154 return id;
1155
1156 root->hierarchy_id = id;
1157 return 0;
1158 }
1159
1160 static void cgroup_exit_root_id(struct cgroup_root *root)
1161 {
1162 lockdep_assert_held(&cgroup_mutex);
1163
1164 if (root->hierarchy_id) {
1165 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1166 root->hierarchy_id = 0;
1167 }
1168 }
1169
1170 static void cgroup_free_root(struct cgroup_root *root)
1171 {
1172 if (root) {
1173 /* hierarchy ID should already have been released */
1174 WARN_ON_ONCE(root->hierarchy_id);
1175
1176 idr_destroy(&root->cgroup_idr);
1177 kfree(root);
1178 }
1179 }
1180
1181 static void cgroup_destroy_root(struct cgroup_root *root)
1182 {
1183 struct cgroup *cgrp = &root->cgrp;
1184 struct cgrp_cset_link *link, *tmp_link;
1185
1186 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1187
1188 BUG_ON(atomic_read(&root->nr_cgrps));
1189 BUG_ON(!list_empty(&cgrp->self.children));
1190
1191 /* Rebind all subsystems back to the default hierarchy */
1192 WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
1193
1194 /*
1195 * Release all the links from cset_links to this hierarchy's
1196 * root cgroup
1197 */
1198 spin_lock_irq(&css_set_lock);
1199
1200 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1201 list_del(&link->cset_link);
1202 list_del(&link->cgrp_link);
1203 kfree(link);
1204 }
1205
1206 spin_unlock_irq(&css_set_lock);
1207
1208 if (!list_empty(&root->root_list)) {
1209 list_del(&root->root_list);
1210 cgroup_root_count--;
1211 }
1212
1213 cgroup_exit_root_id(root);
1214
1215 mutex_unlock(&cgroup_mutex);
1216
1217 kernfs_destroy_root(root->kf_root);
1218 cgroup_free_root(root);
1219 }
1220
1221 /*
1222 * look up cgroup associated with current task's cgroup namespace on the
1223 * specified hierarchy
1224 */
1225 static struct cgroup *
1226 current_cgns_cgroup_from_root(struct cgroup_root *root)
1227 {
1228 struct cgroup *res = NULL;
1229 struct css_set *cset;
1230
1231 lockdep_assert_held(&css_set_lock);
1232
1233 rcu_read_lock();
1234
1235 cset = current->nsproxy->cgroup_ns->root_cset;
1236 if (cset == &init_css_set) {
1237 res = &root->cgrp;
1238 } else {
1239 struct cgrp_cset_link *link;
1240
1241 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1242 struct cgroup *c = link->cgrp;
1243
1244 if (c->root == root) {
1245 res = c;
1246 break;
1247 }
1248 }
1249 }
1250 rcu_read_unlock();
1251
1252 BUG_ON(!res);
1253 return res;
1254 }
1255
1256 /* look up cgroup associated with given css_set on the specified hierarchy */
1257 static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1258 struct cgroup_root *root)
1259 {
1260 struct cgroup *res = NULL;
1261
1262 lockdep_assert_held(&cgroup_mutex);
1263 lockdep_assert_held(&css_set_lock);
1264
1265 if (cset == &init_css_set) {
1266 res = &root->cgrp;
1267 } else {
1268 struct cgrp_cset_link *link;
1269
1270 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1271 struct cgroup *c = link->cgrp;
1272
1273 if (c->root == root) {
1274 res = c;
1275 break;
1276 }
1277 }
1278 }
1279
1280 BUG_ON(!res);
1281 return res;
1282 }
1283
1284 /*
1285 * Return the cgroup for "task" from the given hierarchy. Must be
1286 * called with cgroup_mutex and css_set_lock held.
1287 */
1288 static struct cgroup *task_cgroup_from_root(struct task_struct *task,
1289 struct cgroup_root *root)
1290 {
1291 /*
1292 * No need to lock the task - since we hold cgroup_mutex the
1293 * task can't change groups, so the only thing that can happen
1294 * is that it exits and its css is set back to init_css_set.
1295 */
1296 return cset_cgroup_from_root(task_css_set(task), root);
1297 }
1298
1299 /*
1300 * A task must hold cgroup_mutex to modify cgroups.
1301 *
1302 * Any task can increment and decrement the count field without lock.
1303 * So in general, code holding cgroup_mutex can't rely on the count
1304 * field not changing. However, if the count goes to zero, then only
1305 * cgroup_attach_task() can increment it again. Because a count of zero
1306 * means that no tasks are currently attached, therefore there is no
1307 * way a task attached to that cgroup can fork (the other way to
1308 * increment the count). So code holding cgroup_mutex can safely
1309 * assume that if the count is zero, it will stay zero. Similarly, if
1310 * a task holds cgroup_mutex on a cgroup with zero count, it
1311 * knows that the cgroup won't be removed, as cgroup_rmdir()
1312 * needs that mutex.
1313 *
1314 * A cgroup can only be deleted if both its 'count' of using tasks
1315 * is zero, and its list of 'children' cgroups is empty. Since all
1316 * tasks in the system use _some_ cgroup, and since there is always at
1317 * least one task in the system (init, pid == 1), therefore, root cgroup
1318 * always has either children cgroups and/or using tasks. So we don't
1319 * need a special hack to ensure that root cgroup cannot be deleted.
1320 *
1321 * P.S. One more locking exception. RCU is used to guard the
1322 * update of a tasks cgroup pointer by cgroup_attach_task()
1323 */
1324
1325 static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1326 static const struct file_operations proc_cgroupstats_operations;
1327
1328 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1329 char *buf)
1330 {
1331 struct cgroup_subsys *ss = cft->ss;
1332
1333 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1334 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
1335 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
1336 cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1337 cft->name);
1338 else
1339 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1340 return buf;
1341 }
1342
1343 /**
1344 * cgroup_file_mode - deduce file mode of a control file
1345 * @cft: the control file in question
1346 *
1347 * S_IRUGO for read, S_IWUSR for write.
1348 */
1349 static umode_t cgroup_file_mode(const struct cftype *cft)
1350 {
1351 umode_t mode = 0;
1352
1353 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1354 mode |= S_IRUGO;
1355
1356 if (cft->write_u64 || cft->write_s64 || cft->write) {
1357 if (cft->flags & CFTYPE_WORLD_WRITABLE)
1358 mode |= S_IWUGO;
1359 else
1360 mode |= S_IWUSR;
1361 }
1362
1363 return mode;
1364 }
1365
1366 /**
1367 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1368 * @subtree_control: the new subtree_control mask to consider
1369 * @this_ss_mask: available subsystems
1370 *
1371 * On the default hierarchy, a subsystem may request other subsystems to be
1372 * enabled together through its ->depends_on mask. In such cases, more
1373 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1374 *
1375 * This function calculates which subsystems need to be enabled if
1376 * @subtree_control is to be applied while restricted to @this_ss_mask.
1377 */
1378 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
1379 {
1380 u16 cur_ss_mask = subtree_control;
1381 struct cgroup_subsys *ss;
1382 int ssid;
1383
1384 lockdep_assert_held(&cgroup_mutex);
1385
1386 cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
1387
1388 while (true) {
1389 u16 new_ss_mask = cur_ss_mask;
1390
1391 do_each_subsys_mask(ss, ssid, cur_ss_mask) {
1392 new_ss_mask |= ss->depends_on;
1393 } while_each_subsys_mask();
1394
1395 /*
1396 * Mask out subsystems which aren't available. This can
1397 * happen only if some depended-upon subsystems were bound
1398 * to non-default hierarchies.
1399 */
1400 new_ss_mask &= this_ss_mask;
1401
1402 if (new_ss_mask == cur_ss_mask)
1403 break;
1404 cur_ss_mask = new_ss_mask;
1405 }
1406
1407 return cur_ss_mask;
1408 }
1409
1410 /**
1411 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1412 * @kn: the kernfs_node being serviced
1413 *
1414 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1415 * the method finishes if locking succeeded. Note that once this function
1416 * returns the cgroup returned by cgroup_kn_lock_live() may become
1417 * inaccessible any time. If the caller intends to continue to access the
1418 * cgroup, it should pin it before invoking this function.
1419 */
1420 static void cgroup_kn_unlock(struct kernfs_node *kn)
1421 {
1422 struct cgroup *cgrp;
1423
1424 if (kernfs_type(kn) == KERNFS_DIR)
1425 cgrp = kn->priv;
1426 else
1427 cgrp = kn->parent->priv;
1428
1429 mutex_unlock(&cgroup_mutex);
1430
1431 kernfs_unbreak_active_protection(kn);
1432 cgroup_put(cgrp);
1433 }
1434
1435 /**
1436 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1437 * @kn: the kernfs_node being serviced
1438 * @drain_offline: perform offline draining on the cgroup
1439 *
1440 * This helper is to be used by a cgroup kernfs method currently servicing
1441 * @kn. It breaks the active protection, performs cgroup locking and
1442 * verifies that the associated cgroup is alive. Returns the cgroup if
1443 * alive; otherwise, %NULL. A successful return should be undone by a
1444 * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the
1445 * cgroup is drained of offlining csses before return.
1446 *
1447 * Any cgroup kernfs method implementation which requires locking the
1448 * associated cgroup should use this helper. It avoids nesting cgroup
1449 * locking under kernfs active protection and allows all kernfs operations
1450 * including self-removal.
1451 */
1452 static struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn,
1453 bool drain_offline)
1454 {
1455 struct cgroup *cgrp;
1456
1457 if (kernfs_type(kn) == KERNFS_DIR)
1458 cgrp = kn->priv;
1459 else
1460 cgrp = kn->parent->priv;
1461
1462 /*
1463 * We're gonna grab cgroup_mutex which nests outside kernfs
1464 * active_ref. cgroup liveliness check alone provides enough
1465 * protection against removal. Ensure @cgrp stays accessible and
1466 * break the active_ref protection.
1467 */
1468 if (!cgroup_tryget(cgrp))
1469 return NULL;
1470 kernfs_break_active_protection(kn);
1471
1472 if (drain_offline)
1473 cgroup_lock_and_drain_offline(cgrp);
1474 else
1475 mutex_lock(&cgroup_mutex);
1476
1477 if (!cgroup_is_dead(cgrp))
1478 return cgrp;
1479
1480 cgroup_kn_unlock(kn);
1481 return NULL;
1482 }
1483
1484 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1485 {
1486 char name[CGROUP_FILE_NAME_MAX];
1487
1488 lockdep_assert_held(&cgroup_mutex);
1489
1490 if (cft->file_offset) {
1491 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1492 struct cgroup_file *cfile = (void *)css + cft->file_offset;
1493
1494 spin_lock_irq(&cgroup_file_kn_lock);
1495 cfile->kn = NULL;
1496 spin_unlock_irq(&cgroup_file_kn_lock);
1497 }
1498
1499 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1500 }
1501
1502 /**
1503 * css_clear_dir - remove subsys files in a cgroup directory
1504 * @css: taget css
1505 */
1506 static void css_clear_dir(struct cgroup_subsys_state *css)
1507 {
1508 struct cgroup *cgrp = css->cgroup;
1509 struct cftype *cfts;
1510
1511 if (!(css->flags & CSS_VISIBLE))
1512 return;
1513
1514 css->flags &= ~CSS_VISIBLE;
1515
1516 list_for_each_entry(cfts, &css->ss->cfts, node)
1517 cgroup_addrm_files(css, cgrp, cfts, false);
1518 }
1519
1520 /**
1521 * css_populate_dir - create subsys files in a cgroup directory
1522 * @css: target css
1523 *
1524 * On failure, no file is added.
1525 */
1526 static int css_populate_dir(struct cgroup_subsys_state *css)
1527 {
1528 struct cgroup *cgrp = css->cgroup;
1529 struct cftype *cfts, *failed_cfts;
1530 int ret;
1531
1532 if ((css->flags & CSS_VISIBLE) || !cgrp->kn)
1533 return 0;
1534
1535 if (!css->ss) {
1536 if (cgroup_on_dfl(cgrp))
1537 cfts = cgroup_dfl_base_files;
1538 else
1539 cfts = cgroup_legacy_base_files;
1540
1541 return cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1542 }
1543
1544 list_for_each_entry(cfts, &css->ss->cfts, node) {
1545 ret = cgroup_addrm_files(css, cgrp, cfts, true);
1546 if (ret < 0) {
1547 failed_cfts = cfts;
1548 goto err;
1549 }
1550 }
1551
1552 css->flags |= CSS_VISIBLE;
1553
1554 return 0;
1555 err:
1556 list_for_each_entry(cfts, &css->ss->cfts, node) {
1557 if (cfts == failed_cfts)
1558 break;
1559 cgroup_addrm_files(css, cgrp, cfts, false);
1560 }
1561 return ret;
1562 }
1563
1564 static int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
1565 {
1566 struct cgroup *dcgrp = &dst_root->cgrp;
1567 struct cgroup_subsys *ss;
1568 int ssid, i, ret;
1569
1570 lockdep_assert_held(&cgroup_mutex);
1571
1572 do_each_subsys_mask(ss, ssid, ss_mask) {
1573 /*
1574 * If @ss has non-root csses attached to it, can't move.
1575 * If @ss is an implicit controller, it is exempt from this
1576 * rule and can be stolen.
1577 */
1578 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
1579 !ss->implicit_on_dfl)
1580 return -EBUSY;
1581
1582 /* can't move between two non-dummy roots either */
1583 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1584 return -EBUSY;
1585 } while_each_subsys_mask();
1586
1587 do_each_subsys_mask(ss, ssid, ss_mask) {
1588 struct cgroup_root *src_root = ss->root;
1589 struct cgroup *scgrp = &src_root->cgrp;
1590 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1591 struct css_set *cset;
1592
1593 WARN_ON(!css || cgroup_css(dcgrp, ss));
1594
1595 /* disable from the source */
1596 src_root->subsys_mask &= ~(1 << ssid);
1597 WARN_ON(cgroup_apply_control(scgrp));
1598 cgroup_finalize_control(scgrp, 0);
1599
1600 /* rebind */
1601 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1602 rcu_assign_pointer(dcgrp->subsys[ssid], css);
1603 ss->root = dst_root;
1604 css->cgroup = dcgrp;
1605
1606 spin_lock_irq(&css_set_lock);
1607 hash_for_each(css_set_table, i, cset, hlist)
1608 list_move_tail(&cset->e_cset_node[ss->id],
1609 &dcgrp->e_csets[ss->id]);
1610 spin_unlock_irq(&css_set_lock);
1611
1612 /* default hierarchy doesn't enable controllers by default */
1613 dst_root->subsys_mask |= 1 << ssid;
1614 if (dst_root == &cgrp_dfl_root) {
1615 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1616 } else {
1617 dcgrp->subtree_control |= 1 << ssid;
1618 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1619 }
1620
1621 ret = cgroup_apply_control(dcgrp);
1622 if (ret)
1623 pr_warn("partial failure to rebind %s controller (err=%d)\n",
1624 ss->name, ret);
1625
1626 if (ss->bind)
1627 ss->bind(css);
1628 } while_each_subsys_mask();
1629
1630 kernfs_activate(dcgrp->kn);
1631 return 0;
1632 }
1633
1634 static int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
1635 struct kernfs_root *kf_root)
1636 {
1637 int len = 0;
1638 char *buf = NULL;
1639 struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
1640 struct cgroup *ns_cgroup;
1641
1642 buf = kmalloc(PATH_MAX, GFP_KERNEL);
1643 if (!buf)
1644 return -ENOMEM;
1645
1646 spin_lock_irq(&css_set_lock);
1647 ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot);
1648 len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX);
1649 spin_unlock_irq(&css_set_lock);
1650
1651 if (len >= PATH_MAX)
1652 len = -ERANGE;
1653 else if (len > 0) {
1654 seq_escape(sf, buf, " \t\n\\");
1655 len = 0;
1656 }
1657 kfree(buf);
1658 return len;
1659 }
1660
1661 static int cgroup_show_options(struct seq_file *seq,
1662 struct kernfs_root *kf_root)
1663 {
1664 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1665 struct cgroup_subsys *ss;
1666 int ssid;
1667
1668 if (root != &cgrp_dfl_root)
1669 for_each_subsys(ss, ssid)
1670 if (root->subsys_mask & (1 << ssid))
1671 seq_show_option(seq, ss->legacy_name, NULL);
1672 if (root->flags & CGRP_ROOT_NOPREFIX)
1673 seq_puts(seq, ",noprefix");
1674 if (root->flags & CGRP_ROOT_XATTR)
1675 seq_puts(seq, ",xattr");
1676
1677 spin_lock(&release_agent_path_lock);
1678 if (strlen(root->release_agent_path))
1679 seq_show_option(seq, "release_agent",
1680 root->release_agent_path);
1681 spin_unlock(&release_agent_path_lock);
1682
1683 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
1684 seq_puts(seq, ",clone_children");
1685 if (strlen(root->name))
1686 seq_show_option(seq, "name", root->name);
1687 return 0;
1688 }
1689
1690 struct cgroup_sb_opts {
1691 u16 subsys_mask;
1692 unsigned int flags;
1693 char *release_agent;
1694 bool cpuset_clone_children;
1695 char *name;
1696 /* User explicitly requested empty subsystem */
1697 bool none;
1698 };
1699
1700 static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
1701 {
1702 char *token, *o = data;
1703 bool all_ss = false, one_ss = false;
1704 u16 mask = U16_MAX;
1705 struct cgroup_subsys *ss;
1706 int nr_opts = 0;
1707 int i;
1708
1709 #ifdef CONFIG_CPUSETS
1710 mask = ~((u16)1 << cpuset_cgrp_id);
1711 #endif
1712
1713 memset(opts, 0, sizeof(*opts));
1714
1715 while ((token = strsep(&o, ",")) != NULL) {
1716 nr_opts++;
1717
1718 if (!*token)
1719 return -EINVAL;
1720 if (!strcmp(token, "none")) {
1721 /* Explicitly have no subsystems */
1722 opts->none = true;
1723 continue;
1724 }
1725 if (!strcmp(token, "all")) {
1726 /* Mutually exclusive option 'all' + subsystem name */
1727 if (one_ss)
1728 return -EINVAL;
1729 all_ss = true;
1730 continue;
1731 }
1732 if (!strcmp(token, "noprefix")) {
1733 opts->flags |= CGRP_ROOT_NOPREFIX;
1734 continue;
1735 }
1736 if (!strcmp(token, "clone_children")) {
1737 opts->cpuset_clone_children = true;
1738 continue;
1739 }
1740 if (!strcmp(token, "xattr")) {
1741 opts->flags |= CGRP_ROOT_XATTR;
1742 continue;
1743 }
1744 if (!strncmp(token, "release_agent=", 14)) {
1745 /* Specifying two release agents is forbidden */
1746 if (opts->release_agent)
1747 return -EINVAL;
1748 opts->release_agent =
1749 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
1750 if (!opts->release_agent)
1751 return -ENOMEM;
1752 continue;
1753 }
1754 if (!strncmp(token, "name=", 5)) {
1755 const char *name = token + 5;
1756 /* Can't specify an empty name */
1757 if (!strlen(name))
1758 return -EINVAL;
1759 /* Must match [\w.-]+ */
1760 for (i = 0; i < strlen(name); i++) {
1761 char c = name[i];
1762 if (isalnum(c))
1763 continue;
1764 if ((c == '.') || (c == '-') || (c == '_'))
1765 continue;
1766 return -EINVAL;
1767 }
1768 /* Specifying two names is forbidden */
1769 if (opts->name)
1770 return -EINVAL;
1771 opts->name = kstrndup(name,
1772 MAX_CGROUP_ROOT_NAMELEN - 1,
1773 GFP_KERNEL);
1774 if (!opts->name)
1775 return -ENOMEM;
1776
1777 continue;
1778 }
1779
1780 for_each_subsys(ss, i) {
1781 if (strcmp(token, ss->legacy_name))
1782 continue;
1783 if (!cgroup_ssid_enabled(i))
1784 continue;
1785 if (cgroup_ssid_no_v1(i))
1786 continue;
1787
1788 /* Mutually exclusive option 'all' + subsystem name */
1789 if (all_ss)
1790 return -EINVAL;
1791 opts->subsys_mask |= (1 << i);
1792 one_ss = true;
1793
1794 break;
1795 }
1796 if (i == CGROUP_SUBSYS_COUNT)
1797 return -ENOENT;
1798 }
1799
1800 /*
1801 * If the 'all' option was specified select all the subsystems,
1802 * otherwise if 'none', 'name=' and a subsystem name options were
1803 * not specified, let's default to 'all'
1804 */
1805 if (all_ss || (!one_ss && !opts->none && !opts->name))
1806 for_each_subsys(ss, i)
1807 if (cgroup_ssid_enabled(i) && !cgroup_ssid_no_v1(i))
1808 opts->subsys_mask |= (1 << i);
1809
1810 /*
1811 * We either have to specify by name or by subsystems. (So all
1812 * empty hierarchies must have a name).
1813 */
1814 if (!opts->subsys_mask && !opts->name)
1815 return -EINVAL;
1816
1817 /*
1818 * Option noprefix was introduced just for backward compatibility
1819 * with the old cpuset, so we allow noprefix only if mounting just
1820 * the cpuset subsystem.
