8c605e2bdd1ae45698e45b96ebcd8f2ca489726c
[deliverable/linux.git] / kernel / cgroup.c
1 /*
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29 #include <linux/cgroup.h>
30 #include <linux/cred.h>
31 #include <linux/ctype.h>
32 #include <linux/errno.h>
33 #include <linux/fs.h>
34 #include <linux/init_task.h>
35 #include <linux/kernel.h>
36 #include <linux/list.h>
37 #include <linux/mm.h>
38 #include <linux/mutex.h>
39 #include <linux/mount.h>
40 #include <linux/pagemap.h>
41 #include <linux/proc_fs.h>
42 #include <linux/rcupdate.h>
43 #include <linux/sched.h>
44 #include <linux/backing-dev.h>
45 #include <linux/seq_file.h>
46 #include <linux/slab.h>
47 #include <linux/magic.h>
48 #include <linux/spinlock.h>
49 #include <linux/string.h>
50 #include <linux/sort.h>
51 #include <linux/kmod.h>
52 #include <linux/module.h>
53 #include <linux/delayacct.h>
54 #include <linux/cgroupstats.h>
55 #include <linux/hash.h>
56 #include <linux/namei.h>
57 #include <linux/pid_namespace.h>
58 #include <linux/idr.h>
59 #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
60 #include <linux/eventfd.h>
61 #include <linux/poll.h>
62 #include <linux/flex_array.h> /* used in cgroup_attach_proc */
63 #include <linux/kthread.h>
64
65 #include <linux/atomic.h>
66
67 /* css deactivation bias, makes css->refcnt negative to deny new trygets */
68 #define CSS_DEACT_BIAS INT_MIN
69
70 /*
71 * cgroup_mutex is the master lock. Any modification to cgroup or its
72 * hierarchy must be performed while holding it.
73 *
74 * cgroup_root_mutex nests inside cgroup_mutex and should be held to modify
75 * cgroupfs_root of any cgroup hierarchy - subsys list, flags,
76 * release_agent_path and so on. Modifying requires both cgroup_mutex and
77 * cgroup_root_mutex. Readers can acquire either of the two. This is to
78 * break the following locking order cycle.
79 *
80 * A. cgroup_mutex -> cred_guard_mutex -> s_type->i_mutex_key -> namespace_sem
81 * B. namespace_sem -> cgroup_mutex
82 *
83 * B happens only through cgroup_show_options() and using cgroup_root_mutex
84 * breaks it.
85 */
86 static DEFINE_MUTEX(cgroup_mutex);
87 static DEFINE_MUTEX(cgroup_root_mutex);
88
89 /*
90 * Generate an array of cgroup subsystem pointers. At boot time, this is
91 * populated up to CGROUP_BUILTIN_SUBSYS_COUNT, and modular subsystems are
92 * registered after that. The mutable section of this array is protected by
93 * cgroup_mutex.
94 */
95 #define SUBSYS(_x) &_x ## _subsys,
96 static struct cgroup_subsys *subsys[CGROUP_SUBSYS_COUNT] = {
97 #include <linux/cgroup_subsys.h>
98 };
99
100 #define MAX_CGROUP_ROOT_NAMELEN 64
101
102 /*
103 * A cgroupfs_root represents the root of a cgroup hierarchy,
104 * and may be associated with a superblock to form an active
105 * hierarchy
106 */
107 struct cgroupfs_root {
108 struct super_block *sb;
109
110 /*
111 * The bitmask of subsystems intended to be attached to this
112 * hierarchy
113 */
114 unsigned long subsys_bits;
115
116 /* Unique id for this hierarchy. */
117 int hierarchy_id;
118
119 /* The bitmask of subsystems currently attached to this hierarchy */
120 unsigned long actual_subsys_bits;
121
122 /* A list running through the attached subsystems */
123 struct list_head subsys_list;
124
125 /* The root cgroup for this hierarchy */
126 struct cgroup top_cgroup;
127
128 /* Tracks how many cgroups are currently defined in hierarchy.*/
129 int number_of_cgroups;
130
131 /* A list running through the active hierarchies */
132 struct list_head root_list;
133
134 /* All cgroups on this root, cgroup_mutex protected */
135 struct list_head allcg_list;
136
137 /* Hierarchy-specific flags */
138 unsigned long flags;
139
140 /* The path to use for release notifications. */
141 char release_agent_path[PATH_MAX];
142
143 /* The name for this hierarchy - may be empty */
144 char name[MAX_CGROUP_ROOT_NAMELEN];
145 };
146
147 /*
148 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
149 * subsystems that are otherwise unattached - it never has more than a
150 * single cgroup, and all tasks are part of that cgroup.
151 */
152 static struct cgroupfs_root rootnode;
153
154 /*
155 * cgroupfs file entry, pointed to from leaf dentry->d_fsdata.
156 */
157 struct cfent {
158 struct list_head node;
159 struct dentry *dentry;
160 struct cftype *type;
161 };
162
163 /*
164 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
165 * cgroup_subsys->use_id != 0.
166 */
167 #define CSS_ID_MAX (65535)
168 struct css_id {
169 /*
170 * The css to which this ID points. This pointer is set to valid value
171 * after cgroup is populated. If cgroup is removed, this will be NULL.
172 * This pointer is expected to be RCU-safe because destroy()
173 * is called after synchronize_rcu(). But for safe use, css_is_removed()
174 * css_tryget() should be used for avoiding race.
175 */
176 struct cgroup_subsys_state __rcu *css;
177 /*
178 * ID of this css.
179 */
180 unsigned short id;
181 /*
182 * Depth in hierarchy which this ID belongs to.
183 */
184 unsigned short depth;
185 /*
186 * ID is freed by RCU. (and lookup routine is RCU safe.)
187 */
188 struct rcu_head rcu_head;
189 /*
190 * Hierarchy of CSS ID belongs to.
191 */
192 unsigned short stack[0]; /* Array of Length (depth+1) */
193 };
194
195 /*
196 * cgroup_event represents events which userspace want to receive.
197 */
198 struct cgroup_event {
199 /*
200 * Cgroup which the event belongs to.
201 */
202 struct cgroup *cgrp;
203 /*
204 * Control file which the event associated.
205 */
206 struct cftype *cft;
207 /*
208 * eventfd to signal userspace about the event.
209 */
210 struct eventfd_ctx *eventfd;
211 /*
212 * Each of these stored in a list by the cgroup.
213 */
214 struct list_head list;
215 /*
216 * All fields below needed to unregister event when
217 * userspace closes eventfd.
218 */
219 poll_table pt;
220 wait_queue_head_t *wqh;
221 wait_queue_t wait;
222 struct work_struct remove;
223 };
224
225 /* The list of hierarchy roots */
226
227 static LIST_HEAD(roots);
228 static int root_count;
229
230 static DEFINE_IDA(hierarchy_ida);
231 static int next_hierarchy_id;
232 static DEFINE_SPINLOCK(hierarchy_id_lock);
233
234 /* dummytop is a shorthand for the dummy hierarchy's top cgroup */
235 #define dummytop (&rootnode.top_cgroup)
236
237 /* This flag indicates whether tasks in the fork and exit paths should
238 * check for fork/exit handlers to call. This avoids us having to do
239 * extra work in the fork/exit path if none of the subsystems need to
240 * be called.
241 */
242 static int need_forkexit_callback __read_mostly;
243
244 #ifdef CONFIG_PROVE_LOCKING
245 int cgroup_lock_is_held(void)
246 {
247 return lockdep_is_held(&cgroup_mutex);
248 }
249 #else /* #ifdef CONFIG_PROVE_LOCKING */
250 int cgroup_lock_is_held(void)
251 {
252 return mutex_is_locked(&cgroup_mutex);
253 }
254 #endif /* #else #ifdef CONFIG_PROVE_LOCKING */
255
256 EXPORT_SYMBOL_GPL(cgroup_lock_is_held);
257
258 static int css_unbias_refcnt(int refcnt)
259 {
260 return refcnt >= 0 ? refcnt : refcnt - CSS_DEACT_BIAS;
261 }
262
263 /* the current nr of refs, always >= 0 whether @css is deactivated or not */
264 static int css_refcnt(struct cgroup_subsys_state *css)
265 {
266 int v = atomic_read(&css->refcnt);
267
268 return css_unbias_refcnt(v);
269 }
270
271 /* convenient tests for these bits */
272 inline int cgroup_is_removed(const struct cgroup *cgrp)
273 {
274 return test_bit(CGRP_REMOVED, &cgrp->flags);
275 }
276
277 /* bits in struct cgroupfs_root flags field */
278 enum {
279 ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
280 };
281
282 static int cgroup_is_releasable(const struct cgroup *cgrp)
283 {
284 const int bits =
285 (1 << CGRP_RELEASABLE) |
286 (1 << CGRP_NOTIFY_ON_RELEASE);
287 return (cgrp->flags & bits) == bits;
288 }
289
290 static int notify_on_release(const struct cgroup *cgrp)
291 {
292 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
293 }
294
295 static int clone_children(const struct cgroup *cgrp)
296 {
297 return test_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
298 }
299
300 /*
301 * for_each_subsys() allows you to iterate on each subsystem attached to
302 * an active hierarchy
303 */
304 #define for_each_subsys(_root, _ss) \
305 list_for_each_entry(_ss, &_root->subsys_list, sibling)
306
307 /* for_each_active_root() allows you to iterate across the active hierarchies */
308 #define for_each_active_root(_root) \
309 list_for_each_entry(_root, &roots, root_list)
310
311 static inline struct cgroup *__d_cgrp(struct dentry *dentry)
312 {
313 return dentry->d_fsdata;
314 }
315
316 static inline struct cfent *__d_cfe(struct dentry *dentry)
317 {
318 return dentry->d_fsdata;
319 }
320
321 static inline struct cftype *__d_cft(struct dentry *dentry)
322 {
323 return __d_cfe(dentry)->type;
324 }
325
326 /* the list of cgroups eligible for automatic release. Protected by
327 * release_list_lock */
328 static LIST_HEAD(release_list);
329 static DEFINE_RAW_SPINLOCK(release_list_lock);
330 static void cgroup_release_agent(struct work_struct *work);
331 static DECLARE_WORK(release_agent_work, cgroup_release_agent);
332 static void check_for_release(struct cgroup *cgrp);
333
334 /* Link structure for associating css_set objects with cgroups */
335 struct cg_cgroup_link {
336 /*
337 * List running through cg_cgroup_links associated with a
338 * cgroup, anchored on cgroup->css_sets
339 */
340 struct list_head cgrp_link_list;
341 struct cgroup *cgrp;
342 /*
343 * List running through cg_cgroup_links pointing at a
344 * single css_set object, anchored on css_set->cg_links
345 */
346 struct list_head cg_link_list;
347 struct css_set *cg;
348 };
349
350 /* The default css_set - used by init and its children prior to any
351 * hierarchies being mounted. It contains a pointer to the root state
352 * for each subsystem. Also used to anchor the list of css_sets. Not
353 * reference-counted, to improve performance when child cgroups
354 * haven't been created.
355 */
356
357 static struct css_set init_css_set;
358 static struct cg_cgroup_link init_css_set_link;
359
360 static int cgroup_init_idr(struct cgroup_subsys *ss,
361 struct cgroup_subsys_state *css);
362
363 /* css_set_lock protects the list of css_set objects, and the
364 * chain of tasks off each css_set. Nests outside task->alloc_lock
365 * due to cgroup_iter_start() */
366 static DEFINE_RWLOCK(css_set_lock);
367 static int css_set_count;
368
369 /*
370 * hash table for cgroup groups. This improves the performance to find
371 * an existing css_set. This hash doesn't (currently) take into
372 * account cgroups in empty hierarchies.
373 */
374 #define CSS_SET_HASH_BITS 7
375 #define CSS_SET_TABLE_SIZE (1 << CSS_SET_HASH_BITS)
376 static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE];
377
378 static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[])
379 {
380 int i;
381 int index;
382 unsigned long tmp = 0UL;
383
384 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
385 tmp += (unsigned long)css[i];
386 tmp = (tmp >> 16) ^ tmp;
387
388 index = hash_long(tmp, CSS_SET_HASH_BITS);
389
390 return &css_set_table[index];
391 }
392
393 /* We don't maintain the lists running through each css_set to its
394 * task until after the first call to cgroup_iter_start(). This
395 * reduces the fork()/exit() overhead for people who have cgroups
396 * compiled into their kernel but not actually in use */
397 static int use_task_css_set_links __read_mostly;
398
399 static void __put_css_set(struct css_set *cg, int taskexit)
400 {
401 struct cg_cgroup_link *link;
402 struct cg_cgroup_link *saved_link;
403 /*
404 * Ensure that the refcount doesn't hit zero while any readers
405 * can see it. Similar to atomic_dec_and_lock(), but for an
406 * rwlock
407 */
408 if (atomic_add_unless(&cg->refcount, -1, 1))
409 return;
410 write_lock(&css_set_lock);
411 if (!atomic_dec_and_test(&cg->refcount)) {
412 write_unlock(&css_set_lock);
413 return;
414 }
415
416 /* This css_set is dead. unlink it and release cgroup refcounts */
417 hlist_del(&cg->hlist);
418 css_set_count--;
419
420 list_for_each_entry_safe(link, saved_link, &cg->cg_links,
421 cg_link_list) {
422 struct cgroup *cgrp = link->cgrp;
423 list_del(&link->cg_link_list);
424 list_del(&link->cgrp_link_list);
425 if (atomic_dec_and_test(&cgrp->count) &&
426 notify_on_release(cgrp)) {
427 if (taskexit)
428 set_bit(CGRP_RELEASABLE, &cgrp->flags);
429 check_for_release(cgrp);
430 }
431
432 kfree(link);
433 }
434
435 write_unlock(&css_set_lock);
436 kfree_rcu(cg, rcu_head);
437 }
438
439 /*
440 * refcounted get/put for css_set objects
441 */
442 static inline void get_css_set(struct css_set *cg)
443 {
444 atomic_inc(&cg->refcount);
445 }
446
447 static inline void put_css_set(struct css_set *cg)
448 {
449 __put_css_set(cg, 0);
450 }
451
452 static inline void put_css_set_taskexit(struct css_set *cg)
453 {
454 __put_css_set(cg, 1);
455 }
456
457 /*
458 * compare_css_sets - helper function for find_existing_css_set().
459 * @cg: candidate css_set being tested
460 * @old_cg: existing css_set for a task
461 * @new_cgrp: cgroup that's being entered by the task
462 * @template: desired set of css pointers in css_set (pre-calculated)
463 *
464 * Returns true if "cg" matches "old_cg" except for the hierarchy
465 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
466 */
467 static bool compare_css_sets(struct css_set *cg,
468 struct css_set *old_cg,
469 struct cgroup *new_cgrp,
470 struct cgroup_subsys_state *template[])
471 {
472 struct list_head *l1, *l2;
473
474 if (memcmp(template, cg->subsys, sizeof(cg->subsys))) {
475 /* Not all subsystems matched */
476 return false;
477 }
478
479 /*
480 * Compare cgroup pointers in order to distinguish between
481 * different cgroups in heirarchies with no subsystems. We
482 * could get by with just this check alone (and skip the
483 * memcmp above) but on most setups the memcmp check will
484 * avoid the need for this more expensive check on almost all
485 * candidates.
486 */
487
488 l1 = &cg->cg_links;
489 l2 = &old_cg->cg_links;
490 while (1) {
491 struct cg_cgroup_link *cgl1, *cgl2;
492 struct cgroup *cg1, *cg2;
493
494 l1 = l1->next;
495 l2 = l2->next;
496 /* See if we reached the end - both lists are equal length. */
497 if (l1 == &cg->cg_links) {
498 BUG_ON(l2 != &old_cg->cg_links);
499 break;
500 } else {
501 BUG_ON(l2 == &old_cg->cg_links);
502 }
503 /* Locate the cgroups associated with these links. */
504 cgl1 = list_entry(l1, struct cg_cgroup_link, cg_link_list);
505 cgl2 = list_entry(l2, struct cg_cgroup_link, cg_link_list);
506 cg1 = cgl1->cgrp;
507 cg2 = cgl2->cgrp;
508 /* Hierarchies should be linked in the same order. */
509 BUG_ON(cg1->root != cg2->root);
510
511 /*
512 * If this hierarchy is the hierarchy of the cgroup
513 * that's changing, then we need to check that this
514 * css_set points to the new cgroup; if it's any other
515 * hierarchy, then this css_set should point to the
516 * same cgroup as the old css_set.
517 */
518 if (cg1->root == new_cgrp->root) {
519 if (cg1 != new_cgrp)
520 return false;
521 } else {
522 if (cg1 != cg2)
523 return false;
524 }
525 }
526 return true;
527 }
528
529 /*
530 * find_existing_css_set() is a helper for
531 * find_css_set(), and checks to see whether an existing
532 * css_set is suitable.
533 *
534 * oldcg: the cgroup group that we're using before the cgroup
535 * transition
536 *
537 * cgrp: the cgroup that we're moving into
538 *
539 * template: location in which to build the desired set of subsystem
540 * state objects for the new cgroup group
541 */
542 static struct css_set *find_existing_css_set(
543 struct css_set *oldcg,
544 struct cgroup *cgrp,
545 struct cgroup_subsys_state *template[])
546 {
547 int i;
548 struct cgroupfs_root *root = cgrp->root;
549 struct hlist_head *hhead;
550 struct hlist_node *node;
551 struct css_set *cg;
552
553 /*
554 * Build the set of subsystem state objects that we want to see in the
555 * new css_set. while subsystems can change globally, the entries here
556 * won't change, so no need for locking.
557 */
558 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
559 if (root->subsys_bits & (1UL << i)) {
560 /* Subsystem is in this hierarchy. So we want
561 * the subsystem state from the new
562 * cgroup */
563 template[i] = cgrp->subsys[i];
564 } else {
565 /* Subsystem is not in this hierarchy, so we
566 * don't want to change the subsystem state */
567 template[i] = oldcg->subsys[i];
568 }
569 }
570
571 hhead = css_set_hash(template);
572 hlist_for_each_entry(cg, node, hhead, hlist) {
573 if (!compare_css_sets(cg, oldcg, cgrp, template))
574 continue;
575
576 /* This css_set matches what we need */
577 return cg;
578 }
579
580 /* No existing cgroup group matched */
581 return NULL;
582 }
583
584 static void free_cg_links(struct list_head *tmp)
585 {
586 struct cg_cgroup_link *link;
587 struct cg_cgroup_link *saved_link;
588
589 list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
590 list_del(&link->cgrp_link_list);
591 kfree(link);
592 }
593 }
594
595 /*
596 * allocate_cg_links() allocates "count" cg_cgroup_link structures
597 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
598 * success or a negative error
599 */
600 static int allocate_cg_links(int count, struct list_head *tmp)
601 {
602 struct cg_cgroup_link *link;
603 int i;
604 INIT_LIST_HEAD(tmp);
605 for (i = 0; i < count; i++) {
606 link = kmalloc(sizeof(*link), GFP_KERNEL);
607 if (!link) {
608 free_cg_links(tmp);
609 return -ENOMEM;
610 }
611 list_add(&link->cgrp_link_list, tmp);
612 }
613 return 0;
614 }
615
616 /**
617 * link_css_set - a helper function to link a css_set to a cgroup
618 * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
619 * @cg: the css_set to be linked
620 * @cgrp: the destination cgroup
621 */
622 static void link_css_set(struct list_head *tmp_cg_links,
623 struct css_set *cg, struct cgroup *cgrp)
624 {
625 struct cg_cgroup_link *link;
626
627 BUG_ON(list_empty(tmp_cg_links));
628 link = list_first_entry(tmp_cg_links, struct cg_cgroup_link,
629 cgrp_link_list);
630 link->cg = cg;
631 link->cgrp = cgrp;
632 atomic_inc(&cgrp->count);
633 list_move(&link->cgrp_link_list, &cgrp->css_sets);
634 /*
635 * Always add links to the tail of the list so that the list
636 * is sorted by order of hierarchy creation
637 */
638 list_add_tail(&link->cg_link_list, &cg->cg_links);
639 }
640
641 /*
642 * find_css_set() takes an existing cgroup group and a
643 * cgroup object, and returns a css_set object that's
644 * equivalent to the old group, but with the given cgroup
645 * substituted into the appropriate hierarchy. Must be called with
646 * cgroup_mutex held
647 */
648 static struct css_set *find_css_set(
649 struct css_set *oldcg, struct cgroup *cgrp)
650 {
651 struct css_set *res;
652 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
653
654 struct list_head tmp_cg_links;
655
656 struct hlist_head *hhead;
657 struct cg_cgroup_link *link;
658
659 /* First see if we already have a cgroup group that matches
660 * the desired set */
661 read_lock(&css_set_lock);
662 res = find_existing_css_set(oldcg, cgrp, template);
663 if (res)
664 get_css_set(res);
665 read_unlock(&css_set_lock);
666
667 if (res)
668 return res;
669
670 res = kmalloc(sizeof(*res), GFP_KERNEL);
671 if (!res)
672 return NULL;
673
674 /* Allocate all the cg_cgroup_link objects that we'll need */
675 if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
676 kfree(res);
677 return NULL;
678 }
679
680 atomic_set(&res->refcount, 1);
681 INIT_LIST_HEAD(&res->cg_links);
682 INIT_LIST_HEAD(&res->tasks);
683 INIT_HLIST_NODE(&res->hlist);
684
685 /* Copy the set of subsystem state objects generated in
686 * find_existing_css_set() */
687 memcpy(res->subsys, template, sizeof(res->subsys));
688
689 write_lock(&css_set_lock);
690 /* Add reference counts and links from the new css_set. */
691 list_for_each_entry(link, &oldcg->cg_links, cg_link_list) {
692 struct cgroup *c = link->cgrp;
693 if (c->root == cgrp->root)
694 c = cgrp;
695 link_css_set(&tmp_cg_links, res, c);
696 }
697
698 BUG_ON(!list_empty(&tmp_cg_links));
699
700 css_set_count++;
701
702 /* Add this cgroup group to the hash table */
703 hhead = css_set_hash(res->subsys);
704 hlist_add_head(&res->hlist, hhead);
705
706 write_unlock(&css_set_lock);
707
708 return res;
709 }
710
711 /*
712 * Return the cgroup for "task" from the given hierarchy. Must be
713 * called with cgroup_mutex held.
714 */
715 static struct cgroup *task_cgroup_from_root(struct task_struct *task,
716 struct cgroupfs_root *root)
717 {
718 struct css_set *css;
719 struct cgroup *res = NULL;
720
721 BUG_ON(!mutex_is_locked(&cgroup_mutex));
722 read_lock(&css_set_lock);
723 /*
724 * No need to lock the task - since we hold cgroup_mutex the
725 * task can't change groups, so the only thing that can happen
726 * is that it exits and its css is set back to init_css_set.
