67804590d4b0b66354e23c0a1d73b1da2059e15e
[deliverable/linux.git] / kernel / cgroup.c
1 /*
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29 #include <linux/cgroup.h>
30 #include <linux/cred.h>
31 #include <linux/ctype.h>
32 #include <linux/errno.h>
33 #include <linux/init_task.h>
34 #include <linux/kernel.h>
35 #include <linux/list.h>
36 #include <linux/mm.h>
37 #include <linux/mutex.h>
38 #include <linux/mount.h>
39 #include <linux/pagemap.h>
40 #include <linux/proc_fs.h>
41 #include <linux/rcupdate.h>
42 #include <linux/sched.h>
43 #include <linux/backing-dev.h>
44 #include <linux/seq_file.h>
45 #include <linux/slab.h>
46 #include <linux/magic.h>
47 #include <linux/spinlock.h>
48 #include <linux/string.h>
49 #include <linux/sort.h>
50 #include <linux/kmod.h>
51 #include <linux/module.h>
52 #include <linux/delayacct.h>
53 #include <linux/cgroupstats.h>
54 #include <linux/hashtable.h>
55 #include <linux/namei.h>
56 #include <linux/pid_namespace.h>
57 #include <linux/idr.h>
58 #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
59 #include <linux/eventfd.h>
60 #include <linux/poll.h>
61 #include <linux/flex_array.h> /* used in cgroup_attach_task */
62 #include <linux/kthread.h>
63
64 #include <linux/atomic.h>
65
66 /* css deactivation bias, makes css->refcnt negative to deny new trygets */
67 #define CSS_DEACT_BIAS INT_MIN
68
69 /*
70 * cgroup_mutex is the master lock. Any modification to cgroup or its
71 * hierarchy must be performed while holding it.
72 *
73 * cgroup_root_mutex nests inside cgroup_mutex and should be held to modify
74 * cgroupfs_root of any cgroup hierarchy - subsys list, flags,
75 * release_agent_path and so on. Modifying requires both cgroup_mutex and
76 * cgroup_root_mutex. Readers can acquire either of the two. This is to
77 * break the following locking order cycle.
78 *
79 * A. cgroup_mutex -> cred_guard_mutex -> s_type->i_mutex_key -> namespace_sem
80 * B. namespace_sem -> cgroup_mutex
81 *
82 * B happens only through cgroup_show_options() and using cgroup_root_mutex
83 * breaks it.
84 */
85 #ifdef CONFIG_PROVE_RCU
86 DEFINE_MUTEX(cgroup_mutex);
87 EXPORT_SYMBOL_GPL(cgroup_mutex); /* only for task_subsys_state_check() */
88 #else
89 static DEFINE_MUTEX(cgroup_mutex);
90 #endif
91
92 static DEFINE_MUTEX(cgroup_root_mutex);
93
94 /*
95 * Generate an array of cgroup subsystem pointers. At boot time, this is
96 * populated with the built in subsystems, and modular subsystems are
97 * registered after that. The mutable section of this array is protected by
98 * cgroup_mutex.
99 */
100 #define SUBSYS(_x) [_x ## _subsys_id] = &_x ## _subsys,
101 #define IS_SUBSYS_ENABLED(option) IS_BUILTIN(option)
102 static struct cgroup_subsys *subsys[CGROUP_SUBSYS_COUNT] = {
103 #include <linux/cgroup_subsys.h>
104 };
105
106 /*
107 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
108 * subsystems that are otherwise unattached - it never has more than a
109 * single cgroup, and all tasks are part of that cgroup.
110 */
111 static struct cgroupfs_root rootnode;
112
113 /*
114 * cgroupfs file entry, pointed to from leaf dentry->d_fsdata.
115 */
116 struct cfent {
117 struct list_head node;
118 struct dentry *dentry;
119 struct cftype *type;
120 };
121
122 /*
123 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
124 * cgroup_subsys->use_id != 0.
125 */
126 #define CSS_ID_MAX (65535)
127 struct css_id {
128 /*
129 * The css to which this ID points. This pointer is set to valid value
130 * after cgroup is populated. If cgroup is removed, this will be NULL.
131 * This pointer is expected to be RCU-safe because destroy()
132 * is called after synchronize_rcu(). But for safe use, css_tryget()
133 * should be used for avoiding race.
134 */
135 struct cgroup_subsys_state __rcu *css;
136 /*
137 * ID of this css.
138 */
139 unsigned short id;
140 /*
141 * Depth in hierarchy which this ID belongs to.
142 */
143 unsigned short depth;
144 /*
145 * ID is freed by RCU. (and lookup routine is RCU safe.)
146 */
147 struct rcu_head rcu_head;
148 /*
149 * Hierarchy of CSS ID belongs to.
150 */
151 unsigned short stack[0]; /* Array of Length (depth+1) */
152 };
153
154 /*
155 * cgroup_event represents events which userspace want to receive.
156 */
157 struct cgroup_event {
158 /*
159 * Cgroup which the event belongs to.
160 */
161 struct cgroup *cgrp;
162 /*
163 * Control file which the event associated.
164 */
165 struct cftype *cft;
166 /*
167 * eventfd to signal userspace about the event.
168 */
169 struct eventfd_ctx *eventfd;
170 /*
171 * Each of these stored in a list by the cgroup.
172 */
173 struct list_head list;
174 /*
175 * All fields below needed to unregister event when
176 * userspace closes eventfd.
177 */
178 poll_table pt;
179 wait_queue_head_t *wqh;
180 wait_queue_t wait;
181 struct work_struct remove;
182 };
183
184 /* The list of hierarchy roots */
185
186 static LIST_HEAD(roots);
187 static int root_count;
188
189 static DEFINE_IDA(hierarchy_ida);
190 static int next_hierarchy_id;
191 static DEFINE_SPINLOCK(hierarchy_id_lock);
192
193 /* dummytop is a shorthand for the dummy hierarchy's top cgroup */
194 #define dummytop (&rootnode.top_cgroup)
195
196 static struct cgroup_name root_cgroup_name = { .name = "/" };
197
198 /* This flag indicates whether tasks in the fork and exit paths should
199 * check for fork/exit handlers to call. This avoids us having to do
200 * extra work in the fork/exit path if none of the subsystems need to
201 * be called.
202 */
203 static int need_forkexit_callback __read_mostly;
204
205 static int cgroup_destroy_locked(struct cgroup *cgrp);
206 static int cgroup_addrm_files(struct cgroup *cgrp, struct cgroup_subsys *subsys,
207 struct cftype cfts[], bool is_add);
208
209 static int css_unbias_refcnt(int refcnt)
210 {
211 return refcnt >= 0 ? refcnt : refcnt - CSS_DEACT_BIAS;
212 }
213
214 /* the current nr of refs, always >= 0 whether @css is deactivated or not */
215 static int css_refcnt(struct cgroup_subsys_state *css)
216 {
217 int v = atomic_read(&css->refcnt);
218
219 return css_unbias_refcnt(v);
220 }
221
222 /* convenient tests for these bits */
223 inline int cgroup_is_removed(const struct cgroup *cgrp)
224 {
225 return test_bit(CGRP_REMOVED, &cgrp->flags);
226 }
227
228 /**
229 * cgroup_is_descendant - test ancestry
230 * @cgrp: the cgroup to be tested
231 * @ancestor: possible ancestor of @cgrp
232 *
233 * Test whether @cgrp is a descendant of @ancestor. It also returns %true
234 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
235 * and @ancestor are accessible.
236 */
237 bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
238 {
239 while (cgrp) {
240 if (cgrp == ancestor)
241 return true;
242 cgrp = cgrp->parent;
243 }
244 return false;
245 }
246 EXPORT_SYMBOL_GPL(cgroup_is_descendant);
247
248 static int cgroup_is_releasable(const struct cgroup *cgrp)
249 {
250 const int bits =
251 (1 << CGRP_RELEASABLE) |
252 (1 << CGRP_NOTIFY_ON_RELEASE);
253 return (cgrp->flags & bits) == bits;
254 }
255
256 static int notify_on_release(const struct cgroup *cgrp)
257 {
258 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
259 }
260
261 /*
262 * for_each_subsys() allows you to iterate on each subsystem attached to
263 * an active hierarchy
264 */
265 #define for_each_subsys(_root, _ss) \
266 list_for_each_entry(_ss, &_root->subsys_list, sibling)
267
268 /* for_each_active_root() allows you to iterate across the active hierarchies */
269 #define for_each_active_root(_root) \
270 list_for_each_entry(_root, &roots, root_list)
271
272 static inline struct cgroup *__d_cgrp(struct dentry *dentry)
273 {
274 return dentry->d_fsdata;
275 }
276
277 static inline struct cfent *__d_cfe(struct dentry *dentry)
278 {
279 return dentry->d_fsdata;
280 }
281
282 static inline struct cftype *__d_cft(struct dentry *dentry)
283 {
284 return __d_cfe(dentry)->type;
285 }
286
287 /**
288 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
289 * @cgrp: the cgroup to be checked for liveness
290 *
291 * On success, returns true; the mutex should be later unlocked. On
292 * failure returns false with no lock held.
293 */
294 static bool cgroup_lock_live_group(struct cgroup *cgrp)
295 {
296 mutex_lock(&cgroup_mutex);
297 if (cgroup_is_removed(cgrp)) {
298 mutex_unlock(&cgroup_mutex);
299 return false;
300 }
301 return true;
302 }
303
304 /* the list of cgroups eligible for automatic release. Protected by
305 * release_list_lock */
306 static LIST_HEAD(release_list);
307 static DEFINE_RAW_SPINLOCK(release_list_lock);
308 static void cgroup_release_agent(struct work_struct *work);
309 static DECLARE_WORK(release_agent_work, cgroup_release_agent);
310 static void check_for_release(struct cgroup *cgrp);
311
312 /* Link structure for associating css_set objects with cgroups */
313 struct cg_cgroup_link {
314 /*
315 * List running through cg_cgroup_links associated with a
316 * cgroup, anchored on cgroup->css_sets
317 */
318 struct list_head cgrp_link_list;
319 struct cgroup *cgrp;
320 /*
321 * List running through cg_cgroup_links pointing at a
322 * single css_set object, anchored on css_set->cg_links
323 */
324 struct list_head cg_link_list;
325 struct css_set *cg;
326 };
327
328 /* The default css_set - used by init and its children prior to any
329 * hierarchies being mounted. It contains a pointer to the root state
330 * for each subsystem. Also used to anchor the list of css_sets. Not
331 * reference-counted, to improve performance when child cgroups
332 * haven't been created.
333 */
334
335 static struct css_set init_css_set;
336 static struct cg_cgroup_link init_css_set_link;
337
338 static int cgroup_init_idr(struct cgroup_subsys *ss,
339 struct cgroup_subsys_state *css);
340
341 /* css_set_lock protects the list of css_set objects, and the
342 * chain of tasks off each css_set. Nests outside task->alloc_lock
343 * due to cgroup_iter_start() */
344 static DEFINE_RWLOCK(css_set_lock);
345 static int css_set_count;
346
347 /*
348 * hash table for cgroup groups. This improves the performance to find
349 * an existing css_set. This hash doesn't (currently) take into
350 * account cgroups in empty hierarchies.
351 */
352 #define CSS_SET_HASH_BITS 7
353 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
354
355 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
356 {
357 int i;
358 unsigned long key = 0UL;
359
360 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
361 key += (unsigned long)css[i];
362 key = (key >> 16) ^ key;
363
364 return key;
365 }
366
367 /* We don't maintain the lists running through each css_set to its
368 * task until after the first call to cgroup_iter_start(). This
369 * reduces the fork()/exit() overhead for people who have cgroups
370 * compiled into their kernel but not actually in use */
371 static int use_task_css_set_links __read_mostly;
372
373 static void __put_css_set(struct css_set *cg, int taskexit)
374 {
375 struct cg_cgroup_link *link;
376 struct cg_cgroup_link *saved_link;
377 /*
378 * Ensure that the refcount doesn't hit zero while any readers
379 * can see it. Similar to atomic_dec_and_lock(), but for an
380 * rwlock
381 */
382 if (atomic_add_unless(&cg->refcount, -1, 1))
383 return;
384 write_lock(&css_set_lock);
385 if (!atomic_dec_and_test(&cg->refcount)) {
386 write_unlock(&css_set_lock);
387 return;
388 }
389
390 /* This css_set is dead. unlink it and release cgroup refcounts */
391 hash_del(&cg->hlist);
392 css_set_count--;
393
394 list_for_each_entry_safe(link, saved_link, &cg->cg_links,
395 cg_link_list) {
396 struct cgroup *cgrp = link->cgrp;
397 list_del(&link->cg_link_list);
398 list_del(&link->cgrp_link_list);
399
400 /*
401 * We may not be holding cgroup_mutex, and if cgrp->count is
402 * dropped to 0 the cgroup can be destroyed at any time, hence
403 * rcu_read_lock is used to keep it alive.
404 */
405 rcu_read_lock();
406 if (atomic_dec_and_test(&cgrp->count) &&
407 notify_on_release(cgrp)) {
408 if (taskexit)
409 set_bit(CGRP_RELEASABLE, &cgrp->flags);
410 check_for_release(cgrp);
411 }
412 rcu_read_unlock();
413
414 kfree(link);
415 }
416
417 write_unlock(&css_set_lock);
418 kfree_rcu(cg, rcu_head);
419 }
420
421 /*
422 * refcounted get/put for css_set objects
423 */
424 static inline void get_css_set(struct css_set *cg)
425 {
426 atomic_inc(&cg->refcount);
427 }
428
429 static inline void put_css_set(struct css_set *cg)
430 {
431 __put_css_set(cg, 0);
432 }
433
434 static inline void put_css_set_taskexit(struct css_set *cg)
435 {
436 __put_css_set(cg, 1);
437 }
438
439 /*
440 * compare_css_sets - helper function for find_existing_css_set().
441 * @cg: candidate css_set being tested
442 * @old_cg: existing css_set for a task
443 * @new_cgrp: cgroup that's being entered by the task
444 * @template: desired set of css pointers in css_set (pre-calculated)
445 *
446 * Returns true if "cg" matches "old_cg" except for the hierarchy
447 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
448 */
449 static bool compare_css_sets(struct css_set *cg,
450 struct css_set *old_cg,
451 struct cgroup *new_cgrp,
452 struct cgroup_subsys_state *template[])
453 {
454 struct list_head *l1, *l2;
455
456 if (memcmp(template, cg->subsys, sizeof(cg->subsys))) {
457 /* Not all subsystems matched */
458 return false;
459 }
460
461 /*
462 * Compare cgroup pointers in order to distinguish between
463 * different cgroups in heirarchies with no subsystems. We
464 * could get by with just this check alone (and skip the
465 * memcmp above) but on most setups the memcmp check will
466 * avoid the need for this more expensive check on almost all
467 * candidates.
468 */
469
470 l1 = &cg->cg_links;
471 l2 = &old_cg->cg_links;
472 while (1) {
473 struct cg_cgroup_link *cgl1, *cgl2;
474 struct cgroup *cg1, *cg2;
475
476 l1 = l1->next;
477 l2 = l2->next;
478 /* See if we reached the end - both lists are equal length. */
479 if (l1 == &cg->cg_links) {
480 BUG_ON(l2 != &old_cg->cg_links);
481 break;
482 } else {
483 BUG_ON(l2 == &old_cg->cg_links);
484 }
485 /* Locate the cgroups associated with these links. */
486 cgl1 = list_entry(l1, struct cg_cgroup_link, cg_link_list);
487 cgl2 = list_entry(l2, struct cg_cgroup_link, cg_link_list);
488 cg1 = cgl1->cgrp;
489 cg2 = cgl2->cgrp;
490 /* Hierarchies should be linked in the same order. */
491 BUG_ON(cg1->root != cg2->root);
492
493 /*
494 * If this hierarchy is the hierarchy of the cgroup
495 * that's changing, then we need to check that this
496 * css_set points to the new cgroup; if it's any other
497 * hierarchy, then this css_set should point to the
498 * same cgroup as the old css_set.
499 */
500 if (cg1->root == new_cgrp->root) {
501 if (cg1 != new_cgrp)
502 return false;
503 } else {
504 if (cg1 != cg2)
505 return false;
506 }
507 }
508 return true;
509 }
510
511 /*
512 * find_existing_css_set() is a helper for
513 * find_css_set(), and checks to see whether an existing
514 * css_set is suitable.
515 *
516 * oldcg: the cgroup group that we're using before the cgroup
517 * transition
518 *
519 * cgrp: the cgroup that we're moving into
520 *
521 * template: location in which to build the desired set of subsystem
522 * state objects for the new cgroup group
523 */
524 static struct css_set *find_existing_css_set(
525 struct css_set *oldcg,
526 struct cgroup *cgrp,
527 struct cgroup_subsys_state *template[])
528 {
529 int i;
530 struct cgroupfs_root *root = cgrp->root;
531 struct css_set *cg;
532 unsigned long key;
533
534 /*
535 * Build the set of subsystem state objects that we want to see in the
536 * new css_set. while subsystems can change globally, the entries here
537 * won't change, so no need for locking.
538 */
539 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
540 if (root->subsys_mask & (1UL << i)) {
541 /* Subsystem is in this hierarchy. So we want
542 * the subsystem state from the new
543 * cgroup */
544 template[i] = cgrp->subsys[i];
545 } else {
546 /* Subsystem is not in this hierarchy, so we
547 * don't want to change the subsystem state */
548 template[i] = oldcg->subsys[i];
549 }
550 }
551
552 key = css_set_hash(template);
553 hash_for_each_possible(css_set_table, cg, hlist, key) {
554 if (!compare_css_sets(cg, oldcg, cgrp, template))
555 continue;
556
557 /* This css_set matches what we need */
558 return cg;
559 }
560
561 /* No existing cgroup group matched */
562 return NULL;
563 }
564
565 static void free_cg_links(struct list_head *tmp)
566 {
567 struct cg_cgroup_link *link;
568 struct cg_cgroup_link *saved_link;
569
570 list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
571 list_del(&link->cgrp_link_list);
572 kfree(link);
573 }
574 }
575
576 /*
577 * allocate_cg_links() allocates "count" cg_cgroup_link structures
578 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
579 * success or a negative error
580 */
581 static int allocate_cg_links(int count, struct list_head *tmp)
582 {
583 struct cg_cgroup_link *link;
584 int i;
585 INIT_LIST_HEAD(tmp);
586 for (i = 0; i < count; i++) {
587 link = kmalloc(sizeof(*link), GFP_KERNEL);
588 if (!link) {
589 free_cg_links(tmp);
590 return -ENOMEM;
591 }
592 list_add(&link->cgrp_link_list, tmp);
593 }
594 return 0;
595 }
596
597 /**
598 * link_css_set - a helper function to link a css_set to a cgroup
599 * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
600 * @cg: the css_set to be linked
601 * @cgrp: the destination cgroup
602 */
603 static void link_css_set(struct list_head *tmp_cg_links,
604 struct css_set *cg, struct cgroup *cgrp)
605 {
606 struct cg_cgroup_link *link;
607
608 BUG_ON(list_empty(tmp_cg_links));
609 link = list_first_entry(tmp_cg_links, struct cg_cgroup_link,
610 cgrp_link_list);
611 link->cg = cg;
612 link->cgrp = cgrp;
613 atomic_inc(&cgrp->count);
614 list_move(&link->cgrp_link_list, &cgrp->css_sets);
615 /*
616 * Always add links to the tail of the list so that the list
617 * is sorted by order of hierarchy creation
618 */
619 list_add_tail(&link->cg_link_list, &cg->cg_links);
620 }
621
622 /*
623 * find_css_set() takes an existing cgroup group and a
624 * cgroup object, and returns a css_set object that's
625 * equivalent to the old group, but with the given cgroup
626 * substituted into the appropriate hierarchy. Must be called with
627 * cgroup_mutex held
628 */
629 static struct css_set *find_css_set(
630 struct css_set *oldcg, struct cgroup *cgrp)
631 {
632 struct css_set *res;
633 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
634
635 struct list_head tmp_cg_links;
636
637 struct cg_cgroup_link *link;
638 unsigned long key;
639
640 /* First see if we already have a cgroup group that matches
641 * the desired set */
642 read_lock(&css_set_lock);
643 res = find_existing_css_set(oldcg, cgrp, template);
644 if (res)
645 get_css_set(res);
646 read_unlock(&css_set_lock);
647
648 if (res)
649 return res;
650
651 res = kmalloc(sizeof(*res), GFP_KERNEL);
652 if (!res)
653 return NULL;
654
655 /* Allocate all the cg_cgroup_link objects that we'll need */
656 if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
657 kfree(res);
658 return NULL;
659 }
660
661 atomic_set(&res->refcount, 1);
662 INIT_LIST_HEAD(&res->cg_links);
663 INIT_LIST_HEAD(&res->tasks);
664 INIT_HLIST_NODE(&res->hlist);
665
666 /* Copy the set of subsystem state objects generated in
667 * find_existing_css_set() */
668 memcpy(res->subsys, template, sizeof(res->subsys));
669
670 write_lock(&css_set_lock);
671 /* Add reference counts and links from the new css_set. */
672 list_for_each_entry(link, &oldcg->cg_links, cg_link_list) {
673 struct cgroup *c = link->cgrp;
674 if (c->root == cgrp->root)
675 c = cgrp;
676 link_css_set(&tmp_cg_links, res, c);
677 }
678
679 BUG_ON(!list_empty(&tmp_cg_links));
680
681 css_set_count++;
682
683 /* Add this cgroup group to the hash table */
684 key = css_set_hash(res->subsys);
685 hash_add(css_set_table, &res->hlist, key);
686
687 write_unlock(&css_set_lock);
688
689 return res;
690 }
691
692 /*
693 * Return the cgroup for "task" from the given hierarchy. Must be
694 * called with cgroup_mutex held.
695 */
696 static struct cgroup *task_cgroup_from_root(struct task_struct *task,
697 struct cgroupfs_root *root)
698 {
699 struct css_set *css;
700 struct cgroup *res = NULL;
701
702 BUG_ON(!mutex_is_locked(&cgroup_mutex));
703 read_lock(&css_set_lock);
704 /*
705 * No need to lock the task - since we hold cgroup_mutex the
706 * task can't change groups, so the only thing that can happen
707 * is that it exits and its css is set back to init_css_set.
708 */
709 css = task->cgroups;
710 if (css == &init_css_set) {
711 res = &root->top_cgroup;
712 } else {
713 struct cg_cgroup_link *link;
714 list_for_each_entry(link, &css->cg_links, cg_link_list) {
715 struct cgroup *c = link->cgrp;
716 if (c->root == root) {
717 res = c;
718 break;
719 }
720 }
721 }
722 read_unlock(&css_set_lock);
723 BUG_ON(!res);
724 return res;
725 }
726
727 /*
728 * There is one global cgroup mutex. We also require taking
729 * task_lock() when dereferencing a task's cgroup subsys pointers.
730 * See "The task_lock() exception", at the end of this comment.
731 *
732 * A task must hold cgroup_mutex to modify cgroups.
733 *
734 * Any task can increment and decrement the count field without lock.
