cgroups: make procs file writable
[deliverable/linux.git] / kernel / cgroup.c
1 /*
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29 #include <linux/cgroup.h>
30 #include <linux/ctype.h>
31 #include <linux/errno.h>
32 #include <linux/fs.h>
33 #include <linux/kernel.h>
34 #include <linux/list.h>
35 #include <linux/mm.h>
36 #include <linux/mutex.h>
37 #include <linux/mount.h>
38 #include <linux/pagemap.h>
39 #include <linux/proc_fs.h>
40 #include <linux/rcupdate.h>
41 #include <linux/sched.h>
42 #include <linux/backing-dev.h>
43 #include <linux/seq_file.h>
44 #include <linux/slab.h>
45 #include <linux/magic.h>
46 #include <linux/spinlock.h>
47 #include <linux/string.h>
48 #include <linux/sort.h>
49 #include <linux/kmod.h>
50 #include <linux/module.h>
51 #include <linux/delayacct.h>
52 #include <linux/cgroupstats.h>
53 #include <linux/hash.h>
54 #include <linux/namei.h>
55 #include <linux/pid_namespace.h>
56 #include <linux/idr.h>
57 #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
58 #include <linux/eventfd.h>
59 #include <linux/poll.h>
60
61 #include <asm/atomic.h>
62
63 static DEFINE_MUTEX(cgroup_mutex);
64
65 /*
66 * Generate an array of cgroup subsystem pointers. At boot time, this is
67 * populated up to CGROUP_BUILTIN_SUBSYS_COUNT, and modular subsystems are
68 * registered after that. The mutable section of this array is protected by
69 * cgroup_mutex.
70 */
71 #define SUBSYS(_x) &_x ## _subsys,
72 static struct cgroup_subsys *subsys[CGROUP_SUBSYS_COUNT] = {
73 #include <linux/cgroup_subsys.h>
74 };
75
76 #define MAX_CGROUP_ROOT_NAMELEN 64
77
78 /*
79 * A cgroupfs_root represents the root of a cgroup hierarchy,
80 * and may be associated with a superblock to form an active
81 * hierarchy
82 */
83 struct cgroupfs_root {
84 struct super_block *sb;
85
86 /*
87 * The bitmask of subsystems intended to be attached to this
88 * hierarchy
89 */
90 unsigned long subsys_bits;
91
92 /* Unique id for this hierarchy. */
93 int hierarchy_id;
94
95 /* The bitmask of subsystems currently attached to this hierarchy */
96 unsigned long actual_subsys_bits;
97
98 /* A list running through the attached subsystems */
99 struct list_head subsys_list;
100
101 /* The root cgroup for this hierarchy */
102 struct cgroup top_cgroup;
103
104 /* Tracks how many cgroups are currently defined in hierarchy.*/
105 int number_of_cgroups;
106
107 /* A list running through the active hierarchies */
108 struct list_head root_list;
109
110 /* Hierarchy-specific flags */
111 unsigned long flags;
112
113 /* The path to use for release notifications. */
114 char release_agent_path[PATH_MAX];
115
116 /* The name for this hierarchy - may be empty */
117 char name[MAX_CGROUP_ROOT_NAMELEN];
118 };
119
120 /*
121 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
122 * subsystems that are otherwise unattached - it never has more than a
123 * single cgroup, and all tasks are part of that cgroup.
124 */
125 static struct cgroupfs_root rootnode;
126
127 /*
128 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
129 * cgroup_subsys->use_id != 0.
130 */
131 #define CSS_ID_MAX (65535)
132 struct css_id {
133 /*
134 * The css to which this ID points. This pointer is set to valid value
135 * after cgroup is populated. If cgroup is removed, this will be NULL.
136 * This pointer is expected to be RCU-safe because destroy()
137 * is called after synchronize_rcu(). But for safe use, css_is_removed()
138 * css_tryget() should be used for avoiding race.
139 */
140 struct cgroup_subsys_state __rcu *css;
141 /*
142 * ID of this css.
143 */
144 unsigned short id;
145 /*
146 * Depth in hierarchy which this ID belongs to.
147 */
148 unsigned short depth;
149 /*
150 * ID is freed by RCU. (and lookup routine is RCU safe.)
151 */
152 struct rcu_head rcu_head;
153 /*
154 * Hierarchy of CSS ID belongs to.
155 */
156 unsigned short stack[0]; /* Array of Length (depth+1) */
157 };
158
159 /*
160 * cgroup_event represents events which userspace want to receive.
161 */
162 struct cgroup_event {
163 /*
164 * Cgroup which the event belongs to.
165 */
166 struct cgroup *cgrp;
167 /*
168 * Control file which the event associated.
169 */
170 struct cftype *cft;
171 /*
172 * eventfd to signal userspace about the event.
173 */
174 struct eventfd_ctx *eventfd;
175 /*
176 * Each of these stored in a list by the cgroup.
177 */
178 struct list_head list;
179 /*
180 * All fields below needed to unregister event when
181 * userspace closes eventfd.
182 */
183 poll_table pt;
184 wait_queue_head_t *wqh;
185 wait_queue_t wait;
186 struct work_struct remove;
187 };
188
189 /* The list of hierarchy roots */
190
191 static LIST_HEAD(roots);
192 static int root_count;
193
194 static DEFINE_IDA(hierarchy_ida);
195 static int next_hierarchy_id;
196 static DEFINE_SPINLOCK(hierarchy_id_lock);
197
198 /* dummytop is a shorthand for the dummy hierarchy's top cgroup */
199 #define dummytop (&rootnode.top_cgroup)
200
201 /* This flag indicates whether tasks in the fork and exit paths should
202 * check for fork/exit handlers to call. This avoids us having to do
203 * extra work in the fork/exit path if none of the subsystems need to
204 * be called.
205 */
206 static int need_forkexit_callback __read_mostly;
207
208 #ifdef CONFIG_PROVE_LOCKING
209 int cgroup_lock_is_held(void)
210 {
211 return lockdep_is_held(&cgroup_mutex);
212 }
213 #else /* #ifdef CONFIG_PROVE_LOCKING */
214 int cgroup_lock_is_held(void)
215 {
216 return mutex_is_locked(&cgroup_mutex);
217 }
218 #endif /* #else #ifdef CONFIG_PROVE_LOCKING */
219
220 EXPORT_SYMBOL_GPL(cgroup_lock_is_held);
221
222 /* convenient tests for these bits */
223 inline int cgroup_is_removed(const struct cgroup *cgrp)
224 {
225 return test_bit(CGRP_REMOVED, &cgrp->flags);
226 }
227
228 /* bits in struct cgroupfs_root flags field */
229 enum {
230 ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
231 };
232
233 static int cgroup_is_releasable(const struct cgroup *cgrp)
234 {
235 const int bits =
236 (1 << CGRP_RELEASABLE) |
237 (1 << CGRP_NOTIFY_ON_RELEASE);
238 return (cgrp->flags & bits) == bits;
239 }
240
241 static int notify_on_release(const struct cgroup *cgrp)
242 {
243 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
244 }
245
246 static int clone_children(const struct cgroup *cgrp)
247 {
248 return test_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
249 }
250
251 /*
252 * for_each_subsys() allows you to iterate on each subsystem attached to
253 * an active hierarchy
254 */
255 #define for_each_subsys(_root, _ss) \
256 list_for_each_entry(_ss, &_root->subsys_list, sibling)
257
258 /* for_each_active_root() allows you to iterate across the active hierarchies */
259 #define for_each_active_root(_root) \
260 list_for_each_entry(_root, &roots, root_list)
261
262 /* the list of cgroups eligible for automatic release. Protected by
263 * release_list_lock */
264 static LIST_HEAD(release_list);
265 static DEFINE_SPINLOCK(release_list_lock);
266 static void cgroup_release_agent(struct work_struct *work);
267 static DECLARE_WORK(release_agent_work, cgroup_release_agent);
268 static void check_for_release(struct cgroup *cgrp);
269
270 /* Link structure for associating css_set objects with cgroups */
271 struct cg_cgroup_link {
272 /*
273 * List running through cg_cgroup_links associated with a
274 * cgroup, anchored on cgroup->css_sets
275 */
276 struct list_head cgrp_link_list;
277 struct cgroup *cgrp;
278 /*
279 * List running through cg_cgroup_links pointing at a
280 * single css_set object, anchored on css_set->cg_links
281 */
282 struct list_head cg_link_list;
283 struct css_set *cg;
284 };
285
286 /* The default css_set - used by init and its children prior to any
287 * hierarchies being mounted. It contains a pointer to the root state
288 * for each subsystem. Also used to anchor the list of css_sets. Not
289 * reference-counted, to improve performance when child cgroups
290 * haven't been created.
291 */
292
293 static struct css_set init_css_set;
294 static struct cg_cgroup_link init_css_set_link;
295
296 static int cgroup_init_idr(struct cgroup_subsys *ss,
297 struct cgroup_subsys_state *css);
298
299 /* css_set_lock protects the list of css_set objects, and the
300 * chain of tasks off each css_set. Nests outside task->alloc_lock
301 * due to cgroup_iter_start() */
302 static DEFINE_RWLOCK(css_set_lock);
303 static int css_set_count;
304
305 /*
306 * hash table for cgroup groups. This improves the performance to find
307 * an existing css_set. This hash doesn't (currently) take into
308 * account cgroups in empty hierarchies.
309 */
310 #define CSS_SET_HASH_BITS 7
311 #define CSS_SET_TABLE_SIZE (1 << CSS_SET_HASH_BITS)
312 static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE];
313
314 static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[])
315 {
316 int i;
317 int index;
318 unsigned long tmp = 0UL;
319
320 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
321 tmp += (unsigned long)css[i];
322 tmp = (tmp >> 16) ^ tmp;
323
324 index = hash_long(tmp, CSS_SET_HASH_BITS);
325
326 return &css_set_table[index];
327 }
328
329 /* We don't maintain the lists running through each css_set to its
330 * task until after the first call to cgroup_iter_start(). This
331 * reduces the fork()/exit() overhead for people who have cgroups
332 * compiled into their kernel but not actually in use */
333 static int use_task_css_set_links __read_mostly;
334
335 static void __put_css_set(struct css_set *cg, int taskexit)
336 {
337 struct cg_cgroup_link *link;
338 struct cg_cgroup_link *saved_link;
339 /*
340 * Ensure that the refcount doesn't hit zero while any readers
341 * can see it. Similar to atomic_dec_and_lock(), but for an
342 * rwlock
343 */
344 if (atomic_add_unless(&cg->refcount, -1, 1))
345 return;
346 write_lock(&css_set_lock);
347 if (!atomic_dec_and_test(&cg->refcount)) {
348 write_unlock(&css_set_lock);
349 return;
350 }
351
352 /* This css_set is dead. unlink it and release cgroup refcounts */
353 hlist_del(&cg->hlist);
354 css_set_count--;
355
356 list_for_each_entry_safe(link, saved_link, &cg->cg_links,
357 cg_link_list) {
358 struct cgroup *cgrp = link->cgrp;
359 list_del(&link->cg_link_list);
360 list_del(&link->cgrp_link_list);
361 if (atomic_dec_and_test(&cgrp->count) &&
362 notify_on_release(cgrp)) {
363 if (taskexit)
364 set_bit(CGRP_RELEASABLE, &cgrp->flags);
365 check_for_release(cgrp);
366 }
367
368 kfree(link);
369 }
370
371 write_unlock(&css_set_lock);
372 kfree_rcu(cg, rcu_head);
373 }
374
375 /*
376 * refcounted get/put for css_set objects
377 */
378 static inline void get_css_set(struct css_set *cg)
379 {
380 atomic_inc(&cg->refcount);
381 }
382
383 static inline void put_css_set(struct css_set *cg)
384 {
385 __put_css_set(cg, 0);
386 }
387
388 static inline void put_css_set_taskexit(struct css_set *cg)
389 {
390 __put_css_set(cg, 1);
391 }
392
393 /*
394 * compare_css_sets - helper function for find_existing_css_set().
395 * @cg: candidate css_set being tested
396 * @old_cg: existing css_set for a task
397 * @new_cgrp: cgroup that's being entered by the task
398 * @template: desired set of css pointers in css_set (pre-calculated)
399 *
400 * Returns true if "cg" matches "old_cg" except for the hierarchy
401 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
402 */
403 static bool compare_css_sets(struct css_set *cg,
404 struct css_set *old_cg,
405 struct cgroup *new_cgrp,
406 struct cgroup_subsys_state *template[])
407 {
408 struct list_head *l1, *l2;
409
410 if (memcmp(template, cg->subsys, sizeof(cg->subsys))) {
411 /* Not all subsystems matched */
412 return false;
413 }
414
415 /*
416 * Compare cgroup pointers in order to distinguish between
417 * different cgroups in heirarchies with no subsystems. We
418 * could get by with just this check alone (and skip the
419 * memcmp above) but on most setups the memcmp check will
420 * avoid the need for this more expensive check on almost all
421 * candidates.
422 */
423
424 l1 = &cg->cg_links;
425 l2 = &old_cg->cg_links;
426 while (1) {
427 struct cg_cgroup_link *cgl1, *cgl2;
428 struct cgroup *cg1, *cg2;
429
430 l1 = l1->next;
431 l2 = l2->next;
432 /* See if we reached the end - both lists are equal length. */
433 if (l1 == &cg->cg_links) {
434 BUG_ON(l2 != &old_cg->cg_links);
435 break;
436 } else {
437 BUG_ON(l2 == &old_cg->cg_links);
438 }
439 /* Locate the cgroups associated with these links. */
440 cgl1 = list_entry(l1, struct cg_cgroup_link, cg_link_list);
441 cgl2 = list_entry(l2, struct cg_cgroup_link, cg_link_list);
442 cg1 = cgl1->cgrp;
443 cg2 = cgl2->cgrp;
444 /* Hierarchies should be linked in the same order. */
445 BUG_ON(cg1->root != cg2->root);
446
447 /*
448 * If this hierarchy is the hierarchy of the cgroup
449 * that's changing, then we need to check that this
450 * css_set points to the new cgroup; if it's any other
451 * hierarchy, then this css_set should point to the
452 * same cgroup as the old css_set.
453 */
454 if (cg1->root == new_cgrp->root) {
455 if (cg1 != new_cgrp)
456 return false;
457 } else {
458 if (cg1 != cg2)
459 return false;
460 }
461 }
462 return true;
463 }
464
465 /*
466 * find_existing_css_set() is a helper for
467 * find_css_set(), and checks to see whether an existing
468 * css_set is suitable.
469 *
470 * oldcg: the cgroup group that we're using before the cgroup
471 * transition
472 *
473 * cgrp: the cgroup that we're moving into
474 *
475 * template: location in which to build the desired set of subsystem
476 * state objects for the new cgroup group
477 */
478 static struct css_set *find_existing_css_set(
479 struct css_set *oldcg,
480 struct cgroup *cgrp,
481 struct cgroup_subsys_state *template[])
482 {
483 int i;
484 struct cgroupfs_root *root = cgrp->root;
485 struct hlist_head *hhead;
486 struct hlist_node *node;
487 struct css_set *cg;
488
489 /*
490 * Build the set of subsystem state objects that we want to see in the
491 * new css_set. while subsystems can change globally, the entries here
492 * won't change, so no need for locking.
493 */
494 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
495 if (root->subsys_bits & (1UL << i)) {
496 /* Subsystem is in this hierarchy. So we want
497 * the subsystem state from the new
498 * cgroup */
499 template[i] = cgrp->subsys[i];
500 } else {
501 /* Subsystem is not in this hierarchy, so we
502 * don't want to change the subsystem state */
503 template[i] = oldcg->subsys[i];
504 }
505 }
506
507 hhead = css_set_hash(template);
508 hlist_for_each_entry(cg, node, hhead, hlist) {
509 if (!compare_css_sets(cg, oldcg, cgrp, template))
510 continue;
511
512 /* This css_set matches what we need */
513 return cg;
514 }
515
516 /* No existing cgroup group matched */
517 return NULL;
518 }
519
520 static void free_cg_links(struct list_head *tmp)
521 {
522 struct cg_cgroup_link *link;
523 struct cg_cgroup_link *saved_link;
524
525 list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
526 list_del(&link->cgrp_link_list);
527 kfree(link);
528 }
529 }
530
531 /*
532 * allocate_cg_links() allocates "count" cg_cgroup_link structures
533 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
534 * success or a negative error
535 */
536 static int allocate_cg_links(int count, struct list_head *tmp)
537 {
538 struct cg_cgroup_link *link;
539 int i;
540 INIT_LIST_HEAD(tmp);
541 for (i = 0; i < count; i++) {
542 link = kmalloc(sizeof(*link), GFP_KERNEL);
543 if (!link) {
544 free_cg_links(tmp);
545 return -ENOMEM;
546 }
547 list_add(&link->cgrp_link_list, tmp);
548 }
549 return 0;
550 }
551
552 /**
553 * link_css_set - a helper function to link a css_set to a cgroup
554 * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
555 * @cg: the css_set to be linked
556 * @cgrp: the destination cgroup
557 */
558 static void link_css_set(struct list_head *tmp_cg_links,
559 struct css_set *cg, struct cgroup *cgrp)
560 {
561 struct cg_cgroup_link *link;
562
563 BUG_ON(list_empty(tmp_cg_links));
564 link = list_first_entry(tmp_cg_links, struct cg_cgroup_link,
565 cgrp_link_list);
566 link->cg = cg;
567 link->cgrp = cgrp;
568 atomic_inc(&cgrp->count);
569 list_move(&link->cgrp_link_list, &cgrp->css_sets);
570 /*
571 * Always add links to the tail of the list so that the list
572 * is sorted by order of hierarchy creation
573 */
574 list_add_tail(&link->cg_link_list, &cg->cg_links);
575 }
576
577 /*
578 * find_css_set() takes an existing cgroup group and a
579 * cgroup object, and returns a css_set object that's
580 * equivalent to the old group, but with the given cgroup
581 * substituted into the appropriate hierarchy. Must be called with
582 * cgroup_mutex held
583 */
584 static struct css_set *find_css_set(
585 struct css_set *oldcg, struct cgroup *cgrp)
586 {
587 struct css_set *res;
588 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
589
590 struct list_head tmp_cg_links;
591
592 struct hlist_head *hhead;
593 struct cg_cgroup_link *link;
594
595 /* First see if we already have a cgroup group that matches
596 * the desired set */
597 read_lock(&css_set_lock);
598 res = find_existing_css_set(oldcg, cgrp, template);
599 if (res)
600 get_css_set(res);
601 read_unlock(&css_set_lock);
602
603 if (res)
604 return res;
605
606 res = kmalloc(sizeof(*res), GFP_KERNEL);
607 if (!res)
608 return NULL;
609
610 /* Allocate all the cg_cgroup_link objects that we'll need */
611 if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
612 kfree(res);
613 return NULL;
614 }
615
616 atomic_set(&res->refcount, 1);
617 INIT_LIST_HEAD(&res->cg_links);
618 INIT_LIST_HEAD(&res->tasks);
619 INIT_HLIST_NODE(&res->hlist);
620
621 /* Copy the set of subsystem state objects generated in
622 * find_existing_css_set() */
623 memcpy(res->subsys, template, sizeof(res->subsys));
624
625 write_lock(&css_set_lock);
626 /* Add reference counts and links from the new css_set. */
627 list_for_each_entry(link, &oldcg->cg_links, cg_link_list) {
628 struct cgroup *c = link->cgrp;
629 if (c->root == cgrp->root)
630 c = cgrp;
631 link_css_set(&tmp_cg_links, res, c);
632 }
633
634 BUG_ON(!list_empty(&tmp_cg_links));
635
636 css_set_count++;
637
638 /* Add this cgroup group to the hash table */
639 hhead = css_set_hash(res->subsys);
640 hlist_add_head(&res->hlist, hhead);
641
642 write_unlock(&css_set_lock);
643
644 return res;
645 }
646
647 /*
648 * Return the cgroup for "task" from the given hierarchy. Must be
649 * called with cgroup_mutex held.
650 */
651 static struct cgroup *task_cgroup_from_root(struct task_struct *task,
652 struct cgroupfs_root *root)
653 {
654 struct css_set *css;
655 struct cgroup *res = NULL;
656
657 BUG_ON(!mutex_is_locked(&cgroup_mutex));
658 read_lock(&css_set_lock);
659 /*
660 * No need to lock the task - since we hold cgroup_mutex the
661 * task can't change groups, so the only thing that can happen
662 * is that it exits and its css is set back to init_css_set.
663 */
664 css = task->cgroups;
665 if (css == &init_css_set) {
666 res = &root->top_cgroup;
667 } else {
668 struct cg_cgroup_link *link;
669 list_for_each_entry(link, &css->cg_links, cg_link_list) {
670 struct cgroup *c = link->cgrp;
671 if (c->root == root) {
672 res = c;
673 break;
674 }
675 }
676 }
677 read_unlock(&css_set_lock);
678 BUG_ON(!res);
679 return res;
680 }
681
682 /*
683 * There is one global cgroup mutex. We also require taking
684 * task_lock() when dereferencing a task's cgroup subsys pointers.
685 * See "The task_lock() exception", at the end of this comment.
686 *
687 * A task must hold cgroup_mutex to modify cgroups.
688 *
689 * Any task can increment and decrement the count field without lock.
690 * So in general, code holding cgroup_mutex can't rely on the count
691 * field not changing. However, if the count goes to zero, then only
692 * cgroup_attach_task() can increment it again. Because a count of zero
693 * means that no tasks are currently attached, therefore there is no
694 * way a task attached to that cgroup can fork (the other way to
695 * increment the count). So code holding cgroup_mutex can safely
696 * assume that if the count is zero, it will stay zero. Similarly, if
697 * a task holds cgroup_mutex on a cgroup with zero count, it
698 * knows that the cgroup won't be removed, as cgroup_rmdir()
699 * needs that mutex.
700 *
701 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
702 * (usually) take cgroup_mutex. These are the two most performance
703 * critical pieces of code here. The exception occurs on cgroup_exit(),
704 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
705 * is taken, and if the cgroup count is zero, a usermode call made
706 * to the release agent with the name of the cgroup (path relative to
707 * the root of cgroup file system) as the argument.