727 */
728 css = task->cgroups;
729 if (css == &init_css_set) {
730 res = &root->top_cgroup;
731 } else {
732 struct cg_cgroup_link *link;
733 list_for_each_entry(link, &css->cg_links, cg_link_list) {
734 struct cgroup *c = link->cgrp;
735 if (c->root == root) {
736 res = c;
737 break;
738 }
739 }
740 }
741 read_unlock(&css_set_lock);
742 BUG_ON(!res);
743 return res;
744 }
745
746 /*
747 * There is one global cgroup mutex. We also require taking
748 * task_lock() when dereferencing a task's cgroup subsys pointers.
749 * See "The task_lock() exception", at the end of this comment.
750 *
751 * A task must hold cgroup_mutex to modify cgroups.
752 *
753 * Any task can increment and decrement the count field without lock.
754 * So in general, code holding cgroup_mutex can't rely on the count
755 * field not changing. However, if the count goes to zero, then only
756 * cgroup_attach_task() can increment it again. Because a count of zero
757 * means that no tasks are currently attached, therefore there is no
758 * way a task attached to that cgroup can fork (the other way to
759 * increment the count). So code holding cgroup_mutex can safely
760 * assume that if the count is zero, it will stay zero. Similarly, if
761 * a task holds cgroup_mutex on a cgroup with zero count, it
762 * knows that the cgroup won't be removed, as cgroup_rmdir()
763 * needs that mutex.
764 *
765 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
766 * (usually) take cgroup_mutex. These are the two most performance
767 * critical pieces of code here. The exception occurs on cgroup_exit(),
768 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
769 * is taken, and if the cgroup count is zero, a usermode call made
770 * to the release agent with the name of the cgroup (path relative to
771 * the root of cgroup file system) as the argument.
772 *
773 * A cgroup can only be deleted if both its 'count' of using tasks
774 * is zero, and its list of 'children' cgroups is empty. Since all
775 * tasks in the system use _some_ cgroup, and since there is always at
776 * least one task in the system (init, pid == 1), therefore, top_cgroup
777 * always has either children cgroups and/or using tasks. So we don't
778 * need a special hack to ensure that top_cgroup cannot be deleted.
779 *
780 * The task_lock() exception
781 *
782 * The need for this exception arises from the action of
783 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
784 * another. It does so using cgroup_mutex, however there are
785 * several performance critical places that need to reference
786 * task->cgroup without the expense of grabbing a system global
787 * mutex. Therefore except as noted below, when dereferencing or, as
788 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
789 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
790 * the task_struct routinely used for such matters.
791 *
792 * P.S. One more locking exception. RCU is used to guard the
793 * update of a tasks cgroup pointer by cgroup_attach_task()
794 */
795
796 /**
797 * cgroup_lock - lock out any changes to cgroup structures
798 *
799 */
800 void cgroup_lock(void)
801 {
802 mutex_lock(&cgroup_mutex);
803 }
804 EXPORT_SYMBOL_GPL(cgroup_lock);
805
806 /**
807 * cgroup_unlock - release lock on cgroup changes
808 *
809 * Undo the lock taken in a previous cgroup_lock() call.
810 */
811 void cgroup_unlock(void)
812 {
813 mutex_unlock(&cgroup_mutex);
814 }
815 EXPORT_SYMBOL_GPL(cgroup_unlock);
816
817 /*
818 * A couple of forward declarations required, due to cyclic reference loop:
819 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
820 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
821 * -> cgroup_mkdir.
822 */
823
824 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode);
825 static struct dentry *cgroup_lookup(struct inode *, struct dentry *, unsigned int);
826 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
827 static int cgroup_populate_dir(struct cgroup *cgrp);
828 static const struct inode_operations cgroup_dir_inode_operations;
829 static const struct file_operations proc_cgroupstats_operations;
830
831 static struct backing_dev_info cgroup_backing_dev_info = {
832 .name = "cgroup",
833 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
834 };
835
836 static int alloc_css_id(struct cgroup_subsys *ss,
837 struct cgroup *parent, struct cgroup *child);
838
839 static struct inode *cgroup_new_inode(umode_t mode, struct super_block *sb)
840 {
841 struct inode *inode = new_inode(sb);
842
843 if (inode) {
844 inode->i_ino = get_next_ino();
845 inode->i_mode = mode;
846 inode->i_uid = current_fsuid();
847 inode->i_gid = current_fsgid();
848 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
849 inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
850 }
851 return inode;
852 }
853
854 /*
855 * Call subsys's pre_destroy handler.
856 * This is called before css refcnt check.
857 */
858 static int cgroup_call_pre_destroy(struct cgroup *cgrp)
859 {
860 struct cgroup_subsys *ss;
861 int ret = 0;
862
863 for_each_subsys(cgrp->root, ss) {
864 if (!ss->pre_destroy)
865 continue;
866
867 ret = ss->pre_destroy(cgrp);
868 if (WARN_ON_ONCE(ret))
869 break;
870 }
871
872 return ret;
873 }
874
875 static void cgroup_diput(struct dentry *dentry, struct inode *inode)
876 {
877 /* is dentry a directory ? if so, kfree() associated cgroup */
878 if (S_ISDIR(inode->i_mode)) {
879 struct cgroup *cgrp = dentry->d_fsdata;
880 struct cgroup_subsys *ss;
881 BUG_ON(!(cgroup_is_removed(cgrp)));
882 /* It's possible for external users to be holding css
883 * reference counts on a cgroup; css_put() needs to
884 * be able to access the cgroup after decrementing
885 * the reference count in order to know if it needs to
886 * queue the cgroup to be handled by the release
887 * agent */
888 synchronize_rcu();
889
890 mutex_lock(&cgroup_mutex);
891 /*
892 * Release the subsystem state objects.
893 */
894 for_each_subsys(cgrp->root, ss)
895 ss->destroy(cgrp);
896
897 cgrp->root->number_of_cgroups--;
898 mutex_unlock(&cgroup_mutex);
899
900 /*
901 * Drop the active superblock reference that we took when we
902 * created the cgroup
903 */
904 deactivate_super(cgrp->root->sb);
905
906 /*
907 * if we're getting rid of the cgroup, refcount should ensure
908 * that there are no pidlists left.
909 */
910 BUG_ON(!list_empty(&cgrp->pidlists));
911
912 kfree_rcu(cgrp, rcu_head);
913 } else {
914 struct cfent *cfe = __d_cfe(dentry);
915 struct cgroup *cgrp = dentry->d_parent->d_fsdata;
916
917 WARN_ONCE(!list_empty(&cfe->node) &&
918 cgrp != &cgrp->root->top_cgroup,
919 "cfe still linked for %s\n", cfe->type->name);
920 kfree(cfe);
921 }
922 iput(inode);
923 }
924
925 static int cgroup_delete(const struct dentry *d)
926 {
927 return 1;
928 }
929
930 static void remove_dir(struct dentry *d)
931 {
932 struct dentry *parent = dget(d->d_parent);
933
934 d_delete(d);
935 simple_rmdir(parent->d_inode, d);
936 dput(parent);
937 }
938
939 static int cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
940 {
941 struct cfent *cfe;
942
943 lockdep_assert_held(&cgrp->dentry->d_inode->i_mutex);
944 lockdep_assert_held(&cgroup_mutex);
945
946 list_for_each_entry(cfe, &cgrp->files, node) {
947 struct dentry *d = cfe->dentry;
948
949 if (cft && cfe->type != cft)
950 continue;
951
952 dget(d);
953 d_delete(d);
954 simple_unlink(cgrp->dentry->d_inode, d);
955 list_del_init(&cfe->node);
956 dput(d);
957
958 return 0;
959 }
960 return -ENOENT;
961 }
962
963 static void cgroup_clear_directory(struct dentry *dir)
964 {
965 struct cgroup *cgrp = __d_cgrp(dir);
966
967 while (!list_empty(&cgrp->files))
968 cgroup_rm_file(cgrp, NULL);
969 }
970
971 /*
972 * NOTE : the dentry must have been dget()'ed
973 */
974 static void cgroup_d_remove_dir(struct dentry *dentry)
975 {
976 struct dentry *parent;
977
978 cgroup_clear_directory(dentry);
979
980 parent = dentry->d_parent;
981 spin_lock(&parent->d_lock);
982 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
983 list_del_init(&dentry->d_u.d_child);
984 spin_unlock(&dentry->d_lock);
985 spin_unlock(&parent->d_lock);
986 remove_dir(dentry);
987 }
988
989 /*
990 * A queue for waiters to do rmdir() cgroup. A tasks will sleep when
991 * cgroup->count == 0 && list_empty(&cgroup->children) && subsys has some
992 * reference to css->refcnt. In general, this refcnt is expected to goes down
993 * to zero, soon.
994 *
995 * CGRP_WAIT_ON_RMDIR flag is set under cgroup's inode->i_mutex;
996 */
997 static DECLARE_WAIT_QUEUE_HEAD(cgroup_rmdir_waitq);
998
999 static void cgroup_wakeup_rmdir_waiter(struct cgroup *cgrp)
1000 {
1001 if (unlikely(test_and_clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags)))
1002 wake_up_all(&cgroup_rmdir_waitq);
1003 }
1004
1005 void cgroup_exclude_rmdir(struct cgroup_subsys_state *css)
1006 {
1007 css_get(css);
1008 }
1009
1010 void cgroup_release_and_wakeup_rmdir(struct cgroup_subsys_state *css)
1011 {
1012 cgroup_wakeup_rmdir_waiter(css->cgroup);
1013 css_put(css);
1014 }
1015
1016 /*
1017 * Call with cgroup_mutex held. Drops reference counts on modules, including
1018 * any duplicate ones that parse_cgroupfs_options took. If this function
1019 * returns an error, no reference counts are touched.
1020 */
1021 static int rebind_subsystems(struct cgroupfs_root *root,
1022 unsigned long final_bits)
1023 {
1024 unsigned long added_bits, removed_bits;
1025 struct cgroup *cgrp = &root->top_cgroup;
1026 int i;
1027
1028 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1029 BUG_ON(!mutex_is_locked(&cgroup_root_mutex));
1030
1031 removed_bits = root->actual_subsys_bits & ~final_bits;
1032 added_bits = final_bits & ~root->actual_subsys_bits;
1033 /* Check that any added subsystems are currently free */
1034 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1035 unsigned long bit = 1UL << i;
1036 struct cgroup_subsys *ss = subsys[i];
1037 if (!(bit & added_bits))
1038 continue;
1039 /*
1040 * Nobody should tell us to do a subsys that doesn't exist:
1041 * parse_cgroupfs_options should catch that case and refcounts
1042 * ensure that subsystems won't disappear once selected.
1043 */
1044 BUG_ON(ss == NULL);
1045 if (ss->root != &rootnode) {
1046 /* Subsystem isn't free */
1047 return -EBUSY;
1048 }
1049 }
1050
1051 /* Currently we don't handle adding/removing subsystems when
1052 * any child cgroups exist. This is theoretically supportable
1053 * but involves complex error handling, so it's being left until
1054 * later */
1055 if (root->number_of_cgroups > 1)
1056 return -EBUSY;
1057
1058 /* Process each subsystem */
1059 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1060 struct cgroup_subsys *ss = subsys[i];
1061 unsigned long bit = 1UL << i;
1062 if (bit & added_bits) {
1063 /* We're binding this subsystem to this hierarchy */
1064 BUG_ON(ss == NULL);
1065 BUG_ON(cgrp->subsys[i]);
1066 BUG_ON(!dummytop->subsys[i]);
1067 BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
1068 cgrp->subsys[i] = dummytop->subsys[i];
1069 cgrp->subsys[i]->cgroup = cgrp;
1070 list_move(&ss->sibling, &root->subsys_list);
1071 ss->root = root;
1072 if (ss->bind)
1073 ss->bind(cgrp);
1074 /* refcount was already taken, and we're keeping it */
1075 } else if (bit & removed_bits) {
1076 /* We're removing this subsystem */
1077 BUG_ON(ss == NULL);
1078 BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
1079 BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
1080 if (ss->bind)
1081 ss->bind(dummytop);
1082 dummytop->subsys[i]->cgroup = dummytop;
1083 cgrp->subsys[i] = NULL;
1084 subsys[i]->root = &rootnode;
1085 list_move(&ss->sibling, &rootnode.subsys_list);
1086 /* subsystem is now free - drop reference on module */
1087 module_put(ss->module);
1088 } else if (bit & final_bits) {
1089 /* Subsystem state should already exist */
1090 BUG_ON(ss == NULL);
1091 BUG_ON(!cgrp->subsys[i]);
1092 /*
1093 * a refcount was taken, but we already had one, so
1094 * drop the extra reference.
1095 */
1096 module_put(ss->module);
1097 #ifdef CONFIG_MODULE_UNLOAD
1098 BUG_ON(ss->module && !module_refcount(ss->module));
1099 #endif
1100 } else {
1101 /* Subsystem state shouldn't exist */
1102 BUG_ON(cgrp->subsys[i]);
1103 }
1104 }
1105 root->subsys_bits = root->actual_subsys_bits = final_bits;
1106 synchronize_rcu();
1107
1108 return 0;
1109 }
1110
1111 static int cgroup_show_options(struct seq_file *seq, struct dentry *dentry)
1112 {
1113 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
1114 struct cgroup_subsys *ss;
1115
1116 mutex_lock(&cgroup_root_mutex);
1117 for_each_subsys(root, ss)
1118 seq_printf(seq, ",%s", ss->name);
1119 if (test_bit(ROOT_NOPREFIX, &root->flags))
1120 seq_puts(seq, ",noprefix");
1121 if (strlen(root->release_agent_path))
1122 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
1123 if (clone_children(&root->top_cgroup))
1124 seq_puts(seq, ",clone_children");
1125 if (strlen(root->name))
1126 seq_printf(seq, ",name=%s", root->name);
1127 mutex_unlock(&cgroup_root_mutex);
1128 return 0;
1129 }
1130
1131 struct cgroup_sb_opts {
1132 unsigned long subsys_bits;
1133 unsigned long flags;
1134 char *release_agent;
1135 bool clone_children;
1136 char *name;
1137 /* User explicitly requested empty subsystem */
1138 bool none;
1139
1140 struct cgroupfs_root *new_root;
1141
1142 };
1143
1144 /*
1145 * Convert a hierarchy specifier into a bitmask of subsystems and flags. Call
1146 * with cgroup_mutex held to protect the subsys[] array. This function takes
1147 * refcounts on subsystems to be used, unless it returns error, in which case
1148 * no refcounts are taken.
1149 */
1150 static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
1151 {
1152 char *token, *o = data;
1153 bool all_ss = false, one_ss = false;
1154 unsigned long mask = (unsigned long)-1;
1155 int i;
1156 bool module_pin_failed = false;
1157
1158 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1159
1160 #ifdef CONFIG_CPUSETS
1161 mask = ~(1UL << cpuset_subsys_id);
1162 #endif
1163
1164 memset(opts, 0, sizeof(*opts));
1165
1166 while ((token = strsep(&o, ",")) != NULL) {
1167 if (!*token)
1168 return -EINVAL;
1169 if (!strcmp(token, "none")) {
1170 /* Explicitly have no subsystems */
1171 opts->none = true;
1172 continue;
1173 }
1174 if (!strcmp(token, "all")) {
1175 /* Mutually exclusive option 'all' + subsystem name */
1176 if (one_ss)
1177 return -EINVAL;
1178 all_ss = true;
1179 continue;
1180 }
1181 if (!strcmp(token, "noprefix")) {
1182 set_bit(ROOT_NOPREFIX, &opts->flags);
1183 continue;
1184 }
1185 if (!strcmp(token, "clone_children")) {
1186 opts->clone_children = true;
1187 continue;
1188 }
1189 if (!strncmp(token, "release_agent=", 14)) {
1190 /* Specifying two release agents is forbidden */
1191 if (opts->release_agent)
1192 return -EINVAL;
1193 opts->release_agent =
1194 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
1195 if (!opts->release_agent)
1196 return -ENOMEM;
1197 continue;
1198 }
1199 if (!strncmp(token, "name=", 5)) {
1200 const char *name = token + 5;
1201 /* Can't specify an empty name */
1202 if (!strlen(name))
1203 return -EINVAL;
1204 /* Must match [\w.-]+ */
1205 for (i = 0; i < strlen(name); i++) {
1206 char c = name[i];
1207 if (isalnum(c))
1208 continue;
1209 if ((c == '.') || (c == '-') || (c == '_'))
1210 continue;
1211 return -EINVAL;
1212 }
1213 /* Specifying two names is forbidden */
1214 if (opts->name)
1215 return -EINVAL;
1216 opts->name = kstrndup(name,
1217 MAX_CGROUP_ROOT_NAMELEN - 1,
1218 GFP_KERNEL);
1219 if (!opts->name)
1220 return -ENOMEM;
1221
1222 continue;
1223 }
1224
1225 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1226 struct cgroup_subsys *ss = subsys[i];
1227 if (ss == NULL)
1228 continue;
1229 if (strcmp(token, ss->name))
1230 continue;
1231 if (ss->disabled)
1232 continue;
1233
1234 /* Mutually exclusive option 'all' + subsystem name */
1235 if (all_ss)
1236 return -EINVAL;
1237 set_bit(i, &opts->subsys_bits);
1238 one_ss = true;
1239
1240 break;
1241 }
1242 if (i == CGROUP_SUBSYS_COUNT)
1243 return -ENOENT;
1244 }
1245
1246 /*
1247 * If the 'all' option was specified select all the subsystems,
1248 * otherwise if 'none', 'name=' and a subsystem name options
1249 * were not specified, let's default to 'all'
1250 */
1251 if (all_ss || (!one_ss && !opts->none && !opts->name)) {
1252 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1253 struct cgroup_subsys *ss = subsys[i];
1254 if (ss == NULL)
1255 continue;
1256 if (ss->disabled)
1257 continue;
1258 set_bit(i, &opts->subsys_bits);
1259 }
1260 }
1261
1262 /* Consistency checks */
1263
1264 /*
1265 * Option noprefix was introduced just for backward compatibility
1266 * with the old cpuset, so we allow noprefix only if mounting just
1267 * the cpuset subsystem.
1268 */
1269 if (test_bit(ROOT_NOPREFIX, &opts->flags) &&
1270 (opts->subsys_bits & mask))
1271 return -EINVAL;
1272
1273
1274 /* Can't specify "none" and some subsystems */
1275 if (opts->subsys_bits && opts->none)
1276 return -EINVAL;
1277
1278 /*
1279 * We either have to specify by name or by subsystems. (So all
1280 * empty hierarchies must have a name).
1281 */
1282 if (!opts->subsys_bits && !opts->name)
1283 return -EINVAL;
1284
1285 /*
1286 * Grab references on all the modules we'll need, so the subsystems
1287 * don't dance around before rebind_subsystems attaches them. This may
1288 * take duplicate reference counts on a subsystem that's already used,
1289 * but rebind_subsystems handles this case.
1290 */
1291 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
1292 unsigned long bit = 1UL << i;
1293
1294 if (!(bit & opts->subsys_bits))
1295 continue;
1296 if (!try_module_get(subsys[i]->module)) {
1297 module_pin_failed = true;
1298 break;
1299 }
1300 }
1301 if (module_pin_failed) {
1302 /*
1303 * oops, one of the modules was going away. this means that we
1304 * raced with a module_delete call, and to the user this is
1305 * essentially a "subsystem doesn't exist" case.
