Merge tag 'mvebu-dt-3.14-2' of git://git.infradead.org/linux-mvebu into next/dt
[deliverable/linux.git] / kernel / cgroup.c
1 /*
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29 #include <linux/cgroup.h>
30 #include <linux/cred.h>
31 #include <linux/ctype.h>
32 #include <linux/errno.h>
33 #include <linux/init_task.h>
34 #include <linux/kernel.h>
35 #include <linux/list.h>
36 #include <linux/mm.h>
37 #include <linux/mutex.h>
38 #include <linux/mount.h>
39 #include <linux/pagemap.h>
40 #include <linux/proc_fs.h>
41 #include <linux/rcupdate.h>
42 #include <linux/sched.h>
43 #include <linux/backing-dev.h>
44 #include <linux/seq_file.h>
45 #include <linux/slab.h>
46 #include <linux/magic.h>
47 #include <linux/spinlock.h>
48 #include <linux/string.h>
49 #include <linux/sort.h>
50 #include <linux/kmod.h>
51 #include <linux/module.h>
52 #include <linux/delayacct.h>
53 #include <linux/cgroupstats.h>
54 #include <linux/hashtable.h>
55 #include <linux/namei.h>
56 #include <linux/pid_namespace.h>
57 #include <linux/idr.h>
58 #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
59 #include <linux/eventfd.h>
60 #include <linux/poll.h>
61 #include <linux/flex_array.h> /* used in cgroup_attach_task */
62 #include <linux/kthread.h>
63 #include <linux/file.h>
64
65 #include <linux/atomic.h>
66
67 /*
68 * cgroup_mutex is the master lock. Any modification to cgroup or its
69 * hierarchy must be performed while holding it.
70 *
71 * cgroup_root_mutex nests inside cgroup_mutex and should be held to modify
72 * cgroupfs_root of any cgroup hierarchy - subsys list, flags,
73 * release_agent_path and so on. Modifying requires both cgroup_mutex and
74 * cgroup_root_mutex. Readers can acquire either of the two. This is to
75 * break the following locking order cycle.
76 *
77 * A. cgroup_mutex -> cred_guard_mutex -> s_type->i_mutex_key -> namespace_sem
78 * B. namespace_sem -> cgroup_mutex
79 *
80 * B happens only through cgroup_show_options() and using cgroup_root_mutex
81 * breaks it.
82 */
83 #ifdef CONFIG_PROVE_RCU
84 DEFINE_MUTEX(cgroup_mutex);
85 EXPORT_SYMBOL_GPL(cgroup_mutex); /* only for lockdep */
86 #else
87 static DEFINE_MUTEX(cgroup_mutex);
88 #endif
89
90 static DEFINE_MUTEX(cgroup_root_mutex);
91
92 /*
93 * cgroup destruction makes heavy use of work items and there can be a lot
94 * of concurrent destructions. Use a separate workqueue so that cgroup
95 * destruction work items don't end up filling up max_active of system_wq
96 * which may lead to deadlock.
97 */
98 static struct workqueue_struct *cgroup_destroy_wq;
99
100 /*
101 * Generate an array of cgroup subsystem pointers. At boot time, this is
102 * populated with the built in subsystems, and modular subsystems are
103 * registered after that. The mutable section of this array is protected by
104 * cgroup_mutex.
105 */
106 #define SUBSYS(_x) [_x ## _subsys_id] = &_x ## _subsys,
107 #define IS_SUBSYS_ENABLED(option) IS_BUILTIN(option)
108 static struct cgroup_subsys *cgroup_subsys[CGROUP_SUBSYS_COUNT] = {
109 #include <linux/cgroup_subsys.h>
110 };
111
112 /*
113 * The dummy hierarchy, reserved for the subsystems that are otherwise
114 * unattached - it never has more than a single cgroup, and all tasks are
115 * part of that cgroup.
116 */
117 static struct cgroupfs_root cgroup_dummy_root;
118
119 /* dummy_top is a shorthand for the dummy hierarchy's top cgroup */
120 static struct cgroup * const cgroup_dummy_top = &cgroup_dummy_root.top_cgroup;
121
122 /*
123 * cgroupfs file entry, pointed to from leaf dentry->d_fsdata.
124 */
125 struct cfent {
126 struct list_head node;
127 struct dentry *dentry;
128 struct cftype *type;
129 struct cgroup_subsys_state *css;
130
131 /* file xattrs */
132 struct simple_xattrs xattrs;
133 };
134
135 /*
136 * cgroup_event represents events which userspace want to receive.
137 */
138 struct cgroup_event {
139 /*
140 * css which the event belongs to.
141 */
142 struct cgroup_subsys_state *css;
143 /*
144 * Control file which the event associated.
145 */
146 struct cftype *cft;
147 /*
148 * eventfd to signal userspace about the event.
149 */
150 struct eventfd_ctx *eventfd;
151 /*
152 * Each of these stored in a list by the cgroup.
153 */
154 struct list_head list;
155 /*
156 * All fields below needed to unregister event when
157 * userspace closes eventfd.
158 */
159 poll_table pt;
160 wait_queue_head_t *wqh;
161 wait_queue_t wait;
162 struct work_struct remove;
163 };
164
165 /* The list of hierarchy roots */
166
167 static LIST_HEAD(cgroup_roots);
168 static int cgroup_root_count;
169
170 /*
171 * Hierarchy ID allocation and mapping. It follows the same exclusion
172 * rules as other root ops - both cgroup_mutex and cgroup_root_mutex for
173 * writes, either for reads.
174 */
175 static DEFINE_IDR(cgroup_hierarchy_idr);
176
177 static struct cgroup_name root_cgroup_name = { .name = "/" };
178
179 /*
180 * Assign a monotonically increasing serial number to cgroups. It
181 * guarantees cgroups with bigger numbers are newer than those with smaller
182 * numbers. Also, as cgroups are always appended to the parent's
183 * ->children list, it guarantees that sibling cgroups are always sorted in
184 * the ascending serial number order on the list. Protected by
185 * cgroup_mutex.
186 */
187 static u64 cgroup_serial_nr_next = 1;
188
189 /* This flag indicates whether tasks in the fork and exit paths should
190 * check for fork/exit handlers to call. This avoids us having to do
191 * extra work in the fork/exit path if none of the subsystems need to
192 * be called.
193 */
194 static int need_forkexit_callback __read_mostly;
195
196 static struct cftype cgroup_base_files[];
197
198 static void cgroup_destroy_css_killed(struct cgroup *cgrp);
199 static int cgroup_destroy_locked(struct cgroup *cgrp);
200 static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
201 bool is_add);
202 static int cgroup_file_release(struct inode *inode, struct file *file);
203
204 /**
205 * cgroup_css - obtain a cgroup's css for the specified subsystem
206 * @cgrp: the cgroup of interest
207 * @ss: the subsystem of interest (%NULL returns the dummy_css)
208 *
209 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
210 * function must be called either under cgroup_mutex or rcu_read_lock() and
211 * the caller is responsible for pinning the returned css if it wants to
212 * keep accessing it outside the said locks. This function may return
213 * %NULL if @cgrp doesn't have @subsys_id enabled.
214 */
215 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
216 struct cgroup_subsys *ss)
217 {
218 if (ss)
219 return rcu_dereference_check(cgrp->subsys[ss->subsys_id],
220 lockdep_is_held(&cgroup_mutex));
221 else
222 return &cgrp->dummy_css;
223 }
224
225 /* convenient tests for these bits */
226 static inline bool cgroup_is_dead(const struct cgroup *cgrp)
227 {
228 return test_bit(CGRP_DEAD, &cgrp->flags);
229 }
230
231 /**
232 * cgroup_is_descendant - test ancestry
233 * @cgrp: the cgroup to be tested
234 * @ancestor: possible ancestor of @cgrp
235 *
236 * Test whether @cgrp is a descendant of @ancestor. It also returns %true
237 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
238 * and @ancestor are accessible.
239 */
240 bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
241 {
242 while (cgrp) {
243 if (cgrp == ancestor)
244 return true;
245 cgrp = cgrp->parent;
246 }
247 return false;
248 }
249 EXPORT_SYMBOL_GPL(cgroup_is_descendant);
250
251 static int cgroup_is_releasable(const struct cgroup *cgrp)
252 {
253 const int bits =
254 (1 << CGRP_RELEASABLE) |
255 (1 << CGRP_NOTIFY_ON_RELEASE);
256 return (cgrp->flags & bits) == bits;
257 }
258
259 static int notify_on_release(const struct cgroup *cgrp)
260 {
261 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
262 }
263
264 /**
265 * for_each_subsys - iterate all loaded cgroup subsystems
266 * @ss: the iteration cursor
267 * @i: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
268 *
269 * Should be called under cgroup_mutex.
270 */
271 #define for_each_subsys(ss, i) \
272 for ((i) = 0; (i) < CGROUP_SUBSYS_COUNT; (i)++) \
273 if (({ lockdep_assert_held(&cgroup_mutex); \
274 !((ss) = cgroup_subsys[i]); })) { } \
275 else
276
277 /**
278 * for_each_builtin_subsys - iterate all built-in cgroup subsystems
279 * @ss: the iteration cursor
280 * @i: the index of @ss, CGROUP_BUILTIN_SUBSYS_COUNT after reaching the end
281 *
282 * Bulit-in subsystems are always present and iteration itself doesn't
283 * require any synchronization.
284 */
285 #define for_each_builtin_subsys(ss, i) \
286 for ((i) = 0; (i) < CGROUP_BUILTIN_SUBSYS_COUNT && \
287 (((ss) = cgroup_subsys[i]) || true); (i)++)
288
289 /* iterate each subsystem attached to a hierarchy */
290 #define for_each_root_subsys(root, ss) \
291 list_for_each_entry((ss), &(root)->subsys_list, sibling)
292
293 /* iterate across the active hierarchies */
294 #define for_each_active_root(root) \
295 list_for_each_entry((root), &cgroup_roots, root_list)
296
297 static inline struct cgroup *__d_cgrp(struct dentry *dentry)
298 {
299 return dentry->d_fsdata;
300 }
301
302 static inline struct cfent *__d_cfe(struct dentry *dentry)
303 {
304 return dentry->d_fsdata;
305 }
306
307 static inline struct cftype *__d_cft(struct dentry *dentry)
308 {
309 return __d_cfe(dentry)->type;
310 }
311
312 /**
313 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
314 * @cgrp: the cgroup to be checked for liveness
315 *
316 * On success, returns true; the mutex should be later unlocked. On
317 * failure returns false with no lock held.
318 */
319 static bool cgroup_lock_live_group(struct cgroup *cgrp)
320 {
321 mutex_lock(&cgroup_mutex);
322 if (cgroup_is_dead(cgrp)) {
323 mutex_unlock(&cgroup_mutex);
324 return false;
325 }
326 return true;
327 }
328
329 /* the list of cgroups eligible for automatic release. Protected by
330 * release_list_lock */
331 static LIST_HEAD(release_list);
332 static DEFINE_RAW_SPINLOCK(release_list_lock);
333 static void cgroup_release_agent(struct work_struct *work);
334 static DECLARE_WORK(release_agent_work, cgroup_release_agent);
335 static void check_for_release(struct cgroup *cgrp);
336
337 /*
338 * A cgroup can be associated with multiple css_sets as different tasks may
339 * belong to different cgroups on different hierarchies. In the other
340 * direction, a css_set is naturally associated with multiple cgroups.
341 * This M:N relationship is represented by the following link structure
342 * which exists for each association and allows traversing the associations
343 * from both sides.
344 */
345 struct cgrp_cset_link {
346 /* the cgroup and css_set this link associates */
347 struct cgroup *cgrp;
348 struct css_set *cset;
349
350 /* list of cgrp_cset_links anchored at cgrp->cset_links */
351 struct list_head cset_link;
352
353 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
354 struct list_head cgrp_link;
355 };
356
357 /* The default css_set - used by init and its children prior to any
358 * hierarchies being mounted. It contains a pointer to the root state
359 * for each subsystem. Also used to anchor the list of css_sets. Not
360 * reference-counted, to improve performance when child cgroups
361 * haven't been created.
362 */
363
364 static struct css_set init_css_set;
365 static struct cgrp_cset_link init_cgrp_cset_link;
366
367 /*
368 * css_set_lock protects the list of css_set objects, and the chain of
369 * tasks off each css_set. Nests outside task->alloc_lock due to
370 * css_task_iter_start().
371 */
372 static DEFINE_RWLOCK(css_set_lock);
373 static int css_set_count;
374
375 /*
376 * hash table for cgroup groups. This improves the performance to find
377 * an existing css_set. This hash doesn't (currently) take into
378 * account cgroups in empty hierarchies.
379 */
380 #define CSS_SET_HASH_BITS 7
381 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
382
383 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
384 {
385 unsigned long key = 0UL;
386 struct cgroup_subsys *ss;
387 int i;
388
389 for_each_subsys(ss, i)
390 key += (unsigned long)css[i];
391 key = (key >> 16) ^ key;
392
393 return key;
394 }
395
396 /*
397 * We don't maintain the lists running through each css_set to its task
398 * until after the first call to css_task_iter_start(). This reduces the
399 * fork()/exit() overhead for people who have cgroups compiled into their
400 * kernel but not actually in use.
401 */
402 static int use_task_css_set_links __read_mostly;
403
404 static void __put_css_set(struct css_set *cset, int taskexit)
405 {
406 struct cgrp_cset_link *link, *tmp_link;
407
408 /*
409 * Ensure that the refcount doesn't hit zero while any readers
410 * can see it. Similar to atomic_dec_and_lock(), but for an
411 * rwlock
412 */
413 if (atomic_add_unless(&cset->refcount, -1, 1))
414 return;
415 write_lock(&css_set_lock);
416 if (!atomic_dec_and_test(&cset->refcount)) {
417 write_unlock(&css_set_lock);
418 return;
419 }
420
421 /* This css_set is dead. unlink it and release cgroup refcounts */
422 hash_del(&cset->hlist);
423 css_set_count--;
424
425 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
426 struct cgroup *cgrp = link->cgrp;
427
428 list_del(&link->cset_link);
429 list_del(&link->cgrp_link);
430
431 /* @cgrp can't go away while we're holding css_set_lock */
432 if (list_empty(&cgrp->cset_links) && notify_on_release(cgrp)) {
433 if (taskexit)
434 set_bit(CGRP_RELEASABLE, &cgrp->flags);
435 check_for_release(cgrp);
436 }
437
438 kfree(link);
439 }
440
441 write_unlock(&css_set_lock);
442 kfree_rcu(cset, rcu_head);
443 }
444
445 /*
446 * refcounted get/put for css_set objects
447 */
448 static inline void get_css_set(struct css_set *cset)
449 {
450 atomic_inc(&cset->refcount);
451 }
452
453 static inline void put_css_set(struct css_set *cset)
454 {
455 __put_css_set(cset, 0);
456 }
457
458 static inline void put_css_set_taskexit(struct css_set *cset)
459 {
460 __put_css_set(cset, 1);
461 }
462
463 /**
464 * compare_css_sets - helper function for find_existing_css_set().
465 * @cset: candidate css_set being tested
466 * @old_cset: existing css_set for a task
467 * @new_cgrp: cgroup that's being entered by the task
468 * @template: desired set of css pointers in css_set (pre-calculated)
469 *
470 * Returns true if "cset" matches "old_cset" except for the hierarchy
471 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
472 */
473 static bool compare_css_sets(struct css_set *cset,
474 struct css_set *old_cset,
475 struct cgroup *new_cgrp,
476 struct cgroup_subsys_state *template[])
477 {
478 struct list_head *l1, *l2;
479
480 if (memcmp(template, cset->subsys, sizeof(cset->subsys))) {
481 /* Not all subsystems matched */
482 return false;
483 }
484
485 /*
486 * Compare cgroup pointers in order to distinguish between
487 * different cgroups in heirarchies with no subsystems. We
488 * could get by with just this check alone (and skip the
489 * memcmp above) but on most setups the memcmp check will
490 * avoid the need for this more expensive check on almost all
491 * candidates.
492 */
493
494 l1 = &cset->cgrp_links;
495 l2 = &old_cset->cgrp_links;
496 while (1) {
497 struct cgrp_cset_link *link1, *link2;
498 struct cgroup *cgrp1, *cgrp2;
499
500 l1 = l1->next;
501 l2 = l2->next;
502 /* See if we reached the end - both lists are equal length. */
503 if (l1 == &cset->cgrp_links) {
504 BUG_ON(l2 != &old_cset->cgrp_links);
505 break;
506 } else {
507 BUG_ON(l2 == &old_cset->cgrp_links);
508 }
509 /* Locate the cgroups associated with these links. */
510 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
511 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
512 cgrp1 = link1->cgrp;
513 cgrp2 = link2->cgrp;
514 /* Hierarchies should be linked in the same order. */
515 BUG_ON(cgrp1->root != cgrp2->root);
516
517 /*
518 * If this hierarchy is the hierarchy of the cgroup
519 * that's changing, then we need to check that this
520 * css_set points to the new cgroup; if it's any other
521 * hierarchy, then this css_set should point to the
522 * same cgroup as the old css_set.
523 */
524 if (cgrp1->root == new_cgrp->root) {
525 if (cgrp1 != new_cgrp)
526 return false;
527 } else {
528 if (cgrp1 != cgrp2)
529 return false;
530 }
531 }
532 return true;
533 }
534
535 /**
536 * find_existing_css_set - init css array and find the matching css_set
537 * @old_cset: the css_set that we're using before the cgroup transition
538 * @cgrp: the cgroup that we're moving into
539 * @template: out param for the new set of csses, should be clear on entry
540 */
541 static struct css_set *find_existing_css_set(struct css_set *old_cset,
542 struct cgroup *cgrp,
543 struct cgroup_subsys_state *template[])
544 {
545 struct cgroupfs_root *root = cgrp->root;
546 struct cgroup_subsys *ss;
547 struct css_set *cset;
548 unsigned long key;
549 int i;
550
551 /*
552 * Build the set of subsystem state objects that we want to see in the
553 * new css_set. while subsystems can change globally, the entries here
554 * won't change, so no need for locking.
555 */
556 for_each_subsys(ss, i) {
557 if (root->subsys_mask & (1UL << i)) {
558 /* Subsystem is in this hierarchy. So we want
559 * the subsystem state from the new
560 * cgroup */
561 template[i] = cgroup_css(cgrp, ss);
562 } else {
563 /* Subsystem is not in this hierarchy, so we
564 * don't want to change the subsystem state */
565 template[i] = old_cset->subsys[i];
566 }
567 }
568
569 key = css_set_hash(template);
570 hash_for_each_possible(css_set_table, cset, hlist, key) {
571 if (!compare_css_sets(cset, old_cset, cgrp, template))
572 continue;
573
574 /* This css_set matches what we need */
575 return cset;
576 }
577
578 /* No existing cgroup group matched */
579 return NULL;
580 }
581
582 static void free_cgrp_cset_links(struct list_head *links_to_free)
583 {
584 struct cgrp_cset_link *link, *tmp_link;
585
586 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
587 list_del(&link->cset_link);
588 kfree(link);
589 }
590 }
591
592 /**
593 * allocate_cgrp_cset_links - allocate cgrp_cset_links
594 * @count: the number of links to allocate
595 * @tmp_links: list_head the allocated links are put on
596 *
597 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
598 * through ->cset_link. Returns 0 on success or -errno.
599 */
600 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
601 {
602 struct cgrp_cset_link *link;
603 int i;
604
605 INIT_LIST_HEAD(tmp_links);
606
607 for (i = 0; i < count; i++) {
608 link = kzalloc(sizeof(*link), GFP_KERNEL);
609 if (!link) {
610 free_cgrp_cset_links(tmp_links);
611 return -ENOMEM;
612 }
613 list_add(&link->cset_link, tmp_links);
614 }
615 return 0;
616 }
617
618 /**
619 * link_css_set - a helper function to link a css_set to a cgroup
620 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
621 * @cset: the css_set to be linked
622 * @cgrp: the destination cgroup
623 */
624 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
625 struct cgroup *cgrp)
626 {
627 struct cgrp_cset_link *link;
628
629 BUG_ON(list_empty(tmp_links));
630 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
631 link->cset = cset;
632 link->cgrp = cgrp;
633 list_move(&link->cset_link, &cgrp->cset_links);
634 /*
635 * Always add links to the tail of the list so that the list
636 * is sorted by order of hierarchy creation
637 */
638 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
639 }
640
641 /**
642 * find_css_set - return a new css_set with one cgroup updated
643 * @old_cset: the baseline css_set
644 * @cgrp: the cgroup to be updated
645 *
646 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
647 * substituted into the appropriate hierarchy.
648 */
649 static struct css_set *find_css_set(struct css_set *old_cset,
650 struct cgroup *cgrp)
651 {
652 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
653 struct css_set *cset;
654 struct list_head tmp_links;
655 struct cgrp_cset_link *link;
656 unsigned long key;
657
658 lockdep_assert_held(&cgroup_mutex);
659
660 /* First see if we already have a cgroup group that matches
661 * the desired set */
662 read_lock(&css_set_lock);
663 cset = find_existing_css_set(old_cset, cgrp, template);
664 if (cset)
665 get_css_set(cset);
666 read_unlock(&css_set_lock);
667
668 if (cset)
669 return cset;
670
671 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
672 if (!cset)
673 return NULL;
674
675 /* Allocate all the cgrp_cset_link objects that we'll need */
676 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
677 kfree(cset);
678 return NULL;
679 }
680
681 atomic_set(&cset->refcount, 1);
682 INIT_LIST_HEAD(&cset->cgrp_links);
683 INIT_LIST_HEAD(&cset->tasks);
684 INIT_HLIST_NODE(&cset->hlist);
685
686 /* Copy the set of subsystem state objects generated in
687 * find_existing_css_set() */
688 memcpy(cset->subsys, template, sizeof(cset->subsys));
689
690 write_lock(&css_set_lock);
691 /* Add reference counts and links from the new css_set. */
692 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
693 struct cgroup *c = link->cgrp;
694
695 if (c->root == cgrp->root)
696 c = cgrp;
697 link_css_set(&tmp_links, cset, c);
698 }
699
700 BUG_ON(!list_empty(&tmp_links));
701
702 css_set_count++;
703
704 /* Add this cgroup group to the hash table */
705 key = css_set_hash(cset->subsys);
706 hash_add(css_set_table, &cset->hlist, key);
707
708 write_unlock(&css_set_lock);
709
710 return cset;
711 }
712
713 /*
714 * Return the cgroup for "task" from the given hierarchy. Must be
715 * called with cgroup_mutex held.
716 */
717 static struct cgroup *task_cgroup_from_root(struct task_struct *task,
718 struct cgroupfs_root *root)
719 {
720 struct css_set *cset;
721 struct cgroup *res = NULL;
722
723 BUG_ON(!mutex_is_locked(&cgroup_mutex));
724 read_lock(&css_set_lock);
725 /*
726 * No need to lock the task - since we hold cgroup_mutex the
727 * task can't change groups, so the only thing that can happen
728 * is that it exits and its css is set back to init_css_set.
729 */
730 cset = task_css_set(task);
731 if (cset == &init_css_set) {
732 res = &root->top_cgroup;
733 } else {
734 struct cgrp_cset_link *link;
735
736 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
737 struct cgroup *c = link->cgrp;
738
739 if (c->root == root) {
740 res = c;
741 break;
742 }
743 }
744 }
745 read_unlock(&css_set_lock);
746 BUG_ON(!res);
747 return res;
748 }
749
750 /*
751 * There is one global cgroup mutex. We also require taking
752 * task_lock() when dereferencing a task's cgroup subsys pointers.
753 * See "The task_lock() exception", at the end of this comment.
754 *
755 * A task must hold cgroup_mutex to modify cgroups.
756 *
757 * Any task can increment and decrement the count field without lock.
758 * So in general, code holding cgroup_mutex can't rely on the count
759 * field not changing. However, if the count goes to zero, then only
760 * cgroup_attach_task() can increment it again. Because a count of zero
761 * means that no tasks are currently attached, therefore there is no
762 * way a task attached to that cgroup can fork (the other way to
763 * increment the count). So code holding cgroup_mutex can safely
764 * assume that if the count is zero, it will stay zero. Similarly, if
765 * a task holds cgroup_mutex on a cgroup with zero count, it
766 * knows that the cgroup won't be removed, as cgroup_rmdir()
767 * needs that mutex.