735 * So in general, code holding cgroup_mutex can't rely on the count
736 * field not changing. However, if the count goes to zero, then only
737 * cgroup_attach_task() can increment it again. Because a count of zero
738 * means that no tasks are currently attached, therefore there is no
739 * way a task attached to that cgroup can fork (the other way to
740 * increment the count). So code holding cgroup_mutex can safely
741 * assume that if the count is zero, it will stay zero. Similarly, if
742 * a task holds cgroup_mutex on a cgroup with zero count, it
743 * knows that the cgroup won't be removed, as cgroup_rmdir()
744 * needs that mutex.
745 *
746 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
747 * (usually) take cgroup_mutex. These are the two most performance
748 * critical pieces of code here. The exception occurs on cgroup_exit(),
749 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
750 * is taken, and if the cgroup count is zero, a usermode call made
751 * to the release agent with the name of the cgroup (path relative to
752 * the root of cgroup file system) as the argument.
753 *
754 * A cgroup can only be deleted if both its 'count' of using tasks
755 * is zero, and its list of 'children' cgroups is empty. Since all
756 * tasks in the system use _some_ cgroup, and since there is always at
757 * least one task in the system (init, pid == 1), therefore, top_cgroup
758 * always has either children cgroups and/or using tasks. So we don't
759 * need a special hack to ensure that top_cgroup cannot be deleted.
760 *
761 * The task_lock() exception
762 *
763 * The need for this exception arises from the action of
764 * cgroup_attach_task(), which overwrites one task's cgroup pointer with
765 * another. It does so using cgroup_mutex, however there are
766 * several performance critical places that need to reference
767 * task->cgroup without the expense of grabbing a system global
768 * mutex. Therefore except as noted below, when dereferencing or, as
769 * in cgroup_attach_task(), modifying a task's cgroup pointer we use
770 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
771 * the task_struct routinely used for such matters.
772 *
773 * P.S. One more locking exception. RCU is used to guard the
774 * update of a tasks cgroup pointer by cgroup_attach_task()
775 */
776
777 /*
778 * A couple of forward declarations required, due to cyclic reference loop:
779 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
780 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
781 * -> cgroup_mkdir.
782 */
783
784 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode);
785 static struct dentry *cgroup_lookup(struct inode *, struct dentry *, unsigned int);
786 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
787 static int cgroup_populate_dir(struct cgroup *cgrp, bool base_files,
788 unsigned long subsys_mask);
789 static const struct inode_operations cgroup_dir_inode_operations;
790 static const struct file_operations proc_cgroupstats_operations;
791
792 static struct backing_dev_info cgroup_backing_dev_info = {
793 .name = "cgroup",
794 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
795 };
796
797 static int alloc_css_id(struct cgroup_subsys *ss,
798 struct cgroup *parent, struct cgroup *child);
799
800 static struct inode *cgroup_new_inode(umode_t mode, struct super_block *sb)
801 {
802 struct inode *inode = new_inode(sb);
803
804 if (inode) {
805 inode->i_ino = get_next_ino();
806 inode->i_mode = mode;
807 inode->i_uid = current_fsuid();
808 inode->i_gid = current_fsgid();
809 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
810 inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
811 }
812 return inode;
813 }
814
815 static struct cgroup_name *cgroup_alloc_name(struct dentry *dentry)
816 {
817 struct cgroup_name *name;
818
819 name = kmalloc(sizeof(*name) + dentry->d_name.len + 1, GFP_KERNEL);
820 if (!name)
821 return NULL;
822 strcpy(name->name, dentry->d_name.name);
823 return name;
824 }
825
826 static void cgroup_free_fn(struct work_struct *work)
827 {
828 struct cgroup *cgrp = container_of(work, struct cgroup, free_work);
829 struct cgroup_subsys *ss;
830
831 mutex_lock(&cgroup_mutex);
832 /*
833 * Release the subsystem state objects.
834 */
835 for_each_subsys(cgrp->root, ss)
836 ss->css_free(cgrp);
837
838 cgrp->root->number_of_cgroups--;
839 mutex_unlock(&cgroup_mutex);
840
841 /*
842 * We get a ref to the parent's dentry, and put the ref when
843 * this cgroup is being freed, so it's guaranteed that the
844 * parent won't be destroyed before its children.
845 */
846 dput(cgrp->parent->dentry);
847
848 /*
849 * Drop the active superblock reference that we took when we
850 * created the cgroup
851 */
852 deactivate_super(cgrp->root->sb);
853
854 /*
855 * if we're getting rid of the cgroup, refcount should ensure
856 * that there are no pidlists left.
857 */
858 BUG_ON(!list_empty(&cgrp->pidlists));
859
860 simple_xattrs_free(&cgrp->xattrs);
861
862 ida_simple_remove(&cgrp->root->cgroup_ida, cgrp->id);
863 kfree(rcu_dereference_raw(cgrp->name));
864 kfree(cgrp);
865 }
866
867 static void cgroup_free_rcu(struct rcu_head *head)
868 {
869 struct cgroup *cgrp = container_of(head, struct cgroup, rcu_head);
870
871 schedule_work(&cgrp->free_work);
872 }
873
874 static void cgroup_diput(struct dentry *dentry, struct inode *inode)
875 {
876 /* is dentry a directory ? if so, kfree() associated cgroup */
877 if (S_ISDIR(inode->i_mode)) {
878 struct cgroup *cgrp = dentry->d_fsdata;
879
880 BUG_ON(!(cgroup_is_removed(cgrp)));
881 call_rcu(&cgrp->rcu_head, cgroup_free_rcu);
882 } else {
883 struct cfent *cfe = __d_cfe(dentry);
884 struct cgroup *cgrp = dentry->d_parent->d_fsdata;
885 struct cftype *cft = cfe->type;
886
887 WARN_ONCE(!list_empty(&cfe->node) &&
888 cgrp != &cgrp->root->top_cgroup,
889 "cfe still linked for %s\n", cfe->type->name);
890 kfree(cfe);
891 simple_xattrs_free(&cft->xattrs);
892 }
893 iput(inode);
894 }
895
896 static int cgroup_delete(const struct dentry *d)
897 {
898 return 1;
899 }
900
901 static void remove_dir(struct dentry *d)
902 {
903 struct dentry *parent = dget(d->d_parent);
904
905 d_delete(d);
906 simple_rmdir(parent->d_inode, d);
907 dput(parent);
908 }
909
910 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
911 {
912 struct cfent *cfe;
913
914 lockdep_assert_held(&cgrp->dentry->d_inode->i_mutex);
915 lockdep_assert_held(&cgroup_mutex);
916
917 /*
918 * If we're doing cleanup due to failure of cgroup_create(),
919 * the corresponding @cfe may not exist.
920 */
921 list_for_each_entry(cfe, &cgrp->files, node) {
922 struct dentry *d = cfe->dentry;
923
924 if (cft && cfe->type != cft)
925 continue;
926
927 dget(d);
928 d_delete(d);
929 simple_unlink(cgrp->dentry->d_inode, d);
930 list_del_init(&cfe->node);
931 dput(d);
932
933 break;
934 }
935 }
936
937 /**
938 * cgroup_clear_directory - selective removal of base and subsystem files
939 * @dir: directory containing the files
940 * @base_files: true if the base files should be removed
941 * @subsys_mask: mask of the subsystem ids whose files should be removed
942 */
943 static void cgroup_clear_directory(struct dentry *dir, bool base_files,
944 unsigned long subsys_mask)
945 {
946 struct cgroup *cgrp = __d_cgrp(dir);
947 struct cgroup_subsys *ss;
948
949 for_each_subsys(cgrp->root, ss) {
950 struct cftype_set *set;
951 if (!test_bit(ss->subsys_id, &subsys_mask))
952 continue;
953 list_for_each_entry(set, &ss->cftsets, node)
954 cgroup_addrm_files(cgrp, NULL, set->cfts, false);
955 }
956 if (base_files) {
957 while (!list_empty(&cgrp->files))
958 cgroup_rm_file(cgrp, NULL);
959 }
960 }
961
962 /*
963 * NOTE : the dentry must have been dget()'ed
964 */
965 static void cgroup_d_remove_dir(struct dentry *dentry)
966 {
967 struct dentry *parent;
968 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
969
970 cgroup_clear_directory(dentry, true, root->subsys_mask);
971
972 parent = dentry->d_parent;
973 spin_lock(&parent->d_lock);
974 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
975 list_del_init(&dentry->d_u.d_child);
976 spin_unlock(&dentry->d_lock);
977 spin_unlock(&parent->d_lock);
978 remove_dir(dentry);
979 }
980
981 /*
982 * Call with cgroup_mutex held. Drops reference counts on modules, including
983 * any duplicate ones that parse_cgroupfs_options took. If this function
984 * returns an error, no reference counts are touched.
985 */
986 static int rebind_subsystems(struct cgroupfs_root *root,
987 unsigned long final_subsys_mask)
988 {
989 unsigned long added_mask, removed_mask;
990 struct cgroup *cgrp = &root->top_cgroup;
991 int i;
992
993 BUG_ON(!mutex_is_locked(&cgroup_mutex));
994 BUG_ON(!mutex_is_locked(&cgroup_root_mutex));
995
996 removed_mask = root->actual_subsys_mask & ~final_subsys_mask;
997 added_mask = final_subsys_mask & ~root->actual_subsys_mask;
998 /* Check that any added subsystems are currently free */
999 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1000 unsigned long bit = 1UL << i;
1001 struct cgroup_subsys *ss = subsys[i];
1002 if (!(bit & added_mask))
1003 continue;
1004 /*
1005 * Nobody should tell us to do a subsys that doesn't exist:
1006 * parse_cgroupfs_options should catch that case and refcounts
1007 * ensure that subsystems won't disappear once selected.
1008 */
1009 BUG_ON(ss == NULL);
1010 if (ss->root != &rootnode) {
1011 /* Subsystem isn't free */
1012 return -EBUSY;
1013 }
1014 }
1015
1016 /* Currently we don't handle adding/removing subsystems when
1017 * any child cgroups exist. This is theoretically supportable
1018 * but involves complex error handling, so it's being left until
1019 * later */
1020 if (root->number_of_cgroups > 1)
1021 return -EBUSY;
1022
1023 /* Process each subsystem */
1024 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1025 struct cgroup_subsys *ss = subsys[i];
1026 unsigned long bit = 1UL << i;
1027 if (bit & added_mask) {
1028 /* We're binding this subsystem to this hierarchy */
1029 BUG_ON(ss == NULL);
1030 BUG_ON(cgrp->subsys[i]);
1031 BUG_ON(!dummytop->subsys[i]);
1032 BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
1033 cgrp->subsys[i] = dummytop->subsys[i];
1034 cgrp->subsys[i]->cgroup = cgrp;
1035 list_move(&ss->sibling, &root->subsys_list);
1036 ss->root = root;
1037 if (ss->bind)
1038 ss->bind(cgrp);
1039 /* refcount was already taken, and we're keeping it */
1040 } else if (bit & removed_mask) {
1041 /* We're removing this subsystem */
1042 BUG_ON(ss == NULL);
1043 BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
1044 BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
1045 if (ss->bind)
1046 ss->bind(dummytop);
1047 dummytop->subsys[i]->cgroup = dummytop;
1048 cgrp->subsys[i] = NULL;
1049 subsys[i]->root = &rootnode;
1050 list_move(&ss->sibling, &rootnode.subsys_list);
1051 /* subsystem is now free - drop reference on module */
1052 module_put(ss->module);
1053 } else if (bit & final_subsys_mask) {
1054 /* Subsystem state should already exist */
1055 BUG_ON(ss == NULL);
1056 BUG_ON(!cgrp->subsys[i]);
1057 /*
1058 * a refcount was taken, but we already had one, so
1059 * drop the extra reference.
1060 */
1061 module_put(ss->module);
1062 #ifdef CONFIG_MODULE_UNLOAD
1063 BUG_ON(ss->module && !module_refcount(ss->module));
1064 #endif
1065 } else {
1066 /* Subsystem state shouldn't exist */
1067 BUG_ON(cgrp->subsys[i]);
1068 }
1069 }
1070 root->subsys_mask = root->actual_subsys_mask = final_subsys_mask;
1071
1072 return 0;
1073 }
1074
1075 static int cgroup_show_options(struct seq_file *seq, struct dentry *dentry)
1076 {
1077 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
1078 struct cgroup_subsys *ss;
1079
1080 mutex_lock(&cgroup_root_mutex);
1081 for_each_subsys(root, ss)
1082 seq_printf(seq, ",%s", ss->name);
1083 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR)
1084 seq_puts(seq, ",sane_behavior");
1085 if (root->flags & CGRP_ROOT_NOPREFIX)
1086 seq_puts(seq, ",noprefix");
1087 if (root->flags & CGRP_ROOT_XATTR)
1088 seq_puts(seq, ",xattr");
1089 if (strlen(root->release_agent_path))
1090 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
1091 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags))
1092 seq_puts(seq, ",clone_children");
1093 if (strlen(root->name))
1094 seq_printf(seq, ",name=%s", root->name);
1095 mutex_unlock(&cgroup_root_mutex);
1096 return 0;
1097 }
1098
1099 struct cgroup_sb_opts {
1100 unsigned long subsys_mask;
1101 unsigned long flags;
1102 char *release_agent;
1103 bool cpuset_clone_children;
1104 char *name;
1105 /* User explicitly requested empty subsystem */
1106 bool none;
1107
1108 struct cgroupfs_root *new_root;
1109
1110 };
1111
1112 /*
1113 * Convert a hierarchy specifier into a bitmask of subsystems and flags. Call
1114 * with cgroup_mutex held to protect the subsys[] array. This function takes
1115 * refcounts on subsystems to be used, unless it returns error, in which case
1116 * no refcounts are taken.
1117 */
1118 static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
1119 {
1120 char *token, *o = data;
1121 bool all_ss = false, one_ss = false;
1122 unsigned long mask = (unsigned long)-1;
1123 int i;
1124 bool module_pin_failed = false;
1125
1126 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1127
1128 #ifdef CONFIG_CPUSETS
1129 mask = ~(1UL << cpuset_subsys_id);
1130 #endif
1131
1132 memset(opts, 0, sizeof(*opts));
1133
1134 while ((token = strsep(&o, ",")) != NULL) {
1135 if (!*token)
1136 return -EINVAL;
1137 if (!strcmp(token, "none")) {
1138 /* Explicitly have no subsystems */
1139 opts->none = true;
1140 continue;
1141 }
1142 if (!strcmp(token, "all")) {
1143 /* Mutually exclusive option 'all' + subsystem name */
1144 if (one_ss)
1145 return -EINVAL;
1146 all_ss = true;
1147 continue;
1148 }
1149 if (!strcmp(token, "__DEVEL__sane_behavior")) {
1150 opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
1151 continue;
1152 }
1153 if (!strcmp(token, "noprefix")) {
1154 opts->flags |= CGRP_ROOT_NOPREFIX;
1155 continue;
1156 }
1157 if (!strcmp(token, "clone_children")) {
1158 opts->cpuset_clone_children = true;
1159 continue;
1160 }
1161 if (!strcmp(token, "xattr")) {
1162 opts->flags |= CGRP_ROOT_XATTR;
1163 continue;
1164 }
1165 if (!strncmp(token, "release_agent=", 14)) {
1166 /* Specifying two release agents is forbidden */
1167 if (opts->release_agent)
1168 return -EINVAL;
1169 opts->release_agent =
1170 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
1171 if (!opts->release_agent)
1172 return -ENOMEM;
1173 continue;
1174 }
1175 if (!strncmp(token, "name=", 5)) {
1176 const char *name = token + 5;
1177 /* Can't specify an empty name */
1178 if (!strlen(name))
1179 return -EINVAL;
1180 /* Must match [\w.-]+ */
1181 for (i = 0; i < strlen(name); i++) {
1182 char c = name[i];
1183 if (isalnum(c))
1184 continue;
1185 if ((c == '.') || (c == '-') || (c == '_'))
1186 continue;
1187 return -EINVAL;
1188 }
1189 /* Specifying two names is forbidden */
1190 if (opts->name)
1191 return -EINVAL;
1192 opts->name = kstrndup(name,
1193 MAX_CGROUP_ROOT_NAMELEN - 1,
1194 GFP_KERNEL);
1195 if (!opts->name)
1196 return -ENOMEM;
1197
1198 continue;
1199 }
1200
1201 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1202 struct cgroup_subsys *ss = subsys[i];
1203 if (ss == NULL)
1204 continue;
1205 if (strcmp(token, ss->name))
1206 continue;
1207 if (ss->disabled)
1208 continue;
1209
1210 /* Mutually exclusive option 'all' + subsystem name */
1211 if (all_ss)
1212 return -EINVAL;
1213 set_bit(i, &opts->subsys_mask);
1214 one_ss = true;
1215
1216 break;
1217 }
1218 if (i == CGROUP_SUBSYS_COUNT)
1219 return -ENOENT;
1220 }
1221
1222 /*
1223 * If the 'all' option was specified select all the subsystems,
1224 * otherwise if 'none', 'name=' and a subsystem name options
1225 * were not specified, let's default to 'all'
1226 */
1227 if (all_ss || (!one_ss && !opts->none && !opts->name)) {
1228 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1229 struct cgroup_subsys *ss = subsys[i];
1230 if (ss == NULL)
1231 continue;
1232 if (ss->disabled)
1233 continue;
1234 set_bit(i, &opts->subsys_mask);
1235 }
1236 }
1237
1238 /* Consistency checks */
1239
1240 if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1241 pr_warning("cgroup: sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
1242
1243 if (opts->flags & CGRP_ROOT_NOPREFIX) {
1244 pr_err("cgroup: sane_behavior: noprefix is not allowed\n");
1245 return -EINVAL;
1246 }
1247
1248 if (opts->cpuset_clone_children) {
1249 pr_err("cgroup: sane_behavior: clone_children is not allowed\n");
1250 return -EINVAL;
1251 }
1252 }
1253
1254 /*
1255 * Option noprefix was introduced just for backward compatibility
1256 * with the old cpuset, so we allow noprefix only if mounting just
1257 * the cpuset subsystem.
1258 */
1259 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
1260 return -EINVAL;
1261
1262
1263 /* Can't specify "none" and some subsystems */
1264 if (opts->subsys_mask && opts->none)
1265 return -EINVAL;
1266
1267 /*
1268 * We either have to specify by name or by subsystems. (So all
1269 * empty hierarchies must have a name).
1270 */
1271 if (!opts->subsys_mask && !opts->name)
1272 return -EINVAL;
1273
1274 /*
1275 * Grab references on all the modules we'll need, so the subsystems
1276 * don't dance around before rebind_subsystems attaches them. This may
1277 * take duplicate reference counts on a subsystem that's already used,
1278 * but rebind_subsystems handles this case.
1279 */
1280 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1281 unsigned long bit = 1UL << i;
1282
1283 if (!(bit & opts->subsys_mask))
1284 continue;
1285 if (!try_module_get(subsys[i]->module)) {
1286 module_pin_failed = true;
1287 break;
1288 }
1289 }
1290 if (module_pin_failed) {
1291 /*
1292 * oops, one of the modules was going away. this means that we
1293 * raced with a module_delete call, and to the user this is
1294 * essentially a "subsystem doesn't exist" case.
1295 */
1296 for (i--; i >= 0; i--) {
1297 /* drop refcounts only on the ones we took */
1298 unsigned long bit = 1UL << i;
1299
1300 if (!(bit & opts->subsys_mask))
1301 continue;
1302 module_put(subsys[i]->module);
1303 }
1304 return -ENOENT;
1305 }
1306
1307 return 0;
1308 }
1309
1310 static void drop_parsed_module_refcounts(unsigned long subsys_mask)
1311 {
1312 int i;
1313 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1314 unsigned long bit = 1UL << i;
1315
1316 if (!(bit & subsys_mask))
1317 continue;
1318 module_put(subsys[i]->module);
1319 }
1320 }
1321
1322 static int cgroup_remount(struct super_block *sb, int *flags, char *data)
1323 {
1324 int ret = 0;
1325 struct cgroupfs_root *root = sb->s_fs_info;
1326 struct cgroup *cgrp = &root->top_cgroup;
1327 struct cgroup_sb_opts opts;
1328 unsigned long added_mask, removed_mask;
1329
1330 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1331 pr_err("cgroup: sane_behavior: remount is not allowed\n");
1332 return -EINVAL;
1333 }
1334
1335 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
1336 mutex_lock(&cgroup_mutex);
1337 mutex_lock(&cgroup_root_mutex);
1338
1339 /* See what subsystems are wanted */
1340 ret = parse_cgroupfs_options(data, &opts);
1341 if (ret)
1342 goto out_unlock;
1343
1344 if (opts.subsys_mask != root->actual_subsys_mask || opts.release_agent)
1345 pr_warning("cgroup: option changes via remount are deprecated (pid=%d comm=%s)\n",
1346 task_tgid_nr(current), current->comm);
1347
1348 added_mask = opts.subsys_mask & ~root->subsys_mask;
1349 removed_mask = root->subsys_mask & ~opts.subsys_mask;
1350
1351 /* Don't allow flags or name to change at remount */
1352 if (opts.flags != root->flags ||
1353 (opts.name && strcmp(opts.name, root->name))) {
1354 ret = -EINVAL;
1355 drop_parsed_module_refcounts(opts.subsys_mask);
1356 goto out_unlock;
1357 }
1358
1359 /*
1360 * Clear out the files of subsystems that should be removed, do
1361 * this before rebind_subsystems, since rebind_subsystems may
1362 * change this hierarchy's subsys_list.