1306 */
1307 for (i--; i >= CGROUP_BUILTIN_SUBSYS_COUNT; i--) {
1308 /* drop refcounts only on the ones we took */
1309 unsigned long bit = 1UL << i;
1310
1311 if (!(bit & opts->subsys_bits))
1312 continue;
1313 module_put(subsys[i]->module);
1314 }
1315 return -ENOENT;
1316 }
1317
1318 return 0;
1319 }
1320
1321 static void drop_parsed_module_refcounts(unsigned long subsys_bits)
1322 {
1323 int i;
1324 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
1325 unsigned long bit = 1UL << i;
1326
1327 if (!(bit & subsys_bits))
1328 continue;
1329 module_put(subsys[i]->module);
1330 }
1331 }
1332
1333 static int cgroup_remount(struct super_block *sb, int *flags, char *data)
1334 {
1335 int ret = 0;
1336 struct cgroupfs_root *root = sb->s_fs_info;
1337 struct cgroup *cgrp = &root->top_cgroup;
1338 struct cgroup_sb_opts opts;
1339
1340 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
1341 mutex_lock(&cgroup_mutex);
1342 mutex_lock(&cgroup_root_mutex);
1343
1344 /* See what subsystems are wanted */
1345 ret = parse_cgroupfs_options(data, &opts);
1346 if (ret)
1347 goto out_unlock;
1348
1349 /* See feature-removal-schedule.txt */
1350 if (opts.subsys_bits != root->actual_subsys_bits || opts.release_agent)
1351 pr_warning("cgroup: option changes via remount are deprecated (pid=%d comm=%s)\n",
1352 task_tgid_nr(current), current->comm);
1353
1354 /* Don't allow flags or name to change at remount */
1355 if (opts.flags != root->flags ||
1356 (opts.name && strcmp(opts.name, root->name))) {
1357 ret = -EINVAL;
1358 drop_parsed_module_refcounts(opts.subsys_bits);
1359 goto out_unlock;
1360 }
1361
1362 ret = rebind_subsystems(root, opts.subsys_bits);
1363 if (ret) {
1364 drop_parsed_module_refcounts(opts.subsys_bits);
1365 goto out_unlock;
1366 }
1367
1368 /* clear out any existing files and repopulate subsystem files */
1369 cgroup_clear_directory(cgrp->dentry);
1370 cgroup_populate_dir(cgrp);
1371
1372 if (opts.release_agent)
1373 strcpy(root->release_agent_path, opts.release_agent);
1374 out_unlock:
1375 kfree(opts.release_agent);
1376 kfree(opts.name);
1377 mutex_unlock(&cgroup_root_mutex);
1378 mutex_unlock(&cgroup_mutex);
1379 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
1380 return ret;
1381 }
1382
1383 static const struct super_operations cgroup_ops = {
1384 .statfs = simple_statfs,
1385 .drop_inode = generic_delete_inode,
1386 .show_options = cgroup_show_options,
1387 .remount_fs = cgroup_remount,
1388 };
1389
1390 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1391 {
1392 INIT_LIST_HEAD(&cgrp->sibling);
1393 INIT_LIST_HEAD(&cgrp->children);
1394 INIT_LIST_HEAD(&cgrp->files);
1395 INIT_LIST_HEAD(&cgrp->css_sets);
1396 INIT_LIST_HEAD(&cgrp->release_list);
1397 INIT_LIST_HEAD(&cgrp->pidlists);
1398 mutex_init(&cgrp->pidlist_mutex);
1399 INIT_LIST_HEAD(&cgrp->event_list);
1400 spin_lock_init(&cgrp->event_list_lock);
1401 }
1402
1403 static void init_cgroup_root(struct cgroupfs_root *root)
1404 {
1405 struct cgroup *cgrp = &root->top_cgroup;
1406
1407 INIT_LIST_HEAD(&root->subsys_list);
1408 INIT_LIST_HEAD(&root->root_list);
1409 INIT_LIST_HEAD(&root->allcg_list);
1410 root->number_of_cgroups = 1;
1411 cgrp->root = root;
1412 cgrp->top_cgroup = cgrp;
1413 list_add_tail(&cgrp->allcg_node, &root->allcg_list);
1414 init_cgroup_housekeeping(cgrp);
1415 }
1416
1417 static bool init_root_id(struct cgroupfs_root *root)
1418 {
1419 int ret = 0;
1420
1421 do {
1422 if (!ida_pre_get(&hierarchy_ida, GFP_KERNEL))
1423 return false;
1424 spin_lock(&hierarchy_id_lock);
1425 /* Try to allocate the next unused ID */
1426 ret = ida_get_new_above(&hierarchy_ida, next_hierarchy_id,
1427 &root->hierarchy_id);
1428 if (ret == -ENOSPC)
1429 /* Try again starting from 0 */
1430 ret = ida_get_new(&hierarchy_ida, &root->hierarchy_id);
1431 if (!ret) {
1432 next_hierarchy_id = root->hierarchy_id + 1;
1433 } else if (ret != -EAGAIN) {
1434 /* Can only get here if the 31-bit IDR is full ... */
1435 BUG_ON(ret);
1436 }
1437 spin_unlock(&hierarchy_id_lock);
1438 } while (ret);
1439 return true;
1440 }
1441
1442 static int cgroup_test_super(struct super_block *sb, void *data)
1443 {
1444 struct cgroup_sb_opts *opts = data;
1445 struct cgroupfs_root *root = sb->s_fs_info;
1446
1447 /* If we asked for a name then it must match */
1448 if (opts->name && strcmp(opts->name, root->name))
1449 return 0;
1450
1451 /*
1452 * If we asked for subsystems (or explicitly for no
1453 * subsystems) then they must match
1454 */
1455 if ((opts->subsys_bits || opts->none)
1456 && (opts->subsys_bits != root->subsys_bits))
1457 return 0;
1458
1459 return 1;
1460 }
1461
1462 static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
1463 {
1464 struct cgroupfs_root *root;
1465
1466 if (!opts->subsys_bits && !opts->none)
1467 return NULL;
1468
1469 root = kzalloc(sizeof(*root), GFP_KERNEL);
1470 if (!root)
1471 return ERR_PTR(-ENOMEM);
1472
1473 if (!init_root_id(root)) {
1474 kfree(root);
1475 return ERR_PTR(-ENOMEM);
1476 }
1477 init_cgroup_root(root);
1478
1479 root->subsys_bits = opts->subsys_bits;
1480 root->flags = opts->flags;
1481 if (opts->release_agent)
1482 strcpy(root->release_agent_path, opts->release_agent);
1483 if (opts->name)
1484 strcpy(root->name, opts->name);
1485 if (opts->clone_children)
1486 set_bit(CGRP_CLONE_CHILDREN, &root->top_cgroup.flags);
1487 return root;
1488 }
1489
1490 static void cgroup_drop_root(struct cgroupfs_root *root)
1491 {
1492 if (!root)
1493 return;
1494
1495 BUG_ON(!root->hierarchy_id);
1496 spin_lock(&hierarchy_id_lock);
1497 ida_remove(&hierarchy_ida, root->hierarchy_id);
1498 spin_unlock(&hierarchy_id_lock);
1499 kfree(root);
1500 }
1501
1502 static int cgroup_set_super(struct super_block *sb, void *data)
1503 {
1504 int ret;
1505 struct cgroup_sb_opts *opts = data;
1506
1507 /* If we don't have a new root, we can't set up a new sb */
1508 if (!opts->new_root)
1509 return -EINVAL;
1510
1511 BUG_ON(!opts->subsys_bits && !opts->none);
1512
1513 ret = set_anon_super(sb, NULL);
1514 if (ret)
1515 return ret;
1516
1517 sb->s_fs_info = opts->new_root;
1518 opts->new_root->sb = sb;
1519
1520 sb->s_blocksize = PAGE_CACHE_SIZE;
1521 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
1522 sb->s_magic = CGROUP_SUPER_MAGIC;
1523 sb->s_op = &cgroup_ops;
1524
1525 return 0;
1526 }
1527
1528 static int cgroup_get_rootdir(struct super_block *sb)
1529 {
1530 static const struct dentry_operations cgroup_dops = {
1531 .d_iput = cgroup_diput,
1532 .d_delete = cgroup_delete,
1533 };
1534
1535 struct inode *inode =
1536 cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
1537
1538 if (!inode)
1539 return -ENOMEM;
1540
1541 inode->i_fop = &simple_dir_operations;
1542 inode->i_op = &cgroup_dir_inode_operations;
1543 /* directories start off with i_nlink == 2 (for "." entry) */
1544 inc_nlink(inode);
1545 sb->s_root = d_make_root(inode);
1546 if (!sb->s_root)
1547 return -ENOMEM;
1548 /* for everything else we want ->d_op set */
1549 sb->s_d_op = &cgroup_dops;
1550 return 0;
1551 }
1552
1553 static struct dentry *cgroup_mount(struct file_system_type *fs_type,
1554 int flags, const char *unused_dev_name,
1555 void *data)
1556 {
1557 struct cgroup_sb_opts opts;
1558 struct cgroupfs_root *root;
1559 int ret = 0;
1560 struct super_block *sb;
1561 struct cgroupfs_root *new_root;
1562 struct inode *inode;
1563
1564 /* First find the desired set of subsystems */
1565 mutex_lock(&cgroup_mutex);
1566 ret = parse_cgroupfs_options(data, &opts);
1567 mutex_unlock(&cgroup_mutex);
1568 if (ret)
1569 goto out_err;
1570
1571 /*
1572 * Allocate a new cgroup root. We may not need it if we're
1573 * reusing an existing hierarchy.
1574 */
1575 new_root = cgroup_root_from_opts(&opts);
1576 if (IS_ERR(new_root)) {
1577 ret = PTR_ERR(new_root);
1578 goto drop_modules;
1579 }
1580 opts.new_root = new_root;
1581
1582 /* Locate an existing or new sb for this hierarchy */
1583 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, 0, &opts);
1584 if (IS_ERR(sb)) {
1585 ret = PTR_ERR(sb);
1586 cgroup_drop_root(opts.new_root);
1587 goto drop_modules;
1588 }
1589
1590 root = sb->s_fs_info;
1591 BUG_ON(!root);
1592 if (root == opts.new_root) {
1593 /* We used the new root structure, so this is a new hierarchy */
1594 struct list_head tmp_cg_links;
1595 struct cgroup *root_cgrp = &root->top_cgroup;
1596 struct cgroupfs_root *existing_root;
1597 const struct cred *cred;
1598 int i;
1599
1600 BUG_ON(sb->s_root != NULL);
1601
1602 ret = cgroup_get_rootdir(sb);
1603 if (ret)
1604 goto drop_new_super;
1605 inode = sb->s_root->d_inode;
1606
1607 mutex_lock(&inode->i_mutex);
1608 mutex_lock(&cgroup_mutex);
1609 mutex_lock(&cgroup_root_mutex);
1610
1611 /* Check for name clashes with existing mounts */
1612 ret = -EBUSY;
1613 if (strlen(root->name))
1614 for_each_active_root(existing_root)
1615 if (!strcmp(existing_root->name, root->name))
1616 goto unlock_drop;
1617
1618 /*
1619 * We're accessing css_set_count without locking
1620 * css_set_lock here, but that's OK - it can only be
1621 * increased by someone holding cgroup_lock, and
1622 * that's us. The worst that can happen is that we
1623 * have some link structures left over
1624 */
1625 ret = allocate_cg_links(css_set_count, &tmp_cg_links);
1626 if (ret)
1627 goto unlock_drop;
1628
1629 ret = rebind_subsystems(root, root->subsys_bits);
1630 if (ret == -EBUSY) {
1631 free_cg_links(&tmp_cg_links);
1632 goto unlock_drop;
1633 }
1634 /*
1635 * There must be no failure case after here, since rebinding
1636 * takes care of subsystems' refcounts, which are explicitly
1637 * dropped in the failure exit path.
1638 */
1639
1640 /* EBUSY should be the only error here */
1641 BUG_ON(ret);
1642
1643 list_add(&root->root_list, &roots);
1644 root_count++;
1645
1646 sb->s_root->d_fsdata = root_cgrp;
1647 root->top_cgroup.dentry = sb->s_root;
1648
1649 /* Link the top cgroup in this hierarchy into all
1650 * the css_set objects */
1651 write_lock(&css_set_lock);
1652 for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
1653 struct hlist_head *hhead = &css_set_table[i];
1654 struct hlist_node *node;
1655 struct css_set *cg;
1656
1657 hlist_for_each_entry(cg, node, hhead, hlist)
1658 link_css_set(&tmp_cg_links, cg, root_cgrp);
1659 }
1660 write_unlock(&css_set_lock);
1661
1662 free_cg_links(&tmp_cg_links);
1663
1664 BUG_ON(!list_empty(&root_cgrp->sibling));
1665 BUG_ON(!list_empty(&root_cgrp->children));
1666 BUG_ON(root->number_of_cgroups != 1);
1667
1668 cred = override_creds(&init_cred);
1669 cgroup_populate_dir(root_cgrp);
1670 revert_creds(cred);
1671 mutex_unlock(&cgroup_root_mutex);
1672 mutex_unlock(&cgroup_mutex);
1673 mutex_unlock(&inode->i_mutex);
1674 } else {
1675 /*
1676 * We re-used an existing hierarchy - the new root (if
1677 * any) is not needed
1678 */
1679 cgroup_drop_root(opts.new_root);
1680 /* no subsys rebinding, so refcounts don't change */
1681 drop_parsed_module_refcounts(opts.subsys_bits);
1682 }
1683
1684 kfree(opts.release_agent);
1685 kfree(opts.name);
1686 return dget(sb->s_root);
1687
1688 unlock_drop:
1689 mutex_unlock(&cgroup_root_mutex);
1690 mutex_unlock(&cgroup_mutex);
1691 mutex_unlock(&inode->i_mutex);
1692 drop_new_super:
1693 deactivate_locked_super(sb);
1694 drop_modules:
1695 drop_parsed_module_refcounts(opts.subsys_bits);
1696 out_err:
1697 kfree(opts.release_agent);
1698 kfree(opts.name);
1699 return ERR_PTR(ret);
1700 }
1701
1702 static void cgroup_kill_sb(struct super_block *sb) {
1703 struct cgroupfs_root *root = sb->s_fs_info;
1704 struct cgroup *cgrp = &root->top_cgroup;
1705 int ret;
1706 struct cg_cgroup_link *link;
1707 struct cg_cgroup_link *saved_link;
1708
1709 BUG_ON(!root);
1710
1711 BUG_ON(root->number_of_cgroups != 1);
1712 BUG_ON(!list_empty(&cgrp->children));
1713 BUG_ON(!list_empty(&cgrp->sibling));
1714
1715 mutex_lock(&cgroup_mutex);
1716 mutex_lock(&cgroup_root_mutex);
1717
1718 /* Rebind all subsystems back to the default hierarchy */
1719 ret = rebind_subsystems(root, 0);
1720 /* Shouldn't be able to fail ... */
1721 BUG_ON(ret);
1722
1723 /*
1724 * Release all the links from css_sets to this hierarchy's
1725 * root cgroup
1726 */
1727 write_lock(&css_set_lock);
1728
1729 list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
1730 cgrp_link_list) {
1731 list_del(&link->cg_link_list);
1732 list_del(&link->cgrp_link_list);
1733 kfree(link);
1734 }
1735 write_unlock(&css_set_lock);
1736
1737 if (!list_empty(&root->root_list)) {
1738 list_del(&root->root_list);
1739 root_count--;
1740 }
1741
1742 mutex_unlock(&cgroup_root_mutex);
1743 mutex_unlock(&cgroup_mutex);
1744
1745 kill_litter_super(sb);
1746 cgroup_drop_root(root);
1747 }
1748
1749 static struct file_system_type cgroup_fs_type = {
1750 .name = "cgroup",
1751 .mount = cgroup_mount,
1752 .kill_sb = cgroup_kill_sb,
1753 };
1754
1755 static struct kobject *cgroup_kobj;
1756
1757 /**
1758 * cgroup_path - generate the path of a cgroup
1759 * @cgrp: the cgroup in question
1760 * @buf: the buffer to write the path into
1761 * @buflen: the length of the buffer
1762 *
1763 * Called with cgroup_mutex held or else with an RCU-protected cgroup
1764 * reference. Writes path of cgroup into buf. Returns 0 on success,
1765 * -errno on error.
1766 */
1767 int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1768 {
1769 char *start;
1770 struct dentry *dentry = rcu_dereference_check(cgrp->dentry,
1771 cgroup_lock_is_held());
1772
1773 if (!dentry || cgrp == dummytop) {
1774 /*
1775 * Inactive subsystems have no dentry for their root
1776 * cgroup
1777 */
1778 strcpy(buf, "/");
1779 return 0;
1780 }
1781
1782 start = buf + buflen;
1783
1784 *--start = '\0';
1785 for (;;) {
1786 int len = dentry->d_name.len;
1787
1788 if ((start -= len) < buf)
1789 return -ENAMETOOLONG;
1790 memcpy(start, dentry->d_name.name, len);
1791 cgrp = cgrp->parent;
1792 if (!cgrp)
1793 break;
1794
1795 dentry = rcu_dereference_check(cgrp->dentry,
1796 cgroup_lock_is_held());
1797 if (!cgrp->parent)
1798 continue;
1799 if (--start < buf)
1800 return -ENAMETOOLONG;
1801 *start = '/';
1802 }
1803 memmove(buf, start, buf + buflen - start);
1804 return 0;
1805 }
1806 EXPORT_SYMBOL_GPL(cgroup_path);
1807
1808 /*
1809 * Control Group taskset
1810 */
1811 struct task_and_cgroup {
1812 struct task_struct *task;
1813 struct cgroup *cgrp;
1814 struct css_set *cg;
1815 };
1816
1817 struct cgroup_taskset {
1818 struct task_and_cgroup single;
1819 struct flex_array *tc_array;
1820 int tc_array_len;
1821 int idx;
1822 struct cgroup *cur_cgrp;
1823 };
1824
1825 /**
1826 * cgroup_taskset_first - reset taskset and return the first task
1827 * @tset: taskset of interest
1828 *
1829 * @tset iteration is initialized and the first task is returned.
1830 */
1831 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
1832 {
1833 if (tset->tc_array) {
1834 tset->idx = 0;
1835 return cgroup_taskset_next(tset);
1836 } else {
1837 tset->cur_cgrp = tset->single.cgrp;
1838 return tset->single.task;
1839 }
1840 }
1841 EXPORT_SYMBOL_GPL(cgroup_taskset_first);
1842
1843 /**
1844 * cgroup_taskset_next - iterate to the next task in taskset
1845 * @tset: taskset of interest
1846 *
1847 * Return the next task in @tset. Iteration must have been initialized
1848 * with cgroup_taskset_first().
1849 */
1850 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
1851 {
1852 struct task_and_cgroup *tc;
1853
1854 if (!tset->tc_array || tset->idx >= tset->tc_array_len)
1855 return NULL;
1856
1857 tc = flex_array_get(tset->tc_array, tset->idx++);
1858 tset->cur_cgrp = tc->cgrp;
1859 return tc->task;
1860 }
1861 EXPORT_SYMBOL_GPL(cgroup_taskset_next);
1862
1863 /**
1864 * cgroup_taskset_cur_cgroup - return the matching cgroup for the current task
1865 * @tset: taskset of interest
1866 *
1867 * Return the cgroup for the current (last returned) task of @tset. This
1868 * function must be preceded by either cgroup_taskset_first() or
1869 * cgroup_taskset_next().
1870 */
1871 struct cgroup *cgroup_taskset_cur_cgroup(struct cgroup_taskset *tset)
1872 {
1873 return tset->cur_cgrp;
1874 }
1875 EXPORT_SYMBOL_GPL(cgroup_taskset_cur_cgroup);
1876
1877 /**
1878 * cgroup_taskset_size - return the number of tasks in taskset
1879 * @tset: taskset of interest
1880 */
1881 int cgroup_taskset_size(struct cgroup_taskset *tset)
1882 {
1883 return tset->tc_array ? tset->tc_array_len : 1;
1884 }
1885 EXPORT_SYMBOL_GPL(cgroup_taskset_size);
1886
1887
1888 /*
1889 * cgroup_task_migrate - move a task from one cgroup to another.
1890 *
1891 * 'guarantee' is set if the caller promises that a new css_set for the task
1892 * will already exist. If not set, this function might sleep, and can fail with
1893 * -ENOMEM. Must be called with cgroup_mutex and threadgroup locked.
1894 */
1895 static void cgroup_task_migrate(struct cgroup *cgrp, struct cgroup *oldcgrp,
1896 struct task_struct *tsk, struct css_set *newcg)
1897 {
1898 struct css_set *oldcg;
1899
1900 /*
1901 * We are synchronized through threadgroup_lock() against PF_EXITING
1902 * setting such that we can't race against cgroup_exit() changing the
1903 * css_set to init_css_set and dropping the old one.
1904 */
1905 WARN_ON_ONCE(tsk->flags & PF_EXITING);
1906 oldcg = tsk->cgroups;
1907
1908 task_lock(tsk);
1909 rcu_assign_pointer(tsk->cgroups, newcg);
1910 task_unlock(tsk);
1911
1912 /* Update the css_set linked lists if we're using them */
1913 write_lock(&css_set_lock);
1914 if (!list_empty(&tsk->cg_list))
1915 list_move(&tsk->cg_list, &newcg->tasks);
1916 write_unlock(&css_set_lock);
1917
1918 /*
1919 * We just gained a reference on oldcg by taking it from the task. As
1920 * trading it for newcg is protected by cgroup_mutex, we're safe to drop
1921 * it here; it will be freed under RCU.
1922 */
1923 put_css_set(oldcg);
1924
1925 set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
1926 }
1927
1928 /**
1929 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
1930 * @cgrp: the cgroup the task is attaching to
1931 * @tsk: the task to be attached
1932 *
1933 * Call with cgroup_mutex and threadgroup locked. May take task_lock of
1934 * @tsk during call.
1935 */
1936 int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
1937 {
1938 int retval = 0;
1939 struct cgroup_subsys *ss, *failed_ss = NULL;
1940 struct cgroup *oldcgrp;
1941 struct cgroupfs_root *root = cgrp->root;
1942 struct cgroup_taskset tset = { };
1943 struct css_set *newcg;
1944
1945 /* @tsk either already exited or can't exit until the end */
1946 if (tsk->flags & PF_EXITING)
1947 return -ESRCH;
1948
1949 /* Nothing to do if the task is already in that cgroup */
1950 oldcgrp = task_cgroup_from_root(tsk, root);
1951 if (cgrp == oldcgrp)
1952 return 0;
1953
1954 tset.single.task = tsk;
1955 tset.single.cgrp = oldcgrp;
1956
1957 for_each_subsys(root, ss) {
1958 if (ss->can_attach) {
1959 retval = ss->can_attach(cgrp, &tset);
1960 if (retval) {
1961 /*
1962 * Remember on which subsystem the can_attach()
1963 * failed, so that we only call cancel_attach()
1964 * against the subsystems whose can_attach()
1965 * succeeded. (See below)
1966 */
1967 failed_ss = ss;
1968 goto out;
1969 }
1970 }
1971 }
1972
1973 newcg = find_css_set(tsk->cgroups, cgrp);
1974 if (!newcg) {
1975 retval = -ENOMEM;
1976 goto out;
1977 }
1978
1979 cgroup_task_migrate(cgrp, oldcgrp, tsk, newcg);
1980
1981 for_each_subsys(root, ss) {
1982 if (ss->attach)
1983 ss->attach(cgrp, &tset);
1984 }
1985
1986 synchronize_rcu();
1987
1988 /*
1989 * wake up rmdir() waiter. the rmdir should fail since the cgroup
1990 * is no longer empty.
1991 */
1992 cgroup_wakeup_rmdir_waiter(cgrp);
1993 out:
1994 if (retval) {
1995 for_each_subsys(root, ss) {
1996 if (ss == failed_ss)
1997 /*
1998 * This subsystem was the one that failed the
1999 * can_attach() check earlier, so we don't need
2000 * to call cancel_attach() against it or any
2001 * remaining subsystems.
2002 */
2003 break;
2004 if (ss->cancel_attach)
2005 ss->cancel_attach(cgrp, &tset);
2006 }
2007 }
2008 return retval;
2009 }
2010
2011 /**
2012 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2013 * @from: attach to all cgroups of a given task
2014 * @tsk: the task to be attached
2015 */
2016 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2017 {
2018 struct cgroupfs_root *root;
2019 int retval = 0;
2020
2021 cgroup_lock();
2022 for_each_active_root(root) {
2023 struct cgroup *from_cg = task_cgroup_from_root(from, root);
2024
2025 retval = cgroup_attach_task(from_cg, tsk);
2026 if (retval)
2027 break;
2028 }
2029 cgroup_unlock();
2030
2031 return retval;
2032 }
2033 EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2034
2035 /**
2036 * cgroup_attach_proc - attach all threads in a threadgroup to a cgroup
2037 * @cgrp: the cgroup to attach to
2038 * @leader: the threadgroup leader task_struct of the group to be attached
2039 *
2040 * Call holding cgroup_mutex and the group_rwsem of the leader. Will take
2041 * task_lock of each thread in leader's threadgroup individually in turn.
2042 */
2043 static int cgroup_attach_proc(struct cgroup *cgrp, struct task_struct *leader)
2044 {
2045 int retval, i, group_size;
2046 struct cgroup_subsys *ss, *failed_ss = NULL;
2047 /* guaranteed to be initialized later, but the compiler needs this */
2048 struct cgroupfs_root *root = cgrp->root;
2049 /* threadgroup list cursor and array */
2050 struct task_struct *tsk;
2051 struct task_and_cgroup *tc;
2052 struct flex_array *group;
2053 struct cgroup_taskset tset = { };
2054
2055 /*
2056 * step 0: in order to do expensive, possibly blocking operations for
2057 * every thread, we cannot iterate the thread group list, since it needs
2058 * rcu or tasklist locked. instead, build an array of all threads in the
2059 * group - group_rwsem prevents new threads from appearing, and if
2060 * threads exit, this will just be an over-estimate.