1821 */
1822 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
1823 return -EINVAL;
1824
1825 /* Can't specify "none" and some subsystems */
1826 if (opts->subsys_mask && opts->none)
1827 return -EINVAL;
1828
1829 return 0;
1830 }
1831
1832 static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
1833 {
1834 int ret = 0;
1835 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1836 struct cgroup_sb_opts opts;
1837 u16 added_mask, removed_mask;
1838
1839 if (root == &cgrp_dfl_root) {
1840 pr_err("remount is not allowed\n");
1841 return -EINVAL;
1842 }
1843
1844 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1845
1846 /* See what subsystems are wanted */
1847 ret = parse_cgroupfs_options(data, &opts);
1848 if (ret)
1849 goto out_unlock;
1850
1851 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
1852 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
1853 task_tgid_nr(current), current->comm);
1854
1855 added_mask = opts.subsys_mask & ~root->subsys_mask;
1856 removed_mask = root->subsys_mask & ~opts.subsys_mask;
1857
1858 /* Don't allow flags or name to change at remount */
1859 if ((opts.flags ^ root->flags) ||
1860 (opts.name && strcmp(opts.name, root->name))) {
1861 pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n",
1862 opts.flags, opts.name ?: "", root->flags, root->name);
1863 ret = -EINVAL;
1864 goto out_unlock;
1865 }
1866
1867 /* remounting is not allowed for populated hierarchies */
1868 if (!list_empty(&root->cgrp.self.children)) {
1869 ret = -EBUSY;
1870 goto out_unlock;
1871 }
1872
1873 ret = rebind_subsystems(root, added_mask);
1874 if (ret)
1875 goto out_unlock;
1876
1877 WARN_ON(rebind_subsystems(&cgrp_dfl_root, removed_mask));
1878
1879 if (opts.release_agent) {
1880 spin_lock(&release_agent_path_lock);
1881 strcpy(root->release_agent_path, opts.release_agent);
1882 spin_unlock(&release_agent_path_lock);
1883 }
1884 out_unlock:
1885 kfree(opts.release_agent);
1886 kfree(opts.name);
1887 mutex_unlock(&cgroup_mutex);
1888 return ret;
1889 }
1890
1891 /*
1892 * To reduce the fork() overhead for systems that are not actually using
1893 * their cgroups capability, we don't maintain the lists running through
1894 * each css_set to its tasks until we see the list actually used - in other
1895 * words after the first mount.
1896 */
1897 static bool use_task_css_set_links __read_mostly;
1898
1899 static void cgroup_enable_task_cg_lists(void)
1900 {
1901 struct task_struct *p, *g;
1902
1903 spin_lock_irq(&css_set_lock);
1904
1905 if (use_task_css_set_links)
1906 goto out_unlock;
1907
1908 use_task_css_set_links = true;
1909
1910 /*
1911 * We need tasklist_lock because RCU is not safe against
1912 * while_each_thread(). Besides, a forking task that has passed
1913 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1914 * is not guaranteed to have its child immediately visible in the
1915 * tasklist if we walk through it with RCU.
1916 */
1917 read_lock(&tasklist_lock);
1918 do_each_thread(g, p) {
1919 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1920 task_css_set(p) != &init_css_set);
1921
1922 /*
1923 * We should check if the process is exiting, otherwise
1924 * it will race with cgroup_exit() in that the list
1925 * entry won't be deleted though the process has exited.
1926 * Do it while holding siglock so that we don't end up
1927 * racing against cgroup_exit().
1928 *
1929 * Interrupts were already disabled while acquiring
1930 * the css_set_lock, so we do not need to disable it
1931 * again when acquiring the sighand->siglock here.
1932 */
1933 spin_lock(&p->sighand->siglock);
1934 if (!(p->flags & PF_EXITING)) {
1935 struct css_set *cset = task_css_set(p);
1936
1937 if (!css_set_populated(cset))
1938 css_set_update_populated(cset, true);
1939 list_add_tail(&p->cg_list, &cset->tasks);
1940 get_css_set(cset);
1941 }
1942 spin_unlock(&p->sighand->siglock);
1943 } while_each_thread(g, p);
1944 read_unlock(&tasklist_lock);
1945 out_unlock:
1946 spin_unlock_irq(&css_set_lock);
1947 }
1948
1949 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1950 {
1951 struct cgroup_subsys *ss;
1952 int ssid;
1953
1954 INIT_LIST_HEAD(&cgrp->self.sibling);
1955 INIT_LIST_HEAD(&cgrp->self.children);
1956 INIT_LIST_HEAD(&cgrp->cset_links);
1957 INIT_LIST_HEAD(&cgrp->pidlists);
1958 mutex_init(&cgrp->pidlist_mutex);
1959 cgrp->self.cgroup = cgrp;
1960 cgrp->self.flags |= CSS_ONLINE;
1961
1962 for_each_subsys(ss, ssid)
1963 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
1964
1965 init_waitqueue_head(&cgrp->offline_waitq);
1966 INIT_WORK(&cgrp->release_agent_work, cgroup_release_agent);
1967 }
1968
1969 static void init_cgroup_root(struct cgroup_root *root,
1970 struct cgroup_sb_opts *opts)
1971 {
1972 struct cgroup *cgrp = &root->cgrp;
1973
1974 INIT_LIST_HEAD(&root->root_list);
1975 atomic_set(&root->nr_cgrps, 1);
1976 cgrp->root = root;
1977 init_cgroup_housekeeping(cgrp);
1978 idr_init(&root->cgroup_idr);
1979
1980 root->flags = opts->flags;
1981 if (opts->release_agent)
1982 strcpy(root->release_agent_path, opts->release_agent);
1983 if (opts->name)
1984 strcpy(root->name, opts->name);
1985 if (opts->cpuset_clone_children)
1986 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
1987 }
1988
1989 static int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask)
1990 {
1991 LIST_HEAD(tmp_links);
1992 struct cgroup *root_cgrp = &root->cgrp;
1993 struct css_set *cset;
1994 int i, ret;
1995
1996 lockdep_assert_held(&cgroup_mutex);
1997
1998 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL);
1999 if (ret < 0)
2000 goto out;
2001 root_cgrp->id = ret;
2002 root_cgrp->ancestor_ids[0] = ret;
2003
2004 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 0,
2005 GFP_KERNEL);
2006 if (ret)
2007 goto out;
2008
2009 /*
2010 * We're accessing css_set_count without locking css_set_lock here,
2011 * but that's OK - it can only be increased by someone holding
2012 * cgroup_lock, and that's us. Later rebinding may disable
2013 * controllers on the default hierarchy and thus create new csets,
2014 * which can't be more than the existing ones. Allocate 2x.
2015 */
2016 ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
2017 if (ret)
2018 goto cancel_ref;
2019
2020 ret = cgroup_init_root_id(root);
2021 if (ret)
2022 goto cancel_ref;
2023
2024 root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops,
2025 KERNFS_ROOT_CREATE_DEACTIVATED,
2026 root_cgrp);
2027 if (IS_ERR(root->kf_root)) {
2028 ret = PTR_ERR(root->kf_root);
2029 goto exit_root_id;
2030 }
2031 root_cgrp->kn = root->kf_root->kn;
2032
2033 ret = css_populate_dir(&root_cgrp->self);
2034 if (ret)
2035 goto destroy_root;
2036
2037 ret = rebind_subsystems(root, ss_mask);
2038 if (ret)
2039 goto destroy_root;
2040
2041 /*
2042 * There must be no failure case after here, since rebinding takes
2043 * care of subsystems' refcounts, which are explicitly dropped in
2044 * the failure exit path.
2045 */
2046 list_add(&root->root_list, &cgroup_roots);
2047 cgroup_root_count++;
2048
2049 /*
2050 * Link the root cgroup in this hierarchy into all the css_set
2051 * objects.
2052 */
2053 spin_lock_irq(&css_set_lock);
2054 hash_for_each(css_set_table, i, cset, hlist) {
2055 link_css_set(&tmp_links, cset, root_cgrp);
2056 if (css_set_populated(cset))
2057 cgroup_update_populated(root_cgrp, true);
2058 }
2059 spin_unlock_irq(&css_set_lock);
2060
2061 BUG_ON(!list_empty(&root_cgrp->self.children));
2062 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
2063
2064 kernfs_activate(root_cgrp->kn);
2065 ret = 0;
2066 goto out;
2067
2068 destroy_root:
2069 kernfs_destroy_root(root->kf_root);
2070 root->kf_root = NULL;
2071 exit_root_id:
2072 cgroup_exit_root_id(root);
2073 cancel_ref:
2074 percpu_ref_exit(&root_cgrp->self.refcnt);
2075 out:
2076 free_cgrp_cset_links(&tmp_links);
2077 return ret;
2078 }
2079
2080 static struct dentry *cgroup_mount(struct file_system_type *fs_type,
2081 int flags, const char *unused_dev_name,
2082 void *data)
2083 {
2084 bool is_v2 = fs_type == &cgroup2_fs_type;
2085 struct super_block *pinned_sb = NULL;
2086 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
2087 struct cgroup_subsys *ss;
2088 struct cgroup_root *root;
2089 struct cgroup_sb_opts opts;
2090 struct dentry *dentry;
2091 int ret;
2092 int i;
2093 bool new_sb;
2094
2095 get_cgroup_ns(ns);
2096
2097 /* Check if the caller has permission to mount. */
2098 if (!ns_capable(ns->user_ns, CAP_SYS_ADMIN)) {
2099 put_cgroup_ns(ns);
2100 return ERR_PTR(-EPERM);
2101 }
2102
2103 /*
2104 * The first time anyone tries to mount a cgroup, enable the list
2105 * linking each css_set to its tasks and fix up all existing tasks.
2106 */
2107 if (!use_task_css_set_links)
2108 cgroup_enable_task_cg_lists();
2109
2110 if (is_v2) {
2111 if (data) {
2112 pr_err("cgroup2: unknown option \"%s\"\n", (char *)data);
2113 put_cgroup_ns(ns);
2114 return ERR_PTR(-EINVAL);
2115 }
2116 cgrp_dfl_visible = true;
2117 root = &cgrp_dfl_root;
2118 cgroup_get(&root->cgrp);
2119 goto out_mount;
2120 }
2121
2122 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
2123
2124 /* First find the desired set of subsystems */
2125 ret = parse_cgroupfs_options(data, &opts);
2126 if (ret)
2127 goto out_unlock;
2128
2129 /*
2130 * Destruction of cgroup root is asynchronous, so subsystems may
2131 * still be dying after the previous unmount. Let's drain the
2132 * dying subsystems. We just need to ensure that the ones
2133 * unmounted previously finish dying and don't care about new ones
2134 * starting. Testing ref liveliness is good enough.
2135 */
2136 for_each_subsys(ss, i) {
2137 if (!(opts.subsys_mask & (1 << i)) ||
2138 ss->root == &cgrp_dfl_root)
2139 continue;
2140
2141 if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) {
2142 mutex_unlock(&cgroup_mutex);
2143 msleep(10);
2144 ret = restart_syscall();
2145 goto out_free;
2146 }
2147 cgroup_put(&ss->root->cgrp);
2148 }
2149
2150 for_each_root(root) {
2151 bool name_match = false;
2152
2153 if (root == &cgrp_dfl_root)
2154 continue;
2155
2156 /*
2157 * If we asked for a name then it must match. Also, if
2158 * name matches but sybsys_mask doesn't, we should fail.
2159 * Remember whether name matched.
2160 */
2161 if (opts.name) {
2162 if (strcmp(opts.name, root->name))
2163 continue;
2164 name_match = true;
2165 }
2166
2167 /*
2168 * If we asked for subsystems (or explicitly for no
2169 * subsystems) then they must match.
2170 */
2171 if ((opts.subsys_mask || opts.none) &&
2172 (opts.subsys_mask != root->subsys_mask)) {
2173 if (!name_match)
2174 continue;
2175 ret = -EBUSY;
2176 goto out_unlock;
2177 }
2178
2179 if (root->flags ^ opts.flags)
2180 pr_warn("new mount options do not match the existing superblock, will be ignored\n");
2181
2182 /*
2183 * We want to reuse @root whose lifetime is governed by its
2184 * ->cgrp. Let's check whether @root is alive and keep it
2185 * that way. As cgroup_kill_sb() can happen anytime, we
2186 * want to block it by pinning the sb so that @root doesn't
2187 * get killed before mount is complete.
2188 *
2189 * With the sb pinned, tryget_live can reliably indicate
2190 * whether @root can be reused. If it's being killed,
2191 * drain it. We can use wait_queue for the wait but this
2192 * path is super cold. Let's just sleep a bit and retry.
2193 */
2194 pinned_sb = kernfs_pin_sb(root->kf_root, NULL);
2195 if (IS_ERR(pinned_sb) ||
2196 !percpu_ref_tryget_live(&root->cgrp.self.refcnt)) {
2197 mutex_unlock(&cgroup_mutex);
2198 if (!IS_ERR_OR_NULL(pinned_sb))
2199 deactivate_super(pinned_sb);
2200 msleep(10);
2201 ret = restart_syscall();
2202 goto out_free;
2203 }
2204
2205 ret = 0;
2206 goto out_unlock;
2207 }
2208
2209 /*
2210 * No such thing, create a new one. name= matching without subsys
2211 * specification is allowed for already existing hierarchies but we
2212 * can't create new one without subsys specification.
2213 */
2214 if (!opts.subsys_mask && !opts.none) {
2215 ret = -EINVAL;
2216 goto out_unlock;
2217 }
2218
2219 /*
2220 * We know this subsystem has not yet been bound. Users in a non-init
2221 * user namespace may only mount hierarchies with no bound subsystems,
2222 * i.e. 'none,name=user1'
2223 */
2224 if (!opts.none && !capable(CAP_SYS_ADMIN)) {
2225 ret = -EPERM;
2226 goto out_unlock;
2227 }
2228
2229 root = kzalloc(sizeof(*root), GFP_KERNEL);
2230 if (!root) {
2231 ret = -ENOMEM;
2232 goto out_unlock;
2233 }
2234
2235 init_cgroup_root(root, &opts);
2236
2237 ret = cgroup_setup_root(root, opts.subsys_mask);
2238 if (ret)
2239 cgroup_free_root(root);
2240
2241 out_unlock:
2242 mutex_unlock(&cgroup_mutex);
2243 out_free:
2244 kfree(opts.release_agent);
2245 kfree(opts.name);
2246
2247 if (ret) {
2248 put_cgroup_ns(ns);
2249 return ERR_PTR(ret);
2250 }
2251 out_mount:
2252 dentry = kernfs_mount(fs_type, flags, root->kf_root,
2253 is_v2 ? CGROUP2_SUPER_MAGIC : CGROUP_SUPER_MAGIC,
2254 &new_sb);
2255
2256 /*
2257 * In non-init cgroup namespace, instead of root cgroup's
2258 * dentry, we return the dentry corresponding to the
2259 * cgroupns->root_cgrp.
2260 */
2261 if (!IS_ERR(dentry) && ns != &init_cgroup_ns) {
2262 struct dentry *nsdentry;
2263 struct cgroup *cgrp;
2264
2265 mutex_lock(&cgroup_mutex);
2266 spin_lock_irq(&css_set_lock);
2267
2268 cgrp = cset_cgroup_from_root(ns->root_cset, root);
2269
2270 spin_unlock_irq(&css_set_lock);
2271 mutex_unlock(&cgroup_mutex);
2272
2273 nsdentry = kernfs_node_dentry(cgrp->kn, dentry->d_sb);
2274 dput(dentry);
2275 dentry = nsdentry;
2276 }
2277
2278 if (IS_ERR(dentry) || !new_sb)
2279 cgroup_put(&root->cgrp);
2280
2281 /*
2282 * If @pinned_sb, we're reusing an existing root and holding an
2283 * extra ref on its sb. Mount is complete. Put the extra ref.
2284 */
2285 if (pinned_sb) {
2286 WARN_ON(new_sb);
2287 deactivate_super(pinned_sb);
2288 }
2289
2290 put_cgroup_ns(ns);
2291 return dentry;
2292 }
2293
2294 static void cgroup_kill_sb(struct super_block *sb)
2295 {
2296 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2297 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2298
2299 /*
2300 * If @root doesn't have any mounts or children, start killing it.
2301 * This prevents new mounts by disabling percpu_ref_tryget_live().
2302 * cgroup_mount() may wait for @root's release.
2303 *
2304 * And don't kill the default root.
2305 */
2306 if (!list_empty(&root->cgrp.self.children) ||
2307 root == &cgrp_dfl_root)
2308 cgroup_put(&root->cgrp);
2309 else
2310 percpu_ref_kill(&root->cgrp.self.refcnt);
2311
2312 kernfs_kill_sb(sb);
2313 }
2314
2315 static struct file_system_type cgroup_fs_type = {
2316 .name = "cgroup",
2317 .mount = cgroup_mount,
2318 .kill_sb = cgroup_kill_sb,
2319 .fs_flags = FS_USERNS_MOUNT,
2320 };
2321
2322 static struct file_system_type cgroup2_fs_type = {
2323 .name = "cgroup2",
2324 .mount = cgroup_mount,
2325 .kill_sb = cgroup_kill_sb,
2326 .fs_flags = FS_USERNS_MOUNT,
2327 };
2328
2329 static char *cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
2330 struct cgroup_namespace *ns)
2331 {
2332 struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
2333 int ret;
2334
2335 ret = kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
2336 if (ret < 0 || ret >= buflen)
2337 return NULL;
2338 return buf;
2339 }
2340
2341 char *cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
2342 struct cgroup_namespace *ns)
2343 {
2344 char *ret;
2345
2346 mutex_lock(&cgroup_mutex);
2347 spin_lock_irq(&css_set_lock);
2348
2349 ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
2350
2351 spin_unlock_irq(&css_set_lock);
2352 mutex_unlock(&cgroup_mutex);
2353
2354 return ret;
2355 }
2356 EXPORT_SYMBOL_GPL(cgroup_path_ns);
2357
2358 /**
2359 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
2360 * @task: target task
2361 * @buf: the buffer to write the path into
2362 * @buflen: the length of the buffer
2363 *
2364 * Determine @task's cgroup on the first (the one with the lowest non-zero
2365 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
2366 * function grabs cgroup_mutex and shouldn't be used inside locks used by
2367 * cgroup controller callbacks.
2368 *
2369 * Return value is the same as kernfs_path().
2370 */
2371 char *task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
2372 {
2373 struct cgroup_root *root;
2374 struct cgroup *cgrp;
2375 int hierarchy_id = 1;
2376 char *path = NULL;
2377
2378 mutex_lock(&cgroup_mutex);
2379 spin_lock_irq(&css_set_lock);
2380
2381 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2382
2383 if (root) {
2384 cgrp = task_cgroup_from_root(task, root);
2385 path = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns);
2386 } else {
2387 /* if no hierarchy exists, everyone is in "/" */
2388 if (strlcpy(buf, "/", buflen) < buflen)
2389 path = buf;
2390 }
2391
2392 spin_unlock_irq(&css_set_lock);
2393 mutex_unlock(&cgroup_mutex);
2394 return path;
2395 }
2396 EXPORT_SYMBOL_GPL(task_cgroup_path);
2397
2398 /* used to track tasks and other necessary states during migration */
2399 struct cgroup_taskset {
2400 /* the src and dst cset list running through cset->mg_node */
2401 struct list_head src_csets;
2402 struct list_head dst_csets;
2403
2404 /* the subsys currently being processed */
2405 int ssid;
2406
2407 /*
2408 * Fields for cgroup_taskset_*() iteration.
2409 *
2410 * Before migration is committed, the target migration tasks are on
2411 * ->mg_tasks of the csets on ->src_csets. After, on ->mg_tasks of
2412 * the csets on ->dst_csets. ->csets point to either ->src_csets
2413 * or ->dst_csets depending on whether migration is committed.
2414 *
2415 * ->cur_csets and ->cur_task point to the current task position
2416 * during iteration.
2417 */
2418 struct list_head *csets;
2419 struct css_set *cur_cset;
2420 struct task_struct *cur_task;
2421 };
2422
2423 #define CGROUP_TASKSET_INIT(tset) (struct cgroup_taskset){ \
2424 .src_csets = LIST_HEAD_INIT(tset.src_csets), \
2425 .dst_csets = LIST_HEAD_INIT(tset.dst_csets), \
2426 .csets = &tset.src_csets, \
2427 }
2428
2429 /**
2430 * cgroup_taskset_add - try to add a migration target task to a taskset
2431 * @task: target task
2432 * @tset: target taskset
2433 *
2434 * Add @task, which is a migration target, to @tset. This function becomes
2435 * noop if @task doesn't need to be migrated. @task's css_set should have
2436 * been added as a migration source and @task->cg_list will be moved from
2437 * the css_set's tasks list to mg_tasks one.
2438 */
2439 static void cgroup_taskset_add(struct task_struct *task,
2440 struct cgroup_taskset *tset)
2441 {
2442 struct css_set *cset;
2443
2444 lockdep_assert_held(&css_set_lock);
2445
2446 /* @task either already exited or can't exit until the end */
2447 if (task->flags & PF_EXITING)
2448 return;
2449
2450 /* leave @task alone if post_fork() hasn't linked it yet */
2451 if (list_empty(&task->cg_list))
2452 return;
2453
2454 cset = task_css_set(task);
2455 if (!cset->mg_src_cgrp)
2456 return;
2457
2458 list_move_tail(&task->cg_list, &cset->mg_tasks);
2459 if (list_empty(&cset->mg_node))
2460 list_add_tail(&cset->mg_node, &tset->src_csets);
2461 if (list_empty(&cset->mg_dst_cset->mg_node))
2462 list_move_tail(&cset->mg_dst_cset->mg_node,
2463 &tset->dst_csets);
2464 }
2465
2466 /**
2467 * cgroup_taskset_first - reset taskset and return the first task
2468 * @tset: taskset of interest
2469 * @dst_cssp: output variable for the destination css
2470 *
2471 * @tset iteration is initialized and the first task is returned.
2472 */
2473 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2474 struct cgroup_subsys_state **dst_cssp)
2475 {
2476 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2477 tset->cur_task = NULL;
2478
2479 return cgroup_taskset_next(tset, dst_cssp);
2480 }
2481
2482 /**
2483 * cgroup_taskset_next - iterate to the next task in taskset
2484 * @tset: taskset of interest
2485 * @dst_cssp: output variable for the destination css
2486 *
2487 * Return the next task in @tset. Iteration must have been initialized
2488 * with cgroup_taskset_first().