708 *
709 * A cgroup can only be deleted if both its 'count' of using tasks
710 * is zero, and its list of 'children' cgroups is empty. Since all
711 * tasks in the system use _some_ cgroup, and since there is always at
712 * least one task in the system (init, pid == 1), therefore, top_cgroup
713 * always has either children cgroups and/or using tasks. So we don't
714 * need a special hack to ensure that top_cgroup cannot be deleted.
715 *
716 * The task_lock() exception
717 *
718 * The need for this exception arises from the action of
719 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
720 * another. It does so using cgroup_mutex, however there are
721 * several performance critical places that need to reference
722 * task->cgroup without the expense of grabbing a system global
723 * mutex. Therefore except as noted below, when dereferencing or, as
724 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
725 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
726 * the task_struct routinely used for such matters.
727 *
728 * P.S. One more locking exception. RCU is used to guard the
729 * update of a tasks cgroup pointer by cgroup_attach_task()
730 */
731
732 /**
733 * cgroup_lock - lock out any changes to cgroup structures
734 *
735 */
736 void cgroup_lock(void)
737 {
738 mutex_lock(&cgroup_mutex);
739 }
740 EXPORT_SYMBOL_GPL(cgroup_lock);
741
742 /**
743 * cgroup_unlock - release lock on cgroup changes
744 *
745 * Undo the lock taken in a previous cgroup_lock() call.
746 */
747 void cgroup_unlock(void)
748 {
749 mutex_unlock(&cgroup_mutex);
750 }
751 EXPORT_SYMBOL_GPL(cgroup_unlock);
752
753 /*
754 * A couple of forward declarations required, due to cyclic reference loop:
755 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
756 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
757 * -> cgroup_mkdir.
758 */
759
760 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode);
761 static struct dentry *cgroup_lookup(struct inode *, struct dentry *, struct nameidata *);
762 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
763 static int cgroup_populate_dir(struct cgroup *cgrp);
764 static const struct inode_operations cgroup_dir_inode_operations;
765 static const struct file_operations proc_cgroupstats_operations;
766
767 static struct backing_dev_info cgroup_backing_dev_info = {
768 .name = "cgroup",
769 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
770 };
771
772 static int alloc_css_id(struct cgroup_subsys *ss,
773 struct cgroup *parent, struct cgroup *child);
774
775 static struct inode *cgroup_new_inode(mode_t mode, struct super_block *sb)
776 {
777 struct inode *inode = new_inode(sb);
778
779 if (inode) {
780 inode->i_ino = get_next_ino();
781 inode->i_mode = mode;
782 inode->i_uid = current_fsuid();
783 inode->i_gid = current_fsgid();
784 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
785 inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
786 }
787 return inode;
788 }
789
790 /*
791 * Call subsys's pre_destroy handler.
792 * This is called before css refcnt check.
793 */
794 static int cgroup_call_pre_destroy(struct cgroup *cgrp)
795 {
796 struct cgroup_subsys *ss;
797 int ret = 0;
798
799 for_each_subsys(cgrp->root, ss)
800 if (ss->pre_destroy) {
801 ret = ss->pre_destroy(ss, cgrp);
802 if (ret)
803 break;
804 }
805
806 return ret;
807 }
808
809 static void cgroup_diput(struct dentry *dentry, struct inode *inode)
810 {
811 /* is dentry a directory ? if so, kfree() associated cgroup */
812 if (S_ISDIR(inode->i_mode)) {
813 struct cgroup *cgrp = dentry->d_fsdata;
814 struct cgroup_subsys *ss;
815 BUG_ON(!(cgroup_is_removed(cgrp)));
816 /* It's possible for external users to be holding css
817 * reference counts on a cgroup; css_put() needs to
818 * be able to access the cgroup after decrementing
819 * the reference count in order to know if it needs to
820 * queue the cgroup to be handled by the release
821 * agent */
822 synchronize_rcu();
823
824 mutex_lock(&cgroup_mutex);
825 /*
826 * Release the subsystem state objects.
827 */
828 for_each_subsys(cgrp->root, ss)
829 ss->destroy(ss, cgrp);
830
831 cgrp->root->number_of_cgroups--;
832 mutex_unlock(&cgroup_mutex);
833
834 /*
835 * Drop the active superblock reference that we took when we
836 * created the cgroup
837 */
838 deactivate_super(cgrp->root->sb);
839
840 /*
841 * if we're getting rid of the cgroup, refcount should ensure
842 * that there are no pidlists left.
843 */
844 BUG_ON(!list_empty(&cgrp->pidlists));
845
846 kfree_rcu(cgrp, rcu_head);
847 }
848 iput(inode);
849 }
850
851 static int cgroup_delete(const struct dentry *d)
852 {
853 return 1;
854 }
855
856 static void remove_dir(struct dentry *d)
857 {
858 struct dentry *parent = dget(d->d_parent);
859
860 d_delete(d);
861 simple_rmdir(parent->d_inode, d);
862 dput(parent);
863 }
864
865 static void cgroup_clear_directory(struct dentry *dentry)
866 {
867 struct list_head *node;
868
869 BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
870 spin_lock(&dentry->d_lock);
871 node = dentry->d_subdirs.next;
872 while (node != &dentry->d_subdirs) {
873 struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
874
875 spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
876 list_del_init(node);
877 if (d->d_inode) {
878 /* This should never be called on a cgroup
879 * directory with child cgroups */
880 BUG_ON(d->d_inode->i_mode & S_IFDIR);
881 dget_dlock(d);
882 spin_unlock(&d->d_lock);
883 spin_unlock(&dentry->d_lock);
884 d_delete(d);
885 simple_unlink(dentry->d_inode, d);
886 dput(d);
887 spin_lock(&dentry->d_lock);
888 } else
889 spin_unlock(&d->d_lock);
890 node = dentry->d_subdirs.next;
891 }
892 spin_unlock(&dentry->d_lock);
893 }
894
895 /*
896 * NOTE : the dentry must have been dget()'ed
897 */
898 static void cgroup_d_remove_dir(struct dentry *dentry)
899 {
900 struct dentry *parent;
901
902 cgroup_clear_directory(dentry);
903
904 parent = dentry->d_parent;
905 spin_lock(&parent->d_lock);
906 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
907 list_del_init(&dentry->d_u.d_child);
908 spin_unlock(&dentry->d_lock);
909 spin_unlock(&parent->d_lock);
910 remove_dir(dentry);
911 }
912
913 /*
914 * A queue for waiters to do rmdir() cgroup. A tasks will sleep when
915 * cgroup->count == 0 && list_empty(&cgroup->children) && subsys has some
916 * reference to css->refcnt. In general, this refcnt is expected to goes down
917 * to zero, soon.
918 *
919 * CGRP_WAIT_ON_RMDIR flag is set under cgroup's inode->i_mutex;
920 */
921 DECLARE_WAIT_QUEUE_HEAD(cgroup_rmdir_waitq);
922
923 static void cgroup_wakeup_rmdir_waiter(struct cgroup *cgrp)
924 {
925 if (unlikely(test_and_clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags)))
926 wake_up_all(&cgroup_rmdir_waitq);
927 }
928
929 void cgroup_exclude_rmdir(struct cgroup_subsys_state *css)
930 {
931 css_get(css);
932 }
933
934 void cgroup_release_and_wakeup_rmdir(struct cgroup_subsys_state *css)
935 {
936 cgroup_wakeup_rmdir_waiter(css->cgroup);
937 css_put(css);
938 }
939
940 /*
941 * Call with cgroup_mutex held. Drops reference counts on modules, including
942 * any duplicate ones that parse_cgroupfs_options took. If this function
943 * returns an error, no reference counts are touched.
944 */
945 static int rebind_subsystems(struct cgroupfs_root *root,
946 unsigned long final_bits)
947 {
948 unsigned long added_bits, removed_bits;
949 struct cgroup *cgrp = &root->top_cgroup;
950 int i;
951
952 BUG_ON(!mutex_is_locked(&cgroup_mutex));
953
954 removed_bits = root->actual_subsys_bits & ~final_bits;
955 added_bits = final_bits & ~root->actual_subsys_bits;
956 /* Check that any added subsystems are currently free */
957 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
958 unsigned long bit = 1UL << i;
959 struct cgroup_subsys *ss = subsys[i];
960 if (!(bit & added_bits))
961 continue;
962 /*
963 * Nobody should tell us to do a subsys that doesn't exist:
964 * parse_cgroupfs_options should catch that case and refcounts
965 * ensure that subsystems won't disappear once selected.
966 */
967 BUG_ON(ss == NULL);
968 if (ss->root != &rootnode) {
969 /* Subsystem isn't free */
970 return -EBUSY;
971 }
972 }
973
974 /* Currently we don't handle adding/removing subsystems when
975 * any child cgroups exist. This is theoretically supportable
976 * but involves complex error handling, so it's being left until
977 * later */
978 if (root->number_of_cgroups > 1)
979 return -EBUSY;
980
981 /* Process each subsystem */
982 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
983 struct cgroup_subsys *ss = subsys[i];
984 unsigned long bit = 1UL << i;
985 if (bit & added_bits) {
986 /* We're binding this subsystem to this hierarchy */
987 BUG_ON(ss == NULL);
988 BUG_ON(cgrp->subsys[i]);
989 BUG_ON(!dummytop->subsys[i]);
990 BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
991 mutex_lock(&ss->hierarchy_mutex);
992 cgrp->subsys[i] = dummytop->subsys[i];
993 cgrp->subsys[i]->cgroup = cgrp;
994 list_move(&ss->sibling, &root->subsys_list);
995 ss->root = root;
996 if (ss->bind)
997 ss->bind(ss, cgrp);
998 mutex_unlock(&ss->hierarchy_mutex);
999 /* refcount was already taken, and we're keeping it */
1000 } else if (bit & removed_bits) {
1001 /* We're removing this subsystem */
1002 BUG_ON(ss == NULL);
1003 BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
1004 BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
1005 mutex_lock(&ss->hierarchy_mutex);
1006 if (ss->bind)
1007 ss->bind(ss, dummytop);
1008 dummytop->subsys[i]->cgroup = dummytop;
1009 cgrp->subsys[i] = NULL;
1010 subsys[i]->root = &rootnode;
1011 list_move(&ss->sibling, &rootnode.subsys_list);
1012 mutex_unlock(&ss->hierarchy_mutex);
1013 /* subsystem is now free - drop reference on module */
1014 module_put(ss->module);
1015 } else if (bit & final_bits) {
1016 /* Subsystem state should already exist */
1017 BUG_ON(ss == NULL);
1018 BUG_ON(!cgrp->subsys[i]);
1019 /*
1020 * a refcount was taken, but we already had one, so
1021 * drop the extra reference.
1022 */
1023 module_put(ss->module);
1024 #ifdef CONFIG_MODULE_UNLOAD
1025 BUG_ON(ss->module && !module_refcount(ss->module));
1026 #endif
1027 } else {
1028 /* Subsystem state shouldn't exist */
1029 BUG_ON(cgrp->subsys[i]);
1030 }
1031 }
1032 root->subsys_bits = root->actual_subsys_bits = final_bits;
1033 synchronize_rcu();
1034
1035 return 0;
1036 }
1037
1038 static int cgroup_show_options(struct seq_file *seq, struct vfsmount *vfs)
1039 {
1040 struct cgroupfs_root *root = vfs->mnt_sb->s_fs_info;
1041 struct cgroup_subsys *ss;
1042
1043 mutex_lock(&cgroup_mutex);
1044 for_each_subsys(root, ss)
1045 seq_printf(seq, ",%s", ss->name);
1046 if (test_bit(ROOT_NOPREFIX, &root->flags))
1047 seq_puts(seq, ",noprefix");
1048 if (strlen(root->release_agent_path))
1049 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
1050 if (clone_children(&root->top_cgroup))
1051 seq_puts(seq, ",clone_children");
1052 if (strlen(root->name))
1053 seq_printf(seq, ",name=%s", root->name);
1054 mutex_unlock(&cgroup_mutex);
1055 return 0;
1056 }
1057
1058 struct cgroup_sb_opts {
1059 unsigned long subsys_bits;
1060 unsigned long flags;
1061 char *release_agent;
1062 bool clone_children;
1063 char *name;
1064 /* User explicitly requested empty subsystem */
1065 bool none;
1066
1067 struct cgroupfs_root *new_root;
1068
1069 };
1070
1071 /*
1072 * Convert a hierarchy specifier into a bitmask of subsystems and flags. Call
1073 * with cgroup_mutex held to protect the subsys[] array. This function takes
1074 * refcounts on subsystems to be used, unless it returns error, in which case
1075 * no refcounts are taken.
1076 */
1077 static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
1078 {
1079 char *token, *o = data;
1080 bool all_ss = false, one_ss = false;
1081 unsigned long mask = (unsigned long)-1;
1082 int i;
1083 bool module_pin_failed = false;
1084
1085 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1086
1087 #ifdef CONFIG_CPUSETS
1088 mask = ~(1UL << cpuset_subsys_id);
1089 #endif
1090
1091 memset(opts, 0, sizeof(*opts));
1092
1093 while ((token = strsep(&o, ",")) != NULL) {
1094 if (!*token)
1095 return -EINVAL;
1096 if (!strcmp(token, "none")) {
1097 /* Explicitly have no subsystems */
1098 opts->none = true;
1099 continue;
1100 }
1101 if (!strcmp(token, "all")) {
1102 /* Mutually exclusive option 'all' + subsystem name */
1103 if (one_ss)
1104 return -EINVAL;
1105 all_ss = true;
1106 continue;
1107 }
1108 if (!strcmp(token, "noprefix")) {
1109 set_bit(ROOT_NOPREFIX, &opts->flags);
1110 continue;
1111 }
1112 if (!strcmp(token, "clone_children")) {
1113 opts->clone_children = true;
1114 continue;
1115 }
1116 if (!strncmp(token, "release_agent=", 14)) {
1117 /* Specifying two release agents is forbidden */
1118 if (opts->release_agent)
1119 return -EINVAL;
1120 opts->release_agent =
1121 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
1122 if (!opts->release_agent)
1123 return -ENOMEM;
1124 continue;
1125 }
1126 if (!strncmp(token, "name=", 5)) {
1127 const char *name = token + 5;
1128 /* Can't specify an empty name */
1129 if (!strlen(name))
1130 return -EINVAL;
1131 /* Must match [\w.-]+ */
1132 for (i = 0; i < strlen(name); i++) {
1133 char c = name[i];
1134 if (isalnum(c))
1135 continue;
1136 if ((c == '.') || (c == '-') || (c == '_'))
1137 continue;
1138 return -EINVAL;
1139 }
1140 /* Specifying two names is forbidden */
1141 if (opts->name)
1142 return -EINVAL;
1143 opts->name = kstrndup(name,
1144 MAX_CGROUP_ROOT_NAMELEN - 1,
1145 GFP_KERNEL);
1146 if (!opts->name)
1147 return -ENOMEM;
1148
1149 continue;
1150 }
1151
1152 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1153 struct cgroup_subsys *ss = subsys[i];
1154 if (ss == NULL)
1155 continue;
1156 if (strcmp(token, ss->name))
1157 continue;
1158 if (ss->disabled)
1159 continue;
1160
1161 /* Mutually exclusive option 'all' + subsystem name */
1162 if (all_ss)
1163 return -EINVAL;
1164 set_bit(i, &opts->subsys_bits);
1165 one_ss = true;
1166
1167 break;
1168 }
1169 if (i == CGROUP_SUBSYS_COUNT)
1170 return -ENOENT;
1171 }
1172
1173 /*
1174 * If the 'all' option was specified select all the subsystems,
1175 * otherwise 'all, 'none' and a subsystem name options were not
1176 * specified, let's default to 'all'
1177 */
1178 if (all_ss || (!all_ss && !one_ss && !opts->none)) {
1179 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1180 struct cgroup_subsys *ss = subsys[i];
1181 if (ss == NULL)
1182 continue;
1183 if (ss->disabled)
1184 continue;
1185 set_bit(i, &opts->subsys_bits);
1186 }
1187 }
1188
1189 /* Consistency checks */
1190
1191 /*
1192 * Option noprefix was introduced just for backward compatibility
1193 * with the old cpuset, so we allow noprefix only if mounting just
1194 * the cpuset subsystem.
1195 */
1196 if (test_bit(ROOT_NOPREFIX, &opts->flags) &&
1197 (opts->subsys_bits & mask))
1198 return -EINVAL;
1199
1200
1201 /* Can't specify "none" and some subsystems */
1202 if (opts->subsys_bits && opts->none)
1203 return -EINVAL;
1204
1205 /*
1206 * We either have to specify by name or by subsystems. (So all
1207 * empty hierarchies must have a name).
1208 */
1209 if (!opts->subsys_bits && !opts->name)
1210 return -EINVAL;
1211
1212 /*
1213 * Grab references on all the modules we'll need, so the subsystems
1214 * don't dance around before rebind_subsystems attaches them. This may
1215 * take duplicate reference counts on a subsystem that's already used,
1216 * but rebind_subsystems handles this case.
1217 */
1218 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
1219 unsigned long bit = 1UL << i;
1220
1221 if (!(bit & opts->subsys_bits))
1222 continue;
1223 if (!try_module_get(subsys[i]->module)) {
1224 module_pin_failed = true;
1225 break;
1226 }
1227 }
1228 if (module_pin_failed) {
1229 /*
1230 * oops, one of the modules was going away. this means that we
1231 * raced with a module_delete call, and to the user this is
1232 * essentially a "subsystem doesn't exist" case.
1233 */
1234 for (i--; i >= CGROUP_BUILTIN_SUBSYS_COUNT; i--) {
1235 /* drop refcounts only on the ones we took */
1236 unsigned long bit = 1UL << i;
1237
1238 if (!(bit & opts->subsys_bits))
1239 continue;
1240 module_put(subsys[i]->module);
1241 }
1242 return -ENOENT;
1243 }
1244
1245 return 0;
1246 }
1247
1248 static void drop_parsed_module_refcounts(unsigned long subsys_bits)
1249 {
1250 int i;
1251 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
1252 unsigned long bit = 1UL << i;
1253
1254 if (!(bit & subsys_bits))
1255 continue;
1256 module_put(subsys[i]->module);
1257 }
1258 }
1259
1260 static int cgroup_remount(struct super_block *sb, int *flags, char *data)
1261 {
1262 int ret = 0;
1263 struct cgroupfs_root *root = sb->s_fs_info;
1264 struct cgroup *cgrp = &root->top_cgroup;
1265 struct cgroup_sb_opts opts;
1266
1267 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
1268 mutex_lock(&cgroup_mutex);
1269
1270 /* See what subsystems are wanted */
1271 ret = parse_cgroupfs_options(data, &opts);
1272 if (ret)
1273 goto out_unlock;
1274
1275 /* Don't allow flags or name to change at remount */
1276 if (opts.flags != root->flags ||
1277 (opts.name && strcmp(opts.name, root->name))) {
1278 ret = -EINVAL;
1279 drop_parsed_module_refcounts(opts.subsys_bits);
1280 goto out_unlock;
1281 }
1282
1283 ret = rebind_subsystems(root, opts.subsys_bits);
1284 if (ret) {
1285 drop_parsed_module_refcounts(opts.subsys_bits);
1286 goto out_unlock;
1287 }
1288
1289 /* (re)populate subsystem files */
1290 cgroup_populate_dir(cgrp);
1291
1292 if (opts.release_agent)
1293 strcpy(root->release_agent_path, opts.release_agent);
1294 out_unlock:
1295 kfree(opts.release_agent);
1296 kfree(opts.name);
1297 mutex_unlock(&cgroup_mutex);
1298 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
1299 return ret;
1300 }
1301
1302 static const struct super_operations cgroup_ops = {
1303 .statfs = simple_statfs,
1304 .drop_inode = generic_delete_inode,
1305 .show_options = cgroup_show_options,
1306 .remount_fs = cgroup_remount,
1307 };
1308
1309 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1310 {
1311 INIT_LIST_HEAD(&cgrp->sibling);
1312 INIT_LIST_HEAD(&cgrp->children);
1313 INIT_LIST_HEAD(&cgrp->css_sets);
1314 INIT_LIST_HEAD(&cgrp->release_list);
1315 INIT_LIST_HEAD(&cgrp->pidlists);
1316 mutex_init(&cgrp->pidlist_mutex);
1317 INIT_LIST_HEAD(&cgrp->event_list);
1318 spin_lock_init(&cgrp->event_list_lock);
1319 }
1320
1321 static void init_cgroup_root(struct cgroupfs_root *root)
1322 {
1323 struct cgroup *cgrp = &root->top_cgroup;
1324 INIT_LIST_HEAD(&root->subsys_list);
1325 INIT_LIST_HEAD(&root->root_list);
1326 root->number_of_cgroups = 1;
1327 cgrp->root = root;
1328 cgrp->top_cgroup = cgrp;
1329 init_cgroup_housekeeping(cgrp);
1330 }
1331
1332 static bool init_root_id(struct cgroupfs_root *root)
1333 {
1334 int ret = 0;
1335
1336 do {
1337 if (!ida_pre_get(&hierarchy_ida, GFP_KERNEL))
1338 return false;
1339 spin_lock(&hierarchy_id_lock);
1340 /* Try to allocate the next unused ID */
1341 ret = ida_get_new_above(&hierarchy_ida, next_hierarchy_id,
1342 &root->hierarchy_id);
1343 if (ret == -ENOSPC)
1344 /* Try again starting from 0 */
1345 ret = ida_get_new(&hierarchy_ida, &root->hierarchy_id);
1346 if (!ret) {
1347 next_hierarchy_id = root->hierarchy_id + 1;
1348 } else if (ret != -EAGAIN) {
1349 /* Can only get here if the 31-bit IDR is full ... */
1350 BUG_ON(ret);
1351 }
1352 spin_unlock(&hierarchy_id_lock);
1353 } while (ret);
1354 return true;
1355 }
1356
1357 static int cgroup_test_super(struct super_block *sb, void *data)
1358 {
1359 struct cgroup_sb_opts *opts = data;
1360 struct cgroupfs_root *root = sb->s_fs_info;
1361
1362 /* If we asked for a name then it must match */
1363 if (opts->name && strcmp(opts->name, root->name))
1364 return 0;
1365
1366 /*
1367 * If we asked for subsystems (or explicitly for no
1368 * subsystems) then they must match
1369 */
1370 if ((opts->subsys_bits || opts->none)
1371 && (opts->subsys_bits != root->subsys_bits))
1372 return 0;
1373
1374 return 1;
1375 }
1376
1377 static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
1378 {
1379 struct cgroupfs_root *root;
1380
1381 if (!opts->subsys_bits && !opts->none)
1382 return NULL;
1383
1384 root = kzalloc(sizeof(*root), GFP_KERNEL);
1385 if (!root)
1386 return ERR_PTR(-ENOMEM);
1387
1388 if (!init_root_id(root)) {
1389 kfree(root);
1390 return ERR_PTR(-ENOMEM);
1391 }
1392 init_cgroup_root(root);
1393
1394 root->subsys_bits = opts->subsys_bits;
1395 root->flags = opts->flags;
1396 if (opts->release_agent)
1397 strcpy(root->release_agent_path, opts->release_agent);
1398 if (opts->name)
1399 strcpy(root->name, opts->name);
1400 if (opts->clone_children)
1401 set_bit(CGRP_CLONE_CHILDREN, &root->top_cgroup.flags);
1402 return root;
1403 }
1404
1405 static void cgroup_drop_root(struct cgroupfs_root *root)
1406 {
1407 if (!root)
1408 return;
1409
1410 BUG_ON(!root->hierarchy_id);
1411 spin_lock(&hierarchy_id_lock);
1412 ida_remove(&hierarchy_ida, root->hierarchy_id);
1413 spin_unlock(&hierarchy_id_lock);
1414 kfree(root);
1415 }
1416
1417 static int cgroup_set_super(struct super_block *sb, void *data)
1418 {
1419 int ret;
1420 struct cgroup_sb_opts *opts = data;
1421
1422 /* If we don't have a new root, we can't set up a new sb */
1423 if (!opts->new_root)
1424 return -EINVAL;
1425
1426 BUG_ON(!opts->subsys_bits && !opts->none);
1427
1428 ret = set_anon_super(sb, NULL);
1429 if (ret)
1430 return ret;
1431
1432 sb->s_fs_info = opts->new_root;
1433 opts->new_root->sb = sb;
1434
1435 sb->s_blocksize = PAGE_CACHE_SIZE;
1436 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
1437 sb->s_magic = CGROUP_SUPER_MAGIC;
1438 sb->s_op = &cgroup_ops;
1439
1440 return 0;
1441 }
1442
1443 static int cgroup_get_rootdir(struct super_block *sb)
1444 {
1445 static const struct dentry_operations cgroup_dops = {
1446 .d_iput = cgroup_diput,
1447 .d_delete = cgroup_delete,
1448 };
1449
1450 struct inode *inode =
1451 cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
1452 struct dentry *dentry;
1453
1454 if (!inode)
1455 return -ENOMEM;
1456
1457 inode->i_fop = &simple_dir_operations;
1458 inode->i_op = &cgroup_dir_inode_operations;
1459 /* directories start off with i_nlink == 2 (for "." entry) */
1460 inc_nlink(inode);
1461 dentry = d_alloc_root(inode);
1462 if (!dentry) {
1463 iput(inode);
1464 return -ENOMEM;
1465 }
1466 sb->s_root = dentry;
1467 /* for everything else we want ->d_op set */
1468 sb->s_d_op = &cgroup_dops;
1469 return 0;
1470 }
1471
1472 static struct dentry *cgroup_mount(struct file_system_type *fs_type,
1473 int flags, const char *unused_dev_name,
1474 void *data)
1475 {
1476 struct cgroup_sb_opts opts;
1477 struct cgroupfs_root *root;
1478 int ret = 0;
1479 struct super_block *sb;
1480 struct cgroupfs_root *new_root;
1481
1482 /* First find the desired set of subsystems */
1483 mutex_lock(&cgroup_mutex);
1484 ret = parse_cgroupfs_options(data, &opts);
1485 mutex_unlock(&cgroup_mutex);
1486 if (ret)
1487 goto out_err;
1488
1489 /*
1490 * Allocate a new cgroup root. We may not need it if we're
1491 * reusing an existing hierarchy.