1363 */
1364 cgroup_clear_directory(cgrp->dentry, false, removed_mask);
1365
1366 ret = rebind_subsystems(root, opts.subsys_mask);
1367 if (ret) {
1368 /* rebind_subsystems failed, re-populate the removed files */
1369 cgroup_populate_dir(cgrp, false, removed_mask);
1370 drop_parsed_module_refcounts(opts.subsys_mask);
1371 goto out_unlock;
1372 }
1373
1374 /* re-populate subsystem files */
1375 cgroup_populate_dir(cgrp, false, added_mask);
1376
1377 if (opts.release_agent)
1378 strcpy(root->release_agent_path, opts.release_agent);
1379 out_unlock:
1380 kfree(opts.release_agent);
1381 kfree(opts.name);
1382 mutex_unlock(&cgroup_root_mutex);
1383 mutex_unlock(&cgroup_mutex);
1384 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
1385 return ret;
1386 }
1387
1388 static const struct super_operations cgroup_ops = {
1389 .statfs = simple_statfs,
1390 .drop_inode = generic_delete_inode,
1391 .show_options = cgroup_show_options,
1392 .remount_fs = cgroup_remount,
1393 };
1394
1395 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1396 {
1397 INIT_LIST_HEAD(&cgrp->sibling);
1398 INIT_LIST_HEAD(&cgrp->children);
1399 INIT_LIST_HEAD(&cgrp->files);
1400 INIT_LIST_HEAD(&cgrp->css_sets);
1401 INIT_LIST_HEAD(&cgrp->allcg_node);
1402 INIT_LIST_HEAD(&cgrp->release_list);
1403 INIT_LIST_HEAD(&cgrp->pidlists);
1404 INIT_WORK(&cgrp->free_work, cgroup_free_fn);
1405 mutex_init(&cgrp->pidlist_mutex);
1406 INIT_LIST_HEAD(&cgrp->event_list);
1407 spin_lock_init(&cgrp->event_list_lock);
1408 simple_xattrs_init(&cgrp->xattrs);
1409 }
1410
1411 static void init_cgroup_root(struct cgroupfs_root *root)
1412 {
1413 struct cgroup *cgrp = &root->top_cgroup;
1414
1415 INIT_LIST_HEAD(&root->subsys_list);
1416 INIT_LIST_HEAD(&root->root_list);
1417 INIT_LIST_HEAD(&root->allcg_list);
1418 root->number_of_cgroups = 1;
1419 cgrp->root = root;
1420 cgrp->name = &root_cgroup_name;
1421 cgrp->top_cgroup = cgrp;
1422 init_cgroup_housekeeping(cgrp);
1423 list_add_tail(&cgrp->allcg_node, &root->allcg_list);
1424 }
1425
1426 static bool init_root_id(struct cgroupfs_root *root)
1427 {
1428 int ret = 0;
1429
1430 do {
1431 if (!ida_pre_get(&hierarchy_ida, GFP_KERNEL))
1432 return false;
1433 spin_lock(&hierarchy_id_lock);
1434 /* Try to allocate the next unused ID */
1435 ret = ida_get_new_above(&hierarchy_ida, next_hierarchy_id,
1436 &root->hierarchy_id);
1437 if (ret == -ENOSPC)
1438 /* Try again starting from 0 */
1439 ret = ida_get_new(&hierarchy_ida, &root->hierarchy_id);
1440 if (!ret) {
1441 next_hierarchy_id = root->hierarchy_id + 1;
1442 } else if (ret != -EAGAIN) {
1443 /* Can only get here if the 31-bit IDR is full ... */
1444 BUG_ON(ret);
1445 }
1446 spin_unlock(&hierarchy_id_lock);
1447 } while (ret);
1448 return true;
1449 }
1450
1451 static int cgroup_test_super(struct super_block *sb, void *data)
1452 {
1453 struct cgroup_sb_opts *opts = data;
1454 struct cgroupfs_root *root = sb->s_fs_info;
1455
1456 /* If we asked for a name then it must match */
1457 if (opts->name && strcmp(opts->name, root->name))
1458 return 0;
1459
1460 /*
1461 * If we asked for subsystems (or explicitly for no
1462 * subsystems) then they must match
1463 */
1464 if ((opts->subsys_mask || opts->none)
1465 && (opts->subsys_mask != root->subsys_mask))
1466 return 0;
1467
1468 return 1;
1469 }
1470
1471 static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
1472 {
1473 struct cgroupfs_root *root;
1474
1475 if (!opts->subsys_mask && !opts->none)
1476 return NULL;
1477
1478 root = kzalloc(sizeof(*root), GFP_KERNEL);
1479 if (!root)
1480 return ERR_PTR(-ENOMEM);
1481
1482 if (!init_root_id(root)) {
1483 kfree(root);
1484 return ERR_PTR(-ENOMEM);
1485 }
1486 init_cgroup_root(root);
1487
1488 root->subsys_mask = opts->subsys_mask;
1489 root->flags = opts->flags;
1490 ida_init(&root->cgroup_ida);
1491 if (opts->release_agent)
1492 strcpy(root->release_agent_path, opts->release_agent);
1493 if (opts->name)
1494 strcpy(root->name, opts->name);
1495 if (opts->cpuset_clone_children)
1496 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags);
1497 return root;
1498 }
1499
1500 static void cgroup_drop_root(struct cgroupfs_root *root)
1501 {
1502 if (!root)
1503 return;
1504
1505 BUG_ON(!root->hierarchy_id);
1506 spin_lock(&hierarchy_id_lock);
1507 ida_remove(&hierarchy_ida, root->hierarchy_id);
1508 spin_unlock(&hierarchy_id_lock);
1509 ida_destroy(&root->cgroup_ida);
1510 kfree(root);
1511 }
1512
1513 static int cgroup_set_super(struct super_block *sb, void *data)
1514 {
1515 int ret;
1516 struct cgroup_sb_opts *opts = data;
1517
1518 /* If we don't have a new root, we can't set up a new sb */
1519 if (!opts->new_root)
1520 return -EINVAL;
1521
1522 BUG_ON(!opts->subsys_mask && !opts->none);
1523
1524 ret = set_anon_super(sb, NULL);
1525 if (ret)
1526 return ret;
1527
1528 sb->s_fs_info = opts->new_root;
1529 opts->new_root->sb = sb;
1530
1531 sb->s_blocksize = PAGE_CACHE_SIZE;
1532 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
1533 sb->s_magic = CGROUP_SUPER_MAGIC;
1534 sb->s_op = &cgroup_ops;
1535
1536 return 0;
1537 }
1538
1539 static int cgroup_get_rootdir(struct super_block *sb)
1540 {
1541 static const struct dentry_operations cgroup_dops = {
1542 .d_iput = cgroup_diput,
1543 .d_delete = cgroup_delete,
1544 };
1545
1546 struct inode *inode =
1547 cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
1548
1549 if (!inode)
1550 return -ENOMEM;
1551
1552 inode->i_fop = &simple_dir_operations;
1553 inode->i_op = &cgroup_dir_inode_operations;
1554 /* directories start off with i_nlink == 2 (for "." entry) */
1555 inc_nlink(inode);
1556 sb->s_root = d_make_root(inode);
1557 if (!sb->s_root)
1558 return -ENOMEM;
1559 /* for everything else we want ->d_op set */
1560 sb->s_d_op = &cgroup_dops;
1561 return 0;
1562 }
1563
1564 static struct dentry *cgroup_mount(struct file_system_type *fs_type,
1565 int flags, const char *unused_dev_name,
1566 void *data)
1567 {
1568 struct cgroup_sb_opts opts;
1569 struct cgroupfs_root *root;
1570 int ret = 0;
1571 struct super_block *sb;
1572 struct cgroupfs_root *new_root;
1573 struct inode *inode;
1574
1575 /* First find the desired set of subsystems */
1576 mutex_lock(&cgroup_mutex);
1577 ret = parse_cgroupfs_options(data, &opts);
1578 mutex_unlock(&cgroup_mutex);
1579 if (ret)
1580 goto out_err;
1581
1582 /*
1583 * Allocate a new cgroup root. We may not need it if we're
1584 * reusing an existing hierarchy.
1585 */
1586 new_root = cgroup_root_from_opts(&opts);
1587 if (IS_ERR(new_root)) {
1588 ret = PTR_ERR(new_root);
1589 goto drop_modules;
1590 }
1591 opts.new_root = new_root;
1592
1593 /* Locate an existing or new sb for this hierarchy */
1594 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, 0, &opts);
1595 if (IS_ERR(sb)) {
1596 ret = PTR_ERR(sb);
1597 cgroup_drop_root(opts.new_root);
1598 goto drop_modules;
1599 }
1600
1601 root = sb->s_fs_info;
1602 BUG_ON(!root);
1603 if (root == opts.new_root) {
1604 /* We used the new root structure, so this is a new hierarchy */
1605 struct list_head tmp_cg_links;
1606 struct cgroup *root_cgrp = &root->top_cgroup;
1607 struct cgroupfs_root *existing_root;
1608 const struct cred *cred;
1609 int i;
1610 struct css_set *cg;
1611
1612 BUG_ON(sb->s_root != NULL);
1613
1614 ret = cgroup_get_rootdir(sb);
1615 if (ret)
1616 goto drop_new_super;
1617 inode = sb->s_root->d_inode;
1618
1619 mutex_lock(&inode->i_mutex);
1620 mutex_lock(&cgroup_mutex);
1621 mutex_lock(&cgroup_root_mutex);
1622
1623 /* Check for name clashes with existing mounts */
1624 ret = -EBUSY;
1625 if (strlen(root->name))
1626 for_each_active_root(existing_root)
1627 if (!strcmp(existing_root->name, root->name))
1628 goto unlock_drop;
1629
1630 /*
1631 * We're accessing css_set_count without locking
1632 * css_set_lock here, but that's OK - it can only be
1633 * increased by someone holding cgroup_lock, and
1634 * that's us. The worst that can happen is that we
1635 * have some link structures left over
1636 */
1637 ret = allocate_cg_links(css_set_count, &tmp_cg_links);
1638 if (ret)
1639 goto unlock_drop;
1640
1641 ret = rebind_subsystems(root, root->subsys_mask);
1642 if (ret == -EBUSY) {
1643 free_cg_links(&tmp_cg_links);
1644 goto unlock_drop;
1645 }
1646 /*
1647 * There must be no failure case after here, since rebinding
1648 * takes care of subsystems' refcounts, which are explicitly
1649 * dropped in the failure exit path.
1650 */
1651
1652 /* EBUSY should be the only error here */
1653 BUG_ON(ret);
1654
1655 list_add(&root->root_list, &roots);
1656 root_count++;
1657
1658 sb->s_root->d_fsdata = root_cgrp;
1659 root->top_cgroup.dentry = sb->s_root;
1660
1661 /* Link the top cgroup in this hierarchy into all
1662 * the css_set objects */
1663 write_lock(&css_set_lock);
1664 hash_for_each(css_set_table, i, cg, hlist)
1665 link_css_set(&tmp_cg_links, cg, root_cgrp);
1666 write_unlock(&css_set_lock);
1667
1668 free_cg_links(&tmp_cg_links);
1669
1670 BUG_ON(!list_empty(&root_cgrp->children));
1671 BUG_ON(root->number_of_cgroups != 1);
1672
1673 cred = override_creds(&init_cred);
1674 cgroup_populate_dir(root_cgrp, true, root->subsys_mask);
1675 revert_creds(cred);
1676 mutex_unlock(&cgroup_root_mutex);
1677 mutex_unlock(&cgroup_mutex);
1678 mutex_unlock(&inode->i_mutex);
1679 } else {
1680 /*
1681 * We re-used an existing hierarchy - the new root (if
1682 * any) is not needed
1683 */
1684 cgroup_drop_root(opts.new_root);
1685
1686 if (((root->flags | opts.flags) & CGRP_ROOT_SANE_BEHAVIOR) &&
1687 root->flags != opts.flags) {
1688 pr_err("cgroup: sane_behavior: new mount options should match the existing superblock\n");
1689 ret = -EINVAL;
1690 goto drop_new_super;
1691 }
1692
1693 /* no subsys rebinding, so refcounts don't change */
1694 drop_parsed_module_refcounts(opts.subsys_mask);
1695 }
1696
1697 kfree(opts.release_agent);
1698 kfree(opts.name);
1699 return dget(sb->s_root);
1700
1701 unlock_drop:
1702 mutex_unlock(&cgroup_root_mutex);
1703 mutex_unlock(&cgroup_mutex);
1704 mutex_unlock(&inode->i_mutex);
1705 drop_new_super:
1706 deactivate_locked_super(sb);
1707 drop_modules:
1708 drop_parsed_module_refcounts(opts.subsys_mask);
1709 out_err:
1710 kfree(opts.release_agent);
1711 kfree(opts.name);
1712 return ERR_PTR(ret);
1713 }
1714
1715 static void cgroup_kill_sb(struct super_block *sb) {
1716 struct cgroupfs_root *root = sb->s_fs_info;
1717 struct cgroup *cgrp = &root->top_cgroup;
1718 int ret;
1719 struct cg_cgroup_link *link;
1720 struct cg_cgroup_link *saved_link;
1721
1722 BUG_ON(!root);
1723
1724 BUG_ON(root->number_of_cgroups != 1);
1725 BUG_ON(!list_empty(&cgrp->children));
1726
1727 mutex_lock(&cgroup_mutex);
1728 mutex_lock(&cgroup_root_mutex);
1729
1730 /* Rebind all subsystems back to the default hierarchy */
1731 ret = rebind_subsystems(root, 0);
1732 /* Shouldn't be able to fail ... */
1733 BUG_ON(ret);
1734
1735 /*
1736 * Release all the links from css_sets to this hierarchy's
1737 * root cgroup
1738 */
1739 write_lock(&css_set_lock);
1740
1741 list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
1742 cgrp_link_list) {
1743 list_del(&link->cg_link_list);
1744 list_del(&link->cgrp_link_list);
1745 kfree(link);
1746 }
1747 write_unlock(&css_set_lock);
1748
1749 if (!list_empty(&root->root_list)) {
1750 list_del(&root->root_list);
1751 root_count--;
1752 }
1753
1754 mutex_unlock(&cgroup_root_mutex);
1755 mutex_unlock(&cgroup_mutex);
1756
1757 simple_xattrs_free(&cgrp->xattrs);
1758
1759 kill_litter_super(sb);
1760 cgroup_drop_root(root);
1761 }
1762
1763 static struct file_system_type cgroup_fs_type = {
1764 .name = "cgroup",
1765 .mount = cgroup_mount,
1766 .kill_sb = cgroup_kill_sb,
1767 };
1768
1769 static struct kobject *cgroup_kobj;
1770
1771 /**
1772 * cgroup_path - generate the path of a cgroup
1773 * @cgrp: the cgroup in question
1774 * @buf: the buffer to write the path into
1775 * @buflen: the length of the buffer
1776 *
1777 * Writes path of cgroup into buf. Returns 0 on success, -errno on error.
1778 *
1779 * We can't generate cgroup path using dentry->d_name, as accessing
1780 * dentry->name must be protected by irq-unsafe dentry->d_lock or parent
1781 * inode's i_mutex, while on the other hand cgroup_path() can be called
1782 * with some irq-safe spinlocks held.
1783 */
1784 int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1785 {
1786 int ret = -ENAMETOOLONG;
1787 char *start;
1788
1789 if (!cgrp->parent) {
1790 if (strlcpy(buf, "/", buflen) >= buflen)
1791 return -ENAMETOOLONG;
1792 return 0;
1793 }
1794
1795 start = buf + buflen - 1;
1796 *start = '\0';
1797
1798 rcu_read_lock();
1799 do {
1800 const char *name = cgroup_name(cgrp);
1801 int len;
1802
1803 len = strlen(name);
1804 if ((start -= len) < buf)
1805 goto out;
1806 memcpy(start, name, len);
1807
1808 if (--start < buf)
1809 goto out;
1810 *start = '/';
1811
1812 cgrp = cgrp->parent;
1813 } while (cgrp->parent);
1814 ret = 0;
1815 memmove(buf, start, buf + buflen - start);
1816 out:
1817 rcu_read_unlock();
1818 return ret;
1819 }
1820 EXPORT_SYMBOL_GPL(cgroup_path);
1821
1822 /*
1823 * Control Group taskset
1824 */
1825 struct task_and_cgroup {
1826 struct task_struct *task;
1827 struct cgroup *cgrp;
1828 struct css_set *cg;
1829 };
1830
1831 struct cgroup_taskset {
1832 struct task_and_cgroup single;
1833 struct flex_array *tc_array;
1834 int tc_array_len;
1835 int idx;
1836 struct cgroup *cur_cgrp;
1837 };
1838
1839 /**
1840 * cgroup_taskset_first - reset taskset and return the first task
1841 * @tset: taskset of interest
1842 *
1843 * @tset iteration is initialized and the first task is returned.
1844 */
1845 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
1846 {
1847 if (tset->tc_array) {
1848 tset->idx = 0;
1849 return cgroup_taskset_next(tset);
1850 } else {
1851 tset->cur_cgrp = tset->single.cgrp;
1852 return tset->single.task;
1853 }
1854 }
1855 EXPORT_SYMBOL_GPL(cgroup_taskset_first);
1856
1857 /**
1858 * cgroup_taskset_next - iterate to the next task in taskset
1859 * @tset: taskset of interest
1860 *
1861 * Return the next task in @tset. Iteration must have been initialized
1862 * with cgroup_taskset_first().
1863 */
1864 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
1865 {
1866 struct task_and_cgroup *tc;
1867
1868 if (!tset->tc_array || tset->idx >= tset->tc_array_len)
1869 return NULL;
1870
1871 tc = flex_array_get(tset->tc_array, tset->idx++);
1872 tset->cur_cgrp = tc->cgrp;
1873 return tc->task;
1874 }
1875 EXPORT_SYMBOL_GPL(cgroup_taskset_next);
1876
1877 /**
1878 * cgroup_taskset_cur_cgroup - return the matching cgroup for the current task
1879 * @tset: taskset of interest
1880 *
1881 * Return the cgroup for the current (last returned) task of @tset. This
1882 * function must be preceded by either cgroup_taskset_first() or
1883 * cgroup_taskset_next().
1884 */
1885 struct cgroup *cgroup_taskset_cur_cgroup(struct cgroup_taskset *tset)
1886 {
1887 return tset->cur_cgrp;
1888 }
1889 EXPORT_SYMBOL_GPL(cgroup_taskset_cur_cgroup);
1890
1891 /**
1892 * cgroup_taskset_size - return the number of tasks in taskset
1893 * @tset: taskset of interest
1894 */
1895 int cgroup_taskset_size(struct cgroup_taskset *tset)
1896 {
1897 return tset->tc_array ? tset->tc_array_len : 1;
1898 }
1899 EXPORT_SYMBOL_GPL(cgroup_taskset_size);
1900
1901
1902 /*
1903 * cgroup_task_migrate - move a task from one cgroup to another.
1904 *
1905 * Must be called with cgroup_mutex and threadgroup locked.
1906 */
1907 static void cgroup_task_migrate(struct cgroup *oldcgrp,
1908 struct task_struct *tsk, struct css_set *newcg)
1909 {
1910 struct css_set *oldcg;
1911
1912 /*
1913 * We are synchronized through threadgroup_lock() against PF_EXITING
1914 * setting such that we can't race against cgroup_exit() changing the
1915 * css_set to init_css_set and dropping the old one.
1916 */
1917 WARN_ON_ONCE(tsk->flags & PF_EXITING);
1918 oldcg = tsk->cgroups;
1919
1920 task_lock(tsk);
1921 rcu_assign_pointer(tsk->cgroups, newcg);
1922 task_unlock(tsk);
1923
1924 /* Update the css_set linked lists if we're using them */
1925 write_lock(&css_set_lock);
1926 if (!list_empty(&tsk->cg_list))
1927 list_move(&tsk->cg_list, &newcg->tasks);
1928 write_unlock(&css_set_lock);
1929
1930 /*
1931 * We just gained a reference on oldcg by taking it from the task. As
1932 * trading it for newcg is protected by cgroup_mutex, we're safe to drop
1933 * it here; it will be freed under RCU.
1934 */
1935 set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
1936 put_css_set(oldcg);
1937 }
1938
1939 /**
1940 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
1941 * @cgrp: the cgroup to attach to
1942 * @tsk: the task or the leader of the threadgroup to be attached
1943 * @threadgroup: attach the whole threadgroup?
1944 *
1945 * Call holding cgroup_mutex and the group_rwsem of the leader. Will take
1946 * task_lock of @tsk or each thread in the threadgroup individually in turn.
1947 */
1948 static int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk,
1949 bool threadgroup)
1950 {
1951 int retval, i, group_size;
1952 struct cgroup_subsys *ss, *failed_ss = NULL;
1953 struct cgroupfs_root *root = cgrp->root;
1954 /* threadgroup list cursor and array */
1955 struct task_struct *leader = tsk;
1956 struct task_and_cgroup *tc;
1957 struct flex_array *group;
1958 struct cgroup_taskset tset = { };
1959
1960 /*
1961 * step 0: in order to do expensive, possibly blocking operations for
1962 * every thread, we cannot iterate the thread group list, since it needs
1963 * rcu or tasklist locked. instead, build an array of all threads in the
1964 * group - group_rwsem prevents new threads from appearing, and if
1965 * threads exit, this will just be an over-estimate.
1966 */
1967 if (threadgroup)
1968 group_size = get_nr_threads(tsk);
1969 else
1970 group_size = 1;
1971 /* flex_array supports very large thread-groups better than kmalloc. */
1972 group = flex_array_alloc(sizeof(*tc), group_size, GFP_KERNEL);
1973 if (!group)
1974 return -ENOMEM;
1975 /* pre-allocate to guarantee space while iterating in rcu read-side. */
1976 retval = flex_array_prealloc(group, 0, group_size, GFP_KERNEL);
1977 if (retval)
1978 goto out_free_group_list;
1979
1980 i = 0;
1981 /*
1982 * Prevent freeing of tasks while we take a snapshot. Tasks that are
1983 * already PF_EXITING could be freed from underneath us unless we
1984 * take an rcu_read_lock.
1985 */
1986 rcu_read_lock();
1987 do {
1988 struct task_and_cgroup ent;
1989
1990 /* @tsk either already exited or can't exit until the end */
1991 if (tsk->flags & PF_EXITING)
1992 continue;
1993
1994 /* as per above, nr_threads may decrease, but not increase. */
1995 BUG_ON(i >= group_size);
1996 ent.task = tsk;
1997 ent.cgrp = task_cgroup_from_root(tsk, root);
1998 /* nothing to do if this task is already in the cgroup */
1999 if (ent.cgrp == cgrp)
2000 continue;
2001 /*
2002 * saying GFP_ATOMIC has no effect here because we did prealloc
2003 * earlier, but it's good form to communicate our expectations.
2004 */
2005 retval = flex_array_put(group, i, &ent, GFP_ATOMIC);
2006 BUG_ON(retval != 0);
2007 i++;
2008
2009 if (!threadgroup)
2010 break;
2011 } while_each_thread(leader, tsk);
2012 rcu_read_unlock();
2013 /* remember the number of threads in the array for later. */
2014 group_size = i;
2015 tset.tc_array = group;
2016 tset.tc_array_len = group_size;
2017
2018 /* methods shouldn't be called if no task is actually migrating */
2019 retval = 0;
2020 if (!group_size)
2021 goto out_free_group_list;
2022
2023 /*
2024 * step 1: check that we can legitimately attach to the cgroup.
2025 */
2026 for_each_subsys(root, ss) {
2027 if (ss->can_attach) {
2028 retval = ss->can_attach(cgrp, &tset);
2029 if (retval) {
2030 failed_ss = ss;
2031 goto out_cancel_attach;
2032 }
2033 }
2034 }
2035
2036 /*
2037 * step 2: make sure css_sets exist for all threads to be migrated.
2038 * we use find_css_set, which allocates a new one if necessary.
2039 */
2040 for (i = 0; i < group_size; i++) {
2041 tc = flex_array_get(group, i);
2042 tc->cg = find_css_set(tc->task->cgroups, cgrp);
2043 if (!tc->cg) {
2044 retval = -ENOMEM;
2045 goto out_put_css_set_refs;
2046 }
2047 }
2048
2049 /*
2050 * step 3: now that we're guaranteed success wrt the css_sets,
2051 * proceed to move all tasks to the new cgroup. There are no
2052 * failure cases after here, so this is the commit point.
2053 */
2054 for (i = 0; i < group_size; i++) {
2055 tc = flex_array_get(group, i);
2056 cgroup_task_migrate(tc->cgrp, tc->task, tc->cg);
2057 }
2058 /* nothing is sensitive to fork() after this point. */
2059
2060 /*
2061 * step 4: do subsystem attach callbacks.
