tty: serial: 8250_core: remove UART_IER_RDI in serial8250_stop_rx()
[deliverable/linux.git] / kernel / cgroup.c
1 /*
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/cgroup.h>
32 #include <linux/cred.h>
33 #include <linux/ctype.h>
34 #include <linux/errno.h>
35 #include <linux/init_task.h>
36 #include <linux/kernel.h>
37 #include <linux/list.h>
38 #include <linux/magic.h>
39 #include <linux/mm.h>
40 #include <linux/mutex.h>
41 #include <linux/mount.h>
42 #include <linux/pagemap.h>
43 #include <linux/proc_fs.h>
44 #include <linux/rcupdate.h>
45 #include <linux/sched.h>
46 #include <linux/slab.h>
47 #include <linux/spinlock.h>
48 #include <linux/rwsem.h>
49 #include <linux/string.h>
50 #include <linux/sort.h>
51 #include <linux/kmod.h>
52 #include <linux/delayacct.h>
53 #include <linux/cgroupstats.h>
54 #include <linux/hashtable.h>
55 #include <linux/pid_namespace.h>
56 #include <linux/idr.h>
57 #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
58 #include <linux/kthread.h>
59 #include <linux/delay.h>
60
61 #include <linux/atomic.h>
62
63 /*
64 * pidlists linger the following amount before being destroyed. The goal
65 * is avoiding frequent destruction in the middle of consecutive read calls
66 * Expiring in the middle is a performance problem not a correctness one.
67 * 1 sec should be enough.
68 */
69 #define CGROUP_PIDLIST_DESTROY_DELAY HZ
70
71 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
72 MAX_CFTYPE_NAME + 2)
73
74 /*
75 * cgroup_mutex is the master lock. Any modification to cgroup or its
76 * hierarchy must be performed while holding it.
77 *
78 * css_set_rwsem protects task->cgroups pointer, the list of css_set
79 * objects, and the chain of tasks off each css_set.
80 *
81 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
82 * cgroup.h can use them for lockdep annotations.
83 */
84 #ifdef CONFIG_PROVE_RCU
85 DEFINE_MUTEX(cgroup_mutex);
86 DECLARE_RWSEM(css_set_rwsem);
87 EXPORT_SYMBOL_GPL(cgroup_mutex);
88 EXPORT_SYMBOL_GPL(css_set_rwsem);
89 #else
90 static DEFINE_MUTEX(cgroup_mutex);
91 static DECLARE_RWSEM(css_set_rwsem);
92 #endif
93
94 /*
95 * Protects cgroup_idr and css_idr so that IDs can be released without
96 * grabbing cgroup_mutex.
97 */
98 static DEFINE_SPINLOCK(cgroup_idr_lock);
99
100 /*
101 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
102 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
103 */
104 static DEFINE_SPINLOCK(release_agent_path_lock);
105
106 #define cgroup_assert_mutex_or_rcu_locked() \
107 rcu_lockdep_assert(rcu_read_lock_held() || \
108 lockdep_is_held(&cgroup_mutex), \
109 "cgroup_mutex or RCU read lock required");
110
111 /*
112 * cgroup destruction makes heavy use of work items and there can be a lot
113 * of concurrent destructions. Use a separate workqueue so that cgroup
114 * destruction work items don't end up filling up max_active of system_wq
115 * which may lead to deadlock.
116 */
117 static struct workqueue_struct *cgroup_destroy_wq;
118
119 /*
120 * pidlist destructions need to be flushed on cgroup destruction. Use a
121 * separate workqueue as flush domain.
122 */
123 static struct workqueue_struct *cgroup_pidlist_destroy_wq;
124
125 /* generate an array of cgroup subsystem pointers */
126 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
127 static struct cgroup_subsys *cgroup_subsys[] = {
128 #include <linux/cgroup_subsys.h>
129 };
130 #undef SUBSYS
131
132 /* array of cgroup subsystem names */
133 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
134 static const char *cgroup_subsys_name[] = {
135 #include <linux/cgroup_subsys.h>
136 };
137 #undef SUBSYS
138
139 /*
140 * The default hierarchy, reserved for the subsystems that are otherwise
141 * unattached - it never has more than a single cgroup, and all tasks are
142 * part of that cgroup.
143 */
144 struct cgroup_root cgrp_dfl_root;
145
146 /*
147 * The default hierarchy always exists but is hidden until mounted for the
148 * first time. This is for backward compatibility.
149 */
150 static bool cgrp_dfl_root_visible;
151
152 /*
153 * Set by the boot param of the same name and makes subsystems with NULL
154 * ->dfl_files to use ->legacy_files on the default hierarchy.
155 */
156 static bool cgroup_legacy_files_on_dfl;
157
158 /* some controllers are not supported in the default hierarchy */
159 static unsigned int cgrp_dfl_root_inhibit_ss_mask;
160
161 /* The list of hierarchy roots */
162
163 static LIST_HEAD(cgroup_roots);
164 static int cgroup_root_count;
165
166 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
167 static DEFINE_IDR(cgroup_hierarchy_idr);
168
169 /*
170 * Assign a monotonically increasing serial number to csses. It guarantees
171 * cgroups with bigger numbers are newer than those with smaller numbers.
172 * Also, as csses are always appended to the parent's ->children list, it
173 * guarantees that sibling csses are always sorted in the ascending serial
174 * number order on the list. Protected by cgroup_mutex.
175 */
176 static u64 css_serial_nr_next = 1;
177
178 /* This flag indicates whether tasks in the fork and exit paths should
179 * check for fork/exit handlers to call. This avoids us having to do
180 * extra work in the fork/exit path if none of the subsystems need to
181 * be called.
182 */
183 static int need_forkexit_callback __read_mostly;
184
185 static struct cftype cgroup_dfl_base_files[];
186 static struct cftype cgroup_legacy_base_files[];
187
188 static void cgroup_put(struct cgroup *cgrp);
189 static int rebind_subsystems(struct cgroup_root *dst_root,
190 unsigned int ss_mask);
191 static int cgroup_destroy_locked(struct cgroup *cgrp);
192 static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
193 bool visible);
194 static void css_release(struct percpu_ref *ref);
195 static void kill_css(struct cgroup_subsys_state *css);
196 static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
197 bool is_add);
198 static void cgroup_pidlist_destroy_all(struct cgroup *cgrp);
199
200 /* IDR wrappers which synchronize using cgroup_idr_lock */
201 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
202 gfp_t gfp_mask)
203 {
204 int ret;
205
206 idr_preload(gfp_mask);
207 spin_lock_bh(&cgroup_idr_lock);
208 ret = idr_alloc(idr, ptr, start, end, gfp_mask);
209 spin_unlock_bh(&cgroup_idr_lock);
210 idr_preload_end();
211 return ret;
212 }
213
214 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
215 {
216 void *ret;
217
218 spin_lock_bh(&cgroup_idr_lock);
219 ret = idr_replace(idr, ptr, id);
220 spin_unlock_bh(&cgroup_idr_lock);
221 return ret;
222 }
223
224 static void cgroup_idr_remove(struct idr *idr, int id)
225 {
226 spin_lock_bh(&cgroup_idr_lock);
227 idr_remove(idr, id);
228 spin_unlock_bh(&cgroup_idr_lock);
229 }
230
231 static struct cgroup *cgroup_parent(struct cgroup *cgrp)
232 {
233 struct cgroup_subsys_state *parent_css = cgrp->self.parent;
234
235 if (parent_css)
236 return container_of(parent_css, struct cgroup, self);
237 return NULL;
238 }
239
240 /**
241 * cgroup_css - obtain a cgroup's css for the specified subsystem
242 * @cgrp: the cgroup of interest
243 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
244 *
245 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
246 * function must be called either under cgroup_mutex or rcu_read_lock() and
247 * the caller is responsible for pinning the returned css if it wants to
248 * keep accessing it outside the said locks. This function may return
249 * %NULL if @cgrp doesn't have @subsys_id enabled.
250 */
251 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
252 struct cgroup_subsys *ss)
253 {
254 if (ss)
255 return rcu_dereference_check(cgrp->subsys[ss->id],
256 lockdep_is_held(&cgroup_mutex));
257 else
258 return &cgrp->self;
259 }
260
261 /**
262 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
263 * @cgrp: the cgroup of interest
264 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
265 *
266 * Similar to cgroup_css() but returns the effctive css, which is defined
267 * as the matching css of the nearest ancestor including self which has @ss
268 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
269 * function is guaranteed to return non-NULL css.
270 */
271 static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
272 struct cgroup_subsys *ss)
273 {
274 lockdep_assert_held(&cgroup_mutex);
275
276 if (!ss)
277 return &cgrp->self;
278
279 if (!(cgrp->root->subsys_mask & (1 << ss->id)))
280 return NULL;
281
282 while (cgroup_parent(cgrp) &&
283 !(cgroup_parent(cgrp)->child_subsys_mask & (1 << ss->id)))
284 cgrp = cgroup_parent(cgrp);
285
286 return cgroup_css(cgrp, ss);
287 }
288
289 /* convenient tests for these bits */
290 static inline bool cgroup_is_dead(const struct cgroup *cgrp)
291 {
292 return !(cgrp->self.flags & CSS_ONLINE);
293 }
294
295 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
296 {
297 struct cgroup *cgrp = of->kn->parent->priv;
298 struct cftype *cft = of_cft(of);
299
300 /*
301 * This is open and unprotected implementation of cgroup_css().
302 * seq_css() is only called from a kernfs file operation which has
303 * an active reference on the file. Because all the subsystem
304 * files are drained before a css is disassociated with a cgroup,
305 * the matching css from the cgroup's subsys table is guaranteed to
306 * be and stay valid until the enclosing operation is complete.
307 */
308 if (cft->ss)
309 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
310 else
311 return &cgrp->self;
312 }
313 EXPORT_SYMBOL_GPL(of_css);
314
315 /**
316 * cgroup_is_descendant - test ancestry
317 * @cgrp: the cgroup to be tested
318 * @ancestor: possible ancestor of @cgrp
319 *
320 * Test whether @cgrp is a descendant of @ancestor. It also returns %true
321 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
322 * and @ancestor are accessible.
323 */
324 bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
325 {
326 while (cgrp) {
327 if (cgrp == ancestor)
328 return true;
329 cgrp = cgroup_parent(cgrp);
330 }
331 return false;
332 }
333
334 static int cgroup_is_releasable(const struct cgroup *cgrp)
335 {
336 const int bits =
337 (1 << CGRP_RELEASABLE) |
338 (1 << CGRP_NOTIFY_ON_RELEASE);
339 return (cgrp->flags & bits) == bits;
340 }
341
342 static int notify_on_release(const struct cgroup *cgrp)
343 {
344 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
345 }
346
347 /**
348 * for_each_css - iterate all css's of a cgroup
349 * @css: the iteration cursor
350 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
351 * @cgrp: the target cgroup to iterate css's of
352 *
353 * Should be called under cgroup_[tree_]mutex.
354 */
355 #define for_each_css(css, ssid, cgrp) \
356 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
357 if (!((css) = rcu_dereference_check( \
358 (cgrp)->subsys[(ssid)], \
359 lockdep_is_held(&cgroup_mutex)))) { } \
360 else
361
362 /**
363 * for_each_e_css - iterate all effective css's of a cgroup
364 * @css: the iteration cursor
365 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
366 * @cgrp: the target cgroup to iterate css's of
367 *
368 * Should be called under cgroup_[tree_]mutex.
369 */
370 #define for_each_e_css(css, ssid, cgrp) \
371 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
372 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
373 ; \
374 else
375
376 /**
377 * for_each_subsys - iterate all enabled cgroup subsystems
378 * @ss: the iteration cursor
379 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
380 */
381 #define for_each_subsys(ss, ssid) \
382 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
383 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
384
385 /* iterate across the hierarchies */
386 #define for_each_root(root) \
387 list_for_each_entry((root), &cgroup_roots, root_list)
388
389 /* iterate over child cgrps, lock should be held throughout iteration */
390 #define cgroup_for_each_live_child(child, cgrp) \
391 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
392 if (({ lockdep_assert_held(&cgroup_mutex); \
393 cgroup_is_dead(child); })) \
394 ; \
395 else
396
397 /* the list of cgroups eligible for automatic release. Protected by
398 * release_list_lock */
399 static LIST_HEAD(release_list);
400 static DEFINE_RAW_SPINLOCK(release_list_lock);
401 static void cgroup_release_agent(struct work_struct *work);
402 static DECLARE_WORK(release_agent_work, cgroup_release_agent);
403 static void check_for_release(struct cgroup *cgrp);
404
405 /*
406 * A cgroup can be associated with multiple css_sets as different tasks may
407 * belong to different cgroups on different hierarchies. In the other
408 * direction, a css_set is naturally associated with multiple cgroups.
409 * This M:N relationship is represented by the following link structure
410 * which exists for each association and allows traversing the associations
411 * from both sides.
412 */
413 struct cgrp_cset_link {
414 /* the cgroup and css_set this link associates */
415 struct cgroup *cgrp;
416 struct css_set *cset;
417
418 /* list of cgrp_cset_links anchored at cgrp->cset_links */
419 struct list_head cset_link;
420
421 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
422 struct list_head cgrp_link;
423 };
424
425 /*
426 * The default css_set - used by init and its children prior to any
427 * hierarchies being mounted. It contains a pointer to the root state
428 * for each subsystem. Also used to anchor the list of css_sets. Not
429 * reference-counted, to improve performance when child cgroups
430 * haven't been created.
431 */
432 struct css_set init_css_set = {
433 .refcount = ATOMIC_INIT(1),
434 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
435 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
436 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
437 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
438 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
439 };
440
441 static int css_set_count = 1; /* 1 for init_css_set */
442
443 /**
444 * cgroup_update_populated - updated populated count of a cgroup
445 * @cgrp: the target cgroup
446 * @populated: inc or dec populated count
447 *
448 * @cgrp is either getting the first task (css_set) or losing the last.
449 * Update @cgrp->populated_cnt accordingly. The count is propagated
450 * towards root so that a given cgroup's populated_cnt is zero iff the
451 * cgroup and all its descendants are empty.
452 *
453 * @cgrp's interface file "cgroup.populated" is zero if
454 * @cgrp->populated_cnt is zero and 1 otherwise. When @cgrp->populated_cnt
455 * changes from or to zero, userland is notified that the content of the
456 * interface file has changed. This can be used to detect when @cgrp and
457 * its descendants become populated or empty.
458 */
459 static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
460 {
461 lockdep_assert_held(&css_set_rwsem);
462
463 do {
464 bool trigger;
465
466 if (populated)
467 trigger = !cgrp->populated_cnt++;
468 else
469 trigger = !--cgrp->populated_cnt;
470
471 if (!trigger)
472 break;
473
474 if (cgrp->populated_kn)
475 kernfs_notify(cgrp->populated_kn);
476 cgrp = cgroup_parent(cgrp);
477 } while (cgrp);
478 }
479
480 /*
481 * hash table for cgroup groups. This improves the performance to find
482 * an existing css_set. This hash doesn't (currently) take into
483 * account cgroups in empty hierarchies.
484 */
485 #define CSS_SET_HASH_BITS 7
486 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
487
488 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
489 {
490 unsigned long key = 0UL;
491 struct cgroup_subsys *ss;
492 int i;
493
494 for_each_subsys(ss, i)
495 key += (unsigned long)css[i];
496 key = (key >> 16) ^ key;
497
498 return key;
499 }
500
501 static void put_css_set_locked(struct css_set *cset, bool taskexit)
502 {
503 struct cgrp_cset_link *link, *tmp_link;
504 struct cgroup_subsys *ss;
505 int ssid;
506
507 lockdep_assert_held(&css_set_rwsem);
508
509 if (!atomic_dec_and_test(&cset->refcount))
510 return;
511
512 /* This css_set is dead. unlink it and release cgroup refcounts */
513 for_each_subsys(ss, ssid)
514 list_del(&cset->e_cset_node[ssid]);
515 hash_del(&cset->hlist);
516 css_set_count--;
517
518 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
519 struct cgroup *cgrp = link->cgrp;
520
521 list_del(&link->cset_link);
522 list_del(&link->cgrp_link);
523
524 /* @cgrp can't go away while we're holding css_set_rwsem */
525 if (list_empty(&cgrp->cset_links)) {
526 cgroup_update_populated(cgrp, false);
527 if (notify_on_release(cgrp)) {
528 if (taskexit)
529 set_bit(CGRP_RELEASABLE, &cgrp->flags);
530 check_for_release(cgrp);
531 }
532 }
533
534 kfree(link);
535 }
536
537 kfree_rcu(cset, rcu_head);
538 }
539
540 static void put_css_set(struct css_set *cset, bool taskexit)
541 {
542 /*
543 * Ensure that the refcount doesn't hit zero while any readers
544 * can see it. Similar to atomic_dec_and_lock(), but for an
545 * rwlock
546 */
547 if (atomic_add_unless(&cset->refcount, -1, 1))
548 return;
549
550 down_write(&css_set_rwsem);
551 put_css_set_locked(cset, taskexit);
552 up_write(&css_set_rwsem);
553 }
554
555 /*
556 * refcounted get/put for css_set objects
557 */
558 static inline void get_css_set(struct css_set *cset)
559 {
560 atomic_inc(&cset->refcount);
561 }
562
563 /**
564 * compare_css_sets - helper function for find_existing_css_set().