2489 */
2490 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2491 struct cgroup_subsys_state **dst_cssp)
2492 {
2493 struct css_set *cset = tset->cur_cset;
2494 struct task_struct *task = tset->cur_task;
2495
2496 while (&cset->mg_node != tset->csets) {
2497 if (!task)
2498 task = list_first_entry(&cset->mg_tasks,
2499 struct task_struct, cg_list);
2500 else
2501 task = list_next_entry(task, cg_list);
2502
2503 if (&task->cg_list != &cset->mg_tasks) {
2504 tset->cur_cset = cset;
2505 tset->cur_task = task;
2506
2507 /*
2508 * This function may be called both before and
2509 * after cgroup_taskset_migrate(). The two cases
2510 * can be distinguished by looking at whether @cset
2511 * has its ->mg_dst_cset set.
2512 */
2513 if (cset->mg_dst_cset)
2514 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2515 else
2516 *dst_cssp = cset->subsys[tset->ssid];
2517
2518 return task;
2519 }
2520
2521 cset = list_next_entry(cset, mg_node);
2522 task = NULL;
2523 }
2524
2525 return NULL;
2526 }
2527
2528 /**
2529 * cgroup_taskset_migrate - migrate a taskset
2530 * @tset: taget taskset
2531 * @root: cgroup root the migration is taking place on
2532 *
2533 * Migrate tasks in @tset as setup by migration preparation functions.
2534 * This function fails iff one of the ->can_attach callbacks fails and
2535 * guarantees that either all or none of the tasks in @tset are migrated.
2536 * @tset is consumed regardless of success.
2537 */
2538 static int cgroup_taskset_migrate(struct cgroup_taskset *tset,
2539 struct cgroup_root *root)
2540 {
2541 struct cgroup_subsys *ss;
2542 struct task_struct *task, *tmp_task;
2543 struct css_set *cset, *tmp_cset;
2544 int ssid, failed_ssid, ret;
2545
2546 /* methods shouldn't be called if no task is actually migrating */
2547 if (list_empty(&tset->src_csets))
2548 return 0;
2549
2550 /* check that we can legitimately attach to the cgroup */
2551 do_each_subsys_mask(ss, ssid, root->subsys_mask) {
2552 if (ss->can_attach) {
2553 tset->ssid = ssid;
2554 ret = ss->can_attach(tset);
2555 if (ret) {
2556 failed_ssid = ssid;
2557 goto out_cancel_attach;
2558 }
2559 }
2560 } while_each_subsys_mask();
2561
2562 /*
2563 * Now that we're guaranteed success, proceed to move all tasks to
2564 * the new cgroup. There are no failure cases after here, so this
2565 * is the commit point.
2566 */
2567 spin_lock_irq(&css_set_lock);
2568 list_for_each_entry(cset, &tset->src_csets, mg_node) {
2569 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2570 struct css_set *from_cset = task_css_set(task);
2571 struct css_set *to_cset = cset->mg_dst_cset;
2572
2573 get_css_set(to_cset);
2574 css_set_move_task(task, from_cset, to_cset, true);
2575 put_css_set_locked(from_cset);
2576 }
2577 }
2578 spin_unlock_irq(&css_set_lock);
2579
2580 /*
2581 * Migration is committed, all target tasks are now on dst_csets.
2582 * Nothing is sensitive to fork() after this point. Notify
2583 * controllers that migration is complete.
2584 */
2585 tset->csets = &tset->dst_csets;
2586
2587 do_each_subsys_mask(ss, ssid, root->subsys_mask) {
2588 if (ss->attach) {
2589 tset->ssid = ssid;
2590 ss->attach(tset);
2591 }
2592 } while_each_subsys_mask();
2593
2594 ret = 0;
2595 goto out_release_tset;
2596
2597 out_cancel_attach:
2598 do_each_subsys_mask(ss, ssid, root->subsys_mask) {
2599 if (ssid == failed_ssid)
2600 break;
2601 if (ss->cancel_attach) {
2602 tset->ssid = ssid;
2603 ss->cancel_attach(tset);
2604 }
2605 } while_each_subsys_mask();
2606 out_release_tset:
2607 spin_lock_irq(&css_set_lock);
2608 list_splice_init(&tset->dst_csets, &tset->src_csets);
2609 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2610 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2611 list_del_init(&cset->mg_node);
2612 }
2613 spin_unlock_irq(&css_set_lock);
2614 return ret;
2615 }
2616
2617 /**
2618 * cgroup_may_migrate_to - verify whether a cgroup can be migration destination
2619 * @dst_cgrp: destination cgroup to test
2620 *
2621 * On the default hierarchy, except for the root, subtree_control must be
2622 * zero for migration destination cgroups with tasks so that child cgroups
2623 * don't compete against tasks.
2624 */
2625 static bool cgroup_may_migrate_to(struct cgroup *dst_cgrp)
2626 {
2627 return !cgroup_on_dfl(dst_cgrp) || !cgroup_parent(dst_cgrp) ||
2628 !dst_cgrp->subtree_control;
2629 }
2630
2631 /**
2632 * cgroup_migrate_finish - cleanup after attach
2633 * @preloaded_csets: list of preloaded css_sets
2634 *
2635 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2636 * those functions for details.
2637 */
2638 static void cgroup_migrate_finish(struct list_head *preloaded_csets)
2639 {
2640 struct css_set *cset, *tmp_cset;
2641
2642 lockdep_assert_held(&cgroup_mutex);
2643
2644 spin_lock_irq(&css_set_lock);
2645 list_for_each_entry_safe(cset, tmp_cset, preloaded_csets, mg_preload_node) {
2646 cset->mg_src_cgrp = NULL;
2647 cset->mg_dst_cgrp = NULL;
2648 cset->mg_dst_cset = NULL;
2649 list_del_init(&cset->mg_preload_node);
2650 put_css_set_locked(cset);
2651 }
2652 spin_unlock_irq(&css_set_lock);
2653 }
2654
2655 /**
2656 * cgroup_migrate_add_src - add a migration source css_set
2657 * @src_cset: the source css_set to add
2658 * @dst_cgrp: the destination cgroup
2659 * @preloaded_csets: list of preloaded css_sets
2660 *
2661 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2662 * @src_cset and add it to @preloaded_csets, which should later be cleaned
2663 * up by cgroup_migrate_finish().
2664 *
2665 * This function may be called without holding cgroup_threadgroup_rwsem
2666 * even if the target is a process. Threads may be created and destroyed
2667 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2668 * into play and the preloaded css_sets are guaranteed to cover all
2669 * migrations.
2670 */
2671 static void cgroup_migrate_add_src(struct css_set *src_cset,
2672 struct cgroup *dst_cgrp,
2673 struct list_head *preloaded_csets)
2674 {
2675 struct cgroup *src_cgrp;
2676
2677 lockdep_assert_held(&cgroup_mutex);
2678 lockdep_assert_held(&css_set_lock);
2679
2680 /*
2681 * If ->dead, @src_set is associated with one or more dead cgroups
2682 * and doesn't contain any migratable tasks. Ignore it early so
2683 * that the rest of migration path doesn't get confused by it.
2684 */
2685 if (src_cset->dead)
2686 return;
2687
2688 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2689
2690 if (!list_empty(&src_cset->mg_preload_node))
2691 return;
2692
2693 WARN_ON(src_cset->mg_src_cgrp);
2694 WARN_ON(src_cset->mg_dst_cgrp);
2695 WARN_ON(!list_empty(&src_cset->mg_tasks));
2696 WARN_ON(!list_empty(&src_cset->mg_node));
2697
2698 src_cset->mg_src_cgrp = src_cgrp;
2699 src_cset->mg_dst_cgrp = dst_cgrp;
2700 get_css_set(src_cset);
2701 list_add(&src_cset->mg_preload_node, preloaded_csets);
2702 }
2703
2704 /**
2705 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2706 * @preloaded_csets: list of preloaded source css_sets
2707 *
2708 * Tasks are about to be moved and all the source css_sets have been
2709 * preloaded to @preloaded_csets. This function looks up and pins all
2710 * destination css_sets, links each to its source, and append them to
2711 * @preloaded_csets.
2712 *
2713 * This function must be called after cgroup_migrate_add_src() has been
2714 * called on each migration source css_set. After migration is performed
2715 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2716 * @preloaded_csets.
2717 */
2718 static int cgroup_migrate_prepare_dst(struct list_head *preloaded_csets)
2719 {
2720 LIST_HEAD(csets);
2721 struct css_set *src_cset, *tmp_cset;
2722
2723 lockdep_assert_held(&cgroup_mutex);
2724
2725 /* look up the dst cset for each src cset and link it to src */
2726 list_for_each_entry_safe(src_cset, tmp_cset, preloaded_csets, mg_preload_node) {
2727 struct css_set *dst_cset;
2728
2729 dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
2730 if (!dst_cset)
2731 goto err;
2732
2733 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2734
2735 /*
2736 * If src cset equals dst, it's noop. Drop the src.
2737 * cgroup_migrate() will skip the cset too. Note that we
2738 * can't handle src == dst as some nodes are used by both.
2739 */
2740 if (src_cset == dst_cset) {
2741 src_cset->mg_src_cgrp = NULL;
2742 src_cset->mg_dst_cgrp = NULL;
2743 list_del_init(&src_cset->mg_preload_node);
2744 put_css_set(src_cset);
2745 put_css_set(dst_cset);
2746 continue;
2747 }
2748
2749 src_cset->mg_dst_cset = dst_cset;
2750
2751 if (list_empty(&dst_cset->mg_preload_node))
2752 list_add(&dst_cset->mg_preload_node, &csets);
2753 else
2754 put_css_set(dst_cset);
2755 }
2756
2757 list_splice_tail(&csets, preloaded_csets);
2758 return 0;
2759 err:
2760 cgroup_migrate_finish(&csets);
2761 return -ENOMEM;
2762 }
2763
2764 /**
2765 * cgroup_migrate - migrate a process or task to a cgroup
2766 * @leader: the leader of the process or the task to migrate
2767 * @threadgroup: whether @leader points to the whole process or a single task
2768 * @root: cgroup root migration is taking place on
2769 *
2770 * Migrate a process or task denoted by @leader. If migrating a process,
2771 * the caller must be holding cgroup_threadgroup_rwsem. The caller is also
2772 * responsible for invoking cgroup_migrate_add_src() and
2773 * cgroup_migrate_prepare_dst() on the targets before invoking this
2774 * function and following up with cgroup_migrate_finish().
2775 *
2776 * As long as a controller's ->can_attach() doesn't fail, this function is
2777 * guaranteed to succeed. This means that, excluding ->can_attach()
2778 * failure, when migrating multiple targets, the success or failure can be
2779 * decided for all targets by invoking group_migrate_prepare_dst() before
2780 * actually starting migrating.
2781 */
2782 static int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2783 struct cgroup_root *root)
2784 {
2785 struct cgroup_taskset tset = CGROUP_TASKSET_INIT(tset);
2786 struct task_struct *task;
2787
2788 /*
2789 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2790 * already PF_EXITING could be freed from underneath us unless we
2791 * take an rcu_read_lock.
2792 */
2793 spin_lock_irq(&css_set_lock);
2794 rcu_read_lock();
2795 task = leader;
2796 do {
2797 cgroup_taskset_add(task, &tset);
2798 if (!threadgroup)
2799 break;
2800 } while_each_thread(leader, task);
2801 rcu_read_unlock();
2802 spin_unlock_irq(&css_set_lock);
2803
2804 return cgroup_taskset_migrate(&tset, root);
2805 }
2806
2807 /**
2808 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2809 * @dst_cgrp: the cgroup to attach to
2810 * @leader: the task or the leader of the threadgroup to be attached
2811 * @threadgroup: attach the whole threadgroup?
2812 *
2813 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2814 */
2815 static int cgroup_attach_task(struct cgroup *dst_cgrp,
2816 struct task_struct *leader, bool threadgroup)
2817 {
2818 LIST_HEAD(preloaded_csets);
2819 struct task_struct *task;
2820 int ret;
2821
2822 if (!cgroup_may_migrate_to(dst_cgrp))
2823 return -EBUSY;
2824
2825 /* look up all src csets */
2826 spin_lock_irq(&css_set_lock);
2827 rcu_read_lock();
2828 task = leader;
2829 do {
2830 cgroup_migrate_add_src(task_css_set(task), dst_cgrp,
2831 &preloaded_csets);
2832 if (!threadgroup)
2833 break;
2834 } while_each_thread(leader, task);
2835 rcu_read_unlock();
2836 spin_unlock_irq(&css_set_lock);
2837
2838 /* prepare dst csets and commit */
2839 ret = cgroup_migrate_prepare_dst(&preloaded_csets);
2840 if (!ret)
2841 ret = cgroup_migrate(leader, threadgroup, dst_cgrp->root);
2842
2843 cgroup_migrate_finish(&preloaded_csets);
2844 return ret;
2845 }
2846
2847 static int cgroup_procs_write_permission(struct task_struct *task,
2848 struct cgroup *dst_cgrp,
2849 struct kernfs_open_file *of)
2850 {
2851 const struct cred *cred = current_cred();
2852 const struct cred *tcred = get_task_cred(task);
2853 int ret = 0;
2854
2855 /*
2856 * even if we're attaching all tasks in the thread group, we only
2857 * need to check permissions on one of them.
2858 */
2859 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2860 !uid_eq(cred->euid, tcred->uid) &&
2861 !uid_eq(cred->euid, tcred->suid))
2862 ret = -EACCES;
2863
2864 if (!ret && cgroup_on_dfl(dst_cgrp)) {
2865 struct super_block *sb = of->file->f_path.dentry->d_sb;
2866 struct cgroup *cgrp;
2867 struct inode *inode;
2868
2869 spin_lock_irq(&css_set_lock);
2870 cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
2871 spin_unlock_irq(&css_set_lock);
2872
2873 while (!cgroup_is_descendant(dst_cgrp, cgrp))
2874 cgrp = cgroup_parent(cgrp);
2875
2876 ret = -ENOMEM;
2877 inode = kernfs_get_inode(sb, cgrp->procs_file.kn);
2878 if (inode) {
2879 ret = inode_permission(inode, MAY_WRITE);
2880 iput(inode);
2881 }
2882 }
2883
2884 put_cred(tcred);
2885 return ret;
2886 }
2887
2888 /*
2889 * Find the task_struct of the task to attach by vpid and pass it along to the
2890 * function to attach either it or all tasks in its threadgroup. Will lock
2891 * cgroup_mutex and threadgroup.
2892 */
2893 static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
2894 size_t nbytes, loff_t off, bool threadgroup)
2895 {
2896 struct task_struct *tsk;
2897 struct cgroup_subsys *ss;
2898 struct cgroup *cgrp;
2899 pid_t pid;
2900 int ssid, ret;
2901
2902 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2903 return -EINVAL;
2904
2905 cgrp = cgroup_kn_lock_live(of->kn, false);
2906 if (!cgrp)
2907 return -ENODEV;
2908
2909 percpu_down_write(&cgroup_threadgroup_rwsem);
2910 rcu_read_lock();
2911 if (pid) {
2912 tsk = find_task_by_vpid(pid);
2913 if (!tsk) {
2914 ret = -ESRCH;
2915 goto out_unlock_rcu;
2916 }
2917 } else {
2918 tsk = current;
2919 }
2920
2921 if (threadgroup)
2922 tsk = tsk->group_leader;
2923
2924 /*
2925 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
2926 * trapped in a cpuset, or RT worker may be born in a cgroup
2927 * with no rt_runtime allocated. Just say no.
2928 */
2929 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
2930 ret = -EINVAL;
2931 goto out_unlock_rcu;
2932 }
2933
2934 get_task_struct(tsk);
2935 rcu_read_unlock();
2936
2937 ret = cgroup_procs_write_permission(tsk, cgrp, of);
2938 if (!ret)
2939 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
2940
2941 put_task_struct(tsk);
2942 goto out_unlock_threadgroup;
2943
2944 out_unlock_rcu:
2945 rcu_read_unlock();
2946 out_unlock_threadgroup:
2947 percpu_up_write(&cgroup_threadgroup_rwsem);
2948 for_each_subsys(ss, ssid)
2949 if (ss->post_attach)
2950 ss->post_attach();
2951 cgroup_kn_unlock(of->kn);
2952 return ret ?: nbytes;
2953 }
2954
2955 /**
2956 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2957 * @from: attach to all cgroups of a given task
2958 * @tsk: the task to be attached
2959 */
2960 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2961 {
2962 struct cgroup_root *root;
2963 int retval = 0;
2964
2965 mutex_lock(&cgroup_mutex);
2966 for_each_root(root) {
2967 struct cgroup *from_cgrp;
2968
2969 if (root == &cgrp_dfl_root)
2970 continue;
2971
2972 spin_lock_irq(&css_set_lock);
2973 from_cgrp = task_cgroup_from_root(from, root);
2974 spin_unlock_irq(&css_set_lock);
2975
2976 retval = cgroup_attach_task(from_cgrp, tsk, false);
2977 if (retval)
2978 break;
2979 }
2980 mutex_unlock(&cgroup_mutex);
2981
2982 return retval;
2983 }
2984 EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2985
2986 static ssize_t cgroup_tasks_write(struct kernfs_open_file *of,
2987 char *buf, size_t nbytes, loff_t off)
2988 {
2989 return __cgroup_procs_write(of, buf, nbytes, off, false);
2990 }
2991
2992 static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
2993 char *buf, size_t nbytes, loff_t off)
2994 {
2995 return __cgroup_procs_write(of, buf, nbytes, off, true);
2996 }
2997
2998 static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
2999 char *buf, size_t nbytes, loff_t off)
3000 {
3001 struct cgroup *cgrp;
3002
3003 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
3004
3005 cgrp = cgroup_kn_lock_live(of->kn, false);
3006 if (!cgrp)
3007 return -ENODEV;
3008 spin_lock(&release_agent_path_lock);
3009 strlcpy(cgrp->root->release_agent_path, strstrip(buf),
3010 sizeof(cgrp->root->release_agent_path));
3011 spin_unlock(&release_agent_path_lock);
3012 cgroup_kn_unlock(of->kn);
3013 return nbytes;
3014 }
3015
3016 static int cgroup_release_agent_show(struct seq_file *seq, void *v)
3017 {
3018 struct cgroup *cgrp = seq_css(seq)->cgroup;
3019
3020 spin_lock(&release_agent_path_lock);
3021 seq_puts(seq, cgrp->root->release_agent_path);
3022 spin_unlock(&release_agent_path_lock);
3023 seq_putc(seq, '\n');
3024 return 0;
3025 }
3026
3027 static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
3028 {
3029 seq_puts(seq, "0\n");
3030 return 0;
3031 }
3032
3033 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
3034 {
3035 struct cgroup_subsys *ss;
3036 bool printed = false;
3037 int ssid;
3038
3039 do_each_subsys_mask(ss, ssid, ss_mask) {
3040 if (printed)
3041 seq_putc(seq, ' ');
3042 seq_printf(seq, "%s", ss->name);
3043 printed = true;
3044 } while_each_subsys_mask();
3045 if (printed)
3046 seq_putc(seq, '\n');
3047 }
3048
3049 /* show controllers which are enabled from the parent */
3050 static int cgroup_controllers_show(struct seq_file *seq, void *v)
3051 {
3052 struct cgroup *cgrp = seq_css(seq)->cgroup;
3053
3054 cgroup_print_ss_mask(seq, cgroup_control(cgrp));
3055 return 0;
3056 }
3057
3058 /* show controllers which are enabled for a given cgroup's children */
3059 static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
3060 {
3061 struct cgroup *cgrp = seq_css(seq)->cgroup;
3062
3063 cgroup_print_ss_mask(seq, cgrp->subtree_control);
3064 return 0;
3065 }
3066
3067 /**
3068 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
3069 * @cgrp: root of the subtree to update csses for
3070 *
3071 * @cgrp's control masks have changed and its subtree's css associations
3072 * need to be updated accordingly. This function looks up all css_sets
3073 * which are attached to the subtree, creates the matching updated css_sets
3074 * and migrates the tasks to the new ones.
3075 */
3076 static int cgroup_update_dfl_csses(struct cgroup *cgrp)
3077 {
3078 LIST_HEAD(preloaded_csets);
3079 struct cgroup_taskset tset = CGROUP_TASKSET_INIT(tset);
3080 struct cgroup_subsys_state *d_css;
3081 struct cgroup *dsct;
3082 struct css_set *src_cset;
3083 int ret;
3084
3085 lockdep_assert_held(&cgroup_mutex);
3086
3087 percpu_down_write(&cgroup_threadgroup_rwsem);
3088
3089 /* look up all csses currently attached to @cgrp's subtree */
3090 spin_lock_irq(&css_set_lock);
3091 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3092 struct cgrp_cset_link *link;
3093
3094 list_for_each_entry(link, &dsct->cset_links, cset_link)
3095 cgroup_migrate_add_src(link->cset, dsct,
3096 &preloaded_csets);
3097 }
3098 spin_unlock_irq(&css_set_lock);
3099
3100 /* NULL dst indicates self on default hierarchy */
3101 ret = cgroup_migrate_prepare_dst(&preloaded_csets);
3102 if (ret)
3103 goto out_finish;
3104
3105 spin_lock_irq(&css_set_lock);
3106 list_for_each_entry(src_cset, &preloaded_csets, mg_preload_node) {
3107 struct task_struct *task, *ntask;
3108
3109 /* src_csets precede dst_csets, break on the first dst_cset */
3110 if (!src_cset->mg_src_cgrp)
3111 break;
3112
3113 /* all tasks in src_csets need to be migrated */
3114 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
3115 cgroup_taskset_add(task, &tset);
3116 }
3117 spin_unlock_irq(&css_set_lock);
3118
3119 ret = cgroup_taskset_migrate(&tset, cgrp->root);
3120 out_finish:
3121 cgroup_migrate_finish(&preloaded_csets);
3122 percpu_up_write(&cgroup_threadgroup_rwsem);
3123 return ret;
3124 }
3125
3126 /**
3127 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
3128 * @cgrp: root of the target subtree
3129 *
3130 * Because css offlining is asynchronous, userland may try to re-enable a
3131 * controller while the previous css is still around. This function grabs
3132 * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
3133 */
3134 static void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
3135 __acquires(&cgroup_mutex)
3136 {
3137 struct cgroup *dsct;
3138 struct cgroup_subsys_state *d_css;
3139 struct cgroup_subsys *ss;
3140 int ssid;
3141
3142 restart:
3143 mutex_lock(&cgroup_mutex);
3144
3145 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3146 for_each_subsys(ss, ssid) {
3147 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3148 DEFINE_WAIT(wait);
3149
3150 if (!css || !percpu_ref_is_dying(&css->refcnt))
3151 continue;
3152
3153 cgroup_get(dsct);
3154 prepare_to_wait(&dsct->offline_waitq, &wait,
3155 TASK_UNINTERRUPTIBLE);
3156
3157 mutex_unlock(&cgroup_mutex);
3158 schedule();
3159 finish_wait(&dsct->offline_waitq, &wait);
3160
3161 cgroup_put(dsct);
3162 goto restart;
3163 }
3164 }
3165 }
3166
3167 /**
3168 * cgroup_save_control - save control masks of a subtree
3169 * @cgrp: root of the target subtree
3170 *
3171 * Save ->subtree_control and ->subtree_ss_mask to the respective old_
3172 * prefixed fields for @cgrp's subtree including @cgrp itself.