2062 */
2063 for_each_subsys(root, ss) {
2064 if (ss->attach)
2065 ss->attach(cgrp, &tset);
2066 }
2067
2068 /*
2069 * step 5: success! and cleanup
2070 */
2071 retval = 0;
2072 out_put_css_set_refs:
2073 if (retval) {
2074 for (i = 0; i < group_size; i++) {
2075 tc = flex_array_get(group, i);
2076 if (!tc->cg)
2077 break;
2078 put_css_set(tc->cg);
2079 }
2080 }
2081 out_cancel_attach:
2082 if (retval) {
2083 for_each_subsys(root, ss) {
2084 if (ss == failed_ss)
2085 break;
2086 if (ss->cancel_attach)
2087 ss->cancel_attach(cgrp, &tset);
2088 }
2089 }
2090 out_free_group_list:
2091 flex_array_free(group);
2092 return retval;
2093 }
2094
2095 /*
2096 * Find the task_struct of the task to attach by vpid and pass it along to the
2097 * function to attach either it or all tasks in its threadgroup. Will lock
2098 * cgroup_mutex and threadgroup; may take task_lock of task.
2099 */
2100 static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
2101 {
2102 struct task_struct *tsk;
2103 const struct cred *cred = current_cred(), *tcred;
2104 int ret;
2105
2106 if (!cgroup_lock_live_group(cgrp))
2107 return -ENODEV;
2108
2109 retry_find_task:
2110 rcu_read_lock();
2111 if (pid) {
2112 tsk = find_task_by_vpid(pid);
2113 if (!tsk) {
2114 rcu_read_unlock();
2115 ret= -ESRCH;
2116 goto out_unlock_cgroup;
2117 }
2118 /*
2119 * even if we're attaching all tasks in the thread group, we
2120 * only need to check permissions on one of them.
2121 */
2122 tcred = __task_cred(tsk);
2123 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2124 !uid_eq(cred->euid, tcred->uid) &&
2125 !uid_eq(cred->euid, tcred->suid)) {
2126 rcu_read_unlock();
2127 ret = -EACCES;
2128 goto out_unlock_cgroup;
2129 }
2130 } else
2131 tsk = current;
2132
2133 if (threadgroup)
2134 tsk = tsk->group_leader;
2135
2136 /*
2137 * Workqueue threads may acquire PF_THREAD_BOUND and become
2138 * trapped in a cpuset, or RT worker may be born in a cgroup
2139 * with no rt_runtime allocated. Just say no.
2140 */
2141 if (tsk == kthreadd_task || (tsk->flags & PF_THREAD_BOUND)) {
2142 ret = -EINVAL;
2143 rcu_read_unlock();
2144 goto out_unlock_cgroup;
2145 }
2146
2147 get_task_struct(tsk);
2148 rcu_read_unlock();
2149
2150 threadgroup_lock(tsk);
2151 if (threadgroup) {
2152 if (!thread_group_leader(tsk)) {
2153 /*
2154 * a race with de_thread from another thread's exec()
2155 * may strip us of our leadership, if this happens,
2156 * there is no choice but to throw this task away and
2157 * try again; this is
2158 * "double-double-toil-and-trouble-check locking".
2159 */
2160 threadgroup_unlock(tsk);
2161 put_task_struct(tsk);
2162 goto retry_find_task;
2163 }
2164 }
2165
2166 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
2167
2168 threadgroup_unlock(tsk);
2169
2170 put_task_struct(tsk);
2171 out_unlock_cgroup:
2172 mutex_unlock(&cgroup_mutex);
2173 return ret;
2174 }
2175
2176 /**
2177 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2178 * @from: attach to all cgroups of a given task
2179 * @tsk: the task to be attached
2180 */
2181 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2182 {
2183 struct cgroupfs_root *root;
2184 int retval = 0;
2185
2186 mutex_lock(&cgroup_mutex);
2187 for_each_active_root(root) {
2188 struct cgroup *from_cg = task_cgroup_from_root(from, root);
2189
2190 retval = cgroup_attach_task(from_cg, tsk, false);
2191 if (retval)
2192 break;
2193 }
2194 mutex_unlock(&cgroup_mutex);
2195
2196 return retval;
2197 }
2198 EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2199
2200 static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
2201 {
2202 return attach_task_by_pid(cgrp, pid, false);
2203 }
2204
2205 static int cgroup_procs_write(struct cgroup *cgrp, struct cftype *cft, u64 tgid)
2206 {
2207 return attach_task_by_pid(cgrp, tgid, true);
2208 }
2209
2210 static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
2211 const char *buffer)
2212 {
2213 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
2214 if (strlen(buffer) >= PATH_MAX)
2215 return -EINVAL;
2216 if (!cgroup_lock_live_group(cgrp))
2217 return -ENODEV;
2218 mutex_lock(&cgroup_root_mutex);
2219 strcpy(cgrp->root->release_agent_path, buffer);
2220 mutex_unlock(&cgroup_root_mutex);
2221 mutex_unlock(&cgroup_mutex);
2222 return 0;
2223 }
2224
2225 static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
2226 struct seq_file *seq)
2227 {
2228 if (!cgroup_lock_live_group(cgrp))
2229 return -ENODEV;
2230 seq_puts(seq, cgrp->root->release_agent_path);
2231 seq_putc(seq, '\n');
2232 mutex_unlock(&cgroup_mutex);
2233 return 0;
2234 }
2235
2236 static int cgroup_sane_behavior_show(struct cgroup *cgrp, struct cftype *cft,
2237 struct seq_file *seq)
2238 {
2239 seq_printf(seq, "%d\n", cgroup_sane_behavior(cgrp));
2240 return 0;
2241 }
2242
2243 /* A buffer size big enough for numbers or short strings */
2244 #define CGROUP_LOCAL_BUFFER_SIZE 64
2245
2246 static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
2247 struct file *file,
2248 const char __user *userbuf,
2249 size_t nbytes, loff_t *unused_ppos)
2250 {
2251 char buffer[CGROUP_LOCAL_BUFFER_SIZE];
2252 int retval = 0;
2253 char *end;
2254
2255 if (!nbytes)
2256 return -EINVAL;
2257 if (nbytes >= sizeof(buffer))
2258 return -E2BIG;
2259 if (copy_from_user(buffer, userbuf, nbytes))
2260 return -EFAULT;
2261
2262 buffer[nbytes] = 0; /* nul-terminate */
2263 if (cft->write_u64) {
2264 u64 val = simple_strtoull(strstrip(buffer), &end, 0);
2265 if (*end)
2266 return -EINVAL;
2267 retval = cft->write_u64(cgrp, cft, val);
2268 } else {
2269 s64 val = simple_strtoll(strstrip(buffer), &end, 0);
2270 if (*end)
2271 return -EINVAL;
2272 retval = cft->write_s64(cgrp, cft, val);
2273 }
2274 if (!retval)
2275 retval = nbytes;
2276 return retval;
2277 }
2278
2279 static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
2280 struct file *file,
2281 const char __user *userbuf,
2282 size_t nbytes, loff_t *unused_ppos)
2283 {
2284 char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
2285 int retval = 0;
2286 size_t max_bytes = cft->max_write_len;
2287 char *buffer = local_buffer;
2288
2289 if (!max_bytes)
2290 max_bytes = sizeof(local_buffer) - 1;
2291 if (nbytes >= max_bytes)
2292 return -E2BIG;
2293 /* Allocate a dynamic buffer if we need one */
2294 if (nbytes >= sizeof(local_buffer)) {
2295 buffer = kmalloc(nbytes + 1, GFP_KERNEL);
2296 if (buffer == NULL)
2297 return -ENOMEM;
2298 }
2299 if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
2300 retval = -EFAULT;
2301 goto out;
2302 }
2303
2304 buffer[nbytes] = 0; /* nul-terminate */
2305 retval = cft->write_string(cgrp, cft, strstrip(buffer));
2306 if (!retval)
2307 retval = nbytes;
2308 out:
2309 if (buffer != local_buffer)
2310 kfree(buffer);
2311 return retval;
2312 }
2313
2314 static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
2315 size_t nbytes, loff_t *ppos)
2316 {
2317 struct cftype *cft = __d_cft(file->f_dentry);
2318 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2319
2320 if (cgroup_is_removed(cgrp))
2321 return -ENODEV;
2322 if (cft->write)
2323 return cft->write(cgrp, cft, file, buf, nbytes, ppos);
2324 if (cft->write_u64 || cft->write_s64)
2325 return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
2326 if (cft->write_string)
2327 return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
2328 if (cft->trigger) {
2329 int ret = cft->trigger(cgrp, (unsigned int)cft->private);
2330 return ret ? ret : nbytes;
2331 }
2332 return -EINVAL;
2333 }
2334
2335 static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
2336 struct file *file,
2337 char __user *buf, size_t nbytes,
2338 loff_t *ppos)
2339 {
2340 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2341 u64 val = cft->read_u64(cgrp, cft);
2342 int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
2343
2344 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2345 }
2346
2347 static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
2348 struct file *file,
2349 char __user *buf, size_t nbytes,
2350 loff_t *ppos)
2351 {
2352 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2353 s64 val = cft->read_s64(cgrp, cft);
2354 int len = sprintf(tmp, "%lld\n", (long long) val);
2355
2356 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2357 }
2358
2359 static ssize_t cgroup_file_read(struct file *file, char __user *buf,
2360 size_t nbytes, loff_t *ppos)
2361 {
2362 struct cftype *cft = __d_cft(file->f_dentry);
2363 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2364
2365 if (cgroup_is_removed(cgrp))
2366 return -ENODEV;
2367
2368 if (cft->read)
2369 return cft->read(cgrp, cft, file, buf, nbytes, ppos);
2370 if (cft->read_u64)
2371 return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
2372 if (cft->read_s64)
2373 return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
2374 return -EINVAL;
2375 }
2376
2377 /*
2378 * seqfile ops/methods for returning structured data. Currently just
2379 * supports string->u64 maps, but can be extended in future.
2380 */
2381
2382 struct cgroup_seqfile_state {
2383 struct cftype *cft;
2384 struct cgroup *cgroup;
2385 };
2386
2387 static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
2388 {
2389 struct seq_file *sf = cb->state;
2390 return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
2391 }
2392
2393 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
2394 {
2395 struct cgroup_seqfile_state *state = m->private;
2396 struct cftype *cft = state->cft;
2397 if (cft->read_map) {
2398 struct cgroup_map_cb cb = {
2399 .fill = cgroup_map_add,
2400 .state = m,
2401 };
2402 return cft->read_map(state->cgroup, cft, &cb);
2403 }
2404 return cft->read_seq_string(state->cgroup, cft, m);
2405 }
2406
2407 static int cgroup_seqfile_release(struct inode *inode, struct file *file)
2408 {
2409 struct seq_file *seq = file->private_data;
2410 kfree(seq->private);
2411 return single_release(inode, file);
2412 }
2413
2414 static const struct file_operations cgroup_seqfile_operations = {
2415 .read = seq_read,
2416 .write = cgroup_file_write,
2417 .llseek = seq_lseek,
2418 .release = cgroup_seqfile_release,
2419 };
2420
2421 static int cgroup_file_open(struct inode *inode, struct file *file)
2422 {
2423 int err;
2424 struct cftype *cft;
2425
2426 err = generic_file_open(inode, file);
2427 if (err)
2428 return err;
2429 cft = __d_cft(file->f_dentry);
2430
2431 if (cft->read_map || cft->read_seq_string) {
2432 struct cgroup_seqfile_state *state =
2433 kzalloc(sizeof(*state), GFP_USER);
2434 if (!state)
2435 return -ENOMEM;
2436 state->cft = cft;
2437 state->cgroup = __d_cgrp(file->f_dentry->d_parent);
2438 file->f_op = &cgroup_seqfile_operations;
2439 err = single_open(file, cgroup_seqfile_show, state);
2440 if (err < 0)
2441 kfree(state);
2442 } else if (cft->open)
2443 err = cft->open(inode, file);
2444 else
2445 err = 0;
2446
2447 return err;
2448 }
2449
2450 static int cgroup_file_release(struct inode *inode, struct file *file)
2451 {
2452 struct cftype *cft = __d_cft(file->f_dentry);
2453 if (cft->release)
2454 return cft->release(inode, file);
2455 return 0;
2456 }
2457
2458 /*
2459 * cgroup_rename - Only allow simple rename of directories in place.
2460 */
2461 static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
2462 struct inode *new_dir, struct dentry *new_dentry)
2463 {
2464 int ret;
2465 struct cgroup_name *name, *old_name;
2466 struct cgroup *cgrp;
2467
2468 /*
2469 * It's convinient to use parent dir's i_mutex to protected
2470 * cgrp->name.
2471 */
2472 lockdep_assert_held(&old_dir->i_mutex);
2473
2474 if (!S_ISDIR(old_dentry->d_inode->i_mode))
2475 return -ENOTDIR;
2476 if (new_dentry->d_inode)
2477 return -EEXIST;
2478 if (old_dir != new_dir)
2479 return -EIO;
2480
2481 cgrp = __d_cgrp(old_dentry);
2482
2483 name = cgroup_alloc_name(new_dentry);
2484 if (!name)
2485 return -ENOMEM;
2486
2487 ret = simple_rename(old_dir, old_dentry, new_dir, new_dentry);
2488 if (ret) {
2489 kfree(name);
2490 return ret;
2491 }
2492
2493 old_name = cgrp->name;
2494 rcu_assign_pointer(cgrp->name, name);
2495
2496 kfree_rcu(old_name, rcu_head);
2497 return 0;
2498 }
2499
2500 static struct simple_xattrs *__d_xattrs(struct dentry *dentry)
2501 {
2502 if (S_ISDIR(dentry->d_inode->i_mode))
2503 return &__d_cgrp(dentry)->xattrs;
2504 else
2505 return &__d_cft(dentry)->xattrs;
2506 }
2507
2508 static inline int xattr_enabled(struct dentry *dentry)
2509 {
2510 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
2511 return root->flags & CGRP_ROOT_XATTR;
2512 }
2513
2514 static bool is_valid_xattr(const char *name)
2515 {
2516 if (!strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN) ||
2517 !strncmp(name, XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN))
2518 return true;
2519 return false;
2520 }
2521
2522 static int cgroup_setxattr(struct dentry *dentry, const char *name,
2523 const void *val, size_t size, int flags)
2524 {
2525 if (!xattr_enabled(dentry))
2526 return -EOPNOTSUPP;
2527 if (!is_valid_xattr(name))
2528 return -EINVAL;
2529 return simple_xattr_set(__d_xattrs(dentry), name, val, size, flags);
2530 }
2531
2532 static int cgroup_removexattr(struct dentry *dentry, const char *name)
2533 {
2534 if (!xattr_enabled(dentry))
2535 return -EOPNOTSUPP;
2536 if (!is_valid_xattr(name))
2537 return -EINVAL;
2538 return simple_xattr_remove(__d_xattrs(dentry), name);
2539 }
2540
2541 static ssize_t cgroup_getxattr(struct dentry *dentry, const char *name,
2542 void *buf, size_t size)
2543 {
2544 if (!xattr_enabled(dentry))
2545 return -EOPNOTSUPP;
2546 if (!is_valid_xattr(name))
2547 return -EINVAL;
2548 return simple_xattr_get(__d_xattrs(dentry), name, buf, size);
2549 }
2550
2551 static ssize_t cgroup_listxattr(struct dentry *dentry, char *buf, size_t size)
2552 {
2553 if (!xattr_enabled(dentry))
2554 return -EOPNOTSUPP;
2555 return simple_xattr_list(__d_xattrs(dentry), buf, size);
2556 }
2557
2558 static const struct file_operations cgroup_file_operations = {
2559 .read = cgroup_file_read,
2560 .write = cgroup_file_write,
2561 .llseek = generic_file_llseek,
2562 .open = cgroup_file_open,
2563 .release = cgroup_file_release,
2564 };
2565
2566 static const struct inode_operations cgroup_file_inode_operations = {
2567 .setxattr = cgroup_setxattr,
2568 .getxattr = cgroup_getxattr,
2569 .listxattr = cgroup_listxattr,
2570 .removexattr = cgroup_removexattr,
2571 };
2572
2573 static const struct inode_operations cgroup_dir_inode_operations = {
2574 .lookup = cgroup_lookup,
2575 .mkdir = cgroup_mkdir,
2576 .rmdir = cgroup_rmdir,
2577 .rename = cgroup_rename,
2578 .setxattr = cgroup_setxattr,
2579 .getxattr = cgroup_getxattr,
2580 .listxattr = cgroup_listxattr,
2581 .removexattr = cgroup_removexattr,
2582 };
2583
2584 static struct dentry *cgroup_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
2585 {
2586 if (dentry->d_name.len > NAME_MAX)
2587 return ERR_PTR(-ENAMETOOLONG);
2588 d_add(dentry, NULL);
2589 return NULL;
2590 }
2591
2592 /*
2593 * Check if a file is a control file
2594 */
2595 static inline struct cftype *__file_cft(struct file *file)
2596 {
2597 if (file_inode(file)->i_fop != &cgroup_file_operations)
2598 return ERR_PTR(-EINVAL);
2599 return __d_cft(file->f_dentry);
2600 }
2601
2602 static int cgroup_create_file(struct dentry *dentry, umode_t mode,
2603 struct super_block *sb)
2604 {
2605 struct inode *inode;
2606
2607 if (!dentry)
2608 return -ENOENT;
2609 if (dentry->d_inode)
2610 return -EEXIST;
2611
2612 inode = cgroup_new_inode(mode, sb);
2613 if (!inode)
2614 return -ENOMEM;
2615
2616 if (S_ISDIR(mode)) {
2617 inode->i_op = &cgroup_dir_inode_operations;
2618 inode->i_fop = &simple_dir_operations;
2619
2620 /* start off with i_nlink == 2 (for "." entry) */
2621 inc_nlink(inode);
2622 inc_nlink(dentry->d_parent->d_inode);
2623
2624 /*
2625 * Control reaches here with cgroup_mutex held.
2626 * @inode->i_mutex should nest outside cgroup_mutex but we
2627 * want to populate it immediately without releasing
2628 * cgroup_mutex. As @inode isn't visible to anyone else
2629 * yet, trylock will always succeed without affecting
2630 * lockdep checks.
2631 */
2632 WARN_ON_ONCE(!mutex_trylock(&inode->i_mutex));
2633 } else if (S_ISREG(mode)) {
2634 inode->i_size = 0;
2635 inode->i_fop = &cgroup_file_operations;
2636 inode->i_op = &cgroup_file_inode_operations;
2637 }
2638 d_instantiate(dentry, inode);
2639 dget(dentry); /* Extra count - pin the dentry in core */
2640 return 0;
2641 }
2642
2643 /**
2644 * cgroup_file_mode - deduce file mode of a control file
2645 * @cft: the control file in question
2646 *
2647 * returns cft->mode if ->mode is not 0
2648 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
2649 * returns S_IRUGO if it has only a read handler
2650 * returns S_IWUSR if it has only a write hander
2651 */
2652 static umode_t cgroup_file_mode(const struct cftype *cft)
2653 {
2654 umode_t mode = 0;
2655
2656 if (cft->mode)
2657 return cft->mode;
2658
2659 if (cft->read || cft->read_u64 || cft->read_s64 ||
2660 cft->read_map || cft->read_seq_string)
2661 mode |= S_IRUGO;
2662
2663 if (cft->write || cft->write_u64 || cft->write_s64 ||
2664 cft->write_string || cft->trigger)
2665 mode |= S_IWUSR;
2666
2667 return mode;
2668 }
2669
2670 static int cgroup_add_file(struct cgroup *cgrp, struct cgroup_subsys *subsys,
2671 struct cftype *cft)
2672 {
2673 struct dentry *dir = cgrp->dentry;
2674 struct cgroup *parent = __d_cgrp(dir);
2675 struct dentry *dentry;
2676 struct cfent *cfe;
2677 int error;
2678 umode_t mode;
2679 char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
2680
2681 simple_xattrs_init(&cft->xattrs);
2682
2683 if (subsys && !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) {
2684 strcpy(name, subsys->name);
2685 strcat(name, ".");
2686 }
2687 strcat(name, cft->name);
2688
2689 BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
2690
2691 cfe = kzalloc(sizeof(*cfe), GFP_KERNEL);
2692 if (!cfe)
2693 return -ENOMEM;
2694
2695 dentry = lookup_one_len(name, dir, strlen(name));
2696 if (IS_ERR(dentry)) {
2697 error = PTR_ERR(dentry);
2698 goto out;
2699 }
2700
2701 mode = cgroup_file_mode(cft);
2702 error = cgroup_create_file(dentry, mode | S_IFREG, cgrp->root->sb);
2703 if (!error) {
2704 cfe->type = (void *)cft;
2705 cfe->dentry = dentry;
2706 dentry->d_fsdata = cfe;
2707 list_add_tail(&cfe->node, &parent->files);
2708 cfe = NULL;
2709 }
2710 dput(dentry);
2711 out:
2712 kfree(cfe);
2713 return error;
2714 }
2715
2716 static int cgroup_addrm_files(struct cgroup *cgrp, struct cgroup_subsys *subsys,
2717 struct cftype cfts[], bool is_add)
2718 {
2719 struct cftype *cft;
2720 int err, ret = 0;
2721
2722 for (cft = cfts; cft->name[0] != '\0'; cft++) {
2723 /* does cft->flags tell us to skip this file on @cgrp? */
2724 if ((cft->flags & CFTYPE_INSANE) && cgroup_sane_behavior(cgrp))
2725 continue;
2726 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgrp->parent)
2727 continue;
2728 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgrp->parent)
2729 continue;
2730
2731 if (is_add) {
2732 err = cgroup_add_file(cgrp, subsys, cft);
2733 if (err)
2734 pr_warn("cgroup_addrm_files: failed to add %s, err=%d\n",
2735 cft->name, err);
2736 ret = err;
2737 } else {
2738 cgroup_rm_file(cgrp, cft);
2739 }
2740 }
2741 return ret;
2742 }
2743
2744 static DEFINE_MUTEX(cgroup_cft_mutex);
2745
2746 static void cgroup_cfts_prepare(void)
2747 __acquires(&cgroup_cft_mutex) __acquires(&cgroup_mutex)
2748 {
2749 /*
2750 * Thanks to the entanglement with vfs inode locking, we can't walk
2751 * the existing cgroups under cgroup_mutex and create files.
2752 * Instead, we increment reference on all cgroups and build list of
2753 * them using @cgrp->cft_q_node. Grab cgroup_cft_mutex to ensure
2754 * exclusive access to the field.
2755 */
2756 mutex_lock(&cgroup_cft_mutex);
2757 mutex_lock(&cgroup_mutex);
2758 }
2759
2760 static void cgroup_cfts_commit(struct cgroup_subsys *ss,
2761 struct cftype *cfts, bool is_add)
2762 __releases(&cgroup_mutex) __releases(&cgroup_cft_mutex)
2763 {
2764 LIST_HEAD(pending);
2765 struct cgroup *cgrp, *n;
2766
2767 /* %NULL @cfts indicates abort and don't bother if @ss isn't attached */
2768 if (cfts && ss->root != &rootnode) {
2769 list_for_each_entry(cgrp, &ss->root->allcg_list, allcg_node) {
2770 dget(cgrp->dentry);
2771 list_add_tail(&cgrp->cft_q_node, &pending);
2772 }
2773 }
2774
2775 mutex_unlock(&cgroup_mutex);
2776
2777 /*
2778 * All new cgroups will see @cfts update on @ss->cftsets. Add/rm
2779 * files for all cgroups which were created before.