768 *
769 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
770 * (usually) take cgroup_mutex. These are the two most performance
771 * critical pieces of code here. The exception occurs on cgroup_exit(),
772 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
773 * is taken, and if the cgroup count is zero, a usermode call made
774 * to the release agent with the name of the cgroup (path relative to
775 * the root of cgroup file system) as the argument.
776 *
777 * A cgroup can only be deleted if both its 'count' of using tasks
778 * is zero, and its list of 'children' cgroups is empty. Since all
779 * tasks in the system use _some_ cgroup, and since there is always at
780 * least one task in the system (init, pid == 1), therefore, top_cgroup
781 * always has either children cgroups and/or using tasks. So we don't
782 * need a special hack to ensure that top_cgroup cannot be deleted.
783 *
784 * The task_lock() exception
785 *
786 * The need for this exception arises from the action of
787 * cgroup_attach_task(), which overwrites one task's cgroup pointer with
788 * another. It does so using cgroup_mutex, however there are
789 * several performance critical places that need to reference
790 * task->cgroup without the expense of grabbing a system global
791 * mutex. Therefore except as noted below, when dereferencing or, as
792 * in cgroup_attach_task(), modifying a task's cgroup pointer we use
793 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
794 * the task_struct routinely used for such matters.
795 *
796 * P.S. One more locking exception. RCU is used to guard the
797 * update of a tasks cgroup pointer by cgroup_attach_task()
798 */
799
800 /*
801 * A couple of forward declarations required, due to cyclic reference loop:
802 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
803 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
804 * -> cgroup_mkdir.
805 */
806
807 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode);
808 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
809 static int cgroup_populate_dir(struct cgroup *cgrp, unsigned long subsys_mask);
810 static const struct inode_operations cgroup_dir_inode_operations;
811 static const struct file_operations proc_cgroupstats_operations;
812
813 static struct backing_dev_info cgroup_backing_dev_info = {
814 .name = "cgroup",
815 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
816 };
817
818 static struct inode *cgroup_new_inode(umode_t mode, struct super_block *sb)
819 {
820 struct inode *inode = new_inode(sb);
821
822 if (inode) {
823 inode->i_ino = get_next_ino();
824 inode->i_mode = mode;
825 inode->i_uid = current_fsuid();
826 inode->i_gid = current_fsgid();
827 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
828 inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
829 }
830 return inode;
831 }
832
833 static struct cgroup_name *cgroup_alloc_name(struct dentry *dentry)
834 {
835 struct cgroup_name *name;
836
837 name = kmalloc(sizeof(*name) + dentry->d_name.len + 1, GFP_KERNEL);
838 if (!name)
839 return NULL;
840 strcpy(name->name, dentry->d_name.name);
841 return name;
842 }
843
844 static void cgroup_free_fn(struct work_struct *work)
845 {
846 struct cgroup *cgrp = container_of(work, struct cgroup, destroy_work);
847
848 mutex_lock(&cgroup_mutex);
849 cgrp->root->number_of_cgroups--;
850 mutex_unlock(&cgroup_mutex);
851
852 /*
853 * We get a ref to the parent's dentry, and put the ref when
854 * this cgroup is being freed, so it's guaranteed that the
855 * parent won't be destroyed before its children.
856 */
857 dput(cgrp->parent->dentry);
858
859 /*
860 * Drop the active superblock reference that we took when we
861 * created the cgroup. This will free cgrp->root, if we are
862 * holding the last reference to @sb.
863 */
864 deactivate_super(cgrp->root->sb);
865
866 /*
867 * if we're getting rid of the cgroup, refcount should ensure
868 * that there are no pidlists left.
869 */
870 BUG_ON(!list_empty(&cgrp->pidlists));
871
872 simple_xattrs_free(&cgrp->xattrs);
873
874 kfree(rcu_dereference_raw(cgrp->name));
875 kfree(cgrp);
876 }
877
878 static void cgroup_free_rcu(struct rcu_head *head)
879 {
880 struct cgroup *cgrp = container_of(head, struct cgroup, rcu_head);
881
882 INIT_WORK(&cgrp->destroy_work, cgroup_free_fn);
883 queue_work(cgroup_destroy_wq, &cgrp->destroy_work);
884 }
885
886 static void cgroup_diput(struct dentry *dentry, struct inode *inode)
887 {
888 /* is dentry a directory ? if so, kfree() associated cgroup */
889 if (S_ISDIR(inode->i_mode)) {
890 struct cgroup *cgrp = dentry->d_fsdata;
891
892 BUG_ON(!(cgroup_is_dead(cgrp)));
893 call_rcu(&cgrp->rcu_head, cgroup_free_rcu);
894 } else {
895 struct cfent *cfe = __d_cfe(dentry);
896 struct cgroup *cgrp = dentry->d_parent->d_fsdata;
897
898 WARN_ONCE(!list_empty(&cfe->node) &&
899 cgrp != &cgrp->root->top_cgroup,
900 "cfe still linked for %s\n", cfe->type->name);
901 simple_xattrs_free(&cfe->xattrs);
902 kfree(cfe);
903 }
904 iput(inode);
905 }
906
907 static void remove_dir(struct dentry *d)
908 {
909 struct dentry *parent = dget(d->d_parent);
910
911 d_delete(d);
912 simple_rmdir(parent->d_inode, d);
913 dput(parent);
914 }
915
916 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
917 {
918 struct cfent *cfe;
919
920 lockdep_assert_held(&cgrp->dentry->d_inode->i_mutex);
921 lockdep_assert_held(&cgroup_mutex);
922
923 /*
924 * If we're doing cleanup due to failure of cgroup_create(),
925 * the corresponding @cfe may not exist.
926 */
927 list_for_each_entry(cfe, &cgrp->files, node) {
928 struct dentry *d = cfe->dentry;
929
930 if (cft && cfe->type != cft)
931 continue;
932
933 dget(d);
934 d_delete(d);
935 simple_unlink(cgrp->dentry->d_inode, d);
936 list_del_init(&cfe->node);
937 dput(d);
938
939 break;
940 }
941 }
942
943 /**
944 * cgroup_clear_dir - remove subsys files in a cgroup directory
945 * @cgrp: target cgroup
946 * @subsys_mask: mask of the subsystem ids whose files should be removed
947 */
948 static void cgroup_clear_dir(struct cgroup *cgrp, unsigned long subsys_mask)
949 {
950 struct cgroup_subsys *ss;
951 int i;
952
953 for_each_subsys(ss, i) {
954 struct cftype_set *set;
955
956 if (!test_bit(i, &subsys_mask))
957 continue;
958 list_for_each_entry(set, &ss->cftsets, node)
959 cgroup_addrm_files(cgrp, set->cfts, false);
960 }
961 }
962
963 /*
964 * NOTE : the dentry must have been dget()'ed
965 */
966 static void cgroup_d_remove_dir(struct dentry *dentry)
967 {
968 struct dentry *parent;
969
970 parent = dentry->d_parent;
971 spin_lock(&parent->d_lock);
972 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
973 list_del_init(&dentry->d_u.d_child);
974 spin_unlock(&dentry->d_lock);
975 spin_unlock(&parent->d_lock);
976 remove_dir(dentry);
977 }
978
979 /*
980 * Call with cgroup_mutex held. Drops reference counts on modules, including
981 * any duplicate ones that parse_cgroupfs_options took. If this function
982 * returns an error, no reference counts are touched.
983 */
984 static int rebind_subsystems(struct cgroupfs_root *root,
985 unsigned long added_mask, unsigned removed_mask)
986 {
987 struct cgroup *cgrp = &root->top_cgroup;
988 struct cgroup_subsys *ss;
989 unsigned long pinned = 0;
990 int i, ret;
991
992 BUG_ON(!mutex_is_locked(&cgroup_mutex));
993 BUG_ON(!mutex_is_locked(&cgroup_root_mutex));
994
995 /* Check that any added subsystems are currently free */
996 for_each_subsys(ss, i) {
997 if (!(added_mask & (1 << i)))
998 continue;
999
1000 /* is the subsystem mounted elsewhere? */
1001 if (ss->root != &cgroup_dummy_root) {
1002 ret = -EBUSY;
1003 goto out_put;
1004 }
1005
1006 /* pin the module */
1007 if (!try_module_get(ss->module)) {
1008 ret = -ENOENT;
1009 goto out_put;
1010 }
1011 pinned |= 1 << i;
1012 }
1013
1014 /* subsys could be missing if unloaded between parsing and here */
1015 if (added_mask != pinned) {
1016 ret = -ENOENT;
1017 goto out_put;
1018 }
1019
1020 ret = cgroup_populate_dir(cgrp, added_mask);
1021 if (ret)
1022 goto out_put;
1023
1024 /*
1025 * Nothing can fail from this point on. Remove files for the
1026 * removed subsystems and rebind each subsystem.
1027 */
1028 cgroup_clear_dir(cgrp, removed_mask);
1029
1030 for_each_subsys(ss, i) {
1031 unsigned long bit = 1UL << i;
1032
1033 if (bit & added_mask) {
1034 /* We're binding this subsystem to this hierarchy */
1035 BUG_ON(cgroup_css(cgrp, ss));
1036 BUG_ON(!cgroup_css(cgroup_dummy_top, ss));
1037 BUG_ON(cgroup_css(cgroup_dummy_top, ss)->cgroup != cgroup_dummy_top);
1038
1039 rcu_assign_pointer(cgrp->subsys[i],
1040 cgroup_css(cgroup_dummy_top, ss));
1041 cgroup_css(cgrp, ss)->cgroup = cgrp;
1042
1043 list_move(&ss->sibling, &root->subsys_list);
1044 ss->root = root;
1045 if (ss->bind)
1046 ss->bind(cgroup_css(cgrp, ss));
1047
1048 /* refcount was already taken, and we're keeping it */
1049 root->subsys_mask |= bit;
1050 } else if (bit & removed_mask) {
1051 /* We're removing this subsystem */
1052 BUG_ON(cgroup_css(cgrp, ss) != cgroup_css(cgroup_dummy_top, ss));
1053 BUG_ON(cgroup_css(cgrp, ss)->cgroup != cgrp);
1054
1055 if (ss->bind)
1056 ss->bind(cgroup_css(cgroup_dummy_top, ss));
1057
1058 cgroup_css(cgroup_dummy_top, ss)->cgroup = cgroup_dummy_top;
1059 RCU_INIT_POINTER(cgrp->subsys[i], NULL);
1060
1061 cgroup_subsys[i]->root = &cgroup_dummy_root;
1062 list_move(&ss->sibling, &cgroup_dummy_root.subsys_list);
1063
1064 /* subsystem is now free - drop reference on module */
1065 module_put(ss->module);
1066 root->subsys_mask &= ~bit;
1067 }
1068 }
1069
1070 /*
1071 * Mark @root has finished binding subsystems. @root->subsys_mask
1072 * now matches the bound subsystems.
1073 */
1074 root->flags |= CGRP_ROOT_SUBSYS_BOUND;
1075
1076 return 0;
1077
1078 out_put:
1079 for_each_subsys(ss, i)
1080 if (pinned & (1 << i))
1081 module_put(ss->module);
1082 return ret;
1083 }
1084
1085 static int cgroup_show_options(struct seq_file *seq, struct dentry *dentry)
1086 {
1087 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
1088 struct cgroup_subsys *ss;
1089
1090 mutex_lock(&cgroup_root_mutex);
1091 for_each_root_subsys(root, ss)
1092 seq_printf(seq, ",%s", ss->name);
1093 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR)
1094 seq_puts(seq, ",sane_behavior");
1095 if (root->flags & CGRP_ROOT_NOPREFIX)
1096 seq_puts(seq, ",noprefix");
1097 if (root->flags & CGRP_ROOT_XATTR)
1098 seq_puts(seq, ",xattr");
1099 if (strlen(root->release_agent_path))
1100 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
1101 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags))
1102 seq_puts(seq, ",clone_children");
1103 if (strlen(root->name))
1104 seq_printf(seq, ",name=%s", root->name);
1105 mutex_unlock(&cgroup_root_mutex);
1106 return 0;
1107 }
1108
1109 struct cgroup_sb_opts {
1110 unsigned long subsys_mask;
1111 unsigned long flags;
1112 char *release_agent;
1113 bool cpuset_clone_children;
1114 char *name;
1115 /* User explicitly requested empty subsystem */
1116 bool none;
1117
1118 struct cgroupfs_root *new_root;
1119
1120 };
1121
1122 /*
1123 * Convert a hierarchy specifier into a bitmask of subsystems and
1124 * flags. Call with cgroup_mutex held to protect the cgroup_subsys[]
1125 * array. This function takes refcounts on subsystems to be used, unless it
1126 * returns error, in which case no refcounts are taken.
1127 */
1128 static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
1129 {
1130 char *token, *o = data;
1131 bool all_ss = false, one_ss = false;
1132 unsigned long mask = (unsigned long)-1;
1133 struct cgroup_subsys *ss;
1134 int i;
1135
1136 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1137
1138 #ifdef CONFIG_CPUSETS
1139 mask = ~(1UL << cpuset_subsys_id);
1140 #endif
1141
1142 memset(opts, 0, sizeof(*opts));
1143
1144 while ((token = strsep(&o, ",")) != NULL) {
1145 if (!*token)
1146 return -EINVAL;
1147 if (!strcmp(token, "none")) {
1148 /* Explicitly have no subsystems */
1149 opts->none = true;
1150 continue;
1151 }
1152 if (!strcmp(token, "all")) {
1153 /* Mutually exclusive option 'all' + subsystem name */
1154 if (one_ss)
1155 return -EINVAL;
1156 all_ss = true;
1157 continue;
1158 }
1159 if (!strcmp(token, "__DEVEL__sane_behavior")) {
1160 opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
1161 continue;
1162 }
1163 if (!strcmp(token, "noprefix")) {
1164 opts->flags |= CGRP_ROOT_NOPREFIX;
1165 continue;
1166 }
1167 if (!strcmp(token, "clone_children")) {
1168 opts->cpuset_clone_children = true;
1169 continue;
1170 }
1171 if (!strcmp(token, "xattr")) {
1172 opts->flags |= CGRP_ROOT_XATTR;
1173 continue;
1174 }
1175 if (!strncmp(token, "release_agent=", 14)) {
1176 /* Specifying two release agents is forbidden */
1177 if (opts->release_agent)
1178 return -EINVAL;
1179 opts->release_agent =
1180 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
1181 if (!opts->release_agent)
1182 return -ENOMEM;
1183 continue;
1184 }
1185 if (!strncmp(token, "name=", 5)) {
1186 const char *name = token + 5;
1187 /* Can't specify an empty name */
1188 if (!strlen(name))
1189 return -EINVAL;
1190 /* Must match [\w.-]+ */
1191 for (i = 0; i < strlen(name); i++) {
1192 char c = name[i];
1193 if (isalnum(c))
1194 continue;
1195 if ((c == '.') || (c == '-') || (c == '_'))
1196 continue;
1197 return -EINVAL;
1198 }
1199 /* Specifying two names is forbidden */
1200 if (opts->name)
1201 return -EINVAL;
1202 opts->name = kstrndup(name,
1203 MAX_CGROUP_ROOT_NAMELEN - 1,
1204 GFP_KERNEL);
1205 if (!opts->name)
1206 return -ENOMEM;
1207
1208 continue;
1209 }
1210
1211 for_each_subsys(ss, i) {
1212 if (strcmp(token, ss->name))
1213 continue;
1214 if (ss->disabled)
1215 continue;
1216
1217 /* Mutually exclusive option 'all' + subsystem name */
1218 if (all_ss)
1219 return -EINVAL;
1220 set_bit(i, &opts->subsys_mask);
1221 one_ss = true;
1222
1223 break;
1224 }
1225 if (i == CGROUP_SUBSYS_COUNT)
1226 return -ENOENT;
1227 }
1228
1229 /*
1230 * If the 'all' option was specified select all the subsystems,
1231 * otherwise if 'none', 'name=' and a subsystem name options
1232 * were not specified, let's default to 'all'
1233 */
1234 if (all_ss || (!one_ss && !opts->none && !opts->name))
1235 for_each_subsys(ss, i)
1236 if (!ss->disabled)
1237 set_bit(i, &opts->subsys_mask);
1238
1239 /* Consistency checks */
1240
1241 if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1242 pr_warning("cgroup: sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
1243
1244 if (opts->flags & CGRP_ROOT_NOPREFIX) {
1245 pr_err("cgroup: sane_behavior: noprefix is not allowed\n");
1246 return -EINVAL;
1247 }
1248
1249 if (opts->cpuset_clone_children) {
1250 pr_err("cgroup: sane_behavior: clone_children is not allowed\n");
1251 return -EINVAL;
1252 }
1253 }
1254
1255 /*
1256 * Option noprefix was introduced just for backward compatibility
1257 * with the old cpuset, so we allow noprefix only if mounting just
1258 * the cpuset subsystem.
1259 */
1260 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
1261 return -EINVAL;
1262
1263
1264 /* Can't specify "none" and some subsystems */
1265 if (opts->subsys_mask && opts->none)
1266 return -EINVAL;
1267
1268 /*
1269 * We either have to specify by name or by subsystems. (So all
1270 * empty hierarchies must have a name).
1271 */
1272 if (!opts->subsys_mask && !opts->name)
1273 return -EINVAL;
1274
1275 return 0;
1276 }
1277
1278 static int cgroup_remount(struct super_block *sb, int *flags, char *data)
1279 {
1280 int ret = 0;
1281 struct cgroupfs_root *root = sb->s_fs_info;
1282 struct cgroup *cgrp = &root->top_cgroup;
1283 struct cgroup_sb_opts opts;
1284 unsigned long added_mask, removed_mask;
1285
1286 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1287 pr_err("cgroup: sane_behavior: remount is not allowed\n");
1288 return -EINVAL;
1289 }
1290
1291 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
1292 mutex_lock(&cgroup_mutex);
1293 mutex_lock(&cgroup_root_mutex);
1294
1295 /* See what subsystems are wanted */
1296 ret = parse_cgroupfs_options(data, &opts);
1297 if (ret)
1298 goto out_unlock;
1299
1300 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
1301 pr_warning("cgroup: option changes via remount are deprecated (pid=%d comm=%s)\n",
1302 task_tgid_nr(current), current->comm);
1303
1304 added_mask = opts.subsys_mask & ~root->subsys_mask;
1305 removed_mask = root->subsys_mask & ~opts.subsys_mask;
1306
1307 /* Don't allow flags or name to change at remount */
1308 if (((opts.flags ^ root->flags) & CGRP_ROOT_OPTION_MASK) ||
1309 (opts.name && strcmp(opts.name, root->name))) {
1310 pr_err("cgroup: option or name mismatch, new: 0x%lx \"%s\", old: 0x%lx \"%s\"\n",
1311 opts.flags & CGRP_ROOT_OPTION_MASK, opts.name ?: "",
1312 root->flags & CGRP_ROOT_OPTION_MASK, root->name);
1313 ret = -EINVAL;
1314 goto out_unlock;
1315 }
1316
1317 /* remounting is not allowed for populated hierarchies */
1318 if (root->number_of_cgroups > 1) {
1319 ret = -EBUSY;
1320 goto out_unlock;
1321 }
1322
1323 ret = rebind_subsystems(root, added_mask, removed_mask);
1324 if (ret)
1325 goto out_unlock;
1326
1327 if (opts.release_agent)
1328 strcpy(root->release_agent_path, opts.release_agent);
1329 out_unlock:
1330 kfree(opts.release_agent);
1331 kfree(opts.name);
1332 mutex_unlock(&cgroup_root_mutex);
1333 mutex_unlock(&cgroup_mutex);
1334 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
1335 return ret;
1336 }
1337
1338 static const struct super_operations cgroup_ops = {
1339 .statfs = simple_statfs,
1340 .drop_inode = generic_delete_inode,
1341 .show_options = cgroup_show_options,
1342 .remount_fs = cgroup_remount,
1343 };
1344
1345 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1346 {
1347 INIT_LIST_HEAD(&cgrp->sibling);
1348 INIT_LIST_HEAD(&cgrp->children);
1349 INIT_LIST_HEAD(&cgrp->files);
1350 INIT_LIST_HEAD(&cgrp->cset_links);
1351 INIT_LIST_HEAD(&cgrp->release_list);
1352 INIT_LIST_HEAD(&cgrp->pidlists);
1353 mutex_init(&cgrp->pidlist_mutex);
1354 cgrp->dummy_css.cgroup = cgrp;
1355 INIT_LIST_HEAD(&cgrp->event_list);
1356 spin_lock_init(&cgrp->event_list_lock);
1357 simple_xattrs_init(&cgrp->xattrs);
1358 }
1359
1360 static void init_cgroup_root(struct cgroupfs_root *root)
1361 {
1362 struct cgroup *cgrp = &root->top_cgroup;
1363
1364 INIT_LIST_HEAD(&root->subsys_list);
1365 INIT_LIST_HEAD(&root->root_list);
1366 root->number_of_cgroups = 1;
1367 cgrp->root = root;
1368 RCU_INIT_POINTER(cgrp->name, &root_cgroup_name);
1369 init_cgroup_housekeeping(cgrp);
1370 idr_init(&root->cgroup_idr);
1371 }
1372
1373 static int cgroup_init_root_id(struct cgroupfs_root *root, int start, int end)
1374 {
1375 int id;
1376
1377 lockdep_assert_held(&cgroup_mutex);
1378 lockdep_assert_held(&cgroup_root_mutex);
1379
1380 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, start, end,
1381 GFP_KERNEL);
1382 if (id < 0)
1383 return id;
1384
1385 root->hierarchy_id = id;
1386 return 0;
1387 }
1388
1389 static void cgroup_exit_root_id(struct cgroupfs_root *root)
1390 {
1391 lockdep_assert_held(&cgroup_mutex);
1392 lockdep_assert_held(&cgroup_root_mutex);
1393
1394 if (root->hierarchy_id) {
1395 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1396 root->hierarchy_id = 0;
1397 }
1398 }
1399
1400 static int cgroup_test_super(struct super_block *sb, void *data)
1401 {
1402 struct cgroup_sb_opts *opts = data;
1403 struct cgroupfs_root *root = sb->s_fs_info;
1404
1405 /* If we asked for a name then it must match */
1406 if (opts->name && strcmp(opts->name, root->name))
1407 return 0;
1408
1409 /*
1410 * If we asked for subsystems (or explicitly for no
1411 * subsystems) then they must match
1412 */
1413 if ((opts->subsys_mask || opts->none)
1414 && (opts->subsys_mask != root->subsys_mask))
1415 return 0;
1416
1417 return 1;
1418 }
1419
1420 static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
1421 {
1422 struct cgroupfs_root *root;
1423
1424 if (!opts->subsys_mask && !opts->none)
1425 return NULL;
1426
1427 root = kzalloc(sizeof(*root), GFP_KERNEL);
1428 if (!root)
1429 return ERR_PTR(-ENOMEM);
1430
1431 init_cgroup_root(root);
1432
1433 /*
1434 * We need to set @root->subsys_mask now so that @root can be
1435 * matched by cgroup_test_super() before it finishes
1436 * initialization; otherwise, competing mounts with the same
1437 * options may try to bind the same subsystems instead of waiting
1438 * for the first one leading to unexpected mount errors.
1439 * SUBSYS_BOUND will be set once actual binding is complete.