3173 */
3174 static void cgroup_save_control(struct cgroup *cgrp)
3175 {
3176 struct cgroup *dsct;
3177 struct cgroup_subsys_state *d_css;
3178
3179 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3180 dsct->old_subtree_control = dsct->subtree_control;
3181 dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
3182 }
3183 }
3184
3185 /**
3186 * cgroup_propagate_control - refresh control masks of a subtree
3187 * @cgrp: root of the target subtree
3188 *
3189 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
3190 * ->subtree_control and propagate controller availability through the
3191 * subtree so that descendants don't have unavailable controllers enabled.
3192 */
3193 static void cgroup_propagate_control(struct cgroup *cgrp)
3194 {
3195 struct cgroup *dsct;
3196 struct cgroup_subsys_state *d_css;
3197
3198 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3199 dsct->subtree_control &= cgroup_control(dsct);
3200 dsct->subtree_ss_mask =
3201 cgroup_calc_subtree_ss_mask(dsct->subtree_control,
3202 cgroup_ss_mask(dsct));
3203 }
3204 }
3205
3206 /**
3207 * cgroup_restore_control - restore control masks of a subtree
3208 * @cgrp: root of the target subtree
3209 *
3210 * Restore ->subtree_control and ->subtree_ss_mask from the respective old_
3211 * prefixed fields for @cgrp's subtree including @cgrp itself.
3212 */
3213 static void cgroup_restore_control(struct cgroup *cgrp)
3214 {
3215 struct cgroup *dsct;
3216 struct cgroup_subsys_state *d_css;
3217
3218 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3219 dsct->subtree_control = dsct->old_subtree_control;
3220 dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
3221 }
3222 }
3223
3224 static bool css_visible(struct cgroup_subsys_state *css)
3225 {
3226 struct cgroup_subsys *ss = css->ss;
3227 struct cgroup *cgrp = css->cgroup;
3228
3229 if (cgroup_control(cgrp) & (1 << ss->id))
3230 return true;
3231 if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
3232 return false;
3233 return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
3234 }
3235
3236 /**
3237 * cgroup_apply_control_enable - enable or show csses according to control
3238 * @cgrp: root of the target subtree
3239 *
3240 * Walk @cgrp's subtree and create new csses or make the existing ones
3241 * visible. A css is created invisible if it's being implicitly enabled
3242 * through dependency. An invisible css is made visible when the userland
3243 * explicitly enables it.
3244 *
3245 * Returns 0 on success, -errno on failure. On failure, csses which have
3246 * been processed already aren't cleaned up. The caller is responsible for
3247 * cleaning up with cgroup_apply_control_disble().
3248 */
3249 static int cgroup_apply_control_enable(struct cgroup *cgrp)
3250 {
3251 struct cgroup *dsct;
3252 struct cgroup_subsys_state *d_css;
3253 struct cgroup_subsys *ss;
3254 int ssid, ret;
3255
3256 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3257 for_each_subsys(ss, ssid) {
3258 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3259
3260 WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
3261
3262 if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
3263 continue;
3264
3265 if (!css) {
3266 css = css_create(dsct, ss);
3267 if (IS_ERR(css))
3268 return PTR_ERR(css);
3269 }
3270
3271 if (css_visible(css)) {
3272 ret = css_populate_dir(css);
3273 if (ret)
3274 return ret;
3275 }
3276 }
3277 }
3278
3279 return 0;
3280 }
3281
3282 /**
3283 * cgroup_apply_control_disable - kill or hide csses according to control
3284 * @cgrp: root of the target subtree
3285 *
3286 * Walk @cgrp's subtree and kill and hide csses so that they match
3287 * cgroup_ss_mask() and cgroup_visible_mask().
3288 *
3289 * A css is hidden when the userland requests it to be disabled while other
3290 * subsystems are still depending on it. The css must not actively control
3291 * resources and be in the vanilla state if it's made visible again later.
3292 * Controllers which may be depended upon should provide ->css_reset() for
3293 * this purpose.
3294 */
3295 static void cgroup_apply_control_disable(struct cgroup *cgrp)
3296 {
3297 struct cgroup *dsct;
3298 struct cgroup_subsys_state *d_css;
3299 struct cgroup_subsys *ss;
3300 int ssid;
3301
3302 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3303 for_each_subsys(ss, ssid) {
3304 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3305
3306 WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
3307
3308 if (!css)
3309 continue;
3310
3311 if (css->parent &&
3312 !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
3313 kill_css(css);
3314 } else if (!css_visible(css)) {
3315 css_clear_dir(css);
3316 if (ss->css_reset)
3317 ss->css_reset(css);
3318 }
3319 }
3320 }
3321 }
3322
3323 /**
3324 * cgroup_apply_control - apply control mask updates to the subtree
3325 * @cgrp: root of the target subtree
3326 *
3327 * subsystems can be enabled and disabled in a subtree using the following
3328 * steps.
3329 *
3330 * 1. Call cgroup_save_control() to stash the current state.
3331 * 2. Update ->subtree_control masks in the subtree as desired.
3332 * 3. Call cgroup_apply_control() to apply the changes.
3333 * 4. Optionally perform other related operations.
3334 * 5. Call cgroup_finalize_control() to finish up.
3335 *
3336 * This function implements step 3 and propagates the mask changes
3337 * throughout @cgrp's subtree, updates csses accordingly and perform
3338 * process migrations.
3339 */
3340 static int cgroup_apply_control(struct cgroup *cgrp)
3341 {
3342 int ret;
3343
3344 cgroup_propagate_control(cgrp);
3345
3346 ret = cgroup_apply_control_enable(cgrp);
3347 if (ret)
3348 return ret;
3349
3350 /*
3351 * At this point, cgroup_e_css() results reflect the new csses
3352 * making the following cgroup_update_dfl_csses() properly update
3353 * css associations of all tasks in the subtree.
3354 */
3355 ret = cgroup_update_dfl_csses(cgrp);
3356 if (ret)
3357 return ret;
3358
3359 return 0;
3360 }
3361
3362 /**
3363 * cgroup_finalize_control - finalize control mask update
3364 * @cgrp: root of the target subtree
3365 * @ret: the result of the update
3366 *
3367 * Finalize control mask update. See cgroup_apply_control() for more info.
3368 */
3369 static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
3370 {
3371 if (ret) {
3372 cgroup_restore_control(cgrp);
3373 cgroup_propagate_control(cgrp);
3374 }
3375
3376 cgroup_apply_control_disable(cgrp);
3377 }
3378
3379 /* change the enabled child controllers for a cgroup in the default hierarchy */
3380 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3381 char *buf, size_t nbytes,
3382 loff_t off)
3383 {
3384 u16 enable = 0, disable = 0;
3385 struct cgroup *cgrp, *child;
3386 struct cgroup_subsys *ss;
3387 char *tok;
3388 int ssid, ret;
3389
3390 /*
3391 * Parse input - space separated list of subsystem names prefixed
3392 * with either + or -.
3393 */
3394 buf = strstrip(buf);
3395 while ((tok = strsep(&buf, " "))) {
3396 if (tok[0] == '\0')
3397 continue;
3398 do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
3399 if (!cgroup_ssid_enabled(ssid) ||
3400 strcmp(tok + 1, ss->name))
3401 continue;
3402
3403 if (*tok == '+') {
3404 enable |= 1 << ssid;
3405 disable &= ~(1 << ssid);
3406 } else if (*tok == '-') {
3407 disable |= 1 << ssid;
3408 enable &= ~(1 << ssid);
3409 } else {
3410 return -EINVAL;
3411 }
3412 break;
3413 } while_each_subsys_mask();
3414 if (ssid == CGROUP_SUBSYS_COUNT)
3415 return -EINVAL;
3416 }
3417
3418 cgrp = cgroup_kn_lock_live(of->kn, true);
3419 if (!cgrp)
3420 return -ENODEV;
3421
3422 for_each_subsys(ss, ssid) {
3423 if (enable & (1 << ssid)) {
3424 if (cgrp->subtree_control & (1 << ssid)) {
3425 enable &= ~(1 << ssid);
3426 continue;
3427 }
3428
3429 if (!(cgroup_control(cgrp) & (1 << ssid))) {
3430 ret = -ENOENT;
3431 goto out_unlock;
3432 }
3433 } else if (disable & (1 << ssid)) {
3434 if (!(cgrp->subtree_control & (1 << ssid))) {
3435 disable &= ~(1 << ssid);
3436 continue;
3437 }
3438
3439 /* a child has it enabled? */
3440 cgroup_for_each_live_child(child, cgrp) {
3441 if (child->subtree_control & (1 << ssid)) {
3442 ret = -EBUSY;
3443 goto out_unlock;
3444 }
3445 }
3446 }
3447 }
3448
3449 if (!enable && !disable) {
3450 ret = 0;
3451 goto out_unlock;
3452 }
3453
3454 /*
3455 * Except for the root, subtree_control must be zero for a cgroup
3456 * with tasks so that child cgroups don't compete against tasks.
3457 */
3458 if (enable && cgroup_parent(cgrp) && !list_empty(&cgrp->cset_links)) {
3459 ret = -EBUSY;
3460 goto out_unlock;
3461 }
3462
3463 /* save and update control masks and prepare csses */
3464 cgroup_save_control(cgrp);
3465
3466 cgrp->subtree_control |= enable;
3467 cgrp->subtree_control &= ~disable;
3468
3469 ret = cgroup_apply_control(cgrp);
3470
3471 cgroup_finalize_control(cgrp, ret);
3472
3473 kernfs_activate(cgrp->kn);
3474 ret = 0;
3475 out_unlock:
3476 cgroup_kn_unlock(of->kn);
3477 return ret ?: nbytes;
3478 }
3479
3480 static int cgroup_events_show(struct seq_file *seq, void *v)
3481 {
3482 seq_printf(seq, "populated %d\n",
3483 cgroup_is_populated(seq_css(seq)->cgroup));
3484 return 0;
3485 }
3486
3487 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3488 size_t nbytes, loff_t off)
3489 {
3490 struct cgroup *cgrp = of->kn->parent->priv;
3491 struct cftype *cft = of->kn->priv;
3492 struct cgroup_subsys_state *css;
3493 int ret;
3494
3495 if (cft->write)
3496 return cft->write(of, buf, nbytes, off);
3497
3498 /*
3499 * kernfs guarantees that a file isn't deleted with operations in
3500 * flight, which means that the matching css is and stays alive and
3501 * doesn't need to be pinned. The RCU locking is not necessary
3502 * either. It's just for the convenience of using cgroup_css().
3503 */
3504 rcu_read_lock();
3505 css = cgroup_css(cgrp, cft->ss);
3506 rcu_read_unlock();
3507
3508 if (cft->write_u64) {
3509 unsigned long long v;
3510 ret = kstrtoull(buf, 0, &v);
3511 if (!ret)
3512 ret = cft->write_u64(css, cft, v);
3513 } else if (cft->write_s64) {
3514 long long v;
3515 ret = kstrtoll(buf, 0, &v);
3516 if (!ret)
3517 ret = cft->write_s64(css, cft, v);
3518 } else {
3519 ret = -EINVAL;
3520 }
3521
3522 return ret ?: nbytes;
3523 }
3524
3525 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
3526 {
3527 return seq_cft(seq)->seq_start(seq, ppos);
3528 }
3529
3530 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
3531 {
3532 return seq_cft(seq)->seq_next(seq, v, ppos);
3533 }
3534
3535 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
3536 {
3537 seq_cft(seq)->seq_stop(seq, v);
3538 }
3539
3540 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
3541 {
3542 struct cftype *cft = seq_cft(m);
3543 struct cgroup_subsys_state *css = seq_css(m);
3544
3545 if (cft->seq_show)
3546 return cft->seq_show(m, arg);
3547
3548 if (cft->read_u64)
3549 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3550 else if (cft->read_s64)
3551 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3552 else
3553 return -EINVAL;
3554 return 0;
3555 }
3556
3557 static struct kernfs_ops cgroup_kf_single_ops = {
3558 .atomic_write_len = PAGE_SIZE,
3559 .write = cgroup_file_write,
3560 .seq_show = cgroup_seqfile_show,
3561 };
3562
3563 static struct kernfs_ops cgroup_kf_ops = {
3564 .atomic_write_len = PAGE_SIZE,
3565 .write = cgroup_file_write,
3566 .seq_start = cgroup_seqfile_start,
3567 .seq_next = cgroup_seqfile_next,
3568 .seq_stop = cgroup_seqfile_stop,
3569 .seq_show = cgroup_seqfile_show,
3570 };
3571
3572 /*
3573 * cgroup_rename - Only allow simple rename of directories in place.
3574 */
3575 static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
3576 const char *new_name_str)
3577 {
3578 struct cgroup *cgrp = kn->priv;
3579 int ret;
3580
3581 if (kernfs_type(kn) != KERNFS_DIR)
3582 return -ENOTDIR;
3583 if (kn->parent != new_parent)
3584 return -EIO;
3585
3586 /*
3587 * This isn't a proper migration and its usefulness is very
3588 * limited. Disallow on the default hierarchy.
3589 */
3590 if (cgroup_on_dfl(cgrp))
3591 return -EPERM;
3592
3593 /*
3594 * We're gonna grab cgroup_mutex which nests outside kernfs
3595 * active_ref. kernfs_rename() doesn't require active_ref
3596 * protection. Break them before grabbing cgroup_mutex.
3597 */
3598 kernfs_break_active_protection(new_parent);
3599 kernfs_break_active_protection(kn);
3600
3601 mutex_lock(&cgroup_mutex);
3602
3603 ret = kernfs_rename(kn, new_parent, new_name_str);
3604
3605 mutex_unlock(&cgroup_mutex);
3606
3607 kernfs_unbreak_active_protection(kn);
3608 kernfs_unbreak_active_protection(new_parent);
3609 return ret;
3610 }
3611
3612 /* set uid and gid of cgroup dirs and files to that of the creator */
3613 static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3614 {
3615 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3616 .ia_uid = current_fsuid(),
3617 .ia_gid = current_fsgid(), };
3618
3619 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3620 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3621 return 0;
3622
3623 return kernfs_setattr(kn, &iattr);
3624 }
3625
3626 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3627 struct cftype *cft)
3628 {
3629 char name[CGROUP_FILE_NAME_MAX];
3630 struct kernfs_node *kn;
3631 struct lock_class_key *key = NULL;
3632 int ret;
3633
3634 #ifdef CONFIG_DEBUG_LOCK_ALLOC
3635 key = &cft->lockdep_key;
3636 #endif
3637 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3638 cgroup_file_mode(cft), 0, cft->kf_ops, cft,
3639 NULL, key);
3640 if (IS_ERR(kn))
3641 return PTR_ERR(kn);
3642
3643 ret = cgroup_kn_set_ugid(kn);
3644 if (ret) {
3645 kernfs_remove(kn);
3646 return ret;
3647 }
3648
3649 if (cft->file_offset) {
3650 struct cgroup_file *cfile = (void *)css + cft->file_offset;
3651
3652 spin_lock_irq(&cgroup_file_kn_lock);
3653 cfile->kn = kn;
3654 spin_unlock_irq(&cgroup_file_kn_lock);
3655 }
3656
3657 return 0;
3658 }
3659
3660 /**
3661 * cgroup_addrm_files - add or remove files to a cgroup directory
3662 * @css: the target css
3663 * @cgrp: the target cgroup (usually css->cgroup)
3664 * @cfts: array of cftypes to be added
3665 * @is_add: whether to add or remove
3666 *
3667 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
3668 * For removals, this function never fails.
3669 */
3670 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
3671 struct cgroup *cgrp, struct cftype cfts[],
3672 bool is_add)
3673 {
3674 struct cftype *cft, *cft_end = NULL;
3675 int ret = 0;
3676
3677 lockdep_assert_held(&cgroup_mutex);
3678
3679 restart:
3680 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
3681 /* does cft->flags tell us to skip this file on @cgrp? */
3682 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
3683 continue;
3684 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
3685 continue;
3686 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
3687 continue;
3688 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
3689 continue;
3690
3691 if (is_add) {
3692 ret = cgroup_add_file(css, cgrp, cft);
3693 if (ret) {
3694 pr_warn("%s: failed to add %s, err=%d\n",
3695 __func__, cft->name, ret);
3696 cft_end = cft;
3697 is_add = false;
3698 goto restart;
3699 }
3700 } else {
3701 cgroup_rm_file(cgrp, cft);
3702 }
3703 }
3704 return ret;
3705 }
3706
3707 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
3708 {
3709 LIST_HEAD(pending);
3710 struct cgroup_subsys *ss = cfts[0].ss;
3711 struct cgroup *root = &ss->root->cgrp;
3712 struct cgroup_subsys_state *css;
3713 int ret = 0;
3714
3715 lockdep_assert_held(&cgroup_mutex);
3716
3717 /* add/rm files for all cgroups created before */
3718 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
3719 struct cgroup *cgrp = css->cgroup;
3720
3721 if (!(css->flags & CSS_VISIBLE))
3722 continue;
3723
3724 ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
3725 if (ret)
3726 break;
3727 }
3728
3729 if (is_add && !ret)
3730 kernfs_activate(root->kn);
3731 return ret;
3732 }
3733
3734 static void cgroup_exit_cftypes(struct cftype *cfts)
3735 {
3736 struct cftype *cft;
3737
3738 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3739 /* free copy for custom atomic_write_len, see init_cftypes() */
3740 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3741 kfree(cft->kf_ops);
3742 cft->kf_ops = NULL;
3743 cft->ss = NULL;
3744
3745 /* revert flags set by cgroup core while adding @cfts */
3746 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
3747 }
3748 }
3749
3750 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3751 {
3752 struct cftype *cft;
3753
3754 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3755 struct kernfs_ops *kf_ops;
3756
3757 WARN_ON(cft->ss || cft->kf_ops);
3758
3759 if (cft->seq_start)
3760 kf_ops = &cgroup_kf_ops;
3761 else
3762 kf_ops = &cgroup_kf_single_ops;
3763
3764 /*
3765 * Ugh... if @cft wants a custom max_write_len, we need to
3766 * make a copy of kf_ops to set its atomic_write_len.
3767 */
3768 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3769 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3770 if (!kf_ops) {
3771 cgroup_exit_cftypes(cfts);
3772 return -ENOMEM;
3773 }
3774 kf_ops->atomic_write_len = cft->max_write_len;
3775 }
3776
3777 cft->kf_ops = kf_ops;
3778 cft->ss = ss;
3779 }
3780
3781 return 0;
3782 }
3783
3784 static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3785 {
3786 lockdep_assert_held(&cgroup_mutex);
3787
3788 if (!cfts || !cfts[0].ss)
3789 return -ENOENT;
3790
3791 list_del(&cfts->node);
3792 cgroup_apply_cftypes(cfts, false);
3793 cgroup_exit_cftypes(cfts);
3794 return 0;
3795 }
3796
3797 /**
3798 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
3799 * @cfts: zero-length name terminated array of cftypes
3800 *
3801 * Unregister @cfts. Files described by @cfts are removed from all
3802 * existing cgroups and all future cgroups won't have them either. This
3803 * function can be called anytime whether @cfts' subsys is attached or not.
3804 *
3805 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
3806 * registered.
3807 */
3808 int cgroup_rm_cftypes(struct cftype *cfts)
3809 {
3810 int ret;
3811
3812 mutex_lock(&cgroup_mutex);
3813 ret = cgroup_rm_cftypes_locked(cfts);
3814 mutex_unlock(&cgroup_mutex);
3815 return ret;
3816 }
3817
3818 /**
3819 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3820 * @ss: target cgroup subsystem
3821 * @cfts: zero-length name terminated array of cftypes
3822 *
3823 * Register @cfts to @ss. Files described by @cfts are created for all
3824 * existing cgroups to which @ss is attached and all future cgroups will
3825 * have them too. This function can be called anytime whether @ss is
3826 * attached or not.
3827 *
3828 * Returns 0 on successful registration, -errno on failure. Note that this
3829 * function currently returns 0 as long as @cfts registration is successful
3830 * even if some file creation attempts on existing cgroups fail.
3831 */
3832 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3833 {
3834 int ret;
3835
3836 if (!cgroup_ssid_enabled(ss->id))
3837 return 0;
3838
3839 if (!cfts || cfts[0].name[0] == '\0')
3840 return 0;
3841
3842 ret = cgroup_init_cftypes(ss, cfts);
3843 if (ret)
3844 return ret;
3845
3846 mutex_lock(&cgroup_mutex);
3847
3848 list_add_tail(&cfts->node, &ss->cfts);
3849 ret = cgroup_apply_cftypes(cfts, true);
3850 if (ret)
3851 cgroup_rm_cftypes_locked(cfts);
3852
3853 mutex_unlock(&cgroup_mutex);
3854 return ret;
3855 }
3856
3857 /**
3858 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3859 * @ss: target cgroup subsystem
3860 * @cfts: zero-length name terminated array of cftypes
3861 *
3862 * Similar to cgroup_add_cftypes() but the added files are only used for
3863 * the default hierarchy.