565 * @cset: candidate css_set being tested
566 * @old_cset: existing css_set for a task
567 * @new_cgrp: cgroup that's being entered by the task
568 * @template: desired set of css pointers in css_set (pre-calculated)
569 *
570 * Returns true if "cset" matches "old_cset" except for the hierarchy
571 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
572 */
573 static bool compare_css_sets(struct css_set *cset,
574 struct css_set *old_cset,
575 struct cgroup *new_cgrp,
576 struct cgroup_subsys_state *template[])
577 {
578 struct list_head *l1, *l2;
579
580 /*
581 * On the default hierarchy, there can be csets which are
582 * associated with the same set of cgroups but different csses.
583 * Let's first ensure that csses match.
584 */
585 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
586 return false;
587
588 /*
589 * Compare cgroup pointers in order to distinguish between
590 * different cgroups in hierarchies. As different cgroups may
591 * share the same effective css, this comparison is always
592 * necessary.
593 */
594 l1 = &cset->cgrp_links;
595 l2 = &old_cset->cgrp_links;
596 while (1) {
597 struct cgrp_cset_link *link1, *link2;
598 struct cgroup *cgrp1, *cgrp2;
599
600 l1 = l1->next;
601 l2 = l2->next;
602 /* See if we reached the end - both lists are equal length. */
603 if (l1 == &cset->cgrp_links) {
604 BUG_ON(l2 != &old_cset->cgrp_links);
605 break;
606 } else {
607 BUG_ON(l2 == &old_cset->cgrp_links);
608 }
609 /* Locate the cgroups associated with these links. */
610 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
611 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
612 cgrp1 = link1->cgrp;
613 cgrp2 = link2->cgrp;
614 /* Hierarchies should be linked in the same order. */
615 BUG_ON(cgrp1->root != cgrp2->root);
616
617 /*
618 * If this hierarchy is the hierarchy of the cgroup
619 * that's changing, then we need to check that this
620 * css_set points to the new cgroup; if it's any other
621 * hierarchy, then this css_set should point to the
622 * same cgroup as the old css_set.
623 */
624 if (cgrp1->root == new_cgrp->root) {
625 if (cgrp1 != new_cgrp)
626 return false;
627 } else {
628 if (cgrp1 != cgrp2)
629 return false;
630 }
631 }
632 return true;
633 }
634
635 /**
636 * find_existing_css_set - init css array and find the matching css_set
637 * @old_cset: the css_set that we're using before the cgroup transition
638 * @cgrp: the cgroup that we're moving into
639 * @template: out param for the new set of csses, should be clear on entry
640 */
641 static struct css_set *find_existing_css_set(struct css_set *old_cset,
642 struct cgroup *cgrp,
643 struct cgroup_subsys_state *template[])
644 {
645 struct cgroup_root *root = cgrp->root;
646 struct cgroup_subsys *ss;
647 struct css_set *cset;
648 unsigned long key;
649 int i;
650
651 /*
652 * Build the set of subsystem state objects that we want to see in the
653 * new css_set. while subsystems can change globally, the entries here
654 * won't change, so no need for locking.
655 */
656 for_each_subsys(ss, i) {
657 if (root->subsys_mask & (1UL << i)) {
658 /*
659 * @ss is in this hierarchy, so we want the
660 * effective css from @cgrp.
661 */
662 template[i] = cgroup_e_css(cgrp, ss);
663 } else {
664 /*
665 * @ss is not in this hierarchy, so we don't want
666 * to change the css.
667 */
668 template[i] = old_cset->subsys[i];
669 }
670 }
671
672 key = css_set_hash(template);
673 hash_for_each_possible(css_set_table, cset, hlist, key) {
674 if (!compare_css_sets(cset, old_cset, cgrp, template))
675 continue;
676
677 /* This css_set matches what we need */
678 return cset;
679 }
680
681 /* No existing cgroup group matched */
682 return NULL;
683 }
684
685 static void free_cgrp_cset_links(struct list_head *links_to_free)
686 {
687 struct cgrp_cset_link *link, *tmp_link;
688
689 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
690 list_del(&link->cset_link);
691 kfree(link);
692 }
693 }
694
695 /**
696 * allocate_cgrp_cset_links - allocate cgrp_cset_links
697 * @count: the number of links to allocate
698 * @tmp_links: list_head the allocated links are put on
699 *
700 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
701 * through ->cset_link. Returns 0 on success or -errno.
702 */
703 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
704 {
705 struct cgrp_cset_link *link;
706 int i;
707
708 INIT_LIST_HEAD(tmp_links);
709
710 for (i = 0; i < count; i++) {
711 link = kzalloc(sizeof(*link), GFP_KERNEL);
712 if (!link) {
713 free_cgrp_cset_links(tmp_links);
714 return -ENOMEM;
715 }
716 list_add(&link->cset_link, tmp_links);
717 }
718 return 0;
719 }
720
721 /**
722 * link_css_set - a helper function to link a css_set to a cgroup
723 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
724 * @cset: the css_set to be linked
725 * @cgrp: the destination cgroup
726 */
727 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
728 struct cgroup *cgrp)
729 {
730 struct cgrp_cset_link *link;
731
732 BUG_ON(list_empty(tmp_links));
733
734 if (cgroup_on_dfl(cgrp))
735 cset->dfl_cgrp = cgrp;
736
737 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
738 link->cset = cset;
739 link->cgrp = cgrp;
740
741 if (list_empty(&cgrp->cset_links))
742 cgroup_update_populated(cgrp, true);
743 list_move(&link->cset_link, &cgrp->cset_links);
744
745 /*
746 * Always add links to the tail of the list so that the list
747 * is sorted by order of hierarchy creation
748 */
749 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
750 }
751
752 /**
753 * find_css_set - return a new css_set with one cgroup updated
754 * @old_cset: the baseline css_set
755 * @cgrp: the cgroup to be updated
756 *
757 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
758 * substituted into the appropriate hierarchy.
759 */
760 static struct css_set *find_css_set(struct css_set *old_cset,
761 struct cgroup *cgrp)
762 {
763 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
764 struct css_set *cset;
765 struct list_head tmp_links;
766 struct cgrp_cset_link *link;
767 struct cgroup_subsys *ss;
768 unsigned long key;
769 int ssid;
770
771 lockdep_assert_held(&cgroup_mutex);
772
773 /* First see if we already have a cgroup group that matches
774 * the desired set */
775 down_read(&css_set_rwsem);
776 cset = find_existing_css_set(old_cset, cgrp, template);
777 if (cset)
778 get_css_set(cset);
779 up_read(&css_set_rwsem);
780
781 if (cset)
782 return cset;
783
784 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
785 if (!cset)
786 return NULL;
787
788 /* Allocate all the cgrp_cset_link objects that we'll need */
789 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
790 kfree(cset);
791 return NULL;
792 }
793
794 atomic_set(&cset->refcount, 1);
795 INIT_LIST_HEAD(&cset->cgrp_links);
796 INIT_LIST_HEAD(&cset->tasks);
797 INIT_LIST_HEAD(&cset->mg_tasks);
798 INIT_LIST_HEAD(&cset->mg_preload_node);
799 INIT_LIST_HEAD(&cset->mg_node);
800 INIT_HLIST_NODE(&cset->hlist);
801
802 /* Copy the set of subsystem state objects generated in
803 * find_existing_css_set() */
804 memcpy(cset->subsys, template, sizeof(cset->subsys));
805
806 down_write(&css_set_rwsem);
807 /* Add reference counts and links from the new css_set. */
808 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
809 struct cgroup *c = link->cgrp;
810
811 if (c->root == cgrp->root)
812 c = cgrp;
813 link_css_set(&tmp_links, cset, c);
814 }
815
816 BUG_ON(!list_empty(&tmp_links));
817
818 css_set_count++;
819
820 /* Add @cset to the hash table */
821 key = css_set_hash(cset->subsys);
822 hash_add(css_set_table, &cset->hlist, key);
823
824 for_each_subsys(ss, ssid)
825 list_add_tail(&cset->e_cset_node[ssid],
826 &cset->subsys[ssid]->cgroup->e_csets[ssid]);
827
828 up_write(&css_set_rwsem);
829
830 return cset;
831 }
832
833 static struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
834 {
835 struct cgroup *root_cgrp = kf_root->kn->priv;
836
837 return root_cgrp->root;
838 }
839
840 static int cgroup_init_root_id(struct cgroup_root *root)
841 {
842 int id;
843
844 lockdep_assert_held(&cgroup_mutex);
845
846 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
847 if (id < 0)
848 return id;
849
850 root->hierarchy_id = id;
851 return 0;
852 }
853
854 static void cgroup_exit_root_id(struct cgroup_root *root)
855 {
856 lockdep_assert_held(&cgroup_mutex);
857
858 if (root->hierarchy_id) {
859 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
860 root->hierarchy_id = 0;
861 }
862 }
863
864 static void cgroup_free_root(struct cgroup_root *root)
865 {
866 if (root) {
867 /* hierarhcy ID shoulid already have been released */
868 WARN_ON_ONCE(root->hierarchy_id);
869
870 idr_destroy(&root->cgroup_idr);
871 kfree(root);
872 }
873 }
874
875 static void cgroup_destroy_root(struct cgroup_root *root)
876 {
877 struct cgroup *cgrp = &root->cgrp;
878 struct cgrp_cset_link *link, *tmp_link;
879
880 mutex_lock(&cgroup_mutex);
881
882 BUG_ON(atomic_read(&root->nr_cgrps));
883 BUG_ON(!list_empty(&cgrp->self.children));
884
885 /* Rebind all subsystems back to the default hierarchy */
886 rebind_subsystems(&cgrp_dfl_root, root->subsys_mask);
887
888 /*
889 * Release all the links from cset_links to this hierarchy's
890 * root cgroup
891 */
892 down_write(&css_set_rwsem);
893
894 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
895 list_del(&link->cset_link);
896 list_del(&link->cgrp_link);
897 kfree(link);
898 }
899 up_write(&css_set_rwsem);
900
901 if (!list_empty(&root->root_list)) {
902 list_del(&root->root_list);
903 cgroup_root_count--;
904 }
905
906 cgroup_exit_root_id(root);
907
908 mutex_unlock(&cgroup_mutex);
909
910 kernfs_destroy_root(root->kf_root);
911 cgroup_free_root(root);
912 }
913
914 /* look up cgroup associated with given css_set on the specified hierarchy */
915 static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
916 struct cgroup_root *root)
917 {
918 struct cgroup *res = NULL;
919
920 lockdep_assert_held(&cgroup_mutex);
921 lockdep_assert_held(&css_set_rwsem);
922
923 if (cset == &init_css_set) {
924 res = &root->cgrp;
925 } else {
926 struct cgrp_cset_link *link;
927
928 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
929 struct cgroup *c = link->cgrp;
930
931 if (c->root == root) {
932 res = c;
933 break;
934 }
935 }
936 }
937
938 BUG_ON(!res);
939 return res;
940 }
941
942 /*
943 * Return the cgroup for "task" from the given hierarchy. Must be
944 * called with cgroup_mutex and css_set_rwsem held.
945 */
946 static struct cgroup *task_cgroup_from_root(struct task_struct *task,
947 struct cgroup_root *root)
948 {
949 /*
950 * No need to lock the task - since we hold cgroup_mutex the
951 * task can't change groups, so the only thing that can happen
952 * is that it exits and its css is set back to init_css_set.
953 */
954 return cset_cgroup_from_root(task_css_set(task), root);
955 }
956
957 /*
958 * A task must hold cgroup_mutex to modify cgroups.
959 *
960 * Any task can increment and decrement the count field without lock.
961 * So in general, code holding cgroup_mutex can't rely on the count
962 * field not changing. However, if the count goes to zero, then only
963 * cgroup_attach_task() can increment it again. Because a count of zero
964 * means that no tasks are currently attached, therefore there is no
965 * way a task attached to that cgroup can fork (the other way to
966 * increment the count). So code holding cgroup_mutex can safely
967 * assume that if the count is zero, it will stay zero. Similarly, if
968 * a task holds cgroup_mutex on a cgroup with zero count, it
969 * knows that the cgroup won't be removed, as cgroup_rmdir()
970 * needs that mutex.
971 *
972 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
973 * (usually) take cgroup_mutex. These are the two most performance
974 * critical pieces of code here. The exception occurs on cgroup_exit(),
975 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
976 * is taken, and if the cgroup count is zero, a usermode call made
977 * to the release agent with the name of the cgroup (path relative to
978 * the root of cgroup file system) as the argument.
979 *
980 * A cgroup can only be deleted if both its 'count' of using tasks
981 * is zero, and its list of 'children' cgroups is empty. Since all
982 * tasks in the system use _some_ cgroup, and since there is always at
983 * least one task in the system (init, pid == 1), therefore, root cgroup
984 * always has either children cgroups and/or using tasks. So we don't
985 * need a special hack to ensure that root cgroup cannot be deleted.
986 *
987 * P.S. One more locking exception. RCU is used to guard the
988 * update of a tasks cgroup pointer by cgroup_attach_task()
989 */
990
991 static int cgroup_populate_dir(struct cgroup *cgrp, unsigned int subsys_mask);
992 static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
993 static const struct file_operations proc_cgroupstats_operations;
994
995 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
996 char *buf)
997 {
998 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
999 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
1000 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
1001 cft->ss->name, cft->name);
1002 else
1003 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1004 return buf;
1005 }
1006
1007 /**
1008 * cgroup_file_mode - deduce file mode of a control file
1009 * @cft: the control file in question
1010 *
1011 * returns cft->mode if ->mode is not 0
1012 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
1013 * returns S_IRUGO if it has only a read handler
1014 * returns S_IWUSR if it has only a write hander
1015 */
1016 static umode_t cgroup_file_mode(const struct cftype *cft)
1017 {
1018 umode_t mode = 0;
1019
1020 if (cft->mode)
1021 return cft->mode;
1022
1023 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1024 mode |= S_IRUGO;
1025
1026 if (cft->write_u64 || cft->write_s64 || cft->write)
1027 mode |= S_IWUSR;
1028
1029 return mode;
1030 }
1031
1032 static void cgroup_get(struct cgroup *cgrp)
1033 {
1034 WARN_ON_ONCE(cgroup_is_dead(cgrp));
1035 css_get(&cgrp->self);
1036 }
1037
1038 static bool cgroup_tryget(struct cgroup *cgrp)
1039 {
1040 return css_tryget(&cgrp->self);
1041 }
1042
1043 static void cgroup_put(struct cgroup *cgrp)
1044 {
1045 css_put(&cgrp->self);
1046 }
1047
1048 /**
1049 * cgroup_refresh_child_subsys_mask - update child_subsys_mask
1050 * @cgrp: the target cgroup
1051 *
1052 * On the default hierarchy, a subsystem may request other subsystems to be
1053 * enabled together through its ->depends_on mask. In such cases, more
1054 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1055 *
1056 * This function determines which subsystems need to be enabled given the
1057 * current @cgrp->subtree_control and records it in
1058 * @cgrp->child_subsys_mask. The resulting mask is always a superset of
1059 * @cgrp->subtree_control and follows the usual hierarchy rules.
1060 */
1061 static void cgroup_refresh_child_subsys_mask(struct cgroup *cgrp)
1062 {
1063 struct cgroup *parent = cgroup_parent(cgrp);
1064 unsigned int cur_ss_mask = cgrp->subtree_control;
1065 struct cgroup_subsys *ss;
1066 int ssid;
1067
1068 lockdep_assert_held(&cgroup_mutex);
1069
1070 if (!cgroup_on_dfl(cgrp)) {
1071 cgrp->child_subsys_mask = cur_ss_mask;
1072 return;
1073 }
1074
1075 while (true) {
1076 unsigned int new_ss_mask = cur_ss_mask;
1077
1078 for_each_subsys(ss, ssid)
1079 if (cur_ss_mask & (1 << ssid))
1080 new_ss_mask |= ss->depends_on;
1081
1082 /*
1083 * Mask out subsystems which aren't available. This can
1084 * happen only if some depended-upon subsystems were bound
1085 * to non-default hierarchies.
1086 */
1087 if (parent)
1088 new_ss_mask &= parent->child_subsys_mask;
1089 else
1090 new_ss_mask &= cgrp->root->subsys_mask;
1091
1092 if (new_ss_mask == cur_ss_mask)
1093 break;
1094 cur_ss_mask = new_ss_mask;
1095 }
1096
1097 cgrp->child_subsys_mask = cur_ss_mask;
1098 }
1099
1100 /**
1101 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1102 * @kn: the kernfs_node being serviced
1103 *
1104 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1105 * the method finishes if locking succeeded. Note that once this function
1106 * returns the cgroup returned by cgroup_kn_lock_live() may become
1107 * inaccessible any time. If the caller intends to continue to access the
1108 * cgroup, it should pin it before invoking this function.