1440 */
1441 root->subsys_mask = opts->subsys_mask;
1442 root->flags = opts->flags;
1443 if (opts->release_agent)
1444 strcpy(root->release_agent_path, opts->release_agent);
1445 if (opts->name)
1446 strcpy(root->name, opts->name);
1447 if (opts->cpuset_clone_children)
1448 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags);
1449 return root;
1450 }
1451
1452 static void cgroup_free_root(struct cgroupfs_root *root)
1453 {
1454 if (root) {
1455 /* hierarhcy ID shoulid already have been released */
1456 WARN_ON_ONCE(root->hierarchy_id);
1457
1458 idr_destroy(&root->cgroup_idr);
1459 kfree(root);
1460 }
1461 }
1462
1463 static int cgroup_set_super(struct super_block *sb, void *data)
1464 {
1465 int ret;
1466 struct cgroup_sb_opts *opts = data;
1467
1468 /* If we don't have a new root, we can't set up a new sb */
1469 if (!opts->new_root)
1470 return -EINVAL;
1471
1472 BUG_ON(!opts->subsys_mask && !opts->none);
1473
1474 ret = set_anon_super(sb, NULL);
1475 if (ret)
1476 return ret;
1477
1478 sb->s_fs_info = opts->new_root;
1479 opts->new_root->sb = sb;
1480
1481 sb->s_blocksize = PAGE_CACHE_SIZE;
1482 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
1483 sb->s_magic = CGROUP_SUPER_MAGIC;
1484 sb->s_op = &cgroup_ops;
1485
1486 return 0;
1487 }
1488
1489 static int cgroup_get_rootdir(struct super_block *sb)
1490 {
1491 static const struct dentry_operations cgroup_dops = {
1492 .d_iput = cgroup_diput,
1493 .d_delete = always_delete_dentry,
1494 };
1495
1496 struct inode *inode =
1497 cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
1498
1499 if (!inode)
1500 return -ENOMEM;
1501
1502 inode->i_fop = &simple_dir_operations;
1503 inode->i_op = &cgroup_dir_inode_operations;
1504 /* directories start off with i_nlink == 2 (for "." entry) */
1505 inc_nlink(inode);
1506 sb->s_root = d_make_root(inode);
1507 if (!sb->s_root)
1508 return -ENOMEM;
1509 /* for everything else we want ->d_op set */
1510 sb->s_d_op = &cgroup_dops;
1511 return 0;
1512 }
1513
1514 static struct dentry *cgroup_mount(struct file_system_type *fs_type,
1515 int flags, const char *unused_dev_name,
1516 void *data)
1517 {
1518 struct cgroup_sb_opts opts;
1519 struct cgroupfs_root *root;
1520 int ret = 0;
1521 struct super_block *sb;
1522 struct cgroupfs_root *new_root;
1523 struct list_head tmp_links;
1524 struct inode *inode;
1525 const struct cred *cred;
1526
1527 /* First find the desired set of subsystems */
1528 mutex_lock(&cgroup_mutex);
1529 ret = parse_cgroupfs_options(data, &opts);
1530 mutex_unlock(&cgroup_mutex);
1531 if (ret)
1532 goto out_err;
1533
1534 /*
1535 * Allocate a new cgroup root. We may not need it if we're
1536 * reusing an existing hierarchy.
1537 */
1538 new_root = cgroup_root_from_opts(&opts);
1539 if (IS_ERR(new_root)) {
1540 ret = PTR_ERR(new_root);
1541 goto out_err;
1542 }
1543 opts.new_root = new_root;
1544
1545 /* Locate an existing or new sb for this hierarchy */
1546 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, 0, &opts);
1547 if (IS_ERR(sb)) {
1548 ret = PTR_ERR(sb);
1549 cgroup_free_root(opts.new_root);
1550 goto out_err;
1551 }
1552
1553 root = sb->s_fs_info;
1554 BUG_ON(!root);
1555 if (root == opts.new_root) {
1556 /* We used the new root structure, so this is a new hierarchy */
1557 struct cgroup *root_cgrp = &root->top_cgroup;
1558 struct cgroupfs_root *existing_root;
1559 int i;
1560 struct css_set *cset;
1561
1562 BUG_ON(sb->s_root != NULL);
1563
1564 ret = cgroup_get_rootdir(sb);
1565 if (ret)
1566 goto drop_new_super;
1567 inode = sb->s_root->d_inode;
1568
1569 mutex_lock(&inode->i_mutex);
1570 mutex_lock(&cgroup_mutex);
1571 mutex_lock(&cgroup_root_mutex);
1572
1573 root_cgrp->id = idr_alloc(&root->cgroup_idr, root_cgrp,
1574 0, 1, GFP_KERNEL);
1575 if (root_cgrp->id < 0)
1576 goto unlock_drop;
1577
1578 /* Check for name clashes with existing mounts */
1579 ret = -EBUSY;
1580 if (strlen(root->name))
1581 for_each_active_root(existing_root)
1582 if (!strcmp(existing_root->name, root->name))
1583 goto unlock_drop;
1584
1585 /*
1586 * We're accessing css_set_count without locking
1587 * css_set_lock here, but that's OK - it can only be
1588 * increased by someone holding cgroup_lock, and
1589 * that's us. The worst that can happen is that we
1590 * have some link structures left over
1591 */
1592 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
1593 if (ret)
1594 goto unlock_drop;
1595
1596 /* ID 0 is reserved for dummy root, 1 for unified hierarchy */
1597 ret = cgroup_init_root_id(root, 2, 0);
1598 if (ret)
1599 goto unlock_drop;
1600
1601 sb->s_root->d_fsdata = root_cgrp;
1602 root_cgrp->dentry = sb->s_root;
1603
1604 /*
1605 * We're inside get_sb() and will call lookup_one_len() to
1606 * create the root files, which doesn't work if SELinux is
1607 * in use. The following cred dancing somehow works around
1608 * it. See 2ce9738ba ("cgroupfs: use init_cred when
1609 * populating new cgroupfs mount") for more details.
1610 */
1611 cred = override_creds(&init_cred);
1612
1613 ret = cgroup_addrm_files(root_cgrp, cgroup_base_files, true);
1614 if (ret)
1615 goto rm_base_files;
1616
1617 ret = rebind_subsystems(root, root->subsys_mask, 0);
1618 if (ret)
1619 goto rm_base_files;
1620
1621 revert_creds(cred);
1622
1623 /*
1624 * There must be no failure case after here, since rebinding
1625 * takes care of subsystems' refcounts, which are explicitly
1626 * dropped in the failure exit path.
1627 */
1628
1629 list_add(&root->root_list, &cgroup_roots);
1630 cgroup_root_count++;
1631
1632 /* Link the top cgroup in this hierarchy into all
1633 * the css_set objects */
1634 write_lock(&css_set_lock);
1635 hash_for_each(css_set_table, i, cset, hlist)
1636 link_css_set(&tmp_links, cset, root_cgrp);
1637 write_unlock(&css_set_lock);
1638
1639 free_cgrp_cset_links(&tmp_links);
1640
1641 BUG_ON(!list_empty(&root_cgrp->children));
1642 BUG_ON(root->number_of_cgroups != 1);
1643
1644 mutex_unlock(&cgroup_root_mutex);
1645 mutex_unlock(&cgroup_mutex);
1646 mutex_unlock(&inode->i_mutex);
1647 } else {
1648 /*
1649 * We re-used an existing hierarchy - the new root (if
1650 * any) is not needed
1651 */
1652 cgroup_free_root(opts.new_root);
1653
1654 if ((root->flags ^ opts.flags) & CGRP_ROOT_OPTION_MASK) {
1655 if ((root->flags | opts.flags) & CGRP_ROOT_SANE_BEHAVIOR) {
1656 pr_err("cgroup: sane_behavior: new mount options should match the existing superblock\n");
1657 ret = -EINVAL;
1658 goto drop_new_super;
1659 } else {
1660 pr_warning("cgroup: new mount options do not match the existing superblock, will be ignored\n");
1661 }
1662 }
1663 }
1664
1665 kfree(opts.release_agent);
1666 kfree(opts.name);
1667 return dget(sb->s_root);
1668
1669 rm_base_files:
1670 free_cgrp_cset_links(&tmp_links);
1671 cgroup_addrm_files(&root->top_cgroup, cgroup_base_files, false);
1672 revert_creds(cred);
1673 unlock_drop:
1674 cgroup_exit_root_id(root);
1675 mutex_unlock(&cgroup_root_mutex);
1676 mutex_unlock(&cgroup_mutex);
1677 mutex_unlock(&inode->i_mutex);
1678 drop_new_super:
1679 deactivate_locked_super(sb);
1680 out_err:
1681 kfree(opts.release_agent);
1682 kfree(opts.name);
1683 return ERR_PTR(ret);
1684 }
1685
1686 static void cgroup_kill_sb(struct super_block *sb) {
1687 struct cgroupfs_root *root = sb->s_fs_info;
1688 struct cgroup *cgrp = &root->top_cgroup;
1689 struct cgrp_cset_link *link, *tmp_link;
1690 int ret;
1691
1692 BUG_ON(!root);
1693
1694 BUG_ON(root->number_of_cgroups != 1);
1695 BUG_ON(!list_empty(&cgrp->children));
1696
1697 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
1698 mutex_lock(&cgroup_mutex);
1699 mutex_lock(&cgroup_root_mutex);
1700
1701 /* Rebind all subsystems back to the default hierarchy */
1702 if (root->flags & CGRP_ROOT_SUBSYS_BOUND) {
1703 ret = rebind_subsystems(root, 0, root->subsys_mask);
1704 /* Shouldn't be able to fail ... */
1705 BUG_ON(ret);
1706 }
1707
1708 /*
1709 * Release all the links from cset_links to this hierarchy's
1710 * root cgroup
1711 */
1712 write_lock(&css_set_lock);
1713
1714 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1715 list_del(&link->cset_link);
1716 list_del(&link->cgrp_link);
1717 kfree(link);
1718 }
1719 write_unlock(&css_set_lock);
1720
1721 if (!list_empty(&root->root_list)) {
1722 list_del(&root->root_list);
1723 cgroup_root_count--;
1724 }
1725
1726 cgroup_exit_root_id(root);
1727
1728 mutex_unlock(&cgroup_root_mutex);
1729 mutex_unlock(&cgroup_mutex);
1730 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
1731
1732 simple_xattrs_free(&cgrp->xattrs);
1733
1734 kill_litter_super(sb);
1735 cgroup_free_root(root);
1736 }
1737
1738 static struct file_system_type cgroup_fs_type = {
1739 .name = "cgroup",
1740 .mount = cgroup_mount,
1741 .kill_sb = cgroup_kill_sb,
1742 };
1743
1744 static struct kobject *cgroup_kobj;
1745
1746 /**
1747 * cgroup_path - generate the path of a cgroup
1748 * @cgrp: the cgroup in question
1749 * @buf: the buffer to write the path into
1750 * @buflen: the length of the buffer
1751 *
1752 * Writes path of cgroup into buf. Returns 0 on success, -errno on error.
1753 *
1754 * We can't generate cgroup path using dentry->d_name, as accessing
1755 * dentry->name must be protected by irq-unsafe dentry->d_lock or parent
1756 * inode's i_mutex, while on the other hand cgroup_path() can be called
1757 * with some irq-safe spinlocks held.
1758 */
1759 int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1760 {
1761 int ret = -ENAMETOOLONG;
1762 char *start;
1763
1764 if (!cgrp->parent) {
1765 if (strlcpy(buf, "/", buflen) >= buflen)
1766 return -ENAMETOOLONG;
1767 return 0;
1768 }
1769
1770 start = buf + buflen - 1;
1771 *start = '\0';
1772
1773 rcu_read_lock();
1774 do {
1775 const char *name = cgroup_name(cgrp);
1776 int len;
1777
1778 len = strlen(name);
1779 if ((start -= len) < buf)
1780 goto out;
1781 memcpy(start, name, len);
1782
1783 if (--start < buf)
1784 goto out;
1785 *start = '/';
1786
1787 cgrp = cgrp->parent;
1788 } while (cgrp->parent);
1789 ret = 0;
1790 memmove(buf, start, buf + buflen - start);
1791 out:
1792 rcu_read_unlock();
1793 return ret;
1794 }
1795 EXPORT_SYMBOL_GPL(cgroup_path);
1796
1797 /**
1798 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
1799 * @task: target task
1800 * @buf: the buffer to write the path into
1801 * @buflen: the length of the buffer
1802 *
1803 * Determine @task's cgroup on the first (the one with the lowest non-zero
1804 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
1805 * function grabs cgroup_mutex and shouldn't be used inside locks used by
1806 * cgroup controller callbacks.
1807 *
1808 * Returns 0 on success, fails with -%ENAMETOOLONG if @buflen is too short.
1809 */
1810 int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
1811 {
1812 struct cgroupfs_root *root;
1813 struct cgroup *cgrp;
1814 int hierarchy_id = 1, ret = 0;
1815
1816 if (buflen < 2)
1817 return -ENAMETOOLONG;
1818
1819 mutex_lock(&cgroup_mutex);
1820
1821 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
1822
1823 if (root) {
1824 cgrp = task_cgroup_from_root(task, root);
1825 ret = cgroup_path(cgrp, buf, buflen);
1826 } else {
1827 /* if no hierarchy exists, everyone is in "/" */
1828 memcpy(buf, "/", 2);
1829 }
1830
1831 mutex_unlock(&cgroup_mutex);
1832 return ret;
1833 }
1834 EXPORT_SYMBOL_GPL(task_cgroup_path);
1835
1836 /*
1837 * Control Group taskset
1838 */
1839 struct task_and_cgroup {
1840 struct task_struct *task;
1841 struct cgroup *cgrp;
1842 struct css_set *cset;
1843 };
1844
1845 struct cgroup_taskset {
1846 struct task_and_cgroup single;
1847 struct flex_array *tc_array;
1848 int tc_array_len;
1849 int idx;
1850 struct cgroup *cur_cgrp;
1851 };
1852
1853 /**
1854 * cgroup_taskset_first - reset taskset and return the first task
1855 * @tset: taskset of interest
1856 *
1857 * @tset iteration is initialized and the first task is returned.
1858 */
1859 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
1860 {
1861 if (tset->tc_array) {
1862 tset->idx = 0;
1863 return cgroup_taskset_next(tset);
1864 } else {
1865 tset->cur_cgrp = tset->single.cgrp;
1866 return tset->single.task;
1867 }
1868 }
1869 EXPORT_SYMBOL_GPL(cgroup_taskset_first);
1870
1871 /**
1872 * cgroup_taskset_next - iterate to the next task in taskset
1873 * @tset: taskset of interest
1874 *
1875 * Return the next task in @tset. Iteration must have been initialized
1876 * with cgroup_taskset_first().
1877 */
1878 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
1879 {
1880 struct task_and_cgroup *tc;
1881
1882 if (!tset->tc_array || tset->idx >= tset->tc_array_len)
1883 return NULL;
1884
1885 tc = flex_array_get(tset->tc_array, tset->idx++);
1886 tset->cur_cgrp = tc->cgrp;
1887 return tc->task;
1888 }
1889 EXPORT_SYMBOL_GPL(cgroup_taskset_next);
1890
1891 /**
1892 * cgroup_taskset_cur_css - return the matching css for the current task
1893 * @tset: taskset of interest
1894 * @subsys_id: the ID of the target subsystem
1895 *
1896 * Return the css for the current (last returned) task of @tset for
1897 * subsystem specified by @subsys_id. This function must be preceded by
1898 * either cgroup_taskset_first() or cgroup_taskset_next().
1899 */
1900 struct cgroup_subsys_state *cgroup_taskset_cur_css(struct cgroup_taskset *tset,
1901 int subsys_id)
1902 {
1903 return cgroup_css(tset->cur_cgrp, cgroup_subsys[subsys_id]);
1904 }
1905 EXPORT_SYMBOL_GPL(cgroup_taskset_cur_css);
1906
1907 /**
1908 * cgroup_taskset_size - return the number of tasks in taskset
1909 * @tset: taskset of interest
1910 */
1911 int cgroup_taskset_size(struct cgroup_taskset *tset)
1912 {
1913 return tset->tc_array ? tset->tc_array_len : 1;
1914 }
1915 EXPORT_SYMBOL_GPL(cgroup_taskset_size);
1916
1917
1918 /*
1919 * cgroup_task_migrate - move a task from one cgroup to another.
1920 *
1921 * Must be called with cgroup_mutex and threadgroup locked.
1922 */
1923 static void cgroup_task_migrate(struct cgroup *old_cgrp,
1924 struct task_struct *tsk,
1925 struct css_set *new_cset)
1926 {
1927 struct css_set *old_cset;
1928
1929 /*
1930 * We are synchronized through threadgroup_lock() against PF_EXITING
1931 * setting such that we can't race against cgroup_exit() changing the
1932 * css_set to init_css_set and dropping the old one.
1933 */
1934 WARN_ON_ONCE(tsk->flags & PF_EXITING);
1935 old_cset = task_css_set(tsk);
1936
1937 task_lock(tsk);
1938 rcu_assign_pointer(tsk->cgroups, new_cset);
1939 task_unlock(tsk);
1940
1941 /* Update the css_set linked lists if we're using them */
1942 write_lock(&css_set_lock);
1943 if (!list_empty(&tsk->cg_list))
1944 list_move(&tsk->cg_list, &new_cset->tasks);
1945 write_unlock(&css_set_lock);
1946
1947 /*
1948 * We just gained a reference on old_cset by taking it from the
1949 * task. As trading it for new_cset is protected by cgroup_mutex,
1950 * we're safe to drop it here; it will be freed under RCU.
1951 */
1952 set_bit(CGRP_RELEASABLE, &old_cgrp->flags);
1953 put_css_set(old_cset);
1954 }
1955
1956 /**
1957 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
1958 * @cgrp: the cgroup to attach to
1959 * @tsk: the task or the leader of the threadgroup to be attached
1960 * @threadgroup: attach the whole threadgroup?
1961 *
1962 * Call holding cgroup_mutex and the group_rwsem of the leader. Will take
1963 * task_lock of @tsk or each thread in the threadgroup individually in turn.
1964 */
1965 static int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk,
1966 bool threadgroup)
1967 {
1968 int retval, i, group_size;
1969 struct cgroup_subsys *ss, *failed_ss = NULL;
1970 struct cgroupfs_root *root = cgrp->root;
1971 /* threadgroup list cursor and array */
1972 struct task_struct *leader = tsk;
1973 struct task_and_cgroup *tc;
1974 struct flex_array *group;
1975 struct cgroup_taskset tset = { };
1976
1977 /*
1978 * step 0: in order to do expensive, possibly blocking operations for
1979 * every thread, we cannot iterate the thread group list, since it needs
1980 * rcu or tasklist locked. instead, build an array of all threads in the
1981 * group - group_rwsem prevents new threads from appearing, and if
1982 * threads exit, this will just be an over-estimate.
1983 */
1984 if (threadgroup)
1985 group_size = get_nr_threads(tsk);
1986 else
1987 group_size = 1;
1988 /* flex_array supports very large thread-groups better than kmalloc. */
1989 group = flex_array_alloc(sizeof(*tc), group_size, GFP_KERNEL);
1990 if (!group)
1991 return -ENOMEM;
1992 /* pre-allocate to guarantee space while iterating in rcu read-side. */
1993 retval = flex_array_prealloc(group, 0, group_size, GFP_KERNEL);
1994 if (retval)
1995 goto out_free_group_list;
1996
1997 i = 0;
1998 /*
1999 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2000 * already PF_EXITING could be freed from underneath us unless we
2001 * take an rcu_read_lock.
2002 */
2003 rcu_read_lock();
2004 do {
2005 struct task_and_cgroup ent;
2006
2007 /* @tsk either already exited or can't exit until the end */
2008 if (tsk->flags & PF_EXITING)
2009 goto next;
2010
2011 /* as per above, nr_threads may decrease, but not increase. */
2012 BUG_ON(i >= group_size);
2013 ent.task = tsk;
2014 ent.cgrp = task_cgroup_from_root(tsk, root);
2015 /* nothing to do if this task is already in the cgroup */
2016 if (ent.cgrp == cgrp)
2017 goto next;
2018 /*
2019 * saying GFP_ATOMIC has no effect here because we did prealloc
2020 * earlier, but it's good form to communicate our expectations.
2021 */
2022 retval = flex_array_put(group, i, &ent, GFP_ATOMIC);
2023 BUG_ON(retval != 0);
2024 i++;
2025 next:
2026 if (!threadgroup)
2027 break;
2028 } while_each_thread(leader, tsk);
2029 rcu_read_unlock();
2030 /* remember the number of threads in the array for later. */
2031 group_size = i;
2032 tset.tc_array = group;
2033 tset.tc_array_len = group_size;
2034
2035 /* methods shouldn't be called if no task is actually migrating */
2036 retval = 0;
2037 if (!group_size)
2038 goto out_free_group_list;
2039
2040 /*
2041 * step 1: check that we can legitimately attach to the cgroup.
2042 */
2043 for_each_root_subsys(root, ss) {
2044 struct cgroup_subsys_state *css = cgroup_css(cgrp, ss);
2045
2046 if (ss->can_attach) {
2047 retval = ss->can_attach(css, &tset);
2048 if (retval) {
2049 failed_ss = ss;
2050 goto out_cancel_attach;
2051 }
2052 }
2053 }
2054
2055 /*
2056 * step 2: make sure css_sets exist for all threads to be migrated.
2057 * we use find_css_set, which allocates a new one if necessary.
2058 */
2059 for (i = 0; i < group_size; i++) {
2060 struct css_set *old_cset;
2061
2062 tc = flex_array_get(group, i);
2063 old_cset = task_css_set(tc->task);
2064 tc->cset = find_css_set(old_cset, cgrp);
2065 if (!tc->cset) {
2066 retval = -ENOMEM;
2067 goto out_put_css_set_refs;
2068 }
2069 }
2070
2071 /*
2072 * step 3: now that we're guaranteed success wrt the css_sets,
2073 * proceed to move all tasks to the new cgroup. There are no
2074 * failure cases after here, so this is the commit point.
2075 */
2076 for (i = 0; i < group_size; i++) {
2077 tc = flex_array_get(group, i);
2078 cgroup_task_migrate(tc->cgrp, tc->task, tc->cset);
2079 }
2080 /* nothing is sensitive to fork() after this point. */
2081
2082 /*
2083 * step 4: do subsystem attach callbacks.
2084 */
2085 for_each_root_subsys(root, ss) {
2086 struct cgroup_subsys_state *css = cgroup_css(cgrp, ss);
2087
2088 if (ss->attach)
2089 ss->attach(css, &tset);
2090 }
2091
2092 /*
2093 * step 5: success! and cleanup
2094 */
2095 retval = 0;
2096 out_put_css_set_refs:
2097 if (retval) {
2098 for (i = 0; i < group_size; i++) {
2099 tc = flex_array_get(group, i);
2100 if (!tc->cset)
2101 break;
2102 put_css_set(tc->cset);
2103 }
2104 }
2105 out_cancel_attach:
2106 if (retval) {
2107 for_each_root_subsys(root, ss) {
2108 struct cgroup_subsys_state *css = cgroup_css(cgrp, ss);
2109
2110 if (ss == failed_ss)
2111 break;
2112 if (ss->cancel_attach)
2113 ss->cancel_attach(css, &tset);
2114 }
2115 }
2116 out_free_group_list:
2117 flex_array_free(group);
2118 return retval;
2119 }
2120
2121 /*
2122 * Find the task_struct of the task to attach by vpid and pass it along to the
2123 * function to attach either it or all tasks in its threadgroup. Will lock
2124 * cgroup_mutex and threadgroup; may take task_lock of task.
2125 */
2126 static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
2127 {
2128 struct task_struct *tsk;
2129 const struct cred *cred = current_cred(), *tcred;
2130 int ret;
2131
2132 if (!cgroup_lock_live_group(cgrp))
2133 return -ENODEV;
2134
2135 retry_find_task:
2136 rcu_read_lock();
2137 if (pid) {
2138 tsk = find_task_by_vpid(pid);
2139 if (!tsk) {
2140 rcu_read_unlock();
2141 ret= -ESRCH;
2142 goto out_unlock_cgroup;
2143 }
2144 /*
2145 * even if we're attaching all tasks in the thread group, we
2146 * only need to check permissions on one of them.