1492 */
1493 new_root = cgroup_root_from_opts(&opts);
1494 if (IS_ERR(new_root)) {
1495 ret = PTR_ERR(new_root);
1496 goto drop_modules;
1497 }
1498 opts.new_root = new_root;
1499
1500 /* Locate an existing or new sb for this hierarchy */
1501 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, &opts);
1502 if (IS_ERR(sb)) {
1503 ret = PTR_ERR(sb);
1504 cgroup_drop_root(opts.new_root);
1505 goto drop_modules;
1506 }
1507
1508 root = sb->s_fs_info;
1509 BUG_ON(!root);
1510 if (root == opts.new_root) {
1511 /* We used the new root structure, so this is a new hierarchy */
1512 struct list_head tmp_cg_links;
1513 struct cgroup *root_cgrp = &root->top_cgroup;
1514 struct inode *inode;
1515 struct cgroupfs_root *existing_root;
1516 int i;
1517
1518 BUG_ON(sb->s_root != NULL);
1519
1520 ret = cgroup_get_rootdir(sb);
1521 if (ret)
1522 goto drop_new_super;
1523 inode = sb->s_root->d_inode;
1524
1525 mutex_lock(&inode->i_mutex);
1526 mutex_lock(&cgroup_mutex);
1527
1528 if (strlen(root->name)) {
1529 /* Check for name clashes with existing mounts */
1530 for_each_active_root(existing_root) {
1531 if (!strcmp(existing_root->name, root->name)) {
1532 ret = -EBUSY;
1533 mutex_unlock(&cgroup_mutex);
1534 mutex_unlock(&inode->i_mutex);
1535 goto drop_new_super;
1536 }
1537 }
1538 }
1539
1540 /*
1541 * We're accessing css_set_count without locking
1542 * css_set_lock here, but that's OK - it can only be
1543 * increased by someone holding cgroup_lock, and
1544 * that's us. The worst that can happen is that we
1545 * have some link structures left over
1546 */
1547 ret = allocate_cg_links(css_set_count, &tmp_cg_links);
1548 if (ret) {
1549 mutex_unlock(&cgroup_mutex);
1550 mutex_unlock(&inode->i_mutex);
1551 goto drop_new_super;
1552 }
1553
1554 ret = rebind_subsystems(root, root->subsys_bits);
1555 if (ret == -EBUSY) {
1556 mutex_unlock(&cgroup_mutex);
1557 mutex_unlock(&inode->i_mutex);
1558 free_cg_links(&tmp_cg_links);
1559 goto drop_new_super;
1560 }
1561 /*
1562 * There must be no failure case after here, since rebinding
1563 * takes care of subsystems' refcounts, which are explicitly
1564 * dropped in the failure exit path.
1565 */
1566
1567 /* EBUSY should be the only error here */
1568 BUG_ON(ret);
1569
1570 list_add(&root->root_list, &roots);
1571 root_count++;
1572
1573 sb->s_root->d_fsdata = root_cgrp;
1574 root->top_cgroup.dentry = sb->s_root;
1575
1576 /* Link the top cgroup in this hierarchy into all
1577 * the css_set objects */
1578 write_lock(&css_set_lock);
1579 for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
1580 struct hlist_head *hhead = &css_set_table[i];
1581 struct hlist_node *node;
1582 struct css_set *cg;
1583
1584 hlist_for_each_entry(cg, node, hhead, hlist)
1585 link_css_set(&tmp_cg_links, cg, root_cgrp);
1586 }
1587 write_unlock(&css_set_lock);
1588
1589 free_cg_links(&tmp_cg_links);
1590
1591 BUG_ON(!list_empty(&root_cgrp->sibling));
1592 BUG_ON(!list_empty(&root_cgrp->children));
1593 BUG_ON(root->number_of_cgroups != 1);
1594
1595 cgroup_populate_dir(root_cgrp);
1596 mutex_unlock(&cgroup_mutex);
1597 mutex_unlock(&inode->i_mutex);
1598 } else {
1599 /*
1600 * We re-used an existing hierarchy - the new root (if
1601 * any) is not needed
1602 */
1603 cgroup_drop_root(opts.new_root);
1604 /* no subsys rebinding, so refcounts don't change */
1605 drop_parsed_module_refcounts(opts.subsys_bits);
1606 }
1607
1608 kfree(opts.release_agent);
1609 kfree(opts.name);
1610 return dget(sb->s_root);
1611
1612 drop_new_super:
1613 deactivate_locked_super(sb);
1614 drop_modules:
1615 drop_parsed_module_refcounts(opts.subsys_bits);
1616 out_err:
1617 kfree(opts.release_agent);
1618 kfree(opts.name);
1619 return ERR_PTR(ret);
1620 }
1621
1622 static void cgroup_kill_sb(struct super_block *sb) {
1623 struct cgroupfs_root *root = sb->s_fs_info;
1624 struct cgroup *cgrp = &root->top_cgroup;
1625 int ret;
1626 struct cg_cgroup_link *link;
1627 struct cg_cgroup_link *saved_link;
1628
1629 BUG_ON(!root);
1630
1631 BUG_ON(root->number_of_cgroups != 1);
1632 BUG_ON(!list_empty(&cgrp->children));
1633 BUG_ON(!list_empty(&cgrp->sibling));
1634
1635 mutex_lock(&cgroup_mutex);
1636
1637 /* Rebind all subsystems back to the default hierarchy */
1638 ret = rebind_subsystems(root, 0);
1639 /* Shouldn't be able to fail ... */
1640 BUG_ON(ret);
1641
1642 /*
1643 * Release all the links from css_sets to this hierarchy's
1644 * root cgroup
1645 */
1646 write_lock(&css_set_lock);
1647
1648 list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
1649 cgrp_link_list) {
1650 list_del(&link->cg_link_list);
1651 list_del(&link->cgrp_link_list);
1652 kfree(link);
1653 }
1654 write_unlock(&css_set_lock);
1655
1656 if (!list_empty(&root->root_list)) {
1657 list_del(&root->root_list);
1658 root_count--;
1659 }
1660
1661 mutex_unlock(&cgroup_mutex);
1662
1663 kill_litter_super(sb);
1664 cgroup_drop_root(root);
1665 }
1666
1667 static struct file_system_type cgroup_fs_type = {
1668 .name = "cgroup",
1669 .mount = cgroup_mount,
1670 .kill_sb = cgroup_kill_sb,
1671 };
1672
1673 static struct kobject *cgroup_kobj;
1674
1675 static inline struct cgroup *__d_cgrp(struct dentry *dentry)
1676 {
1677 return dentry->d_fsdata;
1678 }
1679
1680 static inline struct cftype *__d_cft(struct dentry *dentry)
1681 {
1682 return dentry->d_fsdata;
1683 }
1684
1685 /**
1686 * cgroup_path - generate the path of a cgroup
1687 * @cgrp: the cgroup in question
1688 * @buf: the buffer to write the path into
1689 * @buflen: the length of the buffer
1690 *
1691 * Called with cgroup_mutex held or else with an RCU-protected cgroup
1692 * reference. Writes path of cgroup into buf. Returns 0 on success,
1693 * -errno on error.
1694 */
1695 int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1696 {
1697 char *start;
1698 struct dentry *dentry = rcu_dereference_check(cgrp->dentry,
1699 rcu_read_lock_held() ||
1700 cgroup_lock_is_held());
1701
1702 if (!dentry || cgrp == dummytop) {
1703 /*
1704 * Inactive subsystems have no dentry for their root
1705 * cgroup
1706 */
1707 strcpy(buf, "/");
1708 return 0;
1709 }
1710
1711 start = buf + buflen;
1712
1713 *--start = '\0';
1714 for (;;) {
1715 int len = dentry->d_name.len;
1716
1717 if ((start -= len) < buf)
1718 return -ENAMETOOLONG;
1719 memcpy(start, dentry->d_name.name, len);
1720 cgrp = cgrp->parent;
1721 if (!cgrp)
1722 break;
1723
1724 dentry = rcu_dereference_check(cgrp->dentry,
1725 rcu_read_lock_held() ||
1726 cgroup_lock_is_held());
1727 if (!cgrp->parent)
1728 continue;
1729 if (--start < buf)
1730 return -ENAMETOOLONG;
1731 *start = '/';
1732 }
1733 memmove(buf, start, buf + buflen - start);
1734 return 0;
1735 }
1736 EXPORT_SYMBOL_GPL(cgroup_path);
1737
1738 /*
1739 * cgroup_task_migrate - move a task from one cgroup to another.
1740 *
1741 * 'guarantee' is set if the caller promises that a new css_set for the task
1742 * will already exist. If not set, this function might sleep, and can fail with
1743 * -ENOMEM. Otherwise, it can only fail with -ESRCH.
1744 */
1745 static int cgroup_task_migrate(struct cgroup *cgrp, struct cgroup *oldcgrp,
1746 struct task_struct *tsk, bool guarantee)
1747 {
1748 struct css_set *oldcg;
1749 struct css_set *newcg;
1750
1751 /*
1752 * get old css_set. we need to take task_lock and refcount it, because
1753 * an exiting task can change its css_set to init_css_set and drop its
1754 * old one without taking cgroup_mutex.
1755 */
1756 task_lock(tsk);
1757 oldcg = tsk->cgroups;
1758 get_css_set(oldcg);
1759 task_unlock(tsk);
1760
1761 /* locate or allocate a new css_set for this task. */
1762 if (guarantee) {
1763 /* we know the css_set we want already exists. */
1764 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
1765 read_lock(&css_set_lock);
1766 newcg = find_existing_css_set(oldcg, cgrp, template);
1767 BUG_ON(!newcg);
1768 get_css_set(newcg);
1769 read_unlock(&css_set_lock);
1770 } else {
1771 might_sleep();
1772 /* find_css_set will give us newcg already referenced. */
1773 newcg = find_css_set(oldcg, cgrp);
1774 if (!newcg) {
1775 put_css_set(oldcg);
1776 return -ENOMEM;
1777 }
1778 }
1779 put_css_set(oldcg);
1780
1781 /* if PF_EXITING is set, the tsk->cgroups pointer is no longer safe. */
1782 task_lock(tsk);
1783 if (tsk->flags & PF_EXITING) {
1784 task_unlock(tsk);
1785 put_css_set(newcg);
1786 return -ESRCH;
1787 }
1788 rcu_assign_pointer(tsk->cgroups, newcg);
1789 task_unlock(tsk);
1790
1791 /* Update the css_set linked lists if we're using them */
1792 write_lock(&css_set_lock);
1793 if (!list_empty(&tsk->cg_list))
1794 list_move(&tsk->cg_list, &newcg->tasks);
1795 write_unlock(&css_set_lock);
1796
1797 /*
1798 * We just gained a reference on oldcg by taking it from the task. As
1799 * trading it for newcg is protected by cgroup_mutex, we're safe to drop
1800 * it here; it will be freed under RCU.
1801 */
1802 put_css_set(oldcg);
1803
1804 set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
1805 return 0;
1806 }
1807
1808 /**
1809 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
1810 * @cgrp: the cgroup the task is attaching to
1811 * @tsk: the task to be attached
1812 *
1813 * Call holding cgroup_mutex. May take task_lock of
1814 * the task 'tsk' during call.
1815 */
1816 int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
1817 {
1818 int retval;
1819 struct cgroup_subsys *ss, *failed_ss = NULL;
1820 struct cgroup *oldcgrp;
1821 struct cgroupfs_root *root = cgrp->root;
1822
1823 /* Nothing to do if the task is already in that cgroup */
1824 oldcgrp = task_cgroup_from_root(tsk, root);
1825 if (cgrp == oldcgrp)
1826 return 0;
1827
1828 for_each_subsys(root, ss) {
1829 if (ss->can_attach) {
1830 retval = ss->can_attach(ss, cgrp, tsk);
1831 if (retval) {
1832 /*
1833 * Remember on which subsystem the can_attach()
1834 * failed, so that we only call cancel_attach()
1835 * against the subsystems whose can_attach()
1836 * succeeded. (See below)
1837 */
1838 failed_ss = ss;
1839 goto out;
1840 }
1841 }
1842 if (ss->can_attach_task) {
1843 retval = ss->can_attach_task(cgrp, tsk);
1844 if (retval) {
1845 failed_ss = ss;
1846 goto out;
1847 }
1848 }
1849 }
1850
1851 retval = cgroup_task_migrate(cgrp, oldcgrp, tsk, false);
1852 if (retval)
1853 goto out;
1854
1855 for_each_subsys(root, ss) {
1856 if (ss->pre_attach)
1857 ss->pre_attach(cgrp);
1858 if (ss->attach_task)
1859 ss->attach_task(cgrp, tsk);
1860 if (ss->attach)
1861 ss->attach(ss, cgrp, oldcgrp, tsk);
1862 }
1863
1864 synchronize_rcu();
1865
1866 /*
1867 * wake up rmdir() waiter. the rmdir should fail since the cgroup
1868 * is no longer empty.
1869 */
1870 cgroup_wakeup_rmdir_waiter(cgrp);
1871 out:
1872 if (retval) {
1873 for_each_subsys(root, ss) {
1874 if (ss == failed_ss)
1875 /*
1876 * This subsystem was the one that failed the
1877 * can_attach() check earlier, so we don't need
1878 * to call cancel_attach() against it or any
1879 * remaining subsystems.
1880 */
1881 break;
1882 if (ss->cancel_attach)
1883 ss->cancel_attach(ss, cgrp, tsk);
1884 }
1885 }
1886 return retval;
1887 }
1888
1889 /**
1890 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
1891 * @from: attach to all cgroups of a given task
1892 * @tsk: the task to be attached
1893 */
1894 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
1895 {
1896 struct cgroupfs_root *root;
1897 int retval = 0;
1898
1899 cgroup_lock();
1900 for_each_active_root(root) {
1901 struct cgroup *from_cg = task_cgroup_from_root(from, root);
1902
1903 retval = cgroup_attach_task(from_cg, tsk);
1904 if (retval)
1905 break;
1906 }
1907 cgroup_unlock();
1908
1909 return retval;
1910 }
1911 EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
1912
1913 /*
1914 * cgroup_attach_proc works in two stages, the first of which prefetches all
1915 * new css_sets needed (to make sure we have enough memory before committing
1916 * to the move) and stores them in a list of entries of the following type.
1917 * TODO: possible optimization: use css_set->rcu_head for chaining instead
1918 */
1919 struct cg_list_entry {
1920 struct css_set *cg;
1921 struct list_head links;
1922 };
1923
1924 static bool css_set_check_fetched(struct cgroup *cgrp,
1925 struct task_struct *tsk, struct css_set *cg,
1926 struct list_head *newcg_list)
1927 {
1928 struct css_set *newcg;
1929 struct cg_list_entry *cg_entry;
1930 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
1931
1932 read_lock(&css_set_lock);
1933 newcg = find_existing_css_set(cg, cgrp, template);
1934 if (newcg)
1935 get_css_set(newcg);
1936 read_unlock(&css_set_lock);
1937
1938 /* doesn't exist at all? */
1939 if (!newcg)
1940 return false;
1941 /* see if it's already in the list */
1942 list_for_each_entry(cg_entry, newcg_list, links) {
1943 if (cg_entry->cg == newcg) {
1944 put_css_set(newcg);
1945 return true;
1946 }
1947 }
1948
1949 /* not found */
1950 put_css_set(newcg);
1951 return false;
1952 }
1953
1954 /*
1955 * Find the new css_set and store it in the list in preparation for moving the
1956 * given task to the given cgroup. Returns 0 or -ENOMEM.
1957 */
1958 static int css_set_prefetch(struct cgroup *cgrp, struct css_set *cg,
1959 struct list_head *newcg_list)
1960 {
1961 struct css_set *newcg;
1962 struct cg_list_entry *cg_entry;
1963
1964 /* ensure a new css_set will exist for this thread */
1965 newcg = find_css_set(cg, cgrp);
1966 if (!newcg)
1967 return -ENOMEM;
1968 /* add it to the list */
1969 cg_entry = kmalloc(sizeof(struct cg_list_entry), GFP_KERNEL);
1970 if (!cg_entry) {
1971 put_css_set(newcg);
1972 return -ENOMEM;
1973 }
1974 cg_entry->cg = newcg;
1975 list_add(&cg_entry->links, newcg_list);
1976 return 0;
1977 }
1978
1979 /**
1980 * cgroup_attach_proc - attach all threads in a threadgroup to a cgroup
1981 * @cgrp: the cgroup to attach to
1982 * @leader: the threadgroup leader task_struct of the group to be attached
1983 *
1984 * Call holding cgroup_mutex and the threadgroup_fork_lock of the leader. Will
1985 * take task_lock of each thread in leader's threadgroup individually in turn.
1986 */
1987 int cgroup_attach_proc(struct cgroup *cgrp, struct task_struct *leader)
1988 {
1989 int retval, i, group_size;
1990 struct cgroup_subsys *ss, *failed_ss = NULL;
1991 bool cancel_failed_ss = false;
1992 /* guaranteed to be initialized later, but the compiler needs this */
1993 struct cgroup *oldcgrp = NULL;
1994 struct css_set *oldcg;
1995 struct cgroupfs_root *root = cgrp->root;
1996 /* threadgroup list cursor and array */
1997 struct task_struct *tsk;
1998 struct task_struct **group;
1999 /*
2000 * we need to make sure we have css_sets for all the tasks we're
2001 * going to move -before- we actually start moving them, so that in
2002 * case we get an ENOMEM we can bail out before making any changes.
2003 */
2004 struct list_head newcg_list;
2005 struct cg_list_entry *cg_entry, *temp_nobe;
2006
2007 /*
2008 * step 0: in order to do expensive, possibly blocking operations for
2009 * every thread, we cannot iterate the thread group list, since it needs
2010 * rcu or tasklist locked. instead, build an array of all threads in the
2011 * group - threadgroup_fork_lock prevents new threads from appearing,
2012 * and if threads exit, this will just be an over-estimate.
2013 */
2014 group_size = get_nr_threads(leader);
2015 group = kmalloc(group_size * sizeof(*group), GFP_KERNEL);
2016 if (!group)
2017 return -ENOMEM;
2018
2019 /* prevent changes to the threadgroup list while we take a snapshot. */
2020 rcu_read_lock();
2021 if (!thread_group_leader(leader)) {
2022 /*
2023 * a race with de_thread from another thread's exec() may strip
2024 * us of our leadership, making while_each_thread unsafe to use
2025 * on this task. if this happens, there is no choice but to
2026 * throw this task away and try again (from cgroup_procs_write);
2027 * this is "double-double-toil-and-trouble-check locking".