3864 */
3865 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3866 {
3867 struct cftype *cft;
3868
3869 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3870 cft->flags |= __CFTYPE_ONLY_ON_DFL;
3871 return cgroup_add_cftypes(ss, cfts);
3872 }
3873
3874 /**
3875 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3876 * @ss: target cgroup subsystem
3877 * @cfts: zero-length name terminated array of cftypes
3878 *
3879 * Similar to cgroup_add_cftypes() but the added files are only used for
3880 * the legacy hierarchies.
3881 */
3882 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3883 {
3884 struct cftype *cft;
3885
3886 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3887 cft->flags |= __CFTYPE_NOT_ON_DFL;
3888 return cgroup_add_cftypes(ss, cfts);
3889 }
3890
3891 /**
3892 * cgroup_file_notify - generate a file modified event for a cgroup_file
3893 * @cfile: target cgroup_file
3894 *
3895 * @cfile must have been obtained by setting cftype->file_offset.
3896 */
3897 void cgroup_file_notify(struct cgroup_file *cfile)
3898 {
3899 unsigned long flags;
3900
3901 spin_lock_irqsave(&cgroup_file_kn_lock, flags);
3902 if (cfile->kn)
3903 kernfs_notify(cfile->kn);
3904 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
3905 }
3906
3907 /**
3908 * cgroup_task_count - count the number of tasks in a cgroup.
3909 * @cgrp: the cgroup in question
3910 *
3911 * Return the number of tasks in the cgroup.
3912 */
3913 static int cgroup_task_count(const struct cgroup *cgrp)
3914 {
3915 int count = 0;
3916 struct cgrp_cset_link *link;
3917
3918 spin_lock_irq(&css_set_lock);
3919 list_for_each_entry(link, &cgrp->cset_links, cset_link)
3920 count += atomic_read(&link->cset->refcount);
3921 spin_unlock_irq(&css_set_lock);
3922 return count;
3923 }
3924
3925 /**
3926 * css_next_child - find the next child of a given css
3927 * @pos: the current position (%NULL to initiate traversal)
3928 * @parent: css whose children to walk
3929 *
3930 * This function returns the next child of @parent and should be called
3931 * under either cgroup_mutex or RCU read lock. The only requirement is
3932 * that @parent and @pos are accessible. The next sibling is guaranteed to
3933 * be returned regardless of their states.
3934 *
3935 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3936 * css which finished ->css_online() is guaranteed to be visible in the
3937 * future iterations and will stay visible until the last reference is put.
3938 * A css which hasn't finished ->css_online() or already finished
3939 * ->css_offline() may show up during traversal. It's each subsystem's
3940 * responsibility to synchronize against on/offlining.
3941 */
3942 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
3943 struct cgroup_subsys_state *parent)
3944 {
3945 struct cgroup_subsys_state *next;
3946
3947 cgroup_assert_mutex_or_rcu_locked();
3948
3949 /*
3950 * @pos could already have been unlinked from the sibling list.
3951 * Once a cgroup is removed, its ->sibling.next is no longer
3952 * updated when its next sibling changes. CSS_RELEASED is set when
3953 * @pos is taken off list, at which time its next pointer is valid,
3954 * and, as releases are serialized, the one pointed to by the next
3955 * pointer is guaranteed to not have started release yet. This
3956 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3957 * critical section, the one pointed to by its next pointer is
3958 * guaranteed to not have finished its RCU grace period even if we
3959 * have dropped rcu_read_lock() inbetween iterations.
3960 *
3961 * If @pos has CSS_RELEASED set, its next pointer can't be
3962 * dereferenced; however, as each css is given a monotonically
3963 * increasing unique serial number and always appended to the
3964 * sibling list, the next one can be found by walking the parent's
3965 * children until the first css with higher serial number than
3966 * @pos's. While this path can be slower, it happens iff iteration
3967 * races against release and the race window is very small.
3968 */
3969 if (!pos) {
3970 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
3971 } else if (likely(!(pos->flags & CSS_RELEASED))) {
3972 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
3973 } else {
3974 list_for_each_entry_rcu(next, &parent->children, sibling)
3975 if (next->serial_nr > pos->serial_nr)
3976 break;
3977 }
3978
3979 /*
3980 * @next, if not pointing to the head, can be dereferenced and is
3981 * the next sibling.
3982 */
3983 if (&next->sibling != &parent->children)
3984 return next;
3985 return NULL;
3986 }
3987
3988 /**
3989 * css_next_descendant_pre - find the next descendant for pre-order walk
3990 * @pos: the current position (%NULL to initiate traversal)
3991 * @root: css whose descendants to walk
3992 *
3993 * To be used by css_for_each_descendant_pre(). Find the next descendant
3994 * to visit for pre-order traversal of @root's descendants. @root is
3995 * included in the iteration and the first node to be visited.
3996 *
3997 * While this function requires cgroup_mutex or RCU read locking, it
3998 * doesn't require the whole traversal to be contained in a single critical
3999 * section. This function will return the correct next descendant as long
4000 * as both @pos and @root are accessible and @pos is a descendant of @root.
4001 *
4002 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4003 * css which finished ->css_online() is guaranteed to be visible in the
4004 * future iterations and will stay visible until the last reference is put.
4005 * A css which hasn't finished ->css_online() or already finished
4006 * ->css_offline() may show up during traversal. It's each subsystem's
4007 * responsibility to synchronize against on/offlining.
4008 */
4009 struct cgroup_subsys_state *
4010 css_next_descendant_pre(struct cgroup_subsys_state *pos,
4011 struct cgroup_subsys_state *root)
4012 {
4013 struct cgroup_subsys_state *next;
4014
4015 cgroup_assert_mutex_or_rcu_locked();
4016
4017 /* if first iteration, visit @root */
4018 if (!pos)
4019 return root;
4020
4021 /* visit the first child if exists */
4022 next = css_next_child(NULL, pos);
4023 if (next)
4024 return next;
4025
4026 /* no child, visit my or the closest ancestor's next sibling */
4027 while (pos != root) {
4028 next = css_next_child(pos, pos->parent);
4029 if (next)
4030 return next;
4031 pos = pos->parent;
4032 }
4033
4034 return NULL;
4035 }
4036
4037 /**
4038 * css_rightmost_descendant - return the rightmost descendant of a css
4039 * @pos: css of interest
4040 *
4041 * Return the rightmost descendant of @pos. If there's no descendant, @pos
4042 * is returned. This can be used during pre-order traversal to skip
4043 * subtree of @pos.
4044 *
4045 * While this function requires cgroup_mutex or RCU read locking, it
4046 * doesn't require the whole traversal to be contained in a single critical
4047 * section. This function will return the correct rightmost descendant as
4048 * long as @pos is accessible.
4049 */
4050 struct cgroup_subsys_state *
4051 css_rightmost_descendant(struct cgroup_subsys_state *pos)
4052 {
4053 struct cgroup_subsys_state *last, *tmp;
4054
4055 cgroup_assert_mutex_or_rcu_locked();
4056
4057 do {
4058 last = pos;
4059 /* ->prev isn't RCU safe, walk ->next till the end */
4060 pos = NULL;
4061 css_for_each_child(tmp, last)
4062 pos = tmp;
4063 } while (pos);
4064
4065 return last;
4066 }
4067
4068 static struct cgroup_subsys_state *
4069 css_leftmost_descendant(struct cgroup_subsys_state *pos)
4070 {
4071 struct cgroup_subsys_state *last;
4072
4073 do {
4074 last = pos;
4075 pos = css_next_child(NULL, pos);
4076 } while (pos);
4077
4078 return last;
4079 }
4080
4081 /**
4082 * css_next_descendant_post - find the next descendant for post-order walk
4083 * @pos: the current position (%NULL to initiate traversal)
4084 * @root: css whose descendants to walk
4085 *
4086 * To be used by css_for_each_descendant_post(). Find the next descendant
4087 * to visit for post-order traversal of @root's descendants. @root is
4088 * included in the iteration and the last node to be visited.
4089 *
4090 * While this function requires cgroup_mutex or RCU read locking, it
4091 * doesn't require the whole traversal to be contained in a single critical
4092 * section. This function will return the correct next descendant as long
4093 * as both @pos and @cgroup are accessible and @pos is a descendant of
4094 * @cgroup.
4095 *
4096 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4097 * css which finished ->css_online() is guaranteed to be visible in the
4098 * future iterations and will stay visible until the last reference is put.
4099 * A css which hasn't finished ->css_online() or already finished
4100 * ->css_offline() may show up during traversal. It's each subsystem's
4101 * responsibility to synchronize against on/offlining.
4102 */
4103 struct cgroup_subsys_state *
4104 css_next_descendant_post(struct cgroup_subsys_state *pos,
4105 struct cgroup_subsys_state *root)
4106 {
4107 struct cgroup_subsys_state *next;
4108
4109 cgroup_assert_mutex_or_rcu_locked();
4110
4111 /* if first iteration, visit leftmost descendant which may be @root */
4112 if (!pos)
4113 return css_leftmost_descendant(root);
4114
4115 /* if we visited @root, we're done */
4116 if (pos == root)
4117 return NULL;
4118
4119 /* if there's an unvisited sibling, visit its leftmost descendant */
4120 next = css_next_child(pos, pos->parent);
4121 if (next)
4122 return css_leftmost_descendant(next);
4123
4124 /* no sibling left, visit parent */
4125 return pos->parent;
4126 }
4127
4128 /**
4129 * css_has_online_children - does a css have online children
4130 * @css: the target css
4131 *
4132 * Returns %true if @css has any online children; otherwise, %false. This
4133 * function can be called from any context but the caller is responsible
4134 * for synchronizing against on/offlining as necessary.
4135 */
4136 bool css_has_online_children(struct cgroup_subsys_state *css)
4137 {
4138 struct cgroup_subsys_state *child;
4139 bool ret = false;
4140
4141 rcu_read_lock();
4142 css_for_each_child(child, css) {
4143 if (child->flags & CSS_ONLINE) {
4144 ret = true;
4145 break;
4146 }
4147 }
4148 rcu_read_unlock();
4149 return ret;
4150 }
4151
4152 /**
4153 * css_task_iter_advance_css_set - advance a task itererator to the next css_set
4154 * @it: the iterator to advance
4155 *
4156 * Advance @it to the next css_set to walk.
4157 */
4158 static void css_task_iter_advance_css_set(struct css_task_iter *it)
4159 {
4160 struct list_head *l = it->cset_pos;
4161 struct cgrp_cset_link *link;
4162 struct css_set *cset;
4163
4164 lockdep_assert_held(&css_set_lock);
4165
4166 /* Advance to the next non-empty css_set */
4167 do {
4168 l = l->next;
4169 if (l == it->cset_head) {
4170 it->cset_pos = NULL;
4171 it->task_pos = NULL;
4172 return;
4173 }
4174
4175 if (it->ss) {
4176 cset = container_of(l, struct css_set,
4177 e_cset_node[it->ss->id]);
4178 } else {
4179 link = list_entry(l, struct cgrp_cset_link, cset_link);
4180 cset = link->cset;
4181 }
4182 } while (!css_set_populated(cset));
4183
4184 it->cset_pos = l;
4185
4186 if (!list_empty(&cset->tasks))
4187 it->task_pos = cset->tasks.next;
4188 else
4189 it->task_pos = cset->mg_tasks.next;
4190
4191 it->tasks_head = &cset->tasks;
4192 it->mg_tasks_head = &cset->mg_tasks;
4193
4194 /*
4195 * We don't keep css_sets locked across iteration steps and thus
4196 * need to take steps to ensure that iteration can be resumed after
4197 * the lock is re-acquired. Iteration is performed at two levels -
4198 * css_sets and tasks in them.
4199 *
4200 * Once created, a css_set never leaves its cgroup lists, so a
4201 * pinned css_set is guaranteed to stay put and we can resume
4202 * iteration afterwards.
4203 *
4204 * Tasks may leave @cset across iteration steps. This is resolved
4205 * by registering each iterator with the css_set currently being
4206 * walked and making css_set_move_task() advance iterators whose
4207 * next task is leaving.
4208 */
4209 if (it->cur_cset) {
4210 list_del(&it->iters_node);
4211 put_css_set_locked(it->cur_cset);
4212 }
4213 get_css_set(cset);
4214 it->cur_cset = cset;
4215 list_add(&it->iters_node, &cset->task_iters);
4216 }
4217
4218 static void css_task_iter_advance(struct css_task_iter *it)
4219 {
4220 struct list_head *l = it->task_pos;
4221
4222 lockdep_assert_held(&css_set_lock);
4223 WARN_ON_ONCE(!l);
4224
4225 /*
4226 * Advance iterator to find next entry. cset->tasks is consumed
4227 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
4228 * next cset.
4229 */
4230 l = l->next;
4231
4232 if (l == it->tasks_head)
4233 l = it->mg_tasks_head->next;
4234
4235 if (l == it->mg_tasks_head)
4236 css_task_iter_advance_css_set(it);
4237 else
4238 it->task_pos = l;
4239 }
4240
4241 /**
4242 * css_task_iter_start - initiate task iteration
4243 * @css: the css to walk tasks of
4244 * @it: the task iterator to use
4245 *
4246 * Initiate iteration through the tasks of @css. The caller can call
4247 * css_task_iter_next() to walk through the tasks until the function
4248 * returns NULL. On completion of iteration, css_task_iter_end() must be
4249 * called.
4250 */
4251 void css_task_iter_start(struct cgroup_subsys_state *css,
4252 struct css_task_iter *it)
4253 {
4254 /* no one should try to iterate before mounting cgroups */
4255 WARN_ON_ONCE(!use_task_css_set_links);
4256
4257 memset(it, 0, sizeof(*it));
4258
4259 spin_lock_irq(&css_set_lock);
4260
4261 it->ss = css->ss;
4262
4263 if (it->ss)
4264 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
4265 else
4266 it->cset_pos = &css->cgroup->cset_links;
4267
4268 it->cset_head = it->cset_pos;
4269
4270 css_task_iter_advance_css_set(it);
4271
4272 spin_unlock_irq(&css_set_lock);
4273 }
4274
4275 /**
4276 * css_task_iter_next - return the next task for the iterator
4277 * @it: the task iterator being iterated
4278 *
4279 * The "next" function for task iteration. @it should have been
4280 * initialized via css_task_iter_start(). Returns NULL when the iteration
4281 * reaches the end.
4282 */
4283 struct task_struct *css_task_iter_next(struct css_task_iter *it)
4284 {
4285 if (it->cur_task) {
4286 put_task_struct(it->cur_task);
4287 it->cur_task = NULL;
4288 }
4289
4290 spin_lock_irq(&css_set_lock);
4291
4292 if (it->task_pos) {
4293 it->cur_task = list_entry(it->task_pos, struct task_struct,
4294 cg_list);
4295 get_task_struct(it->cur_task);
4296 css_task_iter_advance(it);
4297 }
4298
4299 spin_unlock_irq(&css_set_lock);
4300
4301 return it->cur_task;
4302 }
4303
4304 /**
4305 * css_task_iter_end - finish task iteration
4306 * @it: the task iterator to finish
4307 *
4308 * Finish task iteration started by css_task_iter_start().
4309 */
4310 void css_task_iter_end(struct css_task_iter *it)
4311 {
4312 if (it->cur_cset) {
4313 spin_lock_irq(&css_set_lock);
4314 list_del(&it->iters_node);
4315 put_css_set_locked(it->cur_cset);
4316 spin_unlock_irq(&css_set_lock);
4317 }
4318
4319 if (it->cur_task)
4320 put_task_struct(it->cur_task);
4321 }
4322
4323 /**
4324 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
4325 * @to: cgroup to which the tasks will be moved
4326 * @from: cgroup in which the tasks currently reside
4327 *
4328 * Locking rules between cgroup_post_fork() and the migration path
4329 * guarantee that, if a task is forking while being migrated, the new child
4330 * is guaranteed to be either visible in the source cgroup after the
4331 * parent's migration is complete or put into the target cgroup. No task
4332 * can slip out of migration through forking.
4333 */
4334 int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
4335 {
4336 LIST_HEAD(preloaded_csets);
4337 struct cgrp_cset_link *link;
4338 struct css_task_iter it;
4339 struct task_struct *task;
4340 int ret;
4341
4342 if (!cgroup_may_migrate_to(to))
4343 return -EBUSY;
4344
4345 mutex_lock(&cgroup_mutex);
4346
4347 /* all tasks in @from are being moved, all csets are source */
4348 spin_lock_irq(&css_set_lock);
4349 list_for_each_entry(link, &from->cset_links, cset_link)
4350 cgroup_migrate_add_src(link->cset, to, &preloaded_csets);
4351 spin_unlock_irq(&css_set_lock);
4352
4353 ret = cgroup_migrate_prepare_dst(&preloaded_csets);
4354 if (ret)
4355 goto out_err;
4356
4357 /*
4358 * Migrate tasks one-by-one until @from is empty. This fails iff
4359 * ->can_attach() fails.
4360 */
4361 do {
4362 css_task_iter_start(&from->self, &it);
4363 task = css_task_iter_next(&it);
4364 if (task)
4365 get_task_struct(task);
4366 css_task_iter_end(&it);
4367
4368 if (task) {
4369 ret = cgroup_migrate(task, false, to->root);
4370 put_task_struct(task);
4371 }
4372 } while (task && !ret);
4373 out_err:
4374 cgroup_migrate_finish(&preloaded_csets);
4375 mutex_unlock(&cgroup_mutex);
4376 return ret;
4377 }
4378
4379 /*
4380 * Stuff for reading the 'tasks'/'procs' files.
4381 *
4382 * Reading this file can return large amounts of data if a cgroup has
4383 * *lots* of attached tasks. So it may need several calls to read(),
4384 * but we cannot guarantee that the information we produce is correct
4385 * unless we produce it entirely atomically.
4386 *
4387 */
4388
4389 /* which pidlist file are we talking about? */
4390 enum cgroup_filetype {
4391 CGROUP_FILE_PROCS,
4392 CGROUP_FILE_TASKS,
4393 };
4394
4395 /*
4396 * A pidlist is a list of pids that virtually represents the contents of one
4397 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
4398 * a pair (one each for procs, tasks) for each pid namespace that's relevant
4399 * to the cgroup.
4400 */
4401 struct cgroup_pidlist {
4402 /*
4403 * used to find which pidlist is wanted. doesn't change as long as
4404 * this particular list stays in the list.
4405 */
4406 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
4407 /* array of xids */
4408 pid_t *list;
4409 /* how many elements the above list has */
4410 int length;
4411 /* each of these stored in a list by its cgroup */
4412 struct list_head links;
4413 /* pointer to the cgroup we belong to, for list removal purposes */
4414 struct cgroup *owner;
4415 /* for delayed destruction */
4416 struct delayed_work destroy_dwork;
4417 };
4418
4419 /*
4420 * The following two functions "fix" the issue where there are more pids
4421 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
4422 * TODO: replace with a kernel-wide solution to this problem
4423 */
4424 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
4425 static void *pidlist_allocate(int count)
4426 {
4427 if (PIDLIST_TOO_LARGE(count))
4428 return vmalloc(count * sizeof(pid_t));
4429 else
4430 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
4431 }
4432
4433 static void pidlist_free(void *p)
4434 {
4435 kvfree(p);
4436 }
4437
4438 /*
4439 * Used to destroy all pidlists lingering waiting for destroy timer. None
4440 * should be left afterwards.
4441 */
4442 static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
4443 {
4444 struct cgroup_pidlist *l, *tmp_l;
4445
4446 mutex_lock(&cgrp->pidlist_mutex);
4447 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
4448 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
4449 mutex_unlock(&cgrp->pidlist_mutex);
4450
4451 flush_workqueue(cgroup_pidlist_destroy_wq);
4452 BUG_ON(!list_empty(&cgrp->pidlists));
4453 }
4454
4455 static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
4456 {
4457 struct delayed_work *dwork = to_delayed_work(work);
4458 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
4459 destroy_dwork);
4460 struct cgroup_pidlist *tofree = NULL;
4461
4462 mutex_lock(&l->owner->pidlist_mutex);
4463
4464 /*
4465 * Destroy iff we didn't get queued again. The state won't change
4466 * as destroy_dwork can only be queued while locked.
4467 */
4468 if (!delayed_work_pending(dwork)) {
4469 list_del(&l->links);
4470 pidlist_free(l->list);
4471 put_pid_ns(l->key.ns);
4472 tofree = l;
4473 }
4474
4475 mutex_unlock(&l->owner->pidlist_mutex);
4476 kfree(tofree);
4477 }
4478
4479 /*
4480 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
4481 * Returns the number of unique elements.
4482 */
4483 static int pidlist_uniq(pid_t *list, int length)
4484 {
4485 int src, dest = 1;
4486
4487 /*
4488 * we presume the 0th element is unique, so i starts at 1. trivial
4489 * edge cases first; no work needs to be done for either
4490 */
4491 if (length == 0 || length == 1)
4492 return length;
4493 /* src and dest walk down the list; dest counts unique elements */
4494 for (src = 1; src < length; src++) {
4495 /* find next unique element */
4496 while (list[src] == list[src-1]) {
4497 src++;
4498 if (src == length)
4499 goto after;
4500 }
4501 /* dest always points to where the next unique element goes */
4502 list[dest] = list[src];
4503 dest++;
4504 }
4505 after:
4506 return dest;
4507 }
4508
4509 /*
4510 * The two pid files - task and cgroup.procs - guaranteed that the result
4511 * is sorted, which forced this whole pidlist fiasco. As pid order is
4512 * different per namespace, each namespace needs differently sorted list,
4513 * making it impossible to use, for example, single rbtree of member tasks
4514 * sorted by task pointer. As pidlists can be fairly large, allocating one
4515 * per open file is dangerous, so cgroup had to implement shared pool of
4516 * pidlists keyed by cgroup and namespace.
4517 *
4518 * All this extra complexity was caused by the original implementation
4519 * committing to an entirely unnecessary property. In the long term, we
4520 * want to do away with it. Explicitly scramble sort order if on the
4521 * default hierarchy so that no such expectation exists in the new
4522 * interface.