2061 */
2062 group_size = get_nr_threads(leader);
2063 /* flex_array supports very large thread-groups better than kmalloc. */
2064 group = flex_array_alloc(sizeof(*tc), group_size, GFP_KERNEL);
2065 if (!group)
2066 return -ENOMEM;
2067 /* pre-allocate to guarantee space while iterating in rcu read-side. */
2068 retval = flex_array_prealloc(group, 0, group_size - 1, GFP_KERNEL);
2069 if (retval)
2070 goto out_free_group_list;
2071
2072 tsk = leader;
2073 i = 0;
2074 /*
2075 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2076 * already PF_EXITING could be freed from underneath us unless we
2077 * take an rcu_read_lock.
2078 */
2079 rcu_read_lock();
2080 do {
2081 struct task_and_cgroup ent;
2082
2083 /* @tsk either already exited or can't exit until the end */
2084 if (tsk->flags & PF_EXITING)
2085 continue;
2086
2087 /* as per above, nr_threads may decrease, but not increase. */
2088 BUG_ON(i >= group_size);
2089 ent.task = tsk;
2090 ent.cgrp = task_cgroup_from_root(tsk, root);
2091 /* nothing to do if this task is already in the cgroup */
2092 if (ent.cgrp == cgrp)
2093 continue;
2094 /*
2095 * saying GFP_ATOMIC has no effect here because we did prealloc
2096 * earlier, but it's good form to communicate our expectations.
2097 */
2098 retval = flex_array_put(group, i, &ent, GFP_ATOMIC);
2099 BUG_ON(retval != 0);
2100 i++;
2101 } while_each_thread(leader, tsk);
2102 rcu_read_unlock();
2103 /* remember the number of threads in the array for later. */
2104 group_size = i;
2105 tset.tc_array = group;
2106 tset.tc_array_len = group_size;
2107
2108 /* methods shouldn't be called if no task is actually migrating */
2109 retval = 0;
2110 if (!group_size)
2111 goto out_free_group_list;
2112
2113 /*
2114 * step 1: check that we can legitimately attach to the cgroup.
2115 */
2116 for_each_subsys(root, ss) {
2117 if (ss->can_attach) {
2118 retval = ss->can_attach(cgrp, &tset);
2119 if (retval) {
2120 failed_ss = ss;
2121 goto out_cancel_attach;
2122 }
2123 }
2124 }
2125
2126 /*
2127 * step 2: make sure css_sets exist for all threads to be migrated.
2128 * we use find_css_set, which allocates a new one if necessary.
2129 */
2130 for (i = 0; i < group_size; i++) {
2131 tc = flex_array_get(group, i);
2132 tc->cg = find_css_set(tc->task->cgroups, cgrp);
2133 if (!tc->cg) {
2134 retval = -ENOMEM;
2135 goto out_put_css_set_refs;
2136 }
2137 }
2138
2139 /*
2140 * step 3: now that we're guaranteed success wrt the css_sets,
2141 * proceed to move all tasks to the new cgroup. There are no
2142 * failure cases after here, so this is the commit point.
2143 */
2144 for (i = 0; i < group_size; i++) {
2145 tc = flex_array_get(group, i);
2146 cgroup_task_migrate(cgrp, tc->cgrp, tc->task, tc->cg);
2147 }
2148 /* nothing is sensitive to fork() after this point. */
2149
2150 /*
2151 * step 4: do subsystem attach callbacks.
2152 */
2153 for_each_subsys(root, ss) {
2154 if (ss->attach)
2155 ss->attach(cgrp, &tset);
2156 }
2157
2158 /*
2159 * step 5: success! and cleanup
2160 */
2161 synchronize_rcu();
2162 cgroup_wakeup_rmdir_waiter(cgrp);
2163 retval = 0;
2164 out_put_css_set_refs:
2165 if (retval) {
2166 for (i = 0; i < group_size; i++) {
2167 tc = flex_array_get(group, i);
2168 if (!tc->cg)
2169 break;
2170 put_css_set(tc->cg);
2171 }
2172 }
2173 out_cancel_attach:
2174 if (retval) {
2175 for_each_subsys(root, ss) {
2176 if (ss == failed_ss)
2177 break;
2178 if (ss->cancel_attach)
2179 ss->cancel_attach(cgrp, &tset);
2180 }
2181 }
2182 out_free_group_list:
2183 flex_array_free(group);
2184 return retval;
2185 }
2186
2187 /*
2188 * Find the task_struct of the task to attach by vpid and pass it along to the
2189 * function to attach either it or all tasks in its threadgroup. Will lock
2190 * cgroup_mutex and threadgroup; may take task_lock of task.
2191 */
2192 static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
2193 {
2194 struct task_struct *tsk;
2195 const struct cred *cred = current_cred(), *tcred;
2196 int ret;
2197
2198 if (!cgroup_lock_live_group(cgrp))
2199 return -ENODEV;
2200
2201 retry_find_task:
2202 rcu_read_lock();
2203 if (pid) {
2204 tsk = find_task_by_vpid(pid);
2205 if (!tsk) {
2206 rcu_read_unlock();
2207 ret= -ESRCH;
2208 goto out_unlock_cgroup;
2209 }
2210 /*
2211 * even if we're attaching all tasks in the thread group, we
2212 * only need to check permissions on one of them.
2213 */
2214 tcred = __task_cred(tsk);
2215 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2216 !uid_eq(cred->euid, tcred->uid) &&
2217 !uid_eq(cred->euid, tcred->suid)) {
2218 rcu_read_unlock();
2219 ret = -EACCES;
2220 goto out_unlock_cgroup;
2221 }
2222 } else
2223 tsk = current;
2224
2225 if (threadgroup)
2226 tsk = tsk->group_leader;
2227
2228 /*
2229 * Workqueue threads may acquire PF_THREAD_BOUND and become
2230 * trapped in a cpuset, or RT worker may be born in a cgroup
2231 * with no rt_runtime allocated. Just say no.
2232 */
2233 if (tsk == kthreadd_task || (tsk->flags & PF_THREAD_BOUND)) {
2234 ret = -EINVAL;
2235 rcu_read_unlock();
2236 goto out_unlock_cgroup;
2237 }
2238
2239 get_task_struct(tsk);
2240 rcu_read_unlock();
2241
2242 threadgroup_lock(tsk);
2243 if (threadgroup) {
2244 if (!thread_group_leader(tsk)) {
2245 /*
2246 * a race with de_thread from another thread's exec()
2247 * may strip us of our leadership, if this happens,
2248 * there is no choice but to throw this task away and
2249 * try again; this is
2250 * "double-double-toil-and-trouble-check locking".
2251 */
2252 threadgroup_unlock(tsk);
2253 put_task_struct(tsk);
2254 goto retry_find_task;
2255 }
2256 ret = cgroup_attach_proc(cgrp, tsk);
2257 } else
2258 ret = cgroup_attach_task(cgrp, tsk);
2259 threadgroup_unlock(tsk);
2260
2261 put_task_struct(tsk);
2262 out_unlock_cgroup:
2263 cgroup_unlock();
2264 return ret;
2265 }
2266
2267 static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
2268 {
2269 return attach_task_by_pid(cgrp, pid, false);
2270 }
2271
2272 static int cgroup_procs_write(struct cgroup *cgrp, struct cftype *cft, u64 tgid)
2273 {
2274 return attach_task_by_pid(cgrp, tgid, true);
2275 }
2276
2277 /**
2278 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
2279 * @cgrp: the cgroup to be checked for liveness
2280 *
2281 * On success, returns true; the lock should be later released with
2282 * cgroup_unlock(). On failure returns false with no lock held.
2283 */
2284 bool cgroup_lock_live_group(struct cgroup *cgrp)
2285 {
2286 mutex_lock(&cgroup_mutex);
2287 if (cgroup_is_removed(cgrp)) {
2288 mutex_unlock(&cgroup_mutex);
2289 return false;
2290 }
2291 return true;
2292 }
2293 EXPORT_SYMBOL_GPL(cgroup_lock_live_group);
2294
2295 static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
2296 const char *buffer)
2297 {
2298 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
2299 if (strlen(buffer) >= PATH_MAX)
2300 return -EINVAL;
2301 if (!cgroup_lock_live_group(cgrp))
2302 return -ENODEV;
2303 mutex_lock(&cgroup_root_mutex);
2304 strcpy(cgrp->root->release_agent_path, buffer);
2305 mutex_unlock(&cgroup_root_mutex);
2306 cgroup_unlock();
2307 return 0;
2308 }
2309
2310 static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
2311 struct seq_file *seq)
2312 {
2313 if (!cgroup_lock_live_group(cgrp))
2314 return -ENODEV;
2315 seq_puts(seq, cgrp->root->release_agent_path);
2316 seq_putc(seq, '\n');
2317 cgroup_unlock();
2318 return 0;
2319 }
2320
2321 /* A buffer size big enough for numbers or short strings */
2322 #define CGROUP_LOCAL_BUFFER_SIZE 64
2323
2324 static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
2325 struct file *file,
2326 const char __user *userbuf,
2327 size_t nbytes, loff_t *unused_ppos)
2328 {
2329 char buffer[CGROUP_LOCAL_BUFFER_SIZE];
2330 int retval = 0;
2331 char *end;
2332
2333 if (!nbytes)
2334 return -EINVAL;
2335 if (nbytes >= sizeof(buffer))
2336 return -E2BIG;
2337 if (copy_from_user(buffer, userbuf, nbytes))
2338 return -EFAULT;
2339
2340 buffer[nbytes] = 0; /* nul-terminate */
2341 if (cft->write_u64) {
2342 u64 val = simple_strtoull(strstrip(buffer), &end, 0);
2343 if (*end)
2344 return -EINVAL;
2345 retval = cft->write_u64(cgrp, cft, val);
2346 } else {
2347 s64 val = simple_strtoll(strstrip(buffer), &end, 0);
2348 if (*end)
2349 return -EINVAL;
2350 retval = cft->write_s64(cgrp, cft, val);
2351 }
2352 if (!retval)
2353 retval = nbytes;
2354 return retval;
2355 }
2356
2357 static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
2358 struct file *file,
2359 const char __user *userbuf,
2360 size_t nbytes, loff_t *unused_ppos)
2361 {
2362 char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
2363 int retval = 0;
2364 size_t max_bytes = cft->max_write_len;
2365 char *buffer = local_buffer;
2366
2367 if (!max_bytes)
2368 max_bytes = sizeof(local_buffer) - 1;
2369 if (nbytes >= max_bytes)
2370 return -E2BIG;
2371 /* Allocate a dynamic buffer if we need one */
2372 if (nbytes >= sizeof(local_buffer)) {
2373 buffer = kmalloc(nbytes + 1, GFP_KERNEL);
2374 if (buffer == NULL)
2375 return -ENOMEM;
2376 }
2377 if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
2378 retval = -EFAULT;
2379 goto out;
2380 }
2381
2382 buffer[nbytes] = 0; /* nul-terminate */
2383 retval = cft->write_string(cgrp, cft, strstrip(buffer));
2384 if (!retval)
2385 retval = nbytes;
2386 out:
2387 if (buffer != local_buffer)
2388 kfree(buffer);
2389 return retval;
2390 }
2391
2392 static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
2393 size_t nbytes, loff_t *ppos)
2394 {
2395 struct cftype *cft = __d_cft(file->f_dentry);
2396 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2397
2398 if (cgroup_is_removed(cgrp))
2399 return -ENODEV;
2400 if (cft->write)
2401 return cft->write(cgrp, cft, file, buf, nbytes, ppos);
2402 if (cft->write_u64 || cft->write_s64)
2403 return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
2404 if (cft->write_string)
2405 return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
2406 if (cft->trigger) {
2407 int ret = cft->trigger(cgrp, (unsigned int)cft->private);
2408 return ret ? ret : nbytes;
2409 }
2410 return -EINVAL;
2411 }
2412
2413 static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
2414 struct file *file,
2415 char __user *buf, size_t nbytes,
2416 loff_t *ppos)
2417 {
2418 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2419 u64 val = cft->read_u64(cgrp, cft);
2420 int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
2421
2422 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2423 }
2424
2425 static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
2426 struct file *file,
2427 char __user *buf, size_t nbytes,
2428 loff_t *ppos)
2429 {
2430 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2431 s64 val = cft->read_s64(cgrp, cft);
2432 int len = sprintf(tmp, "%lld\n", (long long) val);
2433
2434 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2435 }
2436
2437 static ssize_t cgroup_file_read(struct file *file, char __user *buf,
2438 size_t nbytes, loff_t *ppos)
2439 {
2440 struct cftype *cft = __d_cft(file->f_dentry);
2441 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2442
2443 if (cgroup_is_removed(cgrp))
2444 return -ENODEV;
2445
2446 if (cft->read)
2447 return cft->read(cgrp, cft, file, buf, nbytes, ppos);
2448 if (cft->read_u64)
2449 return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
2450 if (cft->read_s64)
2451 return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
2452 return -EINVAL;
2453 }
2454
2455 /*
2456 * seqfile ops/methods for returning structured data. Currently just
2457 * supports string->u64 maps, but can be extended in future.
2458 */
2459
2460 struct cgroup_seqfile_state {
2461 struct cftype *cft;
2462 struct cgroup *cgroup;
2463 };
2464
2465 static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
2466 {
2467 struct seq_file *sf = cb->state;
2468 return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
2469 }
2470
2471 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
2472 {
2473 struct cgroup_seqfile_state *state = m->private;
2474 struct cftype *cft = state->cft;
2475 if (cft->read_map) {
2476 struct cgroup_map_cb cb = {
2477 .fill = cgroup_map_add,
2478 .state = m,
2479 };
2480 return cft->read_map(state->cgroup, cft, &cb);
2481 }
2482 return cft->read_seq_string(state->cgroup, cft, m);
2483 }
2484
2485 static int cgroup_seqfile_release(struct inode *inode, struct file *file)
2486 {
2487 struct seq_file *seq = file->private_data;
2488 kfree(seq->private);
2489 return single_release(inode, file);
2490 }
2491
2492 static const struct file_operations cgroup_seqfile_operations = {
2493 .read = seq_read,
2494 .write = cgroup_file_write,
2495 .llseek = seq_lseek,
2496 .release = cgroup_seqfile_release,
2497 };
2498
2499 static int cgroup_file_open(struct inode *inode, struct file *file)
2500 {
2501 int err;
2502 struct cftype *cft;
2503
2504 err = generic_file_open(inode, file);
2505 if (err)
2506 return err;
2507 cft = __d_cft(file->f_dentry);
2508
2509 if (cft->read_map || cft->read_seq_string) {
2510 struct cgroup_seqfile_state *state =
2511 kzalloc(sizeof(*state), GFP_USER);
2512 if (!state)
2513 return -ENOMEM;
2514 state->cft = cft;
2515 state->cgroup = __d_cgrp(file->f_dentry->d_parent);
2516 file->f_op = &cgroup_seqfile_operations;
2517 err = single_open(file, cgroup_seqfile_show, state);
2518 if (err < 0)
2519 kfree(state);
2520 } else if (cft->open)
2521 err = cft->open(inode, file);
2522 else
2523 err = 0;
2524
2525 return err;
2526 }
2527
2528 static int cgroup_file_release(struct inode *inode, struct file *file)
2529 {
2530 struct cftype *cft = __d_cft(file->f_dentry);
2531 if (cft->release)
2532 return cft->release(inode, file);
2533 return 0;
2534 }
2535
2536 /*
2537 * cgroup_rename - Only allow simple rename of directories in place.
2538 */
2539 static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
2540 struct inode *new_dir, struct dentry *new_dentry)
2541 {
2542 if (!S_ISDIR(old_dentry->d_inode->i_mode))
2543 return -ENOTDIR;
2544 if (new_dentry->d_inode)
2545 return -EEXIST;
2546 if (old_dir != new_dir)
2547 return -EIO;
2548 return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
2549 }
2550
2551 static const struct file_operations cgroup_file_operations = {
2552 .read = cgroup_file_read,
2553 .write = cgroup_file_write,
2554 .llseek = generic_file_llseek,
2555 .open = cgroup_file_open,
2556 .release = cgroup_file_release,
2557 };
2558
2559 static const struct inode_operations cgroup_dir_inode_operations = {
2560 .lookup = cgroup_lookup,
2561 .mkdir = cgroup_mkdir,
2562 .rmdir = cgroup_rmdir,
2563 .rename = cgroup_rename,
2564 };
2565
2566 static struct dentry *cgroup_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
2567 {
2568 if (dentry->d_name.len > NAME_MAX)
2569 return ERR_PTR(-ENAMETOOLONG);
2570 d_add(dentry, NULL);
2571 return NULL;
2572 }
2573
2574 /*
2575 * Check if a file is a control file
2576 */
2577 static inline struct cftype *__file_cft(struct file *file)
2578 {
2579 if (file->f_dentry->d_inode->i_fop != &cgroup_file_operations)
2580 return ERR_PTR(-EINVAL);
2581 return __d_cft(file->f_dentry);
2582 }
2583
2584 static int cgroup_create_file(struct dentry *dentry, umode_t mode,
2585 struct super_block *sb)
2586 {
2587 struct inode *inode;
2588
2589 if (!dentry)
2590 return -ENOENT;
2591 if (dentry->d_inode)
2592 return -EEXIST;
2593
2594 inode = cgroup_new_inode(mode, sb);
2595 if (!inode)
2596 return -ENOMEM;
2597
2598 if (S_ISDIR(mode)) {
2599 inode->i_op = &cgroup_dir_inode_operations;
2600 inode->i_fop = &simple_dir_operations;
2601
2602 /* start off with i_nlink == 2 (for "." entry) */
2603 inc_nlink(inode);
2604
2605 /* start with the directory inode held, so that we can
2606 * populate it without racing with another mkdir */
2607 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
2608 } else if (S_ISREG(mode)) {
2609 inode->i_size = 0;
2610 inode->i_fop = &cgroup_file_operations;
2611 }
2612 d_instantiate(dentry, inode);
2613 dget(dentry); /* Extra count - pin the dentry in core */
2614 return 0;
2615 }
2616
2617 /*
2618 * cgroup_create_dir - create a directory for an object.
2619 * @cgrp: the cgroup we create the directory for. It must have a valid
2620 * ->parent field. And we are going to fill its ->dentry field.
2621 * @dentry: dentry of the new cgroup
2622 * @mode: mode to set on new directory.
2623 */
2624 static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
2625 umode_t mode)
2626 {
2627 struct dentry *parent;
2628 int error = 0;
2629
2630 parent = cgrp->parent->dentry;
2631 error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
2632 if (!error) {
2633 dentry->d_fsdata = cgrp;
2634 inc_nlink(parent->d_inode);
2635 rcu_assign_pointer(cgrp->dentry, dentry);
2636 dget(dentry);
2637 }
2638 dput(dentry);
2639
2640 return error;
2641 }
2642
2643 /**
2644 * cgroup_file_mode - deduce file mode of a control file
2645 * @cft: the control file in question
2646 *
2647 * returns cft->mode if ->mode is not 0
2648 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
2649 * returns S_IRUGO if it has only a read handler
2650 * returns S_IWUSR if it has only a write hander
2651 */
2652 static umode_t cgroup_file_mode(const struct cftype *cft)
2653 {
2654 umode_t mode = 0;
2655
2656 if (cft->mode)
2657 return cft->mode;
2658
2659 if (cft->read || cft->read_u64 || cft->read_s64 ||
2660 cft->read_map || cft->read_seq_string)
2661 mode |= S_IRUGO;
2662
2663 if (cft->write || cft->write_u64 || cft->write_s64 ||
2664 cft->write_string || cft->trigger)
2665 mode |= S_IWUSR;
2666
2667 return mode;
2668 }
2669
2670 static int cgroup_add_file(struct cgroup *cgrp, struct cgroup_subsys *subsys,
2671 const struct cftype *cft)
2672 {
2673 struct dentry *dir = cgrp->dentry;
2674 struct cgroup *parent = __d_cgrp(dir);
2675 struct dentry *dentry;
2676 struct cfent *cfe;
2677 int error;
2678 umode_t mode;
2679 char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
2680
2681 /* does @cft->flags tell us to skip creation on @cgrp? */
2682 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgrp->parent)
2683 return 0;
2684 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgrp->parent)
2685 return 0;
2686
2687 if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
2688 strcpy(name, subsys->name);
2689 strcat(name, ".");
2690 }
2691 strcat(name, cft->name);
2692
2693 BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
2694
2695 cfe = kzalloc(sizeof(*cfe), GFP_KERNEL);
2696 if (!cfe)
2697 return -ENOMEM;
2698
2699 dentry = lookup_one_len(name, dir, strlen(name));
2700 if (IS_ERR(dentry)) {
2701 error = PTR_ERR(dentry);
2702 goto out;
2703 }
2704
2705 mode = cgroup_file_mode(cft);
2706 error = cgroup_create_file(dentry, mode | S_IFREG, cgrp->root->sb);
2707 if (!error) {
2708 cfe->type = (void *)cft;
2709 cfe->dentry = dentry;
2710 dentry->d_fsdata = cfe;
2711 list_add_tail(&cfe->node, &parent->files);
2712 cfe = NULL;
2713 }
2714 dput(dentry);
2715 out:
2716 kfree(cfe);
2717 return error;
2718 }
2719
2720 static int cgroup_addrm_files(struct cgroup *cgrp, struct cgroup_subsys *subsys,
2721 const struct cftype cfts[], bool is_add)
2722 {
2723 const struct cftype *cft;
2724 int err, ret = 0;
2725
2726 for (cft = cfts; cft->name[0] != '\0'; cft++) {
2727 if (is_add)
2728 err = cgroup_add_file(cgrp, subsys, cft);
2729 else
2730 err = cgroup_rm_file(cgrp, cft);
2731 if (err) {
2732 pr_warning("cgroup_addrm_files: failed to %s %s, err=%d\n",
2733 is_add ? "add" : "remove", cft->name, err);
2734 ret = err;
2735 }
2736 }
2737 return ret;
2738 }
2739
2740 static DEFINE_MUTEX(cgroup_cft_mutex);
2741
2742 static void cgroup_cfts_prepare(void)
2743 __acquires(&cgroup_cft_mutex) __acquires(&cgroup_mutex)
2744 {
2745 /*
2746 * Thanks to the entanglement with vfs inode locking, we can't walk
2747 * the existing cgroups under cgroup_mutex and create files.
2748 * Instead, we increment reference on all cgroups and build list of
2749 * them using @cgrp->cft_q_node. Grab cgroup_cft_mutex to ensure
2750 * exclusive access to the field.