2780 */
2781 list_for_each_entry_safe(cgrp, n, &pending, cft_q_node) {
2782 struct inode *inode = cgrp->dentry->d_inode;
2783
2784 mutex_lock(&inode->i_mutex);
2785 mutex_lock(&cgroup_mutex);
2786 if (!cgroup_is_removed(cgrp))
2787 cgroup_addrm_files(cgrp, ss, cfts, is_add);
2788 mutex_unlock(&cgroup_mutex);
2789 mutex_unlock(&inode->i_mutex);
2790
2791 list_del_init(&cgrp->cft_q_node);
2792 dput(cgrp->dentry);
2793 }
2794
2795 mutex_unlock(&cgroup_cft_mutex);
2796 }
2797
2798 /**
2799 * cgroup_add_cftypes - add an array of cftypes to a subsystem
2800 * @ss: target cgroup subsystem
2801 * @cfts: zero-length name terminated array of cftypes
2802 *
2803 * Register @cfts to @ss. Files described by @cfts are created for all
2804 * existing cgroups to which @ss is attached and all future cgroups will
2805 * have them too. This function can be called anytime whether @ss is
2806 * attached or not.
2807 *
2808 * Returns 0 on successful registration, -errno on failure. Note that this
2809 * function currently returns 0 as long as @cfts registration is successful
2810 * even if some file creation attempts on existing cgroups fail.
2811 */
2812 int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2813 {
2814 struct cftype_set *set;
2815
2816 set = kzalloc(sizeof(*set), GFP_KERNEL);
2817 if (!set)
2818 return -ENOMEM;
2819
2820 cgroup_cfts_prepare();
2821 set->cfts = cfts;
2822 list_add_tail(&set->node, &ss->cftsets);
2823 cgroup_cfts_commit(ss, cfts, true);
2824
2825 return 0;
2826 }
2827 EXPORT_SYMBOL_GPL(cgroup_add_cftypes);
2828
2829 /**
2830 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
2831 * @ss: target cgroup subsystem
2832 * @cfts: zero-length name terminated array of cftypes
2833 *
2834 * Unregister @cfts from @ss. Files described by @cfts are removed from
2835 * all existing cgroups to which @ss is attached and all future cgroups
2836 * won't have them either. This function can be called anytime whether @ss
2837 * is attached or not.
2838 *
2839 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2840 * registered with @ss.
2841 */
2842 int cgroup_rm_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2843 {
2844 struct cftype_set *set;
2845
2846 cgroup_cfts_prepare();
2847
2848 list_for_each_entry(set, &ss->cftsets, node) {
2849 if (set->cfts == cfts) {
2850 list_del_init(&set->node);
2851 cgroup_cfts_commit(ss, cfts, false);
2852 return 0;
2853 }
2854 }
2855
2856 cgroup_cfts_commit(ss, NULL, false);
2857 return -ENOENT;
2858 }
2859
2860 /**
2861 * cgroup_task_count - count the number of tasks in a cgroup.
2862 * @cgrp: the cgroup in question
2863 *
2864 * Return the number of tasks in the cgroup.
2865 */
2866 int cgroup_task_count(const struct cgroup *cgrp)
2867 {
2868 int count = 0;
2869 struct cg_cgroup_link *link;
2870
2871 read_lock(&css_set_lock);
2872 list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
2873 count += atomic_read(&link->cg->refcount);
2874 }
2875 read_unlock(&css_set_lock);
2876 return count;
2877 }
2878
2879 /*
2880 * Advance a list_head iterator. The iterator should be positioned at
2881 * the start of a css_set
2882 */
2883 static void cgroup_advance_iter(struct cgroup *cgrp,
2884 struct cgroup_iter *it)
2885 {
2886 struct list_head *l = it->cg_link;
2887 struct cg_cgroup_link *link;
2888 struct css_set *cg;
2889
2890 /* Advance to the next non-empty css_set */
2891 do {
2892 l = l->next;
2893 if (l == &cgrp->css_sets) {
2894 it->cg_link = NULL;
2895 return;
2896 }
2897 link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
2898 cg = link->cg;
2899 } while (list_empty(&cg->tasks));
2900 it->cg_link = l;
2901 it->task = cg->tasks.next;
2902 }
2903
2904 /*
2905 * To reduce the fork() overhead for systems that are not actually
2906 * using their cgroups capability, we don't maintain the lists running
2907 * through each css_set to its tasks until we see the list actually
2908 * used - in other words after the first call to cgroup_iter_start().
2909 */
2910 static void cgroup_enable_task_cg_lists(void)
2911 {
2912 struct task_struct *p, *g;
2913 write_lock(&css_set_lock);
2914 use_task_css_set_links = 1;
2915 /*
2916 * We need tasklist_lock because RCU is not safe against
2917 * while_each_thread(). Besides, a forking task that has passed
2918 * cgroup_post_fork() without seeing use_task_css_set_links = 1
2919 * is not guaranteed to have its child immediately visible in the
2920 * tasklist if we walk through it with RCU.
2921 */
2922 read_lock(&tasklist_lock);
2923 do_each_thread(g, p) {
2924 task_lock(p);
2925 /*
2926 * We should check if the process is exiting, otherwise
2927 * it will race with cgroup_exit() in that the list
2928 * entry won't be deleted though the process has exited.
2929 */
2930 if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
2931 list_add(&p->cg_list, &p->cgroups->tasks);
2932 task_unlock(p);
2933 } while_each_thread(g, p);
2934 read_unlock(&tasklist_lock);
2935 write_unlock(&css_set_lock);
2936 }
2937
2938 /**
2939 * cgroup_next_descendant_pre - find the next descendant for pre-order walk
2940 * @pos: the current position (%NULL to initiate traversal)
2941 * @cgroup: cgroup whose descendants to walk
2942 *
2943 * To be used by cgroup_for_each_descendant_pre(). Find the next
2944 * descendant to visit for pre-order traversal of @cgroup's descendants.
2945 */
2946 struct cgroup *cgroup_next_descendant_pre(struct cgroup *pos,
2947 struct cgroup *cgroup)
2948 {
2949 struct cgroup *next;
2950
2951 WARN_ON_ONCE(!rcu_read_lock_held());
2952
2953 /* if first iteration, pretend we just visited @cgroup */
2954 if (!pos) {
2955 if (list_empty(&cgroup->children))
2956 return NULL;
2957 pos = cgroup;
2958 }
2959
2960 /* visit the first child if exists */
2961 next = list_first_or_null_rcu(&pos->children, struct cgroup, sibling);
2962 if (next)
2963 return next;
2964
2965 /* no child, visit my or the closest ancestor's next sibling */
2966 do {
2967 next = list_entry_rcu(pos->sibling.next, struct cgroup,
2968 sibling);
2969 if (&next->sibling != &pos->parent->children)
2970 return next;
2971
2972 pos = pos->parent;
2973 } while (pos != cgroup);
2974
2975 return NULL;
2976 }
2977 EXPORT_SYMBOL_GPL(cgroup_next_descendant_pre);
2978
2979 /**
2980 * cgroup_rightmost_descendant - return the rightmost descendant of a cgroup
2981 * @pos: cgroup of interest
2982 *
2983 * Return the rightmost descendant of @pos. If there's no descendant,
2984 * @pos is returned. This can be used during pre-order traversal to skip
2985 * subtree of @pos.
2986 */
2987 struct cgroup *cgroup_rightmost_descendant(struct cgroup *pos)
2988 {
2989 struct cgroup *last, *tmp;
2990
2991 WARN_ON_ONCE(!rcu_read_lock_held());
2992
2993 do {
2994 last = pos;
2995 /* ->prev isn't RCU safe, walk ->next till the end */
2996 pos = NULL;
2997 list_for_each_entry_rcu(tmp, &last->children, sibling)
2998 pos = tmp;
2999 } while (pos);
3000
3001 return last;
3002 }
3003 EXPORT_SYMBOL_GPL(cgroup_rightmost_descendant);
3004
3005 static struct cgroup *cgroup_leftmost_descendant(struct cgroup *pos)
3006 {
3007 struct cgroup *last;
3008
3009 do {
3010 last = pos;
3011 pos = list_first_or_null_rcu(&pos->children, struct cgroup,
3012 sibling);
3013 } while (pos);
3014
3015 return last;
3016 }
3017
3018 /**
3019 * cgroup_next_descendant_post - find the next descendant for post-order walk
3020 * @pos: the current position (%NULL to initiate traversal)
3021 * @cgroup: cgroup whose descendants to walk
3022 *
3023 * To be used by cgroup_for_each_descendant_post(). Find the next
3024 * descendant to visit for post-order traversal of @cgroup's descendants.
3025 */
3026 struct cgroup *cgroup_next_descendant_post(struct cgroup *pos,
3027 struct cgroup *cgroup)
3028 {
3029 struct cgroup *next;
3030
3031 WARN_ON_ONCE(!rcu_read_lock_held());
3032
3033 /* if first iteration, visit the leftmost descendant */
3034 if (!pos) {
3035 next = cgroup_leftmost_descendant(cgroup);
3036 return next != cgroup ? next : NULL;
3037 }
3038
3039 /* if there's an unvisited sibling, visit its leftmost descendant */
3040 next = list_entry_rcu(pos->sibling.next, struct cgroup, sibling);
3041 if (&next->sibling != &pos->parent->children)
3042 return cgroup_leftmost_descendant(next);
3043
3044 /* no sibling left, visit parent */
3045 next = pos->parent;
3046 return next != cgroup ? next : NULL;
3047 }
3048 EXPORT_SYMBOL_GPL(cgroup_next_descendant_post);
3049
3050 void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
3051 __acquires(css_set_lock)
3052 {
3053 /*
3054 * The first time anyone tries to iterate across a cgroup,
3055 * we need to enable the list linking each css_set to its
3056 * tasks, and fix up all existing tasks.
3057 */
3058 if (!use_task_css_set_links)
3059 cgroup_enable_task_cg_lists();
3060
3061 read_lock(&css_set_lock);
3062 it->cg_link = &cgrp->css_sets;
3063 cgroup_advance_iter(cgrp, it);
3064 }
3065
3066 struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
3067 struct cgroup_iter *it)
3068 {
3069 struct task_struct *res;
3070 struct list_head *l = it->task;
3071 struct cg_cgroup_link *link;
3072
3073 /* If the iterator cg is NULL, we have no tasks */
3074 if (!it->cg_link)
3075 return NULL;
3076 res = list_entry(l, struct task_struct, cg_list);
3077 /* Advance iterator to find next entry */
3078 l = l->next;
3079 link = list_entry(it->cg_link, struct cg_cgroup_link, cgrp_link_list);
3080 if (l == &link->cg->tasks) {
3081 /* We reached the end of this task list - move on to
3082 * the next cg_cgroup_link */
3083 cgroup_advance_iter(cgrp, it);
3084 } else {
3085 it->task = l;
3086 }
3087 return res;
3088 }
3089
3090 void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
3091 __releases(css_set_lock)
3092 {
3093 read_unlock(&css_set_lock);
3094 }
3095
3096 static inline int started_after_time(struct task_struct *t1,
3097 struct timespec *time,
3098 struct task_struct *t2)
3099 {
3100 int start_diff = timespec_compare(&t1->start_time, time);
3101 if (start_diff > 0) {
3102 return 1;
3103 } else if (start_diff < 0) {
3104 return 0;
3105 } else {
3106 /*
3107 * Arbitrarily, if two processes started at the same
3108 * time, we'll say that the lower pointer value
3109 * started first. Note that t2 may have exited by now
3110 * so this may not be a valid pointer any longer, but
3111 * that's fine - it still serves to distinguish
3112 * between two tasks started (effectively) simultaneously.
3113 */
3114 return t1 > t2;
3115 }
3116 }
3117
3118 /*
3119 * This function is a callback from heap_insert() and is used to order
3120 * the heap.
3121 * In this case we order the heap in descending task start time.
3122 */
3123 static inline int started_after(void *p1, void *p2)
3124 {
3125 struct task_struct *t1 = p1;
3126 struct task_struct *t2 = p2;
3127 return started_after_time(t1, &t2->start_time, t2);
3128 }
3129
3130 /**
3131 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
3132 * @scan: struct cgroup_scanner containing arguments for the scan
3133 *
3134 * Arguments include pointers to callback functions test_task() and
3135 * process_task().
3136 * Iterate through all the tasks in a cgroup, calling test_task() for each,
3137 * and if it returns true, call process_task() for it also.
3138 * The test_task pointer may be NULL, meaning always true (select all tasks).
3139 * Effectively duplicates cgroup_iter_{start,next,end}()
3140 * but does not lock css_set_lock for the call to process_task().
3141 * The struct cgroup_scanner may be embedded in any structure of the caller's
3142 * creation.
3143 * It is guaranteed that process_task() will act on every task that
3144 * is a member of the cgroup for the duration of this call. This
3145 * function may or may not call process_task() for tasks that exit
3146 * or move to a different cgroup during the call, or are forked or
3147 * move into the cgroup during the call.
3148 *
3149 * Note that test_task() may be called with locks held, and may in some
3150 * situations be called multiple times for the same task, so it should
3151 * be cheap.
3152 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
3153 * pre-allocated and will be used for heap operations (and its "gt" member will
3154 * be overwritten), else a temporary heap will be used (allocation of which
3155 * may cause this function to fail).
3156 */
3157 int cgroup_scan_tasks(struct cgroup_scanner *scan)
3158 {
3159 int retval, i;
3160 struct cgroup_iter it;
3161 struct task_struct *p, *dropped;
3162 /* Never dereference latest_task, since it's not refcounted */
3163 struct task_struct *latest_task = NULL;
3164 struct ptr_heap tmp_heap;
3165 struct ptr_heap *heap;
3166 struct timespec latest_time = { 0, 0 };
3167
3168 if (scan->heap) {
3169 /* The caller supplied our heap and pre-allocated its memory */
3170 heap = scan->heap;
3171 heap->gt = &started_after;
3172 } else {
3173 /* We need to allocate our own heap memory */
3174 heap = &tmp_heap;
3175 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
3176 if (retval)
3177 /* cannot allocate the heap */
3178 return retval;
3179 }
3180
3181 again:
3182 /*
3183 * Scan tasks in the cgroup, using the scanner's "test_task" callback
3184 * to determine which are of interest, and using the scanner's
3185 * "process_task" callback to process any of them that need an update.
3186 * Since we don't want to hold any locks during the task updates,
3187 * gather tasks to be processed in a heap structure.
3188 * The heap is sorted by descending task start time.
3189 * If the statically-sized heap fills up, we overflow tasks that
3190 * started later, and in future iterations only consider tasks that
3191 * started after the latest task in the previous pass. This
3192 * guarantees forward progress and that we don't miss any tasks.
3193 */
3194 heap->size = 0;
3195 cgroup_iter_start(scan->cg, &it);
3196 while ((p = cgroup_iter_next(scan->cg, &it))) {
3197 /*
3198 * Only affect tasks that qualify per the caller's callback,
3199 * if he provided one
3200 */
3201 if (scan->test_task && !scan->test_task(p, scan))
3202 continue;
3203 /*
3204 * Only process tasks that started after the last task
3205 * we processed
3206 */
3207 if (!started_after_time(p, &latest_time, latest_task))
3208 continue;
3209 dropped = heap_insert(heap, p);
3210 if (dropped == NULL) {
3211 /*
3212 * The new task was inserted; the heap wasn't
3213 * previously full
3214 */
3215 get_task_struct(p);
3216 } else if (dropped != p) {
3217 /*
3218 * The new task was inserted, and pushed out a
3219 * different task
3220 */
3221 get_task_struct(p);
3222 put_task_struct(dropped);
3223 }
3224 /*
3225 * Else the new task was newer than anything already in
3226 * the heap and wasn't inserted
3227 */
3228 }
3229 cgroup_iter_end(scan->cg, &it);
3230
3231 if (heap->size) {
3232 for (i = 0; i < heap->size; i++) {
3233 struct task_struct *q = heap->ptrs[i];
3234 if (i == 0) {
3235 latest_time = q->start_time;
3236 latest_task = q;
3237 }
3238 /* Process the task per the caller's callback */
3239 scan->process_task(q, scan);
3240 put_task_struct(q);
3241 }
3242 /*
3243 * If we had to process any tasks at all, scan again
3244 * in case some of them were in the middle of forking
3245 * children that didn't get processed.
3246 * Not the most efficient way to do it, but it avoids
3247 * having to take callback_mutex in the fork path
3248 */
3249 goto again;
3250 }
3251 if (heap == &tmp_heap)
3252 heap_free(&tmp_heap);
3253 return 0;
3254 }
3255
3256 static void cgroup_transfer_one_task(struct task_struct *task,
3257 struct cgroup_scanner *scan)
3258 {
3259 struct cgroup *new_cgroup = scan->data;
3260
3261 mutex_lock(&cgroup_mutex);
3262 cgroup_attach_task(new_cgroup, task, false);
3263 mutex_unlock(&cgroup_mutex);
3264 }
3265
3266 /**
3267 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
3268 * @to: cgroup to which the tasks will be moved
3269 * @from: cgroup in which the tasks currently reside
3270 */
3271 int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
3272 {
3273 struct cgroup_scanner scan;
3274
3275 scan.cg = from;
3276 scan.test_task = NULL; /* select all tasks in cgroup */
3277 scan.process_task = cgroup_transfer_one_task;
3278 scan.heap = NULL;
3279 scan.data = to;
3280
3281 return cgroup_scan_tasks(&scan);
3282 }
3283
3284 /*
3285 * Stuff for reading the 'tasks'/'procs' files.
3286 *
3287 * Reading this file can return large amounts of data if a cgroup has
3288 * *lots* of attached tasks. So it may need several calls to read(),
3289 * but we cannot guarantee that the information we produce is correct
3290 * unless we produce it entirely atomically.
3291 *
3292 */
3293
3294 /* which pidlist file are we talking about? */
3295 enum cgroup_filetype {
3296 CGROUP_FILE_PROCS,
3297 CGROUP_FILE_TASKS,
3298 };
3299
3300 /*
3301 * A pidlist is a list of pids that virtually represents the contents of one
3302 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
3303 * a pair (one each for procs, tasks) for each pid namespace that's relevant
3304 * to the cgroup.
3305 */
3306 struct cgroup_pidlist {
3307 /*
3308 * used to find which pidlist is wanted. doesn't change as long as
3309 * this particular list stays in the list.
3310 */
3311 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
3312 /* array of xids */
3313 pid_t *list;
3314 /* how many elements the above list has */
3315 int length;
3316 /* how many files are using the current array */
3317 int use_count;
3318 /* each of these stored in a list by its cgroup */
3319 struct list_head links;
3320 /* pointer to the cgroup we belong to, for list removal purposes */
3321 struct cgroup *owner;
3322 /* protects the other fields */
3323 struct rw_semaphore mutex;
3324 };
3325
3326 /*
3327 * The following two functions "fix" the issue where there are more pids
3328 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3329 * TODO: replace with a kernel-wide solution to this problem
3330 */
3331 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
3332 static void *pidlist_allocate(int count)
3333 {
3334 if (PIDLIST_TOO_LARGE(count))
3335 return vmalloc(count * sizeof(pid_t));
3336 else
3337 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
3338 }
3339 static void pidlist_free(void *p)
3340 {
3341 if (is_vmalloc_addr(p))
3342 vfree(p);
3343 else
3344 kfree(p);
3345 }
3346
3347 /*
3348 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
3349 * Returns the number of unique elements.
3350 */
3351 static int pidlist_uniq(pid_t *list, int length)
3352 {
3353 int src, dest = 1;
3354
3355 /*
3356 * we presume the 0th element is unique, so i starts at 1. trivial
3357 * edge cases first; no work needs to be done for either
3358 */
3359 if (length == 0 || length == 1)
3360 return length;
3361 /* src and dest walk down the list; dest counts unique elements */
3362 for (src = 1; src < length; src++) {
3363 /* find next unique element */
3364 while (list[src] == list[src-1]) {
3365 src++;
3366 if (src == length)
3367 goto after;
3368 }
3369 /* dest always points to where the next unique element goes */
3370 list[dest] = list[src];
3371 dest++;
3372 }
3373 after:
3374 return dest;
3375 }
3376
3377 static int cmppid(const void *a, const void *b)
3378 {
3379 return *(pid_t *)a - *(pid_t *)b;
3380 }
3381
3382 /*
3383 * find the appropriate pidlist for our purpose (given procs vs tasks)
3384 * returns with the lock on that pidlist already held, and takes care
3385 * of the use count, or returns NULL with no locks held if we're out of
3386 * memory.
3387 */
3388 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3389 enum cgroup_filetype type)
3390 {
3391 struct cgroup_pidlist *l;
3392 /* don't need task_nsproxy() if we're looking at ourself */
3393 struct pid_namespace *ns = task_active_pid_ns(current);
3394
3395 /*
3396 * We can't drop the pidlist_mutex before taking the l->mutex in case
3397 * the last ref-holder is trying to remove l from the list at the same
3398 * time. Holding the pidlist_mutex precludes somebody taking whichever
3399 * list we find out from under us - compare release_pid_array().
3400 */
3401 mutex_lock(&cgrp->pidlist_mutex);
3402 list_for_each_entry(l, &cgrp->pidlists, links) {
3403 if (l->key.type == type && l->key.ns == ns) {
3404 /* make sure l doesn't vanish out from under us */
3405 down_write(&l->mutex);
3406 mutex_unlock(&cgrp->pidlist_mutex);
3407 return l;
3408 }
3409 }
3410 /* entry not found; create a new one */
3411 l = kmalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
3412 if (!l) {
3413 mutex_unlock(&cgrp->pidlist_mutex);
3414 return l;
3415 }
3416 init_rwsem(&l->mutex);
3417 down_write(&l->mutex);
3418 l->key.type = type;
3419 l->key.ns = get_pid_ns(ns);
3420 l->use_count = 0; /* don't increment here */
3421 l->list = NULL;
3422 l->owner = cgrp;
3423 list_add(&l->links, &cgrp->pidlists);
3424 mutex_unlock(&cgrp->pidlist_mutex);
3425 return l;
3426 }
3427
3428 /*
3429 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3430 */
3431 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3432 struct cgroup_pidlist **lp)
3433 {
3434 pid_t *array;
3435 int length;
3436 int pid, n = 0; /* used for populating the array */
3437 struct cgroup_iter it;
3438 struct task_struct *tsk;
3439 struct cgroup_pidlist *l;
3440
3441 /*
3442 * If cgroup gets more users after we read count, we won't have
3443 * enough space - tough. This race is indistinguishable to the
3444 * caller from the case that the additional cgroup users didn't
3445 * show up until sometime later on.