4523 *
4524 * Scrambling is done by swapping every two consecutive bits, which is
4525 * non-identity one-to-one mapping which disturbs sort order sufficiently.
4526 */
4527 static pid_t pid_fry(pid_t pid)
4528 {
4529 unsigned a = pid & 0x55555555;
4530 unsigned b = pid & 0xAAAAAAAA;
4531
4532 return (a << 1) | (b >> 1);
4533 }
4534
4535 static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
4536 {
4537 if (cgroup_on_dfl(cgrp))
4538 return pid_fry(pid);
4539 else
4540 return pid;
4541 }
4542
4543 static int cmppid(const void *a, const void *b)
4544 {
4545 return *(pid_t *)a - *(pid_t *)b;
4546 }
4547
4548 static int fried_cmppid(const void *a, const void *b)
4549 {
4550 return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
4551 }
4552
4553 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
4554 enum cgroup_filetype type)
4555 {
4556 struct cgroup_pidlist *l;
4557 /* don't need task_nsproxy() if we're looking at ourself */
4558 struct pid_namespace *ns = task_active_pid_ns(current);
4559
4560 lockdep_assert_held(&cgrp->pidlist_mutex);
4561
4562 list_for_each_entry(l, &cgrp->pidlists, links)
4563 if (l->key.type == type && l->key.ns == ns)
4564 return l;
4565 return NULL;
4566 }
4567
4568 /*
4569 * find the appropriate pidlist for our purpose (given procs vs tasks)
4570 * returns with the lock on that pidlist already held, and takes care
4571 * of the use count, or returns NULL with no locks held if we're out of
4572 * memory.
4573 */
4574 static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
4575 enum cgroup_filetype type)
4576 {
4577 struct cgroup_pidlist *l;
4578
4579 lockdep_assert_held(&cgrp->pidlist_mutex);
4580
4581 l = cgroup_pidlist_find(cgrp, type);
4582 if (l)
4583 return l;
4584
4585 /* entry not found; create a new one */
4586 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
4587 if (!l)
4588 return l;
4589
4590 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
4591 l->key.type = type;
4592 /* don't need task_nsproxy() if we're looking at ourself */
4593 l->key.ns = get_pid_ns(task_active_pid_ns(current));
4594 l->owner = cgrp;
4595 list_add(&l->links, &cgrp->pidlists);
4596 return l;
4597 }
4598
4599 /*
4600 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
4601 */
4602 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
4603 struct cgroup_pidlist **lp)
4604 {
4605 pid_t *array;
4606 int length;
4607 int pid, n = 0; /* used for populating the array */
4608 struct css_task_iter it;
4609 struct task_struct *tsk;
4610 struct cgroup_pidlist *l;
4611
4612 lockdep_assert_held(&cgrp->pidlist_mutex);
4613
4614 /*
4615 * If cgroup gets more users after we read count, we won't have
4616 * enough space - tough. This race is indistinguishable to the
4617 * caller from the case that the additional cgroup users didn't
4618 * show up until sometime later on.
4619 */
4620 length = cgroup_task_count(cgrp);
4621 array = pidlist_allocate(length);
4622 if (!array)
4623 return -ENOMEM;
4624 /* now, populate the array */
4625 css_task_iter_start(&cgrp->self, &it);
4626 while ((tsk = css_task_iter_next(&it))) {
4627 if (unlikely(n == length))
4628 break;
4629 /* get tgid or pid for procs or tasks file respectively */
4630 if (type == CGROUP_FILE_PROCS)
4631 pid = task_tgid_vnr(tsk);
4632 else
4633 pid = task_pid_vnr(tsk);
4634 if (pid > 0) /* make sure to only use valid results */
4635 array[n++] = pid;
4636 }
4637 css_task_iter_end(&it);
4638 length = n;
4639 /* now sort & (if procs) strip out duplicates */
4640 if (cgroup_on_dfl(cgrp))
4641 sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
4642 else
4643 sort(array, length, sizeof(pid_t), cmppid, NULL);
4644 if (type == CGROUP_FILE_PROCS)
4645 length = pidlist_uniq(array, length);
4646
4647 l = cgroup_pidlist_find_create(cgrp, type);
4648 if (!l) {
4649 pidlist_free(array);
4650 return -ENOMEM;
4651 }
4652
4653 /* store array, freeing old if necessary */
4654 pidlist_free(l->list);
4655 l->list = array;
4656 l->length = length;
4657 *lp = l;
4658 return 0;
4659 }
4660
4661 /**
4662 * cgroupstats_build - build and fill cgroupstats
4663 * @stats: cgroupstats to fill information into
4664 * @dentry: A dentry entry belonging to the cgroup for which stats have
4665 * been requested.
4666 *
4667 * Build and fill cgroupstats so that taskstats can export it to user
4668 * space.
4669 */
4670 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
4671 {
4672 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
4673 struct cgroup *cgrp;
4674 struct css_task_iter it;
4675 struct task_struct *tsk;
4676
4677 /* it should be kernfs_node belonging to cgroupfs and is a directory */
4678 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
4679 kernfs_type(kn) != KERNFS_DIR)
4680 return -EINVAL;
4681
4682 mutex_lock(&cgroup_mutex);
4683
4684 /*
4685 * We aren't being called from kernfs and there's no guarantee on
4686 * @kn->priv's validity. For this and css_tryget_online_from_dir(),
4687 * @kn->priv is RCU safe. Let's do the RCU dancing.
4688 */
4689 rcu_read_lock();
4690 cgrp = rcu_dereference(kn->priv);
4691 if (!cgrp || cgroup_is_dead(cgrp)) {
4692 rcu_read_unlock();
4693 mutex_unlock(&cgroup_mutex);
4694 return -ENOENT;
4695 }
4696 rcu_read_unlock();
4697
4698 css_task_iter_start(&cgrp->self, &it);
4699 while ((tsk = css_task_iter_next(&it))) {
4700 switch (tsk->state) {
4701 case TASK_RUNNING:
4702 stats->nr_running++;
4703 break;
4704 case TASK_INTERRUPTIBLE:
4705 stats->nr_sleeping++;
4706 break;
4707 case TASK_UNINTERRUPTIBLE:
4708 stats->nr_uninterruptible++;
4709 break;
4710 case TASK_STOPPED:
4711 stats->nr_stopped++;
4712 break;
4713 default:
4714 if (delayacct_is_task_waiting_on_io(tsk))
4715 stats->nr_io_wait++;
4716 break;
4717 }
4718 }
4719 css_task_iter_end(&it);
4720
4721 mutex_unlock(&cgroup_mutex);
4722 return 0;
4723 }
4724
4725
4726 /*
4727 * seq_file methods for the tasks/procs files. The seq_file position is the
4728 * next pid to display; the seq_file iterator is a pointer to the pid
4729 * in the cgroup->l->list array.
4730 */
4731
4732 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
4733 {
4734 /*
4735 * Initially we receive a position value that corresponds to
4736 * one more than the last pid shown (or 0 on the first call or
4737 * after a seek to the start). Use a binary-search to find the
4738 * next pid to display, if any
4739 */
4740 struct kernfs_open_file *of = s->private;
4741 struct cgroup *cgrp = seq_css(s)->cgroup;
4742 struct cgroup_pidlist *l;
4743 enum cgroup_filetype type = seq_cft(s)->private;
4744 int index = 0, pid = *pos;
4745 int *iter, ret;
4746
4747 mutex_lock(&cgrp->pidlist_mutex);
4748
4749 /*
4750 * !NULL @of->priv indicates that this isn't the first start()
4751 * after open. If the matching pidlist is around, we can use that.
4752 * Look for it. Note that @of->priv can't be used directly. It
4753 * could already have been destroyed.
4754 */
4755 if (of->priv)
4756 of->priv = cgroup_pidlist_find(cgrp, type);
4757
4758 /*
4759 * Either this is the first start() after open or the matching
4760 * pidlist has been destroyed inbetween. Create a new one.
4761 */
4762 if (!of->priv) {
4763 ret = pidlist_array_load(cgrp, type,
4764 (struct cgroup_pidlist **)&of->priv);
4765 if (ret)
4766 return ERR_PTR(ret);
4767 }
4768 l = of->priv;
4769
4770 if (pid) {
4771 int end = l->length;
4772
4773 while (index < end) {
4774 int mid = (index + end) / 2;
4775 if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
4776 index = mid;
4777 break;
4778 } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
4779 index = mid + 1;
4780 else
4781 end = mid;
4782 }
4783 }
4784 /* If we're off the end of the array, we're done */
4785 if (index >= l->length)
4786 return NULL;
4787 /* Update the abstract position to be the actual pid that we found */
4788 iter = l->list + index;
4789 *pos = cgroup_pid_fry(cgrp, *iter);
4790 return iter;
4791 }
4792
4793 static void cgroup_pidlist_stop(struct seq_file *s, void *v)
4794 {
4795 struct kernfs_open_file *of = s->private;
4796 struct cgroup_pidlist *l = of->priv;
4797
4798 if (l)
4799 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
4800 CGROUP_PIDLIST_DESTROY_DELAY);
4801 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
4802 }
4803
4804 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
4805 {
4806 struct kernfs_open_file *of = s->private;
4807 struct cgroup_pidlist *l = of->priv;
4808 pid_t *p = v;
4809 pid_t *end = l->list + l->length;
4810 /*
4811 * Advance to the next pid in the array. If this goes off the
4812 * end, we're done
4813 */
4814 p++;
4815 if (p >= end) {
4816 return NULL;
4817 } else {
4818 *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
4819 return p;
4820 }
4821 }
4822
4823 static int cgroup_pidlist_show(struct seq_file *s, void *v)
4824 {
4825 seq_printf(s, "%d\n", *(int *)v);
4826
4827 return 0;
4828 }
4829
4830 static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
4831 struct cftype *cft)
4832 {
4833 return notify_on_release(css->cgroup);
4834 }
4835
4836 static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
4837 struct cftype *cft, u64 val)
4838 {
4839 if (val)
4840 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
4841 else
4842 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
4843 return 0;
4844 }
4845
4846 static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
4847 struct cftype *cft)
4848 {
4849 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4850 }
4851
4852 static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
4853 struct cftype *cft, u64 val)
4854 {
4855 if (val)
4856 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4857 else
4858 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4859 return 0;
4860 }
4861
4862 /* cgroup core interface files for the default hierarchy */
4863 static struct cftype cgroup_dfl_base_files[] = {
4864 {
4865 .name = "cgroup.procs",
4866 .file_offset = offsetof(struct cgroup, procs_file),
4867 .seq_start = cgroup_pidlist_start,
4868 .seq_next = cgroup_pidlist_next,
4869 .seq_stop = cgroup_pidlist_stop,
4870 .seq_show = cgroup_pidlist_show,
4871 .private = CGROUP_FILE_PROCS,
4872 .write = cgroup_procs_write,
4873 },
4874 {
4875 .name = "cgroup.controllers",
4876 .seq_show = cgroup_controllers_show,
4877 },
4878 {
4879 .name = "cgroup.subtree_control",
4880 .seq_show = cgroup_subtree_control_show,
4881 .write = cgroup_subtree_control_write,
4882 },
4883 {
4884 .name = "cgroup.events",
4885 .flags = CFTYPE_NOT_ON_ROOT,
4886 .file_offset = offsetof(struct cgroup, events_file),
4887 .seq_show = cgroup_events_show,
4888 },
4889 { } /* terminate */
4890 };
4891
4892 /* cgroup core interface files for the legacy hierarchies */
4893 static struct cftype cgroup_legacy_base_files[] = {
4894 {
4895 .name = "cgroup.procs",
4896 .seq_start = cgroup_pidlist_start,
4897 .seq_next = cgroup_pidlist_next,
4898 .seq_stop = cgroup_pidlist_stop,
4899 .seq_show = cgroup_pidlist_show,
4900 .private = CGROUP_FILE_PROCS,
4901 .write = cgroup_procs_write,
4902 },
4903 {
4904 .name = "cgroup.clone_children",
4905 .read_u64 = cgroup_clone_children_read,
4906 .write_u64 = cgroup_clone_children_write,
4907 },
4908 {
4909 .name = "cgroup.sane_behavior",
4910 .flags = CFTYPE_ONLY_ON_ROOT,
4911 .seq_show = cgroup_sane_behavior_show,
4912 },
4913 {
4914 .name = "tasks",
4915 .seq_start = cgroup_pidlist_start,
4916 .seq_next = cgroup_pidlist_next,
4917 .seq_stop = cgroup_pidlist_stop,
4918 .seq_show = cgroup_pidlist_show,
4919 .private = CGROUP_FILE_TASKS,
4920 .write = cgroup_tasks_write,
4921 },
4922 {
4923 .name = "notify_on_release",
4924 .read_u64 = cgroup_read_notify_on_release,
4925 .write_u64 = cgroup_write_notify_on_release,
4926 },
4927 {
4928 .name = "release_agent",
4929 .flags = CFTYPE_ONLY_ON_ROOT,
4930 .seq_show = cgroup_release_agent_show,
4931 .write = cgroup_release_agent_write,
4932 .max_write_len = PATH_MAX - 1,
4933 },
4934 { } /* terminate */
4935 };
4936
4937 /*
4938 * css destruction is four-stage process.
4939 *
4940 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4941 * Implemented in kill_css().
4942 *
4943 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
4944 * and thus css_tryget_online() is guaranteed to fail, the css can be
4945 * offlined by invoking offline_css(). After offlining, the base ref is
4946 * put. Implemented in css_killed_work_fn().
4947 *
4948 * 3. When the percpu_ref reaches zero, the only possible remaining
4949 * accessors are inside RCU read sections. css_release() schedules the
4950 * RCU callback.
4951 *
4952 * 4. After the grace period, the css can be freed. Implemented in
4953 * css_free_work_fn().
4954 *
4955 * It is actually hairier because both step 2 and 4 require process context
4956 * and thus involve punting to css->destroy_work adding two additional
4957 * steps to the already complex sequence.
4958 */
4959 static void css_free_work_fn(struct work_struct *work)
4960 {
4961 struct cgroup_subsys_state *css =
4962 container_of(work, struct cgroup_subsys_state, destroy_work);
4963 struct cgroup_subsys *ss = css->ss;
4964 struct cgroup *cgrp = css->cgroup;
4965
4966 percpu_ref_exit(&css->refcnt);
4967
4968 if (ss) {
4969 /* css free path */
4970 struct cgroup_subsys_state *parent = css->parent;
4971 int id = css->id;
4972
4973 ss->css_free(css);
4974 cgroup_idr_remove(&ss->css_idr, id);
4975 cgroup_put(cgrp);
4976
4977 if (parent)
4978 css_put(parent);
4979 } else {
4980 /* cgroup free path */
4981 atomic_dec(&cgrp->root->nr_cgrps);
4982 cgroup_pidlist_destroy_all(cgrp);
4983 cancel_work_sync(&cgrp->release_agent_work);
4984
4985 if (cgroup_parent(cgrp)) {
4986 /*
4987 * We get a ref to the parent, and put the ref when
4988 * this cgroup is being freed, so it's guaranteed
4989 * that the parent won't be destroyed before its
4990 * children.
4991 */
4992 cgroup_put(cgroup_parent(cgrp));
4993 kernfs_put(cgrp->kn);
4994 kfree(cgrp);
4995 } else {
4996 /*
4997 * This is root cgroup's refcnt reaching zero,
4998 * which indicates that the root should be
4999 * released.
5000 */
5001 cgroup_destroy_root(cgrp->root);
5002 }
5003 }
5004 }
5005
5006 static void css_free_rcu_fn(struct rcu_head *rcu_head)
5007 {
5008 struct cgroup_subsys_state *css =
5009 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
5010
5011 INIT_WORK(&css->destroy_work, css_free_work_fn);
5012 queue_work(cgroup_destroy_wq, &css->destroy_work);
5013 }
5014
5015 static void css_release_work_fn(struct work_struct *work)
5016 {
5017 struct cgroup_subsys_state *css =
5018 container_of(work, struct cgroup_subsys_state, destroy_work);
5019 struct cgroup_subsys *ss = css->ss;
5020 struct cgroup *cgrp = css->cgroup;
5021
5022 mutex_lock(&cgroup_mutex);
5023
5024 css->flags |= CSS_RELEASED;
5025 list_del_rcu(&css->sibling);
5026
5027 if (ss) {
5028 /* css release path */
5029 cgroup_idr_replace(&ss->css_idr, NULL, css->id);
5030 if (ss->css_released)
5031 ss->css_released(css);
5032 } else {
5033 /* cgroup release path */
5034 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
5035 cgrp->id = -1;
5036
5037 /*
5038 * There are two control paths which try to determine
5039 * cgroup from dentry without going through kernfs -
5040 * cgroupstats_build() and css_tryget_online_from_dir().
5041 * Those are supported by RCU protecting clearing of
5042 * cgrp->kn->priv backpointer.
5043 */
5044 if (cgrp->kn)
5045 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
5046 NULL);
5047 }
5048
5049 mutex_unlock(&cgroup_mutex);
5050
5051 call_rcu(&css->rcu_head, css_free_rcu_fn);
5052 }
5053
5054 static void css_release(struct percpu_ref *ref)
5055 {
5056 struct cgroup_subsys_state *css =
5057 container_of(ref, struct cgroup_subsys_state, refcnt);
5058
5059 INIT_WORK(&css->destroy_work, css_release_work_fn);
5060 queue_work(cgroup_destroy_wq, &css->destroy_work);
5061 }
5062
5063 static void init_and_link_css(struct cgroup_subsys_state *css,
5064 struct cgroup_subsys *ss, struct cgroup *cgrp)
5065 {
5066 lockdep_assert_held(&cgroup_mutex);
5067
5068 cgroup_get(cgrp);
5069
5070 memset(css, 0, sizeof(*css));
5071 css->cgroup = cgrp;
5072 css->ss = ss;
5073 css->id = -1;
5074 INIT_LIST_HEAD(&css->sibling);
5075 INIT_LIST_HEAD(&css->children);
5076 css->serial_nr = css_serial_nr_next++;
5077 atomic_set(&css->online_cnt, 0);
5078
5079 if (cgroup_parent(cgrp)) {
5080 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
5081 css_get(css->parent);
5082 }
5083
5084 BUG_ON(cgroup_css(cgrp, ss));
5085 }
5086
5087 /* invoke ->css_online() on a new CSS and mark it online if successful */
5088 static int online_css(struct cgroup_subsys_state *css)
5089 {
5090 struct cgroup_subsys *ss = css->ss;
5091 int ret = 0;
5092
5093 lockdep_assert_held(&cgroup_mutex);
5094
5095 if (ss->css_online)
5096 ret = ss->css_online(css);
5097 if (!ret) {
5098 css->flags |= CSS_ONLINE;
5099 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
5100
5101 atomic_inc(&css->online_cnt);
5102 if (css->parent)
5103 atomic_inc(&css->parent->online_cnt);
5104 }
5105 return ret;
5106 }
5107
5108 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
5109 static void offline_css(struct cgroup_subsys_state *css)
5110 {
5111 struct cgroup_subsys *ss = css->ss;
5112
5113 lockdep_assert_held(&cgroup_mutex);
5114
5115 if (!(css->flags & CSS_ONLINE))
5116 return;
5117
5118 if (ss->css_reset)
5119 ss->css_reset(css);
5120
5121 if (ss->css_offline)
5122 ss->css_offline(css);
5123
5124 css->flags &= ~CSS_ONLINE;
5125 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
5126
5127 wake_up_all(&css->cgroup->offline_waitq);
5128 }
5129
5130 /**
5131 * css_create - create a cgroup_subsys_state
5132 * @cgrp: the cgroup new css will be associated with
5133 * @ss: the subsys of new css
5134 *
5135 * Create a new css associated with @cgrp - @ss pair. On success, the new
5136 * css is online and installed in @cgrp. This function doesn't create the
5137 * interface files. Returns 0 on success, -errno on failure.
5138 */
5139 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
5140 struct cgroup_subsys *ss)
5141 {
5142 struct cgroup *parent = cgroup_parent(cgrp);
5143 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
5144 struct cgroup_subsys_state *css;
5145 int err;
5146
5147 lockdep_assert_held(&cgroup_mutex);
5148
5149 css = ss->css_alloc(parent_css);
5150 if (IS_ERR(css))
5151 return css;
5152
5153 init_and_link_css(css, ss, cgrp);
5154
5155 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
5156 if (err)
5157 goto err_free_css;
5158
5159 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
5160 if (err < 0)
5161 goto err_free_css;
5162 css->id = err;
5163
5164 /* @css is ready to be brought online now, make it visible */
5165 list_add_tail_rcu(&css->sibling, &parent_css->children);
5166 cgroup_idr_replace(&ss->css_idr, css, css->id);
5167
5168 err = online_css(css);
5169 if (err)
5170 goto err_list_del;
5171
5172 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
5173 cgroup_parent(parent)) {
5174 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
5175 current->comm, current->pid, ss->name);
5176 if (!strcmp(ss->name, "memory"))
5177 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
5178 ss->warned_broken_hierarchy = true;
5179 }
5180
5181 return css;
5182
5183 err_list_del:
5184 list_del_rcu(&css->sibling);
5185 err_free_css:
5186 call_rcu(&css->rcu_head, css_free_rcu_fn);
5187 return ERR_PTR(err);
5188 }
5189
5190 static struct cgroup *cgroup_create(struct cgroup *parent)
5191 {
5192 struct cgroup_root *root = parent->root;
5193 struct cgroup *cgrp, *tcgrp;
5194 int level = parent->level + 1;
5195 int ret;
5196
5197 /* allocate the cgroup and its ID, 0 is reserved for the root */
5198 cgrp = kzalloc(sizeof(*cgrp) +
5199 sizeof(cgrp->ancestor_ids[0]) * (level + 1), GFP_KERNEL);
5200 if (!cgrp)
5201 return ERR_PTR(-ENOMEM);
5202
5203 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
5204 if (ret)
5205 goto out_free_cgrp;
5206
5207 /*
5208 * Temporarily set the pointer to NULL, so idr_find() won't return
5209 * a half-baked cgroup.