2028 */
2029 rcu_read_unlock();
2030 retval = -EAGAIN;
2031 goto out_free_group_list;
2032 }
2033 /* take a reference on each task in the group to go in the array. */
2034 tsk = leader;
2035 i = 0;
2036 do {
2037 /* as per above, nr_threads may decrease, but not increase. */
2038 BUG_ON(i >= group_size);
2039 get_task_struct(tsk);
2040 group[i] = tsk;
2041 i++;
2042 } while_each_thread(leader, tsk);
2043 /* remember the number of threads in the array for later. */
2044 group_size = i;
2045 rcu_read_unlock();
2046
2047 /*
2048 * step 1: check that we can legitimately attach to the cgroup.
2049 */
2050 for_each_subsys(root, ss) {
2051 if (ss->can_attach) {
2052 retval = ss->can_attach(ss, cgrp, leader);
2053 if (retval) {
2054 failed_ss = ss;
2055 goto out_cancel_attach;
2056 }
2057 }
2058 /* a callback to be run on every thread in the threadgroup. */
2059 if (ss->can_attach_task) {
2060 /* run on each task in the threadgroup. */
2061 for (i = 0; i < group_size; i++) {
2062 retval = ss->can_attach_task(cgrp, group[i]);
2063 if (retval) {
2064 failed_ss = ss;
2065 cancel_failed_ss = true;
2066 goto out_cancel_attach;
2067 }
2068 }
2069 }
2070 }
2071
2072 /*
2073 * step 2: make sure css_sets exist for all threads to be migrated.
2074 * we use find_css_set, which allocates a new one if necessary.
2075 */
2076 INIT_LIST_HEAD(&newcg_list);
2077 for (i = 0; i < group_size; i++) {
2078 tsk = group[i];
2079 /* nothing to do if this task is already in the cgroup */
2080 oldcgrp = task_cgroup_from_root(tsk, root);
2081 if (cgrp == oldcgrp)
2082 continue;
2083 /* get old css_set pointer */
2084 task_lock(tsk);
2085 if (tsk->flags & PF_EXITING) {
2086 /* ignore this task if it's going away */
2087 task_unlock(tsk);
2088 continue;
2089 }
2090 oldcg = tsk->cgroups;
2091 get_css_set(oldcg);
2092 task_unlock(tsk);
2093 /* see if the new one for us is already in the list? */
2094 if (css_set_check_fetched(cgrp, tsk, oldcg, &newcg_list)) {
2095 /* was already there, nothing to do. */
2096 put_css_set(oldcg);
2097 } else {
2098 /* we don't already have it. get new one. */
2099 retval = css_set_prefetch(cgrp, oldcg, &newcg_list);
2100 put_css_set(oldcg);
2101 if (retval)
2102 goto out_list_teardown;
2103 }
2104 }
2105
2106 /*
2107 * step 3: now that we're guaranteed success wrt the css_sets, proceed
2108 * to move all tasks to the new cgroup, calling ss->attach_task for each
2109 * one along the way. there are no failure cases after here, so this is
2110 * the commit point.
2111 */
2112 for_each_subsys(root, ss) {
2113 if (ss->pre_attach)
2114 ss->pre_attach(cgrp);
2115 }
2116 for (i = 0; i < group_size; i++) {
2117 tsk = group[i];
2118 /* leave current thread as it is if it's already there */
2119 oldcgrp = task_cgroup_from_root(tsk, root);
2120 if (cgrp == oldcgrp)
2121 continue;
2122 /* attach each task to each subsystem */
2123 for_each_subsys(root, ss) {
2124 if (ss->attach_task)
2125 ss->attach_task(cgrp, tsk);
2126 }
2127 /* if the thread is PF_EXITING, it can just get skipped. */
2128 retval = cgroup_task_migrate(cgrp, oldcgrp, tsk, true);
2129 BUG_ON(retval != 0 && retval != -ESRCH);
2130 }
2131 /* nothing is sensitive to fork() after this point. */
2132
2133 /*
2134 * step 4: do expensive, non-thread-specific subsystem callbacks.
2135 * TODO: if ever a subsystem needs to know the oldcgrp for each task
2136 * being moved, this call will need to be reworked to communicate that.
2137 */
2138 for_each_subsys(root, ss) {
2139 if (ss->attach)
2140 ss->attach(ss, cgrp, oldcgrp, leader);
2141 }
2142
2143 /*
2144 * step 5: success! and cleanup
2145 */
2146 synchronize_rcu();
2147 cgroup_wakeup_rmdir_waiter(cgrp);
2148 retval = 0;
2149 out_list_teardown:
2150 /* clean up the list of prefetched css_sets. */
2151 list_for_each_entry_safe(cg_entry, temp_nobe, &newcg_list, links) {
2152 list_del(&cg_entry->links);
2153 put_css_set(cg_entry->cg);
2154 kfree(cg_entry);
2155 }
2156 out_cancel_attach:
2157 /* same deal as in cgroup_attach_task */
2158 if (retval) {
2159 for_each_subsys(root, ss) {
2160 if (ss == failed_ss) {
2161 if (cancel_failed_ss && ss->cancel_attach)
2162 ss->cancel_attach(ss, cgrp, leader);
2163 break;
2164 }
2165 if (ss->cancel_attach)
2166 ss->cancel_attach(ss, cgrp, leader);
2167 }
2168 }
2169 /* clean up the array of referenced threads in the group. */
2170 for (i = 0; i < group_size; i++)
2171 put_task_struct(group[i]);
2172 out_free_group_list:
2173 kfree(group);
2174 return retval;
2175 }
2176
2177 /*
2178 * Find the task_struct of the task to attach by vpid and pass it along to the
2179 * function to attach either it or all tasks in its threadgroup. Will take
2180 * cgroup_mutex; may take task_lock of task.
2181 */
2182 static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
2183 {
2184 struct task_struct *tsk;
2185 const struct cred *cred = current_cred(), *tcred;
2186 int ret;
2187
2188 if (!cgroup_lock_live_group(cgrp))
2189 return -ENODEV;
2190
2191 if (pid) {
2192 rcu_read_lock();
2193 tsk = find_task_by_vpid(pid);
2194 if (!tsk) {
2195 rcu_read_unlock();
2196 cgroup_unlock();
2197 return -ESRCH;
2198 }
2199 if (threadgroup) {
2200 /*
2201 * RCU protects this access, since tsk was found in the
2202 * tid map. a race with de_thread may cause group_leader
2203 * to stop being the leader, but cgroup_attach_proc will
2204 * detect it later.
2205 */
2206 tsk = tsk->group_leader;
2207 } else if (tsk->flags & PF_EXITING) {
2208 /* optimization for the single-task-only case */
2209 rcu_read_unlock();
2210 cgroup_unlock();
2211 return -ESRCH;
2212 }
2213
2214 /*
2215 * even if we're attaching all tasks in the thread group, we
2216 * only need to check permissions on one of them.
2217 */
2218 tcred = __task_cred(tsk);
2219 if (cred->euid &&
2220 cred->euid != tcred->uid &&
2221 cred->euid != tcred->suid) {
2222 rcu_read_unlock();
2223 cgroup_unlock();
2224 return -EACCES;
2225 }
2226 get_task_struct(tsk);
2227 rcu_read_unlock();
2228 } else {
2229 if (threadgroup)
2230 tsk = current->group_leader;
2231 else
2232 tsk = current;
2233 get_task_struct(tsk);
2234 }
2235
2236 if (threadgroup) {
2237 threadgroup_fork_write_lock(tsk);
2238 ret = cgroup_attach_proc(cgrp, tsk);
2239 threadgroup_fork_write_unlock(tsk);
2240 } else {
2241 ret = cgroup_attach_task(cgrp, tsk);
2242 }
2243 put_task_struct(tsk);
2244 cgroup_unlock();
2245 return ret;
2246 }
2247
2248 static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
2249 {
2250 return attach_task_by_pid(cgrp, pid, false);
2251 }
2252
2253 static int cgroup_procs_write(struct cgroup *cgrp, struct cftype *cft, u64 tgid)
2254 {
2255 int ret;
2256 do {
2257 /*
2258 * attach_proc fails with -EAGAIN if threadgroup leadership
2259 * changes in the middle of the operation, in which case we need
2260 * to find the task_struct for the new leader and start over.
2261 */
2262 ret = attach_task_by_pid(cgrp, tgid, true);
2263 } while (ret == -EAGAIN);
2264 return ret;
2265 }
2266
2267 /**
2268 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
2269 * @cgrp: the cgroup to be checked for liveness
2270 *
2271 * On success, returns true; the lock should be later released with
2272 * cgroup_unlock(). On failure returns false with no lock held.
2273 */
2274 bool cgroup_lock_live_group(struct cgroup *cgrp)
2275 {
2276 mutex_lock(&cgroup_mutex);
2277 if (cgroup_is_removed(cgrp)) {
2278 mutex_unlock(&cgroup_mutex);
2279 return false;
2280 }
2281 return true;
2282 }
2283 EXPORT_SYMBOL_GPL(cgroup_lock_live_group);
2284
2285 static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
2286 const char *buffer)
2287 {
2288 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
2289 if (strlen(buffer) >= PATH_MAX)
2290 return -EINVAL;
2291 if (!cgroup_lock_live_group(cgrp))
2292 return -ENODEV;
2293 strcpy(cgrp->root->release_agent_path, buffer);
2294 cgroup_unlock();
2295 return 0;
2296 }
2297
2298 static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
2299 struct seq_file *seq)
2300 {
2301 if (!cgroup_lock_live_group(cgrp))
2302 return -ENODEV;
2303 seq_puts(seq, cgrp->root->release_agent_path);
2304 seq_putc(seq, '\n');
2305 cgroup_unlock();
2306 return 0;
2307 }
2308
2309 /* A buffer size big enough for numbers or short strings */
2310 #define CGROUP_LOCAL_BUFFER_SIZE 64
2311
2312 static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
2313 struct file *file,
2314 const char __user *userbuf,
2315 size_t nbytes, loff_t *unused_ppos)
2316 {
2317 char buffer[CGROUP_LOCAL_BUFFER_SIZE];
2318 int retval = 0;
2319 char *end;
2320
2321 if (!nbytes)
2322 return -EINVAL;
2323 if (nbytes >= sizeof(buffer))
2324 return -E2BIG;
2325 if (copy_from_user(buffer, userbuf, nbytes))
2326 return -EFAULT;
2327
2328 buffer[nbytes] = 0; /* nul-terminate */
2329 if (cft->write_u64) {
2330 u64 val = simple_strtoull(strstrip(buffer), &end, 0);
2331 if (*end)
2332 return -EINVAL;
2333 retval = cft->write_u64(cgrp, cft, val);
2334 } else {
2335 s64 val = simple_strtoll(strstrip(buffer), &end, 0);
2336 if (*end)
2337 return -EINVAL;
2338 retval = cft->write_s64(cgrp, cft, val);
2339 }
2340 if (!retval)
2341 retval = nbytes;
2342 return retval;
2343 }
2344
2345 static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
2346 struct file *file,
2347 const char __user *userbuf,
2348 size_t nbytes, loff_t *unused_ppos)
2349 {
2350 char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
2351 int retval = 0;
2352 size_t max_bytes = cft->max_write_len;
2353 char *buffer = local_buffer;
2354
2355 if (!max_bytes)
2356 max_bytes = sizeof(local_buffer) - 1;
2357 if (nbytes >= max_bytes)
2358 return -E2BIG;
2359 /* Allocate a dynamic buffer if we need one */
2360 if (nbytes >= sizeof(local_buffer)) {
2361 buffer = kmalloc(nbytes + 1, GFP_KERNEL);
2362 if (buffer == NULL)
2363 return -ENOMEM;
2364 }
2365 if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
2366 retval = -EFAULT;
2367 goto out;
2368 }
2369
2370 buffer[nbytes] = 0; /* nul-terminate */
2371 retval = cft->write_string(cgrp, cft, strstrip(buffer));
2372 if (!retval)
2373 retval = nbytes;
2374 out:
2375 if (buffer != local_buffer)
2376 kfree(buffer);
2377 return retval;
2378 }
2379
2380 static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
2381 size_t nbytes, loff_t *ppos)
2382 {
2383 struct cftype *cft = __d_cft(file->f_dentry);
2384 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2385
2386 if (cgroup_is_removed(cgrp))
2387 return -ENODEV;
2388 if (cft->write)
2389 return cft->write(cgrp, cft, file, buf, nbytes, ppos);
2390 if (cft->write_u64 || cft->write_s64)
2391 return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
2392 if (cft->write_string)
2393 return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
2394 if (cft->trigger) {
2395 int ret = cft->trigger(cgrp, (unsigned int)cft->private);
2396 return ret ? ret : nbytes;
2397 }
2398 return -EINVAL;
2399 }
2400
2401 static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
2402 struct file *file,
2403 char __user *buf, size_t nbytes,
2404 loff_t *ppos)
2405 {
2406 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2407 u64 val = cft->read_u64(cgrp, cft);
2408 int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
2409
2410 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2411 }
2412
2413 static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
2414 struct file *file,
2415 char __user *buf, size_t nbytes,
2416 loff_t *ppos)
2417 {
2418 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2419 s64 val = cft->read_s64(cgrp, cft);
2420 int len = sprintf(tmp, "%lld\n", (long long) val);
2421
2422 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2423 }
2424
2425 static ssize_t cgroup_file_read(struct file *file, char __user *buf,
2426 size_t nbytes, loff_t *ppos)
2427 {
2428 struct cftype *cft = __d_cft(file->f_dentry);
2429 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2430
2431 if (cgroup_is_removed(cgrp))
2432 return -ENODEV;
2433
2434 if (cft->read)
2435 return cft->read(cgrp, cft, file, buf, nbytes, ppos);
2436 if (cft->read_u64)
2437 return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
2438 if (cft->read_s64)
2439 return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
2440 return -EINVAL;
2441 }
2442
2443 /*
2444 * seqfile ops/methods for returning structured data. Currently just
2445 * supports string->u64 maps, but can be extended in future.
2446 */
2447
2448 struct cgroup_seqfile_state {
2449 struct cftype *cft;
2450 struct cgroup *cgroup;
2451 };
2452
2453 static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
2454 {
2455 struct seq_file *sf = cb->state;
2456 return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
2457 }
2458
2459 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
2460 {
2461 struct cgroup_seqfile_state *state = m->private;
2462 struct cftype *cft = state->cft;
2463 if (cft->read_map) {
2464 struct cgroup_map_cb cb = {
2465 .fill = cgroup_map_add,
2466 .state = m,
2467 };
2468 return cft->read_map(state->cgroup, cft, &cb);
2469 }
2470 return cft->read_seq_string(state->cgroup, cft, m);
2471 }
2472
2473 static int cgroup_seqfile_release(struct inode *inode, struct file *file)
2474 {
2475 struct seq_file *seq = file->private_data;
2476 kfree(seq->private);
2477 return single_release(inode, file);
2478 }
2479
2480 static const struct file_operations cgroup_seqfile_operations = {
2481 .read = seq_read,
2482 .write = cgroup_file_write,
2483 .llseek = seq_lseek,
2484 .release = cgroup_seqfile_release,
2485 };
2486
2487 static int cgroup_file_open(struct inode *inode, struct file *file)
2488 {
2489 int err;
2490 struct cftype *cft;
2491
2492 err = generic_file_open(inode, file);
2493 if (err)
2494 return err;
2495 cft = __d_cft(file->f_dentry);
2496
2497 if (cft->read_map || cft->read_seq_string) {
2498 struct cgroup_seqfile_state *state =
2499 kzalloc(sizeof(*state), GFP_USER);
2500 if (!state)
2501 return -ENOMEM;
2502 state->cft = cft;
2503 state->cgroup = __d_cgrp(file->f_dentry->d_parent);
2504 file->f_op = &cgroup_seqfile_operations;
2505 err = single_open(file, cgroup_seqfile_show, state);
2506 if (err < 0)
2507 kfree(state);
2508 } else if (cft->open)
2509 err = cft->open(inode, file);
2510 else
2511 err = 0;
2512
2513 return err;
2514 }
2515
2516 static int cgroup_file_release(struct inode *inode, struct file *file)
2517 {
2518 struct cftype *cft = __d_cft(file->f_dentry);
2519 if (cft->release)
2520 return cft->release(inode, file);
2521 return 0;
2522 }
2523
2524 /*
2525 * cgroup_rename - Only allow simple rename of directories in place.
2526 */
2527 static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
2528 struct inode *new_dir, struct dentry *new_dentry)
2529 {
2530 if (!S_ISDIR(old_dentry->d_inode->i_mode))
2531 return -ENOTDIR;
2532 if (new_dentry->d_inode)
2533 return -EEXIST;
2534 if (old_dir != new_dir)
2535 return -EIO;
2536 return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
2537 }
2538
2539 static const struct file_operations cgroup_file_operations = {
2540 .read = cgroup_file_read,
2541 .write = cgroup_file_write,
2542 .llseek = generic_file_llseek,
2543 .open = cgroup_file_open,
2544 .release = cgroup_file_release,
2545 };
2546
2547 static const struct inode_operations cgroup_dir_inode_operations = {
2548 .lookup = cgroup_lookup,
2549 .mkdir = cgroup_mkdir,
2550 .rmdir = cgroup_rmdir,
2551 .rename = cgroup_rename,
2552 };
2553
2554 static struct dentry *cgroup_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
2555 {
2556 if (dentry->d_name.len > NAME_MAX)
2557 return ERR_PTR(-ENAMETOOLONG);
2558 d_add(dentry, NULL);
2559 return NULL;
2560 }
2561
2562 /*
2563 * Check if a file is a control file
2564 */
2565 static inline struct cftype *__file_cft(struct file *file)
2566 {
2567 if (file->f_dentry->d_inode->i_fop != &cgroup_file_operations)
2568 return ERR_PTR(-EINVAL);
2569 return __d_cft(file->f_dentry);
2570 }
2571
2572 static int cgroup_create_file(struct dentry *dentry, mode_t mode,
2573 struct super_block *sb)
2574 {
2575 struct inode *inode;
2576
2577 if (!dentry)
2578 return -ENOENT;
2579 if (dentry->d_inode)
2580 return -EEXIST;
2581
2582 inode = cgroup_new_inode(mode, sb);
2583 if (!inode)
2584 return -ENOMEM;
2585
2586 if (S_ISDIR(mode)) {
2587 inode->i_op = &cgroup_dir_inode_operations;
2588 inode->i_fop = &simple_dir_operations;
2589
2590 /* start off with i_nlink == 2 (for "." entry) */
2591 inc_nlink(inode);
2592
2593 /* start with the directory inode held, so that we can
2594 * populate it without racing with another mkdir */
2595 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
2596 } else if (S_ISREG(mode)) {
2597 inode->i_size = 0;
2598 inode->i_fop = &cgroup_file_operations;
2599 }
2600 d_instantiate(dentry, inode);
2601 dget(dentry); /* Extra count - pin the dentry in core */
2602 return 0;
2603 }
2604
2605 /*
2606 * cgroup_create_dir - create a directory for an object.
2607 * @cgrp: the cgroup we create the directory for. It must have a valid
2608 * ->parent field. And we are going to fill its ->dentry field.
2609 * @dentry: dentry of the new cgroup
2610 * @mode: mode to set on new directory.
2611 */
2612 static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
2613 mode_t mode)
2614 {
2615 struct dentry *parent;
2616 int error = 0;
2617
2618 parent = cgrp->parent->dentry;
2619 error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
2620 if (!error) {
2621 dentry->d_fsdata = cgrp;
2622 inc_nlink(parent->d_inode);
2623 rcu_assign_pointer(cgrp->dentry, dentry);
2624 dget(dentry);
2625 }
2626 dput(dentry);
2627
2628 return error;
2629 }
2630
2631 /**
2632 * cgroup_file_mode - deduce file mode of a control file
2633 * @cft: the control file in question
2634 *
2635 * returns cft->mode if ->mode is not 0
2636 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
2637 * returns S_IRUGO if it has only a read handler
2638 * returns S_IWUSR if it has only a write hander
2639 */
2640 static mode_t cgroup_file_mode(const struct cftype *cft)
2641 {
2642 mode_t mode = 0;
2643
2644 if (cft->mode)
2645 return cft->mode;
2646
2647 if (cft->read || cft->read_u64 || cft->read_s64 ||
2648 cft->read_map || cft->read_seq_string)
2649 mode |= S_IRUGO;
2650
2651 if (cft->write || cft->write_u64 || cft->write_s64 ||
2652 cft->write_string || cft->trigger)
2653 mode |= S_IWUSR;
2654
2655 return mode;
2656 }
2657
2658 int cgroup_add_file(struct cgroup *cgrp,
2659 struct cgroup_subsys *subsys,
2660 const struct cftype *cft)
2661 {
2662 struct dentry *dir = cgrp->dentry;
2663 struct dentry *dentry;
2664 int error;
2665 mode_t mode;
2666
2667 char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
2668 if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
2669 strcpy(name, subsys->name);
2670 strcat(name, ".");
2671 }
2672 strcat(name, cft->name);
2673 BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
2674 dentry = lookup_one_len(name, dir, strlen(name));
2675 if (!IS_ERR(dentry)) {
2676 mode = cgroup_file_mode(cft);
2677 error = cgroup_create_file(dentry, mode | S_IFREG,
2678 cgrp->root->sb);
2679 if (!error)
2680 dentry->d_fsdata = (void *)cft;
2681 dput(dentry);
2682 } else
2683 error = PTR_ERR(dentry);
2684 return error;
2685 }
2686 EXPORT_SYMBOL_GPL(cgroup_add_file);
2687
2688 int cgroup_add_files(struct cgroup *cgrp,
2689 struct cgroup_subsys *subsys,
2690 const struct cftype cft[],
2691 int count)
2692 {
2693 int i, err;
2694 for (i = 0; i < count; i++) {
2695 err = cgroup_add_file(cgrp, subsys, &cft[i]);
2696 if (err)
2697 return err;
2698 }
2699 return 0;
2700 }
2701 EXPORT_SYMBOL_GPL(cgroup_add_files);
2702
2703 /**
2704 * cgroup_task_count - count the number of tasks in a cgroup.