2147 */
2148 tcred = __task_cred(tsk);
2149 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2150 !uid_eq(cred->euid, tcred->uid) &&
2151 !uid_eq(cred->euid, tcred->suid)) {
2152 rcu_read_unlock();
2153 ret = -EACCES;
2154 goto out_unlock_cgroup;
2155 }
2156 } else
2157 tsk = current;
2158
2159 if (threadgroup)
2160 tsk = tsk->group_leader;
2161
2162 /*
2163 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
2164 * trapped in a cpuset, or RT worker may be born in a cgroup
2165 * with no rt_runtime allocated. Just say no.
2166 */
2167 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
2168 ret = -EINVAL;
2169 rcu_read_unlock();
2170 goto out_unlock_cgroup;
2171 }
2172
2173 get_task_struct(tsk);
2174 rcu_read_unlock();
2175
2176 threadgroup_lock(tsk);
2177 if (threadgroup) {
2178 if (!thread_group_leader(tsk)) {
2179 /*
2180 * a race with de_thread from another thread's exec()
2181 * may strip us of our leadership, if this happens,
2182 * there is no choice but to throw this task away and
2183 * try again; this is
2184 * "double-double-toil-and-trouble-check locking".
2185 */
2186 threadgroup_unlock(tsk);
2187 put_task_struct(tsk);
2188 goto retry_find_task;
2189 }
2190 }
2191
2192 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
2193
2194 threadgroup_unlock(tsk);
2195
2196 put_task_struct(tsk);
2197 out_unlock_cgroup:
2198 mutex_unlock(&cgroup_mutex);
2199 return ret;
2200 }
2201
2202 /**
2203 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2204 * @from: attach to all cgroups of a given task
2205 * @tsk: the task to be attached
2206 */
2207 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2208 {
2209 struct cgroupfs_root *root;
2210 int retval = 0;
2211
2212 mutex_lock(&cgroup_mutex);
2213 for_each_active_root(root) {
2214 struct cgroup *from_cgrp = task_cgroup_from_root(from, root);
2215
2216 retval = cgroup_attach_task(from_cgrp, tsk, false);
2217 if (retval)
2218 break;
2219 }
2220 mutex_unlock(&cgroup_mutex);
2221
2222 return retval;
2223 }
2224 EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2225
2226 static int cgroup_tasks_write(struct cgroup_subsys_state *css,
2227 struct cftype *cft, u64 pid)
2228 {
2229 return attach_task_by_pid(css->cgroup, pid, false);
2230 }
2231
2232 static int cgroup_procs_write(struct cgroup_subsys_state *css,
2233 struct cftype *cft, u64 tgid)
2234 {
2235 return attach_task_by_pid(css->cgroup, tgid, true);
2236 }
2237
2238 static int cgroup_release_agent_write(struct cgroup_subsys_state *css,
2239 struct cftype *cft, const char *buffer)
2240 {
2241 BUILD_BUG_ON(sizeof(css->cgroup->root->release_agent_path) < PATH_MAX);
2242 if (strlen(buffer) >= PATH_MAX)
2243 return -EINVAL;
2244 if (!cgroup_lock_live_group(css->cgroup))
2245 return -ENODEV;
2246 mutex_lock(&cgroup_root_mutex);
2247 strcpy(css->cgroup->root->release_agent_path, buffer);
2248 mutex_unlock(&cgroup_root_mutex);
2249 mutex_unlock(&cgroup_mutex);
2250 return 0;
2251 }
2252
2253 static int cgroup_release_agent_show(struct cgroup_subsys_state *css,
2254 struct cftype *cft, struct seq_file *seq)
2255 {
2256 struct cgroup *cgrp = css->cgroup;
2257
2258 if (!cgroup_lock_live_group(cgrp))
2259 return -ENODEV;
2260 seq_puts(seq, cgrp->root->release_agent_path);
2261 seq_putc(seq, '\n');
2262 mutex_unlock(&cgroup_mutex);
2263 return 0;
2264 }
2265
2266 static int cgroup_sane_behavior_show(struct cgroup_subsys_state *css,
2267 struct cftype *cft, struct seq_file *seq)
2268 {
2269 seq_printf(seq, "%d\n", cgroup_sane_behavior(css->cgroup));
2270 return 0;
2271 }
2272
2273 /* A buffer size big enough for numbers or short strings */
2274 #define CGROUP_LOCAL_BUFFER_SIZE 64
2275
2276 static ssize_t cgroup_write_X64(struct cgroup_subsys_state *css,
2277 struct cftype *cft, struct file *file,
2278 const char __user *userbuf, size_t nbytes,
2279 loff_t *unused_ppos)
2280 {
2281 char buffer[CGROUP_LOCAL_BUFFER_SIZE];
2282 int retval = 0;
2283 char *end;
2284
2285 if (!nbytes)
2286 return -EINVAL;
2287 if (nbytes >= sizeof(buffer))
2288 return -E2BIG;
2289 if (copy_from_user(buffer, userbuf, nbytes))
2290 return -EFAULT;
2291
2292 buffer[nbytes] = 0; /* nul-terminate */
2293 if (cft->write_u64) {
2294 u64 val = simple_strtoull(strstrip(buffer), &end, 0);
2295 if (*end)
2296 return -EINVAL;
2297 retval = cft->write_u64(css, cft, val);
2298 } else {
2299 s64 val = simple_strtoll(strstrip(buffer), &end, 0);
2300 if (*end)
2301 return -EINVAL;
2302 retval = cft->write_s64(css, cft, val);
2303 }
2304 if (!retval)
2305 retval = nbytes;
2306 return retval;
2307 }
2308
2309 static ssize_t cgroup_write_string(struct cgroup_subsys_state *css,
2310 struct cftype *cft, struct file *file,
2311 const char __user *userbuf, size_t nbytes,
2312 loff_t *unused_ppos)
2313 {
2314 char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
2315 int retval = 0;
2316 size_t max_bytes = cft->max_write_len;
2317 char *buffer = local_buffer;
2318
2319 if (!max_bytes)
2320 max_bytes = sizeof(local_buffer) - 1;
2321 if (nbytes >= max_bytes)
2322 return -E2BIG;
2323 /* Allocate a dynamic buffer if we need one */
2324 if (nbytes >= sizeof(local_buffer)) {
2325 buffer = kmalloc(nbytes + 1, GFP_KERNEL);
2326 if (buffer == NULL)
2327 return -ENOMEM;
2328 }
2329 if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
2330 retval = -EFAULT;
2331 goto out;
2332 }
2333
2334 buffer[nbytes] = 0; /* nul-terminate */
2335 retval = cft->write_string(css, cft, strstrip(buffer));
2336 if (!retval)
2337 retval = nbytes;
2338 out:
2339 if (buffer != local_buffer)
2340 kfree(buffer);
2341 return retval;
2342 }
2343
2344 static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
2345 size_t nbytes, loff_t *ppos)
2346 {
2347 struct cfent *cfe = __d_cfe(file->f_dentry);
2348 struct cftype *cft = __d_cft(file->f_dentry);
2349 struct cgroup_subsys_state *css = cfe->css;
2350
2351 if (cft->write)
2352 return cft->write(css, cft, file, buf, nbytes, ppos);
2353 if (cft->write_u64 || cft->write_s64)
2354 return cgroup_write_X64(css, cft, file, buf, nbytes, ppos);
2355 if (cft->write_string)
2356 return cgroup_write_string(css, cft, file, buf, nbytes, ppos);
2357 if (cft->trigger) {
2358 int ret = cft->trigger(css, (unsigned int)cft->private);
2359 return ret ? ret : nbytes;
2360 }
2361 return -EINVAL;
2362 }
2363
2364 static ssize_t cgroup_read_u64(struct cgroup_subsys_state *css,
2365 struct cftype *cft, struct file *file,
2366 char __user *buf, size_t nbytes, loff_t *ppos)
2367 {
2368 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2369 u64 val = cft->read_u64(css, cft);
2370 int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
2371
2372 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2373 }
2374
2375 static ssize_t cgroup_read_s64(struct cgroup_subsys_state *css,
2376 struct cftype *cft, struct file *file,
2377 char __user *buf, size_t nbytes, loff_t *ppos)
2378 {
2379 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2380 s64 val = cft->read_s64(css, cft);
2381 int len = sprintf(tmp, "%lld\n", (long long) val);
2382
2383 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2384 }
2385
2386 static ssize_t cgroup_file_read(struct file *file, char __user *buf,
2387 size_t nbytes, loff_t *ppos)
2388 {
2389 struct cfent *cfe = __d_cfe(file->f_dentry);
2390 struct cftype *cft = __d_cft(file->f_dentry);
2391 struct cgroup_subsys_state *css = cfe->css;
2392
2393 if (cft->read)
2394 return cft->read(css, cft, file, buf, nbytes, ppos);
2395 if (cft->read_u64)
2396 return cgroup_read_u64(css, cft, file, buf, nbytes, ppos);
2397 if (cft->read_s64)
2398 return cgroup_read_s64(css, cft, file, buf, nbytes, ppos);
2399 return -EINVAL;
2400 }
2401
2402 /*
2403 * seqfile ops/methods for returning structured data. Currently just
2404 * supports string->u64 maps, but can be extended in future.
2405 */
2406
2407 static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
2408 {
2409 struct seq_file *sf = cb->state;
2410 return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
2411 }
2412
2413 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
2414 {
2415 struct cfent *cfe = m->private;
2416 struct cftype *cft = cfe->type;
2417 struct cgroup_subsys_state *css = cfe->css;
2418
2419 if (cft->read_map) {
2420 struct cgroup_map_cb cb = {
2421 .fill = cgroup_map_add,
2422 .state = m,
2423 };
2424 return cft->read_map(css, cft, &cb);
2425 }
2426 return cft->read_seq_string(css, cft, m);
2427 }
2428
2429 static const struct file_operations cgroup_seqfile_operations = {
2430 .read = seq_read,
2431 .write = cgroup_file_write,
2432 .llseek = seq_lseek,
2433 .release = cgroup_file_release,
2434 };
2435
2436 static int cgroup_file_open(struct inode *inode, struct file *file)
2437 {
2438 struct cfent *cfe = __d_cfe(file->f_dentry);
2439 struct cftype *cft = __d_cft(file->f_dentry);
2440 struct cgroup *cgrp = __d_cgrp(cfe->dentry->d_parent);
2441 struct cgroup_subsys_state *css;
2442 int err;
2443
2444 err = generic_file_open(inode, file);
2445 if (err)
2446 return err;
2447
2448 /*
2449 * If the file belongs to a subsystem, pin the css. Will be
2450 * unpinned either on open failure or release. This ensures that
2451 * @css stays alive for all file operations.
2452 */
2453 rcu_read_lock();
2454 css = cgroup_css(cgrp, cft->ss);
2455 if (cft->ss && !css_tryget(css))
2456 css = NULL;
2457 rcu_read_unlock();
2458
2459 if (!css)
2460 return -ENODEV;
2461
2462 /*
2463 * @cfe->css is used by read/write/close to determine the
2464 * associated css. @file->private_data would be a better place but
2465 * that's already used by seqfile. Multiple accessors may use it
2466 * simultaneously which is okay as the association never changes.
2467 */
2468 WARN_ON_ONCE(cfe->css && cfe->css != css);
2469 cfe->css = css;
2470
2471 if (cft->read_map || cft->read_seq_string) {
2472 file->f_op = &cgroup_seqfile_operations;
2473 err = single_open(file, cgroup_seqfile_show, cfe);
2474 } else if (cft->open) {
2475 err = cft->open(inode, file);
2476 }
2477
2478 if (css->ss && err)
2479 css_put(css);
2480 return err;
2481 }
2482
2483 static int cgroup_file_release(struct inode *inode, struct file *file)
2484 {
2485 struct cfent *cfe = __d_cfe(file->f_dentry);
2486 struct cftype *cft = __d_cft(file->f_dentry);
2487 struct cgroup_subsys_state *css = cfe->css;
2488 int ret = 0;
2489
2490 if (cft->release)
2491 ret = cft->release(inode, file);
2492 if (css->ss)
2493 css_put(css);
2494 if (file->f_op == &cgroup_seqfile_operations)
2495 single_release(inode, file);
2496 return ret;
2497 }
2498
2499 /*
2500 * cgroup_rename - Only allow simple rename of directories in place.
2501 */
2502 static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
2503 struct inode *new_dir, struct dentry *new_dentry)
2504 {
2505 int ret;
2506 struct cgroup_name *name, *old_name;
2507 struct cgroup *cgrp;
2508
2509 /*
2510 * It's convinient to use parent dir's i_mutex to protected
2511 * cgrp->name.
2512 */
2513 lockdep_assert_held(&old_dir->i_mutex);
2514
2515 if (!S_ISDIR(old_dentry->d_inode->i_mode))
2516 return -ENOTDIR;
2517 if (new_dentry->d_inode)
2518 return -EEXIST;
2519 if (old_dir != new_dir)
2520 return -EIO;
2521
2522 cgrp = __d_cgrp(old_dentry);
2523
2524 /*
2525 * This isn't a proper migration and its usefulness is very
2526 * limited. Disallow if sane_behavior.
2527 */
2528 if (cgroup_sane_behavior(cgrp))
2529 return -EPERM;
2530
2531 name = cgroup_alloc_name(new_dentry);
2532 if (!name)
2533 return -ENOMEM;
2534
2535 ret = simple_rename(old_dir, old_dentry, new_dir, new_dentry);
2536 if (ret) {
2537 kfree(name);
2538 return ret;
2539 }
2540
2541 old_name = rcu_dereference_protected(cgrp->name, true);
2542 rcu_assign_pointer(cgrp->name, name);
2543
2544 kfree_rcu(old_name, rcu_head);
2545 return 0;
2546 }
2547
2548 static struct simple_xattrs *__d_xattrs(struct dentry *dentry)
2549 {
2550 if (S_ISDIR(dentry->d_inode->i_mode))
2551 return &__d_cgrp(dentry)->xattrs;
2552 else
2553 return &__d_cfe(dentry)->xattrs;
2554 }
2555
2556 static inline int xattr_enabled(struct dentry *dentry)
2557 {
2558 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
2559 return root->flags & CGRP_ROOT_XATTR;
2560 }
2561
2562 static bool is_valid_xattr(const char *name)
2563 {
2564 if (!strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN) ||
2565 !strncmp(name, XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN))
2566 return true;
2567 return false;
2568 }
2569
2570 static int cgroup_setxattr(struct dentry *dentry, const char *name,
2571 const void *val, size_t size, int flags)
2572 {
2573 if (!xattr_enabled(dentry))
2574 return -EOPNOTSUPP;
2575 if (!is_valid_xattr(name))
2576 return -EINVAL;
2577 return simple_xattr_set(__d_xattrs(dentry), name, val, size, flags);
2578 }
2579
2580 static int cgroup_removexattr(struct dentry *dentry, const char *name)
2581 {
2582 if (!xattr_enabled(dentry))
2583 return -EOPNOTSUPP;
2584 if (!is_valid_xattr(name))
2585 return -EINVAL;
2586 return simple_xattr_remove(__d_xattrs(dentry), name);
2587 }
2588
2589 static ssize_t cgroup_getxattr(struct dentry *dentry, const char *name,
2590 void *buf, size_t size)
2591 {
2592 if (!xattr_enabled(dentry))
2593 return -EOPNOTSUPP;
2594 if (!is_valid_xattr(name))
2595 return -EINVAL;
2596 return simple_xattr_get(__d_xattrs(dentry), name, buf, size);
2597 }
2598
2599 static ssize_t cgroup_listxattr(struct dentry *dentry, char *buf, size_t size)
2600 {
2601 if (!xattr_enabled(dentry))
2602 return -EOPNOTSUPP;
2603 return simple_xattr_list(__d_xattrs(dentry), buf, size);
2604 }
2605
2606 static const struct file_operations cgroup_file_operations = {
2607 .read = cgroup_file_read,
2608 .write = cgroup_file_write,
2609 .llseek = generic_file_llseek,
2610 .open = cgroup_file_open,
2611 .release = cgroup_file_release,
2612 };
2613
2614 static const struct inode_operations cgroup_file_inode_operations = {
2615 .setxattr = cgroup_setxattr,
2616 .getxattr = cgroup_getxattr,
2617 .listxattr = cgroup_listxattr,
2618 .removexattr = cgroup_removexattr,
2619 };
2620
2621 static const struct inode_operations cgroup_dir_inode_operations = {
2622 .lookup = simple_lookup,
2623 .mkdir = cgroup_mkdir,
2624 .rmdir = cgroup_rmdir,
2625 .rename = cgroup_rename,
2626 .setxattr = cgroup_setxattr,
2627 .getxattr = cgroup_getxattr,
2628 .listxattr = cgroup_listxattr,
2629 .removexattr = cgroup_removexattr,
2630 };
2631
2632 /*
2633 * Check if a file is a control file
2634 */
2635 static inline struct cftype *__file_cft(struct file *file)
2636 {
2637 if (file_inode(file)->i_fop != &cgroup_file_operations)
2638 return ERR_PTR(-EINVAL);
2639 return __d_cft(file->f_dentry);
2640 }
2641
2642 static int cgroup_create_file(struct dentry *dentry, umode_t mode,
2643 struct super_block *sb)
2644 {
2645 struct inode *inode;
2646
2647 if (!dentry)
2648 return -ENOENT;
2649 if (dentry->d_inode)
2650 return -EEXIST;
2651
2652 inode = cgroup_new_inode(mode, sb);
2653 if (!inode)
2654 return -ENOMEM;
2655
2656 if (S_ISDIR(mode)) {
2657 inode->i_op = &cgroup_dir_inode_operations;
2658 inode->i_fop = &simple_dir_operations;
2659
2660 /* start off with i_nlink == 2 (for "." entry) */
2661 inc_nlink(inode);
2662 inc_nlink(dentry->d_parent->d_inode);
2663
2664 /*
2665 * Control reaches here with cgroup_mutex held.
2666 * @inode->i_mutex should nest outside cgroup_mutex but we
2667 * want to populate it immediately without releasing
2668 * cgroup_mutex. As @inode isn't visible to anyone else
2669 * yet, trylock will always succeed without affecting
2670 * lockdep checks.
2671 */
2672 WARN_ON_ONCE(!mutex_trylock(&inode->i_mutex));
2673 } else if (S_ISREG(mode)) {
2674 inode->i_size = 0;
2675 inode->i_fop = &cgroup_file_operations;
2676 inode->i_op = &cgroup_file_inode_operations;
2677 }
2678 d_instantiate(dentry, inode);
2679 dget(dentry); /* Extra count - pin the dentry in core */
2680 return 0;
2681 }
2682
2683 /**
2684 * cgroup_file_mode - deduce file mode of a control file
2685 * @cft: the control file in question
2686 *
2687 * returns cft->mode if ->mode is not 0
2688 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
2689 * returns S_IRUGO if it has only a read handler
2690 * returns S_IWUSR if it has only a write hander
2691 */
2692 static umode_t cgroup_file_mode(const struct cftype *cft)
2693 {
2694 umode_t mode = 0;
2695
2696 if (cft->mode)
2697 return cft->mode;
2698
2699 if (cft->read || cft->read_u64 || cft->read_s64 ||
2700 cft->read_map || cft->read_seq_string)
2701 mode |= S_IRUGO;
2702
2703 if (cft->write || cft->write_u64 || cft->write_s64 ||
2704 cft->write_string || cft->trigger)
2705 mode |= S_IWUSR;
2706
2707 return mode;
2708 }
2709
2710 static int cgroup_add_file(struct cgroup *cgrp, struct cftype *cft)
2711 {
2712 struct dentry *dir = cgrp->dentry;
2713 struct cgroup *parent = __d_cgrp(dir);
2714 struct dentry *dentry;
2715 struct cfent *cfe;
2716 int error;
2717 umode_t mode;
2718 char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
2719
2720 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
2721 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) {
2722 strcpy(name, cft->ss->name);
2723 strcat(name, ".");
2724 }
2725 strcat(name, cft->name);
2726
2727 BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
2728
2729 cfe = kzalloc(sizeof(*cfe), GFP_KERNEL);
2730 if (!cfe)
2731 return -ENOMEM;
2732
2733 dentry = lookup_one_len(name, dir, strlen(name));
2734 if (IS_ERR(dentry)) {
2735 error = PTR_ERR(dentry);
2736 goto out;
2737 }
2738
2739 cfe->type = (void *)cft;
2740 cfe->dentry = dentry;
2741 dentry->d_fsdata = cfe;
2742 simple_xattrs_init(&cfe->xattrs);
2743
2744 mode = cgroup_file_mode(cft);
2745 error = cgroup_create_file(dentry, mode | S_IFREG, cgrp->root->sb);
2746 if (!error) {
2747 list_add_tail(&cfe->node, &parent->files);
2748 cfe = NULL;
2749 }
2750 dput(dentry);
2751 out:
2752 kfree(cfe);
2753 return error;
2754 }
2755
2756 /**
2757 * cgroup_addrm_files - add or remove files to a cgroup directory
2758 * @cgrp: the target cgroup
2759 * @cfts: array of cftypes to be added
2760 * @is_add: whether to add or remove
2761 *
2762 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
2763 * For removals, this function never fails. If addition fails, this
2764 * function doesn't remove files already added. The caller is responsible
2765 * for cleaning up.
2766 */
2767 static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
2768 bool is_add)
2769 {
2770 struct cftype *cft;
2771 int ret;
2772
2773 lockdep_assert_held(&cgrp->dentry->d_inode->i_mutex);
2774 lockdep_assert_held(&cgroup_mutex);
2775
2776 for (cft = cfts; cft->name[0] != '\0'; cft++) {
2777 /* does cft->flags tell us to skip this file on @cgrp? */
2778 if ((cft->flags & CFTYPE_INSANE) && cgroup_sane_behavior(cgrp))
2779 continue;
2780 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgrp->parent)
2781 continue;
2782 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgrp->parent)
2783 continue;
2784
2785 if (is_add) {
2786 ret = cgroup_add_file(cgrp, cft);
2787 if (ret) {
2788 pr_warn("cgroup_addrm_files: failed to add %s, err=%d\n",
2789 cft->name, ret);
2790 return ret;
2791 }
2792 } else {
2793 cgroup_rm_file(cgrp, cft);
2794 }
2795 }
2796 return 0;
2797 }
2798
2799 static void cgroup_cfts_prepare(void)
2800 __acquires(&cgroup_mutex)
2801 {
2802 /*
2803 * Thanks to the entanglement with vfs inode locking, we can't walk
2804 * the existing cgroups under cgroup_mutex and create files.
2805 * Instead, we use css_for_each_descendant_pre() and drop RCU read
2806 * lock before calling cgroup_addrm_files().
2807 */
2808 mutex_lock(&cgroup_mutex);
2809 }
2810
2811 static int cgroup_cfts_commit(struct cftype *cfts, bool is_add)
2812 __releases(&cgroup_mutex)
2813 {
2814 LIST_HEAD(pending);
2815 struct cgroup_subsys *ss = cfts[0].ss;
2816 struct cgroup *root = &ss->root->top_cgroup;
2817 struct super_block *sb = ss->root->sb;
2818 struct dentry *prev = NULL;
2819 struct inode *inode;
2820 struct cgroup_subsys_state *css;
2821 u64 update_before;
2822 int ret = 0;
2823
2824 /* %NULL @cfts indicates abort and don't bother if @ss isn't attached */
2825 if (!cfts || ss->root == &cgroup_dummy_root ||
2826 !atomic_inc_not_zero(&sb->s_active)) {
2827 mutex_unlock(&cgroup_mutex);
2828 return 0;
2829 }
2830
2831 /*
2832 * All cgroups which are created after we drop cgroup_mutex will
2833 * have the updated set of files, so we only need to update the
2834 * cgroups created before the current @cgroup_serial_nr_next.