1109 */
1110 static void cgroup_kn_unlock(struct kernfs_node *kn)
1111 {
1112 struct cgroup *cgrp;
1113
1114 if (kernfs_type(kn) == KERNFS_DIR)
1115 cgrp = kn->priv;
1116 else
1117 cgrp = kn->parent->priv;
1118
1119 mutex_unlock(&cgroup_mutex);
1120
1121 kernfs_unbreak_active_protection(kn);
1122 cgroup_put(cgrp);
1123 }
1124
1125 /**
1126 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1127 * @kn: the kernfs_node being serviced
1128 *
1129 * This helper is to be used by a cgroup kernfs method currently servicing
1130 * @kn. It breaks the active protection, performs cgroup locking and
1131 * verifies that the associated cgroup is alive. Returns the cgroup if
1132 * alive; otherwise, %NULL. A successful return should be undone by a
1133 * matching cgroup_kn_unlock() invocation.
1134 *
1135 * Any cgroup kernfs method implementation which requires locking the
1136 * associated cgroup should use this helper. It avoids nesting cgroup
1137 * locking under kernfs active protection and allows all kernfs operations
1138 * including self-removal.
1139 */
1140 static struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn)
1141 {
1142 struct cgroup *cgrp;
1143
1144 if (kernfs_type(kn) == KERNFS_DIR)
1145 cgrp = kn->priv;
1146 else
1147 cgrp = kn->parent->priv;
1148
1149 /*
1150 * We're gonna grab cgroup_mutex which nests outside kernfs
1151 * active_ref. cgroup liveliness check alone provides enough
1152 * protection against removal. Ensure @cgrp stays accessible and
1153 * break the active_ref protection.
1154 */
1155 if (!cgroup_tryget(cgrp))
1156 return NULL;
1157 kernfs_break_active_protection(kn);
1158
1159 mutex_lock(&cgroup_mutex);
1160
1161 if (!cgroup_is_dead(cgrp))
1162 return cgrp;
1163
1164 cgroup_kn_unlock(kn);
1165 return NULL;
1166 }
1167
1168 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1169 {
1170 char name[CGROUP_FILE_NAME_MAX];
1171
1172 lockdep_assert_held(&cgroup_mutex);
1173 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1174 }
1175
1176 /**
1177 * cgroup_clear_dir - remove subsys files in a cgroup directory
1178 * @cgrp: target cgroup
1179 * @subsys_mask: mask of the subsystem ids whose files should be removed
1180 */
1181 static void cgroup_clear_dir(struct cgroup *cgrp, unsigned int subsys_mask)
1182 {
1183 struct cgroup_subsys *ss;
1184 int i;
1185
1186 for_each_subsys(ss, i) {
1187 struct cftype *cfts;
1188
1189 if (!(subsys_mask & (1 << i)))
1190 continue;
1191 list_for_each_entry(cfts, &ss->cfts, node)
1192 cgroup_addrm_files(cgrp, cfts, false);
1193 }
1194 }
1195
1196 static int rebind_subsystems(struct cgroup_root *dst_root, unsigned int ss_mask)
1197 {
1198 struct cgroup_subsys *ss;
1199 unsigned int tmp_ss_mask;
1200 int ssid, i, ret;
1201
1202 lockdep_assert_held(&cgroup_mutex);
1203
1204 for_each_subsys(ss, ssid) {
1205 if (!(ss_mask & (1 << ssid)))
1206 continue;
1207
1208 /* if @ss has non-root csses attached to it, can't move */
1209 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)))
1210 return -EBUSY;
1211
1212 /* can't move between two non-dummy roots either */
1213 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1214 return -EBUSY;
1215 }
1216
1217 /* skip creating root files on dfl_root for inhibited subsystems */
1218 tmp_ss_mask = ss_mask;
1219 if (dst_root == &cgrp_dfl_root)
1220 tmp_ss_mask &= ~cgrp_dfl_root_inhibit_ss_mask;
1221
1222 ret = cgroup_populate_dir(&dst_root->cgrp, tmp_ss_mask);
1223 if (ret) {
1224 if (dst_root != &cgrp_dfl_root)
1225 return ret;
1226
1227 /*
1228 * Rebinding back to the default root is not allowed to
1229 * fail. Using both default and non-default roots should
1230 * be rare. Moving subsystems back and forth even more so.
1231 * Just warn about it and continue.
1232 */
1233 if (cgrp_dfl_root_visible) {
1234 pr_warn("failed to create files (%d) while rebinding 0x%x to default root\n",
1235 ret, ss_mask);
1236 pr_warn("you may retry by moving them to a different hierarchy and unbinding\n");
1237 }
1238 }
1239
1240 /*
1241 * Nothing can fail from this point on. Remove files for the
1242 * removed subsystems and rebind each subsystem.
1243 */
1244 for_each_subsys(ss, ssid)
1245 if (ss_mask & (1 << ssid))
1246 cgroup_clear_dir(&ss->root->cgrp, 1 << ssid);
1247
1248 for_each_subsys(ss, ssid) {
1249 struct cgroup_root *src_root;
1250 struct cgroup_subsys_state *css;
1251 struct css_set *cset;
1252
1253 if (!(ss_mask & (1 << ssid)))
1254 continue;
1255
1256 src_root = ss->root;
1257 css = cgroup_css(&src_root->cgrp, ss);
1258
1259 WARN_ON(!css || cgroup_css(&dst_root->cgrp, ss));
1260
1261 RCU_INIT_POINTER(src_root->cgrp.subsys[ssid], NULL);
1262 rcu_assign_pointer(dst_root->cgrp.subsys[ssid], css);
1263 ss->root = dst_root;
1264 css->cgroup = &dst_root->cgrp;
1265
1266 down_write(&css_set_rwsem);
1267 hash_for_each(css_set_table, i, cset, hlist)
1268 list_move_tail(&cset->e_cset_node[ss->id],
1269 &dst_root->cgrp.e_csets[ss->id]);
1270 up_write(&css_set_rwsem);
1271
1272 src_root->subsys_mask &= ~(1 << ssid);
1273 src_root->cgrp.subtree_control &= ~(1 << ssid);
1274 cgroup_refresh_child_subsys_mask(&src_root->cgrp);
1275
1276 /* default hierarchy doesn't enable controllers by default */
1277 dst_root->subsys_mask |= 1 << ssid;
1278 if (dst_root != &cgrp_dfl_root) {
1279 dst_root->cgrp.subtree_control |= 1 << ssid;
1280 cgroup_refresh_child_subsys_mask(&dst_root->cgrp);
1281 }
1282
1283 if (ss->bind)
1284 ss->bind(css);
1285 }
1286
1287 kernfs_activate(dst_root->cgrp.kn);
1288 return 0;
1289 }
1290
1291 static int cgroup_show_options(struct seq_file *seq,
1292 struct kernfs_root *kf_root)
1293 {
1294 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1295 struct cgroup_subsys *ss;
1296 int ssid;
1297
1298 for_each_subsys(ss, ssid)
1299 if (root->subsys_mask & (1 << ssid))
1300 seq_printf(seq, ",%s", ss->name);
1301 if (root->flags & CGRP_ROOT_NOPREFIX)
1302 seq_puts(seq, ",noprefix");
1303 if (root->flags & CGRP_ROOT_XATTR)
1304 seq_puts(seq, ",xattr");
1305
1306 spin_lock(&release_agent_path_lock);
1307 if (strlen(root->release_agent_path))
1308 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
1309 spin_unlock(&release_agent_path_lock);
1310
1311 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
1312 seq_puts(seq, ",clone_children");
1313 if (strlen(root->name))
1314 seq_printf(seq, ",name=%s", root->name);
1315 return 0;
1316 }
1317
1318 struct cgroup_sb_opts {
1319 unsigned int subsys_mask;
1320 unsigned int flags;
1321 char *release_agent;
1322 bool cpuset_clone_children;
1323 char *name;
1324 /* User explicitly requested empty subsystem */
1325 bool none;
1326 };
1327
1328 static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
1329 {
1330 char *token, *o = data;
1331 bool all_ss = false, one_ss = false;
1332 unsigned int mask = -1U;
1333 struct cgroup_subsys *ss;
1334 int nr_opts = 0;
1335 int i;
1336
1337 #ifdef CONFIG_CPUSETS
1338 mask = ~(1U << cpuset_cgrp_id);
1339 #endif
1340
1341 memset(opts, 0, sizeof(*opts));
1342
1343 while ((token = strsep(&o, ",")) != NULL) {
1344 nr_opts++;
1345
1346 if (!*token)
1347 return -EINVAL;
1348 if (!strcmp(token, "none")) {
1349 /* Explicitly have no subsystems */
1350 opts->none = true;
1351 continue;
1352 }
1353 if (!strcmp(token, "all")) {
1354 /* Mutually exclusive option 'all' + subsystem name */
1355 if (one_ss)
1356 return -EINVAL;
1357 all_ss = true;
1358 continue;
1359 }
1360 if (!strcmp(token, "__DEVEL__sane_behavior")) {
1361 opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
1362 continue;
1363 }
1364 if (!strcmp(token, "noprefix")) {
1365 opts->flags |= CGRP_ROOT_NOPREFIX;
1366 continue;
1367 }
1368 if (!strcmp(token, "clone_children")) {
1369 opts->cpuset_clone_children = true;
1370 continue;
1371 }
1372 if (!strcmp(token, "xattr")) {
1373 opts->flags |= CGRP_ROOT_XATTR;
1374 continue;
1375 }
1376 if (!strncmp(token, "release_agent=", 14)) {
1377 /* Specifying two release agents is forbidden */
1378 if (opts->release_agent)
1379 return -EINVAL;
1380 opts->release_agent =
1381 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
1382 if (!opts->release_agent)
1383 return -ENOMEM;
1384 continue;
1385 }
1386 if (!strncmp(token, "name=", 5)) {
1387 const char *name = token + 5;
1388 /* Can't specify an empty name */
1389 if (!strlen(name))
1390 return -EINVAL;
1391 /* Must match [\w.-]+ */
1392 for (i = 0; i < strlen(name); i++) {
1393 char c = name[i];
1394 if (isalnum(c))
1395 continue;
1396 if ((c == '.') || (c == '-') || (c == '_'))
1397 continue;
1398 return -EINVAL;
1399 }
1400 /* Specifying two names is forbidden */
1401 if (opts->name)
1402 return -EINVAL;
1403 opts->name = kstrndup(name,
1404 MAX_CGROUP_ROOT_NAMELEN - 1,
1405 GFP_KERNEL);
1406 if (!opts->name)
1407 return -ENOMEM;
1408
1409 continue;
1410 }
1411
1412 for_each_subsys(ss, i) {
1413 if (strcmp(token, ss->name))
1414 continue;
1415 if (ss->disabled)
1416 continue;
1417
1418 /* Mutually exclusive option 'all' + subsystem name */
1419 if (all_ss)
1420 return -EINVAL;
1421 opts->subsys_mask |= (1 << i);
1422 one_ss = true;
1423
1424 break;
1425 }
1426 if (i == CGROUP_SUBSYS_COUNT)
1427 return -ENOENT;
1428 }
1429
1430 if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1431 pr_warn("sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
1432 if (nr_opts != 1) {
1433 pr_err("sane_behavior: no other mount options allowed\n");
1434 return -EINVAL;
1435 }
1436 return 0;
1437 }
1438
1439 /*
1440 * If the 'all' option was specified select all the subsystems,
1441 * otherwise if 'none', 'name=' and a subsystem name options were
1442 * not specified, let's default to 'all'
1443 */
1444 if (all_ss || (!one_ss && !opts->none && !opts->name))
1445 for_each_subsys(ss, i)
1446 if (!ss->disabled)
1447 opts->subsys_mask |= (1 << i);
1448
1449 /*
1450 * We either have to specify by name or by subsystems. (So all
1451 * empty hierarchies must have a name).
1452 */
1453 if (!opts->subsys_mask && !opts->name)
1454 return -EINVAL;
1455
1456 /*
1457 * Option noprefix was introduced just for backward compatibility
1458 * with the old cpuset, so we allow noprefix only if mounting just
1459 * the cpuset subsystem.
1460 */
1461 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
1462 return -EINVAL;
1463
1464 /* Can't specify "none" and some subsystems */
1465 if (opts->subsys_mask && opts->none)
1466 return -EINVAL;
1467
1468 return 0;
1469 }
1470
1471 static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
1472 {
1473 int ret = 0;
1474 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1475 struct cgroup_sb_opts opts;
1476 unsigned int added_mask, removed_mask;
1477
1478 if (root == &cgrp_dfl_root) {
1479 pr_err("remount is not allowed\n");
1480 return -EINVAL;
1481 }
1482
1483 mutex_lock(&cgroup_mutex);
1484
1485 /* See what subsystems are wanted */
1486 ret = parse_cgroupfs_options(data, &opts);
1487 if (ret)
1488 goto out_unlock;
1489
1490 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
1491 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
1492 task_tgid_nr(current), current->comm);
1493
1494 added_mask = opts.subsys_mask & ~root->subsys_mask;
1495 removed_mask = root->subsys_mask & ~opts.subsys_mask;
1496
1497 /* Don't allow flags or name to change at remount */
1498 if ((opts.flags ^ root->flags) ||
1499 (opts.name && strcmp(opts.name, root->name))) {
1500 pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n",
1501 opts.flags, opts.name ?: "", root->flags, root->name);
1502 ret = -EINVAL;
1503 goto out_unlock;
1504 }
1505
1506 /* remounting is not allowed for populated hierarchies */
1507 if (!list_empty(&root->cgrp.self.children)) {
1508 ret = -EBUSY;
1509 goto out_unlock;
1510 }
1511
1512 ret = rebind_subsystems(root, added_mask);
1513 if (ret)
1514 goto out_unlock;
1515
1516 rebind_subsystems(&cgrp_dfl_root, removed_mask);
1517
1518 if (opts.release_agent) {
1519 spin_lock(&release_agent_path_lock);
1520 strcpy(root->release_agent_path, opts.release_agent);
1521 spin_unlock(&release_agent_path_lock);
1522 }
1523 out_unlock:
1524 kfree(opts.release_agent);
1525 kfree(opts.name);
1526 mutex_unlock(&cgroup_mutex);
1527 return ret;
1528 }
1529
1530 /*
1531 * To reduce the fork() overhead for systems that are not actually using
1532 * their cgroups capability, we don't maintain the lists running through
1533 * each css_set to its tasks until we see the list actually used - in other
1534 * words after the first mount.
1535 */
1536 static bool use_task_css_set_links __read_mostly;
1537
1538 static void cgroup_enable_task_cg_lists(void)
1539 {
1540 struct task_struct *p, *g;
1541
1542 down_write(&css_set_rwsem);
1543
1544 if (use_task_css_set_links)
1545 goto out_unlock;
1546
1547 use_task_css_set_links = true;
1548
1549 /*
1550 * We need tasklist_lock because RCU is not safe against
1551 * while_each_thread(). Besides, a forking task that has passed
1552 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1553 * is not guaranteed to have its child immediately visible in the
1554 * tasklist if we walk through it with RCU.
1555 */
1556 read_lock(&tasklist_lock);
1557 do_each_thread(g, p) {
1558 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1559 task_css_set(p) != &init_css_set);
1560
1561 /*
1562 * We should check if the process is exiting, otherwise
1563 * it will race with cgroup_exit() in that the list
1564 * entry won't be deleted though the process has exited.
1565 * Do it while holding siglock so that we don't end up
1566 * racing against cgroup_exit().
1567 */
1568 spin_lock_irq(&p->sighand->siglock);
1569 if (!(p->flags & PF_EXITING)) {
1570 struct css_set *cset = task_css_set(p);
1571
1572 list_add(&p->cg_list, &cset->tasks);
1573 get_css_set(cset);
1574 }
1575 spin_unlock_irq(&p->sighand->siglock);
1576 } while_each_thread(g, p);
1577 read_unlock(&tasklist_lock);
1578 out_unlock:
1579 up_write(&css_set_rwsem);
1580 }
1581
1582 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1583 {
1584 struct cgroup_subsys *ss;
1585 int ssid;
1586
1587 INIT_LIST_HEAD(&cgrp->self.sibling);
1588 INIT_LIST_HEAD(&cgrp->self.children);
1589 INIT_LIST_HEAD(&cgrp->cset_links);
1590 INIT_LIST_HEAD(&cgrp->release_list);
1591 INIT_LIST_HEAD(&cgrp->pidlists);
1592 mutex_init(&cgrp->pidlist_mutex);
1593 cgrp->self.cgroup = cgrp;
1594 cgrp->self.flags |= CSS_ONLINE;
1595
1596 for_each_subsys(ss, ssid)
1597 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
1598
1599 init_waitqueue_head(&cgrp->offline_waitq);
1600 }
1601
1602 static void init_cgroup_root(struct cgroup_root *root,
1603 struct cgroup_sb_opts *opts)
1604 {
1605 struct cgroup *cgrp = &root->cgrp;
1606
1607 INIT_LIST_HEAD(&root->root_list);
1608 atomic_set(&root->nr_cgrps, 1);
1609 cgrp->root = root;
1610 init_cgroup_housekeeping(cgrp);
1611 idr_init(&root->cgroup_idr);
1612
1613 root->flags = opts->flags;
1614 if (opts->release_agent)
1615 strcpy(root->release_agent_path, opts->release_agent);
1616 if (opts->name)
1617 strcpy(root->name, opts->name);
1618 if (opts->cpuset_clone_children)
1619 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
1620 }
1621
1622 static int cgroup_setup_root(struct cgroup_root *root, unsigned int ss_mask)
1623 {
1624 LIST_HEAD(tmp_links);
1625 struct cgroup *root_cgrp = &root->cgrp;
1626 struct cftype *base_files;
1627 struct css_set *cset;
1628 int i, ret;
1629
1630 lockdep_assert_held(&cgroup_mutex);
1631
1632 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_NOWAIT);
1633 if (ret < 0)
1634 goto out;
1635 root_cgrp->id = ret;
1636
1637 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release);
1638 if (ret)
1639 goto out;
1640
1641 /*
1642 * We're accessing css_set_count without locking css_set_rwsem here,
1643 * but that's OK - it can only be increased by someone holding
1644 * cgroup_lock, and that's us. The worst that can happen is that we
1645 * have some link structures left over
1646 */
1647 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
1648 if (ret)
1649 goto cancel_ref;
1650
1651 ret = cgroup_init_root_id(root);
1652 if (ret)
1653 goto cancel_ref;
1654
1655 root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops,
1656 KERNFS_ROOT_CREATE_DEACTIVATED,
1657 root_cgrp);
1658 if (IS_ERR(root->kf_root)) {
1659 ret = PTR_ERR(root->kf_root);
1660 goto exit_root_id;
1661 }
1662 root_cgrp->kn = root->kf_root->kn;
1663
1664 if (root == &cgrp_dfl_root)
1665 base_files = cgroup_dfl_base_files;
1666 else
1667 base_files = cgroup_legacy_base_files;
1668
1669 ret = cgroup_addrm_files(root_cgrp, base_files, true);
1670 if (ret)
1671 goto destroy_root;
1672
1673 ret = rebind_subsystems(root, ss_mask);
1674 if (ret)
1675 goto destroy_root;
1676
1677 /*
1678 * There must be no failure case after here, since rebinding takes
1679 * care of subsystems' refcounts, which are explicitly dropped in
1680 * the failure exit path.