2705 * @cgrp: the cgroup in question
2706 *
2707 * Return the number of tasks in the cgroup.
2708 */
2709 int cgroup_task_count(const struct cgroup *cgrp)
2710 {
2711 int count = 0;
2712 struct cg_cgroup_link *link;
2713
2714 read_lock(&css_set_lock);
2715 list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
2716 count += atomic_read(&link->cg->refcount);
2717 }
2718 read_unlock(&css_set_lock);
2719 return count;
2720 }
2721
2722 /*
2723 * Advance a list_head iterator. The iterator should be positioned at
2724 * the start of a css_set
2725 */
2726 static void cgroup_advance_iter(struct cgroup *cgrp,
2727 struct cgroup_iter *it)
2728 {
2729 struct list_head *l = it->cg_link;
2730 struct cg_cgroup_link *link;
2731 struct css_set *cg;
2732
2733 /* Advance to the next non-empty css_set */
2734 do {
2735 l = l->next;
2736 if (l == &cgrp->css_sets) {
2737 it->cg_link = NULL;
2738 return;
2739 }
2740 link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
2741 cg = link->cg;
2742 } while (list_empty(&cg->tasks));
2743 it->cg_link = l;
2744 it->task = cg->tasks.next;
2745 }
2746
2747 /*
2748 * To reduce the fork() overhead for systems that are not actually
2749 * using their cgroups capability, we don't maintain the lists running
2750 * through each css_set to its tasks until we see the list actually
2751 * used - in other words after the first call to cgroup_iter_start().
2752 *
2753 * The tasklist_lock is not held here, as do_each_thread() and
2754 * while_each_thread() are protected by RCU.
2755 */
2756 static void cgroup_enable_task_cg_lists(void)
2757 {
2758 struct task_struct *p, *g;
2759 write_lock(&css_set_lock);
2760 use_task_css_set_links = 1;
2761 do_each_thread(g, p) {
2762 task_lock(p);
2763 /*
2764 * We should check if the process is exiting, otherwise
2765 * it will race with cgroup_exit() in that the list
2766 * entry won't be deleted though the process has exited.
2767 */
2768 if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
2769 list_add(&p->cg_list, &p->cgroups->tasks);
2770 task_unlock(p);
2771 } while_each_thread(g, p);
2772 write_unlock(&css_set_lock);
2773 }
2774
2775 void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
2776 {
2777 /*
2778 * The first time anyone tries to iterate across a cgroup,
2779 * we need to enable the list linking each css_set to its
2780 * tasks, and fix up all existing tasks.
2781 */
2782 if (!use_task_css_set_links)
2783 cgroup_enable_task_cg_lists();
2784
2785 read_lock(&css_set_lock);
2786 it->cg_link = &cgrp->css_sets;
2787 cgroup_advance_iter(cgrp, it);
2788 }
2789
2790 struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
2791 struct cgroup_iter *it)
2792 {
2793 struct task_struct *res;
2794 struct list_head *l = it->task;
2795 struct cg_cgroup_link *link;
2796
2797 /* If the iterator cg is NULL, we have no tasks */
2798 if (!it->cg_link)
2799 return NULL;
2800 res = list_entry(l, struct task_struct, cg_list);
2801 /* Advance iterator to find next entry */
2802 l = l->next;
2803 link = list_entry(it->cg_link, struct cg_cgroup_link, cgrp_link_list);
2804 if (l == &link->cg->tasks) {
2805 /* We reached the end of this task list - move on to
2806 * the next cg_cgroup_link */
2807 cgroup_advance_iter(cgrp, it);
2808 } else {
2809 it->task = l;
2810 }
2811 return res;
2812 }
2813
2814 void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
2815 {
2816 read_unlock(&css_set_lock);
2817 }
2818
2819 static inline int started_after_time(struct task_struct *t1,
2820 struct timespec *time,
2821 struct task_struct *t2)
2822 {
2823 int start_diff = timespec_compare(&t1->start_time, time);
2824 if (start_diff > 0) {
2825 return 1;
2826 } else if (start_diff < 0) {
2827 return 0;
2828 } else {
2829 /*
2830 * Arbitrarily, if two processes started at the same
2831 * time, we'll say that the lower pointer value
2832 * started first. Note that t2 may have exited by now
2833 * so this may not be a valid pointer any longer, but
2834 * that's fine - it still serves to distinguish
2835 * between two tasks started (effectively) simultaneously.
2836 */
2837 return t1 > t2;
2838 }
2839 }
2840
2841 /*
2842 * This function is a callback from heap_insert() and is used to order
2843 * the heap.
2844 * In this case we order the heap in descending task start time.
2845 */
2846 static inline int started_after(void *p1, void *p2)
2847 {
2848 struct task_struct *t1 = p1;
2849 struct task_struct *t2 = p2;
2850 return started_after_time(t1, &t2->start_time, t2);
2851 }
2852
2853 /**
2854 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
2855 * @scan: struct cgroup_scanner containing arguments for the scan
2856 *
2857 * Arguments include pointers to callback functions test_task() and
2858 * process_task().
2859 * Iterate through all the tasks in a cgroup, calling test_task() for each,
2860 * and if it returns true, call process_task() for it also.
2861 * The test_task pointer may be NULL, meaning always true (select all tasks).
2862 * Effectively duplicates cgroup_iter_{start,next,end}()
2863 * but does not lock css_set_lock for the call to process_task().
2864 * The struct cgroup_scanner may be embedded in any structure of the caller's
2865 * creation.
2866 * It is guaranteed that process_task() will act on every task that
2867 * is a member of the cgroup for the duration of this call. This
2868 * function may or may not call process_task() for tasks that exit
2869 * or move to a different cgroup during the call, or are forked or
2870 * move into the cgroup during the call.
2871 *
2872 * Note that test_task() may be called with locks held, and may in some
2873 * situations be called multiple times for the same task, so it should
2874 * be cheap.
2875 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
2876 * pre-allocated and will be used for heap operations (and its "gt" member will
2877 * be overwritten), else a temporary heap will be used (allocation of which
2878 * may cause this function to fail).
2879 */
2880 int cgroup_scan_tasks(struct cgroup_scanner *scan)
2881 {
2882 int retval, i;
2883 struct cgroup_iter it;
2884 struct task_struct *p, *dropped;
2885 /* Never dereference latest_task, since it's not refcounted */
2886 struct task_struct *latest_task = NULL;
2887 struct ptr_heap tmp_heap;
2888 struct ptr_heap *heap;
2889 struct timespec latest_time = { 0, 0 };
2890
2891 if (scan->heap) {
2892 /* The caller supplied our heap and pre-allocated its memory */
2893 heap = scan->heap;
2894 heap->gt = &started_after;
2895 } else {
2896 /* We need to allocate our own heap memory */
2897 heap = &tmp_heap;
2898 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
2899 if (retval)
2900 /* cannot allocate the heap */
2901 return retval;
2902 }
2903
2904 again:
2905 /*
2906 * Scan tasks in the cgroup, using the scanner's "test_task" callback
2907 * to determine which are of interest, and using the scanner's
2908 * "process_task" callback to process any of them that need an update.
2909 * Since we don't want to hold any locks during the task updates,
2910 * gather tasks to be processed in a heap structure.
2911 * The heap is sorted by descending task start time.
2912 * If the statically-sized heap fills up, we overflow tasks that
2913 * started later, and in future iterations only consider tasks that
2914 * started after the latest task in the previous pass. This
2915 * guarantees forward progress and that we don't miss any tasks.
2916 */
2917 heap->size = 0;
2918 cgroup_iter_start(scan->cg, &it);
2919 while ((p = cgroup_iter_next(scan->cg, &it))) {
2920 /*
2921 * Only affect tasks that qualify per the caller's callback,
2922 * if he provided one
2923 */
2924 if (scan->test_task && !scan->test_task(p, scan))
2925 continue;
2926 /*
2927 * Only process tasks that started after the last task
2928 * we processed
2929 */
2930 if (!started_after_time(p, &latest_time, latest_task))
2931 continue;
2932 dropped = heap_insert(heap, p);
2933 if (dropped == NULL) {
2934 /*
2935 * The new task was inserted; the heap wasn't
2936 * previously full
2937 */
2938 get_task_struct(p);
2939 } else if (dropped != p) {
2940 /*
2941 * The new task was inserted, and pushed out a
2942 * different task
2943 */
2944 get_task_struct(p);
2945 put_task_struct(dropped);
2946 }
2947 /*
2948 * Else the new task was newer than anything already in
2949 * the heap and wasn't inserted
2950 */
2951 }
2952 cgroup_iter_end(scan->cg, &it);
2953
2954 if (heap->size) {
2955 for (i = 0; i < heap->size; i++) {
2956 struct task_struct *q = heap->ptrs[i];
2957 if (i == 0) {
2958 latest_time = q->start_time;
2959 latest_task = q;
2960 }
2961 /* Process the task per the caller's callback */
2962 scan->process_task(q, scan);
2963 put_task_struct(q);
2964 }
2965 /*
2966 * If we had to process any tasks at all, scan again
2967 * in case some of them were in the middle of forking
2968 * children that didn't get processed.
2969 * Not the most efficient way to do it, but it avoids
2970 * having to take callback_mutex in the fork path
2971 */
2972 goto again;
2973 }
2974 if (heap == &tmp_heap)
2975 heap_free(&tmp_heap);
2976 return 0;
2977 }
2978
2979 /*
2980 * Stuff for reading the 'tasks'/'procs' files.
2981 *
2982 * Reading this file can return large amounts of data if a cgroup has
2983 * *lots* of attached tasks. So it may need several calls to read(),
2984 * but we cannot guarantee that the information we produce is correct
2985 * unless we produce it entirely atomically.
2986 *
2987 */
2988
2989 /*
2990 * The following two functions "fix" the issue where there are more pids
2991 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
2992 * TODO: replace with a kernel-wide solution to this problem
2993 */
2994 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
2995 static void *pidlist_allocate(int count)
2996 {
2997 if (PIDLIST_TOO_LARGE(count))
2998 return vmalloc(count * sizeof(pid_t));
2999 else
3000 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
3001 }
3002 static void pidlist_free(void *p)
3003 {
3004 if (is_vmalloc_addr(p))
3005 vfree(p);
3006 else
3007 kfree(p);
3008 }
3009 static void *pidlist_resize(void *p, int newcount)
3010 {
3011 void *newlist;
3012 /* note: if new alloc fails, old p will still be valid either way */
3013 if (is_vmalloc_addr(p)) {
3014 newlist = vmalloc(newcount * sizeof(pid_t));
3015 if (!newlist)
3016 return NULL;
3017 memcpy(newlist, p, newcount * sizeof(pid_t));
3018 vfree(p);
3019 } else {
3020 newlist = krealloc(p, newcount * sizeof(pid_t), GFP_KERNEL);
3021 }
3022 return newlist;
3023 }
3024
3025 /*
3026 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
3027 * If the new stripped list is sufficiently smaller and there's enough memory
3028 * to allocate a new buffer, will let go of the unneeded memory. Returns the
3029 * number of unique elements.
3030 */
3031 /* is the size difference enough that we should re-allocate the array? */
3032 #define PIDLIST_REALLOC_DIFFERENCE(old, new) ((old) - PAGE_SIZE >= (new))
3033 static int pidlist_uniq(pid_t **p, int length)
3034 {
3035 int src, dest = 1;
3036 pid_t *list = *p;
3037 pid_t *newlist;
3038
3039 /*
3040 * we presume the 0th element is unique, so i starts at 1. trivial
3041 * edge cases first; no work needs to be done for either
3042 */
3043 if (length == 0 || length == 1)
3044 return length;
3045 /* src and dest walk down the list; dest counts unique elements */
3046 for (src = 1; src < length; src++) {
3047 /* find next unique element */
3048 while (list[src] == list[src-1]) {
3049 src++;
3050 if (src == length)
3051 goto after;
3052 }
3053 /* dest always points to where the next unique element goes */
3054 list[dest] = list[src];
3055 dest++;
3056 }
3057 after:
3058 /*
3059 * if the length difference is large enough, we want to allocate a
3060 * smaller buffer to save memory. if this fails due to out of memory,
3061 * we'll just stay with what we've got.
3062 */
3063 if (PIDLIST_REALLOC_DIFFERENCE(length, dest)) {
3064 newlist = pidlist_resize(list, dest);
3065 if (newlist)
3066 *p = newlist;
3067 }
3068 return dest;
3069 }
3070
3071 static int cmppid(const void *a, const void *b)
3072 {
3073 return *(pid_t *)a - *(pid_t *)b;
3074 }
3075
3076 /*
3077 * find the appropriate pidlist for our purpose (given procs vs tasks)
3078 * returns with the lock on that pidlist already held, and takes care
3079 * of the use count, or returns NULL with no locks held if we're out of
3080 * memory.
3081 */
3082 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3083 enum cgroup_filetype type)
3084 {
3085 struct cgroup_pidlist *l;
3086 /* don't need task_nsproxy() if we're looking at ourself */
3087 struct pid_namespace *ns = current->nsproxy->pid_ns;
3088
3089 /*
3090 * We can't drop the pidlist_mutex before taking the l->mutex in case
3091 * the last ref-holder is trying to remove l from the list at the same
3092 * time. Holding the pidlist_mutex precludes somebody taking whichever
3093 * list we find out from under us - compare release_pid_array().
3094 */
3095 mutex_lock(&cgrp->pidlist_mutex);
3096 list_for_each_entry(l, &cgrp->pidlists, links) {
3097 if (l->key.type == type && l->key.ns == ns) {
3098 /* make sure l doesn't vanish out from under us */
3099 down_write(&l->mutex);
3100 mutex_unlock(&cgrp->pidlist_mutex);
3101 return l;
3102 }
3103 }
3104 /* entry not found; create a new one */
3105 l = kmalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
3106 if (!l) {
3107 mutex_unlock(&cgrp->pidlist_mutex);
3108 return l;
3109 }
3110 init_rwsem(&l->mutex);
3111 down_write(&l->mutex);
3112 l->key.type = type;
3113 l->key.ns = get_pid_ns(ns);
3114 l->use_count = 0; /* don't increment here */
3115 l->list = NULL;
3116 l->owner = cgrp;
3117 list_add(&l->links, &cgrp->pidlists);
3118 mutex_unlock(&cgrp->pidlist_mutex);
3119 return l;
3120 }
3121
3122 /*
3123 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3124 */
3125 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3126 struct cgroup_pidlist **lp)
3127 {
3128 pid_t *array;
3129 int length;
3130 int pid, n = 0; /* used for populating the array */
3131 struct cgroup_iter it;
3132 struct task_struct *tsk;
3133 struct cgroup_pidlist *l;
3134
3135 /*
3136 * If cgroup gets more users after we read count, we won't have
3137 * enough space - tough. This race is indistinguishable to the
3138 * caller from the case that the additional cgroup users didn't
3139 * show up until sometime later on.
3140 */
3141 length = cgroup_task_count(cgrp);
3142 array = pidlist_allocate(length);
3143 if (!array)
3144 return -ENOMEM;
3145 /* now, populate the array */
3146 cgroup_iter_start(cgrp, &it);
3147 while ((tsk = cgroup_iter_next(cgrp, &it))) {
3148 if (unlikely(n == length))
3149 break;
3150 /* get tgid or pid for procs or tasks file respectively */
3151 if (type == CGROUP_FILE_PROCS)
3152 pid = task_tgid_vnr(tsk);
3153 else
3154 pid = task_pid_vnr(tsk);
3155 if (pid > 0) /* make sure to only use valid results */
3156 array[n++] = pid;
3157 }
3158 cgroup_iter_end(cgrp, &it);
3159 length = n;
3160 /* now sort & (if procs) strip out duplicates */
3161 sort(array, length, sizeof(pid_t), cmppid, NULL);
3162 if (type == CGROUP_FILE_PROCS)
3163 length = pidlist_uniq(&array, length);
3164 l = cgroup_pidlist_find(cgrp, type);
3165 if (!l) {
3166 pidlist_free(array);
3167 return -ENOMEM;
3168 }
3169 /* store array, freeing old if necessary - lock already held */
3170 pidlist_free(l->list);
3171 l->list = array;
3172 l->length = length;
3173 l->use_count++;
3174 up_write(&l->mutex);
3175 *lp = l;
3176 return 0;
3177 }
3178
3179 /**
3180 * cgroupstats_build - build and fill cgroupstats
3181 * @stats: cgroupstats to fill information into
3182 * @dentry: A dentry entry belonging to the cgroup for which stats have
3183 * been requested.
3184 *
3185 * Build and fill cgroupstats so that taskstats can export it to user
3186 * space.
3187 */
3188 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
3189 {
3190 int ret = -EINVAL;
3191 struct cgroup *cgrp;
3192 struct cgroup_iter it;
3193 struct task_struct *tsk;
3194
3195 /*
3196 * Validate dentry by checking the superblock operations,
3197 * and make sure it's a directory.
3198 */
3199 if (dentry->d_sb->s_op != &cgroup_ops ||
3200 !S_ISDIR(dentry->d_inode->i_mode))
3201 goto err;
3202
3203 ret = 0;
3204 cgrp = dentry->d_fsdata;
3205
3206 cgroup_iter_start(cgrp, &it);
3207 while ((tsk = cgroup_iter_next(cgrp, &it))) {
3208 switch (tsk->state) {
3209 case TASK_RUNNING:
3210 stats->nr_running++;
3211 break;
3212 case TASK_INTERRUPTIBLE:
3213 stats->nr_sleeping++;
3214 break;
3215 case TASK_UNINTERRUPTIBLE:
3216 stats->nr_uninterruptible++;
3217 break;
3218 case TASK_STOPPED:
3219 stats->nr_stopped++;
3220 break;
3221 default:
3222 if (delayacct_is_task_waiting_on_io(tsk))
3223 stats->nr_io_wait++;
3224 break;
3225 }
3226 }
3227 cgroup_iter_end(cgrp, &it);
3228
3229 err:
3230 return ret;
3231 }
3232
3233
3234 /*
3235 * seq_file methods for the tasks/procs files. The seq_file position is the
3236 * next pid to display; the seq_file iterator is a pointer to the pid
3237 * in the cgroup->l->list array.
3238 */
3239
3240 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
3241 {
3242 /*
3243 * Initially we receive a position value that corresponds to
3244 * one more than the last pid shown (or 0 on the first call or
3245 * after a seek to the start). Use a binary-search to find the
3246 * next pid to display, if any
3247 */
3248 struct cgroup_pidlist *l = s->private;
3249 int index = 0, pid = *pos;
3250 int *iter;
3251
3252 down_read(&l->mutex);
3253 if (pid) {
3254 int end = l->length;
3255
3256 while (index < end) {
3257 int mid = (index + end) / 2;
3258 if (l->list[mid] == pid) {
3259 index = mid;
3260 break;
3261 } else if (l->list[mid] <= pid)
3262 index = mid + 1;
3263 else
3264 end = mid;
3265 }
3266 }
3267 /* If we're off the end of the array, we're done */
3268 if (index >= l->length)
3269 return NULL;
3270 /* Update the abstract position to be the actual pid that we found */
3271 iter = l->list + index;
3272 *pos = *iter;
3273 return iter;
3274 }
3275
3276 static void cgroup_pidlist_stop(struct seq_file *s, void *v)
3277 {
3278 struct cgroup_pidlist *l = s->private;
3279 up_read(&l->mutex);
3280 }
3281
3282 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
3283 {
3284 struct cgroup_pidlist *l = s->private;
3285 pid_t *p = v;
3286 pid_t *end = l->list + l->length;
3287 /*
3288 * Advance to the next pid in the array. If this goes off the
3289 * end, we're done
3290 */
3291 p++;
3292 if (p >= end) {
3293 return NULL;
3294 } else {
3295 *pos = *p;
3296 return p;
3297 }
3298 }
3299
3300 static int cgroup_pidlist_show(struct seq_file *s, void *v)
3301 {
3302 return seq_printf(s, "%d\n", *(int *)v);
3303 }
3304
3305 /*
3306 * seq_operations functions for iterating on pidlists through seq_file -
3307 * independent of whether it's tasks or procs
3308 */
3309 static const struct seq_operations cgroup_pidlist_seq_operations = {
3310 .start = cgroup_pidlist_start,
3311 .stop = cgroup_pidlist_stop,
3312 .next = cgroup_pidlist_next,
3313 .show = cgroup_pidlist_show,
3314 };
3315
3316 static void cgroup_release_pid_array(struct cgroup_pidlist *l)
3317 {
3318 /*
3319 * the case where we're the last user of this particular pidlist will
3320 * have us remove it from the cgroup's list, which entails taking the
3321 * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
3322 * pidlist_mutex, we have to take pidlist_mutex first.
3323 */
3324 mutex_lock(&l->owner->pidlist_mutex);
3325 down_write(&l->mutex);
3326 BUG_ON(!l->use_count);
3327 if (!--l->use_count) {
3328 /* we're the last user if refcount is 0; remove and free */
3329 list_del(&l->links);
3330 mutex_unlock(&l->owner->pidlist_mutex);
3331 pidlist_free(l->list);
3332 put_pid_ns(l->key.ns);
3333 up_write(&l->mutex);
3334 kfree(l);
3335 return;
3336 }
3337 mutex_unlock(&l->owner->pidlist_mutex);
3338 up_write(&l->mutex);
3339 }
3340
3341 static int cgroup_pidlist_release(struct inode *inode, struct file *file)
3342 {
3343 struct cgroup_pidlist *l;
3344 if (!(file->f_mode & FMODE_READ))
3345 return 0;
3346 /*
3347 * the seq_file will only be initialized if the file was opened for
3348 * reading; hence we check if it's not null only in that case.
3349 */
3350 l = ((struct seq_file *)file->private_data)->private;
3351 cgroup_release_pid_array(l);
3352 return seq_release(inode, file);
3353 }
3354
3355 static const struct file_operations cgroup_pidlist_operations = {
3356 .read = seq_read,
3357 .llseek = seq_lseek,
3358 .write = cgroup_file_write,
3359 .release = cgroup_pidlist_release,
3360 };
3361
3362 /*
3363 * The following functions handle opens on a file that displays a pidlist
3364 * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
3365 * in the cgroup.