2835 */
2836 update_before = cgroup_serial_nr_next;
2837
2838 mutex_unlock(&cgroup_mutex);
2839
2840 /* add/rm files for all cgroups created before */
2841 rcu_read_lock();
2842 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
2843 struct cgroup *cgrp = css->cgroup;
2844
2845 if (cgroup_is_dead(cgrp))
2846 continue;
2847
2848 inode = cgrp->dentry->d_inode;
2849 dget(cgrp->dentry);
2850 rcu_read_unlock();
2851
2852 dput(prev);
2853 prev = cgrp->dentry;
2854
2855 mutex_lock(&inode->i_mutex);
2856 mutex_lock(&cgroup_mutex);
2857 if (cgrp->serial_nr < update_before && !cgroup_is_dead(cgrp))
2858 ret = cgroup_addrm_files(cgrp, cfts, is_add);
2859 mutex_unlock(&cgroup_mutex);
2860 mutex_unlock(&inode->i_mutex);
2861
2862 rcu_read_lock();
2863 if (ret)
2864 break;
2865 }
2866 rcu_read_unlock();
2867 dput(prev);
2868 deactivate_super(sb);
2869 return ret;
2870 }
2871
2872 /**
2873 * cgroup_add_cftypes - add an array of cftypes to a subsystem
2874 * @ss: target cgroup subsystem
2875 * @cfts: zero-length name terminated array of cftypes
2876 *
2877 * Register @cfts to @ss. Files described by @cfts are created for all
2878 * existing cgroups to which @ss is attached and all future cgroups will
2879 * have them too. This function can be called anytime whether @ss is
2880 * attached or not.
2881 *
2882 * Returns 0 on successful registration, -errno on failure. Note that this
2883 * function currently returns 0 as long as @cfts registration is successful
2884 * even if some file creation attempts on existing cgroups fail.
2885 */
2886 int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2887 {
2888 struct cftype_set *set;
2889 struct cftype *cft;
2890 int ret;
2891
2892 set = kzalloc(sizeof(*set), GFP_KERNEL);
2893 if (!set)
2894 return -ENOMEM;
2895
2896 for (cft = cfts; cft->name[0] != '\0'; cft++)
2897 cft->ss = ss;
2898
2899 cgroup_cfts_prepare();
2900 set->cfts = cfts;
2901 list_add_tail(&set->node, &ss->cftsets);
2902 ret = cgroup_cfts_commit(cfts, true);
2903 if (ret)
2904 cgroup_rm_cftypes(cfts);
2905 return ret;
2906 }
2907 EXPORT_SYMBOL_GPL(cgroup_add_cftypes);
2908
2909 /**
2910 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
2911 * @cfts: zero-length name terminated array of cftypes
2912 *
2913 * Unregister @cfts. Files described by @cfts are removed from all
2914 * existing cgroups and all future cgroups won't have them either. This
2915 * function can be called anytime whether @cfts' subsys is attached or not.
2916 *
2917 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2918 * registered.
2919 */
2920 int cgroup_rm_cftypes(struct cftype *cfts)
2921 {
2922 struct cftype_set *set;
2923
2924 if (!cfts || !cfts[0].ss)
2925 return -ENOENT;
2926
2927 cgroup_cfts_prepare();
2928
2929 list_for_each_entry(set, &cfts[0].ss->cftsets, node) {
2930 if (set->cfts == cfts) {
2931 list_del(&set->node);
2932 kfree(set);
2933 cgroup_cfts_commit(cfts, false);
2934 return 0;
2935 }
2936 }
2937
2938 cgroup_cfts_commit(NULL, false);
2939 return -ENOENT;
2940 }
2941
2942 /**
2943 * cgroup_task_count - count the number of tasks in a cgroup.
2944 * @cgrp: the cgroup in question
2945 *
2946 * Return the number of tasks in the cgroup.
2947 */
2948 int cgroup_task_count(const struct cgroup *cgrp)
2949 {
2950 int count = 0;
2951 struct cgrp_cset_link *link;
2952
2953 read_lock(&css_set_lock);
2954 list_for_each_entry(link, &cgrp->cset_links, cset_link)
2955 count += atomic_read(&link->cset->refcount);
2956 read_unlock(&css_set_lock);
2957 return count;
2958 }
2959
2960 /*
2961 * To reduce the fork() overhead for systems that are not actually using
2962 * their cgroups capability, we don't maintain the lists running through
2963 * each css_set to its tasks until we see the list actually used - in other
2964 * words after the first call to css_task_iter_start().
2965 */
2966 static void cgroup_enable_task_cg_lists(void)
2967 {
2968 struct task_struct *p, *g;
2969 write_lock(&css_set_lock);
2970 use_task_css_set_links = 1;
2971 /*
2972 * We need tasklist_lock because RCU is not safe against
2973 * while_each_thread(). Besides, a forking task that has passed
2974 * cgroup_post_fork() without seeing use_task_css_set_links = 1
2975 * is not guaranteed to have its child immediately visible in the
2976 * tasklist if we walk through it with RCU.
2977 */
2978 read_lock(&tasklist_lock);
2979 do_each_thread(g, p) {
2980 task_lock(p);
2981 /*
2982 * We should check if the process is exiting, otherwise
2983 * it will race with cgroup_exit() in that the list
2984 * entry won't be deleted though the process has exited.
2985 */
2986 if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
2987 list_add(&p->cg_list, &task_css_set(p)->tasks);
2988 task_unlock(p);
2989 } while_each_thread(g, p);
2990 read_unlock(&tasklist_lock);
2991 write_unlock(&css_set_lock);
2992 }
2993
2994 /**
2995 * css_next_child - find the next child of a given css
2996 * @pos_css: the current position (%NULL to initiate traversal)
2997 * @parent_css: css whose children to walk
2998 *
2999 * This function returns the next child of @parent_css and should be called
3000 * under RCU read lock. The only requirement is that @parent_css and
3001 * @pos_css are accessible. The next sibling is guaranteed to be returned
3002 * regardless of their states.
3003 */
3004 struct cgroup_subsys_state *
3005 css_next_child(struct cgroup_subsys_state *pos_css,
3006 struct cgroup_subsys_state *parent_css)
3007 {
3008 struct cgroup *pos = pos_css ? pos_css->cgroup : NULL;
3009 struct cgroup *cgrp = parent_css->cgroup;
3010 struct cgroup *next;
3011
3012 WARN_ON_ONCE(!rcu_read_lock_held());
3013
3014 /*
3015 * @pos could already have been removed. Once a cgroup is removed,
3016 * its ->sibling.next is no longer updated when its next sibling
3017 * changes. As CGRP_DEAD assertion is serialized and happens
3018 * before the cgroup is taken off the ->sibling list, if we see it
3019 * unasserted, it's guaranteed that the next sibling hasn't
3020 * finished its grace period even if it's already removed, and thus
3021 * safe to dereference from this RCU critical section. If
3022 * ->sibling.next is inaccessible, cgroup_is_dead() is guaranteed
3023 * to be visible as %true here.
3024 *
3025 * If @pos is dead, its next pointer can't be dereferenced;
3026 * however, as each cgroup is given a monotonically increasing
3027 * unique serial number and always appended to the sibling list,
3028 * the next one can be found by walking the parent's children until
3029 * we see a cgroup with higher serial number than @pos's. While
3030 * this path can be slower, it's taken only when either the current
3031 * cgroup is removed or iteration and removal race.
3032 */
3033 if (!pos) {
3034 next = list_entry_rcu(cgrp->children.next, struct cgroup, sibling);
3035 } else if (likely(!cgroup_is_dead(pos))) {
3036 next = list_entry_rcu(pos->sibling.next, struct cgroup, sibling);
3037 } else {
3038 list_for_each_entry_rcu(next, &cgrp->children, sibling)
3039 if (next->serial_nr > pos->serial_nr)
3040 break;
3041 }
3042
3043 if (&next->sibling == &cgrp->children)
3044 return NULL;
3045
3046 return cgroup_css(next, parent_css->ss);
3047 }
3048 EXPORT_SYMBOL_GPL(css_next_child);
3049
3050 /**
3051 * css_next_descendant_pre - find the next descendant for pre-order walk
3052 * @pos: the current position (%NULL to initiate traversal)
3053 * @root: css whose descendants to walk
3054 *
3055 * To be used by css_for_each_descendant_pre(). Find the next descendant
3056 * to visit for pre-order traversal of @root's descendants. @root is
3057 * included in the iteration and the first node to be visited.
3058 *
3059 * While this function requires RCU read locking, it doesn't require the
3060 * whole traversal to be contained in a single RCU critical section. This
3061 * function will return the correct next descendant as long as both @pos
3062 * and @root are accessible and @pos is a descendant of @root.
3063 */
3064 struct cgroup_subsys_state *
3065 css_next_descendant_pre(struct cgroup_subsys_state *pos,
3066 struct cgroup_subsys_state *root)
3067 {
3068 struct cgroup_subsys_state *next;
3069
3070 WARN_ON_ONCE(!rcu_read_lock_held());
3071
3072 /* if first iteration, visit @root */
3073 if (!pos)
3074 return root;
3075
3076 /* visit the first child if exists */
3077 next = css_next_child(NULL, pos);
3078 if (next)
3079 return next;
3080
3081 /* no child, visit my or the closest ancestor's next sibling */
3082 while (pos != root) {
3083 next = css_next_child(pos, css_parent(pos));
3084 if (next)
3085 return next;
3086 pos = css_parent(pos);
3087 }
3088
3089 return NULL;
3090 }
3091 EXPORT_SYMBOL_GPL(css_next_descendant_pre);
3092
3093 /**
3094 * css_rightmost_descendant - return the rightmost descendant of a css
3095 * @pos: css of interest
3096 *
3097 * Return the rightmost descendant of @pos. If there's no descendant, @pos
3098 * is returned. This can be used during pre-order traversal to skip
3099 * subtree of @pos.
3100 *
3101 * While this function requires RCU read locking, it doesn't require the
3102 * whole traversal to be contained in a single RCU critical section. This
3103 * function will return the correct rightmost descendant as long as @pos is
3104 * accessible.
3105 */
3106 struct cgroup_subsys_state *
3107 css_rightmost_descendant(struct cgroup_subsys_state *pos)
3108 {
3109 struct cgroup_subsys_state *last, *tmp;
3110
3111 WARN_ON_ONCE(!rcu_read_lock_held());
3112
3113 do {
3114 last = pos;
3115 /* ->prev isn't RCU safe, walk ->next till the end */
3116 pos = NULL;
3117 css_for_each_child(tmp, last)
3118 pos = tmp;
3119 } while (pos);
3120
3121 return last;
3122 }
3123 EXPORT_SYMBOL_GPL(css_rightmost_descendant);
3124
3125 static struct cgroup_subsys_state *
3126 css_leftmost_descendant(struct cgroup_subsys_state *pos)
3127 {
3128 struct cgroup_subsys_state *last;
3129
3130 do {
3131 last = pos;
3132 pos = css_next_child(NULL, pos);
3133 } while (pos);
3134
3135 return last;
3136 }
3137
3138 /**
3139 * css_next_descendant_post - find the next descendant for post-order walk
3140 * @pos: the current position (%NULL to initiate traversal)
3141 * @root: css whose descendants to walk
3142 *
3143 * To be used by css_for_each_descendant_post(). Find the next descendant
3144 * to visit for post-order traversal of @root's descendants. @root is
3145 * included in the iteration and the last node to be visited.
3146 *
3147 * While this function requires RCU read locking, it doesn't require the
3148 * whole traversal to be contained in a single RCU critical section. This
3149 * function will return the correct next descendant as long as both @pos
3150 * and @cgroup are accessible and @pos is a descendant of @cgroup.
3151 */
3152 struct cgroup_subsys_state *
3153 css_next_descendant_post(struct cgroup_subsys_state *pos,
3154 struct cgroup_subsys_state *root)
3155 {
3156 struct cgroup_subsys_state *next;
3157
3158 WARN_ON_ONCE(!rcu_read_lock_held());
3159
3160 /* if first iteration, visit leftmost descendant which may be @root */
3161 if (!pos)
3162 return css_leftmost_descendant(root);
3163
3164 /* if we visited @root, we're done */
3165 if (pos == root)
3166 return NULL;
3167
3168 /* if there's an unvisited sibling, visit its leftmost descendant */
3169 next = css_next_child(pos, css_parent(pos));
3170 if (next)
3171 return css_leftmost_descendant(next);
3172
3173 /* no sibling left, visit parent */
3174 return css_parent(pos);
3175 }
3176 EXPORT_SYMBOL_GPL(css_next_descendant_post);
3177
3178 /**
3179 * css_advance_task_iter - advance a task itererator to the next css_set
3180 * @it: the iterator to advance
3181 *
3182 * Advance @it to the next css_set to walk.
3183 */
3184 static void css_advance_task_iter(struct css_task_iter *it)
3185 {
3186 struct list_head *l = it->cset_link;
3187 struct cgrp_cset_link *link;
3188 struct css_set *cset;
3189
3190 /* Advance to the next non-empty css_set */
3191 do {
3192 l = l->next;
3193 if (l == &it->origin_css->cgroup->cset_links) {
3194 it->cset_link = NULL;
3195 return;
3196 }
3197 link = list_entry(l, struct cgrp_cset_link, cset_link);
3198 cset = link->cset;
3199 } while (list_empty(&cset->tasks));
3200 it->cset_link = l;
3201 it->task = cset->tasks.next;
3202 }
3203
3204 /**
3205 * css_task_iter_start - initiate task iteration
3206 * @css: the css to walk tasks of
3207 * @it: the task iterator to use
3208 *
3209 * Initiate iteration through the tasks of @css. The caller can call
3210 * css_task_iter_next() to walk through the tasks until the function
3211 * returns NULL. On completion of iteration, css_task_iter_end() must be
3212 * called.
3213 *
3214 * Note that this function acquires a lock which is released when the
3215 * iteration finishes. The caller can't sleep while iteration is in
3216 * progress.
3217 */
3218 void css_task_iter_start(struct cgroup_subsys_state *css,
3219 struct css_task_iter *it)
3220 __acquires(css_set_lock)
3221 {
3222 /*
3223 * The first time anyone tries to iterate across a css, we need to
3224 * enable the list linking each css_set to its tasks, and fix up
3225 * all existing tasks.
3226 */
3227 if (!use_task_css_set_links)
3228 cgroup_enable_task_cg_lists();
3229
3230 read_lock(&css_set_lock);
3231
3232 it->origin_css = css;
3233 it->cset_link = &css->cgroup->cset_links;
3234
3235 css_advance_task_iter(it);
3236 }
3237
3238 /**
3239 * css_task_iter_next - return the next task for the iterator
3240 * @it: the task iterator being iterated
3241 *
3242 * The "next" function for task iteration. @it should have been
3243 * initialized via css_task_iter_start(). Returns NULL when the iteration
3244 * reaches the end.
3245 */
3246 struct task_struct *css_task_iter_next(struct css_task_iter *it)
3247 {
3248 struct task_struct *res;
3249 struct list_head *l = it->task;
3250 struct cgrp_cset_link *link;
3251
3252 /* If the iterator cg is NULL, we have no tasks */
3253 if (!it->cset_link)
3254 return NULL;
3255 res = list_entry(l, struct task_struct, cg_list);
3256 /* Advance iterator to find next entry */
3257 l = l->next;
3258 link = list_entry(it->cset_link, struct cgrp_cset_link, cset_link);
3259 if (l == &link->cset->tasks) {
3260 /*
3261 * We reached the end of this task list - move on to the
3262 * next cgrp_cset_link.
3263 */
3264 css_advance_task_iter(it);
3265 } else {
3266 it->task = l;
3267 }
3268 return res;
3269 }
3270
3271 /**
3272 * css_task_iter_end - finish task iteration
3273 * @it: the task iterator to finish
3274 *
3275 * Finish task iteration started by css_task_iter_start().
3276 */
3277 void css_task_iter_end(struct css_task_iter *it)
3278 __releases(css_set_lock)
3279 {
3280 read_unlock(&css_set_lock);
3281 }
3282
3283 static inline int started_after_time(struct task_struct *t1,
3284 struct timespec *time,
3285 struct task_struct *t2)
3286 {
3287 int start_diff = timespec_compare(&t1->start_time, time);
3288 if (start_diff > 0) {
3289 return 1;
3290 } else if (start_diff < 0) {
3291 return 0;
3292 } else {
3293 /*
3294 * Arbitrarily, if two processes started at the same
3295 * time, we'll say that the lower pointer value
3296 * started first. Note that t2 may have exited by now
3297 * so this may not be a valid pointer any longer, but
3298 * that's fine - it still serves to distinguish
3299 * between two tasks started (effectively) simultaneously.
3300 */
3301 return t1 > t2;
3302 }
3303 }
3304
3305 /*
3306 * This function is a callback from heap_insert() and is used to order
3307 * the heap.
3308 * In this case we order the heap in descending task start time.
3309 */
3310 static inline int started_after(void *p1, void *p2)
3311 {
3312 struct task_struct *t1 = p1;
3313 struct task_struct *t2 = p2;
3314 return started_after_time(t1, &t2->start_time, t2);
3315 }
3316
3317 /**
3318 * css_scan_tasks - iterate though all the tasks in a css
3319 * @css: the css to iterate tasks of
3320 * @test: optional test callback
3321 * @process: process callback
3322 * @data: data passed to @test and @process
3323 * @heap: optional pre-allocated heap used for task iteration
3324 *
3325 * Iterate through all the tasks in @css, calling @test for each, and if it
3326 * returns %true, call @process for it also.
3327 *
3328 * @test may be NULL, meaning always true (select all tasks), which
3329 * effectively duplicates css_task_iter_{start,next,end}() but does not
3330 * lock css_set_lock for the call to @process.
3331 *
3332 * It is guaranteed that @process will act on every task that is a member
3333 * of @css for the duration of this call. This function may or may not
3334 * call @process for tasks that exit or move to a different css during the
3335 * call, or are forked or move into the css during the call.
3336 *
3337 * Note that @test may be called with locks held, and may in some
3338 * situations be called multiple times for the same task, so it should be
3339 * cheap.
3340 *
3341 * If @heap is non-NULL, a heap has been pre-allocated and will be used for
3342 * heap operations (and its "gt" member will be overwritten), else a
3343 * temporary heap will be used (allocation of which may cause this function
3344 * to fail).
3345 */
3346 int css_scan_tasks(struct cgroup_subsys_state *css,
3347 bool (*test)(struct task_struct *, void *),
3348 void (*process)(struct task_struct *, void *),
3349 void *data, struct ptr_heap *heap)
3350 {
3351 int retval, i;
3352 struct css_task_iter it;
3353 struct task_struct *p, *dropped;
3354 /* Never dereference latest_task, since it's not refcounted */
3355 struct task_struct *latest_task = NULL;
3356 struct ptr_heap tmp_heap;
3357 struct timespec latest_time = { 0, 0 };
3358
3359 if (heap) {
3360 /* The caller supplied our heap and pre-allocated its memory */
3361 heap->gt = &started_after;
3362 } else {
3363 /* We need to allocate our own heap memory */
3364 heap = &tmp_heap;
3365 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
3366 if (retval)
3367 /* cannot allocate the heap */
3368 return retval;
3369 }
3370
3371 again:
3372 /*
3373 * Scan tasks in the css, using the @test callback to determine
3374 * which are of interest, and invoking @process callback on the
3375 * ones which need an update. Since we don't want to hold any
3376 * locks during the task updates, gather tasks to be processed in a
3377 * heap structure. The heap is sorted by descending task start
3378 * time. If the statically-sized heap fills up, we overflow tasks
3379 * that started later, and in future iterations only consider tasks
3380 * that started after the latest task in the previous pass. This
3381 * guarantees forward progress and that we don't miss any tasks.
3382 */
3383 heap->size = 0;
3384 css_task_iter_start(css, &it);
3385 while ((p = css_task_iter_next(&it))) {
3386 /*
3387 * Only affect tasks that qualify per the caller's callback,
3388 * if he provided one
3389 */
3390 if (test && !test(p, data))
3391 continue;
3392 /*
3393 * Only process tasks that started after the last task
3394 * we processed
3395 */
3396 if (!started_after_time(p, &latest_time, latest_task))
3397 continue;
3398 dropped = heap_insert(heap, p);
3399 if (dropped == NULL) {
3400 /*
3401 * The new task was inserted; the heap wasn't
3402 * previously full
3403 */
3404 get_task_struct(p);
3405 } else if (dropped != p) {
3406 /*
3407 * The new task was inserted, and pushed out a
3408 * different task
3409 */
3410 get_task_struct(p);
3411 put_task_struct(dropped);
3412 }
3413 /*
3414 * Else the new task was newer than anything already in
3415 * the heap and wasn't inserted
3416 */
3417 }
3418 css_task_iter_end(&it);
3419
3420 if (heap->size) {
3421 for (i = 0; i < heap->size; i++) {
3422 struct task_struct *q = heap->ptrs[i];
3423 if (i == 0) {
3424 latest_time = q->start_time;
3425 latest_task = q;
3426 }
3427 /* Process the task per the caller's callback */
3428 process(q, data);
3429 put_task_struct(q);
3430 }
3431 /*
3432 * If we had to process any tasks at all, scan again
3433 * in case some of them were in the middle of forking
3434 * children that didn't get processed.
3435 * Not the most efficient way to do it, but it avoids
3436 * having to take callback_mutex in the fork path
3437 */
3438 goto again;
3439 }
3440 if (heap == &tmp_heap)
3441 heap_free(&tmp_heap);
3442 return 0;
3443 }
3444
3445 static void cgroup_transfer_one_task(struct task_struct *task, void *data)
3446 {
3447 struct cgroup *new_cgroup = data;
3448
3449 mutex_lock(&cgroup_mutex);
3450 cgroup_attach_task(new_cgroup, task, false);
3451 mutex_unlock(&cgroup_mutex);
3452 }
3453
3454 /**
3455 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
3456 * @to: cgroup to which the tasks will be moved
3457 * @from: cgroup in which the tasks currently reside
3458 */
3459 int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
3460 {
3461 return css_scan_tasks(&from->dummy_css, NULL, cgroup_transfer_one_task,
3462 to, NULL);
3463 }
3464
3465 /*
3466 * Stuff for reading the 'tasks'/'procs' files.
3467 *
3468 * Reading this file can return large amounts of data if a cgroup has
3469 * *lots* of attached tasks. So it may need several calls to read(),
3470 * but we cannot guarantee that the information we produce is correct
3471 * unless we produce it entirely atomically.
3472 *
3473 */
3474
3475 /* which pidlist file are we talking about? */
3476 enum cgroup_filetype {
3477 CGROUP_FILE_PROCS,
3478 CGROUP_FILE_TASKS,
3479 };
3480
3481 /*
3482 * A pidlist is a list of pids that virtually represents the contents of one
3483 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
3484 * a pair (one each for procs, tasks) for each pid namespace that's relevant
3485 * to the cgroup.
3486 */
3487 struct cgroup_pidlist {
3488 /*
3489 * used to find which pidlist is wanted. doesn't change as long as
3490 * this particular list stays in the list.
3491 */
3492 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
3493 /* array of xids */
3494 pid_t *list;
3495 /* how many elements the above list has */
3496 int length;
3497 /* how many files are using the current array */
3498 int use_count;
3499 /* each of these stored in a list by its cgroup */
3500 struct list_head links;
3501 /* pointer to the cgroup we belong to, for list removal purposes */
3502 struct cgroup *owner;
3503 /* protects the other fields */
3504 struct rw_semaphore rwsem;
3505 };
3506
3507 /*
3508 * The following two functions "fix" the issue where there are more pids
3509 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3510 * TODO: replace with a kernel-wide solution to this problem
3511 */
3512 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
3513 static void *pidlist_allocate(int count)
3514 {
3515 if (PIDLIST_TOO_LARGE(count))
3516 return vmalloc(count * sizeof(pid_t));
3517 else
3518 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
3519 }
3520 static void pidlist_free(void *p)
3521 {
3522 if (is_vmalloc_addr(p))
3523 vfree(p);
3524 else
3525 kfree(p);
3526 }
3527
3528 /*
3529 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
3530 * Returns the number of unique elements.