1681 */
1682 list_add(&root->root_list, &cgroup_roots);
1683 cgroup_root_count++;
1684
1685 /*
1686 * Link the root cgroup in this hierarchy into all the css_set
1687 * objects.
1688 */
1689 down_write(&css_set_rwsem);
1690 hash_for_each(css_set_table, i, cset, hlist)
1691 link_css_set(&tmp_links, cset, root_cgrp);
1692 up_write(&css_set_rwsem);
1693
1694 BUG_ON(!list_empty(&root_cgrp->self.children));
1695 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
1696
1697 kernfs_activate(root_cgrp->kn);
1698 ret = 0;
1699 goto out;
1700
1701 destroy_root:
1702 kernfs_destroy_root(root->kf_root);
1703 root->kf_root = NULL;
1704 exit_root_id:
1705 cgroup_exit_root_id(root);
1706 cancel_ref:
1707 percpu_ref_exit(&root_cgrp->self.refcnt);
1708 out:
1709 free_cgrp_cset_links(&tmp_links);
1710 return ret;
1711 }
1712
1713 static struct dentry *cgroup_mount(struct file_system_type *fs_type,
1714 int flags, const char *unused_dev_name,
1715 void *data)
1716 {
1717 struct super_block *pinned_sb = NULL;
1718 struct cgroup_subsys *ss;
1719 struct cgroup_root *root;
1720 struct cgroup_sb_opts opts;
1721 struct dentry *dentry;
1722 int ret;
1723 int i;
1724 bool new_sb;
1725
1726 /*
1727 * The first time anyone tries to mount a cgroup, enable the list
1728 * linking each css_set to its tasks and fix up all existing tasks.
1729 */
1730 if (!use_task_css_set_links)
1731 cgroup_enable_task_cg_lists();
1732
1733 mutex_lock(&cgroup_mutex);
1734
1735 /* First find the desired set of subsystems */
1736 ret = parse_cgroupfs_options(data, &opts);
1737 if (ret)
1738 goto out_unlock;
1739
1740 /* look for a matching existing root */
1741 if (opts.flags & CGRP_ROOT_SANE_BEHAVIOR) {
1742 cgrp_dfl_root_visible = true;
1743 root = &cgrp_dfl_root;
1744 cgroup_get(&root->cgrp);
1745 ret = 0;
1746 goto out_unlock;
1747 }
1748
1749 /*
1750 * Destruction of cgroup root is asynchronous, so subsystems may
1751 * still be dying after the previous unmount. Let's drain the
1752 * dying subsystems. We just need to ensure that the ones
1753 * unmounted previously finish dying and don't care about new ones
1754 * starting. Testing ref liveliness is good enough.
1755 */
1756 for_each_subsys(ss, i) {
1757 if (!(opts.subsys_mask & (1 << i)) ||
1758 ss->root == &cgrp_dfl_root)
1759 continue;
1760
1761 if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) {
1762 mutex_unlock(&cgroup_mutex);
1763 msleep(10);
1764 ret = restart_syscall();
1765 goto out_free;
1766 }
1767 cgroup_put(&ss->root->cgrp);
1768 }
1769
1770 for_each_root(root) {
1771 bool name_match = false;
1772
1773 if (root == &cgrp_dfl_root)
1774 continue;
1775
1776 /*
1777 * If we asked for a name then it must match. Also, if
1778 * name matches but sybsys_mask doesn't, we should fail.
1779 * Remember whether name matched.
1780 */
1781 if (opts.name) {
1782 if (strcmp(opts.name, root->name))
1783 continue;
1784 name_match = true;
1785 }
1786
1787 /*
1788 * If we asked for subsystems (or explicitly for no
1789 * subsystems) then they must match.
1790 */
1791 if ((opts.subsys_mask || opts.none) &&
1792 (opts.subsys_mask != root->subsys_mask)) {
1793 if (!name_match)
1794 continue;
1795 ret = -EBUSY;
1796 goto out_unlock;
1797 }
1798
1799 if (root->flags ^ opts.flags)
1800 pr_warn("new mount options do not match the existing superblock, will be ignored\n");
1801
1802 /*
1803 * We want to reuse @root whose lifetime is governed by its
1804 * ->cgrp. Let's check whether @root is alive and keep it
1805 * that way. As cgroup_kill_sb() can happen anytime, we
1806 * want to block it by pinning the sb so that @root doesn't
1807 * get killed before mount is complete.
1808 *
1809 * With the sb pinned, tryget_live can reliably indicate
1810 * whether @root can be reused. If it's being killed,
1811 * drain it. We can use wait_queue for the wait but this
1812 * path is super cold. Let's just sleep a bit and retry.
1813 */
1814 pinned_sb = kernfs_pin_sb(root->kf_root, NULL);
1815 if (IS_ERR(pinned_sb) ||
1816 !percpu_ref_tryget_live(&root->cgrp.self.refcnt)) {
1817 mutex_unlock(&cgroup_mutex);
1818 if (!IS_ERR_OR_NULL(pinned_sb))
1819 deactivate_super(pinned_sb);
1820 msleep(10);
1821 ret = restart_syscall();
1822 goto out_free;
1823 }
1824
1825 ret = 0;
1826 goto out_unlock;
1827 }
1828
1829 /*
1830 * No such thing, create a new one. name= matching without subsys
1831 * specification is allowed for already existing hierarchies but we
1832 * can't create new one without subsys specification.
1833 */
1834 if (!opts.subsys_mask && !opts.none) {
1835 ret = -EINVAL;
1836 goto out_unlock;
1837 }
1838
1839 root = kzalloc(sizeof(*root), GFP_KERNEL);
1840 if (!root) {
1841 ret = -ENOMEM;
1842 goto out_unlock;
1843 }
1844
1845 init_cgroup_root(root, &opts);
1846
1847 ret = cgroup_setup_root(root, opts.subsys_mask);
1848 if (ret)
1849 cgroup_free_root(root);
1850
1851 out_unlock:
1852 mutex_unlock(&cgroup_mutex);
1853 out_free:
1854 kfree(opts.release_agent);
1855 kfree(opts.name);
1856
1857 if (ret)
1858 return ERR_PTR(ret);
1859
1860 dentry = kernfs_mount(fs_type, flags, root->kf_root,
1861 CGROUP_SUPER_MAGIC, &new_sb);
1862 if (IS_ERR(dentry) || !new_sb)
1863 cgroup_put(&root->cgrp);
1864
1865 /*
1866 * If @pinned_sb, we're reusing an existing root and holding an
1867 * extra ref on its sb. Mount is complete. Put the extra ref.
1868 */
1869 if (pinned_sb) {
1870 WARN_ON(new_sb);
1871 deactivate_super(pinned_sb);
1872 }
1873
1874 return dentry;
1875 }
1876
1877 static void cgroup_kill_sb(struct super_block *sb)
1878 {
1879 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
1880 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1881
1882 /*
1883 * If @root doesn't have any mounts or children, start killing it.
1884 * This prevents new mounts by disabling percpu_ref_tryget_live().
1885 * cgroup_mount() may wait for @root's release.
1886 *
1887 * And don't kill the default root.
1888 */
1889 if (css_has_online_children(&root->cgrp.self) ||
1890 root == &cgrp_dfl_root)
1891 cgroup_put(&root->cgrp);
1892 else
1893 percpu_ref_kill(&root->cgrp.self.refcnt);
1894
1895 kernfs_kill_sb(sb);
1896 }
1897
1898 static struct file_system_type cgroup_fs_type = {
1899 .name = "cgroup",
1900 .mount = cgroup_mount,
1901 .kill_sb = cgroup_kill_sb,
1902 };
1903
1904 static struct kobject *cgroup_kobj;
1905
1906 /**
1907 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
1908 * @task: target task
1909 * @buf: the buffer to write the path into
1910 * @buflen: the length of the buffer
1911 *
1912 * Determine @task's cgroup on the first (the one with the lowest non-zero
1913 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
1914 * function grabs cgroup_mutex and shouldn't be used inside locks used by
1915 * cgroup controller callbacks.
1916 *
1917 * Return value is the same as kernfs_path().
1918 */
1919 char *task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
1920 {
1921 struct cgroup_root *root;
1922 struct cgroup *cgrp;
1923 int hierarchy_id = 1;
1924 char *path = NULL;
1925
1926 mutex_lock(&cgroup_mutex);
1927 down_read(&css_set_rwsem);
1928
1929 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
1930
1931 if (root) {
1932 cgrp = task_cgroup_from_root(task, root);
1933 path = cgroup_path(cgrp, buf, buflen);
1934 } else {
1935 /* if no hierarchy exists, everyone is in "/" */
1936 if (strlcpy(buf, "/", buflen) < buflen)
1937 path = buf;
1938 }
1939
1940 up_read(&css_set_rwsem);
1941 mutex_unlock(&cgroup_mutex);
1942 return path;
1943 }
1944 EXPORT_SYMBOL_GPL(task_cgroup_path);
1945
1946 /* used to track tasks and other necessary states during migration */
1947 struct cgroup_taskset {
1948 /* the src and dst cset list running through cset->mg_node */
1949 struct list_head src_csets;
1950 struct list_head dst_csets;
1951
1952 /*
1953 * Fields for cgroup_taskset_*() iteration.
1954 *
1955 * Before migration is committed, the target migration tasks are on
1956 * ->mg_tasks of the csets on ->src_csets. After, on ->mg_tasks of
1957 * the csets on ->dst_csets. ->csets point to either ->src_csets
1958 * or ->dst_csets depending on whether migration is committed.
1959 *
1960 * ->cur_csets and ->cur_task point to the current task position
1961 * during iteration.
1962 */
1963 struct list_head *csets;
1964 struct css_set *cur_cset;
1965 struct task_struct *cur_task;
1966 };
1967
1968 /**
1969 * cgroup_taskset_first - reset taskset and return the first task
1970 * @tset: taskset of interest
1971 *
1972 * @tset iteration is initialized and the first task is returned.
1973 */
1974 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
1975 {
1976 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
1977 tset->cur_task = NULL;
1978
1979 return cgroup_taskset_next(tset);
1980 }
1981
1982 /**
1983 * cgroup_taskset_next - iterate to the next task in taskset
1984 * @tset: taskset of interest
1985 *
1986 * Return the next task in @tset. Iteration must have been initialized
1987 * with cgroup_taskset_first().
1988 */
1989 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
1990 {
1991 struct css_set *cset = tset->cur_cset;
1992 struct task_struct *task = tset->cur_task;
1993
1994 while (&cset->mg_node != tset->csets) {
1995 if (!task)
1996 task = list_first_entry(&cset->mg_tasks,
1997 struct task_struct, cg_list);
1998 else
1999 task = list_next_entry(task, cg_list);
2000
2001 if (&task->cg_list != &cset->mg_tasks) {
2002 tset->cur_cset = cset;
2003 tset->cur_task = task;
2004 return task;
2005 }
2006
2007 cset = list_next_entry(cset, mg_node);
2008 task = NULL;
2009 }
2010
2011 return NULL;
2012 }
2013
2014 /**
2015 * cgroup_task_migrate - move a task from one cgroup to another.
2016 * @old_cgrp: the cgroup @tsk is being migrated from
2017 * @tsk: the task being migrated
2018 * @new_cset: the new css_set @tsk is being attached to
2019 *
2020 * Must be called with cgroup_mutex, threadgroup and css_set_rwsem locked.
2021 */
2022 static void cgroup_task_migrate(struct cgroup *old_cgrp,
2023 struct task_struct *tsk,
2024 struct css_set *new_cset)
2025 {
2026 struct css_set *old_cset;
2027
2028 lockdep_assert_held(&cgroup_mutex);
2029 lockdep_assert_held(&css_set_rwsem);
2030
2031 /*
2032 * We are synchronized through threadgroup_lock() against PF_EXITING
2033 * setting such that we can't race against cgroup_exit() changing the
2034 * css_set to init_css_set and dropping the old one.
2035 */
2036 WARN_ON_ONCE(tsk->flags & PF_EXITING);
2037 old_cset = task_css_set(tsk);
2038
2039 get_css_set(new_cset);
2040 rcu_assign_pointer(tsk->cgroups, new_cset);
2041
2042 /*
2043 * Use move_tail so that cgroup_taskset_first() still returns the
2044 * leader after migration. This works because cgroup_migrate()
2045 * ensures that the dst_cset of the leader is the first on the
2046 * tset's dst_csets list.
2047 */
2048 list_move_tail(&tsk->cg_list, &new_cset->mg_tasks);
2049
2050 /*
2051 * We just gained a reference on old_cset by taking it from the
2052 * task. As trading it for new_cset is protected by cgroup_mutex,
2053 * we're safe to drop it here; it will be freed under RCU.
2054 */
2055 set_bit(CGRP_RELEASABLE, &old_cgrp->flags);
2056 put_css_set_locked(old_cset, false);
2057 }
2058
2059 /**
2060 * cgroup_migrate_finish - cleanup after attach
2061 * @preloaded_csets: list of preloaded css_sets
2062 *
2063 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2064 * those functions for details.
2065 */
2066 static void cgroup_migrate_finish(struct list_head *preloaded_csets)
2067 {
2068 struct css_set *cset, *tmp_cset;
2069
2070 lockdep_assert_held(&cgroup_mutex);
2071
2072 down_write(&css_set_rwsem);
2073 list_for_each_entry_safe(cset, tmp_cset, preloaded_csets, mg_preload_node) {
2074 cset->mg_src_cgrp = NULL;
2075 cset->mg_dst_cset = NULL;
2076 list_del_init(&cset->mg_preload_node);
2077 put_css_set_locked(cset, false);
2078 }
2079 up_write(&css_set_rwsem);
2080 }
2081
2082 /**
2083 * cgroup_migrate_add_src - add a migration source css_set
2084 * @src_cset: the source css_set to add
2085 * @dst_cgrp: the destination cgroup
2086 * @preloaded_csets: list of preloaded css_sets
2087 *
2088 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2089 * @src_cset and add it to @preloaded_csets, which should later be cleaned
2090 * up by cgroup_migrate_finish().
2091 *
2092 * This function may be called without holding threadgroup_lock even if the
2093 * target is a process. Threads may be created and destroyed but as long
2094 * as cgroup_mutex is not dropped, no new css_set can be put into play and
2095 * the preloaded css_sets are guaranteed to cover all migrations.
2096 */
2097 static void cgroup_migrate_add_src(struct css_set *src_cset,
2098 struct cgroup *dst_cgrp,
2099 struct list_head *preloaded_csets)
2100 {
2101 struct cgroup *src_cgrp;
2102
2103 lockdep_assert_held(&cgroup_mutex);
2104 lockdep_assert_held(&css_set_rwsem);
2105
2106 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2107
2108 if (!list_empty(&src_cset->mg_preload_node))
2109 return;
2110
2111 WARN_ON(src_cset->mg_src_cgrp);
2112 WARN_ON(!list_empty(&src_cset->mg_tasks));
2113 WARN_ON(!list_empty(&src_cset->mg_node));
2114
2115 src_cset->mg_src_cgrp = src_cgrp;
2116 get_css_set(src_cset);
2117 list_add(&src_cset->mg_preload_node, preloaded_csets);
2118 }
2119
2120 /**
2121 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2122 * @dst_cgrp: the destination cgroup (may be %NULL)
2123 * @preloaded_csets: list of preloaded source css_sets
2124 *
2125 * Tasks are about to be moved to @dst_cgrp and all the source css_sets
2126 * have been preloaded to @preloaded_csets. This function looks up and
2127 * pins all destination css_sets, links each to its source, and append them
2128 * to @preloaded_csets. If @dst_cgrp is %NULL, the destination of each
2129 * source css_set is assumed to be its cgroup on the default hierarchy.