3366 */
3367 /* helper function for the two below it */
3368 static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type)
3369 {
3370 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
3371 struct cgroup_pidlist *l;
3372 int retval;
3373
3374 /* Nothing to do for write-only files */
3375 if (!(file->f_mode & FMODE_READ))
3376 return 0;
3377
3378 /* have the array populated */
3379 retval = pidlist_array_load(cgrp, type, &l);
3380 if (retval)
3381 return retval;
3382 /* configure file information */
3383 file->f_op = &cgroup_pidlist_operations;
3384
3385 retval = seq_open(file, &cgroup_pidlist_seq_operations);
3386 if (retval) {
3387 cgroup_release_pid_array(l);
3388 return retval;
3389 }
3390 ((struct seq_file *)file->private_data)->private = l;
3391 return 0;
3392 }
3393 static int cgroup_tasks_open(struct inode *unused, struct file *file)
3394 {
3395 return cgroup_pidlist_open(file, CGROUP_FILE_TASKS);
3396 }
3397 static int cgroup_procs_open(struct inode *unused, struct file *file)
3398 {
3399 return cgroup_pidlist_open(file, CGROUP_FILE_PROCS);
3400 }
3401
3402 static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
3403 struct cftype *cft)
3404 {
3405 return notify_on_release(cgrp);
3406 }
3407
3408 static int cgroup_write_notify_on_release(struct cgroup *cgrp,
3409 struct cftype *cft,
3410 u64 val)
3411 {
3412 clear_bit(CGRP_RELEASABLE, &cgrp->flags);
3413 if (val)
3414 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3415 else
3416 clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3417 return 0;
3418 }
3419
3420 /*
3421 * Unregister event and free resources.
3422 *
3423 * Gets called from workqueue.
3424 */
3425 static void cgroup_event_remove(struct work_struct *work)
3426 {
3427 struct cgroup_event *event = container_of(work, struct cgroup_event,
3428 remove);
3429 struct cgroup *cgrp = event->cgrp;
3430
3431 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3432
3433 eventfd_ctx_put(event->eventfd);
3434 kfree(event);
3435 dput(cgrp->dentry);
3436 }
3437
3438 /*
3439 * Gets called on POLLHUP on eventfd when user closes it.
3440 *
3441 * Called with wqh->lock held and interrupts disabled.
3442 */
3443 static int cgroup_event_wake(wait_queue_t *wait, unsigned mode,
3444 int sync, void *key)
3445 {
3446 struct cgroup_event *event = container_of(wait,
3447 struct cgroup_event, wait);
3448 struct cgroup *cgrp = event->cgrp;
3449 unsigned long flags = (unsigned long)key;
3450
3451 if (flags & POLLHUP) {
3452 __remove_wait_queue(event->wqh, &event->wait);
3453 spin_lock(&cgrp->event_list_lock);
3454 list_del(&event->list);
3455 spin_unlock(&cgrp->event_list_lock);
3456 /*
3457 * We are in atomic context, but cgroup_event_remove() may
3458 * sleep, so we have to call it in workqueue.
3459 */
3460 schedule_work(&event->remove);
3461 }
3462
3463 return 0;
3464 }
3465
3466 static void cgroup_event_ptable_queue_proc(struct file *file,
3467 wait_queue_head_t *wqh, poll_table *pt)
3468 {
3469 struct cgroup_event *event = container_of(pt,
3470 struct cgroup_event, pt);
3471
3472 event->wqh = wqh;
3473 add_wait_queue(wqh, &event->wait);
3474 }
3475
3476 /*
3477 * Parse input and register new cgroup event handler.
3478 *
3479 * Input must be in format '<event_fd> <control_fd> <args>'.
3480 * Interpretation of args is defined by control file implementation.
3481 */
3482 static int cgroup_write_event_control(struct cgroup *cgrp, struct cftype *cft,
3483 const char *buffer)
3484 {
3485 struct cgroup_event *event = NULL;
3486 unsigned int efd, cfd;
3487 struct file *efile = NULL;
3488 struct file *cfile = NULL;
3489 char *endp;
3490 int ret;
3491
3492 efd = simple_strtoul(buffer, &endp, 10);
3493 if (*endp != ' ')
3494 return -EINVAL;
3495 buffer = endp + 1;
3496
3497 cfd = simple_strtoul(buffer, &endp, 10);
3498 if ((*endp != ' ') && (*endp != '\0'))
3499 return -EINVAL;
3500 buffer = endp + 1;
3501
3502 event = kzalloc(sizeof(*event), GFP_KERNEL);
3503 if (!event)
3504 return -ENOMEM;
3505 event->cgrp = cgrp;
3506 INIT_LIST_HEAD(&event->list);
3507 init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc);
3508 init_waitqueue_func_entry(&event->wait, cgroup_event_wake);
3509 INIT_WORK(&event->remove, cgroup_event_remove);
3510
3511 efile = eventfd_fget(efd);
3512 if (IS_ERR(efile)) {
3513 ret = PTR_ERR(efile);
3514 goto fail;
3515 }
3516
3517 event->eventfd = eventfd_ctx_fileget(efile);
3518 if (IS_ERR(event->eventfd)) {
3519 ret = PTR_ERR(event->eventfd);
3520 goto fail;
3521 }
3522
3523 cfile = fget(cfd);
3524 if (!cfile) {
3525 ret = -EBADF;
3526 goto fail;
3527 }
3528
3529 /* the process need read permission on control file */
3530 ret = file_permission(cfile, MAY_READ);
3531 if (ret < 0)
3532 goto fail;
3533
3534 event->cft = __file_cft(cfile);
3535 if (IS_ERR(event->cft)) {
3536 ret = PTR_ERR(event->cft);
3537 goto fail;
3538 }
3539
3540 if (!event->cft->register_event || !event->cft->unregister_event) {
3541 ret = -EINVAL;
3542 goto fail;
3543 }
3544
3545 ret = event->cft->register_event(cgrp, event->cft,
3546 event->eventfd, buffer);
3547 if (ret)
3548 goto fail;
3549
3550 if (efile->f_op->poll(efile, &event->pt) & POLLHUP) {
3551 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3552 ret = 0;
3553 goto fail;
3554 }
3555
3556 /*
3557 * Events should be removed after rmdir of cgroup directory, but before
3558 * destroying subsystem state objects. Let's take reference to cgroup
3559 * directory dentry to do that.
3560 */
3561 dget(cgrp->dentry);
3562
3563 spin_lock(&cgrp->event_list_lock);
3564 list_add(&event->list, &cgrp->event_list);
3565 spin_unlock(&cgrp->event_list_lock);
3566
3567 fput(cfile);
3568 fput(efile);
3569
3570 return 0;
3571
3572 fail:
3573 if (cfile)
3574 fput(cfile);
3575
3576 if (event && event->eventfd && !IS_ERR(event->eventfd))
3577 eventfd_ctx_put(event->eventfd);
3578
3579 if (!IS_ERR_OR_NULL(efile))
3580 fput(efile);
3581
3582 kfree(event);
3583
3584 return ret;
3585 }
3586
3587 static u64 cgroup_clone_children_read(struct cgroup *cgrp,
3588 struct cftype *cft)
3589 {
3590 return clone_children(cgrp);
3591 }
3592
3593 static int cgroup_clone_children_write(struct cgroup *cgrp,
3594 struct cftype *cft,
3595 u64 val)
3596 {
3597 if (val)
3598 set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3599 else
3600 clear_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3601 return 0;
3602 }
3603
3604 /*
3605 * for the common functions, 'private' gives the type of file
3606 */
3607 /* for hysterical raisins, we can't put this on the older files */
3608 #define CGROUP_FILE_GENERIC_PREFIX "cgroup."
3609 static struct cftype files[] = {
3610 {
3611 .name = "tasks",
3612 .open = cgroup_tasks_open,
3613 .write_u64 = cgroup_tasks_write,
3614 .release = cgroup_pidlist_release,
3615 .mode = S_IRUGO | S_IWUSR,
3616 },
3617 {
3618 .name = CGROUP_FILE_GENERIC_PREFIX "procs",
3619 .open = cgroup_procs_open,
3620 .write_u64 = cgroup_procs_write,
3621 .release = cgroup_pidlist_release,
3622 .mode = S_IRUGO | S_IWUSR,
3623 },
3624 {
3625 .name = "notify_on_release",
3626 .read_u64 = cgroup_read_notify_on_release,
3627 .write_u64 = cgroup_write_notify_on_release,
3628 },
3629 {
3630 .name = CGROUP_FILE_GENERIC_PREFIX "event_control",
3631 .write_string = cgroup_write_event_control,
3632 .mode = S_IWUGO,
3633 },
3634 {
3635 .name = "cgroup.clone_children",
3636 .read_u64 = cgroup_clone_children_read,
3637 .write_u64 = cgroup_clone_children_write,
3638 },
3639 };
3640
3641 static struct cftype cft_release_agent = {
3642 .name = "release_agent",
3643 .read_seq_string = cgroup_release_agent_show,
3644 .write_string = cgroup_release_agent_write,
3645 .max_write_len = PATH_MAX,
3646 };
3647
3648 static int cgroup_populate_dir(struct cgroup *cgrp)
3649 {
3650 int err;
3651 struct cgroup_subsys *ss;
3652
3653 /* First clear out any existing files */
3654 cgroup_clear_directory(cgrp->dentry);
3655
3656 err = cgroup_add_files(cgrp, NULL, files, ARRAY_SIZE(files));
3657 if (err < 0)
3658 return err;
3659
3660 if (cgrp == cgrp->top_cgroup) {
3661 if ((err = cgroup_add_file(cgrp, NULL, &cft_release_agent)) < 0)
3662 return err;
3663 }
3664
3665 for_each_subsys(cgrp->root, ss) {
3666 if (ss->populate && (err = ss->populate(ss, cgrp)) < 0)
3667 return err;
3668 }
3669 /* This cgroup is ready now */
3670 for_each_subsys(cgrp->root, ss) {
3671 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3672 /*
3673 * Update id->css pointer and make this css visible from
3674 * CSS ID functions. This pointer will be dereferened
3675 * from RCU-read-side without locks.
3676 */
3677 if (css->id)
3678 rcu_assign_pointer(css->id->css, css);
3679 }
3680
3681 return 0;
3682 }
3683
3684 static void init_cgroup_css(struct cgroup_subsys_state *css,
3685 struct cgroup_subsys *ss,
3686 struct cgroup *cgrp)
3687 {
3688 css->cgroup = cgrp;
3689 atomic_set(&css->refcnt, 1);
3690 css->flags = 0;
3691 css->id = NULL;
3692 if (cgrp == dummytop)
3693 set_bit(CSS_ROOT, &css->flags);
3694 BUG_ON(cgrp->subsys[ss->subsys_id]);
3695 cgrp->subsys[ss->subsys_id] = css;
3696 }
3697
3698 static void cgroup_lock_hierarchy(struct cgroupfs_root *root)
3699 {
3700 /* We need to take each hierarchy_mutex in a consistent order */
3701 int i;
3702
3703 /*
3704 * No worry about a race with rebind_subsystems that might mess up the
3705 * locking order, since both parties are under cgroup_mutex.
3706 */
3707 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3708 struct cgroup_subsys *ss = subsys[i];
3709 if (ss == NULL)
3710 continue;
3711 if (ss->root == root)
3712 mutex_lock(&ss->hierarchy_mutex);
3713 }
3714 }
3715
3716 static void cgroup_unlock_hierarchy(struct cgroupfs_root *root)
3717 {
3718 int i;
3719
3720 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3721 struct cgroup_subsys *ss = subsys[i];
3722 if (ss == NULL)
3723 continue;
3724 if (ss->root == root)
3725 mutex_unlock(&ss->hierarchy_mutex);
3726 }
3727 }
3728
3729 /*
3730 * cgroup_create - create a cgroup
3731 * @parent: cgroup that will be parent of the new cgroup
3732 * @dentry: dentry of the new cgroup
3733 * @mode: mode to set on new inode
3734 *
3735 * Must be called with the mutex on the parent inode held
3736 */
3737 static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
3738 mode_t mode)
3739 {
3740 struct cgroup *cgrp;
3741 struct cgroupfs_root *root = parent->root;
3742 int err = 0;
3743 struct cgroup_subsys *ss;
3744 struct super_block *sb = root->sb;
3745
3746 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
3747 if (!cgrp)
3748 return -ENOMEM;
3749
3750 /* Grab a reference on the superblock so the hierarchy doesn't
3751 * get deleted on unmount if there are child cgroups. This
3752 * can be done outside cgroup_mutex, since the sb can't
3753 * disappear while someone has an open control file on the
3754 * fs */
3755 atomic_inc(&sb->s_active);
3756
3757 mutex_lock(&cgroup_mutex);
3758
3759 init_cgroup_housekeeping(cgrp);
3760
3761 cgrp->parent = parent;
3762 cgrp->root = parent->root;
3763 cgrp->top_cgroup = parent->top_cgroup;
3764
3765 if (notify_on_release(parent))
3766 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3767
3768 if (clone_children(parent))
3769 set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3770
3771 for_each_subsys(root, ss) {
3772 struct cgroup_subsys_state *css = ss->create(ss, cgrp);
3773
3774 if (IS_ERR(css)) {
3775 err = PTR_ERR(css);
3776 goto err_destroy;
3777 }
3778 init_cgroup_css(css, ss, cgrp);
3779 if (ss->use_id) {
3780 err = alloc_css_id(ss, parent, cgrp);
3781 if (err)
3782 goto err_destroy;
3783 }
3784 /* At error, ->destroy() callback has to free assigned ID. */
3785 if (clone_children(parent) && ss->post_clone)
3786 ss->post_clone(ss, cgrp);
3787 }
3788
3789 cgroup_lock_hierarchy(root);
3790 list_add(&cgrp->sibling, &cgrp->parent->children);
3791 cgroup_unlock_hierarchy(root);
3792 root->number_of_cgroups++;
3793
3794 err = cgroup_create_dir(cgrp, dentry, mode);
3795 if (err < 0)
3796 goto err_remove;
3797
3798 /* The cgroup directory was pre-locked for us */
3799 BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
3800
3801 err = cgroup_populate_dir(cgrp);
3802 /* If err < 0, we have a half-filled directory - oh well ;) */
3803
3804 mutex_unlock(&cgroup_mutex);
3805 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
3806
3807 return 0;
3808
3809 err_remove:
3810
3811 cgroup_lock_hierarchy(root);
3812 list_del(&cgrp->sibling);
3813 cgroup_unlock_hierarchy(root);
3814 root->number_of_cgroups--;
3815
3816 err_destroy:
3817
3818 for_each_subsys(root, ss) {
3819 if (cgrp->subsys[ss->subsys_id])
3820 ss->destroy(ss, cgrp);
3821 }
3822
3823 mutex_unlock(&cgroup_mutex);
3824
3825 /* Release the reference count that we took on the superblock */
3826 deactivate_super(sb);
3827
3828 kfree(cgrp);
3829 return err;
3830 }
3831
3832 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode)
3833 {
3834 struct cgroup *c_parent = dentry->d_parent->d_fsdata;
3835
3836 /* the vfs holds inode->i_mutex already */
3837 return cgroup_create(c_parent, dentry, mode | S_IFDIR);
3838 }
3839
3840 static int cgroup_has_css_refs(struct cgroup *cgrp)
3841 {
3842 /* Check the reference count on each subsystem. Since we
3843 * already established that there are no tasks in the
3844 * cgroup, if the css refcount is also 1, then there should
3845 * be no outstanding references, so the subsystem is safe to
3846 * destroy. We scan across all subsystems rather than using
3847 * the per-hierarchy linked list of mounted subsystems since
3848 * we can be called via check_for_release() with no
3849 * synchronization other than RCU, and the subsystem linked
3850 * list isn't RCU-safe */
3851 int i;
3852 /*
3853 * We won't need to lock the subsys array, because the subsystems
3854 * we're concerned about aren't going anywhere since our cgroup root
3855 * has a reference on them.
3856 */
3857 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3858 struct cgroup_subsys *ss = subsys[i];
3859 struct cgroup_subsys_state *css;
3860 /* Skip subsystems not present or not in this hierarchy */
3861 if (ss == NULL || ss->root != cgrp->root)
3862 continue;
3863 css = cgrp->subsys[ss->subsys_id];
3864 /* When called from check_for_release() it's possible
3865 * that by this point the cgroup has been removed
3866 * and the css deleted. But a false-positive doesn't
3867 * matter, since it can only happen if the cgroup
3868 * has been deleted and hence no longer needs the
3869 * release agent to be called anyway. */
3870 if (css && (atomic_read(&css->refcnt) > 1))
3871 return 1;
3872 }
3873 return 0;
3874 }
3875
3876 /*
3877 * Atomically mark all (or else none) of the cgroup's CSS objects as
3878 * CSS_REMOVED. Return true on success, or false if the cgroup has
3879 * busy subsystems. Call with cgroup_mutex held
3880 */
3881
3882 static int cgroup_clear_css_refs(struct cgroup *cgrp)
3883 {
3884 struct cgroup_subsys *ss;
3885 unsigned long flags;
3886 bool failed = false;
3887 local_irq_save(flags);
3888 for_each_subsys(cgrp->root, ss) {
3889 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3890 int refcnt;
3891 while (1) {
3892 /* We can only remove a CSS with a refcnt==1 */
3893 refcnt = atomic_read(&css->refcnt);
3894 if (refcnt > 1) {
3895 failed = true;
3896 goto done;
3897 }
3898 BUG_ON(!refcnt);
3899 /*
3900 * Drop the refcnt to 0 while we check other
3901 * subsystems. This will cause any racing
3902 * css_tryget() to spin until we set the
3903 * CSS_REMOVED bits or abort
3904 */
3905 if (atomic_cmpxchg(&css->refcnt, refcnt, 0) == refcnt)
3906 break;
3907 cpu_relax();
3908 }
3909 }
3910 done:
3911 for_each_subsys(cgrp->root, ss) {
3912 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3913 if (failed) {
3914 /*
3915 * Restore old refcnt if we previously managed
3916 * to clear it from 1 to 0
3917 */
3918 if (!atomic_read(&css->refcnt))
3919 atomic_set(&css->refcnt, 1);
3920 } else {
3921 /* Commit the fact that the CSS is removed */
3922 set_bit(CSS_REMOVED, &css->flags);
3923 }
3924 }
3925 local_irq_restore(flags);
3926 return !failed;
3927 }
3928
3929 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
3930 {
3931 struct cgroup *cgrp = dentry->d_fsdata;
3932 struct dentry *d;
3933 struct cgroup *parent;
3934 DEFINE_WAIT(wait);
3935 struct cgroup_event *event, *tmp;
3936 int ret;
3937
3938 /* the vfs holds both inode->i_mutex already */
3939 again:
3940 mutex_lock(&cgroup_mutex);
3941 if (atomic_read(&cgrp->count) != 0) {
3942 mutex_unlock(&cgroup_mutex);
3943 return -EBUSY;
3944 }
3945 if (!list_empty(&cgrp->children)) {
3946 mutex_unlock(&cgroup_mutex);
3947 return -EBUSY;
3948 }
3949 mutex_unlock(&cgroup_mutex);
3950
3951 /*
3952 * In general, subsystem has no css->refcnt after pre_destroy(). But
3953 * in racy cases, subsystem may have to get css->refcnt after
3954 * pre_destroy() and it makes rmdir return with -EBUSY. This sometimes
3955 * make rmdir return -EBUSY too often. To avoid that, we use waitqueue
3956 * for cgroup's rmdir. CGRP_WAIT_ON_RMDIR is for synchronizing rmdir
3957 * and subsystem's reference count handling. Please see css_get/put
3958 * and css_tryget() and cgroup_wakeup_rmdir_waiter() implementation.
3959 */
3960 set_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3961
3962 /*
3963 * Call pre_destroy handlers of subsys. Notify subsystems
3964 * that rmdir() request comes.
3965 */
3966 ret = cgroup_call_pre_destroy(cgrp);
3967 if (ret) {
3968 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3969 return ret;
3970 }
3971
3972 mutex_lock(&cgroup_mutex);
3973 parent = cgrp->parent;
3974 if (atomic_read(&cgrp->count) || !list_empty(&cgrp->children)) {
3975 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3976 mutex_unlock(&cgroup_mutex);
3977 return -EBUSY;
3978 }
3979 prepare_to_wait(&cgroup_rmdir_waitq, &wait, TASK_INTERRUPTIBLE);
3980 if (!cgroup_clear_css_refs(cgrp)) {
3981 mutex_unlock(&cgroup_mutex);
3982 /*
3983 * Because someone may call cgroup_wakeup_rmdir_waiter() before
3984 * prepare_to_wait(), we need to check this flag.
3985 */
3986 if (test_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags))
3987 schedule();
3988 finish_wait(&cgroup_rmdir_waitq, &wait);
3989 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3990 if (signal_pending(current))
3991 return -EINTR;
3992 goto again;
3993 }
3994 /* NO css_tryget() can success after here. */
3995 finish_wait(&cgroup_rmdir_waitq, &wait);
3996 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3997
3998 spin_lock(&release_list_lock);
3999 set_bit(CGRP_REMOVED, &cgrp->flags);
4000 if (!list_empty(&cgrp->release_list))
4001 list_del_init(&cgrp->release_list);
4002 spin_unlock(&release_list_lock);
4003
4004 cgroup_lock_hierarchy(cgrp->root);
4005 /* delete this cgroup from parent->children */
4006 list_del_init(&cgrp->sibling);
4007 cgroup_unlock_hierarchy(cgrp->root);
4008
4009 d = dget(cgrp->dentry);
4010
4011 cgroup_d_remove_dir(d);
4012 dput(d);
4013
4014 set_bit(CGRP_RELEASABLE, &parent->flags);
4015 check_for_release(parent);
4016
4017 /*
4018 * Unregister events and notify userspace.