3531 */
3532 static int pidlist_uniq(pid_t *list, int length)
3533 {
3534 int src, dest = 1;
3535
3536 /*
3537 * we presume the 0th element is unique, so i starts at 1. trivial
3538 * edge cases first; no work needs to be done for either
3539 */
3540 if (length == 0 || length == 1)
3541 return length;
3542 /* src and dest walk down the list; dest counts unique elements */
3543 for (src = 1; src < length; src++) {
3544 /* find next unique element */
3545 while (list[src] == list[src-1]) {
3546 src++;
3547 if (src == length)
3548 goto after;
3549 }
3550 /* dest always points to where the next unique element goes */
3551 list[dest] = list[src];
3552 dest++;
3553 }
3554 after:
3555 return dest;
3556 }
3557
3558 static int cmppid(const void *a, const void *b)
3559 {
3560 return *(pid_t *)a - *(pid_t *)b;
3561 }
3562
3563 /*
3564 * find the appropriate pidlist for our purpose (given procs vs tasks)
3565 * returns with the lock on that pidlist already held, and takes care
3566 * of the use count, or returns NULL with no locks held if we're out of
3567 * memory.
3568 */
3569 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3570 enum cgroup_filetype type)
3571 {
3572 struct cgroup_pidlist *l;
3573 /* don't need task_nsproxy() if we're looking at ourself */
3574 struct pid_namespace *ns = task_active_pid_ns(current);
3575
3576 /*
3577 * We can't drop the pidlist_mutex before taking the l->rwsem in case
3578 * the last ref-holder is trying to remove l from the list at the same
3579 * time. Holding the pidlist_mutex precludes somebody taking whichever
3580 * list we find out from under us - compare release_pid_array().
3581 */
3582 mutex_lock(&cgrp->pidlist_mutex);
3583 list_for_each_entry(l, &cgrp->pidlists, links) {
3584 if (l->key.type == type && l->key.ns == ns) {
3585 /* make sure l doesn't vanish out from under us */
3586 down_write(&l->rwsem);
3587 mutex_unlock(&cgrp->pidlist_mutex);
3588 return l;
3589 }
3590 }
3591 /* entry not found; create a new one */
3592 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
3593 if (!l) {
3594 mutex_unlock(&cgrp->pidlist_mutex);
3595 return l;
3596 }
3597 init_rwsem(&l->rwsem);
3598 down_write(&l->rwsem);
3599 l->key.type = type;
3600 l->key.ns = get_pid_ns(ns);
3601 l->owner = cgrp;
3602 list_add(&l->links, &cgrp->pidlists);
3603 mutex_unlock(&cgrp->pidlist_mutex);
3604 return l;
3605 }
3606
3607 /*
3608 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3609 */
3610 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3611 struct cgroup_pidlist **lp)
3612 {
3613 pid_t *array;
3614 int length;
3615 int pid, n = 0; /* used for populating the array */
3616 struct css_task_iter it;
3617 struct task_struct *tsk;
3618 struct cgroup_pidlist *l;
3619
3620 /*
3621 * If cgroup gets more users after we read count, we won't have
3622 * enough space - tough. This race is indistinguishable to the
3623 * caller from the case that the additional cgroup users didn't
3624 * show up until sometime later on.
3625 */
3626 length = cgroup_task_count(cgrp);
3627 array = pidlist_allocate(length);
3628 if (!array)
3629 return -ENOMEM;
3630 /* now, populate the array */
3631 css_task_iter_start(&cgrp->dummy_css, &it);
3632 while ((tsk = css_task_iter_next(&it))) {
3633 if (unlikely(n == length))
3634 break;
3635 /* get tgid or pid for procs or tasks file respectively */
3636 if (type == CGROUP_FILE_PROCS)
3637 pid = task_tgid_vnr(tsk);
3638 else
3639 pid = task_pid_vnr(tsk);
3640 if (pid > 0) /* make sure to only use valid results */
3641 array[n++] = pid;
3642 }
3643 css_task_iter_end(&it);
3644 length = n;
3645 /* now sort & (if procs) strip out duplicates */
3646 sort(array, length, sizeof(pid_t), cmppid, NULL);
3647 if (type == CGROUP_FILE_PROCS)
3648 length = pidlist_uniq(array, length);
3649 l = cgroup_pidlist_find(cgrp, type);
3650 if (!l) {
3651 pidlist_free(array);
3652 return -ENOMEM;
3653 }
3654 /* store array, freeing old if necessary - lock already held */
3655 pidlist_free(l->list);
3656 l->list = array;
3657 l->length = length;
3658 l->use_count++;
3659 up_write(&l->rwsem);
3660 *lp = l;
3661 return 0;
3662 }
3663
3664 /**
3665 * cgroupstats_build - build and fill cgroupstats
3666 * @stats: cgroupstats to fill information into
3667 * @dentry: A dentry entry belonging to the cgroup for which stats have
3668 * been requested.
3669 *
3670 * Build and fill cgroupstats so that taskstats can export it to user
3671 * space.
3672 */
3673 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
3674 {
3675 int ret = -EINVAL;
3676 struct cgroup *cgrp;
3677 struct css_task_iter it;
3678 struct task_struct *tsk;
3679
3680 /*
3681 * Validate dentry by checking the superblock operations,
3682 * and make sure it's a directory.
3683 */
3684 if (dentry->d_sb->s_op != &cgroup_ops ||
3685 !S_ISDIR(dentry->d_inode->i_mode))
3686 goto err;
3687
3688 ret = 0;
3689 cgrp = dentry->d_fsdata;
3690
3691 css_task_iter_start(&cgrp->dummy_css, &it);
3692 while ((tsk = css_task_iter_next(&it))) {
3693 switch (tsk->state) {
3694 case TASK_RUNNING:
3695 stats->nr_running++;
3696 break;
3697 case TASK_INTERRUPTIBLE:
3698 stats->nr_sleeping++;
3699 break;
3700 case TASK_UNINTERRUPTIBLE:
3701 stats->nr_uninterruptible++;
3702 break;
3703 case TASK_STOPPED:
3704 stats->nr_stopped++;
3705 break;
3706 default:
3707 if (delayacct_is_task_waiting_on_io(tsk))
3708 stats->nr_io_wait++;
3709 break;
3710 }
3711 }
3712 css_task_iter_end(&it);
3713
3714 err:
3715 return ret;
3716 }
3717
3718
3719 /*
3720 * seq_file methods for the tasks/procs files. The seq_file position is the
3721 * next pid to display; the seq_file iterator is a pointer to the pid
3722 * in the cgroup->l->list array.
3723 */
3724
3725 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
3726 {
3727 /*
3728 * Initially we receive a position value that corresponds to
3729 * one more than the last pid shown (or 0 on the first call or
3730 * after a seek to the start). Use a binary-search to find the
3731 * next pid to display, if any
3732 */
3733 struct cgroup_pidlist *l = s->private;
3734 int index = 0, pid = *pos;
3735 int *iter;
3736
3737 down_read(&l->rwsem);
3738 if (pid) {
3739 int end = l->length;
3740
3741 while (index < end) {
3742 int mid = (index + end) / 2;
3743 if (l->list[mid] == pid) {
3744 index = mid;
3745 break;
3746 } else if (l->list[mid] <= pid)
3747 index = mid + 1;
3748 else
3749 end = mid;
3750 }
3751 }
3752 /* If we're off the end of the array, we're done */
3753 if (index >= l->length)
3754 return NULL;
3755 /* Update the abstract position to be the actual pid that we found */
3756 iter = l->list + index;
3757 *pos = *iter;
3758 return iter;
3759 }
3760
3761 static void cgroup_pidlist_stop(struct seq_file *s, void *v)
3762 {
3763 struct cgroup_pidlist *l = s->private;
3764 up_read(&l->rwsem);
3765 }
3766
3767 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
3768 {
3769 struct cgroup_pidlist *l = s->private;
3770 pid_t *p = v;
3771 pid_t *end = l->list + l->length;
3772 /*
3773 * Advance to the next pid in the array. If this goes off the
3774 * end, we're done
3775 */
3776 p++;
3777 if (p >= end) {
3778 return NULL;
3779 } else {
3780 *pos = *p;
3781 return p;
3782 }
3783 }
3784
3785 static int cgroup_pidlist_show(struct seq_file *s, void *v)
3786 {
3787 return seq_printf(s, "%d\n", *(int *)v);
3788 }
3789
3790 /*
3791 * seq_operations functions for iterating on pidlists through seq_file -
3792 * independent of whether it's tasks or procs
3793 */
3794 static const struct seq_operations cgroup_pidlist_seq_operations = {
3795 .start = cgroup_pidlist_start,
3796 .stop = cgroup_pidlist_stop,
3797 .next = cgroup_pidlist_next,
3798 .show = cgroup_pidlist_show,
3799 };
3800
3801 static void cgroup_release_pid_array(struct cgroup_pidlist *l)
3802 {
3803 /*
3804 * the case where we're the last user of this particular pidlist will
3805 * have us remove it from the cgroup's list, which entails taking the
3806 * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
3807 * pidlist_mutex, we have to take pidlist_mutex first.
3808 */
3809 mutex_lock(&l->owner->pidlist_mutex);
3810 down_write(&l->rwsem);
3811 BUG_ON(!l->use_count);
3812 if (!--l->use_count) {
3813 /* we're the last user if refcount is 0; remove and free */
3814 list_del(&l->links);
3815 mutex_unlock(&l->owner->pidlist_mutex);
3816 pidlist_free(l->list);
3817 put_pid_ns(l->key.ns);
3818 up_write(&l->rwsem);
3819 kfree(l);
3820 return;
3821 }
3822 mutex_unlock(&l->owner->pidlist_mutex);
3823 up_write(&l->rwsem);
3824 }
3825
3826 static int cgroup_pidlist_release(struct inode *inode, struct file *file)
3827 {
3828 struct cgroup_pidlist *l;
3829 if (!(file->f_mode & FMODE_READ))
3830 return 0;
3831 /*
3832 * the seq_file will only be initialized if the file was opened for
3833 * reading; hence we check if it's not null only in that case.
3834 */
3835 l = ((struct seq_file *)file->private_data)->private;
3836 cgroup_release_pid_array(l);
3837 return seq_release(inode, file);
3838 }
3839
3840 static const struct file_operations cgroup_pidlist_operations = {
3841 .read = seq_read,
3842 .llseek = seq_lseek,
3843 .write = cgroup_file_write,
3844 .release = cgroup_pidlist_release,
3845 };
3846
3847 /*
3848 * The following functions handle opens on a file that displays a pidlist
3849 * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
3850 * in the cgroup.
3851 */
3852 /* helper function for the two below it */
3853 static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type)
3854 {
3855 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
3856 struct cgroup_pidlist *l;
3857 int retval;
3858
3859 /* Nothing to do for write-only files */
3860 if (!(file->f_mode & FMODE_READ))
3861 return 0;
3862
3863 /* have the array populated */
3864 retval = pidlist_array_load(cgrp, type, &l);
3865 if (retval)
3866 return retval;
3867 /* configure file information */
3868 file->f_op = &cgroup_pidlist_operations;
3869
3870 retval = seq_open(file, &cgroup_pidlist_seq_operations);
3871 if (retval) {
3872 cgroup_release_pid_array(l);
3873 return retval;
3874 }
3875 ((struct seq_file *)file->private_data)->private = l;
3876 return 0;
3877 }
3878 static int cgroup_tasks_open(struct inode *unused, struct file *file)
3879 {
3880 return cgroup_pidlist_open(file, CGROUP_FILE_TASKS);
3881 }
3882 static int cgroup_procs_open(struct inode *unused, struct file *file)
3883 {
3884 return cgroup_pidlist_open(file, CGROUP_FILE_PROCS);
3885 }
3886
3887 static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
3888 struct cftype *cft)
3889 {
3890 return notify_on_release(css->cgroup);
3891 }
3892
3893 static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
3894 struct cftype *cft, u64 val)
3895 {
3896 clear_bit(CGRP_RELEASABLE, &css->cgroup->flags);
3897 if (val)
3898 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
3899 else
3900 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
3901 return 0;
3902 }
3903
3904 /*
3905 * When dput() is called asynchronously, if umount has been done and
3906 * then deactivate_super() in cgroup_free_fn() kills the superblock,
3907 * there's a small window that vfs will see the root dentry with non-zero
3908 * refcnt and trigger BUG().
3909 *
3910 * That's why we hold a reference before dput() and drop it right after.
3911 */
3912 static void cgroup_dput(struct cgroup *cgrp)
3913 {
3914 struct super_block *sb = cgrp->root->sb;
3915
3916 atomic_inc(&sb->s_active);
3917 dput(cgrp->dentry);
3918 deactivate_super(sb);
3919 }
3920
3921 /*
3922 * Unregister event and free resources.
3923 *
3924 * Gets called from workqueue.
3925 */
3926 static void cgroup_event_remove(struct work_struct *work)
3927 {
3928 struct cgroup_event *event = container_of(work, struct cgroup_event,
3929 remove);
3930 struct cgroup_subsys_state *css = event->css;
3931
3932 remove_wait_queue(event->wqh, &event->wait);
3933
3934 event->cft->unregister_event(css, event->cft, event->eventfd);
3935
3936 /* Notify userspace the event is going away. */
3937 eventfd_signal(event->eventfd, 1);
3938
3939 eventfd_ctx_put(event->eventfd);
3940 kfree(event);
3941 css_put(css);
3942 }
3943
3944 /*
3945 * Gets called on POLLHUP on eventfd when user closes it.
3946 *
3947 * Called with wqh->lock held and interrupts disabled.
3948 */
3949 static int cgroup_event_wake(wait_queue_t *wait, unsigned mode,
3950 int sync, void *key)
3951 {
3952 struct cgroup_event *event = container_of(wait,
3953 struct cgroup_event, wait);
3954 struct cgroup *cgrp = event->css->cgroup;
3955 unsigned long flags = (unsigned long)key;
3956
3957 if (flags & POLLHUP) {
3958 /*
3959 * If the event has been detached at cgroup removal, we
3960 * can simply return knowing the other side will cleanup
3961 * for us.
3962 *
3963 * We can't race against event freeing since the other
3964 * side will require wqh->lock via remove_wait_queue(),
3965 * which we hold.
3966 */
3967 spin_lock(&cgrp->event_list_lock);
3968 if (!list_empty(&event->list)) {
3969 list_del_init(&event->list);
3970 /*
3971 * We are in atomic context, but cgroup_event_remove()
3972 * may sleep, so we have to call it in workqueue.
3973 */
3974 schedule_work(&event->remove);
3975 }
3976 spin_unlock(&cgrp->event_list_lock);
3977 }
3978
3979 return 0;
3980 }
3981
3982 static void cgroup_event_ptable_queue_proc(struct file *file,
3983 wait_queue_head_t *wqh, poll_table *pt)
3984 {
3985 struct cgroup_event *event = container_of(pt,
3986 struct cgroup_event, pt);
3987
3988 event->wqh = wqh;
3989 add_wait_queue(wqh, &event->wait);
3990 }
3991
3992 /*
3993 * Parse input and register new cgroup event handler.
3994 *
3995 * Input must be in format '<event_fd> <control_fd> <args>'.
3996 * Interpretation of args is defined by control file implementation.
3997 */
3998 static int cgroup_write_event_control(struct cgroup_subsys_state *dummy_css,
3999 struct cftype *cft, const char *buffer)
4000 {
4001 struct cgroup *cgrp = dummy_css->cgroup;
4002 struct cgroup_event *event;
4003 struct cgroup_subsys_state *cfile_css;
4004 unsigned int efd, cfd;
4005 struct fd efile;
4006 struct fd cfile;
4007 char *endp;
4008 int ret;
4009
4010 efd = simple_strtoul(buffer, &endp, 10);
4011 if (*endp != ' ')
4012 return -EINVAL;
4013 buffer = endp + 1;
4014
4015 cfd = simple_strtoul(buffer, &endp, 10);
4016 if ((*endp != ' ') && (*endp != '\0'))
4017 return -EINVAL;
4018 buffer = endp + 1;
4019
4020 event = kzalloc(sizeof(*event), GFP_KERNEL);
4021 if (!event)
4022 return -ENOMEM;
4023
4024 INIT_LIST_HEAD(&event->list);
4025 init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc);
4026 init_waitqueue_func_entry(&event->wait, cgroup_event_wake);
4027 INIT_WORK(&event->remove, cgroup_event_remove);
4028
4029 efile = fdget(efd);
4030 if (!efile.file) {
4031 ret = -EBADF;
4032 goto out_kfree;
4033 }
4034
4035 event->eventfd = eventfd_ctx_fileget(efile.file);
4036 if (IS_ERR(event->eventfd)) {
4037 ret = PTR_ERR(event->eventfd);
4038 goto out_put_efile;
4039 }
4040
4041 cfile = fdget(cfd);
4042 if (!cfile.file) {
4043 ret = -EBADF;
4044 goto out_put_eventfd;
4045 }
4046
4047 /* the process need read permission on control file */
4048 /* AV: shouldn't we check that it's been opened for read instead? */
4049 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4050 if (ret < 0)
4051 goto out_put_cfile;
4052
4053 event->cft = __file_cft(cfile.file);
4054 if (IS_ERR(event->cft)) {
4055 ret = PTR_ERR(event->cft);
4056 goto out_put_cfile;
4057 }
4058
4059 if (!event->cft->ss) {
4060 ret = -EBADF;
4061 goto out_put_cfile;
4062 }
4063
4064 /*
4065 * Determine the css of @cfile, verify it belongs to the same
4066 * cgroup as cgroup.event_control, and associate @event with it.
4067 * Remaining events are automatically removed on cgroup destruction
4068 * but the removal is asynchronous, so take an extra ref.
4069 */
4070 rcu_read_lock();
4071
4072 ret = -EINVAL;
4073 event->css = cgroup_css(cgrp, event->cft->ss);
4074 cfile_css = css_from_dir(cfile.file->f_dentry->d_parent, event->cft->ss);
4075 if (event->css && event->css == cfile_css && css_tryget(event->css))
4076 ret = 0;
4077
4078 rcu_read_unlock();
4079 if (ret)
4080 goto out_put_cfile;
4081
4082 if (!event->cft->register_event || !event->cft->unregister_event) {
4083 ret = -EINVAL;
4084 goto out_put_css;
4085 }
4086
4087 ret = event->cft->register_event(event->css, event->cft,
4088 event->eventfd, buffer);
4089 if (ret)
4090 goto out_put_css;
4091
4092 efile.file->f_op->poll(efile.file, &event->pt);
4093
4094 spin_lock(&cgrp->event_list_lock);
4095 list_add(&event->list, &cgrp->event_list);
4096 spin_unlock(&cgrp->event_list_lock);
4097
4098 fdput(cfile);
4099 fdput(efile);
4100
4101 return 0;
4102
4103 out_put_css:
4104 css_put(event->css);
4105 out_put_cfile:
4106 fdput(cfile);
4107 out_put_eventfd:
4108 eventfd_ctx_put(event->eventfd);
4109 out_put_efile:
4110 fdput(efile);
4111 out_kfree:
4112 kfree(event);
4113
4114 return ret;
4115 }
4116
4117 static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
4118 struct cftype *cft)
4119 {
4120 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4121 }
4122
4123 static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
4124 struct cftype *cft, u64 val)
4125 {
4126 if (val)
4127 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4128 else
4129 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4130 return 0;
4131 }
4132
4133 static struct cftype cgroup_base_files[] = {
4134 {
4135 .name = "cgroup.procs",
4136 .open = cgroup_procs_open,
4137 .write_u64 = cgroup_procs_write,
4138 .release = cgroup_pidlist_release,
4139 .mode = S_IRUGO | S_IWUSR,
4140 },
4141 {
4142 .name = "cgroup.event_control",
4143 .write_string = cgroup_write_event_control,
4144 .mode = S_IWUGO,
4145 },
4146 {
4147 .name = "cgroup.clone_children",
4148 .flags = CFTYPE_INSANE,
4149 .read_u64 = cgroup_clone_children_read,
4150 .write_u64 = cgroup_clone_children_write,
4151 },
4152 {
4153 .name = "cgroup.sane_behavior",
4154 .flags = CFTYPE_ONLY_ON_ROOT,
4155 .read_seq_string = cgroup_sane_behavior_show,
4156 },
4157
4158 /*
4159 * Historical crazy stuff. These don't have "cgroup." prefix and
4160 * don't exist if sane_behavior. If you're depending on these, be
4161 * prepared to be burned.
4162 */
4163 {
4164 .name = "tasks",
4165 .flags = CFTYPE_INSANE, /* use "procs" instead */
4166 .open = cgroup_tasks_open,
4167 .write_u64 = cgroup_tasks_write,
4168 .release = cgroup_pidlist_release,
4169 .mode = S_IRUGO | S_IWUSR,
4170 },
4171 {
4172 .name = "notify_on_release",
4173 .flags = CFTYPE_INSANE,
4174 .read_u64 = cgroup_read_notify_on_release,
4175 .write_u64 = cgroup_write_notify_on_release,
4176 },
4177 {
4178 .name = "release_agent",
4179 .flags = CFTYPE_INSANE | CFTYPE_ONLY_ON_ROOT,
4180 .read_seq_string = cgroup_release_agent_show,
4181 .write_string = cgroup_release_agent_write,
4182 .max_write_len = PATH_MAX,
4183 },
4184 { } /* terminate */
4185 };
4186
4187 /**
4188 * cgroup_populate_dir - create subsys files in a cgroup directory
4189 * @cgrp: target cgroup
4190 * @subsys_mask: mask of the subsystem ids whose files should be added
4191 *
4192 * On failure, no file is added.
4193 */
4194 static int cgroup_populate_dir(struct cgroup *cgrp, unsigned long subsys_mask)
4195 {
4196 struct cgroup_subsys *ss;
4197 int i, ret = 0;
4198
4199 /* process cftsets of each subsystem */
4200 for_each_subsys(ss, i) {
4201 struct cftype_set *set;
4202
4203 if (!test_bit(i, &subsys_mask))
4204 continue;
4205
4206 list_for_each_entry(set, &ss->cftsets, node) {
4207 ret = cgroup_addrm_files(cgrp, set->cfts, true);
4208 if (ret < 0)
4209 goto err;
4210 }
4211 }
4212 return 0;
4213 err:
4214 cgroup_clear_dir(cgrp, subsys_mask);
4215 return ret;
4216 }
4217
4218 /*
4219 * css destruction is four-stage process.
4220 *
4221 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4222 * Implemented in kill_css().
4223 *
4224 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
4225 * and thus css_tryget() is guaranteed to fail, the css can be offlined
4226 * by invoking offline_css(). After offlining, the base ref is put.
4227 * Implemented in css_killed_work_fn().
4228 *
4229 * 3. When the percpu_ref reaches zero, the only possible remaining
4230 * accessors are inside RCU read sections. css_release() schedules the
4231 * RCU callback.
4232 *
4233 * 4. After the grace period, the css can be freed. Implemented in
4234 * css_free_work_fn().
4235 *
4236 * It is actually hairier because both step 2 and 4 require process context
4237 * and thus involve punting to css->destroy_work adding two additional
4238 * steps to the already complex sequence.
4239 */
4240 static void css_free_work_fn(struct work_struct *work)
4241 {
4242 struct cgroup_subsys_state *css =
4243 container_of(work, struct cgroup_subsys_state, destroy_work);
4244 struct cgroup *cgrp = css->cgroup;
4245
4246 if (css->parent)
4247 css_put(css->parent);
4248
4249 css->ss->css_free(css);
4250 cgroup_dput(cgrp);
4251 }
4252
4253 static void css_free_rcu_fn(struct rcu_head *rcu_head)
4254 {
4255 struct cgroup_subsys_state *css =
4256 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
4257
4258 /*
4259 * css holds an extra ref to @cgrp->dentry which is put on the last
4260 * css_put(). dput() requires process context which we don't have.