2130 *
2131 * This function must be called after cgroup_migrate_add_src() has been
2132 * called on each migration source css_set. After migration is performed
2133 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2134 * @preloaded_csets.
2135 */
2136 static int cgroup_migrate_prepare_dst(struct cgroup *dst_cgrp,
2137 struct list_head *preloaded_csets)
2138 {
2139 LIST_HEAD(csets);
2140 struct css_set *src_cset, *tmp_cset;
2141
2142 lockdep_assert_held(&cgroup_mutex);
2143
2144 /*
2145 * Except for the root, child_subsys_mask must be zero for a cgroup
2146 * with tasks so that child cgroups don't compete against tasks.
2147 */
2148 if (dst_cgrp && cgroup_on_dfl(dst_cgrp) && cgroup_parent(dst_cgrp) &&
2149 dst_cgrp->child_subsys_mask)
2150 return -EBUSY;
2151
2152 /* look up the dst cset for each src cset and link it to src */
2153 list_for_each_entry_safe(src_cset, tmp_cset, preloaded_csets, mg_preload_node) {
2154 struct css_set *dst_cset;
2155
2156 dst_cset = find_css_set(src_cset,
2157 dst_cgrp ?: src_cset->dfl_cgrp);
2158 if (!dst_cset)
2159 goto err;
2160
2161 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2162
2163 /*
2164 * If src cset equals dst, it's noop. Drop the src.
2165 * cgroup_migrate() will skip the cset too. Note that we
2166 * can't handle src == dst as some nodes are used by both.
2167 */
2168 if (src_cset == dst_cset) {
2169 src_cset->mg_src_cgrp = NULL;
2170 list_del_init(&src_cset->mg_preload_node);
2171 put_css_set(src_cset, false);
2172 put_css_set(dst_cset, false);
2173 continue;
2174 }
2175
2176 src_cset->mg_dst_cset = dst_cset;
2177
2178 if (list_empty(&dst_cset->mg_preload_node))
2179 list_add(&dst_cset->mg_preload_node, &csets);
2180 else
2181 put_css_set(dst_cset, false);
2182 }
2183
2184 list_splice_tail(&csets, preloaded_csets);
2185 return 0;
2186 err:
2187 cgroup_migrate_finish(&csets);
2188 return -ENOMEM;
2189 }
2190
2191 /**
2192 * cgroup_migrate - migrate a process or task to a cgroup
2193 * @cgrp: the destination cgroup
2194 * @leader: the leader of the process or the task to migrate
2195 * @threadgroup: whether @leader points to the whole process or a single task
2196 *
2197 * Migrate a process or task denoted by @leader to @cgrp. If migrating a
2198 * process, the caller must be holding threadgroup_lock of @leader. The
2199 * caller is also responsible for invoking cgroup_migrate_add_src() and
2200 * cgroup_migrate_prepare_dst() on the targets before invoking this
2201 * function and following up with cgroup_migrate_finish().
2202 *
2203 * As long as a controller's ->can_attach() doesn't fail, this function is
2204 * guaranteed to succeed. This means that, excluding ->can_attach()
2205 * failure, when migrating multiple targets, the success or failure can be
2206 * decided for all targets by invoking group_migrate_prepare_dst() before
2207 * actually starting migrating.
2208 */
2209 static int cgroup_migrate(struct cgroup *cgrp, struct task_struct *leader,
2210 bool threadgroup)
2211 {
2212 struct cgroup_taskset tset = {
2213 .src_csets = LIST_HEAD_INIT(tset.src_csets),
2214 .dst_csets = LIST_HEAD_INIT(tset.dst_csets),
2215 .csets = &tset.src_csets,
2216 };
2217 struct cgroup_subsys_state *css, *failed_css = NULL;
2218 struct css_set *cset, *tmp_cset;
2219 struct task_struct *task, *tmp_task;
2220 int i, ret;
2221
2222 /*
2223 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2224 * already PF_EXITING could be freed from underneath us unless we
2225 * take an rcu_read_lock.
2226 */
2227 down_write(&css_set_rwsem);
2228 rcu_read_lock();
2229 task = leader;
2230 do {
2231 /* @task either already exited or can't exit until the end */
2232 if (task->flags & PF_EXITING)
2233 goto next;
2234
2235 /* leave @task alone if post_fork() hasn't linked it yet */
2236 if (list_empty(&task->cg_list))
2237 goto next;
2238
2239 cset = task_css_set(task);
2240 if (!cset->mg_src_cgrp)
2241 goto next;
2242
2243 /*
2244 * cgroup_taskset_first() must always return the leader.
2245 * Take care to avoid disturbing the ordering.
2246 */
2247 list_move_tail(&task->cg_list, &cset->mg_tasks);
2248 if (list_empty(&cset->mg_node))
2249 list_add_tail(&cset->mg_node, &tset.src_csets);
2250 if (list_empty(&cset->mg_dst_cset->mg_node))
2251 list_move_tail(&cset->mg_dst_cset->mg_node,
2252 &tset.dst_csets);
2253 next:
2254 if (!threadgroup)
2255 break;
2256 } while_each_thread(leader, task);
2257 rcu_read_unlock();
2258 up_write(&css_set_rwsem);
2259
2260 /* methods shouldn't be called if no task is actually migrating */
2261 if (list_empty(&tset.src_csets))
2262 return 0;
2263
2264 /* check that we can legitimately attach to the cgroup */
2265 for_each_e_css(css, i, cgrp) {
2266 if (css->ss->can_attach) {
2267 ret = css->ss->can_attach(css, &tset);
2268 if (ret) {
2269 failed_css = css;
2270 goto out_cancel_attach;
2271 }
2272 }
2273 }
2274
2275 /*
2276 * Now that we're guaranteed success, proceed to move all tasks to
2277 * the new cgroup. There are no failure cases after here, so this
2278 * is the commit point.
2279 */
2280 down_write(&css_set_rwsem);
2281 list_for_each_entry(cset, &tset.src_csets, mg_node) {
2282 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list)
2283 cgroup_task_migrate(cset->mg_src_cgrp, task,
2284 cset->mg_dst_cset);
2285 }
2286 up_write(&css_set_rwsem);
2287
2288 /*
2289 * Migration is committed, all target tasks are now on dst_csets.
2290 * Nothing is sensitive to fork() after this point. Notify
2291 * controllers that migration is complete.
2292 */
2293 tset.csets = &tset.dst_csets;
2294
2295 for_each_e_css(css, i, cgrp)
2296 if (css->ss->attach)
2297 css->ss->attach(css, &tset);
2298
2299 ret = 0;
2300 goto out_release_tset;
2301
2302 out_cancel_attach:
2303 for_each_e_css(css, i, cgrp) {
2304 if (css == failed_css)
2305 break;
2306 if (css->ss->cancel_attach)
2307 css->ss->cancel_attach(css, &tset);
2308 }
2309 out_release_tset:
2310 down_write(&css_set_rwsem);
2311 list_splice_init(&tset.dst_csets, &tset.src_csets);
2312 list_for_each_entry_safe(cset, tmp_cset, &tset.src_csets, mg_node) {
2313 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2314 list_del_init(&cset->mg_node);
2315 }
2316 up_write(&css_set_rwsem);
2317 return ret;
2318 }
2319
2320 /**
2321 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2322 * @dst_cgrp: the cgroup to attach to
2323 * @leader: the task or the leader of the threadgroup to be attached
2324 * @threadgroup: attach the whole threadgroup?
2325 *
2326 * Call holding cgroup_mutex and threadgroup_lock of @leader.
2327 */
2328 static int cgroup_attach_task(struct cgroup *dst_cgrp,
2329 struct task_struct *leader, bool threadgroup)
2330 {
2331 LIST_HEAD(preloaded_csets);
2332 struct task_struct *task;
2333 int ret;
2334
2335 /* look up all src csets */
2336 down_read(&css_set_rwsem);
2337 rcu_read_lock();
2338 task = leader;
2339 do {
2340 cgroup_migrate_add_src(task_css_set(task), dst_cgrp,
2341 &preloaded_csets);
2342 if (!threadgroup)
2343 break;
2344 } while_each_thread(leader, task);
2345 rcu_read_unlock();
2346 up_read(&css_set_rwsem);
2347
2348 /* prepare dst csets and commit */
2349 ret = cgroup_migrate_prepare_dst(dst_cgrp, &preloaded_csets);
2350 if (!ret)
2351 ret = cgroup_migrate(dst_cgrp, leader, threadgroup);
2352
2353 cgroup_migrate_finish(&preloaded_csets);
2354 return ret;
2355 }
2356
2357 /*
2358 * Find the task_struct of the task to attach by vpid and pass it along to the
2359 * function to attach either it or all tasks in its threadgroup. Will lock
2360 * cgroup_mutex and threadgroup.
2361 */
2362 static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
2363 size_t nbytes, loff_t off, bool threadgroup)
2364 {
2365 struct task_struct *tsk;
2366 const struct cred *cred = current_cred(), *tcred;
2367 struct cgroup *cgrp;
2368 pid_t pid;
2369 int ret;
2370
2371 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2372 return -EINVAL;
2373
2374 cgrp = cgroup_kn_lock_live(of->kn);
2375 if (!cgrp)
2376 return -ENODEV;
2377
2378 retry_find_task:
2379 rcu_read_lock();
2380 if (pid) {
2381 tsk = find_task_by_vpid(pid);
2382 if (!tsk) {
2383 rcu_read_unlock();
2384 ret = -ESRCH;
2385 goto out_unlock_cgroup;
2386 }
2387 /*
2388 * even if we're attaching all tasks in the thread group, we
2389 * only need to check permissions on one of them.
2390 */
2391 tcred = __task_cred(tsk);
2392 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2393 !uid_eq(cred->euid, tcred->uid) &&
2394 !uid_eq(cred->euid, tcred->suid)) {
2395 rcu_read_unlock();
2396 ret = -EACCES;
2397 goto out_unlock_cgroup;
2398 }
2399 } else
2400 tsk = current;
2401
2402 if (threadgroup)
2403 tsk = tsk->group_leader;
2404
2405 /*
2406 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
2407 * trapped in a cpuset, or RT worker may be born in a cgroup
2408 * with no rt_runtime allocated. Just say no.
2409 */
2410 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
2411 ret = -EINVAL;
2412 rcu_read_unlock();
2413 goto out_unlock_cgroup;
2414 }
2415
2416 get_task_struct(tsk);
2417 rcu_read_unlock();
2418
2419 threadgroup_lock(tsk);
2420 if (threadgroup) {
2421 if (!thread_group_leader(tsk)) {
2422 /*
2423 * a race with de_thread from another thread's exec()
2424 * may strip us of our leadership, if this happens,
2425 * there is no choice but to throw this task away and
2426 * try again; this is
2427 * "double-double-toil-and-trouble-check locking".
2428 */
2429 threadgroup_unlock(tsk);
2430 put_task_struct(tsk);
2431 goto retry_find_task;
2432 }
2433 }
2434
2435 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
2436
2437 threadgroup_unlock(tsk);
2438
2439 put_task_struct(tsk);
2440 out_unlock_cgroup:
2441 cgroup_kn_unlock(of->kn);
2442 return ret ?: nbytes;
2443 }
2444
2445 /**
2446 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2447 * @from: attach to all cgroups of a given task
2448 * @tsk: the task to be attached
2449 */
2450 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2451 {
2452 struct cgroup_root *root;
2453 int retval = 0;
2454
2455 mutex_lock(&cgroup_mutex);
2456 for_each_root(root) {
2457 struct cgroup *from_cgrp;
2458
2459 if (root == &cgrp_dfl_root)
2460 continue;
2461
2462 down_read(&css_set_rwsem);
2463 from_cgrp = task_cgroup_from_root(from, root);
2464 up_read(&css_set_rwsem);
2465
2466 retval = cgroup_attach_task(from_cgrp, tsk, false);
2467 if (retval)
2468 break;
2469 }
2470 mutex_unlock(&cgroup_mutex);
2471
2472 return retval;
2473 }
2474 EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2475
2476 static ssize_t cgroup_tasks_write(struct kernfs_open_file *of,
2477 char *buf, size_t nbytes, loff_t off)
2478 {
2479 return __cgroup_procs_write(of, buf, nbytes, off, false);
2480 }
2481
2482 static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
2483 char *buf, size_t nbytes, loff_t off)
2484 {
2485 return __cgroup_procs_write(of, buf, nbytes, off, true);
2486 }
2487
2488 static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
2489 char *buf, size_t nbytes, loff_t off)
2490 {
2491 struct cgroup *cgrp;
2492
2493 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
2494
2495 cgrp = cgroup_kn_lock_live(of->kn);
2496 if (!cgrp)
2497 return -ENODEV;
2498 spin_lock(&release_agent_path_lock);
2499 strlcpy(cgrp->root->release_agent_path, strstrip(buf),
2500 sizeof(cgrp->root->release_agent_path));
2501 spin_unlock(&release_agent_path_lock);
2502 cgroup_kn_unlock(of->kn);
2503 return nbytes;
2504 }
2505
2506 static int cgroup_release_agent_show(struct seq_file *seq, void *v)
2507 {
2508 struct cgroup *cgrp = seq_css(seq)->cgroup;
2509
2510 spin_lock(&release_agent_path_lock);
2511 seq_puts(seq, cgrp->root->release_agent_path);
2512 spin_unlock(&release_agent_path_lock);
2513 seq_putc(seq, '\n');
2514 return 0;
2515 }
2516
2517 static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
2518 {
2519 seq_puts(seq, "0\n");
2520 return 0;
2521 }
2522
2523 static void cgroup_print_ss_mask(struct seq_file *seq, unsigned int ss_mask)
2524 {
2525 struct cgroup_subsys *ss;
2526 bool printed = false;
2527 int ssid;
2528
2529 for_each_subsys(ss, ssid) {
2530 if (ss_mask & (1 << ssid)) {
2531 if (printed)
2532 seq_putc(seq, ' ');
2533 seq_printf(seq, "%s", ss->name);
2534 printed = true;
2535 }
2536 }
2537 if (printed)
2538 seq_putc(seq, '\n');
2539 }
2540
2541 /* show controllers which are currently attached to the default hierarchy */
2542 static int cgroup_root_controllers_show(struct seq_file *seq, void *v)
2543 {
2544 struct cgroup *cgrp = seq_css(seq)->cgroup;
2545
2546 cgroup_print_ss_mask(seq, cgrp->root->subsys_mask &
2547 ~cgrp_dfl_root_inhibit_ss_mask);
2548 return 0;
2549 }
2550
2551 /* show controllers which are enabled from the parent */
2552 static int cgroup_controllers_show(struct seq_file *seq, void *v)
2553 {
2554 struct cgroup *cgrp = seq_css(seq)->cgroup;
2555
2556 cgroup_print_ss_mask(seq, cgroup_parent(cgrp)->subtree_control);
2557 return 0;
2558 }
2559
2560 /* show controllers which are enabled for a given cgroup's children */
2561 static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
2562 {
2563 struct cgroup *cgrp = seq_css(seq)->cgroup;
2564
2565 cgroup_print_ss_mask(seq, cgrp->subtree_control);
2566 return 0;
2567 }
2568
2569 /**
2570 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2571 * @cgrp: root of the subtree to update csses for
2572 *
2573 * @cgrp's child_subsys_mask has changed and its subtree's (self excluded)
2574 * css associations need to be updated accordingly. This function looks up
2575 * all css_sets which are attached to the subtree, creates the matching
2576 * updated css_sets and migrates the tasks to the new ones.
2577 */
2578 static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2579 {
2580 LIST_HEAD(preloaded_csets);
2581 struct cgroup_subsys_state *css;
2582 struct css_set *src_cset;
2583 int ret;
2584
2585 lockdep_assert_held(&cgroup_mutex);
2586
2587 /* look up all csses currently attached to @cgrp's subtree */
2588 down_read(&css_set_rwsem);
2589 css_for_each_descendant_pre(css, cgroup_css(cgrp, NULL)) {
2590 struct cgrp_cset_link *link;
2591
2592 /* self is not affected by child_subsys_mask change */
2593 if (css->cgroup == cgrp)
2594 continue;
2595
2596 list_for_each_entry(link, &css->cgroup->cset_links, cset_link)
2597 cgroup_migrate_add_src(link->cset, cgrp,
2598 &preloaded_csets);
2599 }
2600 up_read(&css_set_rwsem);
2601
2602 /* NULL dst indicates self on default hierarchy */
2603 ret = cgroup_migrate_prepare_dst(NULL, &preloaded_csets);
2604 if (ret)
2605 goto out_finish;
2606
2607 list_for_each_entry(src_cset, &preloaded_csets, mg_preload_node) {
2608 struct task_struct *last_task = NULL, *task;
2609
2610 /* src_csets precede dst_csets, break on the first dst_cset */
2611 if (!src_cset->mg_src_cgrp)
2612 break;
2613
2614 /*
2615 * All tasks in src_cset need to be migrated to the
2616 * matching dst_cset. Empty it process by process. We
2617 * walk tasks but migrate processes. The leader might even
2618 * belong to a different cset but such src_cset would also
2619 * be among the target src_csets because the default
2620 * hierarchy enforces per-process membership.