4019 * Notify userspace about cgroup removing only after rmdir of cgroup
4020 * directory to avoid race between userspace and kernelspace
4021 */
4022 spin_lock(&cgrp->event_list_lock);
4023 list_for_each_entry_safe(event, tmp, &cgrp->event_list, list) {
4024 list_del(&event->list);
4025 remove_wait_queue(event->wqh, &event->wait);
4026 eventfd_signal(event->eventfd, 1);
4027 schedule_work(&event->remove);
4028 }
4029 spin_unlock(&cgrp->event_list_lock);
4030
4031 mutex_unlock(&cgroup_mutex);
4032 return 0;
4033 }
4034
4035 static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
4036 {
4037 struct cgroup_subsys_state *css;
4038
4039 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
4040
4041 /* Create the top cgroup state for this subsystem */
4042 list_add(&ss->sibling, &rootnode.subsys_list);
4043 ss->root = &rootnode;
4044 css = ss->create(ss, dummytop);
4045 /* We don't handle early failures gracefully */
4046 BUG_ON(IS_ERR(css));
4047 init_cgroup_css(css, ss, dummytop);
4048
4049 /* Update the init_css_set to contain a subsys
4050 * pointer to this state - since the subsystem is
4051 * newly registered, all tasks and hence the
4052 * init_css_set is in the subsystem's top cgroup. */
4053 init_css_set.subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
4054
4055 need_forkexit_callback |= ss->fork || ss->exit;
4056
4057 /* At system boot, before all subsystems have been
4058 * registered, no tasks have been forked, so we don't
4059 * need to invoke fork callbacks here. */
4060 BUG_ON(!list_empty(&init_task.tasks));
4061
4062 mutex_init(&ss->hierarchy_mutex);
4063 lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
4064 ss->active = 1;
4065
4066 /* this function shouldn't be used with modular subsystems, since they
4067 * need to register a subsys_id, among other things */
4068 BUG_ON(ss->module);
4069 }
4070
4071 /**
4072 * cgroup_load_subsys: load and register a modular subsystem at runtime
4073 * @ss: the subsystem to load
4074 *
4075 * This function should be called in a modular subsystem's initcall. If the
4076 * subsystem is built as a module, it will be assigned a new subsys_id and set
4077 * up for use. If the subsystem is built-in anyway, work is delegated to the
4078 * simpler cgroup_init_subsys.
4079 */
4080 int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss)
4081 {
4082 int i;
4083 struct cgroup_subsys_state *css;
4084
4085 /* check name and function validity */
4086 if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN ||
4087 ss->create == NULL || ss->destroy == NULL)
4088 return -EINVAL;
4089
4090 /*
4091 * we don't support callbacks in modular subsystems. this check is
4092 * before the ss->module check for consistency; a subsystem that could
4093 * be a module should still have no callbacks even if the user isn't
4094 * compiling it as one.
4095 */
4096 if (ss->fork || ss->exit)
4097 return -EINVAL;
4098
4099 /*
4100 * an optionally modular subsystem is built-in: we want to do nothing,
4101 * since cgroup_init_subsys will have already taken care of it.
4102 */
4103 if (ss->module == NULL) {
4104 /* a few sanity checks */
4105 BUG_ON(ss->subsys_id >= CGROUP_BUILTIN_SUBSYS_COUNT);
4106 BUG_ON(subsys[ss->subsys_id] != ss);
4107 return 0;
4108 }
4109
4110 /*
4111 * need to register a subsys id before anything else - for example,
4112 * init_cgroup_css needs it.
4113 */
4114 mutex_lock(&cgroup_mutex);
4115 /* find the first empty slot in the array */
4116 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
4117 if (subsys[i] == NULL)
4118 break;
4119 }
4120 if (i == CGROUP_SUBSYS_COUNT) {
4121 /* maximum number of subsystems already registered! */
4122 mutex_unlock(&cgroup_mutex);
4123 return -EBUSY;
4124 }
4125 /* assign ourselves the subsys_id */
4126 ss->subsys_id = i;
4127 subsys[i] = ss;
4128
4129 /*
4130 * no ss->create seems to need anything important in the ss struct, so
4131 * this can happen first (i.e. before the rootnode attachment).
4132 */
4133 css = ss->create(ss, dummytop);
4134 if (IS_ERR(css)) {
4135 /* failure case - need to deassign the subsys[] slot. */
4136 subsys[i] = NULL;
4137 mutex_unlock(&cgroup_mutex);
4138 return PTR_ERR(css);
4139 }
4140
4141 list_add(&ss->sibling, &rootnode.subsys_list);
4142 ss->root = &rootnode;
4143
4144 /* our new subsystem will be attached to the dummy hierarchy. */
4145 init_cgroup_css(css, ss, dummytop);
4146 /* init_idr must be after init_cgroup_css because it sets css->id. */
4147 if (ss->use_id) {
4148 int ret = cgroup_init_idr(ss, css);
4149 if (ret) {
4150 dummytop->subsys[ss->subsys_id] = NULL;
4151 ss->destroy(ss, dummytop);
4152 subsys[i] = NULL;
4153 mutex_unlock(&cgroup_mutex);
4154 return ret;
4155 }
4156 }
4157
4158 /*
4159 * Now we need to entangle the css into the existing css_sets. unlike
4160 * in cgroup_init_subsys, there are now multiple css_sets, so each one
4161 * will need a new pointer to it; done by iterating the css_set_table.
4162 * furthermore, modifying the existing css_sets will corrupt the hash
4163 * table state, so each changed css_set will need its hash recomputed.
4164 * this is all done under the css_set_lock.
4165 */
4166 write_lock(&css_set_lock);
4167 for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
4168 struct css_set *cg;
4169 struct hlist_node *node, *tmp;
4170 struct hlist_head *bucket = &css_set_table[i], *new_bucket;
4171
4172 hlist_for_each_entry_safe(cg, node, tmp, bucket, hlist) {
4173 /* skip entries that we already rehashed */
4174 if (cg->subsys[ss->subsys_id])
4175 continue;
4176 /* remove existing entry */
4177 hlist_del(&cg->hlist);
4178 /* set new value */
4179 cg->subsys[ss->subsys_id] = css;
4180 /* recompute hash and restore entry */
4181 new_bucket = css_set_hash(cg->subsys);
4182 hlist_add_head(&cg->hlist, new_bucket);
4183 }
4184 }
4185 write_unlock(&css_set_lock);
4186
4187 mutex_init(&ss->hierarchy_mutex);
4188 lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
4189 ss->active = 1;
4190
4191 /* success! */
4192 mutex_unlock(&cgroup_mutex);
4193 return 0;
4194 }
4195 EXPORT_SYMBOL_GPL(cgroup_load_subsys);
4196
4197 /**
4198 * cgroup_unload_subsys: unload a modular subsystem
4199 * @ss: the subsystem to unload
4200 *
4201 * This function should be called in a modular subsystem's exitcall. When this
4202 * function is invoked, the refcount on the subsystem's module will be 0, so
4203 * the subsystem will not be attached to any hierarchy.
4204 */
4205 void cgroup_unload_subsys(struct cgroup_subsys *ss)
4206 {
4207 struct cg_cgroup_link *link;
4208 struct hlist_head *hhead;
4209
4210 BUG_ON(ss->module == NULL);
4211
4212 /*
4213 * we shouldn't be called if the subsystem is in use, and the use of
4214 * try_module_get in parse_cgroupfs_options should ensure that it
4215 * doesn't start being used while we're killing it off.
4216 */
4217 BUG_ON(ss->root != &rootnode);
4218
4219 mutex_lock(&cgroup_mutex);
4220 /* deassign the subsys_id */
4221 BUG_ON(ss->subsys_id < CGROUP_BUILTIN_SUBSYS_COUNT);
4222 subsys[ss->subsys_id] = NULL;
4223
4224 /* remove subsystem from rootnode's list of subsystems */
4225 list_del_init(&ss->sibling);
4226
4227 /*
4228 * disentangle the css from all css_sets attached to the dummytop. as
4229 * in loading, we need to pay our respects to the hashtable gods.
4230 */
4231 write_lock(&css_set_lock);
4232 list_for_each_entry(link, &dummytop->css_sets, cgrp_link_list) {
4233 struct css_set *cg = link->cg;
4234
4235 hlist_del(&cg->hlist);
4236 BUG_ON(!cg->subsys[ss->subsys_id]);
4237 cg->subsys[ss->subsys_id] = NULL;
4238 hhead = css_set_hash(cg->subsys);
4239 hlist_add_head(&cg->hlist, hhead);
4240 }
4241 write_unlock(&css_set_lock);
4242
4243 /*
4244 * remove subsystem's css from the dummytop and free it - need to free
4245 * before marking as null because ss->destroy needs the cgrp->subsys
4246 * pointer to find their state. note that this also takes care of
4247 * freeing the css_id.
4248 */
4249 ss->destroy(ss, dummytop);
4250 dummytop->subsys[ss->subsys_id] = NULL;
4251
4252 mutex_unlock(&cgroup_mutex);
4253 }
4254 EXPORT_SYMBOL_GPL(cgroup_unload_subsys);
4255
4256 /**
4257 * cgroup_init_early - cgroup initialization at system boot
4258 *
4259 * Initialize cgroups at system boot, and initialize any
4260 * subsystems that request early init.
4261 */
4262 int __init cgroup_init_early(void)
4263 {
4264 int i;
4265 atomic_set(&init_css_set.refcount, 1);
4266 INIT_LIST_HEAD(&init_css_set.cg_links);
4267 INIT_LIST_HEAD(&init_css_set.tasks);
4268 INIT_HLIST_NODE(&init_css_set.hlist);
4269 css_set_count = 1;
4270 init_cgroup_root(&rootnode);
4271 root_count = 1;
4272 init_task.cgroups = &init_css_set;
4273
4274 init_css_set_link.cg = &init_css_set;
4275 init_css_set_link.cgrp = dummytop;
4276 list_add(&init_css_set_link.cgrp_link_list,
4277 &rootnode.top_cgroup.css_sets);
4278 list_add(&init_css_set_link.cg_link_list,
4279 &init_css_set.cg_links);
4280
4281 for (i = 0; i < CSS_SET_TABLE_SIZE; i++)
4282 INIT_HLIST_HEAD(&css_set_table[i]);
4283
4284 /* at bootup time, we don't worry about modular subsystems */
4285 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4286 struct cgroup_subsys *ss = subsys[i];
4287
4288 BUG_ON(!ss->name);
4289 BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
4290 BUG_ON(!ss->create);
4291 BUG_ON(!ss->destroy);
4292 if (ss->subsys_id != i) {
4293 printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
4294 ss->name, ss->subsys_id);
4295 BUG();
4296 }
4297
4298 if (ss->early_init)
4299 cgroup_init_subsys(ss);
4300 }
4301 return 0;
4302 }
4303
4304 /**
4305 * cgroup_init - cgroup initialization
4306 *
4307 * Register cgroup filesystem and /proc file, and initialize
4308 * any subsystems that didn't request early init.
4309 */
4310 int __init cgroup_init(void)
4311 {
4312 int err;
4313 int i;
4314 struct hlist_head *hhead;
4315
4316 err = bdi_init(&cgroup_backing_dev_info);
4317 if (err)
4318 return err;
4319
4320 /* at bootup time, we don't worry about modular subsystems */
4321 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4322 struct cgroup_subsys *ss = subsys[i];
4323 if (!ss->early_init)
4324 cgroup_init_subsys(ss);
4325 if (ss->use_id)
4326 cgroup_init_idr(ss, init_css_set.subsys[ss->subsys_id]);
4327 }
4328
4329 /* Add init_css_set to the hash table */
4330 hhead = css_set_hash(init_css_set.subsys);
4331 hlist_add_head(&init_css_set.hlist, hhead);
4332 BUG_ON(!init_root_id(&rootnode));
4333
4334 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
4335 if (!cgroup_kobj) {
4336 err = -ENOMEM;
4337 goto out;
4338 }
4339
4340 err = register_filesystem(&cgroup_fs_type);
4341 if (err < 0) {
4342 kobject_put(cgroup_kobj);
4343 goto out;
4344 }
4345
4346 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
4347
4348 out:
4349 if (err)
4350 bdi_destroy(&cgroup_backing_dev_info);
4351
4352 return err;
4353 }
4354
4355 /*
4356 * proc_cgroup_show()
4357 * - Print task's cgroup paths into seq_file, one line for each hierarchy
4358 * - Used for /proc/<pid>/cgroup.
4359 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
4360 * doesn't really matter if tsk->cgroup changes after we read it,
4361 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
4362 * anyway. No need to check that tsk->cgroup != NULL, thanks to
4363 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
4364 * cgroup to top_cgroup.
4365 */
4366
4367 /* TODO: Use a proper seq_file iterator */
4368 static int proc_cgroup_show(struct seq_file *m, void *v)
4369 {
4370 struct pid *pid;
4371 struct task_struct *tsk;
4372 char *buf;
4373 int retval;
4374 struct cgroupfs_root *root;
4375
4376 retval = -ENOMEM;
4377 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4378 if (!buf)
4379 goto out;
4380
4381 retval = -ESRCH;
4382 pid = m->private;
4383 tsk = get_pid_task(pid, PIDTYPE_PID);
4384 if (!tsk)
4385 goto out_free;
4386
4387 retval = 0;
4388
4389 mutex_lock(&cgroup_mutex);
4390
4391 for_each_active_root(root) {
4392 struct cgroup_subsys *ss;
4393 struct cgroup *cgrp;
4394 int count = 0;
4395
4396 seq_printf(m, "%d:", root->hierarchy_id);
4397 for_each_subsys(root, ss)
4398 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
4399 if (strlen(root->name))
4400 seq_printf(m, "%sname=%s", count ? "," : "",
4401 root->name);
4402 seq_putc(m, ':');
4403 cgrp = task_cgroup_from_root(tsk, root);
4404 retval = cgroup_path(cgrp, buf, PAGE_SIZE);
4405 if (retval < 0)
4406 goto out_unlock;
4407 seq_puts(m, buf);
4408 seq_putc(m, '\n');
4409 }
4410
4411 out_unlock:
4412 mutex_unlock(&cgroup_mutex);
4413 put_task_struct(tsk);
4414 out_free:
4415 kfree(buf);
4416 out:
4417 return retval;
4418 }
4419
4420 static int cgroup_open(struct inode *inode, struct file *file)
4421 {
4422 struct pid *pid = PROC_I(inode)->pid;
4423 return single_open(file, proc_cgroup_show, pid);
4424 }
4425
4426 const struct file_operations proc_cgroup_operations = {
4427 .open = cgroup_open,
4428 .read = seq_read,
4429 .llseek = seq_lseek,
4430 .release = single_release,
4431 };
4432
4433 /* Display information about each subsystem and each hierarchy */
4434 static int proc_cgroupstats_show(struct seq_file *m, void *v)
4435 {
4436 int i;
4437
4438 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
4439 /*
4440 * ideally we don't want subsystems moving around while we do this.
4441 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
4442 * subsys/hierarchy state.
4443 */
4444 mutex_lock(&cgroup_mutex);
4445 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4446 struct cgroup_subsys *ss = subsys[i];
4447 if (ss == NULL)
4448 continue;
4449 seq_printf(m, "%s\t%d\t%d\t%d\n",
4450 ss->name, ss->root->hierarchy_id,
4451 ss->root->number_of_cgroups, !ss->disabled);
4452 }
4453 mutex_unlock(&cgroup_mutex);
4454 return 0;
4455 }
4456
4457 static int cgroupstats_open(struct inode *inode, struct file *file)
4458 {
4459 return single_open(file, proc_cgroupstats_show, NULL);
4460 }
4461
4462 static const struct file_operations proc_cgroupstats_operations = {
4463 .open = cgroupstats_open,
4464 .read = seq_read,
4465 .llseek = seq_lseek,
4466 .release = single_release,
4467 };
4468
4469 /**
4470 * cgroup_fork - attach newly forked task to its parents cgroup.
4471 * @child: pointer to task_struct of forking parent process.
4472 *
4473 * Description: A task inherits its parent's cgroup at fork().
4474 *
4475 * A pointer to the shared css_set was automatically copied in
4476 * fork.c by dup_task_struct(). However, we ignore that copy, since
4477 * it was not made under the protection of RCU or cgroup_mutex, so
4478 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
4479 * have already changed current->cgroups, allowing the previously
4480 * referenced cgroup group to be removed and freed.
4481 *
4482 * At the point that cgroup_fork() is called, 'current' is the parent
4483 * task, and the passed argument 'child' points to the child task.
4484 */
4485 void cgroup_fork(struct task_struct *child)
4486 {
4487 task_lock(current);
4488 child->cgroups = current->cgroups;
4489 get_css_set(child->cgroups);
4490 task_unlock(current);
4491 INIT_LIST_HEAD(&child->cg_list);
4492 }
4493
4494 /**
4495 * cgroup_fork_callbacks - run fork callbacks
4496 * @child: the new task
4497 *
4498 * Called on a new task very soon before adding it to the
4499 * tasklist. No need to take any locks since no-one can
4500 * be operating on this task.
4501 */
4502 void cgroup_fork_callbacks(struct task_struct *child)
4503 {
4504 if (need_forkexit_callback) {
4505 int i;
4506 /*
4507 * forkexit callbacks are only supported for builtin
4508 * subsystems, and the builtin section of the subsys array is
4509 * immutable, so we don't need to lock the subsys array here.
4510 */
4511 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4512 struct cgroup_subsys *ss = subsys[i];
4513 if (ss->fork)
4514 ss->fork(ss, child);
4515 }
4516 }
4517 }
4518
4519 /**
4520 * cgroup_post_fork - called on a new task after adding it to the task list
4521 * @child: the task in question
4522 *
4523 * Adds the task to the list running through its css_set if necessary.
4524 * Has to be after the task is visible on the task list in case we race
4525 * with the first call to cgroup_iter_start() - to guarantee that the
4526 * new task ends up on its list.
4527 */
4528 void cgroup_post_fork(struct task_struct *child)
4529 {
4530 if (use_task_css_set_links) {
4531 write_lock(&css_set_lock);
4532 task_lock(child);
4533 if (list_empty(&child->cg_list))
4534 list_add(&child->cg_list, &child->cgroups->tasks);
4535 task_unlock(child);
4536 write_unlock(&css_set_lock);
4537 }
4538 }
4539 /**
4540 * cgroup_exit - detach cgroup from exiting task
4541 * @tsk: pointer to task_struct of exiting process
4542 * @run_callback: run exit callbacks?
4543 *
4544 * Description: Detach cgroup from @tsk and release it.
4545 *
4546 * Note that cgroups marked notify_on_release force every task in
4547 * them to take the global cgroup_mutex mutex when exiting.
4548 * This could impact scaling on very large systems. Be reluctant to
4549 * use notify_on_release cgroups where very high task exit scaling
4550 * is required on large systems.
4551 *
4552 * the_top_cgroup_hack:
4553 *
4554 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
4555 *
4556 * We call cgroup_exit() while the task is still competent to
4557 * handle notify_on_release(), then leave the task attached to the
4558 * root cgroup in each hierarchy for the remainder of its exit.
4559 *
4560 * To do this properly, we would increment the reference count on
4561 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
4562 * code we would add a second cgroup function call, to drop that
4563 * reference. This would just create an unnecessary hot spot on
4564 * the top_cgroup reference count, to no avail.
4565 *
4566 * Normally, holding a reference to a cgroup without bumping its
4567 * count is unsafe. The cgroup could go away, or someone could
4568 * attach us to a different cgroup, decrementing the count on
4569 * the first cgroup that we never incremented. But in this case,
4570 * top_cgroup isn't going away, and either task has PF_EXITING set,
4571 * which wards off any cgroup_attach_task() attempts, or task is a failed
4572 * fork, never visible to cgroup_attach_task.
4573 */
4574 void cgroup_exit(struct task_struct *tsk, int run_callbacks)
4575 {
4576 struct css_set *cg;
4577 int i;
4578
4579 /*
4580 * Unlink from the css_set task list if necessary.
4581 * Optimistically check cg_list before taking
4582 * css_set_lock
4583 */
4584 if (!list_empty(&tsk->cg_list)) {
4585 write_lock(&css_set_lock);
4586 if (!list_empty(&tsk->cg_list))
4587 list_del_init(&tsk->cg_list);
4588 write_unlock(&css_set_lock);
4589 }
4590
4591 /* Reassign the task to the init_css_set. */
4592 task_lock(tsk);
4593 cg = tsk->cgroups;
4594 tsk->cgroups = &init_css_set;
4595
4596 if (run_callbacks && need_forkexit_callback) {
4597 /*
4598 * modular subsystems can't use callbacks, so no need to lock
4599 * the subsys array
4600 */
4601 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4602 struct cgroup_subsys *ss = subsys[i];
4603 if (ss->exit) {
4604 struct cgroup *old_cgrp =
4605 rcu_dereference_raw(cg->subsys[i])->cgroup;
4606 struct cgroup *cgrp = task_cgroup(tsk, i);
4607 ss->exit(ss, cgrp, old_cgrp, tsk);
4608 }
4609 }
4610 }
4611 task_unlock(tsk);
4612
4613 if (cg)
4614 put_css_set_taskexit(cg);
4615 }
4616
4617 /**
4618 * cgroup_clone - clone the cgroup the given subsystem is attached to
4619 * @tsk: the task to be moved
4620 * @subsys: the given subsystem
4621 * @nodename: the name for the new cgroup
4622 *
4623 * Duplicate the current cgroup in the hierarchy that the given
4624 * subsystem is attached to, and move this task into the new
4625 * child.