3446 */
3447 length = cgroup_task_count(cgrp);
3448 array = pidlist_allocate(length);
3449 if (!array)
3450 return -ENOMEM;
3451 /* now, populate the array */
3452 cgroup_iter_start(cgrp, &it);
3453 while ((tsk = cgroup_iter_next(cgrp, &it))) {
3454 if (unlikely(n == length))
3455 break;
3456 /* get tgid or pid for procs or tasks file respectively */
3457 if (type == CGROUP_FILE_PROCS)
3458 pid = task_tgid_vnr(tsk);
3459 else
3460 pid = task_pid_vnr(tsk);
3461 if (pid > 0) /* make sure to only use valid results */
3462 array[n++] = pid;
3463 }
3464 cgroup_iter_end(cgrp, &it);
3465 length = n;
3466 /* now sort & (if procs) strip out duplicates */
3467 sort(array, length, sizeof(pid_t), cmppid, NULL);
3468 if (type == CGROUP_FILE_PROCS)
3469 length = pidlist_uniq(array, length);
3470 l = cgroup_pidlist_find(cgrp, type);
3471 if (!l) {
3472 pidlist_free(array);
3473 return -ENOMEM;
3474 }
3475 /* store array, freeing old if necessary - lock already held */
3476 pidlist_free(l->list);
3477 l->list = array;
3478 l->length = length;
3479 l->use_count++;
3480 up_write(&l->mutex);
3481 *lp = l;
3482 return 0;
3483 }
3484
3485 /**
3486 * cgroupstats_build - build and fill cgroupstats
3487 * @stats: cgroupstats to fill information into
3488 * @dentry: A dentry entry belonging to the cgroup for which stats have
3489 * been requested.
3490 *
3491 * Build and fill cgroupstats so that taskstats can export it to user
3492 * space.
3493 */
3494 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
3495 {
3496 int ret = -EINVAL;
3497 struct cgroup *cgrp;
3498 struct cgroup_iter it;
3499 struct task_struct *tsk;
3500
3501 /*
3502 * Validate dentry by checking the superblock operations,
3503 * and make sure it's a directory.
3504 */
3505 if (dentry->d_sb->s_op != &cgroup_ops ||
3506 !S_ISDIR(dentry->d_inode->i_mode))
3507 goto err;
3508
3509 ret = 0;
3510 cgrp = dentry->d_fsdata;
3511
3512 cgroup_iter_start(cgrp, &it);
3513 while ((tsk = cgroup_iter_next(cgrp, &it))) {
3514 switch (tsk->state) {
3515 case TASK_RUNNING:
3516 stats->nr_running++;
3517 break;
3518 case TASK_INTERRUPTIBLE:
3519 stats->nr_sleeping++;
3520 break;
3521 case TASK_UNINTERRUPTIBLE:
3522 stats->nr_uninterruptible++;
3523 break;
3524 case TASK_STOPPED:
3525 stats->nr_stopped++;
3526 break;
3527 default:
3528 if (delayacct_is_task_waiting_on_io(tsk))
3529 stats->nr_io_wait++;
3530 break;
3531 }
3532 }
3533 cgroup_iter_end(cgrp, &it);
3534
3535 err:
3536 return ret;
3537 }
3538
3539
3540 /*
3541 * seq_file methods for the tasks/procs files. The seq_file position is the
3542 * next pid to display; the seq_file iterator is a pointer to the pid
3543 * in the cgroup->l->list array.
3544 */
3545
3546 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
3547 {
3548 /*
3549 * Initially we receive a position value that corresponds to
3550 * one more than the last pid shown (or 0 on the first call or
3551 * after a seek to the start). Use a binary-search to find the
3552 * next pid to display, if any
3553 */
3554 struct cgroup_pidlist *l = s->private;
3555 int index = 0, pid = *pos;
3556 int *iter;
3557
3558 down_read(&l->mutex);
3559 if (pid) {
3560 int end = l->length;
3561
3562 while (index < end) {
3563 int mid = (index + end) / 2;
3564 if (l->list[mid] == pid) {
3565 index = mid;
3566 break;
3567 } else if (l->list[mid] <= pid)
3568 index = mid + 1;
3569 else
3570 end = mid;
3571 }
3572 }
3573 /* If we're off the end of the array, we're done */
3574 if (index >= l->length)
3575 return NULL;
3576 /* Update the abstract position to be the actual pid that we found */
3577 iter = l->list + index;
3578 *pos = *iter;
3579 return iter;
3580 }
3581
3582 static void cgroup_pidlist_stop(struct seq_file *s, void *v)
3583 {
3584 struct cgroup_pidlist *l = s->private;
3585 up_read(&l->mutex);
3586 }
3587
3588 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
3589 {
3590 struct cgroup_pidlist *l = s->private;
3591 pid_t *p = v;
3592 pid_t *end = l->list + l->length;
3593 /*
3594 * Advance to the next pid in the array. If this goes off the
3595 * end, we're done
3596 */
3597 p++;
3598 if (p >= end) {
3599 return NULL;
3600 } else {
3601 *pos = *p;
3602 return p;
3603 }
3604 }
3605
3606 static int cgroup_pidlist_show(struct seq_file *s, void *v)
3607 {
3608 return seq_printf(s, "%d\n", *(int *)v);
3609 }
3610
3611 /*
3612 * seq_operations functions for iterating on pidlists through seq_file -
3613 * independent of whether it's tasks or procs
3614 */
3615 static const struct seq_operations cgroup_pidlist_seq_operations = {
3616 .start = cgroup_pidlist_start,
3617 .stop = cgroup_pidlist_stop,
3618 .next = cgroup_pidlist_next,
3619 .show = cgroup_pidlist_show,
3620 };
3621
3622 static void cgroup_release_pid_array(struct cgroup_pidlist *l)
3623 {
3624 /*
3625 * the case where we're the last user of this particular pidlist will
3626 * have us remove it from the cgroup's list, which entails taking the
3627 * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
3628 * pidlist_mutex, we have to take pidlist_mutex first.
3629 */
3630 mutex_lock(&l->owner->pidlist_mutex);
3631 down_write(&l->mutex);
3632 BUG_ON(!l->use_count);
3633 if (!--l->use_count) {
3634 /* we're the last user if refcount is 0; remove and free */
3635 list_del(&l->links);
3636 mutex_unlock(&l->owner->pidlist_mutex);
3637 pidlist_free(l->list);
3638 put_pid_ns(l->key.ns);
3639 up_write(&l->mutex);
3640 kfree(l);
3641 return;
3642 }
3643 mutex_unlock(&l->owner->pidlist_mutex);
3644 up_write(&l->mutex);
3645 }
3646
3647 static int cgroup_pidlist_release(struct inode *inode, struct file *file)
3648 {
3649 struct cgroup_pidlist *l;
3650 if (!(file->f_mode & FMODE_READ))
3651 return 0;
3652 /*
3653 * the seq_file will only be initialized if the file was opened for
3654 * reading; hence we check if it's not null only in that case.
3655 */
3656 l = ((struct seq_file *)file->private_data)->private;
3657 cgroup_release_pid_array(l);
3658 return seq_release(inode, file);
3659 }
3660
3661 static const struct file_operations cgroup_pidlist_operations = {
3662 .read = seq_read,
3663 .llseek = seq_lseek,
3664 .write = cgroup_file_write,
3665 .release = cgroup_pidlist_release,
3666 };
3667
3668 /*
3669 * The following functions handle opens on a file that displays a pidlist
3670 * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
3671 * in the cgroup.
3672 */
3673 /* helper function for the two below it */
3674 static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type)
3675 {
3676 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
3677 struct cgroup_pidlist *l;
3678 int retval;
3679
3680 /* Nothing to do for write-only files */
3681 if (!(file->f_mode & FMODE_READ))
3682 return 0;
3683
3684 /* have the array populated */
3685 retval = pidlist_array_load(cgrp, type, &l);
3686 if (retval)
3687 return retval;
3688 /* configure file information */
3689 file->f_op = &cgroup_pidlist_operations;
3690
3691 retval = seq_open(file, &cgroup_pidlist_seq_operations);
3692 if (retval) {
3693 cgroup_release_pid_array(l);
3694 return retval;
3695 }
3696 ((struct seq_file *)file->private_data)->private = l;
3697 return 0;
3698 }
3699 static int cgroup_tasks_open(struct inode *unused, struct file *file)
3700 {
3701 return cgroup_pidlist_open(file, CGROUP_FILE_TASKS);
3702 }
3703 static int cgroup_procs_open(struct inode *unused, struct file *file)
3704 {
3705 return cgroup_pidlist_open(file, CGROUP_FILE_PROCS);
3706 }
3707
3708 static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
3709 struct cftype *cft)
3710 {
3711 return notify_on_release(cgrp);
3712 }
3713
3714 static int cgroup_write_notify_on_release(struct cgroup *cgrp,
3715 struct cftype *cft,
3716 u64 val)
3717 {
3718 clear_bit(CGRP_RELEASABLE, &cgrp->flags);
3719 if (val)
3720 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3721 else
3722 clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3723 return 0;
3724 }
3725
3726 /*
3727 * Unregister event and free resources.
3728 *
3729 * Gets called from workqueue.
3730 */
3731 static void cgroup_event_remove(struct work_struct *work)
3732 {
3733 struct cgroup_event *event = container_of(work, struct cgroup_event,
3734 remove);
3735 struct cgroup *cgrp = event->cgrp;
3736
3737 remove_wait_queue(event->wqh, &event->wait);
3738
3739 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3740
3741 /* Notify userspace the event is going away. */
3742 eventfd_signal(event->eventfd, 1);
3743
3744 eventfd_ctx_put(event->eventfd);
3745 kfree(event);
3746 dput(cgrp->dentry);
3747 }
3748
3749 /*
3750 * Gets called on POLLHUP on eventfd when user closes it.
3751 *
3752 * Called with wqh->lock held and interrupts disabled.
3753 */
3754 static int cgroup_event_wake(wait_queue_t *wait, unsigned mode,
3755 int sync, void *key)
3756 {
3757 struct cgroup_event *event = container_of(wait,
3758 struct cgroup_event, wait);
3759 struct cgroup *cgrp = event->cgrp;
3760 unsigned long flags = (unsigned long)key;
3761
3762 if (flags & POLLHUP) {
3763 /*
3764 * If the event has been detached at cgroup removal, we
3765 * can simply return knowing the other side will cleanup
3766 * for us.
3767 *
3768 * We can't race against event freeing since the other
3769 * side will require wqh->lock via remove_wait_queue(),
3770 * which we hold.
3771 */
3772 spin_lock(&cgrp->event_list_lock);
3773 if (!list_empty(&event->list)) {
3774 list_del_init(&event->list);
3775 /*
3776 * We are in atomic context, but cgroup_event_remove()
3777 * may sleep, so we have to call it in workqueue.
3778 */
3779 schedule_work(&event->remove);
3780 }
3781 spin_unlock(&cgrp->event_list_lock);
3782 }
3783
3784 return 0;
3785 }
3786
3787 static void cgroup_event_ptable_queue_proc(struct file *file,
3788 wait_queue_head_t *wqh, poll_table *pt)
3789 {
3790 struct cgroup_event *event = container_of(pt,
3791 struct cgroup_event, pt);
3792
3793 event->wqh = wqh;
3794 add_wait_queue(wqh, &event->wait);
3795 }
3796
3797 /*
3798 * Parse input and register new cgroup event handler.
3799 *
3800 * Input must be in format '<event_fd> <control_fd> <args>'.
3801 * Interpretation of args is defined by control file implementation.
3802 */
3803 static int cgroup_write_event_control(struct cgroup *cgrp, struct cftype *cft,
3804 const char *buffer)
3805 {
3806 struct cgroup_event *event = NULL;
3807 struct cgroup *cgrp_cfile;
3808 unsigned int efd, cfd;
3809 struct file *efile = NULL;
3810 struct file *cfile = NULL;
3811 char *endp;
3812 int ret;
3813
3814 efd = simple_strtoul(buffer, &endp, 10);
3815 if (*endp != ' ')
3816 return -EINVAL;
3817 buffer = endp + 1;
3818
3819 cfd = simple_strtoul(buffer, &endp, 10);
3820 if ((*endp != ' ') && (*endp != '\0'))
3821 return -EINVAL;
3822 buffer = endp + 1;
3823
3824 event = kzalloc(sizeof(*event), GFP_KERNEL);
3825 if (!event)
3826 return -ENOMEM;
3827 event->cgrp = cgrp;
3828 INIT_LIST_HEAD(&event->list);
3829 init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc);
3830 init_waitqueue_func_entry(&event->wait, cgroup_event_wake);
3831 INIT_WORK(&event->remove, cgroup_event_remove);
3832
3833 efile = eventfd_fget(efd);
3834 if (IS_ERR(efile)) {
3835 ret = PTR_ERR(efile);
3836 goto fail;
3837 }
3838
3839 event->eventfd = eventfd_ctx_fileget(efile);
3840 if (IS_ERR(event->eventfd)) {
3841 ret = PTR_ERR(event->eventfd);
3842 goto fail;
3843 }
3844
3845 cfile = fget(cfd);
3846 if (!cfile) {
3847 ret = -EBADF;
3848 goto fail;
3849 }
3850
3851 /* the process need read permission on control file */
3852 /* AV: shouldn't we check that it's been opened for read instead? */
3853 ret = inode_permission(file_inode(cfile), MAY_READ);
3854 if (ret < 0)
3855 goto fail;
3856
3857 event->cft = __file_cft(cfile);
3858 if (IS_ERR(event->cft)) {
3859 ret = PTR_ERR(event->cft);
3860 goto fail;
3861 }
3862
3863 /*
3864 * The file to be monitored must be in the same cgroup as
3865 * cgroup.event_control is.
3866 */
3867 cgrp_cfile = __d_cgrp(cfile->f_dentry->d_parent);
3868 if (cgrp_cfile != cgrp) {
3869 ret = -EINVAL;
3870 goto fail;
3871 }
3872
3873 if (!event->cft->register_event || !event->cft->unregister_event) {
3874 ret = -EINVAL;
3875 goto fail;
3876 }
3877
3878 ret = event->cft->register_event(cgrp, event->cft,
3879 event->eventfd, buffer);
3880 if (ret)
3881 goto fail;
3882
3883 /*
3884 * Events should be removed after rmdir of cgroup directory, but before
3885 * destroying subsystem state objects. Let's take reference to cgroup
3886 * directory dentry to do that.
3887 */
3888 dget(cgrp->dentry);
3889
3890 spin_lock(&cgrp->event_list_lock);
3891 list_add(&event->list, &cgrp->event_list);
3892 spin_unlock(&cgrp->event_list_lock);
3893
3894 fput(cfile);
3895 fput(efile);
3896
3897 return 0;
3898
3899 fail:
3900 if (cfile)
3901 fput(cfile);
3902
3903 if (event && event->eventfd && !IS_ERR(event->eventfd))
3904 eventfd_ctx_put(event->eventfd);
3905
3906 if (!IS_ERR_OR_NULL(efile))
3907 fput(efile);
3908
3909 kfree(event);
3910
3911 return ret;
3912 }
3913
3914 static u64 cgroup_clone_children_read(struct cgroup *cgrp,
3915 struct cftype *cft)
3916 {
3917 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
3918 }
3919
3920 static int cgroup_clone_children_write(struct cgroup *cgrp,
3921 struct cftype *cft,
3922 u64 val)
3923 {
3924 if (val)
3925 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
3926 else
3927 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
3928 return 0;
3929 }
3930
3931 /*
3932 * for the common functions, 'private' gives the type of file
3933 */
3934 /* for hysterical raisins, we can't put this on the older files */
3935 #define CGROUP_FILE_GENERIC_PREFIX "cgroup."
3936 static struct cftype files[] = {
3937 {
3938 .name = "tasks",
3939 .open = cgroup_tasks_open,
3940 .write_u64 = cgroup_tasks_write,
3941 .release = cgroup_pidlist_release,
3942 .mode = S_IRUGO | S_IWUSR,
3943 },
3944 {
3945 .name = CGROUP_FILE_GENERIC_PREFIX "procs",
3946 .open = cgroup_procs_open,
3947 .write_u64 = cgroup_procs_write,
3948 .release = cgroup_pidlist_release,
3949 .mode = S_IRUGO | S_IWUSR,
3950 },
3951 {
3952 .name = "notify_on_release",
3953 .read_u64 = cgroup_read_notify_on_release,
3954 .write_u64 = cgroup_write_notify_on_release,
3955 },
3956 {
3957 .name = CGROUP_FILE_GENERIC_PREFIX "event_control",
3958 .write_string = cgroup_write_event_control,
3959 .mode = S_IWUGO,
3960 },
3961 {
3962 .name = "cgroup.clone_children",
3963 .flags = CFTYPE_INSANE,
3964 .read_u64 = cgroup_clone_children_read,
3965 .write_u64 = cgroup_clone_children_write,
3966 },
3967 {
3968 .name = "cgroup.sane_behavior",
3969 .flags = CFTYPE_ONLY_ON_ROOT,
3970 .read_seq_string = cgroup_sane_behavior_show,
3971 },
3972 {
3973 .name = "release_agent",
3974 .flags = CFTYPE_ONLY_ON_ROOT,
3975 .read_seq_string = cgroup_release_agent_show,
3976 .write_string = cgroup_release_agent_write,
3977 .max_write_len = PATH_MAX,
3978 },
3979 { } /* terminate */
3980 };
3981
3982 /**
3983 * cgroup_populate_dir - selectively creation of files in a directory
3984 * @cgrp: target cgroup
3985 * @base_files: true if the base files should be added
3986 * @subsys_mask: mask of the subsystem ids whose files should be added
3987 */
3988 static int cgroup_populate_dir(struct cgroup *cgrp, bool base_files,
3989 unsigned long subsys_mask)
3990 {
3991 int err;
3992 struct cgroup_subsys *ss;
3993
3994 if (base_files) {
3995 err = cgroup_addrm_files(cgrp, NULL, files, true);
3996 if (err < 0)
3997 return err;
3998 }
3999
4000 /* process cftsets of each subsystem */
4001 for_each_subsys(cgrp->root, ss) {
4002 struct cftype_set *set;
4003 if (!test_bit(ss->subsys_id, &subsys_mask))
4004 continue;
4005
4006 list_for_each_entry(set, &ss->cftsets, node)
4007 cgroup_addrm_files(cgrp, ss, set->cfts, true);
4008 }
4009
4010 /* This cgroup is ready now */
4011 for_each_subsys(cgrp->root, ss) {
4012 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
4013 /*
4014 * Update id->css pointer and make this css visible from
4015 * CSS ID functions. This pointer will be dereferened
4016 * from RCU-read-side without locks.
4017 */
4018 if (css->id)
4019 rcu_assign_pointer(css->id->css, css);
4020 }
4021
4022 return 0;
4023 }
4024
4025 static void css_dput_fn(struct work_struct *work)
4026 {
4027 struct cgroup_subsys_state *css =
4028 container_of(work, struct cgroup_subsys_state, dput_work);
4029 struct dentry *dentry = css->cgroup->dentry;
4030 struct super_block *sb = dentry->d_sb;
4031
4032 atomic_inc(&sb->s_active);
4033 dput(dentry);
4034 deactivate_super(sb);
4035 }
4036
4037 static void init_cgroup_css(struct cgroup_subsys_state *css,
4038 struct cgroup_subsys *ss,
4039 struct cgroup *cgrp)
4040 {
4041 css->cgroup = cgrp;
4042 atomic_set(&css->refcnt, 1);
4043 css->flags = 0;
4044 css->id = NULL;
4045 if (cgrp == dummytop)
4046 css->flags |= CSS_ROOT;
4047 BUG_ON(cgrp->subsys[ss->subsys_id]);
4048 cgrp->subsys[ss->subsys_id] = css;
4049
4050 /*
4051 * css holds an extra ref to @cgrp->dentry which is put on the last
4052 * css_put(). dput() requires process context, which css_put() may
4053 * be called without. @css->dput_work will be used to invoke
4054 * dput() asynchronously from css_put().
4055 */
4056 INIT_WORK(&css->dput_work, css_dput_fn);
4057 }
4058
4059 /* invoke ->post_create() on a new CSS and mark it online if successful */
4060 static int online_css(struct cgroup_subsys *ss, struct cgroup *cgrp)
4061 {
4062 int ret = 0;
4063
4064 lockdep_assert_held(&cgroup_mutex);
4065
4066 if (ss->css_online)
4067 ret = ss->css_online(cgrp);
4068 if (!ret)
4069 cgrp->subsys[ss->subsys_id]->flags |= CSS_ONLINE;
4070 return ret;
4071 }
4072
4073 /* if the CSS is online, invoke ->pre_destory() on it and mark it offline */
4074 static void offline_css(struct cgroup_subsys *ss, struct cgroup *cgrp)
4075 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
4076 {
4077 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
4078
4079 lockdep_assert_held(&cgroup_mutex);
4080
4081 if (!(css->flags & CSS_ONLINE))
4082 return;
4083
4084 if (ss->css_offline)
4085 ss->css_offline(cgrp);
4086
4087 cgrp->subsys[ss->subsys_id]->flags &= ~CSS_ONLINE;
4088 }
4089
4090 /*
4091 * cgroup_create - create a cgroup
4092 * @parent: cgroup that will be parent of the new cgroup
4093 * @dentry: dentry of the new cgroup
4094 * @mode: mode to set on new inode
4095 *
4096 * Must be called with the mutex on the parent inode held
4097 */
4098 static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
4099 umode_t mode)
4100 {
4101 struct cgroup *cgrp;
4102 struct cgroup_name *name;
4103 struct cgroupfs_root *root = parent->root;
4104 int err = 0;
4105 struct cgroup_subsys *ss;
4106 struct super_block *sb = root->sb;
4107
4108 /* allocate the cgroup and its ID, 0 is reserved for the root */
4109 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
4110 if (!cgrp)
4111 return -ENOMEM;
4112
4113 name = cgroup_alloc_name(dentry);
4114 if (!name)
4115 goto err_free_cgrp;
4116 rcu_assign_pointer(cgrp->name, name);
4117
4118 cgrp->id = ida_simple_get(&root->cgroup_ida, 1, 0, GFP_KERNEL);
4119 if (cgrp->id < 0)
4120 goto err_free_name;
4121
4122 /*
4123 * Only live parents can have children. Note that the liveliness
4124 * check isn't strictly necessary because cgroup_mkdir() and
4125 * cgroup_rmdir() are fully synchronized by i_mutex; however, do it
4126 * anyway so that locking is contained inside cgroup proper and we
4127 * don't get nasty surprises if we ever grow another caller.