2621 */
2622 while (true) {
2623 down_read(&css_set_rwsem);
2624 task = list_first_entry_or_null(&src_cset->tasks,
2625 struct task_struct, cg_list);
2626 if (task) {
2627 task = task->group_leader;
2628 WARN_ON_ONCE(!task_css_set(task)->mg_src_cgrp);
2629 get_task_struct(task);
2630 }
2631 up_read(&css_set_rwsem);
2632
2633 if (!task)
2634 break;
2635
2636 /* guard against possible infinite loop */
2637 if (WARN(last_task == task,
2638 "cgroup: update_dfl_csses failed to make progress, aborting in inconsistent state\n"))
2639 goto out_finish;
2640 last_task = task;
2641
2642 threadgroup_lock(task);
2643 /* raced against de_thread() from another thread? */
2644 if (!thread_group_leader(task)) {
2645 threadgroup_unlock(task);
2646 put_task_struct(task);
2647 continue;
2648 }
2649
2650 ret = cgroup_migrate(src_cset->dfl_cgrp, task, true);
2651
2652 threadgroup_unlock(task);
2653 put_task_struct(task);
2654
2655 if (WARN(ret, "cgroup: failed to update controllers for the default hierarchy (%d), further operations may crash or hang\n", ret))
2656 goto out_finish;
2657 }
2658 }
2659
2660 out_finish:
2661 cgroup_migrate_finish(&preloaded_csets);
2662 return ret;
2663 }
2664
2665 /* change the enabled child controllers for a cgroup in the default hierarchy */
2666 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
2667 char *buf, size_t nbytes,
2668 loff_t off)
2669 {
2670 unsigned int enable = 0, disable = 0;
2671 unsigned int css_enable, css_disable, old_ctrl, new_ctrl;
2672 struct cgroup *cgrp, *child;
2673 struct cgroup_subsys *ss;
2674 char *tok;
2675 int ssid, ret;
2676
2677 /*
2678 * Parse input - space separated list of subsystem names prefixed
2679 * with either + or -.
2680 */
2681 buf = strstrip(buf);
2682 while ((tok = strsep(&buf, " "))) {
2683 if (tok[0] == '\0')
2684 continue;
2685 for_each_subsys(ss, ssid) {
2686 if (ss->disabled || strcmp(tok + 1, ss->name) ||
2687 ((1 << ss->id) & cgrp_dfl_root_inhibit_ss_mask))
2688 continue;
2689
2690 if (*tok == '+') {
2691 enable |= 1 << ssid;
2692 disable &= ~(1 << ssid);
2693 } else if (*tok == '-') {
2694 disable |= 1 << ssid;
2695 enable &= ~(1 << ssid);
2696 } else {
2697 return -EINVAL;
2698 }
2699 break;
2700 }
2701 if (ssid == CGROUP_SUBSYS_COUNT)
2702 return -EINVAL;
2703 }
2704
2705 cgrp = cgroup_kn_lock_live(of->kn);
2706 if (!cgrp)
2707 return -ENODEV;
2708
2709 for_each_subsys(ss, ssid) {
2710 if (enable & (1 << ssid)) {
2711 if (cgrp->subtree_control & (1 << ssid)) {
2712 enable &= ~(1 << ssid);
2713 continue;
2714 }
2715
2716 /* unavailable or not enabled on the parent? */
2717 if (!(cgrp_dfl_root.subsys_mask & (1 << ssid)) ||
2718 (cgroup_parent(cgrp) &&
2719 !(cgroup_parent(cgrp)->subtree_control & (1 << ssid)))) {
2720 ret = -ENOENT;
2721 goto out_unlock;
2722 }
2723
2724 /*
2725 * @ss is already enabled through dependency and
2726 * we'll just make it visible. Skip draining.
2727 */
2728 if (cgrp->child_subsys_mask & (1 << ssid))
2729 continue;
2730
2731 /*
2732 * Because css offlining is asynchronous, userland
2733 * might try to re-enable the same controller while
2734 * the previous instance is still around. In such
2735 * cases, wait till it's gone using offline_waitq.
2736 */
2737 cgroup_for_each_live_child(child, cgrp) {
2738 DEFINE_WAIT(wait);
2739
2740 if (!cgroup_css(child, ss))
2741 continue;
2742
2743 cgroup_get(child);
2744 prepare_to_wait(&child->offline_waitq, &wait,
2745 TASK_UNINTERRUPTIBLE);
2746 cgroup_kn_unlock(of->kn);
2747 schedule();
2748 finish_wait(&child->offline_waitq, &wait);
2749 cgroup_put(child);
2750
2751 return restart_syscall();
2752 }
2753 } else if (disable & (1 << ssid)) {
2754 if (!(cgrp->subtree_control & (1 << ssid))) {
2755 disable &= ~(1 << ssid);
2756 continue;
2757 }
2758
2759 /* a child has it enabled? */
2760 cgroup_for_each_live_child(child, cgrp) {
2761 if (child->subtree_control & (1 << ssid)) {
2762 ret = -EBUSY;
2763 goto out_unlock;
2764 }
2765 }
2766 }
2767 }
2768
2769 if (!enable && !disable) {
2770 ret = 0;
2771 goto out_unlock;
2772 }
2773
2774 /*
2775 * Except for the root, subtree_control must be zero for a cgroup
2776 * with tasks so that child cgroups don't compete against tasks.
2777 */
2778 if (enable && cgroup_parent(cgrp) && !list_empty(&cgrp->cset_links)) {
2779 ret = -EBUSY;
2780 goto out_unlock;
2781 }
2782
2783 /*
2784 * Update subsys masks and calculate what needs to be done. More
2785 * subsystems than specified may need to be enabled or disabled
2786 * depending on subsystem dependencies.
2787 */
2788 cgrp->subtree_control |= enable;
2789 cgrp->subtree_control &= ~disable;
2790
2791 old_ctrl = cgrp->child_subsys_mask;
2792 cgroup_refresh_child_subsys_mask(cgrp);
2793 new_ctrl = cgrp->child_subsys_mask;
2794
2795 css_enable = ~old_ctrl & new_ctrl;
2796 css_disable = old_ctrl & ~new_ctrl;
2797 enable |= css_enable;
2798 disable |= css_disable;
2799
2800 /*
2801 * Create new csses or make the existing ones visible. A css is
2802 * created invisible if it's being implicitly enabled through
2803 * dependency. An invisible css is made visible when the userland
2804 * explicitly enables it.
2805 */
2806 for_each_subsys(ss, ssid) {
2807 if (!(enable & (1 << ssid)))
2808 continue;
2809
2810 cgroup_for_each_live_child(child, cgrp) {
2811 if (css_enable & (1 << ssid))
2812 ret = create_css(child, ss,
2813 cgrp->subtree_control & (1 << ssid));
2814 else
2815 ret = cgroup_populate_dir(child, 1 << ssid);
2816 if (ret)
2817 goto err_undo_css;
2818 }
2819 }
2820
2821 /*
2822 * At this point, cgroup_e_css() results reflect the new csses
2823 * making the following cgroup_update_dfl_csses() properly update
2824 * css associations of all tasks in the subtree.
2825 */
2826 ret = cgroup_update_dfl_csses(cgrp);
2827 if (ret)
2828 goto err_undo_css;
2829
2830 /*
2831 * All tasks are migrated out of disabled csses. Kill or hide
2832 * them. A css is hidden when the userland requests it to be
2833 * disabled while other subsystems are still depending on it. The
2834 * css must not actively control resources and be in the vanilla
2835 * state if it's made visible again later. Controllers which may
2836 * be depended upon should provide ->css_reset() for this purpose.
2837 */
2838 for_each_subsys(ss, ssid) {
2839 if (!(disable & (1 << ssid)))
2840 continue;
2841
2842 cgroup_for_each_live_child(child, cgrp) {
2843 struct cgroup_subsys_state *css = cgroup_css(child, ss);
2844
2845 if (css_disable & (1 << ssid)) {
2846 kill_css(css);
2847 } else {
2848 cgroup_clear_dir(child, 1 << ssid);
2849 if (ss->css_reset)
2850 ss->css_reset(css);
2851 }
2852 }
2853 }
2854
2855 kernfs_activate(cgrp->kn);
2856 ret = 0;
2857 out_unlock:
2858 cgroup_kn_unlock(of->kn);
2859 return ret ?: nbytes;
2860
2861 err_undo_css:
2862 cgrp->subtree_control &= ~enable;
2863 cgrp->subtree_control |= disable;
2864 cgroup_refresh_child_subsys_mask(cgrp);
2865
2866 for_each_subsys(ss, ssid) {
2867 if (!(enable & (1 << ssid)))
2868 continue;
2869
2870 cgroup_for_each_live_child(child, cgrp) {
2871 struct cgroup_subsys_state *css = cgroup_css(child, ss);
2872
2873 if (!css)
2874 continue;
2875
2876 if (css_enable & (1 << ssid))
2877 kill_css(css);
2878 else
2879 cgroup_clear_dir(child, 1 << ssid);
2880 }
2881 }
2882 goto out_unlock;
2883 }
2884
2885 static int cgroup_populated_show(struct seq_file *seq, void *v)
2886 {
2887 seq_printf(seq, "%d\n", (bool)seq_css(seq)->cgroup->populated_cnt);
2888 return 0;
2889 }
2890
2891 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
2892 size_t nbytes, loff_t off)
2893 {
2894 struct cgroup *cgrp = of->kn->parent->priv;
2895 struct cftype *cft = of->kn->priv;
2896 struct cgroup_subsys_state *css;
2897 int ret;
2898
2899 if (cft->write)
2900 return cft->write(of, buf, nbytes, off);
2901
2902 /*
2903 * kernfs guarantees that a file isn't deleted with operations in
2904 * flight, which means that the matching css is and stays alive and
2905 * doesn't need to be pinned. The RCU locking is not necessary
2906 * either. It's just for the convenience of using cgroup_css().
2907 */
2908 rcu_read_lock();
2909 css = cgroup_css(cgrp, cft->ss);
2910 rcu_read_unlock();
2911
2912 if (cft->write_u64) {
2913 unsigned long long v;
2914 ret = kstrtoull(buf, 0, &v);
2915 if (!ret)
2916 ret = cft->write_u64(css, cft, v);
2917 } else if (cft->write_s64) {
2918 long long v;
2919 ret = kstrtoll(buf, 0, &v);
2920 if (!ret)
2921 ret = cft->write_s64(css, cft, v);
2922 } else {
2923 ret = -EINVAL;
2924 }
2925
2926 return ret ?: nbytes;
2927 }
2928
2929 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
2930 {
2931 return seq_cft(seq)->seq_start(seq, ppos);
2932 }
2933
2934 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
2935 {
2936 return seq_cft(seq)->seq_next(seq, v, ppos);
2937 }
2938
2939 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
2940 {
2941 seq_cft(seq)->seq_stop(seq, v);
2942 }
2943
2944 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
2945 {
2946 struct cftype *cft = seq_cft(m);
2947 struct cgroup_subsys_state *css = seq_css(m);
2948
2949 if (cft->seq_show)
2950 return cft->seq_show(m, arg);
2951
2952 if (cft->read_u64)
2953 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
2954 else if (cft->read_s64)
2955 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
2956 else
2957 return -EINVAL;
2958 return 0;
2959 }
2960
2961 static struct kernfs_ops cgroup_kf_single_ops = {
2962 .atomic_write_len = PAGE_SIZE,
2963 .write = cgroup_file_write,
2964 .seq_show = cgroup_seqfile_show,
2965 };
2966
2967 static struct kernfs_ops cgroup_kf_ops = {
2968 .atomic_write_len = PAGE_SIZE,
2969 .write = cgroup_file_write,
2970 .seq_start = cgroup_seqfile_start,
2971 .seq_next = cgroup_seqfile_next,
2972 .seq_stop = cgroup_seqfile_stop,
2973 .seq_show = cgroup_seqfile_show,
2974 };
2975
2976 /*
2977 * cgroup_rename - Only allow simple rename of directories in place.
2978 */
2979 static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
2980 const char *new_name_str)
2981 {
2982 struct cgroup *cgrp = kn->priv;
2983 int ret;
2984
2985 if (kernfs_type(kn) != KERNFS_DIR)
2986 return -ENOTDIR;
2987 if (kn->parent != new_parent)
2988 return -EIO;
2989
2990 /*
2991 * This isn't a proper migration and its usefulness is very
2992 * limited. Disallow on the default hierarchy.
2993 */
2994 if (cgroup_on_dfl(cgrp))
2995 return -EPERM;
2996
2997 /*
2998 * We're gonna grab cgroup_mutex which nests outside kernfs
2999 * active_ref. kernfs_rename() doesn't require active_ref
3000 * protection. Break them before grabbing cgroup_mutex.
3001 */
3002 kernfs_break_active_protection(new_parent);
3003 kernfs_break_active_protection(kn);
3004
3005 mutex_lock(&cgroup_mutex);
3006
3007 ret = kernfs_rename(kn, new_parent, new_name_str);
3008
3009 mutex_unlock(&cgroup_mutex);
3010
3011 kernfs_unbreak_active_protection(kn);
3012 kernfs_unbreak_active_protection(new_parent);
3013 return ret;
3014 }
3015
3016 /* set uid and gid of cgroup dirs and files to that of the creator */
3017 static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3018 {
3019 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3020 .ia_uid = current_fsuid(),
3021 .ia_gid = current_fsgid(), };
3022
3023 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3024 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3025 return 0;
3026
3027 return kernfs_setattr(kn, &iattr);
3028 }
3029
3030 static int cgroup_add_file(struct cgroup *cgrp, struct cftype *cft)
3031 {
3032 char name[CGROUP_FILE_NAME_MAX];
3033 struct kernfs_node *kn;
3034 struct lock_class_key *key = NULL;
3035 int ret;
3036
3037 #ifdef CONFIG_DEBUG_LOCK_ALLOC
3038 key = &cft->lockdep_key;
3039 #endif
3040 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3041 cgroup_file_mode(cft), 0, cft->kf_ops, cft,
3042 NULL, false, key);
3043 if (IS_ERR(kn))
3044 return PTR_ERR(kn);
3045
3046 ret = cgroup_kn_set_ugid(kn);
3047 if (ret) {
3048 kernfs_remove(kn);
3049 return ret;
3050 }
3051
3052 if (cft->seq_show == cgroup_populated_show)
3053 cgrp->populated_kn = kn;
3054 return 0;
3055 }
3056
3057 /**
3058 * cgroup_addrm_files - add or remove files to a cgroup directory
3059 * @cgrp: the target cgroup
3060 * @cfts: array of cftypes to be added
3061 * @is_add: whether to add or remove
3062 *
3063 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
3064 * For removals, this function never fails. If addition fails, this
3065 * function doesn't remove files already added. The caller is responsible
3066 * for cleaning up.
3067 */
3068 static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
3069 bool is_add)
3070 {
3071 struct cftype *cft;
3072 int ret;
3073
3074 lockdep_assert_held(&cgroup_mutex);
3075
3076 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3077 /* does cft->flags tell us to skip this file on @cgrp? */
3078 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
3079 continue;
3080 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
3081 continue;
3082 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
3083 continue;
3084 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
3085 continue;
3086
3087 if (is_add) {
3088 ret = cgroup_add_file(cgrp, cft);
3089 if (ret) {
3090 pr_warn("%s: failed to add %s, err=%d\n",
3091 __func__, cft->name, ret);
3092 return ret;
3093 }
3094 } else {
3095 cgroup_rm_file(cgrp, cft);
3096 }
3097 }
3098 return 0;
3099 }
3100
3101 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
3102 {
3103 LIST_HEAD(pending);
3104 struct cgroup_subsys *ss = cfts[0].ss;
3105 struct cgroup *root = &ss->root->cgrp;
3106 struct cgroup_subsys_state *css;
3107 int ret = 0;
3108
3109 lockdep_assert_held(&cgroup_mutex);
3110
3111 /* add/rm files for all cgroups created before */
3112 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
3113 struct cgroup *cgrp = css->cgroup;
3114
3115 if (cgroup_is_dead(cgrp))
3116 continue;
3117
3118 ret = cgroup_addrm_files(cgrp, cfts, is_add);
3119 if (ret)
3120 break;
3121 }
3122
3123 if (is_add && !ret)
3124 kernfs_activate(root->kn);
3125 return ret;
3126 }
3127
3128 static void cgroup_exit_cftypes(struct cftype *cfts)
3129 {
3130 struct cftype *cft;
3131
3132 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3133 /* free copy for custom atomic_write_len, see init_cftypes() */
3134 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3135 kfree(cft->kf_ops);
3136 cft->kf_ops = NULL;
3137 cft->ss = NULL;
3138
3139 /* revert flags set by cgroup core while adding @cfts */
3140 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
3141 }
3142 }
3143
3144 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3145 {
3146 struct cftype *cft;
3147
3148 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3149 struct kernfs_ops *kf_ops;
3150
3151 WARN_ON(cft->ss || cft->kf_ops);
3152
3153 if (cft->seq_start)
3154 kf_ops = &cgroup_kf_ops;
3155 else
3156 kf_ops = &cgroup_kf_single_ops;
3157
3158 /*
3159 * Ugh... if @cft wants a custom max_write_len, we need to
3160 * make a copy of kf_ops to set its atomic_write_len.