4626 */
4627 int cgroup_clone(struct task_struct *tsk, struct cgroup_subsys *subsys,
4628 char *nodename)
4629 {
4630 struct dentry *dentry;
4631 int ret = 0;
4632 struct cgroup *parent, *child;
4633 struct inode *inode;
4634 struct css_set *cg;
4635 struct cgroupfs_root *root;
4636 struct cgroup_subsys *ss;
4637
4638 /* We shouldn't be called by an unregistered subsystem */
4639 BUG_ON(!subsys->active);
4640
4641 /* First figure out what hierarchy and cgroup we're dealing
4642 * with, and pin them so we can drop cgroup_mutex */
4643 mutex_lock(&cgroup_mutex);
4644 again:
4645 root = subsys->root;
4646 if (root == &rootnode) {
4647 mutex_unlock(&cgroup_mutex);
4648 return 0;
4649 }
4650
4651 /* Pin the hierarchy */
4652 if (!atomic_inc_not_zero(&root->sb->s_active)) {
4653 /* We race with the final deactivate_super() */
4654 mutex_unlock(&cgroup_mutex);
4655 return 0;
4656 }
4657
4658 /* Keep the cgroup alive */
4659 task_lock(tsk);
4660 parent = task_cgroup(tsk, subsys->subsys_id);
4661 cg = tsk->cgroups;
4662 get_css_set(cg);
4663 task_unlock(tsk);
4664
4665 mutex_unlock(&cgroup_mutex);
4666
4667 /* Now do the VFS work to create a cgroup */
4668 inode = parent->dentry->d_inode;
4669
4670 /* Hold the parent directory mutex across this operation to
4671 * stop anyone else deleting the new cgroup */
4672 mutex_lock(&inode->i_mutex);
4673 dentry = lookup_one_len(nodename, parent->dentry, strlen(nodename));
4674 if (IS_ERR(dentry)) {
4675 printk(KERN_INFO
4676 "cgroup: Couldn't allocate dentry for %s: %ld\n", nodename,
4677 PTR_ERR(dentry));
4678 ret = PTR_ERR(dentry);
4679 goto out_release;
4680 }
4681
4682 /* Create the cgroup directory, which also creates the cgroup */
4683 ret = vfs_mkdir(inode, dentry, 0755);
4684 child = __d_cgrp(dentry);
4685 dput(dentry);
4686 if (ret) {
4687 printk(KERN_INFO
4688 "Failed to create cgroup %s: %d\n", nodename,
4689 ret);
4690 goto out_release;
4691 }
4692
4693 /* The cgroup now exists. Retake cgroup_mutex and check
4694 * that we're still in the same state that we thought we
4695 * were. */
4696 mutex_lock(&cgroup_mutex);
4697 if ((root != subsys->root) ||
4698 (parent != task_cgroup(tsk, subsys->subsys_id))) {
4699 /* Aargh, we raced ... */
4700 mutex_unlock(&inode->i_mutex);
4701 put_css_set(cg);
4702
4703 deactivate_super(root->sb);
4704 /* The cgroup is still accessible in the VFS, but
4705 * we're not going to try to rmdir() it at this
4706 * point. */
4707 printk(KERN_INFO
4708 "Race in cgroup_clone() - leaking cgroup %s\n",
4709 nodename);
4710 goto again;
4711 }
4712
4713 /* do any required auto-setup */
4714 for_each_subsys(root, ss) {
4715 if (ss->post_clone)
4716 ss->post_clone(ss, child);
4717 }
4718
4719 /* All seems fine. Finish by moving the task into the new cgroup */
4720 ret = cgroup_attach_task(child, tsk);
4721 mutex_unlock(&cgroup_mutex);
4722
4723 out_release:
4724 mutex_unlock(&inode->i_mutex);
4725
4726 mutex_lock(&cgroup_mutex);
4727 put_css_set(cg);
4728 mutex_unlock(&cgroup_mutex);
4729 deactivate_super(root->sb);
4730 return ret;
4731 }
4732
4733 /**
4734 * cgroup_is_descendant - see if @cgrp is a descendant of @task's cgrp
4735 * @cgrp: the cgroup in question
4736 * @task: the task in question
4737 *
4738 * See if @cgrp is a descendant of @task's cgroup in the appropriate
4739 * hierarchy.
4740 *
4741 * If we are sending in dummytop, then presumably we are creating
4742 * the top cgroup in the subsystem.
4743 *
4744 * Called only by the ns (nsproxy) cgroup.
4745 */
4746 int cgroup_is_descendant(const struct cgroup *cgrp, struct task_struct *task)
4747 {
4748 int ret;
4749 struct cgroup *target;
4750
4751 if (cgrp == dummytop)
4752 return 1;
4753
4754 target = task_cgroup_from_root(task, cgrp->root);
4755 while (cgrp != target && cgrp!= cgrp->top_cgroup)
4756 cgrp = cgrp->parent;
4757 ret = (cgrp == target);
4758 return ret;
4759 }
4760
4761 static void check_for_release(struct cgroup *cgrp)
4762 {
4763 /* All of these checks rely on RCU to keep the cgroup
4764 * structure alive */
4765 if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
4766 && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
4767 /* Control Group is currently removeable. If it's not
4768 * already queued for a userspace notification, queue
4769 * it now */
4770 int need_schedule_work = 0;
4771 spin_lock(&release_list_lock);
4772 if (!cgroup_is_removed(cgrp) &&
4773 list_empty(&cgrp->release_list)) {
4774 list_add(&cgrp->release_list, &release_list);
4775 need_schedule_work = 1;
4776 }
4777 spin_unlock(&release_list_lock);
4778 if (need_schedule_work)
4779 schedule_work(&release_agent_work);
4780 }
4781 }
4782
4783 /* Caller must verify that the css is not for root cgroup */
4784 void __css_put(struct cgroup_subsys_state *css, int count)
4785 {
4786 struct cgroup *cgrp = css->cgroup;
4787 int val;
4788 rcu_read_lock();
4789 val = atomic_sub_return(count, &css->refcnt);
4790 if (val == 1) {
4791 if (notify_on_release(cgrp)) {
4792 set_bit(CGRP_RELEASABLE, &cgrp->flags);
4793 check_for_release(cgrp);
4794 }
4795 cgroup_wakeup_rmdir_waiter(cgrp);
4796 }
4797 rcu_read_unlock();
4798 WARN_ON_ONCE(val < 1);
4799 }
4800 EXPORT_SYMBOL_GPL(__css_put);
4801
4802 /*
4803 * Notify userspace when a cgroup is released, by running the
4804 * configured release agent with the name of the cgroup (path
4805 * relative to the root of cgroup file system) as the argument.
4806 *
4807 * Most likely, this user command will try to rmdir this cgroup.
4808 *
4809 * This races with the possibility that some other task will be
4810 * attached to this cgroup before it is removed, or that some other
4811 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
4812 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
4813 * unused, and this cgroup will be reprieved from its death sentence,
4814 * to continue to serve a useful existence. Next time it's released,
4815 * we will get notified again, if it still has 'notify_on_release' set.
4816 *
4817 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
4818 * means only wait until the task is successfully execve()'d. The
4819 * separate release agent task is forked by call_usermodehelper(),
4820 * then control in this thread returns here, without waiting for the
4821 * release agent task. We don't bother to wait because the caller of
4822 * this routine has no use for the exit status of the release agent
4823 * task, so no sense holding our caller up for that.
4824 */
4825 static void cgroup_release_agent(struct work_struct *work)
4826 {
4827 BUG_ON(work != &release_agent_work);
4828 mutex_lock(&cgroup_mutex);
4829 spin_lock(&release_list_lock);
4830 while (!list_empty(&release_list)) {
4831 char *argv[3], *envp[3];
4832 int i;
4833 char *pathbuf = NULL, *agentbuf = NULL;
4834 struct cgroup *cgrp = list_entry(release_list.next,
4835 struct cgroup,
4836 release_list);
4837 list_del_init(&cgrp->release_list);
4838 spin_unlock(&release_list_lock);
4839 pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4840 if (!pathbuf)
4841 goto continue_free;
4842 if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
4843 goto continue_free;
4844 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
4845 if (!agentbuf)
4846 goto continue_free;
4847
4848 i = 0;
4849 argv[i++] = agentbuf;
4850 argv[i++] = pathbuf;
4851 argv[i] = NULL;
4852
4853 i = 0;
4854 /* minimal command environment */
4855 envp[i++] = "HOME=/";
4856 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
4857 envp[i] = NULL;
4858
4859 /* Drop the lock while we invoke the usermode helper,
4860 * since the exec could involve hitting disk and hence
4861 * be a slow process */
4862 mutex_unlock(&cgroup_mutex);
4863 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
4864 mutex_lock(&cgroup_mutex);
4865 continue_free:
4866 kfree(pathbuf);
4867 kfree(agentbuf);
4868 spin_lock(&release_list_lock);
4869 }
4870 spin_unlock(&release_list_lock);
4871 mutex_unlock(&cgroup_mutex);
4872 }
4873
4874 static int __init cgroup_disable(char *str)
4875 {
4876 int i;
4877 char *token;
4878
4879 while ((token = strsep(&str, ",")) != NULL) {
4880 if (!*token)
4881 continue;
4882 /*
4883 * cgroup_disable, being at boot time, can't know about module
4884 * subsystems, so we don't worry about them.
4885 */
4886 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4887 struct cgroup_subsys *ss = subsys[i];
4888
4889 if (!strcmp(token, ss->name)) {
4890 ss->disabled = 1;
4891 printk(KERN_INFO "Disabling %s control group"
4892 " subsystem\n", ss->name);
4893 break;
4894 }
4895 }
4896 }
4897 return 1;
4898 }
4899 __setup("cgroup_disable=", cgroup_disable);
4900
4901 /*
4902 * Functons for CSS ID.
4903 */
4904
4905 /*
4906 *To get ID other than 0, this should be called when !cgroup_is_removed().
4907 */
4908 unsigned short css_id(struct cgroup_subsys_state *css)
4909 {
4910 struct css_id *cssid;
4911
4912 /*
4913 * This css_id() can return correct value when somone has refcnt
4914 * on this or this is under rcu_read_lock(). Once css->id is allocated,
4915 * it's unchanged until freed.
4916 */
4917 cssid = rcu_dereference_check(css->id,
4918 rcu_read_lock_held() || atomic_read(&css->refcnt));
4919
4920 if (cssid)
4921 return cssid->id;
4922 return 0;
4923 }
4924 EXPORT_SYMBOL_GPL(css_id);
4925
4926 unsigned short css_depth(struct cgroup_subsys_state *css)
4927 {
4928 struct css_id *cssid;
4929
4930 cssid = rcu_dereference_check(css->id,
4931 rcu_read_lock_held() || atomic_read(&css->refcnt));
4932
4933 if (cssid)
4934 return cssid->depth;
4935 return 0;
4936 }
4937 EXPORT_SYMBOL_GPL(css_depth);
4938
4939 /**
4940 * css_is_ancestor - test "root" css is an ancestor of "child"
4941 * @child: the css to be tested.
4942 * @root: the css supporsed to be an ancestor of the child.
4943 *
4944 * Returns true if "root" is an ancestor of "child" in its hierarchy. Because
4945 * this function reads css->id, this use rcu_dereference() and rcu_read_lock().
4946 * But, considering usual usage, the csses should be valid objects after test.
4947 * Assuming that the caller will do some action to the child if this returns
4948 * returns true, the caller must take "child";s reference count.
4949 * If "child" is valid object and this returns true, "root" is valid, too.
4950 */
4951
4952 bool css_is_ancestor(struct cgroup_subsys_state *child,
4953 const struct cgroup_subsys_state *root)
4954 {
4955 struct css_id *child_id;
4956 struct css_id *root_id;
4957 bool ret = true;
4958
4959 rcu_read_lock();
4960 child_id = rcu_dereference(child->id);
4961 root_id = rcu_dereference(root->id);
4962 if (!child_id
4963 || !root_id
4964 || (child_id->depth < root_id->depth)
4965 || (child_id->stack[root_id->depth] != root_id->id))
4966 ret = false;
4967 rcu_read_unlock();
4968 return ret;
4969 }
4970
4971 void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
4972 {
4973 struct css_id *id = css->id;
4974 /* When this is called before css_id initialization, id can be NULL */
4975 if (!id)
4976 return;
4977
4978 BUG_ON(!ss->use_id);
4979
4980 rcu_assign_pointer(id->css, NULL);
4981 rcu_assign_pointer(css->id, NULL);
4982 spin_lock(&ss->id_lock);
4983 idr_remove(&ss->idr, id->id);
4984 spin_unlock(&ss->id_lock);
4985 kfree_rcu(id, rcu_head);
4986 }
4987 EXPORT_SYMBOL_GPL(free_css_id);
4988
4989 /*
4990 * This is called by init or create(). Then, calls to this function are
4991 * always serialized (By cgroup_mutex() at create()).
4992 */
4993
4994 static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
4995 {
4996 struct css_id *newid;
4997 int myid, error, size;
4998
4999 BUG_ON(!ss->use_id);
5000
5001 size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
5002 newid = kzalloc(size, GFP_KERNEL);
5003 if (!newid)
5004 return ERR_PTR(-ENOMEM);
5005 /* get id */
5006 if (unlikely(!idr_pre_get(&ss->idr, GFP_KERNEL))) {
5007 error = -ENOMEM;
5008 goto err_out;
5009 }
5010 spin_lock(&ss->id_lock);
5011 /* Don't use 0. allocates an ID of 1-65535 */
5012 error = idr_get_new_above(&ss->idr, newid, 1, &myid);
5013 spin_unlock(&ss->id_lock);
5014
5015 /* Returns error when there are no free spaces for new ID.*/
5016 if (error) {
5017 error = -ENOSPC;
5018 goto err_out;
5019 }
5020 if (myid > CSS_ID_MAX)
5021 goto remove_idr;
5022
5023 newid->id = myid;
5024 newid->depth = depth;
5025 return newid;
5026 remove_idr:
5027 error = -ENOSPC;
5028 spin_lock(&ss->id_lock);
5029 idr_remove(&ss->idr, myid);
5030 spin_unlock(&ss->id_lock);
5031 err_out:
5032 kfree(newid);
5033 return ERR_PTR(error);
5034
5035 }
5036
5037 static int __init_or_module cgroup_init_idr(struct cgroup_subsys *ss,
5038 struct cgroup_subsys_state *rootcss)
5039 {
5040 struct css_id *newid;
5041
5042 spin_lock_init(&ss->id_lock);
5043 idr_init(&ss->idr);
5044
5045 newid = get_new_cssid(ss, 0);
5046 if (IS_ERR(newid))
5047 return PTR_ERR(newid);
5048
5049 newid->stack[0] = newid->id;
5050 newid->css = rootcss;
5051 rootcss->id = newid;
5052 return 0;
5053 }
5054
5055 static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
5056 struct cgroup *child)
5057 {
5058 int subsys_id, i, depth = 0;
5059 struct cgroup_subsys_state *parent_css, *child_css;
5060 struct css_id *child_id, *parent_id;
5061
5062 subsys_id = ss->subsys_id;
5063 parent_css = parent->subsys[subsys_id];
5064 child_css = child->subsys[subsys_id];
5065 parent_id = parent_css->id;
5066 depth = parent_id->depth + 1;
5067
5068 child_id = get_new_cssid(ss, depth);
5069 if (IS_ERR(child_id))
5070 return PTR_ERR(child_id);
5071
5072 for (i = 0; i < depth; i++)
5073 child_id->stack[i] = parent_id->stack[i];
5074 child_id->stack[depth] = child_id->id;
5075 /*
5076 * child_id->css pointer will be set after this cgroup is available
5077 * see cgroup_populate_dir()
5078 */
5079 rcu_assign_pointer(child_css->id, child_id);
5080
5081 return 0;
5082 }
5083
5084 /**
5085 * css_lookup - lookup css by id
5086 * @ss: cgroup subsys to be looked into.
5087 * @id: the id
5088 *
5089 * Returns pointer to cgroup_subsys_state if there is valid one with id.
5090 * NULL if not. Should be called under rcu_read_lock()
5091 */
5092 struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
5093 {
5094 struct css_id *cssid = NULL;
5095
5096 BUG_ON(!ss->use_id);
5097 cssid = idr_find(&ss->idr, id);
5098
5099 if (unlikely(!cssid))
5100 return NULL;
5101
5102 return rcu_dereference(cssid->css);
5103 }
5104 EXPORT_SYMBOL_GPL(css_lookup);
5105
5106 /**
5107 * css_get_next - lookup next cgroup under specified hierarchy.
5108 * @ss: pointer to subsystem
5109 * @id: current position of iteration.
5110 * @root: pointer to css. search tree under this.
5111 * @foundid: position of found object.
5112 *
5113 * Search next css under the specified hierarchy of rootid. Calling under
5114 * rcu_read_lock() is necessary. Returns NULL if it reaches the end.
5115 */
5116 struct cgroup_subsys_state *
5117 css_get_next(struct cgroup_subsys *ss, int id,
5118 struct cgroup_subsys_state *root, int *foundid)
5119 {
5120 struct cgroup_subsys_state *ret = NULL;
5121 struct css_id *tmp;
5122 int tmpid;
5123 int rootid = css_id(root);
5124 int depth = css_depth(root);
5125
5126 if (!rootid)
5127 return NULL;
5128
5129 BUG_ON(!ss->use_id);
5130 /* fill start point for scan */
5131 tmpid = id;
5132 while (1) {
5133 /*
5134 * scan next entry from bitmap(tree), tmpid is updated after
5135 * idr_get_next().
5136 */
5137 spin_lock(&ss->id_lock);
5138 tmp = idr_get_next(&ss->idr, &tmpid);
5139 spin_unlock(&ss->id_lock);
5140
5141 if (!tmp)
5142 break;
5143 if (tmp->depth >= depth && tmp->stack[depth] == rootid) {
5144 ret = rcu_dereference(tmp->css);
5145 if (ret) {
5146 *foundid = tmpid;
5147 break;
5148 }
5149 }
5150 /* continue to scan from next id */
5151 tmpid = tmpid + 1;
5152 }
5153 return ret;
5154 }
5155
5156 /*
5157 * get corresponding css from file open on cgroupfs directory
5158 */
5159 struct cgroup_subsys_state *cgroup_css_from_dir(struct file *f, int id)
5160 {
5161 struct cgroup *cgrp;
5162 struct inode *inode;
5163 struct cgroup_subsys_state *css;
5164
5165 inode = f->f_dentry->d_inode;
5166 /* check in cgroup filesystem dir */
5167 if (inode->i_op != &cgroup_dir_inode_operations)
5168 return ERR_PTR(-EBADF);
5169
5170 if (id < 0 || id >= CGROUP_SUBSYS_COUNT)
5171 return ERR_PTR(-EINVAL);
5172
5173 /* get cgroup */
5174 cgrp = __d_cgrp(f->f_dentry);
5175 css = cgrp->subsys[id];
5176 return css ? css : ERR_PTR(-ENOENT);
5177 }
5178
5179 #ifdef CONFIG_CGROUP_DEBUG
5180 static struct cgroup_subsys_state *debug_create(struct cgroup_subsys *ss,
5181 struct cgroup *cont)
5182 {
5183 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5184
5185 if (!css)
5186 return ERR_PTR(-ENOMEM);
5187
5188 return css;
5189 }
5190
5191 static void debug_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
5192 {
5193 kfree(cont->subsys[debug_subsys_id]);
5194 }
5195
5196 static u64 cgroup_refcount_read(struct cgroup *cont, struct cftype *cft)
5197 {
5198 return atomic_read(&cont->count);
5199 }
5200
5201 static u64 debug_taskcount_read(struct cgroup *cont, struct cftype *cft)
5202 {
5203 return cgroup_task_count(cont);
5204 }
5205
5206 static u64 current_css_set_read(struct cgroup *cont, struct cftype *cft)
5207 {
5208 return (u64)(unsigned long)current->cgroups;
5209 }
5210
5211 static u64 current_css_set_refcount_read(struct cgroup *cont,
5212 struct cftype *cft)
5213 {
5214 u64 count;
5215
5216 rcu_read_lock();
5217 count = atomic_read(&current->cgroups->refcount);
5218 rcu_read_unlock();
5219 return count;
5220 }
5221
5222 static int current_css_set_cg_links_read(struct cgroup *cont,
5223 struct cftype *cft,
5224 struct seq_file *seq)
5225 {
5226 struct cg_cgroup_link *link;
5227 struct css_set *cg;
5228
5229 read_lock(&css_set_lock);
5230 rcu_read_lock();
5231 cg = rcu_dereference(current->cgroups);
5232 list_for_each_entry(link, &cg->cg_links, cg_link_list) {
5233 struct cgroup *c = link->cgrp;
5234 const char *name;
5235
5236 if (c->dentry)
5237 name = c->dentry->d_name.name;
5238 else
5239 name = "?";
5240 seq_printf(seq, "Root %d group %s\n",
5241 c->root->hierarchy_id, name);
5242 }
5243 rcu_read_unlock();
5244 read_unlock(&css_set_lock);
5245 return 0;
5246 }
5247
5248 #define MAX_TASKS_SHOWN_PER_CSS 25
5249 static int cgroup_css_links_read(struct cgroup *cont,
5250 struct cftype *cft,
5251 struct seq_file *seq)
5252 {
5253 struct cg_cgroup_link *link;
5254
5255 read_lock(&css_set_lock);
5256 list_for_each_entry(link, &cont->css_sets, cgrp_link_list) {
5257 struct css_set *cg = link->cg;
5258 struct task_struct *task;
5259 int count = 0;
5260 seq_printf(seq, "css_set %p\n", cg);
5261 list_for_each_entry(task, &cg->tasks, cg_list) {
5262 if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
5263 seq_puts(seq, " ...\n");
5264 break;
5265 } else {
5266 seq_printf(seq, " task %d\n",
5267 task_pid_vnr(task));
5268 }
5269 }
5270 }
5271 read_unlock(&css_set_lock);
5272 return 0;
5273 }
5274
5275 static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft)
5276 {
5277 return test_bit(CGRP_RELEASABLE, &cgrp->flags);
5278 }
5279
5280 static struct cftype debug_files[] = {
5281 {
5282 .name = "cgroup_refcount",
5283 .read_u64 = cgroup_refcount_read,
5284 },
5285 {
5286 .name = "taskcount",
5287 .read_u64 = debug_taskcount_read,
5288 },
5289
5290 {
5291 .name = "current_css_set",
5292 .read_u64 = current_css_set_read,
5293 },
5294
5295 {
5296 .name = "current_css_set_refcount",
5297 .read_u64 = current_css_set_refcount_read,
5298 },
5299
5300 {
5301 .name = "current_css_set_cg_links",
5302 .read_seq_string = current_css_set_cg_links_read,
5303 },
5304
5305 {
5306 .name = "cgroup_css_links",
5307 .read_seq_string = cgroup_css_links_read,
5308 },
5309
5310 {
5311 .name = "releasable",
5312 .read_u64 = releasable_read,
5313 },
5314 };
5315
5316 static int debug_populate(struct cgroup_subsys *ss, struct cgroup *cont)
5317 {
5318 return cgroup_add_files(cont, ss, debug_files,
5319 ARRAY_SIZE(debug_files));
5320 }
5321
5322 struct cgroup_subsys debug_subsys = {
5323 .name = "debug",
5324 .create = debug_create,
5325 .destroy = debug_destroy,
5326 .populate = debug_populate,
5327 .subsys_id = debug_subsys_id,
5328 };
5329 #endif /* CONFIG_CGROUP_DEBUG */
This page took 0.156072 seconds and 5 git commands to generate.