2751 */
2752 mutex_lock(&cgroup_cft_mutex);
2753 mutex_lock(&cgroup_mutex);
2754 }
2755
2756 static void cgroup_cfts_commit(struct cgroup_subsys *ss,
2757 const struct cftype *cfts, bool is_add)
2758 __releases(&cgroup_mutex) __releases(&cgroup_cft_mutex)
2759 {
2760 LIST_HEAD(pending);
2761 struct cgroup *cgrp, *n;
2762
2763 /* %NULL @cfts indicates abort and don't bother if @ss isn't attached */
2764 if (cfts && ss->root != &rootnode) {
2765 list_for_each_entry(cgrp, &ss->root->allcg_list, allcg_node) {
2766 dget(cgrp->dentry);
2767 list_add_tail(&cgrp->cft_q_node, &pending);
2768 }
2769 }
2770
2771 mutex_unlock(&cgroup_mutex);
2772
2773 /*
2774 * All new cgroups will see @cfts update on @ss->cftsets. Add/rm
2775 * files for all cgroups which were created before.
2776 */
2777 list_for_each_entry_safe(cgrp, n, &pending, cft_q_node) {
2778 struct inode *inode = cgrp->dentry->d_inode;
2779
2780 mutex_lock(&inode->i_mutex);
2781 mutex_lock(&cgroup_mutex);
2782 if (!cgroup_is_removed(cgrp))
2783 cgroup_addrm_files(cgrp, ss, cfts, is_add);
2784 mutex_unlock(&cgroup_mutex);
2785 mutex_unlock(&inode->i_mutex);
2786
2787 list_del_init(&cgrp->cft_q_node);
2788 dput(cgrp->dentry);
2789 }
2790
2791 mutex_unlock(&cgroup_cft_mutex);
2792 }
2793
2794 /**
2795 * cgroup_add_cftypes - add an array of cftypes to a subsystem
2796 * @ss: target cgroup subsystem
2797 * @cfts: zero-length name terminated array of cftypes
2798 *
2799 * Register @cfts to @ss. Files described by @cfts are created for all
2800 * existing cgroups to which @ss is attached and all future cgroups will
2801 * have them too. This function can be called anytime whether @ss is
2802 * attached or not.
2803 *
2804 * Returns 0 on successful registration, -errno on failure. Note that this
2805 * function currently returns 0 as long as @cfts registration is successful
2806 * even if some file creation attempts on existing cgroups fail.
2807 */
2808 int cgroup_add_cftypes(struct cgroup_subsys *ss, const struct cftype *cfts)
2809 {
2810 struct cftype_set *set;
2811
2812 set = kzalloc(sizeof(*set), GFP_KERNEL);
2813 if (!set)
2814 return -ENOMEM;
2815
2816 cgroup_cfts_prepare();
2817 set->cfts = cfts;
2818 list_add_tail(&set->node, &ss->cftsets);
2819 cgroup_cfts_commit(ss, cfts, true);
2820
2821 return 0;
2822 }
2823 EXPORT_SYMBOL_GPL(cgroup_add_cftypes);
2824
2825 /**
2826 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
2827 * @ss: target cgroup subsystem
2828 * @cfts: zero-length name terminated array of cftypes
2829 *
2830 * Unregister @cfts from @ss. Files described by @cfts are removed from
2831 * all existing cgroups to which @ss is attached and all future cgroups
2832 * won't have them either. This function can be called anytime whether @ss
2833 * is attached or not.
2834 *
2835 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2836 * registered with @ss.
2837 */
2838 int cgroup_rm_cftypes(struct cgroup_subsys *ss, const struct cftype *cfts)
2839 {
2840 struct cftype_set *set;
2841
2842 cgroup_cfts_prepare();
2843
2844 list_for_each_entry(set, &ss->cftsets, node) {
2845 if (set->cfts == cfts) {
2846 list_del_init(&set->node);
2847 cgroup_cfts_commit(ss, cfts, false);
2848 return 0;
2849 }
2850 }
2851
2852 cgroup_cfts_commit(ss, NULL, false);
2853 return -ENOENT;
2854 }
2855
2856 /**
2857 * cgroup_task_count - count the number of tasks in a cgroup.
2858 * @cgrp: the cgroup in question
2859 *
2860 * Return the number of tasks in the cgroup.
2861 */
2862 int cgroup_task_count(const struct cgroup *cgrp)
2863 {
2864 int count = 0;
2865 struct cg_cgroup_link *link;
2866
2867 read_lock(&css_set_lock);
2868 list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
2869 count += atomic_read(&link->cg->refcount);
2870 }
2871 read_unlock(&css_set_lock);
2872 return count;
2873 }
2874
2875 /*
2876 * Advance a list_head iterator. The iterator should be positioned at
2877 * the start of a css_set
2878 */
2879 static void cgroup_advance_iter(struct cgroup *cgrp,
2880 struct cgroup_iter *it)
2881 {
2882 struct list_head *l = it->cg_link;
2883 struct cg_cgroup_link *link;
2884 struct css_set *cg;
2885
2886 /* Advance to the next non-empty css_set */
2887 do {
2888 l = l->next;
2889 if (l == &cgrp->css_sets) {
2890 it->cg_link = NULL;
2891 return;
2892 }
2893 link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
2894 cg = link->cg;
2895 } while (list_empty(&cg->tasks));
2896 it->cg_link = l;
2897 it->task = cg->tasks.next;
2898 }
2899
2900 /*
2901 * To reduce the fork() overhead for systems that are not actually
2902 * using their cgroups capability, we don't maintain the lists running
2903 * through each css_set to its tasks until we see the list actually
2904 * used - in other words after the first call to cgroup_iter_start().
2905 */
2906 static void cgroup_enable_task_cg_lists(void)
2907 {
2908 struct task_struct *p, *g;
2909 write_lock(&css_set_lock);
2910 use_task_css_set_links = 1;
2911 /*
2912 * We need tasklist_lock because RCU is not safe against
2913 * while_each_thread(). Besides, a forking task that has passed
2914 * cgroup_post_fork() without seeing use_task_css_set_links = 1
2915 * is not guaranteed to have its child immediately visible in the
2916 * tasklist if we walk through it with RCU.
2917 */
2918 read_lock(&tasklist_lock);
2919 do_each_thread(g, p) {
2920 task_lock(p);
2921 /*
2922 * We should check if the process is exiting, otherwise
2923 * it will race with cgroup_exit() in that the list
2924 * entry won't be deleted though the process has exited.
2925 */
2926 if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
2927 list_add(&p->cg_list, &p->cgroups->tasks);
2928 task_unlock(p);
2929 } while_each_thread(g, p);
2930 read_unlock(&tasklist_lock);
2931 write_unlock(&css_set_lock);
2932 }
2933
2934 void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
2935 __acquires(css_set_lock)
2936 {
2937 /*
2938 * The first time anyone tries to iterate across a cgroup,
2939 * we need to enable the list linking each css_set to its
2940 * tasks, and fix up all existing tasks.
2941 */
2942 if (!use_task_css_set_links)
2943 cgroup_enable_task_cg_lists();
2944
2945 read_lock(&css_set_lock);
2946 it->cg_link = &cgrp->css_sets;
2947 cgroup_advance_iter(cgrp, it);
2948 }
2949
2950 struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
2951 struct cgroup_iter *it)
2952 {
2953 struct task_struct *res;
2954 struct list_head *l = it->task;
2955 struct cg_cgroup_link *link;
2956
2957 /* If the iterator cg is NULL, we have no tasks */
2958 if (!it->cg_link)
2959 return NULL;
2960 res = list_entry(l, struct task_struct, cg_list);
2961 /* Advance iterator to find next entry */
2962 l = l->next;
2963 link = list_entry(it->cg_link, struct cg_cgroup_link, cgrp_link_list);
2964 if (l == &link->cg->tasks) {
2965 /* We reached the end of this task list - move on to
2966 * the next cg_cgroup_link */
2967 cgroup_advance_iter(cgrp, it);
2968 } else {
2969 it->task = l;
2970 }
2971 return res;
2972 }
2973
2974 void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
2975 __releases(css_set_lock)
2976 {
2977 read_unlock(&css_set_lock);
2978 }
2979
2980 static inline int started_after_time(struct task_struct *t1,
2981 struct timespec *time,
2982 struct task_struct *t2)
2983 {
2984 int start_diff = timespec_compare(&t1->start_time, time);
2985 if (start_diff > 0) {
2986 return 1;
2987 } else if (start_diff < 0) {
2988 return 0;
2989 } else {
2990 /*
2991 * Arbitrarily, if two processes started at the same
2992 * time, we'll say that the lower pointer value
2993 * started first. Note that t2 may have exited by now
2994 * so this may not be a valid pointer any longer, but
2995 * that's fine - it still serves to distinguish
2996 * between two tasks started (effectively) simultaneously.
2997 */
2998 return t1 > t2;
2999 }
3000 }
3001
3002 /*
3003 * This function is a callback from heap_insert() and is used to order
3004 * the heap.
3005 * In this case we order the heap in descending task start time.
3006 */
3007 static inline int started_after(void *p1, void *p2)
3008 {
3009 struct task_struct *t1 = p1;
3010 struct task_struct *t2 = p2;
3011 return started_after_time(t1, &t2->start_time, t2);
3012 }
3013
3014 /**
3015 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
3016 * @scan: struct cgroup_scanner containing arguments for the scan
3017 *
3018 * Arguments include pointers to callback functions test_task() and
3019 * process_task().
3020 * Iterate through all the tasks in a cgroup, calling test_task() for each,
3021 * and if it returns true, call process_task() for it also.
3022 * The test_task pointer may be NULL, meaning always true (select all tasks).
3023 * Effectively duplicates cgroup_iter_{start,next,end}()
3024 * but does not lock css_set_lock for the call to process_task().
3025 * The struct cgroup_scanner may be embedded in any structure of the caller's
3026 * creation.
3027 * It is guaranteed that process_task() will act on every task that
3028 * is a member of the cgroup for the duration of this call. This
3029 * function may or may not call process_task() for tasks that exit
3030 * or move to a different cgroup during the call, or are forked or
3031 * move into the cgroup during the call.
3032 *
3033 * Note that test_task() may be called with locks held, and may in some
3034 * situations be called multiple times for the same task, so it should
3035 * be cheap.
3036 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
3037 * pre-allocated and will be used for heap operations (and its "gt" member will
3038 * be overwritten), else a temporary heap will be used (allocation of which
3039 * may cause this function to fail).
3040 */
3041 int cgroup_scan_tasks(struct cgroup_scanner *scan)
3042 {
3043 int retval, i;
3044 struct cgroup_iter it;
3045 struct task_struct *p, *dropped;
3046 /* Never dereference latest_task, since it's not refcounted */
3047 struct task_struct *latest_task = NULL;
3048 struct ptr_heap tmp_heap;
3049 struct ptr_heap *heap;
3050 struct timespec latest_time = { 0, 0 };
3051
3052 if (scan->heap) {
3053 /* The caller supplied our heap and pre-allocated its memory */
3054 heap = scan->heap;
3055 heap->gt = &started_after;
3056 } else {
3057 /* We need to allocate our own heap memory */
3058 heap = &tmp_heap;
3059 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
3060 if (retval)
3061 /* cannot allocate the heap */
3062 return retval;
3063 }
3064
3065 again:
3066 /*
3067 * Scan tasks in the cgroup, using the scanner's "test_task" callback
3068 * to determine which are of interest, and using the scanner's
3069 * "process_task" callback to process any of them that need an update.
3070 * Since we don't want to hold any locks during the task updates,
3071 * gather tasks to be processed in a heap structure.
3072 * The heap is sorted by descending task start time.
3073 * If the statically-sized heap fills up, we overflow tasks that
3074 * started later, and in future iterations only consider tasks that
3075 * started after the latest task in the previous pass. This
3076 * guarantees forward progress and that we don't miss any tasks.
3077 */
3078 heap->size = 0;
3079 cgroup_iter_start(scan->cg, &it);
3080 while ((p = cgroup_iter_next(scan->cg, &it))) {
3081 /*
3082 * Only affect tasks that qualify per the caller's callback,
3083 * if he provided one
3084 */
3085 if (scan->test_task && !scan->test_task(p, scan))
3086 continue;
3087 /*
3088 * Only process tasks that started after the last task
3089 * we processed
3090 */
3091 if (!started_after_time(p, &latest_time, latest_task))
3092 continue;
3093 dropped = heap_insert(heap, p);
3094 if (dropped == NULL) {
3095 /*
3096 * The new task was inserted; the heap wasn't
3097 * previously full
3098 */
3099 get_task_struct(p);
3100 } else if (dropped != p) {
3101 /*
3102 * The new task was inserted, and pushed out a
3103 * different task
3104 */
3105 get_task_struct(p);
3106 put_task_struct(dropped);
3107 }
3108 /*
3109 * Else the new task was newer than anything already in
3110 * the heap and wasn't inserted
3111 */
3112 }
3113 cgroup_iter_end(scan->cg, &it);
3114
3115 if (heap->size) {
3116 for (i = 0; i < heap->size; i++) {
3117 struct task_struct *q = heap->ptrs[i];
3118 if (i == 0) {
3119 latest_time = q->start_time;
3120 latest_task = q;
3121 }
3122 /* Process the task per the caller's callback */
3123 scan->process_task(q, scan);
3124 put_task_struct(q);
3125 }
3126 /*
3127 * If we had to process any tasks at all, scan again
3128 * in case some of them were in the middle of forking
3129 * children that didn't get processed.
3130 * Not the most efficient way to do it, but it avoids
3131 * having to take callback_mutex in the fork path
3132 */
3133 goto again;
3134 }
3135 if (heap == &tmp_heap)
3136 heap_free(&tmp_heap);
3137 return 0;
3138 }
3139
3140 /*
3141 * Stuff for reading the 'tasks'/'procs' files.
3142 *
3143 * Reading this file can return large amounts of data if a cgroup has
3144 * *lots* of attached tasks. So it may need several calls to read(),
3145 * but we cannot guarantee that the information we produce is correct
3146 * unless we produce it entirely atomically.
3147 *
3148 */
3149
3150 /* which pidlist file are we talking about? */
3151 enum cgroup_filetype {
3152 CGROUP_FILE_PROCS,
3153 CGROUP_FILE_TASKS,
3154 };
3155
3156 /*
3157 * A pidlist is a list of pids that virtually represents the contents of one
3158 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
3159 * a pair (one each for procs, tasks) for each pid namespace that's relevant
3160 * to the cgroup.
3161 */
3162 struct cgroup_pidlist {
3163 /*
3164 * used to find which pidlist is wanted. doesn't change as long as
3165 * this particular list stays in the list.
3166 */
3167 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
3168 /* array of xids */
3169 pid_t *list;
3170 /* how many elements the above list has */
3171 int length;
3172 /* how many files are using the current array */
3173 int use_count;
3174 /* each of these stored in a list by its cgroup */
3175 struct list_head links;
3176 /* pointer to the cgroup we belong to, for list removal purposes */
3177 struct cgroup *owner;
3178 /* protects the other fields */
3179 struct rw_semaphore mutex;
3180 };
3181
3182 /*
3183 * The following two functions "fix" the issue where there are more pids
3184 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3185 * TODO: replace with a kernel-wide solution to this problem
3186 */
3187 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
3188 static void *pidlist_allocate(int count)
3189 {
3190 if (PIDLIST_TOO_LARGE(count))
3191 return vmalloc(count * sizeof(pid_t));
3192 else
3193 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
3194 }
3195 static void pidlist_free(void *p)
3196 {
3197 if (is_vmalloc_addr(p))
3198 vfree(p);
3199 else
3200 kfree(p);
3201 }
3202 static void *pidlist_resize(void *p, int newcount)
3203 {
3204 void *newlist;
3205 /* note: if new alloc fails, old p will still be valid either way */
3206 if (is_vmalloc_addr(p)) {
3207 newlist = vmalloc(newcount * sizeof(pid_t));
3208 if (!newlist)
3209 return NULL;
3210 memcpy(newlist, p, newcount * sizeof(pid_t));
3211 vfree(p);
3212 } else {
3213 newlist = krealloc(p, newcount * sizeof(pid_t), GFP_KERNEL);
3214 }
3215 return newlist;
3216 }
3217
3218 /*
3219 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
3220 * If the new stripped list is sufficiently smaller and there's enough memory
3221 * to allocate a new buffer, will let go of the unneeded memory. Returns the
3222 * number of unique elements.
3223 */
3224 /* is the size difference enough that we should re-allocate the array? */
3225 #define PIDLIST_REALLOC_DIFFERENCE(old, new) ((old) - PAGE_SIZE >= (new))
3226 static int pidlist_uniq(pid_t **p, int length)
3227 {
3228 int src, dest = 1;
3229 pid_t *list = *p;
3230 pid_t *newlist;
3231
3232 /*
3233 * we presume the 0th element is unique, so i starts at 1. trivial
3234 * edge cases first; no work needs to be done for either
3235 */
3236 if (length == 0 || length == 1)
3237 return length;
3238 /* src and dest walk down the list; dest counts unique elements */
3239 for (src = 1; src < length; src++) {
3240 /* find next unique element */
3241 while (list[src] == list[src-1]) {
3242 src++;
3243 if (src == length)
3244 goto after;
3245 }
3246 /* dest always points to where the next unique element goes */
3247 list[dest] = list[src];
3248 dest++;
3249 }
3250 after:
3251 /*
3252 * if the length difference is large enough, we want to allocate a
3253 * smaller buffer to save memory. if this fails due to out of memory,
3254 * we'll just stay with what we've got.
3255 */
3256 if (PIDLIST_REALLOC_DIFFERENCE(length, dest)) {
3257 newlist = pidlist_resize(list, dest);
3258 if (newlist)
3259 *p = newlist;
3260 }
3261 return dest;
3262 }
3263
3264 static int cmppid(const void *a, const void *b)
3265 {
3266 return *(pid_t *)a - *(pid_t *)b;
3267 }
3268
3269 /*
3270 * find the appropriate pidlist for our purpose (given procs vs tasks)
3271 * returns with the lock on that pidlist already held, and takes care
3272 * of the use count, or returns NULL with no locks held if we're out of
3273 * memory.
3274 */
3275 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3276 enum cgroup_filetype type)
3277 {
3278 struct cgroup_pidlist *l;
3279 /* don't need task_nsproxy() if we're looking at ourself */
3280 struct pid_namespace *ns = current->nsproxy->pid_ns;
3281
3282 /*
3283 * We can't drop the pidlist_mutex before taking the l->mutex in case
3284 * the last ref-holder is trying to remove l from the list at the same
3285 * time. Holding the pidlist_mutex precludes somebody taking whichever
3286 * list we find out from under us - compare release_pid_array().
3287 */
3288 mutex_lock(&cgrp->pidlist_mutex);
3289 list_for_each_entry(l, &cgrp->pidlists, links) {
3290 if (l->key.type == type && l->key.ns == ns) {
3291 /* make sure l doesn't vanish out from under us */
3292 down_write(&l->mutex);
3293 mutex_unlock(&cgrp->pidlist_mutex);
3294 return l;
3295 }
3296 }
3297 /* entry not found; create a new one */
3298 l = kmalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
3299 if (!l) {
3300 mutex_unlock(&cgrp->pidlist_mutex);
3301 return l;
3302 }
3303 init_rwsem(&l->mutex);
3304 down_write(&l->mutex);
3305 l->key.type = type;
3306 l->key.ns = get_pid_ns(ns);
3307 l->use_count = 0; /* don't increment here */
3308 l->list = NULL;
3309 l->owner = cgrp;
3310 list_add(&l->links, &cgrp->pidlists);
3311 mutex_unlock(&cgrp->pidlist_mutex);
3312 return l;
3313 }
3314
3315 /*
3316 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3317 */
3318 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3319 struct cgroup_pidlist **lp)
3320 {
3321 pid_t *array;
3322 int length;
3323 int pid, n = 0; /* used for populating the array */
3324 struct cgroup_iter it;
3325 struct task_struct *tsk;
3326 struct cgroup_pidlist *l;
3327
3328 /*
3329 * If cgroup gets more users after we read count, we won't have
3330 * enough space - tough. This race is indistinguishable to the
3331 * caller from the case that the additional cgroup users didn't
3332 * show up until sometime later on.
3333 */
3334 length = cgroup_task_count(cgrp);
3335 array = pidlist_allocate(length);
3336 if (!array)
3337 return -ENOMEM;
3338 /* now, populate the array */
3339 cgroup_iter_start(cgrp, &it);
3340 while ((tsk = cgroup_iter_next(cgrp, &it))) {
3341 if (unlikely(n == length))
3342 break;
3343 /* get tgid or pid for procs or tasks file respectively */
3344 if (type == CGROUP_FILE_PROCS)
3345 pid = task_tgid_vnr(tsk);
3346 else
3347 pid = task_pid_vnr(tsk);
3348 if (pid > 0) /* make sure to only use valid results */
3349 array[n++] = pid;
3350 }
3351 cgroup_iter_end(cgrp, &it);
3352 length = n;
3353 /* now sort & (if procs) strip out duplicates */
3354 sort(array, length, sizeof(pid_t), cmppid, NULL);
3355 if (type == CGROUP_FILE_PROCS)
3356 length = pidlist_uniq(&array, length);
3357 l = cgroup_pidlist_find(cgrp, type);
3358 if (!l) {
3359 pidlist_free(array);
3360 return -ENOMEM;
3361 }
3362 /* store array, freeing old if necessary - lock already held */
3363 pidlist_free(l->list);
3364 l->list = array;
3365 l->length = length;
3366 l->use_count++;
3367 up_write(&l->mutex);
3368 *lp = l;
3369 return 0;
3370 }
3371
3372 /**
3373 * cgroupstats_build - build and fill cgroupstats
3374 * @stats: cgroupstats to fill information into
3375 * @dentry: A dentry entry belonging to the cgroup for which stats have
3376 * been requested.
3377 *
3378 * Build and fill cgroupstats so that taskstats can export it to user
3379 * space.
3380 */
3381 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
3382 {
3383 int ret = -EINVAL;
3384 struct cgroup *cgrp;
3385 struct cgroup_iter it;
3386 struct task_struct *tsk;
3387
3388 /*
3389 * Validate dentry by checking the superblock operations,
3390 * and make sure it's a directory.