4261 */
4262 INIT_WORK(&css->destroy_work, css_free_work_fn);
4263 queue_work(cgroup_destroy_wq, &css->destroy_work);
4264 }
4265
4266 static void css_release(struct percpu_ref *ref)
4267 {
4268 struct cgroup_subsys_state *css =
4269 container_of(ref, struct cgroup_subsys_state, refcnt);
4270
4271 call_rcu(&css->rcu_head, css_free_rcu_fn);
4272 }
4273
4274 static void init_css(struct cgroup_subsys_state *css, struct cgroup_subsys *ss,
4275 struct cgroup *cgrp)
4276 {
4277 css->cgroup = cgrp;
4278 css->ss = ss;
4279 css->flags = 0;
4280
4281 if (cgrp->parent)
4282 css->parent = cgroup_css(cgrp->parent, ss);
4283 else
4284 css->flags |= CSS_ROOT;
4285
4286 BUG_ON(cgroup_css(cgrp, ss));
4287 }
4288
4289 /* invoke ->css_online() on a new CSS and mark it online if successful */
4290 static int online_css(struct cgroup_subsys_state *css)
4291 {
4292 struct cgroup_subsys *ss = css->ss;
4293 int ret = 0;
4294
4295 lockdep_assert_held(&cgroup_mutex);
4296
4297 if (ss->css_online)
4298 ret = ss->css_online(css);
4299 if (!ret) {
4300 css->flags |= CSS_ONLINE;
4301 css->cgroup->nr_css++;
4302 rcu_assign_pointer(css->cgroup->subsys[ss->subsys_id], css);
4303 }
4304 return ret;
4305 }
4306
4307 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
4308 static void offline_css(struct cgroup_subsys_state *css)
4309 {
4310 struct cgroup_subsys *ss = css->ss;
4311
4312 lockdep_assert_held(&cgroup_mutex);
4313
4314 if (!(css->flags & CSS_ONLINE))
4315 return;
4316
4317 if (ss->css_offline)
4318 ss->css_offline(css);
4319
4320 css->flags &= ~CSS_ONLINE;
4321 css->cgroup->nr_css--;
4322 RCU_INIT_POINTER(css->cgroup->subsys[ss->subsys_id], css);
4323 }
4324
4325 /*
4326 * cgroup_create - create a cgroup
4327 * @parent: cgroup that will be parent of the new cgroup
4328 * @dentry: dentry of the new cgroup
4329 * @mode: mode to set on new inode
4330 *
4331 * Must be called with the mutex on the parent inode held
4332 */
4333 static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
4334 umode_t mode)
4335 {
4336 struct cgroup_subsys_state *css_ar[CGROUP_SUBSYS_COUNT] = { };
4337 struct cgroup *cgrp;
4338 struct cgroup_name *name;
4339 struct cgroupfs_root *root = parent->root;
4340 int err = 0;
4341 struct cgroup_subsys *ss;
4342 struct super_block *sb = root->sb;
4343
4344 /* allocate the cgroup and its ID, 0 is reserved for the root */
4345 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
4346 if (!cgrp)
4347 return -ENOMEM;
4348
4349 name = cgroup_alloc_name(dentry);
4350 if (!name)
4351 goto err_free_cgrp;
4352 rcu_assign_pointer(cgrp->name, name);
4353
4354 /*
4355 * Temporarily set the pointer to NULL, so idr_find() won't return
4356 * a half-baked cgroup.
4357 */
4358 cgrp->id = idr_alloc(&root->cgroup_idr, NULL, 1, 0, GFP_KERNEL);
4359 if (cgrp->id < 0)
4360 goto err_free_name;
4361
4362 /*
4363 * Only live parents can have children. Note that the liveliness
4364 * check isn't strictly necessary because cgroup_mkdir() and
4365 * cgroup_rmdir() are fully synchronized by i_mutex; however, do it
4366 * anyway so that locking is contained inside cgroup proper and we
4367 * don't get nasty surprises if we ever grow another caller.
4368 */
4369 if (!cgroup_lock_live_group(parent)) {
4370 err = -ENODEV;
4371 goto err_free_id;
4372 }
4373
4374 /* Grab a reference on the superblock so the hierarchy doesn't
4375 * get deleted on unmount if there are child cgroups. This
4376 * can be done outside cgroup_mutex, since the sb can't
4377 * disappear while someone has an open control file on the
4378 * fs */
4379 atomic_inc(&sb->s_active);
4380
4381 init_cgroup_housekeeping(cgrp);
4382
4383 dentry->d_fsdata = cgrp;
4384 cgrp->dentry = dentry;
4385
4386 cgrp->parent = parent;
4387 cgrp->dummy_css.parent = &parent->dummy_css;
4388 cgrp->root = parent->root;
4389
4390 if (notify_on_release(parent))
4391 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4392
4393 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4394 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
4395
4396 for_each_root_subsys(root, ss) {
4397 struct cgroup_subsys_state *css;
4398
4399 css = ss->css_alloc(cgroup_css(parent, ss));
4400 if (IS_ERR(css)) {
4401 err = PTR_ERR(css);
4402 goto err_free_all;
4403 }
4404 css_ar[ss->subsys_id] = css;
4405
4406 err = percpu_ref_init(&css->refcnt, css_release);
4407 if (err)
4408 goto err_free_all;
4409
4410 init_css(css, ss, cgrp);
4411 }
4412
4413 /*
4414 * Create directory. cgroup_create_file() returns with the new
4415 * directory locked on success so that it can be populated without
4416 * dropping cgroup_mutex.
4417 */
4418 err = cgroup_create_file(dentry, S_IFDIR | mode, sb);
4419 if (err < 0)
4420 goto err_free_all;
4421 lockdep_assert_held(&dentry->d_inode->i_mutex);
4422
4423 cgrp->serial_nr = cgroup_serial_nr_next++;
4424
4425 /* allocation complete, commit to creation */
4426 list_add_tail_rcu(&cgrp->sibling, &cgrp->parent->children);
4427 root->number_of_cgroups++;
4428
4429 /* each css holds a ref to the cgroup's dentry and the parent css */
4430 for_each_root_subsys(root, ss) {
4431 struct cgroup_subsys_state *css = css_ar[ss->subsys_id];
4432
4433 dget(dentry);
4434 css_get(css->parent);
4435 }
4436
4437 /* hold a ref to the parent's dentry */
4438 dget(parent->dentry);
4439
4440 /* creation succeeded, notify subsystems */
4441 for_each_root_subsys(root, ss) {
4442 struct cgroup_subsys_state *css = css_ar[ss->subsys_id];
4443
4444 err = online_css(css);
4445 if (err)
4446 goto err_destroy;
4447
4448 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
4449 parent->parent) {
4450 pr_warning("cgroup: %s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4451 current->comm, current->pid, ss->name);
4452 if (!strcmp(ss->name, "memory"))
4453 pr_warning("cgroup: \"memory\" requires setting use_hierarchy to 1 on the root.\n");
4454 ss->warned_broken_hierarchy = true;
4455 }
4456 }
4457
4458 idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
4459
4460 err = cgroup_addrm_files(cgrp, cgroup_base_files, true);
4461 if (err)
4462 goto err_destroy;
4463
4464 err = cgroup_populate_dir(cgrp, root->subsys_mask);
4465 if (err)
4466 goto err_destroy;
4467
4468 mutex_unlock(&cgroup_mutex);
4469 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
4470
4471 return 0;
4472
4473 err_free_all:
4474 for_each_root_subsys(root, ss) {
4475 struct cgroup_subsys_state *css = css_ar[ss->subsys_id];
4476
4477 if (css) {
4478 percpu_ref_cancel_init(&css->refcnt);
4479 ss->css_free(css);
4480 }
4481 }
4482 mutex_unlock(&cgroup_mutex);
4483 /* Release the reference count that we took on the superblock */
4484 deactivate_super(sb);
4485 err_free_id:
4486 idr_remove(&root->cgroup_idr, cgrp->id);
4487 err_free_name:
4488 kfree(rcu_dereference_raw(cgrp->name));
4489 err_free_cgrp:
4490 kfree(cgrp);
4491 return err;
4492
4493 err_destroy:
4494 cgroup_destroy_locked(cgrp);
4495 mutex_unlock(&cgroup_mutex);
4496 mutex_unlock(&dentry->d_inode->i_mutex);
4497 return err;
4498 }
4499
4500 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
4501 {
4502 struct cgroup *c_parent = dentry->d_parent->d_fsdata;
4503
4504 /* the vfs holds inode->i_mutex already */
4505 return cgroup_create(c_parent, dentry, mode | S_IFDIR);
4506 }
4507
4508 /*
4509 * This is called when the refcnt of a css is confirmed to be killed.
4510 * css_tryget() is now guaranteed to fail.
4511 */
4512 static void css_killed_work_fn(struct work_struct *work)
4513 {
4514 struct cgroup_subsys_state *css =
4515 container_of(work, struct cgroup_subsys_state, destroy_work);
4516 struct cgroup *cgrp = css->cgroup;
4517
4518 mutex_lock(&cgroup_mutex);
4519
4520 /*
4521 * css_tryget() is guaranteed to fail now. Tell subsystems to
4522 * initate destruction.
4523 */
4524 offline_css(css);
4525
4526 /*
4527 * If @cgrp is marked dead, it's waiting for refs of all css's to
4528 * be disabled before proceeding to the second phase of cgroup
4529 * destruction. If we are the last one, kick it off.
4530 */
4531 if (!cgrp->nr_css && cgroup_is_dead(cgrp))
4532 cgroup_destroy_css_killed(cgrp);
4533
4534 mutex_unlock(&cgroup_mutex);
4535
4536 /*
4537 * Put the css refs from kill_css(). Each css holds an extra
4538 * reference to the cgroup's dentry and cgroup removal proceeds
4539 * regardless of css refs. On the last put of each css, whenever
4540 * that may be, the extra dentry ref is put so that dentry
4541 * destruction happens only after all css's are released.
4542 */
4543 css_put(css);
4544 }
4545
4546 /* css kill confirmation processing requires process context, bounce */
4547 static void css_killed_ref_fn(struct percpu_ref *ref)
4548 {
4549 struct cgroup_subsys_state *css =
4550 container_of(ref, struct cgroup_subsys_state, refcnt);
4551
4552 INIT_WORK(&css->destroy_work, css_killed_work_fn);
4553 queue_work(cgroup_destroy_wq, &css->destroy_work);
4554 }
4555
4556 /**
4557 * kill_css - destroy a css
4558 * @css: css to destroy
4559 *
4560 * This function initiates destruction of @css by removing cgroup interface
4561 * files and putting its base reference. ->css_offline() will be invoked
4562 * asynchronously once css_tryget() is guaranteed to fail and when the
4563 * reference count reaches zero, @css will be released.
4564 */
4565 static void kill_css(struct cgroup_subsys_state *css)
4566 {
4567 cgroup_clear_dir(css->cgroup, 1 << css->ss->subsys_id);
4568
4569 /*
4570 * Killing would put the base ref, but we need to keep it alive
4571 * until after ->css_offline().
4572 */
4573 css_get(css);
4574
4575 /*
4576 * cgroup core guarantees that, by the time ->css_offline() is
4577 * invoked, no new css reference will be given out via
4578 * css_tryget(). We can't simply call percpu_ref_kill() and
4579 * proceed to offlining css's because percpu_ref_kill() doesn't
4580 * guarantee that the ref is seen as killed on all CPUs on return.
4581 *
4582 * Use percpu_ref_kill_and_confirm() to get notifications as each
4583 * css is confirmed to be seen as killed on all CPUs.
4584 */
4585 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
4586 }
4587
4588 /**
4589 * cgroup_destroy_locked - the first stage of cgroup destruction
4590 * @cgrp: cgroup to be destroyed
4591 *
4592 * css's make use of percpu refcnts whose killing latency shouldn't be
4593 * exposed to userland and are RCU protected. Also, cgroup core needs to
4594 * guarantee that css_tryget() won't succeed by the time ->css_offline() is
4595 * invoked. To satisfy all the requirements, destruction is implemented in
4596 * the following two steps.
4597 *
4598 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
4599 * userland visible parts and start killing the percpu refcnts of
4600 * css's. Set up so that the next stage will be kicked off once all
4601 * the percpu refcnts are confirmed to be killed.
4602 *
4603 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
4604 * rest of destruction. Once all cgroup references are gone, the
4605 * cgroup is RCU-freed.
4606 *
4607 * This function implements s1. After this step, @cgrp is gone as far as
4608 * the userland is concerned and a new cgroup with the same name may be
4609 * created. As cgroup doesn't care about the names internally, this
4610 * doesn't cause any problem.
4611 */
4612 static int cgroup_destroy_locked(struct cgroup *cgrp)
4613 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
4614 {
4615 struct dentry *d = cgrp->dentry;
4616 struct cgroup_event *event, *tmp;
4617 struct cgroup_subsys *ss;
4618 struct cgroup *child;
4619 bool empty;
4620
4621 lockdep_assert_held(&d->d_inode->i_mutex);
4622 lockdep_assert_held(&cgroup_mutex);
4623
4624 /*
4625 * css_set_lock synchronizes access to ->cset_links and prevents
4626 * @cgrp from being removed while __put_css_set() is in progress.
4627 */
4628 read_lock(&css_set_lock);
4629 empty = list_empty(&cgrp->cset_links);
4630 read_unlock(&css_set_lock);
4631 if (!empty)
4632 return -EBUSY;
4633
4634 /*
4635 * Make sure there's no live children. We can't test ->children
4636 * emptiness as dead children linger on it while being destroyed;
4637 * otherwise, "rmdir parent/child parent" may fail with -EBUSY.
4638 */
4639 empty = true;
4640 rcu_read_lock();
4641 list_for_each_entry_rcu(child, &cgrp->children, sibling) {
4642 empty = cgroup_is_dead(child);
4643 if (!empty)
4644 break;
4645 }
4646 rcu_read_unlock();
4647 if (!empty)
4648 return -EBUSY;
4649
4650 /*
4651 * Initiate massacre of all css's. cgroup_destroy_css_killed()
4652 * will be invoked to perform the rest of destruction once the
4653 * percpu refs of all css's are confirmed to be killed.
4654 */
4655 for_each_root_subsys(cgrp->root, ss)
4656 kill_css(cgroup_css(cgrp, ss));
4657
4658 /*
4659 * Mark @cgrp dead. This prevents further task migration and child
4660 * creation by disabling cgroup_lock_live_group(). Note that
4661 * CGRP_DEAD assertion is depended upon by css_next_child() to
4662 * resume iteration after dropping RCU read lock. See
4663 * css_next_child() for details.
4664 */
4665 set_bit(CGRP_DEAD, &cgrp->flags);
4666
4667 /* CGRP_DEAD is set, remove from ->release_list for the last time */
4668 raw_spin_lock(&release_list_lock);
4669 if (!list_empty(&cgrp->release_list))
4670 list_del_init(&cgrp->release_list);
4671 raw_spin_unlock(&release_list_lock);
4672
4673 /*
4674 * If @cgrp has css's attached, the second stage of cgroup
4675 * destruction is kicked off from css_killed_work_fn() after the
4676 * refs of all attached css's are killed. If @cgrp doesn't have
4677 * any css, we kick it off here.
4678 */
4679 if (!cgrp->nr_css)
4680 cgroup_destroy_css_killed(cgrp);
4681
4682 /*
4683 * Clear the base files and remove @cgrp directory. The removal
4684 * puts the base ref but we aren't quite done with @cgrp yet, so
4685 * hold onto it.
4686 */
4687 cgroup_addrm_files(cgrp, cgroup_base_files, false);
4688 dget(d);
4689 cgroup_d_remove_dir(d);
4690
4691 /*
4692 * Unregister events and notify userspace.
4693 * Notify userspace about cgroup removing only after rmdir of cgroup
4694 * directory to avoid race between userspace and kernelspace.
4695 */
4696 spin_lock(&cgrp->event_list_lock);
4697 list_for_each_entry_safe(event, tmp, &cgrp->event_list, list) {
4698 list_del_init(&event->list);
4699 schedule_work(&event->remove);
4700 }
4701 spin_unlock(&cgrp->event_list_lock);
4702
4703 return 0;
4704 };
4705
4706 /**
4707 * cgroup_destroy_css_killed - the second step of cgroup destruction
4708 * @work: cgroup->destroy_free_work
4709 *
4710 * This function is invoked from a work item for a cgroup which is being
4711 * destroyed after all css's are offlined and performs the rest of
4712 * destruction. This is the second step of destruction described in the
4713 * comment above cgroup_destroy_locked().
4714 */
4715 static void cgroup_destroy_css_killed(struct cgroup *cgrp)
4716 {
4717 struct cgroup *parent = cgrp->parent;
4718 struct dentry *d = cgrp->dentry;
4719
4720 lockdep_assert_held(&cgroup_mutex);
4721
4722 /* delete this cgroup from parent->children */
4723 list_del_rcu(&cgrp->sibling);
4724
4725 /*
4726 * We should remove the cgroup object from idr before its grace
4727 * period starts, so we won't be looking up a cgroup while the
4728 * cgroup is being freed.
4729 */
4730 idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4731 cgrp->id = -1;
4732
4733 dput(d);
4734
4735 set_bit(CGRP_RELEASABLE, &parent->flags);
4736 check_for_release(parent);
4737 }
4738
4739 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
4740 {
4741 int ret;
4742
4743 mutex_lock(&cgroup_mutex);
4744 ret = cgroup_destroy_locked(dentry->d_fsdata);
4745 mutex_unlock(&cgroup_mutex);
4746
4747 return ret;
4748 }
4749
4750 static void __init_or_module cgroup_init_cftsets(struct cgroup_subsys *ss)
4751 {
4752 INIT_LIST_HEAD(&ss->cftsets);
4753
4754 /*
4755 * base_cftset is embedded in subsys itself, no need to worry about
4756 * deregistration.
4757 */
4758 if (ss->base_cftypes) {
4759 struct cftype *cft;
4760
4761 for (cft = ss->base_cftypes; cft->name[0] != '\0'; cft++)
4762 cft->ss = ss;
4763
4764 ss->base_cftset.cfts = ss->base_cftypes;
4765 list_add_tail(&ss->base_cftset.node, &ss->cftsets);
4766 }
4767 }
4768
4769 static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
4770 {
4771 struct cgroup_subsys_state *css;
4772
4773 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
4774
4775 mutex_lock(&cgroup_mutex);
4776
4777 /* init base cftset */
4778 cgroup_init_cftsets(ss);
4779
4780 /* Create the top cgroup state for this subsystem */
4781 list_add(&ss->sibling, &cgroup_dummy_root.subsys_list);
4782 ss->root = &cgroup_dummy_root;
4783 css = ss->css_alloc(cgroup_css(cgroup_dummy_top, ss));
4784 /* We don't handle early failures gracefully */
4785 BUG_ON(IS_ERR(css));
4786 init_css(css, ss, cgroup_dummy_top);
4787
4788 /* Update the init_css_set to contain a subsys
4789 * pointer to this state - since the subsystem is
4790 * newly registered, all tasks and hence the
4791 * init_css_set is in the subsystem's top cgroup. */
4792 init_css_set.subsys[ss->subsys_id] = css;
4793
4794 need_forkexit_callback |= ss->fork || ss->exit;
4795
4796 /* At system boot, before all subsystems have been
4797 * registered, no tasks have been forked, so we don't
4798 * need to invoke fork callbacks here. */
4799 BUG_ON(!list_empty(&init_task.tasks));
4800
4801 BUG_ON(online_css(css));
4802
4803 mutex_unlock(&cgroup_mutex);
4804
4805 /* this function shouldn't be used with modular subsystems, since they
4806 * need to register a subsys_id, among other things */
4807 BUG_ON(ss->module);
4808 }
4809
4810 /**
4811 * cgroup_load_subsys: load and register a modular subsystem at runtime
4812 * @ss: the subsystem to load
4813 *
4814 * This function should be called in a modular subsystem's initcall. If the
4815 * subsystem is built as a module, it will be assigned a new subsys_id and set
4816 * up for use. If the subsystem is built-in anyway, work is delegated to the
4817 * simpler cgroup_init_subsys.
4818 */
4819 int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss)
4820 {
4821 struct cgroup_subsys_state *css;
4822 int i, ret;
4823 struct hlist_node *tmp;
4824 struct css_set *cset;
4825 unsigned long key;
4826
4827 /* check name and function validity */
4828 if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN ||
4829 ss->css_alloc == NULL || ss->css_free == NULL)
4830 return -EINVAL;
4831
4832 /*
4833 * we don't support callbacks in modular subsystems. this check is
4834 * before the ss->module check for consistency; a subsystem that could
4835 * be a module should still have no callbacks even if the user isn't
4836 * compiling it as one.
4837 */
4838 if (ss->fork || ss->exit)
4839 return -EINVAL;
4840
4841 /*
4842 * an optionally modular subsystem is built-in: we want to do nothing,
4843 * since cgroup_init_subsys will have already taken care of it.
4844 */
4845 if (ss->module == NULL) {
4846 /* a sanity check */
4847 BUG_ON(cgroup_subsys[ss->subsys_id] != ss);
4848 return 0;
4849 }
4850
4851 /* init base cftset */
4852 cgroup_init_cftsets(ss);
4853
4854 mutex_lock(&cgroup_mutex);
4855 cgroup_subsys[ss->subsys_id] = ss;
4856
4857 /*
4858 * no ss->css_alloc seems to need anything important in the ss
4859 * struct, so this can happen first (i.e. before the dummy root
4860 * attachment).
4861 */
4862 css = ss->css_alloc(cgroup_css(cgroup_dummy_top, ss));
4863 if (IS_ERR(css)) {
4864 /* failure case - need to deassign the cgroup_subsys[] slot. */
4865 cgroup_subsys[ss->subsys_id] = NULL;
4866 mutex_unlock(&cgroup_mutex);
4867 return PTR_ERR(css);
4868 }
4869
4870 list_add(&ss->sibling, &cgroup_dummy_root.subsys_list);
4871 ss->root = &cgroup_dummy_root;
4872
4873 /* our new subsystem will be attached to the dummy hierarchy. */
4874 init_css(css, ss, cgroup_dummy_top);
4875
4876 /*
4877 * Now we need to entangle the css into the existing css_sets. unlike
4878 * in cgroup_init_subsys, there are now multiple css_sets, so each one
4879 * will need a new pointer to it; done by iterating the css_set_table.
4880 * furthermore, modifying the existing css_sets will corrupt the hash
4881 * table state, so each changed css_set will need its hash recomputed.
4882 * this is all done under the css_set_lock.
4883 */
4884 write_lock(&css_set_lock);
4885 hash_for_each_safe(css_set_table, i, tmp, cset, hlist) {
4886 /* skip entries that we already rehashed */
4887 if (cset->subsys[ss->subsys_id])
4888 continue;
4889 /* remove existing entry */
4890 hash_del(&cset->hlist);
4891 /* set new value */
4892 cset->subsys[ss->subsys_id] = css;
4893 /* recompute hash and restore entry */
4894 key = css_set_hash(cset->subsys);
4895 hash_add(css_set_table, &cset->hlist, key);
4896 }
4897 write_unlock(&css_set_lock);
4898
4899 ret = online_css(css);
4900 if (ret)
4901 goto err_unload;
4902
4903 /* success! */
4904 mutex_unlock(&cgroup_mutex);
4905 return 0;
4906
4907 err_unload:
4908 mutex_unlock(&cgroup_mutex);
4909 /* @ss can't be mounted here as try_module_get() would fail */
4910 cgroup_unload_subsys(ss);
4911 return ret;
4912 }
4913 EXPORT_SYMBOL_GPL(cgroup_load_subsys);
4914
4915 /**
4916 * cgroup_unload_subsys: unload a modular subsystem
4917 * @ss: the subsystem to unload
4918 *
4919 * This function should be called in a modular subsystem's exitcall. When this
4920 * function is invoked, the refcount on the subsystem's module will be 0, so
4921 * the subsystem will not be attached to any hierarchy.
4922 */
4923 void cgroup_unload_subsys(struct cgroup_subsys *ss)
4924 {
4925 struct cgrp_cset_link *link;
4926
4927 BUG_ON(ss->module == NULL);
4928
4929 /*
4930 * we shouldn't be called if the subsystem is in use, and the use of
4931 * try_module_get() in rebind_subsystems() should ensure that it
4932 * doesn't start being used while we're killing it off.
4933 */
4934 BUG_ON(ss->root != &cgroup_dummy_root);
4935
4936 mutex_lock(&cgroup_mutex);
4937
4938 offline_css(cgroup_css(cgroup_dummy_top, ss));
4939
4940 /* deassign the subsys_id */
4941 cgroup_subsys[ss->subsys_id] = NULL;
4942
4943 /* remove subsystem from the dummy root's list of subsystems */
4944 list_del_init(&ss->sibling);
4945
4946 /*
4947 * disentangle the css from all css_sets attached to the dummy
4948 * top. as in loading, we need to pay our respects to the hashtable
4949 * gods.