3161 */
3162 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3163 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3164 if (!kf_ops) {
3165 cgroup_exit_cftypes(cfts);
3166 return -ENOMEM;
3167 }
3168 kf_ops->atomic_write_len = cft->max_write_len;
3169 }
3170
3171 cft->kf_ops = kf_ops;
3172 cft->ss = ss;
3173 }
3174
3175 return 0;
3176 }
3177
3178 static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3179 {
3180 lockdep_assert_held(&cgroup_mutex);
3181
3182 if (!cfts || !cfts[0].ss)
3183 return -ENOENT;
3184
3185 list_del(&cfts->node);
3186 cgroup_apply_cftypes(cfts, false);
3187 cgroup_exit_cftypes(cfts);
3188 return 0;
3189 }
3190
3191 /**
3192 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
3193 * @cfts: zero-length name terminated array of cftypes
3194 *
3195 * Unregister @cfts. Files described by @cfts are removed from all
3196 * existing cgroups and all future cgroups won't have them either. This
3197 * function can be called anytime whether @cfts' subsys is attached or not.
3198 *
3199 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
3200 * registered.
3201 */
3202 int cgroup_rm_cftypes(struct cftype *cfts)
3203 {
3204 int ret;
3205
3206 mutex_lock(&cgroup_mutex);
3207 ret = cgroup_rm_cftypes_locked(cfts);
3208 mutex_unlock(&cgroup_mutex);
3209 return ret;
3210 }
3211
3212 /**
3213 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3214 * @ss: target cgroup subsystem
3215 * @cfts: zero-length name terminated array of cftypes
3216 *
3217 * Register @cfts to @ss. Files described by @cfts are created for all
3218 * existing cgroups to which @ss is attached and all future cgroups will
3219 * have them too. This function can be called anytime whether @ss is
3220 * attached or not.
3221 *
3222 * Returns 0 on successful registration, -errno on failure. Note that this
3223 * function currently returns 0 as long as @cfts registration is successful
3224 * even if some file creation attempts on existing cgroups fail.
3225 */
3226 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3227 {
3228 int ret;
3229
3230 if (ss->disabled)
3231 return 0;
3232
3233 if (!cfts || cfts[0].name[0] == '\0')
3234 return 0;
3235
3236 ret = cgroup_init_cftypes(ss, cfts);
3237 if (ret)
3238 return ret;
3239
3240 mutex_lock(&cgroup_mutex);
3241
3242 list_add_tail(&cfts->node, &ss->cfts);
3243 ret = cgroup_apply_cftypes(cfts, true);
3244 if (ret)
3245 cgroup_rm_cftypes_locked(cfts);
3246
3247 mutex_unlock(&cgroup_mutex);
3248 return ret;
3249 }
3250
3251 /**
3252 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3253 * @ss: target cgroup subsystem
3254 * @cfts: zero-length name terminated array of cftypes
3255 *
3256 * Similar to cgroup_add_cftypes() but the added files are only used for
3257 * the default hierarchy.
3258 */
3259 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3260 {
3261 struct cftype *cft;
3262
3263 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3264 cft->flags |= __CFTYPE_ONLY_ON_DFL;
3265 return cgroup_add_cftypes(ss, cfts);
3266 }
3267
3268 /**
3269 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3270 * @ss: target cgroup subsystem
3271 * @cfts: zero-length name terminated array of cftypes
3272 *
3273 * Similar to cgroup_add_cftypes() but the added files are only used for
3274 * the legacy hierarchies.
3275 */
3276 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3277 {
3278 struct cftype *cft;
3279
3280 /*
3281 * If legacy_flies_on_dfl, we want to show the legacy files on the
3282 * dfl hierarchy but iff the target subsystem hasn't been updated
3283 * for the dfl hierarchy yet.
3284 */
3285 if (!cgroup_legacy_files_on_dfl ||
3286 ss->dfl_cftypes != ss->legacy_cftypes) {
3287 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3288 cft->flags |= __CFTYPE_NOT_ON_DFL;
3289 }
3290
3291 return cgroup_add_cftypes(ss, cfts);
3292 }
3293
3294 /**
3295 * cgroup_task_count - count the number of tasks in a cgroup.
3296 * @cgrp: the cgroup in question
3297 *
3298 * Return the number of tasks in the cgroup.
3299 */
3300 static int cgroup_task_count(const struct cgroup *cgrp)
3301 {
3302 int count = 0;
3303 struct cgrp_cset_link *link;
3304
3305 down_read(&css_set_rwsem);
3306 list_for_each_entry(link, &cgrp->cset_links, cset_link)
3307 count += atomic_read(&link->cset->refcount);
3308 up_read(&css_set_rwsem);
3309 return count;
3310 }
3311
3312 /**
3313 * css_next_child - find the next child of a given css
3314 * @pos: the current position (%NULL to initiate traversal)
3315 * @parent: css whose children to walk
3316 *
3317 * This function returns the next child of @parent and should be called
3318 * under either cgroup_mutex or RCU read lock. The only requirement is
3319 * that @parent and @pos are accessible. The next sibling is guaranteed to
3320 * be returned regardless of their states.
3321 *
3322 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3323 * css which finished ->css_online() is guaranteed to be visible in the
3324 * future iterations and will stay visible until the last reference is put.
3325 * A css which hasn't finished ->css_online() or already finished
3326 * ->css_offline() may show up during traversal. It's each subsystem's
3327 * responsibility to synchronize against on/offlining.
3328 */
3329 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
3330 struct cgroup_subsys_state *parent)
3331 {
3332 struct cgroup_subsys_state *next;
3333
3334 cgroup_assert_mutex_or_rcu_locked();
3335
3336 /*
3337 * @pos could already have been unlinked from the sibling list.
3338 * Once a cgroup is removed, its ->sibling.next is no longer
3339 * updated when its next sibling changes. CSS_RELEASED is set when
3340 * @pos is taken off list, at which time its next pointer is valid,
3341 * and, as releases are serialized, the one pointed to by the next
3342 * pointer is guaranteed to not have started release yet. This
3343 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3344 * critical section, the one pointed to by its next pointer is
3345 * guaranteed to not have finished its RCU grace period even if we
3346 * have dropped rcu_read_lock() inbetween iterations.
3347 *
3348 * If @pos has CSS_RELEASED set, its next pointer can't be
3349 * dereferenced; however, as each css is given a monotonically
3350 * increasing unique serial number and always appended to the
3351 * sibling list, the next one can be found by walking the parent's
3352 * children until the first css with higher serial number than
3353 * @pos's. While this path can be slower, it happens iff iteration
3354 * races against release and the race window is very small.
3355 */
3356 if (!pos) {
3357 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
3358 } else if (likely(!(pos->flags & CSS_RELEASED))) {
3359 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
3360 } else {
3361 list_for_each_entry_rcu(next, &parent->children, sibling)
3362 if (next->serial_nr > pos->serial_nr)
3363 break;
3364 }
3365
3366 /*
3367 * @next, if not pointing to the head, can be dereferenced and is
3368 * the next sibling.
3369 */
3370 if (&next->sibling != &parent->children)
3371 return next;
3372 return NULL;
3373 }
3374
3375 /**
3376 * css_next_descendant_pre - find the next descendant for pre-order walk
3377 * @pos: the current position (%NULL to initiate traversal)
3378 * @root: css whose descendants to walk
3379 *
3380 * To be used by css_for_each_descendant_pre(). Find the next descendant
3381 * to visit for pre-order traversal of @root's descendants. @root is
3382 * included in the iteration and the first node to be visited.
3383 *
3384 * While this function requires cgroup_mutex or RCU read locking, it
3385 * doesn't require the whole traversal to be contained in a single critical
3386 * section. This function will return the correct next descendant as long
3387 * as both @pos and @root are accessible and @pos is a descendant of @root.
3388 *
3389 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3390 * css which finished ->css_online() is guaranteed to be visible in the
3391 * future iterations and will stay visible until the last reference is put.
3392 * A css which hasn't finished ->css_online() or already finished
3393 * ->css_offline() may show up during traversal. It's each subsystem's
3394 * responsibility to synchronize against on/offlining.
3395 */
3396 struct cgroup_subsys_state *
3397 css_next_descendant_pre(struct cgroup_subsys_state *pos,
3398 struct cgroup_subsys_state *root)
3399 {
3400 struct cgroup_subsys_state *next;
3401
3402 cgroup_assert_mutex_or_rcu_locked();
3403
3404 /* if first iteration, visit @root */
3405 if (!pos)
3406 return root;
3407
3408 /* visit the first child if exists */
3409 next = css_next_child(NULL, pos);
3410 if (next)
3411 return next;
3412
3413 /* no child, visit my or the closest ancestor's next sibling */
3414 while (pos != root) {
3415 next = css_next_child(pos, pos->parent);
3416 if (next)
3417 return next;
3418 pos = pos->parent;
3419 }
3420
3421 return NULL;
3422 }
3423
3424 /**
3425 * css_rightmost_descendant - return the rightmost descendant of a css
3426 * @pos: css of interest
3427 *
3428 * Return the rightmost descendant of @pos. If there's no descendant, @pos
3429 * is returned. This can be used during pre-order traversal to skip
3430 * subtree of @pos.
3431 *
3432 * While this function requires cgroup_mutex or RCU read locking, it
3433 * doesn't require the whole traversal to be contained in a single critical
3434 * section. This function will return the correct rightmost descendant as
3435 * long as @pos is accessible.
3436 */
3437 struct cgroup_subsys_state *
3438 css_rightmost_descendant(struct cgroup_subsys_state *pos)
3439 {
3440 struct cgroup_subsys_state *last, *tmp;
3441
3442 cgroup_assert_mutex_or_rcu_locked();
3443
3444 do {
3445 last = pos;
3446 /* ->prev isn't RCU safe, walk ->next till the end */
3447 pos = NULL;
3448 css_for_each_child(tmp, last)
3449 pos = tmp;
3450 } while (pos);
3451
3452 return last;
3453 }
3454
3455 static struct cgroup_subsys_state *
3456 css_leftmost_descendant(struct cgroup_subsys_state *pos)
3457 {
3458 struct cgroup_subsys_state *last;
3459
3460 do {
3461 last = pos;
3462 pos = css_next_child(NULL, pos);
3463 } while (pos);
3464
3465 return last;
3466 }
3467
3468 /**
3469 * css_next_descendant_post - find the next descendant for post-order walk
3470 * @pos: the current position (%NULL to initiate traversal)
3471 * @root: css whose descendants to walk
3472 *
3473 * To be used by css_for_each_descendant_post(). Find the next descendant
3474 * to visit for post-order traversal of @root's descendants. @root is
3475 * included in the iteration and the last node to be visited.
3476 *
3477 * While this function requires cgroup_mutex or RCU read locking, it
3478 * doesn't require the whole traversal to be contained in a single critical
3479 * section. This function will return the correct next descendant as long
3480 * as both @pos and @cgroup are accessible and @pos is a descendant of
3481 * @cgroup.
3482 *
3483 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3484 * css which finished ->css_online() is guaranteed to be visible in the
3485 * future iterations and will stay visible until the last reference is put.
3486 * A css which hasn't finished ->css_online() or already finished
3487 * ->css_offline() may show up during traversal. It's each subsystem's
3488 * responsibility to synchronize against on/offlining.
3489 */
3490 struct cgroup_subsys_state *
3491 css_next_descendant_post(struct cgroup_subsys_state *pos,
3492 struct cgroup_subsys_state *root)
3493 {
3494 struct cgroup_subsys_state *next;
3495
3496 cgroup_assert_mutex_or_rcu_locked();
3497
3498 /* if first iteration, visit leftmost descendant which may be @root */
3499 if (!pos)
3500 return css_leftmost_descendant(root);
3501
3502 /* if we visited @root, we're done */
3503 if (pos == root)
3504 return NULL;
3505
3506 /* if there's an unvisited sibling, visit its leftmost descendant */
3507 next = css_next_child(pos, pos->parent);
3508 if (next)
3509 return css_leftmost_descendant(next);
3510
3511 /* no sibling left, visit parent */
3512 return pos->parent;
3513 }
3514
3515 /**
3516 * css_has_online_children - does a css have online children
3517 * @css: the target css
3518 *
3519 * Returns %true if @css has any online children; otherwise, %false. This
3520 * function can be called from any context but the caller is responsible
3521 * for synchronizing against on/offlining as necessary.
3522 */
3523 bool css_has_online_children(struct cgroup_subsys_state *css)
3524 {
3525 struct cgroup_subsys_state *child;
3526 bool ret = false;
3527
3528 rcu_read_lock();
3529 css_for_each_child(child, css) {
3530 if (child->flags & CSS_ONLINE) {
3531 ret = true;
3532 break;
3533 }
3534 }
3535 rcu_read_unlock();
3536 return ret;
3537 }
3538
3539 /**
3540 * css_advance_task_iter - advance a task itererator to the next css_set
3541 * @it: the iterator to advance
3542 *
3543 * Advance @it to the next css_set to walk.
3544 */
3545 static void css_advance_task_iter(struct css_task_iter *it)
3546 {
3547 struct list_head *l = it->cset_pos;
3548 struct cgrp_cset_link *link;
3549 struct css_set *cset;
3550
3551 /* Advance to the next non-empty css_set */
3552 do {
3553 l = l->next;
3554 if (l == it->cset_head) {
3555 it->cset_pos = NULL;
3556 return;
3557 }
3558
3559 if (it->ss) {
3560 cset = container_of(l, struct css_set,
3561 e_cset_node[it->ss->id]);
3562 } else {
3563 link = list_entry(l, struct cgrp_cset_link, cset_link);
3564 cset = link->cset;
3565 }
3566 } while (list_empty(&cset->tasks) && list_empty(&cset->mg_tasks));
3567
3568 it->cset_pos = l;
3569
3570 if (!list_empty(&cset->tasks))
3571 it->task_pos = cset->tasks.next;
3572 else
3573 it->task_pos = cset->mg_tasks.next;
3574
3575 it->tasks_head = &cset->tasks;
3576 it->mg_tasks_head = &cset->mg_tasks;
3577 }
3578
3579 /**
3580 * css_task_iter_start - initiate task iteration
3581 * @css: the css to walk tasks of
3582 * @it: the task iterator to use
3583 *
3584 * Initiate iteration through the tasks of @css. The caller can call
3585 * css_task_iter_next() to walk through the tasks until the function
3586 * returns NULL. On completion of iteration, css_task_iter_end() must be
3587 * called.
3588 *
3589 * Note that this function acquires a lock which is released when the
3590 * iteration finishes. The caller can't sleep while iteration is in
3591 * progress.
3592 */
3593 void css_task_iter_start(struct cgroup_subsys_state *css,
3594 struct css_task_iter *it)
3595 __acquires(css_set_rwsem)
3596 {
3597 /* no one should try to iterate before mounting cgroups */
3598 WARN_ON_ONCE(!use_task_css_set_links);
3599
3600 down_read(&css_set_rwsem);
3601
3602 it->ss = css->ss;
3603
3604 if (it->ss)
3605 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
3606 else
3607 it->cset_pos = &css->cgroup->cset_links;
3608
3609 it->cset_head = it->cset_pos;
3610
3611 css_advance_task_iter(it);
3612 }
3613
3614 /**
3615 * css_task_iter_next - return the next task for the iterator
3616 * @it: the task iterator being iterated
3617 *
3618 * The "next" function for task iteration. @it should have been
3619 * initialized via css_task_iter_start(). Returns NULL when the iteration
3620 * reaches the end.
3621 */
3622 struct task_struct *css_task_iter_next(struct css_task_iter *it)
3623 {
3624 struct task_struct *res;
3625 struct list_head *l = it->task_pos;
3626
3627 /* If the iterator cg is NULL, we have no tasks */
3628 if (!it->cset_pos)
3629 return NULL;
3630 res = list_entry(l, struct task_struct, cg_list);
3631
3632 /*
3633 * Advance iterator to find next entry. cset->tasks is consumed
3634 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
3635 * next cset.
3636 */
3637 l = l->next;
3638
3639 if (l == it->tasks_head)
3640 l = it->mg_tasks_head->next;
3641
3642 if (l == it->mg_tasks_head)
3643 css_advance_task_iter(it);
3644 else
3645 it->task_pos = l;
3646
3647 return res;
3648 }
3649
3650 /**
3651 * css_task_iter_end - finish task iteration
3652 * @it: the task iterator to finish
3653 *
3654 * Finish task iteration started by css_task_iter_start().
3655 */
3656 void css_task_iter_end(struct css_task_iter *it)
3657 __releases(css_set_rwsem)
3658 {
3659 up_read(&css_set_rwsem);
3660 }
3661
3662 /**
3663 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
3664 * @to: cgroup to which the tasks will be moved
3665 * @from: cgroup in which the tasks currently reside
3666 *
3667 * Locking rules between cgroup_post_fork() and the migration path
3668 * guarantee that, if a task is forking while being migrated, the new child
3669 * is guaranteed to be either visible in the source cgroup after the
3670 * parent's migration is complete or put into the target cgroup. No task
3671 * can slip out of migration through forking.