5210 */
5211 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL);
5212 if (cgrp->id < 0) {
5213 ret = -ENOMEM;
5214 goto out_cancel_ref;
5215 }
5216
5217 init_cgroup_housekeeping(cgrp);
5218
5219 cgrp->self.parent = &parent->self;
5220 cgrp->root = root;
5221 cgrp->level = level;
5222
5223 for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp))
5224 cgrp->ancestor_ids[tcgrp->level] = tcgrp->id;
5225
5226 if (notify_on_release(parent))
5227 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
5228
5229 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
5230 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
5231
5232 cgrp->self.serial_nr = css_serial_nr_next++;
5233
5234 /* allocation complete, commit to creation */
5235 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
5236 atomic_inc(&root->nr_cgrps);
5237 cgroup_get(parent);
5238
5239 /*
5240 * @cgrp is now fully operational. If something fails after this
5241 * point, it'll be released via the normal destruction path.
5242 */
5243 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
5244
5245 /*
5246 * On the default hierarchy, a child doesn't automatically inherit
5247 * subtree_control from the parent. Each is configured manually.
5248 */
5249 if (!cgroup_on_dfl(cgrp))
5250 cgrp->subtree_control = cgroup_control(cgrp);
5251
5252 cgroup_propagate_control(cgrp);
5253
5254 /* @cgrp doesn't have dir yet so the following will only create csses */
5255 ret = cgroup_apply_control_enable(cgrp);
5256 if (ret)
5257 goto out_destroy;
5258
5259 return cgrp;
5260
5261 out_cancel_ref:
5262 percpu_ref_exit(&cgrp->self.refcnt);
5263 out_free_cgrp:
5264 kfree(cgrp);
5265 return ERR_PTR(ret);
5266 out_destroy:
5267 cgroup_destroy_locked(cgrp);
5268 return ERR_PTR(ret);
5269 }
5270
5271 static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
5272 umode_t mode)
5273 {
5274 struct cgroup *parent, *cgrp;
5275 struct kernfs_node *kn;
5276 int ret;
5277
5278 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
5279 if (strchr(name, '\n'))
5280 return -EINVAL;
5281
5282 parent = cgroup_kn_lock_live(parent_kn, false);
5283 if (!parent)
5284 return -ENODEV;
5285
5286 cgrp = cgroup_create(parent);
5287 if (IS_ERR(cgrp)) {
5288 ret = PTR_ERR(cgrp);
5289 goto out_unlock;
5290 }
5291
5292 /* create the directory */
5293 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
5294 if (IS_ERR(kn)) {
5295 ret = PTR_ERR(kn);
5296 goto out_destroy;
5297 }
5298 cgrp->kn = kn;
5299
5300 /*
5301 * This extra ref will be put in cgroup_free_fn() and guarantees
5302 * that @cgrp->kn is always accessible.
5303 */
5304 kernfs_get(kn);
5305
5306 ret = cgroup_kn_set_ugid(kn);
5307 if (ret)
5308 goto out_destroy;
5309
5310 ret = css_populate_dir(&cgrp->self);
5311 if (ret)
5312 goto out_destroy;
5313
5314 ret = cgroup_apply_control_enable(cgrp);
5315 if (ret)
5316 goto out_destroy;
5317
5318 /* let's create and online css's */
5319 kernfs_activate(kn);
5320
5321 ret = 0;
5322 goto out_unlock;
5323
5324 out_destroy:
5325 cgroup_destroy_locked(cgrp);
5326 out_unlock:
5327 cgroup_kn_unlock(parent_kn);
5328 return ret;
5329 }
5330
5331 /*
5332 * This is called when the refcnt of a css is confirmed to be killed.
5333 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
5334 * initate destruction and put the css ref from kill_css().
5335 */
5336 static void css_killed_work_fn(struct work_struct *work)
5337 {
5338 struct cgroup_subsys_state *css =
5339 container_of(work, struct cgroup_subsys_state, destroy_work);
5340
5341 mutex_lock(&cgroup_mutex);
5342
5343 do {
5344 offline_css(css);
5345 css_put(css);
5346 /* @css can't go away while we're holding cgroup_mutex */
5347 css = css->parent;
5348 } while (css && atomic_dec_and_test(&css->online_cnt));
5349
5350 mutex_unlock(&cgroup_mutex);
5351 }
5352
5353 /* css kill confirmation processing requires process context, bounce */
5354 static void css_killed_ref_fn(struct percpu_ref *ref)
5355 {
5356 struct cgroup_subsys_state *css =
5357 container_of(ref, struct cgroup_subsys_state, refcnt);
5358
5359 if (atomic_dec_and_test(&css->online_cnt)) {
5360 INIT_WORK(&css->destroy_work, css_killed_work_fn);
5361 queue_work(cgroup_destroy_wq, &css->destroy_work);
5362 }
5363 }
5364
5365 /**
5366 * kill_css - destroy a css
5367 * @css: css to destroy
5368 *
5369 * This function initiates destruction of @css by removing cgroup interface
5370 * files and putting its base reference. ->css_offline() will be invoked
5371 * asynchronously once css_tryget_online() is guaranteed to fail and when
5372 * the reference count reaches zero, @css will be released.
5373 */
5374 static void kill_css(struct cgroup_subsys_state *css)
5375 {
5376 lockdep_assert_held(&cgroup_mutex);
5377
5378 /*
5379 * This must happen before css is disassociated with its cgroup.
5380 * See seq_css() for details.
5381 */
5382 css_clear_dir(css);
5383
5384 /*
5385 * Killing would put the base ref, but we need to keep it alive
5386 * until after ->css_offline().
5387 */
5388 css_get(css);
5389
5390 /*
5391 * cgroup core guarantees that, by the time ->css_offline() is
5392 * invoked, no new css reference will be given out via
5393 * css_tryget_online(). We can't simply call percpu_ref_kill() and
5394 * proceed to offlining css's because percpu_ref_kill() doesn't
5395 * guarantee that the ref is seen as killed on all CPUs on return.
5396 *
5397 * Use percpu_ref_kill_and_confirm() to get notifications as each
5398 * css is confirmed to be seen as killed on all CPUs.
5399 */
5400 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
5401 }
5402
5403 /**
5404 * cgroup_destroy_locked - the first stage of cgroup destruction
5405 * @cgrp: cgroup to be destroyed
5406 *
5407 * css's make use of percpu refcnts whose killing latency shouldn't be
5408 * exposed to userland and are RCU protected. Also, cgroup core needs to
5409 * guarantee that css_tryget_online() won't succeed by the time
5410 * ->css_offline() is invoked. To satisfy all the requirements,
5411 * destruction is implemented in the following two steps.
5412 *
5413 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
5414 * userland visible parts and start killing the percpu refcnts of
5415 * css's. Set up so that the next stage will be kicked off once all
5416 * the percpu refcnts are confirmed to be killed.
5417 *
5418 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5419 * rest of destruction. Once all cgroup references are gone, the
5420 * cgroup is RCU-freed.
5421 *
5422 * This function implements s1. After this step, @cgrp is gone as far as
5423 * the userland is concerned and a new cgroup with the same name may be
5424 * created. As cgroup doesn't care about the names internally, this
5425 * doesn't cause any problem.
5426 */
5427 static int cgroup_destroy_locked(struct cgroup *cgrp)
5428 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
5429 {
5430 struct cgroup_subsys_state *css;
5431 struct cgrp_cset_link *link;
5432 int ssid;
5433
5434 lockdep_assert_held(&cgroup_mutex);
5435
5436 /*
5437 * Only migration can raise populated from zero and we're already
5438 * holding cgroup_mutex.
5439 */
5440 if (cgroup_is_populated(cgrp))
5441 return -EBUSY;
5442
5443 /*
5444 * Make sure there's no live children. We can't test emptiness of
5445 * ->self.children as dead children linger on it while being
5446 * drained; otherwise, "rmdir parent/child parent" may fail.
5447 */
5448 if (css_has_online_children(&cgrp->self))
5449 return -EBUSY;
5450
5451 /*
5452 * Mark @cgrp and the associated csets dead. The former prevents
5453 * further task migration and child creation by disabling
5454 * cgroup_lock_live_group(). The latter makes the csets ignored by
5455 * the migration path.
5456 */
5457 cgrp->self.flags &= ~CSS_ONLINE;
5458
5459 spin_lock_irq(&css_set_lock);
5460 list_for_each_entry(link, &cgrp->cset_links, cset_link)
5461 link->cset->dead = true;
5462 spin_unlock_irq(&css_set_lock);
5463
5464 /* initiate massacre of all css's */
5465 for_each_css(css, ssid, cgrp)
5466 kill_css(css);
5467
5468 /*
5469 * Remove @cgrp directory along with the base files. @cgrp has an
5470 * extra ref on its kn.
5471 */
5472 kernfs_remove(cgrp->kn);
5473
5474 check_for_release(cgroup_parent(cgrp));
5475
5476 /* put the base reference */
5477 percpu_ref_kill(&cgrp->self.refcnt);
5478
5479 return 0;
5480 };
5481
5482 static int cgroup_rmdir(struct kernfs_node *kn)
5483 {
5484 struct cgroup *cgrp;
5485 int ret = 0;
5486
5487 cgrp = cgroup_kn_lock_live(kn, false);
5488 if (!cgrp)
5489 return 0;
5490
5491 ret = cgroup_destroy_locked(cgrp);
5492
5493 cgroup_kn_unlock(kn);
5494 return ret;
5495 }
5496
5497 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5498 .remount_fs = cgroup_remount,
5499 .show_options = cgroup_show_options,
5500 .mkdir = cgroup_mkdir,
5501 .rmdir = cgroup_rmdir,
5502 .rename = cgroup_rename,
5503 .show_path = cgroup_show_path,
5504 };
5505
5506 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
5507 {
5508 struct cgroup_subsys_state *css;
5509
5510 pr_debug("Initializing cgroup subsys %s\n", ss->name);
5511
5512 mutex_lock(&cgroup_mutex);
5513
5514 idr_init(&ss->css_idr);
5515 INIT_LIST_HEAD(&ss->cfts);
5516
5517 /* Create the root cgroup state for this subsystem */
5518 ss->root = &cgrp_dfl_root;
5519 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
5520 /* We don't handle early failures gracefully */
5521 BUG_ON(IS_ERR(css));
5522 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
5523
5524 /*
5525 * Root csses are never destroyed and we can't initialize
5526 * percpu_ref during early init. Disable refcnting.
5527 */
5528 css->flags |= CSS_NO_REF;
5529
5530 if (early) {
5531 /* allocation can't be done safely during early init */
5532 css->id = 1;
5533 } else {
5534 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5535 BUG_ON(css->id < 0);
5536 }
5537
5538 /* Update the init_css_set to contain a subsys
5539 * pointer to this state - since the subsystem is
5540 * newly registered, all tasks and hence the
5541 * init_css_set is in the subsystem's root cgroup. */
5542 init_css_set.subsys[ss->id] = css;
5543
5544 have_fork_callback |= (bool)ss->fork << ss->id;
5545 have_exit_callback |= (bool)ss->exit << ss->id;
5546 have_free_callback |= (bool)ss->free << ss->id;
5547 have_canfork_callback |= (bool)ss->can_fork << ss->id;
5548
5549 /* At system boot, before all subsystems have been
5550 * registered, no tasks have been forked, so we don't
5551 * need to invoke fork callbacks here. */
5552 BUG_ON(!list_empty(&init_task.tasks));
5553
5554 BUG_ON(online_css(css));
5555
5556 mutex_unlock(&cgroup_mutex);
5557 }
5558
5559 /**
5560 * cgroup_init_early - cgroup initialization at system boot
5561 *
5562 * Initialize cgroups at system boot, and initialize any
5563 * subsystems that request early init.
5564 */
5565 int __init cgroup_init_early(void)
5566 {
5567 static struct cgroup_sb_opts __initdata opts;
5568 struct cgroup_subsys *ss;
5569 int i;
5570
5571 init_cgroup_root(&cgrp_dfl_root, &opts);
5572 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5573
5574 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
5575
5576 for_each_subsys(ss, i) {
5577 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
5578 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
5579 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
5580 ss->id, ss->name);
5581 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5582 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5583
5584 ss->id = i;
5585 ss->name = cgroup_subsys_name[i];
5586 if (!ss->legacy_name)
5587 ss->legacy_name = cgroup_subsys_name[i];
5588
5589 if (ss->early_init)
5590 cgroup_init_subsys(ss, true);
5591 }
5592 return 0;
5593 }
5594
5595 static u16 cgroup_disable_mask __initdata;
5596
5597 /**
5598 * cgroup_init - cgroup initialization
5599 *
5600 * Register cgroup filesystem and /proc file, and initialize
5601 * any subsystems that didn't request early init.
5602 */
5603 int __init cgroup_init(void)
5604 {
5605 struct cgroup_subsys *ss;
5606 int ssid;
5607
5608 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
5609 BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem));
5610 BUG_ON(cgroup_init_cftypes(NULL, cgroup_dfl_base_files));
5611 BUG_ON(cgroup_init_cftypes(NULL, cgroup_legacy_base_files));
5612
5613 get_user_ns(init_cgroup_ns.user_ns);
5614
5615 mutex_lock(&cgroup_mutex);
5616
5617 /*
5618 * Add init_css_set to the hash table so that dfl_root can link to
5619 * it during init.
5620 */
5621 hash_add(css_set_table, &init_css_set.hlist,
5622 css_set_hash(init_css_set.subsys));
5623
5624 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
5625
5626 mutex_unlock(&cgroup_mutex);
5627
5628 for_each_subsys(ss, ssid) {
5629 if (ss->early_init) {
5630 struct cgroup_subsys_state *css =
5631 init_css_set.subsys[ss->id];
5632
5633 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5634 GFP_KERNEL);
5635 BUG_ON(css->id < 0);
5636 } else {
5637 cgroup_init_subsys(ss, false);
5638 }
5639
5640 list_add_tail(&init_css_set.e_cset_node[ssid],
5641 &cgrp_dfl_root.cgrp.e_csets[ssid]);
5642
5643 /*
5644 * Setting dfl_root subsys_mask needs to consider the
5645 * disabled flag and cftype registration needs kmalloc,
5646 * both of which aren't available during early_init.
5647 */
5648 if (cgroup_disable_mask & (1 << ssid)) {
5649 static_branch_disable(cgroup_subsys_enabled_key[ssid]);
5650 printk(KERN_INFO "Disabling %s control group subsystem\n",
5651 ss->name);
5652 continue;
5653 }
5654
5655 if (cgroup_ssid_no_v1(ssid))
5656 printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n",
5657 ss->name);
5658
5659 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5660
5661 if (ss->implicit_on_dfl)
5662 cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
5663 else if (!ss->dfl_cftypes)
5664 cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
5665
5666 if (ss->dfl_cftypes == ss->legacy_cftypes) {
5667 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5668 } else {
5669 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5670 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
5671 }
5672
5673 if (ss->bind)
5674 ss->bind(init_css_set.subsys[ssid]);
5675 }
5676
5677 /* init_css_set.subsys[] has been updated, re-hash */
5678 hash_del(&init_css_set.hlist);
5679 hash_add(css_set_table, &init_css_set.hlist,
5680 css_set_hash(init_css_set.subsys));
5681
5682 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
5683 WARN_ON(register_filesystem(&cgroup_fs_type));
5684 WARN_ON(register_filesystem(&cgroup2_fs_type));
5685 WARN_ON(!proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations));
5686
5687 return 0;
5688 }
5689
5690 static int __init cgroup_wq_init(void)
5691 {
5692 /*
5693 * There isn't much point in executing destruction path in
5694 * parallel. Good chunk is serialized with cgroup_mutex anyway.
5695 * Use 1 for @max_active.
5696 *
5697 * We would prefer to do this in cgroup_init() above, but that
5698 * is called before init_workqueues(): so leave this until after.
5699 */
5700 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
5701 BUG_ON(!cgroup_destroy_wq);
5702
5703 /*
5704 * Used to destroy pidlists and separate to serve as flush domain.
5705 * Cap @max_active to 1 too.
5706 */
5707 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
5708 0, 1);
5709 BUG_ON(!cgroup_pidlist_destroy_wq);
5710
5711 return 0;
5712 }
5713 core_initcall(cgroup_wq_init);
5714
5715 /*
5716 * proc_cgroup_show()
5717 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5718 * - Used for /proc/<pid>/cgroup.
5719 */
5720 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5721 struct pid *pid, struct task_struct *tsk)
5722 {
5723 char *buf, *path;
5724 int retval;
5725 struct cgroup_root *root;
5726
5727 retval = -ENOMEM;
5728 buf = kmalloc(PATH_MAX, GFP_KERNEL);
5729 if (!buf)
5730 goto out;
5731
5732 mutex_lock(&cgroup_mutex);
5733 spin_lock_irq(&css_set_lock);
5734
5735 for_each_root(root) {
5736 struct cgroup_subsys *ss;
5737 struct cgroup *cgrp;
5738 int ssid, count = 0;
5739
5740 if (root == &cgrp_dfl_root && !cgrp_dfl_visible)
5741 continue;
5742
5743 seq_printf(m, "%d:", root->hierarchy_id);
5744 if (root != &cgrp_dfl_root)
5745 for_each_subsys(ss, ssid)
5746 if (root->subsys_mask & (1 << ssid))
5747 seq_printf(m, "%s%s", count++ ? "," : "",
5748 ss->legacy_name);
5749 if (strlen(root->name))
5750 seq_printf(m, "%sname=%s", count ? "," : "",
5751 root->name);
5752 seq_putc(m, ':');
5753
5754 cgrp = task_cgroup_from_root(tsk, root);
5755
5756 /*
5757 * On traditional hierarchies, all zombie tasks show up as
5758 * belonging to the root cgroup. On the default hierarchy,
5759 * while a zombie doesn't show up in "cgroup.procs" and
5760 * thus can't be migrated, its /proc/PID/cgroup keeps
5761 * reporting the cgroup it belonged to before exiting. If
5762 * the cgroup is removed before the zombie is reaped,
5763 * " (deleted)" is appended to the cgroup path.
5764 */
5765 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
5766 path = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
5767 current->nsproxy->cgroup_ns);
5768 if (!path) {
5769 retval = -ENAMETOOLONG;
5770 goto out_unlock;
5771 }
5772 } else {
5773 path = "/";
5774 }
5775
5776 seq_puts(m, path);
5777
5778 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
5779 seq_puts(m, " (deleted)\n");
5780 else
5781 seq_putc(m, '\n');
5782 }
5783
5784 retval = 0;
5785 out_unlock:
5786 spin_unlock_irq(&css_set_lock);
5787 mutex_unlock(&cgroup_mutex);
5788 kfree(buf);
5789 out:
5790 return retval;
5791 }
5792
5793 /* Display information about each subsystem and each hierarchy */
5794 static int proc_cgroupstats_show(struct seq_file *m, void *v)
5795 {
5796 struct cgroup_subsys *ss;
5797 int i;
5798
5799 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
5800 /*
5801 * ideally we don't want subsystems moving around while we do this.
5802 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
5803 * subsys/hierarchy state.
5804 */
5805 mutex_lock(&cgroup_mutex);
5806
5807 for_each_subsys(ss, i)
5808 seq_printf(m, "%s\t%d\t%d\t%d\n",
5809 ss->legacy_name, ss->root->hierarchy_id,
5810 atomic_read(&ss->root->nr_cgrps),
5811 cgroup_ssid_enabled(i));
5812
5813 mutex_unlock(&cgroup_mutex);
5814 return 0;
5815 }
5816
5817 static int cgroupstats_open(struct inode *inode, struct file *file)
5818 {
5819 return single_open(file, proc_cgroupstats_show, NULL);
5820 }
5821
5822 static const struct file_operations proc_cgroupstats_operations = {
5823 .open = cgroupstats_open,
5824 .read = seq_read,
5825 .llseek = seq_lseek,
5826 .release = single_release,
5827 };
5828
5829 /**
5830 * cgroup_fork - initialize cgroup related fields during copy_process()
5831 * @child: pointer to task_struct of forking parent process.
5832 *
5833 * A task is associated with the init_css_set until cgroup_post_fork()
5834 * attaches it to the parent's css_set. Empty cg_list indicates that
5835 * @child isn't holding reference to its css_set.
5836 */
5837 void cgroup_fork(struct task_struct *child)
5838 {
5839 RCU_INIT_POINTER(child->cgroups, &init_css_set);
5840 INIT_LIST_HEAD(&child->cg_list);
5841 }
5842
5843 /**
5844 * cgroup_can_fork - called on a new task before the process is exposed
5845 * @child: the task in question.
5846 *
5847 * This calls the subsystem can_fork() callbacks. If the can_fork() callback
5848 * returns an error, the fork aborts with that error code. This allows for
5849 * a cgroup subsystem to conditionally allow or deny new forks.
5850 */
5851 int cgroup_can_fork(struct task_struct *child)
5852 {
5853 struct cgroup_subsys *ss;
5854 int i, j, ret;
5855
5856 do_each_subsys_mask(ss, i, have_canfork_callback) {
5857 ret = ss->can_fork(child);
5858 if (ret)
5859 goto out_revert;
5860 } while_each_subsys_mask();
5861
5862 return 0;
5863
5864 out_revert:
5865 for_each_subsys(ss, j) {
5866 if (j >= i)
5867 break;
5868 if (ss->cancel_fork)
5869 ss->cancel_fork(child);
5870 }
5871
5872 return ret;
5873 }
5874
5875 /**
5876 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
5877 * @child: the task in question
5878 *
5879 * This calls the cancel_fork() callbacks if a fork failed *after*
5880 * cgroup_can_fork() succeded.