4128 */
4129 if (!cgroup_lock_live_group(parent)) {
4130 err = -ENODEV;
4131 goto err_free_id;
4132 }
4133
4134 /* Grab a reference on the superblock so the hierarchy doesn't
4135 * get deleted on unmount if there are child cgroups. This
4136 * can be done outside cgroup_mutex, since the sb can't
4137 * disappear while someone has an open control file on the
4138 * fs */
4139 atomic_inc(&sb->s_active);
4140
4141 init_cgroup_housekeeping(cgrp);
4142
4143 dentry->d_fsdata = cgrp;
4144 cgrp->dentry = dentry;
4145
4146 cgrp->parent = parent;
4147 cgrp->root = parent->root;
4148 cgrp->top_cgroup = parent->top_cgroup;
4149
4150 if (notify_on_release(parent))
4151 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4152
4153 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4154 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
4155
4156 for_each_subsys(root, ss) {
4157 struct cgroup_subsys_state *css;
4158
4159 css = ss->css_alloc(cgrp);
4160 if (IS_ERR(css)) {
4161 err = PTR_ERR(css);
4162 goto err_free_all;
4163 }
4164 init_cgroup_css(css, ss, cgrp);
4165 if (ss->use_id) {
4166 err = alloc_css_id(ss, parent, cgrp);
4167 if (err)
4168 goto err_free_all;
4169 }
4170 }
4171
4172 /*
4173 * Create directory. cgroup_create_file() returns with the new
4174 * directory locked on success so that it can be populated without
4175 * dropping cgroup_mutex.
4176 */
4177 err = cgroup_create_file(dentry, S_IFDIR | mode, sb);
4178 if (err < 0)
4179 goto err_free_all;
4180 lockdep_assert_held(&dentry->d_inode->i_mutex);
4181
4182 /* allocation complete, commit to creation */
4183 list_add_tail(&cgrp->allcg_node, &root->allcg_list);
4184 list_add_tail_rcu(&cgrp->sibling, &cgrp->parent->children);
4185 root->number_of_cgroups++;
4186
4187 /* each css holds a ref to the cgroup's dentry */
4188 for_each_subsys(root, ss)
4189 dget(dentry);
4190
4191 /* hold a ref to the parent's dentry */
4192 dget(parent->dentry);
4193
4194 /* creation succeeded, notify subsystems */
4195 for_each_subsys(root, ss) {
4196 err = online_css(ss, cgrp);
4197 if (err)
4198 goto err_destroy;
4199
4200 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
4201 parent->parent) {
4202 pr_warning("cgroup: %s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4203 current->comm, current->pid, ss->name);
4204 if (!strcmp(ss->name, "memory"))
4205 pr_warning("cgroup: \"memory\" requires setting use_hierarchy to 1 on the root.\n");
4206 ss->warned_broken_hierarchy = true;
4207 }
4208 }
4209
4210 err = cgroup_populate_dir(cgrp, true, root->subsys_mask);
4211 if (err)
4212 goto err_destroy;
4213
4214 mutex_unlock(&cgroup_mutex);
4215 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
4216
4217 return 0;
4218
4219 err_free_all:
4220 for_each_subsys(root, ss) {
4221 if (cgrp->subsys[ss->subsys_id])
4222 ss->css_free(cgrp);
4223 }
4224 mutex_unlock(&cgroup_mutex);
4225 /* Release the reference count that we took on the superblock */
4226 deactivate_super(sb);
4227 err_free_id:
4228 ida_simple_remove(&root->cgroup_ida, cgrp->id);
4229 err_free_name:
4230 kfree(rcu_dereference_raw(cgrp->name));
4231 err_free_cgrp:
4232 kfree(cgrp);
4233 return err;
4234
4235 err_destroy:
4236 cgroup_destroy_locked(cgrp);
4237 mutex_unlock(&cgroup_mutex);
4238 mutex_unlock(&dentry->d_inode->i_mutex);
4239 return err;
4240 }
4241
4242 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
4243 {
4244 struct cgroup *c_parent = dentry->d_parent->d_fsdata;
4245
4246 /* the vfs holds inode->i_mutex already */
4247 return cgroup_create(c_parent, dentry, mode | S_IFDIR);
4248 }
4249
4250 static int cgroup_destroy_locked(struct cgroup *cgrp)
4251 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
4252 {
4253 struct dentry *d = cgrp->dentry;
4254 struct cgroup *parent = cgrp->parent;
4255 struct cgroup_event *event, *tmp;
4256 struct cgroup_subsys *ss;
4257
4258 lockdep_assert_held(&d->d_inode->i_mutex);
4259 lockdep_assert_held(&cgroup_mutex);
4260
4261 if (atomic_read(&cgrp->count) || !list_empty(&cgrp->children))
4262 return -EBUSY;
4263
4264 /*
4265 * Block new css_tryget() by deactivating refcnt and mark @cgrp
4266 * removed. This makes future css_tryget() and child creation
4267 * attempts fail thus maintaining the removal conditions verified
4268 * above.
4269 */
4270 for_each_subsys(cgrp->root, ss) {
4271 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
4272
4273 WARN_ON(atomic_read(&css->refcnt) < 0);
4274 atomic_add(CSS_DEACT_BIAS, &css->refcnt);
4275 }
4276 set_bit(CGRP_REMOVED, &cgrp->flags);
4277
4278 /* tell subsystems to initate destruction */
4279 for_each_subsys(cgrp->root, ss)
4280 offline_css(ss, cgrp);
4281
4282 /*
4283 * Put all the base refs. Each css holds an extra reference to the
4284 * cgroup's dentry and cgroup removal proceeds regardless of css
4285 * refs. On the last put of each css, whenever that may be, the
4286 * extra dentry ref is put so that dentry destruction happens only
4287 * after all css's are released.
4288 */
4289 for_each_subsys(cgrp->root, ss)
4290 css_put(cgrp->subsys[ss->subsys_id]);
4291
4292 raw_spin_lock(&release_list_lock);
4293 if (!list_empty(&cgrp->release_list))
4294 list_del_init(&cgrp->release_list);
4295 raw_spin_unlock(&release_list_lock);
4296
4297 /* delete this cgroup from parent->children */
4298 list_del_rcu(&cgrp->sibling);
4299 list_del_init(&cgrp->allcg_node);
4300
4301 dget(d);
4302 cgroup_d_remove_dir(d);
4303 dput(d);
4304
4305 set_bit(CGRP_RELEASABLE, &parent->flags);
4306 check_for_release(parent);
4307
4308 /*
4309 * Unregister events and notify userspace.
4310 * Notify userspace about cgroup removing only after rmdir of cgroup
4311 * directory to avoid race between userspace and kernelspace.
4312 */
4313 spin_lock(&cgrp->event_list_lock);
4314 list_for_each_entry_safe(event, tmp, &cgrp->event_list, list) {
4315 list_del_init(&event->list);
4316 schedule_work(&event->remove);
4317 }
4318 spin_unlock(&cgrp->event_list_lock);
4319
4320 return 0;
4321 }
4322
4323 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
4324 {
4325 int ret;
4326
4327 mutex_lock(&cgroup_mutex);
4328 ret = cgroup_destroy_locked(dentry->d_fsdata);
4329 mutex_unlock(&cgroup_mutex);
4330
4331 return ret;
4332 }
4333
4334 static void __init_or_module cgroup_init_cftsets(struct cgroup_subsys *ss)
4335 {
4336 INIT_LIST_HEAD(&ss->cftsets);
4337
4338 /*
4339 * base_cftset is embedded in subsys itself, no need to worry about
4340 * deregistration.
4341 */
4342 if (ss->base_cftypes) {
4343 ss->base_cftset.cfts = ss->base_cftypes;
4344 list_add_tail(&ss->base_cftset.node, &ss->cftsets);
4345 }
4346 }
4347
4348 static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
4349 {
4350 struct cgroup_subsys_state *css;
4351
4352 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
4353
4354 mutex_lock(&cgroup_mutex);
4355
4356 /* init base cftset */
4357 cgroup_init_cftsets(ss);
4358
4359 /* Create the top cgroup state for this subsystem */
4360 list_add(&ss->sibling, &rootnode.subsys_list);
4361 ss->root = &rootnode;
4362 css = ss->css_alloc(dummytop);
4363 /* We don't handle early failures gracefully */
4364 BUG_ON(IS_ERR(css));
4365 init_cgroup_css(css, ss, dummytop);
4366
4367 /* Update the init_css_set to contain a subsys
4368 * pointer to this state - since the subsystem is
4369 * newly registered, all tasks and hence the
4370 * init_css_set is in the subsystem's top cgroup. */
4371 init_css_set.subsys[ss->subsys_id] = css;
4372
4373 need_forkexit_callback |= ss->fork || ss->exit;
4374
4375 /* At system boot, before all subsystems have been
4376 * registered, no tasks have been forked, so we don't
4377 * need to invoke fork callbacks here. */
4378 BUG_ON(!list_empty(&init_task.tasks));
4379
4380 ss->active = 1;
4381 BUG_ON(online_css(ss, dummytop));
4382
4383 mutex_unlock(&cgroup_mutex);
4384
4385 /* this function shouldn't be used with modular subsystems, since they
4386 * need to register a subsys_id, among other things */
4387 BUG_ON(ss->module);
4388 }
4389
4390 /**
4391 * cgroup_load_subsys: load and register a modular subsystem at runtime
4392 * @ss: the subsystem to load
4393 *
4394 * This function should be called in a modular subsystem's initcall. If the
4395 * subsystem is built as a module, it will be assigned a new subsys_id and set
4396 * up for use. If the subsystem is built-in anyway, work is delegated to the
4397 * simpler cgroup_init_subsys.
4398 */
4399 int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss)
4400 {
4401 struct cgroup_subsys_state *css;
4402 int i, ret;
4403 struct hlist_node *tmp;
4404 struct css_set *cg;
4405 unsigned long key;
4406
4407 /* check name and function validity */
4408 if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN ||
4409 ss->css_alloc == NULL || ss->css_free == NULL)
4410 return -EINVAL;
4411
4412 /*
4413 * we don't support callbacks in modular subsystems. this check is
4414 * before the ss->module check for consistency; a subsystem that could
4415 * be a module should still have no callbacks even if the user isn't
4416 * compiling it as one.
4417 */
4418 if (ss->fork || ss->exit)
4419 return -EINVAL;
4420
4421 /*
4422 * an optionally modular subsystem is built-in: we want to do nothing,
4423 * since cgroup_init_subsys will have already taken care of it.
4424 */
4425 if (ss->module == NULL) {
4426 /* a sanity check */
4427 BUG_ON(subsys[ss->subsys_id] != ss);
4428 return 0;
4429 }
4430
4431 /* init base cftset */
4432 cgroup_init_cftsets(ss);
4433
4434 mutex_lock(&cgroup_mutex);
4435 subsys[ss->subsys_id] = ss;
4436
4437 /*
4438 * no ss->css_alloc seems to need anything important in the ss
4439 * struct, so this can happen first (i.e. before the rootnode
4440 * attachment).
4441 */
4442 css = ss->css_alloc(dummytop);
4443 if (IS_ERR(css)) {
4444 /* failure case - need to deassign the subsys[] slot. */
4445 subsys[ss->subsys_id] = NULL;
4446 mutex_unlock(&cgroup_mutex);
4447 return PTR_ERR(css);
4448 }
4449
4450 list_add(&ss->sibling, &rootnode.subsys_list);
4451 ss->root = &rootnode;
4452
4453 /* our new subsystem will be attached to the dummy hierarchy. */
4454 init_cgroup_css(css, ss, dummytop);
4455 /* init_idr must be after init_cgroup_css because it sets css->id. */
4456 if (ss->use_id) {
4457 ret = cgroup_init_idr(ss, css);
4458 if (ret)
4459 goto err_unload;
4460 }
4461
4462 /*
4463 * Now we need to entangle the css into the existing css_sets. unlike
4464 * in cgroup_init_subsys, there are now multiple css_sets, so each one
4465 * will need a new pointer to it; done by iterating the css_set_table.
4466 * furthermore, modifying the existing css_sets will corrupt the hash
4467 * table state, so each changed css_set will need its hash recomputed.
4468 * this is all done under the css_set_lock.
4469 */
4470 write_lock(&css_set_lock);
4471 hash_for_each_safe(css_set_table, i, tmp, cg, hlist) {
4472 /* skip entries that we already rehashed */
4473 if (cg->subsys[ss->subsys_id])
4474 continue;
4475 /* remove existing entry */
4476 hash_del(&cg->hlist);
4477 /* set new value */
4478 cg->subsys[ss->subsys_id] = css;
4479 /* recompute hash and restore entry */
4480 key = css_set_hash(cg->subsys);
4481 hash_add(css_set_table, &cg->hlist, key);
4482 }
4483 write_unlock(&css_set_lock);
4484
4485 ss->active = 1;
4486 ret = online_css(ss, dummytop);
4487 if (ret)
4488 goto err_unload;
4489
4490 /* success! */
4491 mutex_unlock(&cgroup_mutex);
4492 return 0;
4493
4494 err_unload:
4495 mutex_unlock(&cgroup_mutex);
4496 /* @ss can't be mounted here as try_module_get() would fail */
4497 cgroup_unload_subsys(ss);
4498 return ret;
4499 }
4500 EXPORT_SYMBOL_GPL(cgroup_load_subsys);
4501
4502 /**
4503 * cgroup_unload_subsys: unload a modular subsystem
4504 * @ss: the subsystem to unload
4505 *
4506 * This function should be called in a modular subsystem's exitcall. When this
4507 * function is invoked, the refcount on the subsystem's module will be 0, so
4508 * the subsystem will not be attached to any hierarchy.
4509 */
4510 void cgroup_unload_subsys(struct cgroup_subsys *ss)
4511 {
4512 struct cg_cgroup_link *link;
4513
4514 BUG_ON(ss->module == NULL);
4515
4516 /*
4517 * we shouldn't be called if the subsystem is in use, and the use of
4518 * try_module_get in parse_cgroupfs_options should ensure that it
4519 * doesn't start being used while we're killing it off.
4520 */
4521 BUG_ON(ss->root != &rootnode);
4522
4523 mutex_lock(&cgroup_mutex);
4524
4525 offline_css(ss, dummytop);
4526 ss->active = 0;
4527
4528 if (ss->use_id)
4529 idr_destroy(&ss->idr);
4530
4531 /* deassign the subsys_id */
4532 subsys[ss->subsys_id] = NULL;
4533
4534 /* remove subsystem from rootnode's list of subsystems */
4535 list_del_init(&ss->sibling);
4536
4537 /*
4538 * disentangle the css from all css_sets attached to the dummytop. as
4539 * in loading, we need to pay our respects to the hashtable gods.
4540 */
4541 write_lock(&css_set_lock);
4542 list_for_each_entry(link, &dummytop->css_sets, cgrp_link_list) {
4543 struct css_set *cg = link->cg;
4544 unsigned long key;
4545
4546 hash_del(&cg->hlist);
4547 cg->subsys[ss->subsys_id] = NULL;
4548 key = css_set_hash(cg->subsys);
4549 hash_add(css_set_table, &cg->hlist, key);
4550 }
4551 write_unlock(&css_set_lock);
4552
4553 /*
4554 * remove subsystem's css from the dummytop and free it - need to
4555 * free before marking as null because ss->css_free needs the
4556 * cgrp->subsys pointer to find their state. note that this also
4557 * takes care of freeing the css_id.
4558 */
4559 ss->css_free(dummytop);
4560 dummytop->subsys[ss->subsys_id] = NULL;
4561
4562 mutex_unlock(&cgroup_mutex);
4563 }
4564 EXPORT_SYMBOL_GPL(cgroup_unload_subsys);
4565
4566 /**
4567 * cgroup_init_early - cgroup initialization at system boot
4568 *
4569 * Initialize cgroups at system boot, and initialize any
4570 * subsystems that request early init.
4571 */
4572 int __init cgroup_init_early(void)
4573 {
4574 int i;
4575 atomic_set(&init_css_set.refcount, 1);
4576 INIT_LIST_HEAD(&init_css_set.cg_links);
4577 INIT_LIST_HEAD(&init_css_set.tasks);
4578 INIT_HLIST_NODE(&init_css_set.hlist);
4579 css_set_count = 1;
4580 init_cgroup_root(&rootnode);
4581 root_count = 1;
4582 init_task.cgroups = &init_css_set;
4583
4584 init_css_set_link.cg = &init_css_set;
4585 init_css_set_link.cgrp = dummytop;
4586 list_add(&init_css_set_link.cgrp_link_list,
4587 &rootnode.top_cgroup.css_sets);
4588 list_add(&init_css_set_link.cg_link_list,
4589 &init_css_set.cg_links);
4590
4591 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4592 struct cgroup_subsys *ss = subsys[i];
4593
4594 /* at bootup time, we don't worry about modular subsystems */
4595 if (!ss || ss->module)
4596 continue;
4597
4598 BUG_ON(!ss->name);
4599 BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
4600 BUG_ON(!ss->css_alloc);
4601 BUG_ON(!ss->css_free);
4602 if (ss->subsys_id != i) {
4603 printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
4604 ss->name, ss->subsys_id);
4605 BUG();
4606 }
4607
4608 if (ss->early_init)
4609 cgroup_init_subsys(ss);
4610 }
4611 return 0;
4612 }
4613
4614 /**
4615 * cgroup_init - cgroup initialization
4616 *
4617 * Register cgroup filesystem and /proc file, and initialize
4618 * any subsystems that didn't request early init.
4619 */
4620 int __init cgroup_init(void)
4621 {
4622 int err;
4623 int i;
4624 unsigned long key;
4625
4626 err = bdi_init(&cgroup_backing_dev_info);
4627 if (err)
4628 return err;
4629
4630 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4631 struct cgroup_subsys *ss = subsys[i];
4632
4633 /* at bootup time, we don't worry about modular subsystems */
4634 if (!ss || ss->module)
4635 continue;
4636 if (!ss->early_init)
4637 cgroup_init_subsys(ss);
4638 if (ss->use_id)
4639 cgroup_init_idr(ss, init_css_set.subsys[ss->subsys_id]);
4640 }
4641
4642 /* Add init_css_set to the hash table */
4643 key = css_set_hash(init_css_set.subsys);
4644 hash_add(css_set_table, &init_css_set.hlist, key);
4645 BUG_ON(!init_root_id(&rootnode));
4646
4647 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
4648 if (!cgroup_kobj) {
4649 err = -ENOMEM;
4650 goto out;
4651 }
4652
4653 err = register_filesystem(&cgroup_fs_type);
4654 if (err < 0) {
4655 kobject_put(cgroup_kobj);
4656 goto out;
4657 }
4658
4659 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
4660
4661 out:
4662 if (err)
4663 bdi_destroy(&cgroup_backing_dev_info);
4664
4665 return err;
4666 }
4667
4668 /*
4669 * proc_cgroup_show()
4670 * - Print task's cgroup paths into seq_file, one line for each hierarchy
4671 * - Used for /proc/<pid>/cgroup.
4672 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
4673 * doesn't really matter if tsk->cgroup changes after we read it,
4674 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
4675 * anyway. No need to check that tsk->cgroup != NULL, thanks to
4676 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
4677 * cgroup to top_cgroup.
4678 */
4679
4680 /* TODO: Use a proper seq_file iterator */
4681 static int proc_cgroup_show(struct seq_file *m, void *v)
4682 {
4683 struct pid *pid;
4684 struct task_struct *tsk;
4685 char *buf;
4686 int retval;
4687 struct cgroupfs_root *root;
4688
4689 retval = -ENOMEM;
4690 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4691 if (!buf)
4692 goto out;
4693
4694 retval = -ESRCH;
4695 pid = m->private;
4696 tsk = get_pid_task(pid, PIDTYPE_PID);
4697 if (!tsk)
4698 goto out_free;
4699
4700 retval = 0;
4701
4702 mutex_lock(&cgroup_mutex);
4703
4704 for_each_active_root(root) {
4705 struct cgroup_subsys *ss;
4706 struct cgroup *cgrp;
4707 int count = 0;
4708
4709 seq_printf(m, "%d:", root->hierarchy_id);
4710 for_each_subsys(root, ss)
4711 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
4712 if (strlen(root->name))
4713 seq_printf(m, "%sname=%s", count ? "," : "",
4714 root->name);
4715 seq_putc(m, ':');
4716 cgrp = task_cgroup_from_root(tsk, root);
4717 retval = cgroup_path(cgrp, buf, PAGE_SIZE);
4718 if (retval < 0)
4719 goto out_unlock;
4720 seq_puts(m, buf);
4721 seq_putc(m, '\n');
4722 }
4723
4724 out_unlock:
4725 mutex_unlock(&cgroup_mutex);
4726 put_task_struct(tsk);
4727 out_free:
4728 kfree(buf);
4729 out:
4730 return retval;
4731 }
4732
4733 static int cgroup_open(struct inode *inode, struct file *file)
4734 {
4735 struct pid *pid = PROC_I(inode)->pid;
4736 return single_open(file, proc_cgroup_show, pid);
4737 }
4738
4739 const struct file_operations proc_cgroup_operations = {
4740 .open = cgroup_open,
4741 .read = seq_read,
4742 .llseek = seq_lseek,
4743 .release = single_release,
4744 };
4745
4746 /* Display information about each subsystem and each hierarchy */
4747 static int proc_cgroupstats_show(struct seq_file *m, void *v)
4748 {
4749 int i;
4750
4751 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
4752 /*
4753 * ideally we don't want subsystems moving around while we do this.
4754 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
4755 * subsys/hierarchy state.
4756 */
4757 mutex_lock(&cgroup_mutex);
4758 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4759 struct cgroup_subsys *ss = subsys[i];
4760 if (ss == NULL)
4761 continue;
4762 seq_printf(m, "%s\t%d\t%d\t%d\n",
4763 ss->name, ss->root->hierarchy_id,
4764 ss->root->number_of_cgroups, !ss->disabled);
4765 }
4766 mutex_unlock(&cgroup_mutex);
4767 return 0;
4768 }
4769
4770 static int cgroupstats_open(struct inode *inode, struct file *file)
4771 {
4772 return single_open(file, proc_cgroupstats_show, NULL);
4773 }
4774
4775 static const struct file_operations proc_cgroupstats_operations = {
4776 .open = cgroupstats_open,
4777 .read = seq_read,
4778 .llseek = seq_lseek,
4779 .release = single_release,
4780 };
4781
4782 /**
4783 * cgroup_fork - attach newly forked task to its parents cgroup.
4784 * @child: pointer to task_struct of forking parent process.
4785 *
4786 * Description: A task inherits its parent's cgroup at fork().
4787 *
4788 * A pointer to the shared css_set was automatically copied in
4789 * fork.c by dup_task_struct(). However, we ignore that copy, since
4790 * it was not made under the protection of RCU or cgroup_mutex, so
4791 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
4792 * have already changed current->cgroups, allowing the previously
4793 * referenced cgroup group to be removed and freed.
4794 *
4795 * At the point that cgroup_fork() is called, 'current' is the parent
4796 * task, and the passed argument 'child' points to the child task.
4797 */
4798 void cgroup_fork(struct task_struct *child)
4799 {
4800 task_lock(current);
4801 child->cgroups = current->cgroups;
4802 get_css_set(child->cgroups);
4803 task_unlock(current);
4804 INIT_LIST_HEAD(&child->cg_list);
4805 }
4806
4807 /**
4808 * cgroup_post_fork - called on a new task after adding it to the task list
4809 * @child: the task in question
4810 *
4811 * Adds the task to the list running through its css_set if necessary and
4812 * call the subsystem fork() callbacks. Has to be after the task is
4813 * visible on the task list in case we race with the first call to
4814 * cgroup_iter_start() - to guarantee that the new task ends up on its
4815 * list.