3391 */
3392 if (dentry->d_sb->s_op != &cgroup_ops ||
3393 !S_ISDIR(dentry->d_inode->i_mode))
3394 goto err;
3395
3396 ret = 0;
3397 cgrp = dentry->d_fsdata;
3398
3399 cgroup_iter_start(cgrp, &it);
3400 while ((tsk = cgroup_iter_next(cgrp, &it))) {
3401 switch (tsk->state) {
3402 case TASK_RUNNING:
3403 stats->nr_running++;
3404 break;
3405 case TASK_INTERRUPTIBLE:
3406 stats->nr_sleeping++;
3407 break;
3408 case TASK_UNINTERRUPTIBLE:
3409 stats->nr_uninterruptible++;
3410 break;
3411 case TASK_STOPPED:
3412 stats->nr_stopped++;
3413 break;
3414 default:
3415 if (delayacct_is_task_waiting_on_io(tsk))
3416 stats->nr_io_wait++;
3417 break;
3418 }
3419 }
3420 cgroup_iter_end(cgrp, &it);
3421
3422 err:
3423 return ret;
3424 }
3425
3426
3427 /*
3428 * seq_file methods for the tasks/procs files. The seq_file position is the
3429 * next pid to display; the seq_file iterator is a pointer to the pid
3430 * in the cgroup->l->list array.
3431 */
3432
3433 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
3434 {
3435 /*
3436 * Initially we receive a position value that corresponds to
3437 * one more than the last pid shown (or 0 on the first call or
3438 * after a seek to the start). Use a binary-search to find the
3439 * next pid to display, if any
3440 */
3441 struct cgroup_pidlist *l = s->private;
3442 int index = 0, pid = *pos;
3443 int *iter;
3444
3445 down_read(&l->mutex);
3446 if (pid) {
3447 int end = l->length;
3448
3449 while (index < end) {
3450 int mid = (index + end) / 2;
3451 if (l->list[mid] == pid) {
3452 index = mid;
3453 break;
3454 } else if (l->list[mid] <= pid)
3455 index = mid + 1;
3456 else
3457 end = mid;
3458 }
3459 }
3460 /* If we're off the end of the array, we're done */
3461 if (index >= l->length)
3462 return NULL;
3463 /* Update the abstract position to be the actual pid that we found */
3464 iter = l->list + index;
3465 *pos = *iter;
3466 return iter;
3467 }
3468
3469 static void cgroup_pidlist_stop(struct seq_file *s, void *v)
3470 {
3471 struct cgroup_pidlist *l = s->private;
3472 up_read(&l->mutex);
3473 }
3474
3475 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
3476 {
3477 struct cgroup_pidlist *l = s->private;
3478 pid_t *p = v;
3479 pid_t *end = l->list + l->length;
3480 /*
3481 * Advance to the next pid in the array. If this goes off the
3482 * end, we're done
3483 */
3484 p++;
3485 if (p >= end) {
3486 return NULL;
3487 } else {
3488 *pos = *p;
3489 return p;
3490 }
3491 }
3492
3493 static int cgroup_pidlist_show(struct seq_file *s, void *v)
3494 {
3495 return seq_printf(s, "%d\n", *(int *)v);
3496 }
3497
3498 /*
3499 * seq_operations functions for iterating on pidlists through seq_file -
3500 * independent of whether it's tasks or procs
3501 */
3502 static const struct seq_operations cgroup_pidlist_seq_operations = {
3503 .start = cgroup_pidlist_start,
3504 .stop = cgroup_pidlist_stop,
3505 .next = cgroup_pidlist_next,
3506 .show = cgroup_pidlist_show,
3507 };
3508
3509 static void cgroup_release_pid_array(struct cgroup_pidlist *l)
3510 {
3511 /*
3512 * the case where we're the last user of this particular pidlist will
3513 * have us remove it from the cgroup's list, which entails taking the
3514 * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
3515 * pidlist_mutex, we have to take pidlist_mutex first.
3516 */
3517 mutex_lock(&l->owner->pidlist_mutex);
3518 down_write(&l->mutex);
3519 BUG_ON(!l->use_count);
3520 if (!--l->use_count) {
3521 /* we're the last user if refcount is 0; remove and free */
3522 list_del(&l->links);
3523 mutex_unlock(&l->owner->pidlist_mutex);
3524 pidlist_free(l->list);
3525 put_pid_ns(l->key.ns);
3526 up_write(&l->mutex);
3527 kfree(l);
3528 return;
3529 }
3530 mutex_unlock(&l->owner->pidlist_mutex);
3531 up_write(&l->mutex);
3532 }
3533
3534 static int cgroup_pidlist_release(struct inode *inode, struct file *file)
3535 {
3536 struct cgroup_pidlist *l;
3537 if (!(file->f_mode & FMODE_READ))
3538 return 0;
3539 /*
3540 * the seq_file will only be initialized if the file was opened for
3541 * reading; hence we check if it's not null only in that case.
3542 */
3543 l = ((struct seq_file *)file->private_data)->private;
3544 cgroup_release_pid_array(l);
3545 return seq_release(inode, file);
3546 }
3547
3548 static const struct file_operations cgroup_pidlist_operations = {
3549 .read = seq_read,
3550 .llseek = seq_lseek,
3551 .write = cgroup_file_write,
3552 .release = cgroup_pidlist_release,
3553 };
3554
3555 /*
3556 * The following functions handle opens on a file that displays a pidlist
3557 * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
3558 * in the cgroup.
3559 */
3560 /* helper function for the two below it */
3561 static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type)
3562 {
3563 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
3564 struct cgroup_pidlist *l;
3565 int retval;
3566
3567 /* Nothing to do for write-only files */
3568 if (!(file->f_mode & FMODE_READ))
3569 return 0;
3570
3571 /* have the array populated */
3572 retval = pidlist_array_load(cgrp, type, &l);
3573 if (retval)
3574 return retval;
3575 /* configure file information */
3576 file->f_op = &cgroup_pidlist_operations;
3577
3578 retval = seq_open(file, &cgroup_pidlist_seq_operations);
3579 if (retval) {
3580 cgroup_release_pid_array(l);
3581 return retval;
3582 }
3583 ((struct seq_file *)file->private_data)->private = l;
3584 return 0;
3585 }
3586 static int cgroup_tasks_open(struct inode *unused, struct file *file)
3587 {
3588 return cgroup_pidlist_open(file, CGROUP_FILE_TASKS);
3589 }
3590 static int cgroup_procs_open(struct inode *unused, struct file *file)
3591 {
3592 return cgroup_pidlist_open(file, CGROUP_FILE_PROCS);
3593 }
3594
3595 static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
3596 struct cftype *cft)
3597 {
3598 return notify_on_release(cgrp);
3599 }
3600
3601 static int cgroup_write_notify_on_release(struct cgroup *cgrp,
3602 struct cftype *cft,
3603 u64 val)
3604 {
3605 clear_bit(CGRP_RELEASABLE, &cgrp->flags);
3606 if (val)
3607 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3608 else
3609 clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3610 return 0;
3611 }
3612
3613 /*
3614 * Unregister event and free resources.
3615 *
3616 * Gets called from workqueue.
3617 */
3618 static void cgroup_event_remove(struct work_struct *work)
3619 {
3620 struct cgroup_event *event = container_of(work, struct cgroup_event,
3621 remove);
3622 struct cgroup *cgrp = event->cgrp;
3623
3624 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3625
3626 eventfd_ctx_put(event->eventfd);
3627 kfree(event);
3628 dput(cgrp->dentry);
3629 }
3630
3631 /*
3632 * Gets called on POLLHUP on eventfd when user closes it.
3633 *
3634 * Called with wqh->lock held and interrupts disabled.
3635 */
3636 static int cgroup_event_wake(wait_queue_t *wait, unsigned mode,
3637 int sync, void *key)
3638 {
3639 struct cgroup_event *event = container_of(wait,
3640 struct cgroup_event, wait);
3641 struct cgroup *cgrp = event->cgrp;
3642 unsigned long flags = (unsigned long)key;
3643
3644 if (flags & POLLHUP) {
3645 __remove_wait_queue(event->wqh, &event->wait);
3646 spin_lock(&cgrp->event_list_lock);
3647 list_del(&event->list);
3648 spin_unlock(&cgrp->event_list_lock);
3649 /*
3650 * We are in atomic context, but cgroup_event_remove() may
3651 * sleep, so we have to call it in workqueue.
3652 */
3653 schedule_work(&event->remove);
3654 }
3655
3656 return 0;
3657 }
3658
3659 static void cgroup_event_ptable_queue_proc(struct file *file,
3660 wait_queue_head_t *wqh, poll_table *pt)
3661 {
3662 struct cgroup_event *event = container_of(pt,
3663 struct cgroup_event, pt);
3664
3665 event->wqh = wqh;
3666 add_wait_queue(wqh, &event->wait);
3667 }
3668
3669 /*
3670 * Parse input and register new cgroup event handler.
3671 *
3672 * Input must be in format '<event_fd> <control_fd> <args>'.
3673 * Interpretation of args is defined by control file implementation.
3674 */
3675 static int cgroup_write_event_control(struct cgroup *cgrp, struct cftype *cft,
3676 const char *buffer)
3677 {
3678 struct cgroup_event *event = NULL;
3679 unsigned int efd, cfd;
3680 struct file *efile = NULL;
3681 struct file *cfile = NULL;
3682 char *endp;
3683 int ret;
3684
3685 efd = simple_strtoul(buffer, &endp, 10);
3686 if (*endp != ' ')
3687 return -EINVAL;
3688 buffer = endp + 1;
3689
3690 cfd = simple_strtoul(buffer, &endp, 10);
3691 if ((*endp != ' ') && (*endp != '\0'))
3692 return -EINVAL;
3693 buffer = endp + 1;
3694
3695 event = kzalloc(sizeof(*event), GFP_KERNEL);
3696 if (!event)
3697 return -ENOMEM;
3698 event->cgrp = cgrp;
3699 INIT_LIST_HEAD(&event->list);
3700 init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc);
3701 init_waitqueue_func_entry(&event->wait, cgroup_event_wake);
3702 INIT_WORK(&event->remove, cgroup_event_remove);
3703
3704 efile = eventfd_fget(efd);
3705 if (IS_ERR(efile)) {
3706 ret = PTR_ERR(efile);
3707 goto fail;
3708 }
3709
3710 event->eventfd = eventfd_ctx_fileget(efile);
3711 if (IS_ERR(event->eventfd)) {
3712 ret = PTR_ERR(event->eventfd);
3713 goto fail;
3714 }
3715
3716 cfile = fget(cfd);
3717 if (!cfile) {
3718 ret = -EBADF;
3719 goto fail;
3720 }
3721
3722 /* the process need read permission on control file */
3723 /* AV: shouldn't we check that it's been opened for read instead? */
3724 ret = inode_permission(cfile->f_path.dentry->d_inode, MAY_READ);
3725 if (ret < 0)
3726 goto fail;
3727
3728 event->cft = __file_cft(cfile);
3729 if (IS_ERR(event->cft)) {
3730 ret = PTR_ERR(event->cft);
3731 goto fail;
3732 }
3733
3734 if (!event->cft->register_event || !event->cft->unregister_event) {
3735 ret = -EINVAL;
3736 goto fail;
3737 }
3738
3739 ret = event->cft->register_event(cgrp, event->cft,
3740 event->eventfd, buffer);
3741 if (ret)
3742 goto fail;
3743
3744 if (efile->f_op->poll(efile, &event->pt) & POLLHUP) {
3745 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3746 ret = 0;
3747 goto fail;
3748 }
3749
3750 /*
3751 * Events should be removed after rmdir of cgroup directory, but before
3752 * destroying subsystem state objects. Let's take reference to cgroup
3753 * directory dentry to do that.
3754 */
3755 dget(cgrp->dentry);
3756
3757 spin_lock(&cgrp->event_list_lock);
3758 list_add(&event->list, &cgrp->event_list);
3759 spin_unlock(&cgrp->event_list_lock);
3760
3761 fput(cfile);
3762 fput(efile);
3763
3764 return 0;
3765
3766 fail:
3767 if (cfile)
3768 fput(cfile);
3769
3770 if (event && event->eventfd && !IS_ERR(event->eventfd))
3771 eventfd_ctx_put(event->eventfd);
3772
3773 if (!IS_ERR_OR_NULL(efile))
3774 fput(efile);
3775
3776 kfree(event);
3777
3778 return ret;
3779 }
3780
3781 static u64 cgroup_clone_children_read(struct cgroup *cgrp,
3782 struct cftype *cft)
3783 {
3784 return clone_children(cgrp);
3785 }
3786
3787 static int cgroup_clone_children_write(struct cgroup *cgrp,
3788 struct cftype *cft,
3789 u64 val)
3790 {
3791 if (val)
3792 set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3793 else
3794 clear_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3795 return 0;
3796 }
3797
3798 /*
3799 * for the common functions, 'private' gives the type of file
3800 */
3801 /* for hysterical raisins, we can't put this on the older files */
3802 #define CGROUP_FILE_GENERIC_PREFIX "cgroup."
3803 static struct cftype files[] = {
3804 {
3805 .name = "tasks",
3806 .open = cgroup_tasks_open,
3807 .write_u64 = cgroup_tasks_write,
3808 .release = cgroup_pidlist_release,
3809 .mode = S_IRUGO | S_IWUSR,
3810 },
3811 {
3812 .name = CGROUP_FILE_GENERIC_PREFIX "procs",
3813 .open = cgroup_procs_open,
3814 .write_u64 = cgroup_procs_write,
3815 .release = cgroup_pidlist_release,
3816 .mode = S_IRUGO | S_IWUSR,
3817 },
3818 {
3819 .name = "notify_on_release",
3820 .read_u64 = cgroup_read_notify_on_release,
3821 .write_u64 = cgroup_write_notify_on_release,
3822 },
3823 {
3824 .name = CGROUP_FILE_GENERIC_PREFIX "event_control",
3825 .write_string = cgroup_write_event_control,
3826 .mode = S_IWUGO,
3827 },
3828 {
3829 .name = "cgroup.clone_children",
3830 .read_u64 = cgroup_clone_children_read,
3831 .write_u64 = cgroup_clone_children_write,
3832 },
3833 {
3834 .name = "release_agent",
3835 .flags = CFTYPE_ONLY_ON_ROOT,
3836 .read_seq_string = cgroup_release_agent_show,
3837 .write_string = cgroup_release_agent_write,
3838 .max_write_len = PATH_MAX,
3839 },
3840 { } /* terminate */
3841 };
3842
3843 static int cgroup_populate_dir(struct cgroup *cgrp)
3844 {
3845 int err;
3846 struct cgroup_subsys *ss;
3847
3848 err = cgroup_addrm_files(cgrp, NULL, files, true);
3849 if (err < 0)
3850 return err;
3851
3852 /* process cftsets of each subsystem */
3853 for_each_subsys(cgrp->root, ss) {
3854 struct cftype_set *set;
3855
3856 list_for_each_entry(set, &ss->cftsets, node)
3857 cgroup_addrm_files(cgrp, ss, set->cfts, true);
3858 }
3859
3860 /* This cgroup is ready now */
3861 for_each_subsys(cgrp->root, ss) {
3862 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3863 /*
3864 * Update id->css pointer and make this css visible from
3865 * CSS ID functions. This pointer will be dereferened
3866 * from RCU-read-side without locks.
3867 */
3868 if (css->id)
3869 rcu_assign_pointer(css->id->css, css);
3870 }
3871
3872 return 0;
3873 }
3874
3875 static void css_dput_fn(struct work_struct *work)
3876 {
3877 struct cgroup_subsys_state *css =
3878 container_of(work, struct cgroup_subsys_state, dput_work);
3879 struct dentry *dentry = css->cgroup->dentry;
3880 struct super_block *sb = dentry->d_sb;
3881
3882 atomic_inc(&sb->s_active);
3883 dput(dentry);
3884 deactivate_super(sb);
3885 }
3886
3887 static void init_cgroup_css(struct cgroup_subsys_state *css,
3888 struct cgroup_subsys *ss,
3889 struct cgroup *cgrp)
3890 {
3891 css->cgroup = cgrp;
3892 atomic_set(&css->refcnt, 1);
3893 css->flags = 0;
3894 css->id = NULL;
3895 if (cgrp == dummytop)
3896 set_bit(CSS_ROOT, &css->flags);
3897 BUG_ON(cgrp->subsys[ss->subsys_id]);
3898 cgrp->subsys[ss->subsys_id] = css;
3899
3900 /*
3901 * css holds an extra ref to @cgrp->dentry which is put on the last
3902 * css_put(). dput() requires process context, which css_put() may
3903 * be called without. @css->dput_work will be used to invoke
3904 * dput() asynchronously from css_put().
3905 */
3906 INIT_WORK(&css->dput_work, css_dput_fn);
3907 }
3908
3909 /*
3910 * cgroup_create - create a cgroup
3911 * @parent: cgroup that will be parent of the new cgroup
3912 * @dentry: dentry of the new cgroup
3913 * @mode: mode to set on new inode
3914 *
3915 * Must be called with the mutex on the parent inode held
3916 */
3917 static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
3918 umode_t mode)
3919 {
3920 struct cgroup *cgrp;
3921 struct cgroupfs_root *root = parent->root;
3922 int err = 0;
3923 struct cgroup_subsys *ss;
3924 struct super_block *sb = root->sb;
3925
3926 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
3927 if (!cgrp)
3928 return -ENOMEM;
3929
3930 /* Grab a reference on the superblock so the hierarchy doesn't
3931 * get deleted on unmount if there are child cgroups. This
3932 * can be done outside cgroup_mutex, since the sb can't
3933 * disappear while someone has an open control file on the
3934 * fs */
3935 atomic_inc(&sb->s_active);
3936
3937 mutex_lock(&cgroup_mutex);
3938
3939 init_cgroup_housekeeping(cgrp);
3940
3941 cgrp->parent = parent;
3942 cgrp->root = parent->root;
3943 cgrp->top_cgroup = parent->top_cgroup;
3944
3945 if (notify_on_release(parent))
3946 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3947
3948 if (clone_children(parent))
3949 set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3950
3951 for_each_subsys(root, ss) {
3952 struct cgroup_subsys_state *css = ss->create(cgrp);
3953
3954 if (IS_ERR(css)) {
3955 err = PTR_ERR(css);
3956 goto err_destroy;
3957 }
3958 init_cgroup_css(css, ss, cgrp);
3959 if (ss->use_id) {
3960 err = alloc_css_id(ss, parent, cgrp);
3961 if (err)
3962 goto err_destroy;
3963 }
3964 /* At error, ->destroy() callback has to free assigned ID. */
3965 if (clone_children(parent) && ss->post_clone)
3966 ss->post_clone(cgrp);
3967 }
3968
3969 list_add(&cgrp->sibling, &cgrp->parent->children);
3970 root->number_of_cgroups++;
3971
3972 err = cgroup_create_dir(cgrp, dentry, mode);
3973 if (err < 0)
3974 goto err_remove;
3975
3976 /* each css holds a ref to the cgroup's dentry */
3977 for_each_subsys(root, ss)
3978 dget(dentry);
3979
3980 /* The cgroup directory was pre-locked for us */
3981 BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
3982
3983 list_add_tail(&cgrp->allcg_node, &root->allcg_list);
3984
3985 err = cgroup_populate_dir(cgrp);
3986 /* If err < 0, we have a half-filled directory - oh well ;) */
3987
3988 mutex_unlock(&cgroup_mutex);
3989 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
3990
3991 return 0;
3992
3993 err_remove:
3994
3995 list_del(&cgrp->sibling);
3996 root->number_of_cgroups--;
3997
3998 err_destroy:
3999
4000 for_each_subsys(root, ss) {
4001 if (cgrp->subsys[ss->subsys_id])
4002 ss->destroy(cgrp);
4003 }
4004
4005 mutex_unlock(&cgroup_mutex);
4006
4007 /* Release the reference count that we took on the superblock */
4008 deactivate_super(sb);
4009
4010 kfree(cgrp);
4011 return err;
4012 }
4013
4014 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
4015 {
4016 struct cgroup *c_parent = dentry->d_parent->d_fsdata;
4017
4018 /* the vfs holds inode->i_mutex already */
4019 return cgroup_create(c_parent, dentry, mode | S_IFDIR);
4020 }
4021
4022 /*
4023 * Check the reference count on each subsystem. Since we already
4024 * established that there are no tasks in the cgroup, if the css refcount
4025 * is also 1, then there should be no outstanding references, so the
4026 * subsystem is safe to destroy. We scan across all subsystems rather than
4027 * using the per-hierarchy linked list of mounted subsystems since we can
4028 * be called via check_for_release() with no synchronization other than
4029 * RCU, and the subsystem linked list isn't RCU-safe.
4030 */
4031 static int cgroup_has_css_refs(struct cgroup *cgrp)
4032 {
4033 int i;
4034
4035 /*
4036 * We won't need to lock the subsys array, because the subsystems
4037 * we're concerned about aren't going anywhere since our cgroup root
4038 * has a reference on them.
4039 */
4040 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4041 struct cgroup_subsys *ss = subsys[i];
4042 struct cgroup_subsys_state *css;
4043
4044 /* Skip subsystems not present or not in this hierarchy */
4045 if (ss == NULL || ss->root != cgrp->root)
4046 continue;
4047
4048 css = cgrp->subsys[ss->subsys_id];
4049 /*
4050 * When called from check_for_release() it's possible
4051 * that by this point the cgroup has been removed
4052 * and the css deleted. But a false-positive doesn't
4053 * matter, since it can only happen if the cgroup
4054 * has been deleted and hence no longer needs the
4055 * release agent to be called anyway.
4056 */
4057 if (css && css_refcnt(css) > 1)
4058 return 1;
4059 }
4060 return 0;
4061 }
4062
4063 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
4064 {
4065 struct cgroup *cgrp = dentry->d_fsdata;
4066 struct dentry *d;
4067 struct cgroup *parent;
4068 DEFINE_WAIT(wait);
4069 struct cgroup_event *event, *tmp;
4070 struct cgroup_subsys *ss;
4071 int ret;
4072
4073 /* the vfs holds both inode->i_mutex already */
4074 mutex_lock(&cgroup_mutex);
4075 if (atomic_read(&cgrp->count) != 0) {
4076 mutex_unlock(&cgroup_mutex);
4077 return -EBUSY;
4078 }
4079 if (!list_empty(&cgrp->children)) {
4080 mutex_unlock(&cgroup_mutex);
4081 return -EBUSY;
4082 }
4083 mutex_unlock(&cgroup_mutex);
4084
4085 /*
4086 * In general, subsystem has no css->refcnt after pre_destroy(). But
4087 * in racy cases, subsystem may have to get css->refcnt after
4088 * pre_destroy() and it makes rmdir return with -EBUSY. This sometimes
4089 * make rmdir return -EBUSY too often. To avoid that, we use waitqueue
4090 * for cgroup's rmdir. CGRP_WAIT_ON_RMDIR is for synchronizing rmdir
4091 * and subsystem's reference count handling. Please see css_get/put
4092 * and css_tryget() and cgroup_wakeup_rmdir_waiter() implementation.
4093 */
4094 set_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
4095
4096 /*
4097 * Call pre_destroy handlers of subsys. Notify subsystems
4098 * that rmdir() request comes.