5881 */
5882 void cgroup_cancel_fork(struct task_struct *child)
5883 {
5884 struct cgroup_subsys *ss;
5885 int i;
5886
5887 for_each_subsys(ss, i)
5888 if (ss->cancel_fork)
5889 ss->cancel_fork(child);
5890 }
5891
5892 /**
5893 * cgroup_post_fork - called on a new task after adding it to the task list
5894 * @child: the task in question
5895 *
5896 * Adds the task to the list running through its css_set if necessary and
5897 * call the subsystem fork() callbacks. Has to be after the task is
5898 * visible on the task list in case we race with the first call to
5899 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5900 * list.
5901 */
5902 void cgroup_post_fork(struct task_struct *child)
5903 {
5904 struct cgroup_subsys *ss;
5905 int i;
5906
5907 /*
5908 * This may race against cgroup_enable_task_cg_lists(). As that
5909 * function sets use_task_css_set_links before grabbing
5910 * tasklist_lock and we just went through tasklist_lock to add
5911 * @child, it's guaranteed that either we see the set
5912 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5913 * @child during its iteration.
5914 *
5915 * If we won the race, @child is associated with %current's
5916 * css_set. Grabbing css_set_lock guarantees both that the
5917 * association is stable, and, on completion of the parent's
5918 * migration, @child is visible in the source of migration or
5919 * already in the destination cgroup. This guarantee is necessary
5920 * when implementing operations which need to migrate all tasks of
5921 * a cgroup to another.
5922 *
5923 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
5924 * will remain in init_css_set. This is safe because all tasks are
5925 * in the init_css_set before cg_links is enabled and there's no
5926 * operation which transfers all tasks out of init_css_set.
5927 */
5928 if (use_task_css_set_links) {
5929 struct css_set *cset;
5930
5931 spin_lock_irq(&css_set_lock);
5932 cset = task_css_set(current);
5933 if (list_empty(&child->cg_list)) {
5934 get_css_set(cset);
5935 css_set_move_task(child, NULL, cset, false);
5936 }
5937 spin_unlock_irq(&css_set_lock);
5938 }
5939
5940 /*
5941 * Call ss->fork(). This must happen after @child is linked on
5942 * css_set; otherwise, @child might change state between ->fork()
5943 * and addition to css_set.
5944 */
5945 do_each_subsys_mask(ss, i, have_fork_callback) {
5946 ss->fork(child);
5947 } while_each_subsys_mask();
5948 }
5949
5950 /**
5951 * cgroup_exit - detach cgroup from exiting task
5952 * @tsk: pointer to task_struct of exiting process
5953 *
5954 * Description: Detach cgroup from @tsk and release it.
5955 *
5956 * Note that cgroups marked notify_on_release force every task in
5957 * them to take the global cgroup_mutex mutex when exiting.
5958 * This could impact scaling on very large systems. Be reluctant to
5959 * use notify_on_release cgroups where very high task exit scaling
5960 * is required on large systems.
5961 *
5962 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
5963 * call cgroup_exit() while the task is still competent to handle
5964 * notify_on_release(), then leave the task attached to the root cgroup in
5965 * each hierarchy for the remainder of its exit. No need to bother with
5966 * init_css_set refcnting. init_css_set never goes away and we can't race
5967 * with migration path - PF_EXITING is visible to migration path.
5968 */
5969 void cgroup_exit(struct task_struct *tsk)
5970 {
5971 struct cgroup_subsys *ss;
5972 struct css_set *cset;
5973 int i;
5974
5975 /*
5976 * Unlink from @tsk from its css_set. As migration path can't race
5977 * with us, we can check css_set and cg_list without synchronization.
5978 */
5979 cset = task_css_set(tsk);
5980
5981 if (!list_empty(&tsk->cg_list)) {
5982 spin_lock_irq(&css_set_lock);
5983 css_set_move_task(tsk, cset, NULL, false);
5984 spin_unlock_irq(&css_set_lock);
5985 } else {
5986 get_css_set(cset);
5987 }
5988
5989 /* see cgroup_post_fork() for details */
5990 do_each_subsys_mask(ss, i, have_exit_callback) {
5991 ss->exit(tsk);
5992 } while_each_subsys_mask();
5993 }
5994
5995 void cgroup_free(struct task_struct *task)
5996 {
5997 struct css_set *cset = task_css_set(task);
5998 struct cgroup_subsys *ss;
5999 int ssid;
6000
6001 do_each_subsys_mask(ss, ssid, have_free_callback) {
6002 ss->free(task);
6003 } while_each_subsys_mask();
6004
6005 put_css_set(cset);
6006 }
6007
6008 static void check_for_release(struct cgroup *cgrp)
6009 {
6010 if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) &&
6011 !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
6012 schedule_work(&cgrp->release_agent_work);
6013 }
6014
6015 /*
6016 * Notify userspace when a cgroup is released, by running the
6017 * configured release agent with the name of the cgroup (path
6018 * relative to the root of cgroup file system) as the argument.
6019 *
6020 * Most likely, this user command will try to rmdir this cgroup.
6021 *
6022 * This races with the possibility that some other task will be
6023 * attached to this cgroup before it is removed, or that some other
6024 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
6025 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
6026 * unused, and this cgroup will be reprieved from its death sentence,
6027 * to continue to serve a useful existence. Next time it's released,
6028 * we will get notified again, if it still has 'notify_on_release' set.
6029 *
6030 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
6031 * means only wait until the task is successfully execve()'d. The
6032 * separate release agent task is forked by call_usermodehelper(),
6033 * then control in this thread returns here, without waiting for the
6034 * release agent task. We don't bother to wait because the caller of
6035 * this routine has no use for the exit status of the release agent
6036 * task, so no sense holding our caller up for that.
6037 */
6038 static void cgroup_release_agent(struct work_struct *work)
6039 {
6040 struct cgroup *cgrp =
6041 container_of(work, struct cgroup, release_agent_work);
6042 char *pathbuf = NULL, *agentbuf = NULL, *path;
6043 char *argv[3], *envp[3];
6044
6045 mutex_lock(&cgroup_mutex);
6046
6047 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
6048 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
6049 if (!pathbuf || !agentbuf)
6050 goto out;
6051
6052 spin_lock_irq(&css_set_lock);
6053 path = cgroup_path_ns_locked(cgrp, pathbuf, PATH_MAX, &init_cgroup_ns);
6054 spin_unlock_irq(&css_set_lock);
6055 if (!path)
6056 goto out;
6057
6058 argv[0] = agentbuf;
6059 argv[1] = path;
6060 argv[2] = NULL;
6061
6062 /* minimal command environment */
6063 envp[0] = "HOME=/";
6064 envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
6065 envp[2] = NULL;
6066
6067 mutex_unlock(&cgroup_mutex);
6068 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
6069 goto out_free;
6070 out:
6071 mutex_unlock(&cgroup_mutex);
6072 out_free:
6073 kfree(agentbuf);
6074 kfree(pathbuf);
6075 }
6076
6077 static int __init cgroup_disable(char *str)
6078 {
6079 struct cgroup_subsys *ss;
6080 char *token;
6081 int i;
6082
6083 while ((token = strsep(&str, ",")) != NULL) {
6084 if (!*token)
6085 continue;
6086
6087 for_each_subsys(ss, i) {
6088 if (strcmp(token, ss->name) &&
6089 strcmp(token, ss->legacy_name))
6090 continue;
6091 cgroup_disable_mask |= 1 << i;
6092 }
6093 }
6094 return 1;
6095 }
6096 __setup("cgroup_disable=", cgroup_disable);
6097
6098 static int __init cgroup_no_v1(char *str)
6099 {
6100 struct cgroup_subsys *ss;
6101 char *token;
6102 int i;
6103
6104 while ((token = strsep(&str, ",")) != NULL) {
6105 if (!*token)
6106 continue;
6107
6108 if (!strcmp(token, "all")) {
6109 cgroup_no_v1_mask = U16_MAX;
6110 break;
6111 }
6112
6113 for_each_subsys(ss, i) {
6114 if (strcmp(token, ss->name) &&
6115 strcmp(token, ss->legacy_name))
6116 continue;
6117
6118 cgroup_no_v1_mask |= 1 << i;
6119 }
6120 }
6121 return 1;
6122 }
6123 __setup("cgroup_no_v1=", cgroup_no_v1);
6124
6125 /**
6126 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
6127 * @dentry: directory dentry of interest
6128 * @ss: subsystem of interest
6129 *
6130 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
6131 * to get the corresponding css and return it. If such css doesn't exist
6132 * or can't be pinned, an ERR_PTR value is returned.
6133 */
6134 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
6135 struct cgroup_subsys *ss)
6136 {
6137 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
6138 struct file_system_type *s_type = dentry->d_sb->s_type;
6139 struct cgroup_subsys_state *css = NULL;
6140 struct cgroup *cgrp;
6141
6142 /* is @dentry a cgroup dir? */
6143 if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
6144 !kn || kernfs_type(kn) != KERNFS_DIR)
6145 return ERR_PTR(-EBADF);
6146
6147 rcu_read_lock();
6148
6149 /*
6150 * This path doesn't originate from kernfs and @kn could already
6151 * have been or be removed at any point. @kn->priv is RCU
6152 * protected for this access. See css_release_work_fn() for details.
6153 */
6154 cgrp = rcu_dereference(kn->priv);
6155 if (cgrp)
6156 css = cgroup_css(cgrp, ss);
6157
6158 if (!css || !css_tryget_online(css))
6159 css = ERR_PTR(-ENOENT);
6160
6161 rcu_read_unlock();
6162 return css;
6163 }
6164
6165 /**
6166 * css_from_id - lookup css by id
6167 * @id: the cgroup id
6168 * @ss: cgroup subsys to be looked into
6169 *
6170 * Returns the css if there's valid one with @id, otherwise returns NULL.
6171 * Should be called under rcu_read_lock().
6172 */
6173 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
6174 {
6175 WARN_ON_ONCE(!rcu_read_lock_held());
6176 return id > 0 ? idr_find(&ss->css_idr, id) : NULL;
6177 }
6178
6179 /**
6180 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
6181 * @path: path on the default hierarchy
6182 *
6183 * Find the cgroup at @path on the default hierarchy, increment its
6184 * reference count and return it. Returns pointer to the found cgroup on
6185 * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR)
6186 * if @path points to a non-directory.
6187 */
6188 struct cgroup *cgroup_get_from_path(const char *path)
6189 {
6190 struct kernfs_node *kn;
6191 struct cgroup *cgrp;
6192
6193 mutex_lock(&cgroup_mutex);
6194
6195 kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path);
6196 if (kn) {
6197 if (kernfs_type(kn) == KERNFS_DIR) {
6198 cgrp = kn->priv;
6199 cgroup_get(cgrp);
6200 } else {
6201 cgrp = ERR_PTR(-ENOTDIR);
6202 }
6203 kernfs_put(kn);
6204 } else {
6205 cgrp = ERR_PTR(-ENOENT);
6206 }
6207
6208 mutex_unlock(&cgroup_mutex);
6209 return cgrp;
6210 }
6211 EXPORT_SYMBOL_GPL(cgroup_get_from_path);
6212
6213 /**
6214 * cgroup_get_from_fd - get a cgroup pointer from a fd
6215 * @fd: fd obtained by open(cgroup2_dir)
6216 *
6217 * Find the cgroup from a fd which should be obtained
6218 * by opening a cgroup directory. Returns a pointer to the
6219 * cgroup on success. ERR_PTR is returned if the cgroup
6220 * cannot be found.
6221 */
6222 struct cgroup *cgroup_get_from_fd(int fd)
6223 {
6224 struct cgroup_subsys_state *css;
6225 struct cgroup *cgrp;
6226 struct file *f;
6227
6228 f = fget_raw(fd);
6229 if (!f)
6230 return ERR_PTR(-EBADF);
6231
6232 css = css_tryget_online_from_dir(f->f_path.dentry, NULL);
6233 fput(f);
6234 if (IS_ERR(css))
6235 return ERR_CAST(css);
6236
6237 cgrp = css->cgroup;
6238 if (!cgroup_on_dfl(cgrp)) {
6239 cgroup_put(cgrp);
6240 return ERR_PTR(-EBADF);
6241 }
6242
6243 return cgrp;
6244 }
6245 EXPORT_SYMBOL_GPL(cgroup_get_from_fd);
6246
6247 /*
6248 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data
6249 * definition in cgroup-defs.h.
6250 */
6251 #ifdef CONFIG_SOCK_CGROUP_DATA
6252
6253 #if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID)
6254
6255 DEFINE_SPINLOCK(cgroup_sk_update_lock);
6256 static bool cgroup_sk_alloc_disabled __read_mostly;
6257
6258 void cgroup_sk_alloc_disable(void)
6259 {
6260 if (cgroup_sk_alloc_disabled)
6261 return;
6262 pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n");
6263 cgroup_sk_alloc_disabled = true;
6264 }
6265
6266 #else
6267
6268 #define cgroup_sk_alloc_disabled false
6269
6270 #endif
6271
6272 void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
6273 {
6274 if (cgroup_sk_alloc_disabled)
6275 return;
6276
6277 rcu_read_lock();
6278
6279 while (true) {
6280 struct css_set *cset;
6281
6282 cset = task_css_set(current);
6283 if (likely(cgroup_tryget(cset->dfl_cgrp))) {
6284 skcd->val = (unsigned long)cset->dfl_cgrp;
6285 break;
6286 }
6287 cpu_relax();
6288 }
6289
6290 rcu_read_unlock();
6291 }
6292
6293 void cgroup_sk_free(struct sock_cgroup_data *skcd)
6294 {
6295 cgroup_put(sock_cgroup_ptr(skcd));
6296 }
6297
6298 #endif /* CONFIG_SOCK_CGROUP_DATA */
6299
6300 /* cgroup namespaces */
6301
6302 static struct cgroup_namespace *alloc_cgroup_ns(void)
6303 {
6304 struct cgroup_namespace *new_ns;
6305 int ret;
6306
6307 new_ns = kzalloc(sizeof(struct cgroup_namespace), GFP_KERNEL);
6308 if (!new_ns)
6309 return ERR_PTR(-ENOMEM);
6310 ret = ns_alloc_inum(&new_ns->ns);
6311 if (ret) {
6312 kfree(new_ns);
6313 return ERR_PTR(ret);
6314 }
6315 atomic_set(&new_ns->count, 1);
6316 new_ns->ns.ops = &cgroupns_operations;
6317 return new_ns;
6318 }
6319
6320 void free_cgroup_ns(struct cgroup_namespace *ns)
6321 {
6322 put_css_set(ns->root_cset);
6323 put_user_ns(ns->user_ns);
6324 ns_free_inum(&ns->ns);
6325 kfree(ns);
6326 }
6327 EXPORT_SYMBOL(free_cgroup_ns);
6328
6329 struct cgroup_namespace *copy_cgroup_ns(unsigned long flags,
6330 struct user_namespace *user_ns,
6331 struct cgroup_namespace *old_ns)
6332 {
6333 struct cgroup_namespace *new_ns;
6334 struct css_set *cset;
6335
6336 BUG_ON(!old_ns);
6337
6338 if (!(flags & CLONE_NEWCGROUP)) {
6339 get_cgroup_ns(old_ns);
6340 return old_ns;
6341 }
6342
6343 /* Allow only sysadmin to create cgroup namespace. */
6344 if (!ns_capable(user_ns, CAP_SYS_ADMIN))
6345 return ERR_PTR(-EPERM);
6346
6347 mutex_lock(&cgroup_mutex);
6348 spin_lock_irq(&css_set_lock);
6349
6350 cset = task_css_set(current);
6351 get_css_set(cset);
6352
6353 spin_unlock_irq(&css_set_lock);
6354 mutex_unlock(&cgroup_mutex);
6355
6356 new_ns = alloc_cgroup_ns();
6357 if (IS_ERR(new_ns)) {
6358 put_css_set(cset);
6359 return new_ns;
6360 }
6361
6362 new_ns->user_ns = get_user_ns(user_ns);
6363 new_ns->root_cset = cset;
6364
6365 return new_ns;
6366 }
6367
6368 static inline struct cgroup_namespace *to_cg_ns(struct ns_common *ns)
6369 {
6370 return container_of(ns, struct cgroup_namespace, ns);
6371 }
6372
6373 static int cgroupns_install(struct nsproxy *nsproxy, struct ns_common *ns)
6374 {
6375 struct cgroup_namespace *cgroup_ns = to_cg_ns(ns);
6376
6377 if (!ns_capable(current_user_ns(), CAP_SYS_ADMIN) ||
6378 !ns_capable(cgroup_ns->user_ns, CAP_SYS_ADMIN))
6379 return -EPERM;
6380
6381 /* Don't need to do anything if we are attaching to our own cgroupns. */
6382 if (cgroup_ns == nsproxy->cgroup_ns)
6383 return 0;
6384
6385 get_cgroup_ns(cgroup_ns);
6386 put_cgroup_ns(nsproxy->cgroup_ns);
6387 nsproxy->cgroup_ns = cgroup_ns;
6388
6389 return 0;
6390 }
6391
6392 static struct ns_common *cgroupns_get(struct task_struct *task)
6393 {
6394 struct cgroup_namespace *ns = NULL;
6395 struct nsproxy *nsproxy;
6396
6397 task_lock(task);
6398 nsproxy = task->nsproxy;
6399 if (nsproxy) {
6400 ns = nsproxy->cgroup_ns;
6401 get_cgroup_ns(ns);
6402 }
6403 task_unlock(task);
6404
6405 return ns ? &ns->ns : NULL;
6406 }
6407
6408 static void cgroupns_put(struct ns_common *ns)
6409 {
6410 put_cgroup_ns(to_cg_ns(ns));
6411 }
6412
6413 const struct proc_ns_operations cgroupns_operations = {
6414 .name = "cgroup",
6415 .type = CLONE_NEWCGROUP,
6416 .get = cgroupns_get,
6417 .put = cgroupns_put,
6418 .install = cgroupns_install,
6419 };
6420
6421 static __init int cgroup_namespaces_init(void)
6422 {
6423 return 0;
6424 }
6425 subsys_initcall(cgroup_namespaces_init);
6426
6427 #ifdef CONFIG_CGROUP_DEBUG
6428 static struct cgroup_subsys_state *
6429 debug_css_alloc(struct cgroup_subsys_state *parent_css)
6430 {
6431 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
6432
6433 if (!css)
6434 return ERR_PTR(-ENOMEM);
6435
6436 return css;
6437 }
6438
6439 static void debug_css_free(struct cgroup_subsys_state *css)
6440 {
6441 kfree(css);
6442 }
6443
6444 static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
6445 struct cftype *cft)
6446 {
6447 return cgroup_task_count(css->cgroup);
6448 }
6449
6450 static u64 current_css_set_read(struct cgroup_subsys_state *css,
6451 struct cftype *cft)
6452 {
6453 return (u64)(unsigned long)current->cgroups;
6454 }
6455
6456 static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
6457 struct cftype *cft)
6458 {
6459 u64 count;
6460
6461 rcu_read_lock();
6462 count = atomic_read(&task_css_set(current)->refcount);
6463 rcu_read_unlock();
6464 return count;
6465 }
6466
6467 static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
6468 {
6469 struct cgrp_cset_link *link;
6470 struct css_set *cset;
6471 char *name_buf;
6472
6473 name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
6474 if (!name_buf)
6475 return -ENOMEM;
6476
6477 spin_lock_irq(&css_set_lock);
6478 rcu_read_lock();
6479 cset = rcu_dereference(current->cgroups);
6480 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
6481 struct cgroup *c = link->cgrp;
6482
6483 cgroup_name(c, name_buf, NAME_MAX + 1);
6484 seq_printf(seq, "Root %d group %s\n",
6485 c->root->hierarchy_id, name_buf);
6486 }
6487 rcu_read_unlock();
6488 spin_unlock_irq(&css_set_lock);
6489 kfree(name_buf);
6490 return 0;
6491 }
6492
6493 #define MAX_TASKS_SHOWN_PER_CSS 25
6494 static int cgroup_css_links_read(struct seq_file *seq, void *v)
6495 {
6496 struct cgroup_subsys_state *css = seq_css(seq);
6497 struct cgrp_cset_link *link;
6498
6499 spin_lock_irq(&css_set_lock);
6500 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
6501 struct css_set *cset = link->cset;
6502 struct task_struct *task;
6503 int count = 0;
6504
6505 seq_printf(seq, "css_set %p\n", cset);
6506
6507 list_for_each_entry(task, &cset->tasks, cg_list) {
6508 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
6509 goto overflow;
6510 seq_printf(seq, " task %d\n", task_pid_vnr(task));
6511 }
6512
6513 list_for_each_entry(task, &cset->mg_tasks, cg_list) {
6514 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
6515 goto overflow;
6516 seq_printf(seq, " task %d\n", task_pid_vnr(task));
6517 }
6518 continue;
6519 overflow:
6520 seq_puts(seq, " ...\n");
6521 }
6522 spin_unlock_irq(&css_set_lock);
6523 return 0;
6524 }
6525
6526 static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
6527 {
6528 return (!cgroup_is_populated(css->cgroup) &&
6529 !css_has_online_children(&css->cgroup->self));
6530 }
6531
6532 static struct cftype debug_files[] = {
6533 {
6534 .name = "taskcount",
6535 .read_u64 = debug_taskcount_read,
6536 },
6537
6538 {
6539 .name = "current_css_set",
6540 .read_u64 = current_css_set_read,
6541 },
6542
6543 {
6544 .name = "current_css_set_refcount",
6545 .read_u64 = current_css_set_refcount_read,
6546 },
6547
6548 {
6549 .name = "current_css_set_cg_links",
6550 .seq_show = current_css_set_cg_links_read,
6551 },
6552
6553 {
6554 .name = "cgroup_css_links",
6555 .seq_show = cgroup_css_links_read,
6556 },
6557
6558 {
6559 .name = "releasable",
6560 .read_u64 = releasable_read,
6561 },
6562
6563 { } /* terminate */
6564 };
6565
6566 struct cgroup_subsys debug_cgrp_subsys = {
6567 .css_alloc = debug_css_alloc,
6568 .css_free = debug_css_free,
6569 .legacy_cftypes = debug_files,
6570 };
6571 #endif /* CONFIG_CGROUP_DEBUG */
This page took 0.179518 seconds and 5 git commands to generate.