4816 */
4817 void cgroup_post_fork(struct task_struct *child)
4818 {
4819 int i;
4820
4821 /*
4822 * use_task_css_set_links is set to 1 before we walk the tasklist
4823 * under the tasklist_lock and we read it here after we added the child
4824 * to the tasklist under the tasklist_lock as well. If the child wasn't
4825 * yet in the tasklist when we walked through it from
4826 * cgroup_enable_task_cg_lists(), then use_task_css_set_links value
4827 * should be visible now due to the paired locking and barriers implied
4828 * by LOCK/UNLOCK: it is written before the tasklist_lock unlock
4829 * in cgroup_enable_task_cg_lists() and read here after the tasklist_lock
4830 * lock on fork.
4831 */
4832 if (use_task_css_set_links) {
4833 write_lock(&css_set_lock);
4834 task_lock(child);
4835 if (list_empty(&child->cg_list))
4836 list_add(&child->cg_list, &child->cgroups->tasks);
4837 task_unlock(child);
4838 write_unlock(&css_set_lock);
4839 }
4840
4841 /*
4842 * Call ss->fork(). This must happen after @child is linked on
4843 * css_set; otherwise, @child might change state between ->fork()
4844 * and addition to css_set.
4845 */
4846 if (need_forkexit_callback) {
4847 /*
4848 * fork/exit callbacks are supported only for builtin
4849 * subsystems, and the builtin section of the subsys
4850 * array is immutable, so we don't need to lock the
4851 * subsys array here. On the other hand, modular section
4852 * of the array can be freed at module unload, so we
4853 * can't touch that.
4854 */
4855 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4856 struct cgroup_subsys *ss = subsys[i];
4857
4858 if (ss->fork)
4859 ss->fork(child);
4860 }
4861 }
4862 }
4863
4864 /**
4865 * cgroup_exit - detach cgroup from exiting task
4866 * @tsk: pointer to task_struct of exiting process
4867 * @run_callback: run exit callbacks?
4868 *
4869 * Description: Detach cgroup from @tsk and release it.
4870 *
4871 * Note that cgroups marked notify_on_release force every task in
4872 * them to take the global cgroup_mutex mutex when exiting.
4873 * This could impact scaling on very large systems. Be reluctant to
4874 * use notify_on_release cgroups where very high task exit scaling
4875 * is required on large systems.
4876 *
4877 * the_top_cgroup_hack:
4878 *
4879 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
4880 *
4881 * We call cgroup_exit() while the task is still competent to
4882 * handle notify_on_release(), then leave the task attached to the
4883 * root cgroup in each hierarchy for the remainder of its exit.
4884 *
4885 * To do this properly, we would increment the reference count on
4886 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
4887 * code we would add a second cgroup function call, to drop that
4888 * reference. This would just create an unnecessary hot spot on
4889 * the top_cgroup reference count, to no avail.
4890 *
4891 * Normally, holding a reference to a cgroup without bumping its
4892 * count is unsafe. The cgroup could go away, or someone could
4893 * attach us to a different cgroup, decrementing the count on
4894 * the first cgroup that we never incremented. But in this case,
4895 * top_cgroup isn't going away, and either task has PF_EXITING set,
4896 * which wards off any cgroup_attach_task() attempts, or task is a failed
4897 * fork, never visible to cgroup_attach_task.
4898 */
4899 void cgroup_exit(struct task_struct *tsk, int run_callbacks)
4900 {
4901 struct css_set *cg;
4902 int i;
4903
4904 /*
4905 * Unlink from the css_set task list if necessary.
4906 * Optimistically check cg_list before taking
4907 * css_set_lock
4908 */
4909 if (!list_empty(&tsk->cg_list)) {
4910 write_lock(&css_set_lock);
4911 if (!list_empty(&tsk->cg_list))
4912 list_del_init(&tsk->cg_list);
4913 write_unlock(&css_set_lock);
4914 }
4915
4916 /* Reassign the task to the init_css_set. */
4917 task_lock(tsk);
4918 cg = tsk->cgroups;
4919 tsk->cgroups = &init_css_set;
4920
4921 if (run_callbacks && need_forkexit_callback) {
4922 /*
4923 * fork/exit callbacks are supported only for builtin
4924 * subsystems, see cgroup_post_fork() for details.
4925 */
4926 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4927 struct cgroup_subsys *ss = subsys[i];
4928
4929 if (ss->exit) {
4930 struct cgroup *old_cgrp =
4931 rcu_dereference_raw(cg->subsys[i])->cgroup;
4932 struct cgroup *cgrp = task_cgroup(tsk, i);
4933 ss->exit(cgrp, old_cgrp, tsk);
4934 }
4935 }
4936 }
4937 task_unlock(tsk);
4938
4939 put_css_set_taskexit(cg);
4940 }
4941
4942 static void check_for_release(struct cgroup *cgrp)
4943 {
4944 /* All of these checks rely on RCU to keep the cgroup
4945 * structure alive */
4946 if (cgroup_is_releasable(cgrp) &&
4947 !atomic_read(&cgrp->count) && list_empty(&cgrp->children)) {
4948 /*
4949 * Control Group is currently removeable. If it's not
4950 * already queued for a userspace notification, queue
4951 * it now
4952 */
4953 int need_schedule_work = 0;
4954
4955 raw_spin_lock(&release_list_lock);
4956 if (!cgroup_is_removed(cgrp) &&
4957 list_empty(&cgrp->release_list)) {
4958 list_add(&cgrp->release_list, &release_list);
4959 need_schedule_work = 1;
4960 }
4961 raw_spin_unlock(&release_list_lock);
4962 if (need_schedule_work)
4963 schedule_work(&release_agent_work);
4964 }
4965 }
4966
4967 /* Caller must verify that the css is not for root cgroup */
4968 bool __css_tryget(struct cgroup_subsys_state *css)
4969 {
4970 while (true) {
4971 int t, v;
4972
4973 v = css_refcnt(css);
4974 t = atomic_cmpxchg(&css->refcnt, v, v + 1);
4975 if (likely(t == v))
4976 return true;
4977 else if (t < 0)
4978 return false;
4979 cpu_relax();
4980 }
4981 }
4982 EXPORT_SYMBOL_GPL(__css_tryget);
4983
4984 /* Caller must verify that the css is not for root cgroup */
4985 void __css_put(struct cgroup_subsys_state *css)
4986 {
4987 int v;
4988
4989 v = css_unbias_refcnt(atomic_dec_return(&css->refcnt));
4990 if (v == 0)
4991 schedule_work(&css->dput_work);
4992 }
4993 EXPORT_SYMBOL_GPL(__css_put);
4994
4995 /*
4996 * Notify userspace when a cgroup is released, by running the
4997 * configured release agent with the name of the cgroup (path
4998 * relative to the root of cgroup file system) as the argument.
4999 *
5000 * Most likely, this user command will try to rmdir this cgroup.
5001 *
5002 * This races with the possibility that some other task will be
5003 * attached to this cgroup before it is removed, or that some other
5004 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5005 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5006 * unused, and this cgroup will be reprieved from its death sentence,
5007 * to continue to serve a useful existence. Next time it's released,
5008 * we will get notified again, if it still has 'notify_on_release' set.
5009 *
5010 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5011 * means only wait until the task is successfully execve()'d. The
5012 * separate release agent task is forked by call_usermodehelper(),
5013 * then control in this thread returns here, without waiting for the
5014 * release agent task. We don't bother to wait because the caller of
5015 * this routine has no use for the exit status of the release agent
5016 * task, so no sense holding our caller up for that.
5017 */
5018 static void cgroup_release_agent(struct work_struct *work)
5019 {
5020 BUG_ON(work != &release_agent_work);
5021 mutex_lock(&cgroup_mutex);
5022 raw_spin_lock(&release_list_lock);
5023 while (!list_empty(&release_list)) {
5024 char *argv[3], *envp[3];
5025 int i;
5026 char *pathbuf = NULL, *agentbuf = NULL;
5027 struct cgroup *cgrp = list_entry(release_list.next,
5028 struct cgroup,
5029 release_list);
5030 list_del_init(&cgrp->release_list);
5031 raw_spin_unlock(&release_list_lock);
5032 pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
5033 if (!pathbuf)
5034 goto continue_free;
5035 if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
5036 goto continue_free;
5037 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5038 if (!agentbuf)
5039 goto continue_free;
5040
5041 i = 0;
5042 argv[i++] = agentbuf;
5043 argv[i++] = pathbuf;
5044 argv[i] = NULL;
5045
5046 i = 0;
5047 /* minimal command environment */
5048 envp[i++] = "HOME=/";
5049 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5050 envp[i] = NULL;
5051
5052 /* Drop the lock while we invoke the usermode helper,
5053 * since the exec could involve hitting disk and hence
5054 * be a slow process */
5055 mutex_unlock(&cgroup_mutex);
5056 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
5057 mutex_lock(&cgroup_mutex);
5058 continue_free:
5059 kfree(pathbuf);
5060 kfree(agentbuf);
5061 raw_spin_lock(&release_list_lock);
5062 }
5063 raw_spin_unlock(&release_list_lock);
5064 mutex_unlock(&cgroup_mutex);
5065 }
5066
5067 static int __init cgroup_disable(char *str)
5068 {
5069 int i;
5070 char *token;
5071
5072 while ((token = strsep(&str, ",")) != NULL) {
5073 if (!*token)
5074 continue;
5075 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
5076 struct cgroup_subsys *ss = subsys[i];
5077
5078 /*
5079 * cgroup_disable, being at boot time, can't
5080 * know about module subsystems, so we don't
5081 * worry about them.
5082 */
5083 if (!ss || ss->module)
5084 continue;
5085
5086 if (!strcmp(token, ss->name)) {
5087 ss->disabled = 1;
5088 printk(KERN_INFO "Disabling %s control group"
5089 " subsystem\n", ss->name);
5090 break;
5091 }
5092 }
5093 }
5094 return 1;
5095 }
5096 __setup("cgroup_disable=", cgroup_disable);
5097
5098 /*
5099 * Functons for CSS ID.
5100 */
5101
5102 /*
5103 *To get ID other than 0, this should be called when !cgroup_is_removed().
5104 */
5105 unsigned short css_id(struct cgroup_subsys_state *css)
5106 {
5107 struct css_id *cssid;
5108
5109 /*
5110 * This css_id() can return correct value when somone has refcnt
5111 * on this or this is under rcu_read_lock(). Once css->id is allocated,
5112 * it's unchanged until freed.
5113 */
5114 cssid = rcu_dereference_check(css->id, css_refcnt(css));
5115
5116 if (cssid)
5117 return cssid->id;
5118 return 0;
5119 }
5120 EXPORT_SYMBOL_GPL(css_id);
5121
5122 unsigned short css_depth(struct cgroup_subsys_state *css)
5123 {
5124 struct css_id *cssid;
5125
5126 cssid = rcu_dereference_check(css->id, css_refcnt(css));
5127
5128 if (cssid)
5129 return cssid->depth;
5130 return 0;
5131 }
5132 EXPORT_SYMBOL_GPL(css_depth);
5133
5134 /**
5135 * css_is_ancestor - test "root" css is an ancestor of "child"
5136 * @child: the css to be tested.
5137 * @root: the css supporsed to be an ancestor of the child.
5138 *
5139 * Returns true if "root" is an ancestor of "child" in its hierarchy. Because
5140 * this function reads css->id, the caller must hold rcu_read_lock().
5141 * But, considering usual usage, the csses should be valid objects after test.
5142 * Assuming that the caller will do some action to the child if this returns
5143 * returns true, the caller must take "child";s reference count.
5144 * If "child" is valid object and this returns true, "root" is valid, too.
5145 */
5146
5147 bool css_is_ancestor(struct cgroup_subsys_state *child,
5148 const struct cgroup_subsys_state *root)
5149 {
5150 struct css_id *child_id;
5151 struct css_id *root_id;
5152
5153 child_id = rcu_dereference(child->id);
5154 if (!child_id)
5155 return false;
5156 root_id = rcu_dereference(root->id);
5157 if (!root_id)
5158 return false;
5159 if (child_id->depth < root_id->depth)
5160 return false;
5161 if (child_id->stack[root_id->depth] != root_id->id)
5162 return false;
5163 return true;
5164 }
5165
5166 void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
5167 {
5168 struct css_id *id = css->id;
5169 /* When this is called before css_id initialization, id can be NULL */
5170 if (!id)
5171 return;
5172
5173 BUG_ON(!ss->use_id);
5174
5175 rcu_assign_pointer(id->css, NULL);
5176 rcu_assign_pointer(css->id, NULL);
5177 spin_lock(&ss->id_lock);
5178 idr_remove(&ss->idr, id->id);
5179 spin_unlock(&ss->id_lock);
5180 kfree_rcu(id, rcu_head);
5181 }
5182 EXPORT_SYMBOL_GPL(free_css_id);
5183
5184 /*
5185 * This is called by init or create(). Then, calls to this function are
5186 * always serialized (By cgroup_mutex() at create()).
5187 */
5188
5189 static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
5190 {
5191 struct css_id *newid;
5192 int ret, size;
5193
5194 BUG_ON(!ss->use_id);
5195
5196 size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
5197 newid = kzalloc(size, GFP_KERNEL);
5198 if (!newid)
5199 return ERR_PTR(-ENOMEM);
5200
5201 idr_preload(GFP_KERNEL);
5202 spin_lock(&ss->id_lock);
5203 /* Don't use 0. allocates an ID of 1-65535 */
5204 ret = idr_alloc(&ss->idr, newid, 1, CSS_ID_MAX + 1, GFP_NOWAIT);
5205 spin_unlock(&ss->id_lock);
5206 idr_preload_end();
5207
5208 /* Returns error when there are no free spaces for new ID.*/
5209 if (ret < 0)
5210 goto err_out;
5211
5212 newid->id = ret;
5213 newid->depth = depth;
5214 return newid;
5215 err_out:
5216 kfree(newid);
5217 return ERR_PTR(ret);
5218
5219 }
5220
5221 static int __init_or_module cgroup_init_idr(struct cgroup_subsys *ss,
5222 struct cgroup_subsys_state *rootcss)
5223 {
5224 struct css_id *newid;
5225
5226 spin_lock_init(&ss->id_lock);
5227 idr_init(&ss->idr);
5228
5229 newid = get_new_cssid(ss, 0);
5230 if (IS_ERR(newid))
5231 return PTR_ERR(newid);
5232
5233 newid->stack[0] = newid->id;
5234 newid->css = rootcss;
5235 rootcss->id = newid;
5236 return 0;
5237 }
5238
5239 static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
5240 struct cgroup *child)
5241 {
5242 int subsys_id, i, depth = 0;
5243 struct cgroup_subsys_state *parent_css, *child_css;
5244 struct css_id *child_id, *parent_id;
5245
5246 subsys_id = ss->subsys_id;
5247 parent_css = parent->subsys[subsys_id];
5248 child_css = child->subsys[subsys_id];
5249 parent_id = parent_css->id;
5250 depth = parent_id->depth + 1;
5251
5252 child_id = get_new_cssid(ss, depth);
5253 if (IS_ERR(child_id))
5254 return PTR_ERR(child_id);
5255
5256 for (i = 0; i < depth; i++)
5257 child_id->stack[i] = parent_id->stack[i];
5258 child_id->stack[depth] = child_id->id;
5259 /*
5260 * child_id->css pointer will be set after this cgroup is available
5261 * see cgroup_populate_dir()
5262 */
5263 rcu_assign_pointer(child_css->id, child_id);
5264
5265 return 0;
5266 }
5267
5268 /**
5269 * css_lookup - lookup css by id
5270 * @ss: cgroup subsys to be looked into.
5271 * @id: the id
5272 *
5273 * Returns pointer to cgroup_subsys_state if there is valid one with id.
5274 * NULL if not. Should be called under rcu_read_lock()
5275 */
5276 struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
5277 {
5278 struct css_id *cssid = NULL;
5279
5280 BUG_ON(!ss->use_id);
5281 cssid = idr_find(&ss->idr, id);
5282
5283 if (unlikely(!cssid))
5284 return NULL;
5285
5286 return rcu_dereference(cssid->css);
5287 }
5288 EXPORT_SYMBOL_GPL(css_lookup);
5289
5290 /**
5291 * css_get_next - lookup next cgroup under specified hierarchy.
5292 * @ss: pointer to subsystem
5293 * @id: current position of iteration.
5294 * @root: pointer to css. search tree under this.
5295 * @foundid: position of found object.
5296 *
5297 * Search next css under the specified hierarchy of rootid. Calling under
5298 * rcu_read_lock() is necessary. Returns NULL if it reaches the end.
5299 */
5300 struct cgroup_subsys_state *
5301 css_get_next(struct cgroup_subsys *ss, int id,
5302 struct cgroup_subsys_state *root, int *foundid)
5303 {
5304 struct cgroup_subsys_state *ret = NULL;
5305 struct css_id *tmp;
5306 int tmpid;
5307 int rootid = css_id(root);
5308 int depth = css_depth(root);
5309
5310 if (!rootid)
5311 return NULL;
5312
5313 BUG_ON(!ss->use_id);
5314 WARN_ON_ONCE(!rcu_read_lock_held());
5315
5316 /* fill start point for scan */
5317 tmpid = id;
5318 while (1) {
5319 /*
5320 * scan next entry from bitmap(tree), tmpid is updated after
5321 * idr_get_next().
5322 */
5323 tmp = idr_get_next(&ss->idr, &tmpid);
5324 if (!tmp)
5325 break;
5326 if (tmp->depth >= depth && tmp->stack[depth] == rootid) {
5327 ret = rcu_dereference(tmp->css);
5328 if (ret) {
5329 *foundid = tmpid;
5330 break;
5331 }
5332 }
5333 /* continue to scan from next id */
5334 tmpid = tmpid + 1;
5335 }
5336 return ret;
5337 }
5338
5339 /*
5340 * get corresponding css from file open on cgroupfs directory
5341 */
5342 struct cgroup_subsys_state *cgroup_css_from_dir(struct file *f, int id)
5343 {
5344 struct cgroup *cgrp;
5345 struct inode *inode;
5346 struct cgroup_subsys_state *css;
5347
5348 inode = file_inode(f);
5349 /* check in cgroup filesystem dir */
5350 if (inode->i_op != &cgroup_dir_inode_operations)
5351 return ERR_PTR(-EBADF);
5352
5353 if (id < 0 || id >= CGROUP_SUBSYS_COUNT)
5354 return ERR_PTR(-EINVAL);
5355
5356 /* get cgroup */
5357 cgrp = __d_cgrp(f->f_dentry);
5358 css = cgrp->subsys[id];
5359 return css ? css : ERR_PTR(-ENOENT);
5360 }
5361
5362 #ifdef CONFIG_CGROUP_DEBUG
5363 static struct cgroup_subsys_state *debug_css_alloc(struct cgroup *cont)
5364 {
5365 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5366
5367 if (!css)
5368 return ERR_PTR(-ENOMEM);
5369
5370 return css;
5371 }
5372
5373 static void debug_css_free(struct cgroup *cont)
5374 {
5375 kfree(cont->subsys[debug_subsys_id]);
5376 }
5377
5378 static u64 cgroup_refcount_read(struct cgroup *cont, struct cftype *cft)
5379 {
5380 return atomic_read(&cont->count);
5381 }
5382
5383 static u64 debug_taskcount_read(struct cgroup *cont, struct cftype *cft)
5384 {
5385 return cgroup_task_count(cont);
5386 }
5387
5388 static u64 current_css_set_read(struct cgroup *cont, struct cftype *cft)
5389 {
5390 return (u64)(unsigned long)current->cgroups;
5391 }
5392
5393 static u64 current_css_set_refcount_read(struct cgroup *cont,
5394 struct cftype *cft)
5395 {
5396 u64 count;
5397
5398 rcu_read_lock();
5399 count = atomic_read(&current->cgroups->refcount);
5400 rcu_read_unlock();
5401 return count;
5402 }
5403
5404 static int current_css_set_cg_links_read(struct cgroup *cont,
5405 struct cftype *cft,
5406 struct seq_file *seq)
5407 {
5408 struct cg_cgroup_link *link;
5409 struct css_set *cg;
5410
5411 read_lock(&css_set_lock);
5412 rcu_read_lock();
5413 cg = rcu_dereference(current->cgroups);
5414 list_for_each_entry(link, &cg->cg_links, cg_link_list) {
5415 struct cgroup *c = link->cgrp;
5416 const char *name;
5417
5418 if (c->dentry)
5419 name = c->dentry->d_name.name;
5420 else
5421 name = "?";
5422 seq_printf(seq, "Root %d group %s\n",
5423 c->root->hierarchy_id, name);
5424 }
5425 rcu_read_unlock();
5426 read_unlock(&css_set_lock);
5427 return 0;
5428 }
5429
5430 #define MAX_TASKS_SHOWN_PER_CSS 25
5431 static int cgroup_css_links_read(struct cgroup *cont,
5432 struct cftype *cft,
5433 struct seq_file *seq)
5434 {
5435 struct cg_cgroup_link *link;
5436
5437 read_lock(&css_set_lock);
5438 list_for_each_entry(link, &cont->css_sets, cgrp_link_list) {
5439 struct css_set *cg = link->cg;
5440 struct task_struct *task;
5441 int count = 0;
5442 seq_printf(seq, "css_set %p\n", cg);
5443 list_for_each_entry(task, &cg->tasks, cg_list) {
5444 if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
5445 seq_puts(seq, " ...\n");
5446 break;
5447 } else {
5448 seq_printf(seq, " task %d\n",
5449 task_pid_vnr(task));
5450 }
5451 }
5452 }
5453 read_unlock(&css_set_lock);
5454 return 0;
5455 }
5456
5457 static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft)
5458 {
5459 return test_bit(CGRP_RELEASABLE, &cgrp->flags);
5460 }
5461
5462 static struct cftype debug_files[] = {
5463 {
5464 .name = "cgroup_refcount",
5465 .read_u64 = cgroup_refcount_read,
5466 },
5467 {
5468 .name = "taskcount",
5469 .read_u64 = debug_taskcount_read,
5470 },
5471
5472 {
5473 .name = "current_css_set",
5474 .read_u64 = current_css_set_read,
5475 },
5476
5477 {
5478 .name = "current_css_set_refcount",
5479 .read_u64 = current_css_set_refcount_read,
5480 },
5481
5482 {
5483 .name = "current_css_set_cg_links",
5484 .read_seq_string = current_css_set_cg_links_read,
5485 },
5486
5487 {
5488 .name = "cgroup_css_links",
5489 .read_seq_string = cgroup_css_links_read,
5490 },
5491
5492 {
5493 .name = "releasable",
5494 .read_u64 = releasable_read,
5495 },
5496
5497 { } /* terminate */
5498 };
5499
5500 struct cgroup_subsys debug_subsys = {
5501 .name = "debug",
5502 .css_alloc = debug_css_alloc,
5503 .css_free = debug_css_free,
5504 .subsys_id = debug_subsys_id,
5505 .base_cftypes = debug_files,
5506 };
5507 #endif /* CONFIG_CGROUP_DEBUG */
This page took 0.255209 seconds and 4 git commands to generate.