4099 */
4100 ret = cgroup_call_pre_destroy(cgrp);
4101 if (ret) {
4102 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
4103 return ret;
4104 }
4105
4106 mutex_lock(&cgroup_mutex);
4107 parent = cgrp->parent;
4108 if (atomic_read(&cgrp->count) || !list_empty(&cgrp->children)) {
4109 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
4110 mutex_unlock(&cgroup_mutex);
4111 return -EBUSY;
4112 }
4113 prepare_to_wait(&cgroup_rmdir_waitq, &wait, TASK_INTERRUPTIBLE);
4114
4115 local_irq_disable();
4116
4117 /* block new css_tryget() by deactivating refcnt */
4118 for_each_subsys(cgrp->root, ss) {
4119 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
4120
4121 WARN_ON(atomic_read(&css->refcnt) < 0);
4122 atomic_add(CSS_DEACT_BIAS, &css->refcnt);
4123 }
4124
4125 /*
4126 * Set REMOVED. All in-progress css_tryget() will be released.
4127 * Put all the base refs. Each css holds an extra reference to the
4128 * cgroup's dentry and cgroup removal proceeds regardless of css
4129 * refs. On the last put of each css, whenever that may be, the
4130 * extra dentry ref is put so that dentry destruction happens only
4131 * after all css's are released.
4132 */
4133 for_each_subsys(cgrp->root, ss) {
4134 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
4135
4136 set_bit(CSS_REMOVED, &css->flags);
4137 css_put(css);
4138 }
4139
4140 local_irq_enable();
4141
4142 finish_wait(&cgroup_rmdir_waitq, &wait);
4143 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
4144
4145 raw_spin_lock(&release_list_lock);
4146 set_bit(CGRP_REMOVED, &cgrp->flags);
4147 if (!list_empty(&cgrp->release_list))
4148 list_del_init(&cgrp->release_list);
4149 raw_spin_unlock(&release_list_lock);
4150
4151 /* delete this cgroup from parent->children */
4152 list_del_init(&cgrp->sibling);
4153
4154 list_del_init(&cgrp->allcg_node);
4155
4156 d = dget(cgrp->dentry);
4157
4158 cgroup_d_remove_dir(d);
4159 dput(d);
4160
4161 set_bit(CGRP_RELEASABLE, &parent->flags);
4162 check_for_release(parent);
4163
4164 /*
4165 * Unregister events and notify userspace.
4166 * Notify userspace about cgroup removing only after rmdir of cgroup
4167 * directory to avoid race between userspace and kernelspace
4168 */
4169 spin_lock(&cgrp->event_list_lock);
4170 list_for_each_entry_safe(event, tmp, &cgrp->event_list, list) {
4171 list_del(&event->list);
4172 remove_wait_queue(event->wqh, &event->wait);
4173 eventfd_signal(event->eventfd, 1);
4174 schedule_work(&event->remove);
4175 }
4176 spin_unlock(&cgrp->event_list_lock);
4177
4178 mutex_unlock(&cgroup_mutex);
4179 return 0;
4180 }
4181
4182 static void __init_or_module cgroup_init_cftsets(struct cgroup_subsys *ss)
4183 {
4184 INIT_LIST_HEAD(&ss->cftsets);
4185
4186 /*
4187 * base_cftset is embedded in subsys itself, no need to worry about
4188 * deregistration.
4189 */
4190 if (ss->base_cftypes) {
4191 ss->base_cftset.cfts = ss->base_cftypes;
4192 list_add_tail(&ss->base_cftset.node, &ss->cftsets);
4193 }
4194 }
4195
4196 static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
4197 {
4198 struct cgroup_subsys_state *css;
4199
4200 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
4201
4202 /* init base cftset */
4203 cgroup_init_cftsets(ss);
4204
4205 /* Create the top cgroup state for this subsystem */
4206 list_add(&ss->sibling, &rootnode.subsys_list);
4207 ss->root = &rootnode;
4208 css = ss->create(dummytop);
4209 /* We don't handle early failures gracefully */
4210 BUG_ON(IS_ERR(css));
4211 init_cgroup_css(css, ss, dummytop);
4212
4213 /* Update the init_css_set to contain a subsys
4214 * pointer to this state - since the subsystem is
4215 * newly registered, all tasks and hence the
4216 * init_css_set is in the subsystem's top cgroup. */
4217 init_css_set.subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
4218
4219 need_forkexit_callback |= ss->fork || ss->exit;
4220
4221 /* At system boot, before all subsystems have been
4222 * registered, no tasks have been forked, so we don't
4223 * need to invoke fork callbacks here. */
4224 BUG_ON(!list_empty(&init_task.tasks));
4225
4226 ss->active = 1;
4227
4228 /* this function shouldn't be used with modular subsystems, since they
4229 * need to register a subsys_id, among other things */
4230 BUG_ON(ss->module);
4231 }
4232
4233 /**
4234 * cgroup_load_subsys: load and register a modular subsystem at runtime
4235 * @ss: the subsystem to load
4236 *
4237 * This function should be called in a modular subsystem's initcall. If the
4238 * subsystem is built as a module, it will be assigned a new subsys_id and set
4239 * up for use. If the subsystem is built-in anyway, work is delegated to the
4240 * simpler cgroup_init_subsys.
4241 */
4242 int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss)
4243 {
4244 int i;
4245 struct cgroup_subsys_state *css;
4246
4247 /* check name and function validity */
4248 if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN ||
4249 ss->create == NULL || ss->destroy == NULL)
4250 return -EINVAL;
4251
4252 /*
4253 * we don't support callbacks in modular subsystems. this check is
4254 * before the ss->module check for consistency; a subsystem that could
4255 * be a module should still have no callbacks even if the user isn't
4256 * compiling it as one.
4257 */
4258 if (ss->fork || ss->exit)
4259 return -EINVAL;
4260
4261 /*
4262 * an optionally modular subsystem is built-in: we want to do nothing,
4263 * since cgroup_init_subsys will have already taken care of it.
4264 */
4265 if (ss->module == NULL) {
4266 /* a few sanity checks */
4267 BUG_ON(ss->subsys_id >= CGROUP_BUILTIN_SUBSYS_COUNT);
4268 BUG_ON(subsys[ss->subsys_id] != ss);
4269 return 0;
4270 }
4271
4272 /* init base cftset */
4273 cgroup_init_cftsets(ss);
4274
4275 /*
4276 * need to register a subsys id before anything else - for example,
4277 * init_cgroup_css needs it.
4278 */
4279 mutex_lock(&cgroup_mutex);
4280 /* find the first empty slot in the array */
4281 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
4282 if (subsys[i] == NULL)
4283 break;
4284 }
4285 if (i == CGROUP_SUBSYS_COUNT) {
4286 /* maximum number of subsystems already registered! */
4287 mutex_unlock(&cgroup_mutex);
4288 return -EBUSY;
4289 }
4290 /* assign ourselves the subsys_id */
4291 ss->subsys_id = i;
4292 subsys[i] = ss;
4293
4294 /*
4295 * no ss->create seems to need anything important in the ss struct, so
4296 * this can happen first (i.e. before the rootnode attachment).
4297 */
4298 css = ss->create(dummytop);
4299 if (IS_ERR(css)) {
4300 /* failure case - need to deassign the subsys[] slot. */
4301 subsys[i] = NULL;
4302 mutex_unlock(&cgroup_mutex);
4303 return PTR_ERR(css);
4304 }
4305
4306 list_add(&ss->sibling, &rootnode.subsys_list);
4307 ss->root = &rootnode;
4308
4309 /* our new subsystem will be attached to the dummy hierarchy. */
4310 init_cgroup_css(css, ss, dummytop);
4311 /* init_idr must be after init_cgroup_css because it sets css->id. */
4312 if (ss->use_id) {
4313 int ret = cgroup_init_idr(ss, css);
4314 if (ret) {
4315 dummytop->subsys[ss->subsys_id] = NULL;
4316 ss->destroy(dummytop);
4317 subsys[i] = NULL;
4318 mutex_unlock(&cgroup_mutex);
4319 return ret;
4320 }
4321 }
4322
4323 /*
4324 * Now we need to entangle the css into the existing css_sets. unlike
4325 * in cgroup_init_subsys, there are now multiple css_sets, so each one
4326 * will need a new pointer to it; done by iterating the css_set_table.
4327 * furthermore, modifying the existing css_sets will corrupt the hash
4328 * table state, so each changed css_set will need its hash recomputed.
4329 * this is all done under the css_set_lock.
4330 */
4331 write_lock(&css_set_lock);
4332 for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
4333 struct css_set *cg;
4334 struct hlist_node *node, *tmp;
4335 struct hlist_head *bucket = &css_set_table[i], *new_bucket;
4336
4337 hlist_for_each_entry_safe(cg, node, tmp, bucket, hlist) {
4338 /* skip entries that we already rehashed */
4339 if (cg->subsys[ss->subsys_id])
4340 continue;
4341 /* remove existing entry */
4342 hlist_del(&cg->hlist);
4343 /* set new value */
4344 cg->subsys[ss->subsys_id] = css;
4345 /* recompute hash and restore entry */
4346 new_bucket = css_set_hash(cg->subsys);
4347 hlist_add_head(&cg->hlist, new_bucket);
4348 }
4349 }
4350 write_unlock(&css_set_lock);
4351
4352 ss->active = 1;
4353
4354 /* success! */
4355 mutex_unlock(&cgroup_mutex);
4356 return 0;
4357 }
4358 EXPORT_SYMBOL_GPL(cgroup_load_subsys);
4359
4360 /**
4361 * cgroup_unload_subsys: unload a modular subsystem
4362 * @ss: the subsystem to unload
4363 *
4364 * This function should be called in a modular subsystem's exitcall. When this
4365 * function is invoked, the refcount on the subsystem's module will be 0, so
4366 * the subsystem will not be attached to any hierarchy.
4367 */
4368 void cgroup_unload_subsys(struct cgroup_subsys *ss)
4369 {
4370 struct cg_cgroup_link *link;
4371 struct hlist_head *hhead;
4372
4373 BUG_ON(ss->module == NULL);
4374
4375 /*
4376 * we shouldn't be called if the subsystem is in use, and the use of
4377 * try_module_get in parse_cgroupfs_options should ensure that it
4378 * doesn't start being used while we're killing it off.
4379 */
4380 BUG_ON(ss->root != &rootnode);
4381
4382 mutex_lock(&cgroup_mutex);
4383 /* deassign the subsys_id */
4384 BUG_ON(ss->subsys_id < CGROUP_BUILTIN_SUBSYS_COUNT);
4385 subsys[ss->subsys_id] = NULL;
4386
4387 /* remove subsystem from rootnode's list of subsystems */
4388 list_del_init(&ss->sibling);
4389
4390 /*
4391 * disentangle the css from all css_sets attached to the dummytop. as
4392 * in loading, we need to pay our respects to the hashtable gods.
4393 */
4394 write_lock(&css_set_lock);
4395 list_for_each_entry(link, &dummytop->css_sets, cgrp_link_list) {
4396 struct css_set *cg = link->cg;
4397
4398 hlist_del(&cg->hlist);
4399 BUG_ON(!cg->subsys[ss->subsys_id]);
4400 cg->subsys[ss->subsys_id] = NULL;
4401 hhead = css_set_hash(cg->subsys);
4402 hlist_add_head(&cg->hlist, hhead);
4403 }
4404 write_unlock(&css_set_lock);
4405
4406 /*
4407 * remove subsystem's css from the dummytop and free it - need to free
4408 * before marking as null because ss->destroy needs the cgrp->subsys
4409 * pointer to find their state. note that this also takes care of
4410 * freeing the css_id.
4411 */
4412 ss->destroy(dummytop);
4413 dummytop->subsys[ss->subsys_id] = NULL;
4414
4415 mutex_unlock(&cgroup_mutex);
4416 }
4417 EXPORT_SYMBOL_GPL(cgroup_unload_subsys);
4418
4419 /**
4420 * cgroup_init_early - cgroup initialization at system boot
4421 *
4422 * Initialize cgroups at system boot, and initialize any
4423 * subsystems that request early init.
4424 */
4425 int __init cgroup_init_early(void)
4426 {
4427 int i;
4428 atomic_set(&init_css_set.refcount, 1);
4429 INIT_LIST_HEAD(&init_css_set.cg_links);
4430 INIT_LIST_HEAD(&init_css_set.tasks);
4431 INIT_HLIST_NODE(&init_css_set.hlist);
4432 css_set_count = 1;
4433 init_cgroup_root(&rootnode);
4434 root_count = 1;
4435 init_task.cgroups = &init_css_set;
4436
4437 init_css_set_link.cg = &init_css_set;
4438 init_css_set_link.cgrp = dummytop;
4439 list_add(&init_css_set_link.cgrp_link_list,
4440 &rootnode.top_cgroup.css_sets);
4441 list_add(&init_css_set_link.cg_link_list,
4442 &init_css_set.cg_links);
4443
4444 for (i = 0; i < CSS_SET_TABLE_SIZE; i++)
4445 INIT_HLIST_HEAD(&css_set_table[i]);
4446
4447 /* at bootup time, we don't worry about modular subsystems */
4448 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4449 struct cgroup_subsys *ss = subsys[i];
4450
4451 BUG_ON(!ss->name);
4452 BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
4453 BUG_ON(!ss->create);
4454 BUG_ON(!ss->destroy);
4455 if (ss->subsys_id != i) {
4456 printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
4457 ss->name, ss->subsys_id);
4458 BUG();
4459 }
4460
4461 if (ss->early_init)
4462 cgroup_init_subsys(ss);
4463 }
4464 return 0;
4465 }
4466
4467 /**
4468 * cgroup_init - cgroup initialization
4469 *
4470 * Register cgroup filesystem and /proc file, and initialize
4471 * any subsystems that didn't request early init.
4472 */
4473 int __init cgroup_init(void)
4474 {
4475 int err;
4476 int i;
4477 struct hlist_head *hhead;
4478
4479 err = bdi_init(&cgroup_backing_dev_info);
4480 if (err)
4481 return err;
4482
4483 /* at bootup time, we don't worry about modular subsystems */
4484 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4485 struct cgroup_subsys *ss = subsys[i];
4486 if (!ss->early_init)
4487 cgroup_init_subsys(ss);
4488 if (ss->use_id)
4489 cgroup_init_idr(ss, init_css_set.subsys[ss->subsys_id]);
4490 }
4491
4492 /* Add init_css_set to the hash table */
4493 hhead = css_set_hash(init_css_set.subsys);
4494 hlist_add_head(&init_css_set.hlist, hhead);
4495 BUG_ON(!init_root_id(&rootnode));
4496
4497 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
4498 if (!cgroup_kobj) {
4499 err = -ENOMEM;
4500 goto out;
4501 }
4502
4503 err = register_filesystem(&cgroup_fs_type);
4504 if (err < 0) {
4505 kobject_put(cgroup_kobj);
4506 goto out;
4507 }
4508
4509 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
4510
4511 out:
4512 if (err)
4513 bdi_destroy(&cgroup_backing_dev_info);
4514
4515 return err;
4516 }
4517
4518 /*
4519 * proc_cgroup_show()
4520 * - Print task's cgroup paths into seq_file, one line for each hierarchy
4521 * - Used for /proc/<pid>/cgroup.
4522 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
4523 * doesn't really matter if tsk->cgroup changes after we read it,
4524 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
4525 * anyway. No need to check that tsk->cgroup != NULL, thanks to
4526 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
4527 * cgroup to top_cgroup.
4528 */
4529
4530 /* TODO: Use a proper seq_file iterator */
4531 static int proc_cgroup_show(struct seq_file *m, void *v)
4532 {
4533 struct pid *pid;
4534 struct task_struct *tsk;
4535 char *buf;
4536 int retval;
4537 struct cgroupfs_root *root;
4538
4539 retval = -ENOMEM;
4540 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4541 if (!buf)
4542 goto out;
4543
4544 retval = -ESRCH;
4545 pid = m->private;
4546 tsk = get_pid_task(pid, PIDTYPE_PID);
4547 if (!tsk)
4548 goto out_free;
4549
4550 retval = 0;
4551
4552 mutex_lock(&cgroup_mutex);
4553
4554 for_each_active_root(root) {
4555 struct cgroup_subsys *ss;
4556 struct cgroup *cgrp;
4557 int count = 0;
4558
4559 seq_printf(m, "%d:", root->hierarchy_id);
4560 for_each_subsys(root, ss)
4561 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
4562 if (strlen(root->name))
4563 seq_printf(m, "%sname=%s", count ? "," : "",
4564 root->name);
4565 seq_putc(m, ':');
4566 cgrp = task_cgroup_from_root(tsk, root);
4567 retval = cgroup_path(cgrp, buf, PAGE_SIZE);
4568 if (retval < 0)
4569 goto out_unlock;
4570 seq_puts(m, buf);
4571 seq_putc(m, '\n');
4572 }
4573
4574 out_unlock:
4575 mutex_unlock(&cgroup_mutex);
4576 put_task_struct(tsk);
4577 out_free:
4578 kfree(buf);
4579 out:
4580 return retval;
4581 }
4582
4583 static int cgroup_open(struct inode *inode, struct file *file)
4584 {
4585 struct pid *pid = PROC_I(inode)->pid;
4586 return single_open(file, proc_cgroup_show, pid);
4587 }
4588
4589 const struct file_operations proc_cgroup_operations = {
4590 .open = cgroup_open,
4591 .read = seq_read,
4592 .llseek = seq_lseek,
4593 .release = single_release,
4594 };
4595
4596 /* Display information about each subsystem and each hierarchy */
4597 static int proc_cgroupstats_show(struct seq_file *m, void *v)
4598 {
4599 int i;
4600
4601 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
4602 /*
4603 * ideally we don't want subsystems moving around while we do this.
4604 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
4605 * subsys/hierarchy state.
4606 */
4607 mutex_lock(&cgroup_mutex);
4608 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4609 struct cgroup_subsys *ss = subsys[i];
4610 if (ss == NULL)
4611 continue;
4612 seq_printf(m, "%s\t%d\t%d\t%d\n",
4613 ss->name, ss->root->hierarchy_id,
4614 ss->root->number_of_cgroups, !ss->disabled);
4615 }
4616 mutex_unlock(&cgroup_mutex);
4617 return 0;
4618 }
4619
4620 static int cgroupstats_open(struct inode *inode, struct file *file)
4621 {
4622 return single_open(file, proc_cgroupstats_show, NULL);
4623 }
4624
4625 static const struct file_operations proc_cgroupstats_operations = {
4626 .open = cgroupstats_open,
4627 .read = seq_read,
4628 .llseek = seq_lseek,
4629 .release = single_release,
4630 };
4631
4632 /**
4633 * cgroup_fork - attach newly forked task to its parents cgroup.
4634 * @child: pointer to task_struct of forking parent process.
4635 *
4636 * Description: A task inherits its parent's cgroup at fork().
4637 *
4638 * A pointer to the shared css_set was automatically copied in
4639 * fork.c by dup_task_struct(). However, we ignore that copy, since
4640 * it was not made under the protection of RCU, cgroup_mutex or
4641 * threadgroup_change_begin(), so it might no longer be a valid
4642 * cgroup pointer. cgroup_attach_task() might have already changed
4643 * current->cgroups, allowing the previously referenced cgroup
4644 * group to be removed and freed.
4645 *
4646 * Outside the pointer validity we also need to process the css_set
4647 * inheritance between threadgoup_change_begin() and
4648 * threadgoup_change_end(), this way there is no leak in any process
4649 * wide migration performed by cgroup_attach_proc() that could otherwise
4650 * miss a thread because it is too early or too late in the fork stage.
4651 *
4652 * At the point that cgroup_fork() is called, 'current' is the parent
4653 * task, and the passed argument 'child' points to the child task.
4654 */
4655 void cgroup_fork(struct task_struct *child)
4656 {
4657 /*
4658 * We don't need to task_lock() current because current->cgroups
4659 * can't be changed concurrently here. The parent obviously hasn't
4660 * exited and called cgroup_exit(), and we are synchronized against
4661 * cgroup migration through threadgroup_change_begin().
4662 */
4663 child->cgroups = current->cgroups;
4664 get_css_set(child->cgroups);
4665 INIT_LIST_HEAD(&child->cg_list);
4666 }
4667
4668 /**
4669 * cgroup_fork_callbacks - run fork callbacks
4670 * @child: the new task
4671 *
4672 * Called on a new task very soon before adding it to the
4673 * tasklist. No need to take any locks since no-one can
4674 * be operating on this task.
4675 */
4676 void cgroup_fork_callbacks(struct task_struct *child)
4677 {
4678 if (need_forkexit_callback) {
4679 int i;
4680 /*
4681 * forkexit callbacks are only supported for builtin
4682 * subsystems, and the builtin section of the subsys array is
4683 * immutable, so we don't need to lock the subsys array here.
4684 */
4685 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4686 struct cgroup_subsys *ss = subsys[i];
4687 if (ss->fork)
4688 ss->fork(child);
4689 }
4690 }
4691 }
4692
4693 /**
4694 * cgroup_post_fork - called on a new task after adding it to the task list
4695 * @child: the task in question
4696 *
4697 * Adds the task to the list running through its css_set if necessary.
4698 * Has to be after the task is visible on the task list in case we race
4699 * with the first call to cgroup_iter_start() - to guarantee that the
4700 * new task ends up on its list.
4701 */
4702 void cgroup_post_fork(struct task_struct *child)
4703 {
4704 /*
4705 * use_task_css_set_links is set to 1 before we walk the tasklist
4706 * under the tasklist_lock and we read it here after we added the child
4707 * to the tasklist under the tasklist_lock as well. If the child wasn't
4708 * yet in the tasklist when we walked through it from
4709 * cgroup_enable_task_cg_lists(), then use_task_css_set_links value
4710 * should be visible now due to the paired locking and barriers implied
4711 * by LOCK/UNLOCK: it is written before the tasklist_lock unlock
4712 * in cgroup_enable_task_cg_lists() and read here after the tasklist_lock
4713 * lock on fork.
4714 */
4715 if (use_task_css_set_links) {
4716 write_lock(&css_set_lock);
4717 if (list_empty(&child->cg_list)) {
4718 /*
4719 * It's safe to use child->cgroups without task_lock()
4720 * here because we are protected through
4721 * threadgroup_change_begin() against concurrent
4722 * css_set change in cgroup_task_migrate(). Also
4723 * the task can't exit at that point until
4724 * wake_up_new_task() is called, so we are protected
4725 * against cgroup_exit() setting child->cgroup to
4726 * init_css_set.
4727 */
4728 list_add(&child->cg_list, &child->cgroups->tasks);
4729 }
4730 write_unlock(&css_set_lock);
4731 }
4732 }
4733 /**
4734 * cgroup_exit - detach cgroup from exiting task
4735 * @tsk: pointer to task_struct of exiting process
4736 * @run_callback: run exit callbacks?