4950 */
4951 write_lock(&css_set_lock);
4952 list_for_each_entry(link, &cgroup_dummy_top->cset_links, cset_link) {
4953 struct css_set *cset = link->cset;
4954 unsigned long key;
4955
4956 hash_del(&cset->hlist);
4957 cset->subsys[ss->subsys_id] = NULL;
4958 key = css_set_hash(cset->subsys);
4959 hash_add(css_set_table, &cset->hlist, key);
4960 }
4961 write_unlock(&css_set_lock);
4962
4963 /*
4964 * remove subsystem's css from the cgroup_dummy_top and free it -
4965 * need to free before marking as null because ss->css_free needs
4966 * the cgrp->subsys pointer to find their state.
4967 */
4968 ss->css_free(cgroup_css(cgroup_dummy_top, ss));
4969 RCU_INIT_POINTER(cgroup_dummy_top->subsys[ss->subsys_id], NULL);
4970
4971 mutex_unlock(&cgroup_mutex);
4972 }
4973 EXPORT_SYMBOL_GPL(cgroup_unload_subsys);
4974
4975 /**
4976 * cgroup_init_early - cgroup initialization at system boot
4977 *
4978 * Initialize cgroups at system boot, and initialize any
4979 * subsystems that request early init.
4980 */
4981 int __init cgroup_init_early(void)
4982 {
4983 struct cgroup_subsys *ss;
4984 int i;
4985
4986 atomic_set(&init_css_set.refcount, 1);
4987 INIT_LIST_HEAD(&init_css_set.cgrp_links);
4988 INIT_LIST_HEAD(&init_css_set.tasks);
4989 INIT_HLIST_NODE(&init_css_set.hlist);
4990 css_set_count = 1;
4991 init_cgroup_root(&cgroup_dummy_root);
4992 cgroup_root_count = 1;
4993 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
4994
4995 init_cgrp_cset_link.cset = &init_css_set;
4996 init_cgrp_cset_link.cgrp = cgroup_dummy_top;
4997 list_add(&init_cgrp_cset_link.cset_link, &cgroup_dummy_top->cset_links);
4998 list_add(&init_cgrp_cset_link.cgrp_link, &init_css_set.cgrp_links);
4999
5000 /* at bootup time, we don't worry about modular subsystems */
5001 for_each_builtin_subsys(ss, i) {
5002 BUG_ON(!ss->name);
5003 BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
5004 BUG_ON(!ss->css_alloc);
5005 BUG_ON(!ss->css_free);
5006 if (ss->subsys_id != i) {
5007 printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
5008 ss->name, ss->subsys_id);
5009 BUG();
5010 }
5011
5012 if (ss->early_init)
5013 cgroup_init_subsys(ss);
5014 }
5015 return 0;
5016 }
5017
5018 /**
5019 * cgroup_init - cgroup initialization
5020 *
5021 * Register cgroup filesystem and /proc file, and initialize
5022 * any subsystems that didn't request early init.
5023 */
5024 int __init cgroup_init(void)
5025 {
5026 struct cgroup_subsys *ss;
5027 unsigned long key;
5028 int i, err;
5029
5030 err = bdi_init(&cgroup_backing_dev_info);
5031 if (err)
5032 return err;
5033
5034 for_each_builtin_subsys(ss, i) {
5035 if (!ss->early_init)
5036 cgroup_init_subsys(ss);
5037 }
5038
5039 /* allocate id for the dummy hierarchy */
5040 mutex_lock(&cgroup_mutex);
5041 mutex_lock(&cgroup_root_mutex);
5042
5043 /* Add init_css_set to the hash table */
5044 key = css_set_hash(init_css_set.subsys);
5045 hash_add(css_set_table, &init_css_set.hlist, key);
5046
5047 BUG_ON(cgroup_init_root_id(&cgroup_dummy_root, 0, 1));
5048
5049 err = idr_alloc(&cgroup_dummy_root.cgroup_idr, cgroup_dummy_top,
5050 0, 1, GFP_KERNEL);
5051 BUG_ON(err < 0);
5052
5053 mutex_unlock(&cgroup_root_mutex);
5054 mutex_unlock(&cgroup_mutex);
5055
5056 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
5057 if (!cgroup_kobj) {
5058 err = -ENOMEM;
5059 goto out;
5060 }
5061
5062 err = register_filesystem(&cgroup_fs_type);
5063 if (err < 0) {
5064 kobject_put(cgroup_kobj);
5065 goto out;
5066 }
5067
5068 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
5069
5070 out:
5071 if (err)
5072 bdi_destroy(&cgroup_backing_dev_info);
5073
5074 return err;
5075 }
5076
5077 static int __init cgroup_wq_init(void)
5078 {
5079 /*
5080 * There isn't much point in executing destruction path in
5081 * parallel. Good chunk is serialized with cgroup_mutex anyway.
5082 * Use 1 for @max_active.
5083 *
5084 * We would prefer to do this in cgroup_init() above, but that
5085 * is called before init_workqueues(): so leave this until after.
5086 */
5087 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
5088 BUG_ON(!cgroup_destroy_wq);
5089 return 0;
5090 }
5091 core_initcall(cgroup_wq_init);
5092
5093 /*
5094 * proc_cgroup_show()
5095 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5096 * - Used for /proc/<pid>/cgroup.
5097 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
5098 * doesn't really matter if tsk->cgroup changes after we read it,
5099 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
5100 * anyway. No need to check that tsk->cgroup != NULL, thanks to
5101 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
5102 * cgroup to top_cgroup.
5103 */
5104
5105 /* TODO: Use a proper seq_file iterator */
5106 int proc_cgroup_show(struct seq_file *m, void *v)
5107 {
5108 struct pid *pid;
5109 struct task_struct *tsk;
5110 char *buf;
5111 int retval;
5112 struct cgroupfs_root *root;
5113
5114 retval = -ENOMEM;
5115 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
5116 if (!buf)
5117 goto out;
5118
5119 retval = -ESRCH;
5120 pid = m->private;
5121 tsk = get_pid_task(pid, PIDTYPE_PID);
5122 if (!tsk)
5123 goto out_free;
5124
5125 retval = 0;
5126
5127 mutex_lock(&cgroup_mutex);
5128
5129 for_each_active_root(root) {
5130 struct cgroup_subsys *ss;
5131 struct cgroup *cgrp;
5132 int count = 0;
5133
5134 seq_printf(m, "%d:", root->hierarchy_id);
5135 for_each_root_subsys(root, ss)
5136 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
5137 if (strlen(root->name))
5138 seq_printf(m, "%sname=%s", count ? "," : "",
5139 root->name);
5140 seq_putc(m, ':');
5141 cgrp = task_cgroup_from_root(tsk, root);
5142 retval = cgroup_path(cgrp, buf, PAGE_SIZE);
5143 if (retval < 0)
5144 goto out_unlock;
5145 seq_puts(m, buf);
5146 seq_putc(m, '\n');
5147 }
5148
5149 out_unlock:
5150 mutex_unlock(&cgroup_mutex);
5151 put_task_struct(tsk);
5152 out_free:
5153 kfree(buf);
5154 out:
5155 return retval;
5156 }
5157
5158 /* Display information about each subsystem and each hierarchy */
5159 static int proc_cgroupstats_show(struct seq_file *m, void *v)
5160 {
5161 struct cgroup_subsys *ss;
5162 int i;
5163
5164 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
5165 /*
5166 * ideally we don't want subsystems moving around while we do this.
5167 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
5168 * subsys/hierarchy state.
5169 */
5170 mutex_lock(&cgroup_mutex);
5171
5172 for_each_subsys(ss, i)
5173 seq_printf(m, "%s\t%d\t%d\t%d\n",
5174 ss->name, ss->root->hierarchy_id,
5175 ss->root->number_of_cgroups, !ss->disabled);
5176
5177 mutex_unlock(&cgroup_mutex);
5178 return 0;
5179 }
5180
5181 static int cgroupstats_open(struct inode *inode, struct file *file)
5182 {
5183 return single_open(file, proc_cgroupstats_show, NULL);
5184 }
5185
5186 static const struct file_operations proc_cgroupstats_operations = {
5187 .open = cgroupstats_open,
5188 .read = seq_read,
5189 .llseek = seq_lseek,
5190 .release = single_release,
5191 };
5192
5193 /**
5194 * cgroup_fork - attach newly forked task to its parents cgroup.
5195 * @child: pointer to task_struct of forking parent process.
5196 *
5197 * Description: A task inherits its parent's cgroup at fork().
5198 *
5199 * A pointer to the shared css_set was automatically copied in
5200 * fork.c by dup_task_struct(). However, we ignore that copy, since
5201 * it was not made under the protection of RCU or cgroup_mutex, so
5202 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
5203 * have already changed current->cgroups, allowing the previously
5204 * referenced cgroup group to be removed and freed.
5205 *
5206 * At the point that cgroup_fork() is called, 'current' is the parent
5207 * task, and the passed argument 'child' points to the child task.
5208 */
5209 void cgroup_fork(struct task_struct *child)
5210 {
5211 task_lock(current);
5212 get_css_set(task_css_set(current));
5213 child->cgroups = current->cgroups;
5214 task_unlock(current);
5215 INIT_LIST_HEAD(&child->cg_list);
5216 }
5217
5218 /**
5219 * cgroup_post_fork - called on a new task after adding it to the task list
5220 * @child: the task in question
5221 *
5222 * Adds the task to the list running through its css_set if necessary and
5223 * call the subsystem fork() callbacks. Has to be after the task is
5224 * visible on the task list in case we race with the first call to
5225 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5226 * list.
5227 */
5228 void cgroup_post_fork(struct task_struct *child)
5229 {
5230 struct cgroup_subsys *ss;
5231 int i;
5232
5233 /*
5234 * use_task_css_set_links is set to 1 before we walk the tasklist
5235 * under the tasklist_lock and we read it here after we added the child
5236 * to the tasklist under the tasklist_lock as well. If the child wasn't
5237 * yet in the tasklist when we walked through it from
5238 * cgroup_enable_task_cg_lists(), then use_task_css_set_links value
5239 * should be visible now due to the paired locking and barriers implied
5240 * by LOCK/UNLOCK: it is written before the tasklist_lock unlock
5241 * in cgroup_enable_task_cg_lists() and read here after the tasklist_lock
5242 * lock on fork.
5243 */
5244 if (use_task_css_set_links) {
5245 write_lock(&css_set_lock);
5246 task_lock(child);
5247 if (list_empty(&child->cg_list))
5248 list_add(&child->cg_list, &task_css_set(child)->tasks);
5249 task_unlock(child);
5250 write_unlock(&css_set_lock);
5251 }
5252
5253 /*
5254 * Call ss->fork(). This must happen after @child is linked on
5255 * css_set; otherwise, @child might change state between ->fork()
5256 * and addition to css_set.
5257 */
5258 if (need_forkexit_callback) {
5259 /*
5260 * fork/exit callbacks are supported only for builtin
5261 * subsystems, and the builtin section of the subsys
5262 * array is immutable, so we don't need to lock the
5263 * subsys array here. On the other hand, modular section
5264 * of the array can be freed at module unload, so we
5265 * can't touch that.
5266 */
5267 for_each_builtin_subsys(ss, i)
5268 if (ss->fork)
5269 ss->fork(child);
5270 }
5271 }
5272
5273 /**
5274 * cgroup_exit - detach cgroup from exiting task
5275 * @tsk: pointer to task_struct of exiting process
5276 * @run_callback: run exit callbacks?
5277 *
5278 * Description: Detach cgroup from @tsk and release it.
5279 *
5280 * Note that cgroups marked notify_on_release force every task in
5281 * them to take the global cgroup_mutex mutex when exiting.
5282 * This could impact scaling on very large systems. Be reluctant to
5283 * use notify_on_release cgroups where very high task exit scaling
5284 * is required on large systems.
5285 *
5286 * the_top_cgroup_hack:
5287 *
5288 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
5289 *
5290 * We call cgroup_exit() while the task is still competent to
5291 * handle notify_on_release(), then leave the task attached to the
5292 * root cgroup in each hierarchy for the remainder of its exit.
5293 *
5294 * To do this properly, we would increment the reference count on
5295 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
5296 * code we would add a second cgroup function call, to drop that
5297 * reference. This would just create an unnecessary hot spot on
5298 * the top_cgroup reference count, to no avail.
5299 *
5300 * Normally, holding a reference to a cgroup without bumping its
5301 * count is unsafe. The cgroup could go away, or someone could
5302 * attach us to a different cgroup, decrementing the count on
5303 * the first cgroup that we never incremented. But in this case,
5304 * top_cgroup isn't going away, and either task has PF_EXITING set,
5305 * which wards off any cgroup_attach_task() attempts, or task is a failed
5306 * fork, never visible to cgroup_attach_task.
5307 */
5308 void cgroup_exit(struct task_struct *tsk, int run_callbacks)
5309 {
5310 struct cgroup_subsys *ss;
5311 struct css_set *cset;
5312 int i;
5313
5314 /*
5315 * Unlink from the css_set task list if necessary.
5316 * Optimistically check cg_list before taking
5317 * css_set_lock
5318 */
5319 if (!list_empty(&tsk->cg_list)) {
5320 write_lock(&css_set_lock);
5321 if (!list_empty(&tsk->cg_list))
5322 list_del_init(&tsk->cg_list);
5323 write_unlock(&css_set_lock);
5324 }
5325
5326 /* Reassign the task to the init_css_set. */
5327 task_lock(tsk);
5328 cset = task_css_set(tsk);
5329 RCU_INIT_POINTER(tsk->cgroups, &init_css_set);
5330
5331 if (run_callbacks && need_forkexit_callback) {
5332 /*
5333 * fork/exit callbacks are supported only for builtin
5334 * subsystems, see cgroup_post_fork() for details.
5335 */
5336 for_each_builtin_subsys(ss, i) {
5337 if (ss->exit) {
5338 struct cgroup_subsys_state *old_css = cset->subsys[i];
5339 struct cgroup_subsys_state *css = task_css(tsk, i);
5340
5341 ss->exit(css, old_css, tsk);
5342 }
5343 }
5344 }
5345 task_unlock(tsk);
5346
5347 put_css_set_taskexit(cset);
5348 }
5349
5350 static void check_for_release(struct cgroup *cgrp)
5351 {
5352 if (cgroup_is_releasable(cgrp) &&
5353 list_empty(&cgrp->cset_links) && list_empty(&cgrp->children)) {
5354 /*
5355 * Control Group is currently removeable. If it's not
5356 * already queued for a userspace notification, queue
5357 * it now
5358 */
5359 int need_schedule_work = 0;
5360
5361 raw_spin_lock(&release_list_lock);
5362 if (!cgroup_is_dead(cgrp) &&
5363 list_empty(&cgrp->release_list)) {
5364 list_add(&cgrp->release_list, &release_list);
5365 need_schedule_work = 1;
5366 }
5367 raw_spin_unlock(&release_list_lock);
5368 if (need_schedule_work)
5369 schedule_work(&release_agent_work);
5370 }
5371 }
5372
5373 /*
5374 * Notify userspace when a cgroup is released, by running the
5375 * configured release agent with the name of the cgroup (path
5376 * relative to the root of cgroup file system) as the argument.
5377 *
5378 * Most likely, this user command will try to rmdir this cgroup.
5379 *
5380 * This races with the possibility that some other task will be
5381 * attached to this cgroup before it is removed, or that some other
5382 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5383 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5384 * unused, and this cgroup will be reprieved from its death sentence,
5385 * to continue to serve a useful existence. Next time it's released,
5386 * we will get notified again, if it still has 'notify_on_release' set.
5387 *
5388 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5389 * means only wait until the task is successfully execve()'d. The
5390 * separate release agent task is forked by call_usermodehelper(),
5391 * then control in this thread returns here, without waiting for the
5392 * release agent task. We don't bother to wait because the caller of
5393 * this routine has no use for the exit status of the release agent
5394 * task, so no sense holding our caller up for that.
5395 */
5396 static void cgroup_release_agent(struct work_struct *work)
5397 {
5398 BUG_ON(work != &release_agent_work);
5399 mutex_lock(&cgroup_mutex);
5400 raw_spin_lock(&release_list_lock);
5401 while (!list_empty(&release_list)) {
5402 char *argv[3], *envp[3];
5403 int i;
5404 char *pathbuf = NULL, *agentbuf = NULL;
5405 struct cgroup *cgrp = list_entry(release_list.next,
5406 struct cgroup,
5407 release_list);
5408 list_del_init(&cgrp->release_list);
5409 raw_spin_unlock(&release_list_lock);
5410 pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
5411 if (!pathbuf)
5412 goto continue_free;
5413 if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
5414 goto continue_free;
5415 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5416 if (!agentbuf)
5417 goto continue_free;
5418
5419 i = 0;
5420 argv[i++] = agentbuf;
5421 argv[i++] = pathbuf;
5422 argv[i] = NULL;
5423
5424 i = 0;
5425 /* minimal command environment */
5426 envp[i++] = "HOME=/";
5427 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5428 envp[i] = NULL;
5429
5430 /* Drop the lock while we invoke the usermode helper,
5431 * since the exec could involve hitting disk and hence
5432 * be a slow process */
5433 mutex_unlock(&cgroup_mutex);
5434 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
5435 mutex_lock(&cgroup_mutex);
5436 continue_free:
5437 kfree(pathbuf);
5438 kfree(agentbuf);
5439 raw_spin_lock(&release_list_lock);
5440 }
5441 raw_spin_unlock(&release_list_lock);
5442 mutex_unlock(&cgroup_mutex);
5443 }
5444
5445 static int __init cgroup_disable(char *str)
5446 {
5447 struct cgroup_subsys *ss;
5448 char *token;
5449 int i;
5450
5451 while ((token = strsep(&str, ",")) != NULL) {
5452 if (!*token)
5453 continue;
5454
5455 /*
5456 * cgroup_disable, being at boot time, can't know about
5457 * module subsystems, so we don't worry about them.
5458 */
5459 for_each_builtin_subsys(ss, i) {
5460 if (!strcmp(token, ss->name)) {
5461 ss->disabled = 1;
5462 printk(KERN_INFO "Disabling %s control group"
5463 " subsystem\n", ss->name);
5464 break;
5465 }
5466 }
5467 }
5468 return 1;
5469 }
5470 __setup("cgroup_disable=", cgroup_disable);
5471
5472 /**
5473 * css_from_dir - get corresponding css from the dentry of a cgroup dir
5474 * @dentry: directory dentry of interest
5475 * @ss: subsystem of interest
5476 *
5477 * Must be called under RCU read lock. The caller is responsible for
5478 * pinning the returned css if it needs to be accessed outside the RCU
5479 * critical section.
5480 */
5481 struct cgroup_subsys_state *css_from_dir(struct dentry *dentry,
5482 struct cgroup_subsys *ss)
5483 {
5484 struct cgroup *cgrp;
5485
5486 WARN_ON_ONCE(!rcu_read_lock_held());
5487
5488 /* is @dentry a cgroup dir? */
5489 if (!dentry->d_inode ||
5490 dentry->d_inode->i_op != &cgroup_dir_inode_operations)
5491 return ERR_PTR(-EBADF);
5492
5493 cgrp = __d_cgrp(dentry);
5494 return cgroup_css(cgrp, ss) ?: ERR_PTR(-ENOENT);
5495 }
5496
5497 /**
5498 * css_from_id - lookup css by id
5499 * @id: the cgroup id
5500 * @ss: cgroup subsys to be looked into
5501 *
5502 * Returns the css if there's valid one with @id, otherwise returns NULL.
5503 * Should be called under rcu_read_lock().
5504 */
5505 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
5506 {
5507 struct cgroup *cgrp;
5508
5509 rcu_lockdep_assert(rcu_read_lock_held() ||
5510 lockdep_is_held(&cgroup_mutex),
5511 "css_from_id() needs proper protection");
5512
5513 cgrp = idr_find(&ss->root->cgroup_idr, id);
5514 if (cgrp)
5515 return cgroup_css(cgrp, ss);
5516 return NULL;
5517 }
5518
5519 #ifdef CONFIG_CGROUP_DEBUG
5520 static struct cgroup_subsys_state *
5521 debug_css_alloc(struct cgroup_subsys_state *parent_css)
5522 {
5523 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5524
5525 if (!css)
5526 return ERR_PTR(-ENOMEM);
5527
5528 return css;
5529 }
5530
5531 static void debug_css_free(struct cgroup_subsys_state *css)
5532 {
5533 kfree(css);
5534 }
5535
5536 static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
5537 struct cftype *cft)
5538 {
5539 return cgroup_task_count(css->cgroup);
5540 }
5541
5542 static u64 current_css_set_read(struct cgroup_subsys_state *css,
5543 struct cftype *cft)
5544 {
5545 return (u64)(unsigned long)current->cgroups;
5546 }
5547
5548 static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
5549 struct cftype *cft)
5550 {
5551 u64 count;
5552
5553 rcu_read_lock();
5554 count = atomic_read(&task_css_set(current)->refcount);
5555 rcu_read_unlock();
5556 return count;
5557 }
5558
5559 static int current_css_set_cg_links_read(struct cgroup_subsys_state *css,
5560 struct cftype *cft,
5561 struct seq_file *seq)
5562 {
5563 struct cgrp_cset_link *link;
5564 struct css_set *cset;
5565
5566 read_lock(&css_set_lock);
5567 rcu_read_lock();
5568 cset = rcu_dereference(current->cgroups);
5569 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
5570 struct cgroup *c = link->cgrp;
5571 const char *name;
5572
5573 if (c->dentry)
5574 name = c->dentry->d_name.name;
5575 else
5576 name = "?";
5577 seq_printf(seq, "Root %d group %s\n",
5578 c->root->hierarchy_id, name);
5579 }
5580 rcu_read_unlock();
5581 read_unlock(&css_set_lock);
5582 return 0;
5583 }
5584
5585 #define MAX_TASKS_SHOWN_PER_CSS 25
5586 static int cgroup_css_links_read(struct cgroup_subsys_state *css,
5587 struct cftype *cft, struct seq_file *seq)
5588 {
5589 struct cgrp_cset_link *link;
5590
5591 read_lock(&css_set_lock);
5592 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
5593 struct css_set *cset = link->cset;
5594 struct task_struct *task;
5595 int count = 0;
5596 seq_printf(seq, "css_set %p\n", cset);
5597 list_for_each_entry(task, &cset->tasks, cg_list) {
5598 if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
5599 seq_puts(seq, " ...\n");
5600 break;
5601 } else {
5602 seq_printf(seq, " task %d\n",
5603 task_pid_vnr(task));
5604 }
5605 }
5606 }
5607 read_unlock(&css_set_lock);
5608 return 0;
5609 }
5610
5611 static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
5612 {
5613 return test_bit(CGRP_RELEASABLE, &css->cgroup->flags);
5614 }
5615
5616 static struct cftype debug_files[] = {
5617 {
5618 .name = "taskcount",
5619 .read_u64 = debug_taskcount_read,
5620 },
5621
5622 {
5623 .name = "current_css_set",
5624 .read_u64 = current_css_set_read,
5625 },
5626
5627 {
5628 .name = "current_css_set_refcount",
5629 .read_u64 = current_css_set_refcount_read,
5630 },
5631
5632 {
5633 .name = "current_css_set_cg_links",
5634 .read_seq_string = current_css_set_cg_links_read,
5635 },
5636
5637 {
5638 .name = "cgroup_css_links",
5639 .read_seq_string = cgroup_css_links_read,
5640 },
5641
5642 {
5643 .name = "releasable",
5644 .read_u64 = releasable_read,
5645 },
5646
5647 { } /* terminate */
5648 };
5649
5650 struct cgroup_subsys debug_subsys = {
5651 .name = "debug",
5652 .css_alloc = debug_css_alloc,
5653 .css_free = debug_css_free,
5654 .subsys_id = debug_subsys_id,
5655 .base_cftypes = debug_files,
5656 };
5657 #endif /* CONFIG_CGROUP_DEBUG */
This page took 0.144252 seconds and 5 git commands to generate.