4737 *
4738 * Description: Detach cgroup from @tsk and release it.
4739 *
4740 * Note that cgroups marked notify_on_release force every task in
4741 * them to take the global cgroup_mutex mutex when exiting.
4742 * This could impact scaling on very large systems. Be reluctant to
4743 * use notify_on_release cgroups where very high task exit scaling
4744 * is required on large systems.
4745 *
4746 * the_top_cgroup_hack:
4747 *
4748 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
4749 *
4750 * We call cgroup_exit() while the task is still competent to
4751 * handle notify_on_release(), then leave the task attached to the
4752 * root cgroup in each hierarchy for the remainder of its exit.
4753 *
4754 * To do this properly, we would increment the reference count on
4755 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
4756 * code we would add a second cgroup function call, to drop that
4757 * reference. This would just create an unnecessary hot spot on
4758 * the top_cgroup reference count, to no avail.
4759 *
4760 * Normally, holding a reference to a cgroup without bumping its
4761 * count is unsafe. The cgroup could go away, or someone could
4762 * attach us to a different cgroup, decrementing the count on
4763 * the first cgroup that we never incremented. But in this case,
4764 * top_cgroup isn't going away, and either task has PF_EXITING set,
4765 * which wards off any cgroup_attach_task() attempts, or task is a failed
4766 * fork, never visible to cgroup_attach_task.
4767 */
4768 void cgroup_exit(struct task_struct *tsk, int run_callbacks)
4769 {
4770 struct css_set *cg;
4771 int i;
4772
4773 /*
4774 * Unlink from the css_set task list if necessary.
4775 * Optimistically check cg_list before taking
4776 * css_set_lock
4777 */
4778 if (!list_empty(&tsk->cg_list)) {
4779 write_lock(&css_set_lock);
4780 if (!list_empty(&tsk->cg_list))
4781 list_del_init(&tsk->cg_list);
4782 write_unlock(&css_set_lock);
4783 }
4784
4785 /* Reassign the task to the init_css_set. */
4786 task_lock(tsk);
4787 cg = tsk->cgroups;
4788 tsk->cgroups = &init_css_set;
4789
4790 if (run_callbacks && need_forkexit_callback) {
4791 /*
4792 * modular subsystems can't use callbacks, so no need to lock
4793 * the subsys array
4794 */
4795 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4796 struct cgroup_subsys *ss = subsys[i];
4797 if (ss->exit) {
4798 struct cgroup *old_cgrp =
4799 rcu_dereference_raw(cg->subsys[i])->cgroup;
4800 struct cgroup *cgrp = task_cgroup(tsk, i);
4801 ss->exit(cgrp, old_cgrp, tsk);
4802 }
4803 }
4804 }
4805 task_unlock(tsk);
4806
4807 if (cg)
4808 put_css_set_taskexit(cg);
4809 }
4810
4811 /**
4812 * cgroup_is_descendant - see if @cgrp is a descendant of @task's cgrp
4813 * @cgrp: the cgroup in question
4814 * @task: the task in question
4815 *
4816 * See if @cgrp is a descendant of @task's cgroup in the appropriate
4817 * hierarchy.
4818 *
4819 * If we are sending in dummytop, then presumably we are creating
4820 * the top cgroup in the subsystem.
4821 *
4822 * Called only by the ns (nsproxy) cgroup.
4823 */
4824 int cgroup_is_descendant(const struct cgroup *cgrp, struct task_struct *task)
4825 {
4826 int ret;
4827 struct cgroup *target;
4828
4829 if (cgrp == dummytop)
4830 return 1;
4831
4832 target = task_cgroup_from_root(task, cgrp->root);
4833 while (cgrp != target && cgrp!= cgrp->top_cgroup)
4834 cgrp = cgrp->parent;
4835 ret = (cgrp == target);
4836 return ret;
4837 }
4838
4839 static void check_for_release(struct cgroup *cgrp)
4840 {
4841 /* All of these checks rely on RCU to keep the cgroup
4842 * structure alive */
4843 if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
4844 && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
4845 /* Control Group is currently removeable. If it's not
4846 * already queued for a userspace notification, queue
4847 * it now */
4848 int need_schedule_work = 0;
4849 raw_spin_lock(&release_list_lock);
4850 if (!cgroup_is_removed(cgrp) &&
4851 list_empty(&cgrp->release_list)) {
4852 list_add(&cgrp->release_list, &release_list);
4853 need_schedule_work = 1;
4854 }
4855 raw_spin_unlock(&release_list_lock);
4856 if (need_schedule_work)
4857 schedule_work(&release_agent_work);
4858 }
4859 }
4860
4861 /* Caller must verify that the css is not for root cgroup */
4862 bool __css_tryget(struct cgroup_subsys_state *css)
4863 {
4864 do {
4865 int v = css_refcnt(css);
4866
4867 if (atomic_cmpxchg(&css->refcnt, v, v + 1) == v)
4868 return true;
4869 cpu_relax();
4870 } while (!test_bit(CSS_REMOVED, &css->flags));
4871
4872 return false;
4873 }
4874 EXPORT_SYMBOL_GPL(__css_tryget);
4875
4876 /* Caller must verify that the css is not for root cgroup */
4877 void __css_put(struct cgroup_subsys_state *css)
4878 {
4879 struct cgroup *cgrp = css->cgroup;
4880 int v;
4881
4882 rcu_read_lock();
4883 v = css_unbias_refcnt(atomic_dec_return(&css->refcnt));
4884
4885 switch (v) {
4886 case 1:
4887 if (notify_on_release(cgrp)) {
4888 set_bit(CGRP_RELEASABLE, &cgrp->flags);
4889 check_for_release(cgrp);
4890 }
4891 cgroup_wakeup_rmdir_waiter(cgrp);
4892 break;
4893 case 0:
4894 schedule_work(&css->dput_work);
4895 break;
4896 }
4897 rcu_read_unlock();
4898 }
4899 EXPORT_SYMBOL_GPL(__css_put);
4900
4901 /*
4902 * Notify userspace when a cgroup is released, by running the
4903 * configured release agent with the name of the cgroup (path
4904 * relative to the root of cgroup file system) as the argument.
4905 *
4906 * Most likely, this user command will try to rmdir this cgroup.
4907 *
4908 * This races with the possibility that some other task will be
4909 * attached to this cgroup before it is removed, or that some other
4910 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
4911 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
4912 * unused, and this cgroup will be reprieved from its death sentence,
4913 * to continue to serve a useful existence. Next time it's released,
4914 * we will get notified again, if it still has 'notify_on_release' set.
4915 *
4916 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
4917 * means only wait until the task is successfully execve()'d. The
4918 * separate release agent task is forked by call_usermodehelper(),
4919 * then control in this thread returns here, without waiting for the
4920 * release agent task. We don't bother to wait because the caller of
4921 * this routine has no use for the exit status of the release agent
4922 * task, so no sense holding our caller up for that.
4923 */
4924 static void cgroup_release_agent(struct work_struct *work)
4925 {
4926 BUG_ON(work != &release_agent_work);
4927 mutex_lock(&cgroup_mutex);
4928 raw_spin_lock(&release_list_lock);
4929 while (!list_empty(&release_list)) {
4930 char *argv[3], *envp[3];
4931 int i;
4932 char *pathbuf = NULL, *agentbuf = NULL;
4933 struct cgroup *cgrp = list_entry(release_list.next,
4934 struct cgroup,
4935 release_list);
4936 list_del_init(&cgrp->release_list);
4937 raw_spin_unlock(&release_list_lock);
4938 pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4939 if (!pathbuf)
4940 goto continue_free;
4941 if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
4942 goto continue_free;
4943 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
4944 if (!agentbuf)
4945 goto continue_free;
4946
4947 i = 0;
4948 argv[i++] = agentbuf;
4949 argv[i++] = pathbuf;
4950 argv[i] = NULL;
4951
4952 i = 0;
4953 /* minimal command environment */
4954 envp[i++] = "HOME=/";
4955 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
4956 envp[i] = NULL;
4957
4958 /* Drop the lock while we invoke the usermode helper,
4959 * since the exec could involve hitting disk and hence
4960 * be a slow process */
4961 mutex_unlock(&cgroup_mutex);
4962 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
4963 mutex_lock(&cgroup_mutex);
4964 continue_free:
4965 kfree(pathbuf);
4966 kfree(agentbuf);
4967 raw_spin_lock(&release_list_lock);
4968 }
4969 raw_spin_unlock(&release_list_lock);
4970 mutex_unlock(&cgroup_mutex);
4971 }
4972
4973 static int __init cgroup_disable(char *str)
4974 {
4975 int i;
4976 char *token;
4977
4978 while ((token = strsep(&str, ",")) != NULL) {
4979 if (!*token)
4980 continue;
4981 /*
4982 * cgroup_disable, being at boot time, can't know about module
4983 * subsystems, so we don't worry about them.
4984 */
4985 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4986 struct cgroup_subsys *ss = subsys[i];
4987
4988 if (!strcmp(token, ss->name)) {
4989 ss->disabled = 1;
4990 printk(KERN_INFO "Disabling %s control group"
4991 " subsystem\n", ss->name);
4992 break;
4993 }
4994 }
4995 }
4996 return 1;
4997 }
4998 __setup("cgroup_disable=", cgroup_disable);
4999
5000 /*
5001 * Functons for CSS ID.
5002 */
5003
5004 /*
5005 *To get ID other than 0, this should be called when !cgroup_is_removed().
5006 */
5007 unsigned short css_id(struct cgroup_subsys_state *css)
5008 {
5009 struct css_id *cssid;
5010
5011 /*
5012 * This css_id() can return correct value when somone has refcnt
5013 * on this or this is under rcu_read_lock(). Once css->id is allocated,
5014 * it's unchanged until freed.
5015 */
5016 cssid = rcu_dereference_check(css->id, css_refcnt(css));
5017
5018 if (cssid)
5019 return cssid->id;
5020 return 0;
5021 }
5022 EXPORT_SYMBOL_GPL(css_id);
5023
5024 unsigned short css_depth(struct cgroup_subsys_state *css)
5025 {
5026 struct css_id *cssid;
5027
5028 cssid = rcu_dereference_check(css->id, css_refcnt(css));
5029
5030 if (cssid)
5031 return cssid->depth;
5032 return 0;
5033 }
5034 EXPORT_SYMBOL_GPL(css_depth);
5035
5036 /**
5037 * css_is_ancestor - test "root" css is an ancestor of "child"
5038 * @child: the css to be tested.
5039 * @root: the css supporsed to be an ancestor of the child.
5040 *
5041 * Returns true if "root" is an ancestor of "child" in its hierarchy. Because
5042 * this function reads css->id, the caller must hold rcu_read_lock().
5043 * But, considering usual usage, the csses should be valid objects after test.
5044 * Assuming that the caller will do some action to the child if this returns
5045 * returns true, the caller must take "child";s reference count.
5046 * If "child" is valid object and this returns true, "root" is valid, too.
5047 */
5048
5049 bool css_is_ancestor(struct cgroup_subsys_state *child,
5050 const struct cgroup_subsys_state *root)
5051 {
5052 struct css_id *child_id;
5053 struct css_id *root_id;
5054
5055 child_id = rcu_dereference(child->id);
5056 if (!child_id)
5057 return false;
5058 root_id = rcu_dereference(root->id);
5059 if (!root_id)
5060 return false;
5061 if (child_id->depth < root_id->depth)
5062 return false;
5063 if (child_id->stack[root_id->depth] != root_id->id)
5064 return false;
5065 return true;
5066 }
5067
5068 void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
5069 {
5070 struct css_id *id = css->id;
5071 /* When this is called before css_id initialization, id can be NULL */
5072 if (!id)
5073 return;
5074
5075 BUG_ON(!ss->use_id);
5076
5077 rcu_assign_pointer(id->css, NULL);
5078 rcu_assign_pointer(css->id, NULL);
5079 spin_lock(&ss->id_lock);
5080 idr_remove(&ss->idr, id->id);
5081 spin_unlock(&ss->id_lock);
5082 kfree_rcu(id, rcu_head);
5083 }
5084 EXPORT_SYMBOL_GPL(free_css_id);
5085
5086 /*
5087 * This is called by init or create(). Then, calls to this function are
5088 * always serialized (By cgroup_mutex() at create()).
5089 */
5090
5091 static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
5092 {
5093 struct css_id *newid;
5094 int myid, error, size;
5095
5096 BUG_ON(!ss->use_id);
5097
5098 size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
5099 newid = kzalloc(size, GFP_KERNEL);
5100 if (!newid)
5101 return ERR_PTR(-ENOMEM);
5102 /* get id */
5103 if (unlikely(!idr_pre_get(&ss->idr, GFP_KERNEL))) {
5104 error = -ENOMEM;
5105 goto err_out;
5106 }
5107 spin_lock(&ss->id_lock);
5108 /* Don't use 0. allocates an ID of 1-65535 */
5109 error = idr_get_new_above(&ss->idr, newid, 1, &myid);
5110 spin_unlock(&ss->id_lock);
5111
5112 /* Returns error when there are no free spaces for new ID.*/
5113 if (error) {
5114 error = -ENOSPC;
5115 goto err_out;
5116 }
5117 if (myid > CSS_ID_MAX)
5118 goto remove_idr;
5119
5120 newid->id = myid;
5121 newid->depth = depth;
5122 return newid;
5123 remove_idr:
5124 error = -ENOSPC;
5125 spin_lock(&ss->id_lock);
5126 idr_remove(&ss->idr, myid);
5127 spin_unlock(&ss->id_lock);
5128 err_out:
5129 kfree(newid);
5130 return ERR_PTR(error);
5131
5132 }
5133
5134 static int __init_or_module cgroup_init_idr(struct cgroup_subsys *ss,
5135 struct cgroup_subsys_state *rootcss)
5136 {
5137 struct css_id *newid;
5138
5139 spin_lock_init(&ss->id_lock);
5140 idr_init(&ss->idr);
5141
5142 newid = get_new_cssid(ss, 0);
5143 if (IS_ERR(newid))
5144 return PTR_ERR(newid);
5145
5146 newid->stack[0] = newid->id;
5147 newid->css = rootcss;
5148 rootcss->id = newid;
5149 return 0;
5150 }
5151
5152 static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
5153 struct cgroup *child)
5154 {
5155 int subsys_id, i, depth = 0;
5156 struct cgroup_subsys_state *parent_css, *child_css;
5157 struct css_id *child_id, *parent_id;
5158
5159 subsys_id = ss->subsys_id;
5160 parent_css = parent->subsys[subsys_id];
5161 child_css = child->subsys[subsys_id];
5162 parent_id = parent_css->id;
5163 depth = parent_id->depth + 1;
5164
5165 child_id = get_new_cssid(ss, depth);
5166 if (IS_ERR(child_id))
5167 return PTR_ERR(child_id);
5168
5169 for (i = 0; i < depth; i++)
5170 child_id->stack[i] = parent_id->stack[i];
5171 child_id->stack[depth] = child_id->id;
5172 /*
5173 * child_id->css pointer will be set after this cgroup is available
5174 * see cgroup_populate_dir()
5175 */
5176 rcu_assign_pointer(child_css->id, child_id);
5177
5178 return 0;
5179 }
5180
5181 /**
5182 * css_lookup - lookup css by id
5183 * @ss: cgroup subsys to be looked into.
5184 * @id: the id
5185 *
5186 * Returns pointer to cgroup_subsys_state if there is valid one with id.
5187 * NULL if not. Should be called under rcu_read_lock()
5188 */
5189 struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
5190 {
5191 struct css_id *cssid = NULL;
5192
5193 BUG_ON(!ss->use_id);
5194 cssid = idr_find(&ss->idr, id);
5195
5196 if (unlikely(!cssid))
5197 return NULL;
5198
5199 return rcu_dereference(cssid->css);
5200 }
5201 EXPORT_SYMBOL_GPL(css_lookup);
5202
5203 /**
5204 * css_get_next - lookup next cgroup under specified hierarchy.
5205 * @ss: pointer to subsystem
5206 * @id: current position of iteration.
5207 * @root: pointer to css. search tree under this.
5208 * @foundid: position of found object.
5209 *
5210 * Search next css under the specified hierarchy of rootid. Calling under
5211 * rcu_read_lock() is necessary. Returns NULL if it reaches the end.
5212 */
5213 struct cgroup_subsys_state *
5214 css_get_next(struct cgroup_subsys *ss, int id,
5215 struct cgroup_subsys_state *root, int *foundid)
5216 {
5217 struct cgroup_subsys_state *ret = NULL;
5218 struct css_id *tmp;
5219 int tmpid;
5220 int rootid = css_id(root);
5221 int depth = css_depth(root);
5222
5223 if (!rootid)
5224 return NULL;
5225
5226 BUG_ON(!ss->use_id);
5227 WARN_ON_ONCE(!rcu_read_lock_held());
5228
5229 /* fill start point for scan */
5230 tmpid = id;
5231 while (1) {
5232 /*
5233 * scan next entry from bitmap(tree), tmpid is updated after
5234 * idr_get_next().
5235 */
5236 tmp = idr_get_next(&ss->idr, &tmpid);
5237 if (!tmp)
5238 break;
5239 if (tmp->depth >= depth && tmp->stack[depth] == rootid) {
5240 ret = rcu_dereference(tmp->css);
5241 if (ret) {
5242 *foundid = tmpid;
5243 break;
5244 }
5245 }
5246 /* continue to scan from next id */
5247 tmpid = tmpid + 1;
5248 }
5249 return ret;
5250 }
5251
5252 /*
5253 * get corresponding css from file open on cgroupfs directory
5254 */
5255 struct cgroup_subsys_state *cgroup_css_from_dir(struct file *f, int id)
5256 {
5257 struct cgroup *cgrp;
5258 struct inode *inode;
5259 struct cgroup_subsys_state *css;
5260
5261 inode = f->f_dentry->d_inode;
5262 /* check in cgroup filesystem dir */
5263 if (inode->i_op != &cgroup_dir_inode_operations)
5264 return ERR_PTR(-EBADF);
5265
5266 if (id < 0 || id >= CGROUP_SUBSYS_COUNT)
5267 return ERR_PTR(-EINVAL);
5268
5269 /* get cgroup */
5270 cgrp = __d_cgrp(f->f_dentry);
5271 css = cgrp->subsys[id];
5272 return css ? css : ERR_PTR(-ENOENT);
5273 }
5274
5275 #ifdef CONFIG_CGROUP_DEBUG
5276 static struct cgroup_subsys_state *debug_create(struct cgroup *cont)
5277 {
5278 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5279
5280 if (!css)
5281 return ERR_PTR(-ENOMEM);
5282
5283 return css;
5284 }
5285
5286 static void debug_destroy(struct cgroup *cont)
5287 {
5288 kfree(cont->subsys[debug_subsys_id]);
5289 }
5290
5291 static u64 cgroup_refcount_read(struct cgroup *cont, struct cftype *cft)
5292 {
5293 return atomic_read(&cont->count);
5294 }
5295
5296 static u64 debug_taskcount_read(struct cgroup *cont, struct cftype *cft)
5297 {
5298 return cgroup_task_count(cont);
5299 }
5300
5301 static u64 current_css_set_read(struct cgroup *cont, struct cftype *cft)
5302 {
5303 return (u64)(unsigned long)current->cgroups;
5304 }
5305
5306 static u64 current_css_set_refcount_read(struct cgroup *cont,
5307 struct cftype *cft)
5308 {
5309 u64 count;
5310
5311 rcu_read_lock();
5312 count = atomic_read(&current->cgroups->refcount);
5313 rcu_read_unlock();
5314 return count;
5315 }
5316
5317 static int current_css_set_cg_links_read(struct cgroup *cont,
5318 struct cftype *cft,
5319 struct seq_file *seq)
5320 {
5321 struct cg_cgroup_link *link;
5322 struct css_set *cg;
5323
5324 read_lock(&css_set_lock);
5325 rcu_read_lock();
5326 cg = rcu_dereference(current->cgroups);
5327 list_for_each_entry(link, &cg->cg_links, cg_link_list) {
5328 struct cgroup *c = link->cgrp;
5329 const char *name;
5330
5331 if (c->dentry)
5332 name = c->dentry->d_name.name;
5333 else
5334 name = "?";
5335 seq_printf(seq, "Root %d group %s\n",
5336 c->root->hierarchy_id, name);
5337 }
5338 rcu_read_unlock();
5339 read_unlock(&css_set_lock);
5340 return 0;
5341 }
5342
5343 #define MAX_TASKS_SHOWN_PER_CSS 25
5344 static int cgroup_css_links_read(struct cgroup *cont,
5345 struct cftype *cft,
5346 struct seq_file *seq)
5347 {
5348 struct cg_cgroup_link *link;
5349
5350 read_lock(&css_set_lock);
5351 list_for_each_entry(link, &cont->css_sets, cgrp_link_list) {
5352 struct css_set *cg = link->cg;
5353 struct task_struct *task;
5354 int count = 0;
5355 seq_printf(seq, "css_set %p\n", cg);
5356 list_for_each_entry(task, &cg->tasks, cg_list) {
5357 if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
5358 seq_puts(seq, " ...\n");
5359 break;
5360 } else {
5361 seq_printf(seq, " task %d\n",
5362 task_pid_vnr(task));
5363 }
5364 }
5365 }
5366 read_unlock(&css_set_lock);
5367 return 0;
5368 }
5369
5370 static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft)
5371 {
5372 return test_bit(CGRP_RELEASABLE, &cgrp->flags);
5373 }
5374
5375 static struct cftype debug_files[] = {
5376 {
5377 .name = "cgroup_refcount",
5378 .read_u64 = cgroup_refcount_read,
5379 },
5380 {
5381 .name = "taskcount",
5382 .read_u64 = debug_taskcount_read,
5383 },
5384
5385 {
5386 .name = "current_css_set",
5387 .read_u64 = current_css_set_read,
5388 },
5389
5390 {
5391 .name = "current_css_set_refcount",
5392 .read_u64 = current_css_set_refcount_read,
5393 },
5394
5395 {
5396 .name = "current_css_set_cg_links",
5397 .read_seq_string = current_css_set_cg_links_read,
5398 },
5399
5400 {
5401 .name = "cgroup_css_links",
5402 .read_seq_string = cgroup_css_links_read,
5403 },
5404
5405 {
5406 .name = "releasable",
5407 .read_u64 = releasable_read,
5408 },
5409
5410 { } /* terminate */
5411 };
5412
5413 struct cgroup_subsys debug_subsys = {
5414 .name = "debug",
5415 .create = debug_create,
5416 .destroy = debug_destroy,
5417 .subsys_id = debug_subsys_id,
5418 .base_cftypes = debug_files,
5419 };
5420 #endif /* CONFIG_CGROUP_DEBUG */
This page took 0.138878 seconds and 4 git commands to generate.