3672 */
3673 int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
3674 {
3675 LIST_HEAD(preloaded_csets);
3676 struct cgrp_cset_link *link;
3677 struct css_task_iter it;
3678 struct task_struct *task;
3679 int ret;
3680
3681 mutex_lock(&cgroup_mutex);
3682
3683 /* all tasks in @from are being moved, all csets are source */
3684 down_read(&css_set_rwsem);
3685 list_for_each_entry(link, &from->cset_links, cset_link)
3686 cgroup_migrate_add_src(link->cset, to, &preloaded_csets);
3687 up_read(&css_set_rwsem);
3688
3689 ret = cgroup_migrate_prepare_dst(to, &preloaded_csets);
3690 if (ret)
3691 goto out_err;
3692
3693 /*
3694 * Migrate tasks one-by-one until @form is empty. This fails iff
3695 * ->can_attach() fails.
3696 */
3697 do {
3698 css_task_iter_start(&from->self, &it);
3699 task = css_task_iter_next(&it);
3700 if (task)
3701 get_task_struct(task);
3702 css_task_iter_end(&it);
3703
3704 if (task) {
3705 ret = cgroup_migrate(to, task, false);
3706 put_task_struct(task);
3707 }
3708 } while (task && !ret);
3709 out_err:
3710 cgroup_migrate_finish(&preloaded_csets);
3711 mutex_unlock(&cgroup_mutex);
3712 return ret;
3713 }
3714
3715 /*
3716 * Stuff for reading the 'tasks'/'procs' files.
3717 *
3718 * Reading this file can return large amounts of data if a cgroup has
3719 * *lots* of attached tasks. So it may need several calls to read(),
3720 * but we cannot guarantee that the information we produce is correct
3721 * unless we produce it entirely atomically.
3722 *
3723 */
3724
3725 /* which pidlist file are we talking about? */
3726 enum cgroup_filetype {
3727 CGROUP_FILE_PROCS,
3728 CGROUP_FILE_TASKS,
3729 };
3730
3731 /*
3732 * A pidlist is a list of pids that virtually represents the contents of one
3733 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
3734 * a pair (one each for procs, tasks) for each pid namespace that's relevant
3735 * to the cgroup.
3736 */
3737 struct cgroup_pidlist {
3738 /*
3739 * used to find which pidlist is wanted. doesn't change as long as
3740 * this particular list stays in the list.
3741 */
3742 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
3743 /* array of xids */
3744 pid_t *list;
3745 /* how many elements the above list has */
3746 int length;
3747 /* each of these stored in a list by its cgroup */
3748 struct list_head links;
3749 /* pointer to the cgroup we belong to, for list removal purposes */
3750 struct cgroup *owner;
3751 /* for delayed destruction */
3752 struct delayed_work destroy_dwork;
3753 };
3754
3755 /*
3756 * The following two functions "fix" the issue where there are more pids
3757 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3758 * TODO: replace with a kernel-wide solution to this problem
3759 */
3760 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
3761 static void *pidlist_allocate(int count)
3762 {
3763 if (PIDLIST_TOO_LARGE(count))
3764 return vmalloc(count * sizeof(pid_t));
3765 else
3766 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
3767 }
3768
3769 static void pidlist_free(void *p)
3770 {
3771 if (is_vmalloc_addr(p))
3772 vfree(p);
3773 else
3774 kfree(p);
3775 }
3776
3777 /*
3778 * Used to destroy all pidlists lingering waiting for destroy timer. None
3779 * should be left afterwards.
3780 */
3781 static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
3782 {
3783 struct cgroup_pidlist *l, *tmp_l;
3784
3785 mutex_lock(&cgrp->pidlist_mutex);
3786 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
3787 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
3788 mutex_unlock(&cgrp->pidlist_mutex);
3789
3790 flush_workqueue(cgroup_pidlist_destroy_wq);
3791 BUG_ON(!list_empty(&cgrp->pidlists));
3792 }
3793
3794 static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
3795 {
3796 struct delayed_work *dwork = to_delayed_work(work);
3797 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
3798 destroy_dwork);
3799 struct cgroup_pidlist *tofree = NULL;
3800
3801 mutex_lock(&l->owner->pidlist_mutex);
3802
3803 /*
3804 * Destroy iff we didn't get queued again. The state won't change
3805 * as destroy_dwork can only be queued while locked.
3806 */
3807 if (!delayed_work_pending(dwork)) {
3808 list_del(&l->links);
3809 pidlist_free(l->list);
3810 put_pid_ns(l->key.ns);
3811 tofree = l;
3812 }
3813
3814 mutex_unlock(&l->owner->pidlist_mutex);
3815 kfree(tofree);
3816 }
3817
3818 /*
3819 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
3820 * Returns the number of unique elements.
3821 */
3822 static int pidlist_uniq(pid_t *list, int length)
3823 {
3824 int src, dest = 1;
3825
3826 /*
3827 * we presume the 0th element is unique, so i starts at 1. trivial
3828 * edge cases first; no work needs to be done for either
3829 */
3830 if (length == 0 || length == 1)
3831 return length;
3832 /* src and dest walk down the list; dest counts unique elements */
3833 for (src = 1; src < length; src++) {
3834 /* find next unique element */
3835 while (list[src] == list[src-1]) {
3836 src++;
3837 if (src == length)
3838 goto after;
3839 }
3840 /* dest always points to where the next unique element goes */
3841 list[dest] = list[src];
3842 dest++;
3843 }
3844 after:
3845 return dest;
3846 }
3847
3848 /*
3849 * The two pid files - task and cgroup.procs - guaranteed that the result
3850 * is sorted, which forced this whole pidlist fiasco. As pid order is
3851 * different per namespace, each namespace needs differently sorted list,
3852 * making it impossible to use, for example, single rbtree of member tasks
3853 * sorted by task pointer. As pidlists can be fairly large, allocating one
3854 * per open file is dangerous, so cgroup had to implement shared pool of
3855 * pidlists keyed by cgroup and namespace.
3856 *
3857 * All this extra complexity was caused by the original implementation
3858 * committing to an entirely unnecessary property. In the long term, we
3859 * want to do away with it. Explicitly scramble sort order if on the
3860 * default hierarchy so that no such expectation exists in the new
3861 * interface.
3862 *
3863 * Scrambling is done by swapping every two consecutive bits, which is
3864 * non-identity one-to-one mapping which disturbs sort order sufficiently.
3865 */
3866 static pid_t pid_fry(pid_t pid)
3867 {
3868 unsigned a = pid & 0x55555555;
3869 unsigned b = pid & 0xAAAAAAAA;
3870
3871 return (a << 1) | (b >> 1);
3872 }
3873
3874 static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
3875 {
3876 if (cgroup_on_dfl(cgrp))
3877 return pid_fry(pid);
3878 else
3879 return pid;
3880 }
3881
3882 static int cmppid(const void *a, const void *b)
3883 {
3884 return *(pid_t *)a - *(pid_t *)b;
3885 }
3886
3887 static int fried_cmppid(const void *a, const void *b)
3888 {
3889 return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
3890 }
3891
3892 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3893 enum cgroup_filetype type)
3894 {
3895 struct cgroup_pidlist *l;
3896 /* don't need task_nsproxy() if we're looking at ourself */
3897 struct pid_namespace *ns = task_active_pid_ns(current);
3898
3899 lockdep_assert_held(&cgrp->pidlist_mutex);
3900
3901 list_for_each_entry(l, &cgrp->pidlists, links)
3902 if (l->key.type == type && l->key.ns == ns)
3903 return l;
3904 return NULL;
3905 }
3906
3907 /*
3908 * find the appropriate pidlist for our purpose (given procs vs tasks)
3909 * returns with the lock on that pidlist already held, and takes care
3910 * of the use count, or returns NULL with no locks held if we're out of
3911 * memory.
3912 */
3913 static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
3914 enum cgroup_filetype type)
3915 {
3916 struct cgroup_pidlist *l;
3917
3918 lockdep_assert_held(&cgrp->pidlist_mutex);
3919
3920 l = cgroup_pidlist_find(cgrp, type);
3921 if (l)
3922 return l;
3923
3924 /* entry not found; create a new one */
3925 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
3926 if (!l)
3927 return l;
3928
3929 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
3930 l->key.type = type;
3931 /* don't need task_nsproxy() if we're looking at ourself */
3932 l->key.ns = get_pid_ns(task_active_pid_ns(current));
3933 l->owner = cgrp;
3934 list_add(&l->links, &cgrp->pidlists);
3935 return l;
3936 }
3937
3938 /*
3939 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3940 */
3941 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3942 struct cgroup_pidlist **lp)
3943 {
3944 pid_t *array;
3945 int length;
3946 int pid, n = 0; /* used for populating the array */
3947 struct css_task_iter it;
3948 struct task_struct *tsk;
3949 struct cgroup_pidlist *l;
3950
3951 lockdep_assert_held(&cgrp->pidlist_mutex);
3952
3953 /*
3954 * If cgroup gets more users after we read count, we won't have
3955 * enough space - tough. This race is indistinguishable to the
3956 * caller from the case that the additional cgroup users didn't
3957 * show up until sometime later on.
3958 */
3959 length = cgroup_task_count(cgrp);
3960 array = pidlist_allocate(length);
3961 if (!array)
3962 return -ENOMEM;
3963 /* now, populate the array */
3964 css_task_iter_start(&cgrp->self, &it);
3965 while ((tsk = css_task_iter_next(&it))) {
3966 if (unlikely(n == length))
3967 break;
3968 /* get tgid or pid for procs or tasks file respectively */
3969 if (type == CGROUP_FILE_PROCS)
3970 pid = task_tgid_vnr(tsk);
3971 else
3972 pid = task_pid_vnr(tsk);
3973 if (pid > 0) /* make sure to only use valid results */
3974 array[n++] = pid;
3975 }
3976 css_task_iter_end(&it);
3977 length = n;
3978 /* now sort & (if procs) strip out duplicates */
3979 if (cgroup_on_dfl(cgrp))
3980 sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
3981 else
3982 sort(array, length, sizeof(pid_t), cmppid, NULL);
3983 if (type == CGROUP_FILE_PROCS)
3984 length = pidlist_uniq(array, length);
3985
3986 l = cgroup_pidlist_find_create(cgrp, type);
3987 if (!l) {
3988 mutex_unlock(&cgrp->pidlist_mutex);
3989 pidlist_free(array);
3990 return -ENOMEM;
3991 }
3992
3993 /* store array, freeing old if necessary */
3994 pidlist_free(l->list);
3995 l->list = array;
3996 l->length = length;
3997 *lp = l;
3998 return 0;
3999 }
4000
4001 /**
4002 * cgroupstats_build - build and fill cgroupstats
4003 * @stats: cgroupstats to fill information into
4004 * @dentry: A dentry entry belonging to the cgroup for which stats have
4005 * been requested.
4006 *
4007 * Build and fill cgroupstats so that taskstats can export it to user
4008 * space.
4009 */
4010 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
4011 {
4012 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
4013 struct cgroup *cgrp;
4014 struct css_task_iter it;
4015 struct task_struct *tsk;
4016
4017 /* it should be kernfs_node belonging to cgroupfs and is a directory */
4018 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
4019 kernfs_type(kn) != KERNFS_DIR)
4020 return -EINVAL;
4021
4022 mutex_lock(&cgroup_mutex);
4023
4024 /*
4025 * We aren't being called from kernfs and there's no guarantee on
4026 * @kn->priv's validity. For this and css_tryget_online_from_dir(),
4027 * @kn->priv is RCU safe. Let's do the RCU dancing.
4028 */
4029 rcu_read_lock();
4030 cgrp = rcu_dereference(kn->priv);
4031 if (!cgrp || cgroup_is_dead(cgrp)) {
4032 rcu_read_unlock();
4033 mutex_unlock(&cgroup_mutex);
4034 return -ENOENT;
4035 }
4036 rcu_read_unlock();
4037
4038 css_task_iter_start(&cgrp->self, &it);
4039 while ((tsk = css_task_iter_next(&it))) {
4040 switch (tsk->state) {
4041 case TASK_RUNNING:
4042 stats->nr_running++;
4043 break;
4044 case TASK_INTERRUPTIBLE:
4045 stats->nr_sleeping++;
4046 break;
4047 case TASK_UNINTERRUPTIBLE:
4048 stats->nr_uninterruptible++;
4049 break;
4050 case TASK_STOPPED:
4051 stats->nr_stopped++;
4052 break;
4053 default:
4054 if (delayacct_is_task_waiting_on_io(tsk))
4055 stats->nr_io_wait++;
4056 break;
4057 }
4058 }
4059 css_task_iter_end(&it);
4060
4061 mutex_unlock(&cgroup_mutex);
4062 return 0;
4063 }
4064
4065
4066 /*
4067 * seq_file methods for the tasks/procs files. The seq_file position is the
4068 * next pid to display; the seq_file iterator is a pointer to the pid
4069 * in the cgroup->l->list array.
4070 */
4071
4072 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
4073 {
4074 /*
4075 * Initially we receive a position value that corresponds to
4076 * one more than the last pid shown (or 0 on the first call or
4077 * after a seek to the start). Use a binary-search to find the
4078 * next pid to display, if any
4079 */
4080 struct kernfs_open_file *of = s->private;
4081 struct cgroup *cgrp = seq_css(s)->cgroup;
4082 struct cgroup_pidlist *l;
4083 enum cgroup_filetype type = seq_cft(s)->private;
4084 int index = 0, pid = *pos;
4085 int *iter, ret;
4086
4087 mutex_lock(&cgrp->pidlist_mutex);
4088
4089 /*
4090 * !NULL @of->priv indicates that this isn't the first start()
4091 * after open. If the matching pidlist is around, we can use that.
4092 * Look for it. Note that @of->priv can't be used directly. It
4093 * could already have been destroyed.
4094 */
4095 if (of->priv)
4096 of->priv = cgroup_pidlist_find(cgrp, type);
4097
4098 /*
4099 * Either this is the first start() after open or the matching
4100 * pidlist has been destroyed inbetween. Create a new one.
4101 */
4102 if (!of->priv) {
4103 ret = pidlist_array_load(cgrp, type,
4104 (struct cgroup_pidlist **)&of->priv);
4105 if (ret)
4106 return ERR_PTR(ret);
4107 }
4108 l = of->priv;
4109
4110 if (pid) {
4111 int end = l->length;
4112
4113 while (index < end) {
4114 int mid = (index + end) / 2;
4115 if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
4116 index = mid;
4117 break;
4118 } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
4119 index = mid + 1;
4120 else
4121 end = mid;
4122 }
4123 }
4124 /* If we're off the end of the array, we're done */
4125 if (index >= l->length)
4126 return NULL;
4127 /* Update the abstract position to be the actual pid that we found */
4128 iter = l->list + index;
4129 *pos = cgroup_pid_fry(cgrp, *iter);
4130 return iter;
4131 }
4132
4133 static void cgroup_pidlist_stop(struct seq_file *s, void *v)
4134 {
4135 struct kernfs_open_file *of = s->private;
4136 struct cgroup_pidlist *l = of->priv;
4137
4138 if (l)
4139 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
4140 CGROUP_PIDLIST_DESTROY_DELAY);
4141 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
4142 }
4143
4144 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
4145 {
4146 struct kernfs_open_file *of = s->private;
4147 struct cgroup_pidlist *l = of->priv;
4148 pid_t *p = v;
4149 pid_t *end = l->list + l->length;
4150 /*
4151 * Advance to the next pid in the array. If this goes off the
4152 * end, we're done
4153 */
4154 p++;
4155 if (p >= end) {
4156 return NULL;
4157 } else {
4158 *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
4159 return p;
4160 }
4161 }
4162
4163 static int cgroup_pidlist_show(struct seq_file *s, void *v)
4164 {
4165 return seq_printf(s, "%d\n", *(int *)v);
4166 }
4167
4168 static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
4169 struct cftype *cft)
4170 {
4171 return notify_on_release(css->cgroup);
4172 }
4173
4174 static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
4175 struct cftype *cft, u64 val)
4176 {
4177 clear_bit(CGRP_RELEASABLE, &css->cgroup->flags);
4178 if (val)
4179 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
4180 else
4181 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
4182 return 0;
4183 }
4184
4185 static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
4186 struct cftype *cft)
4187 {
4188 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4189 }
4190
4191 static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
4192 struct cftype *cft, u64 val)
4193 {
4194 if (val)
4195 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4196 else
4197 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4198 return 0;
4199 }
4200
4201 /* cgroup core interface files for the default hierarchy */
4202 static struct cftype cgroup_dfl_base_files[] = {
4203 {
4204 .name = "cgroup.procs",
4205 .seq_start = cgroup_pidlist_start,
4206 .seq_next = cgroup_pidlist_next,
4207 .seq_stop = cgroup_pidlist_stop,
4208 .seq_show = cgroup_pidlist_show,
4209 .private = CGROUP_FILE_PROCS,
4210 .write = cgroup_procs_write,
4211 .mode = S_IRUGO | S_IWUSR,
4212 },
4213 {
4214 .name = "cgroup.controllers",
4215 .flags = CFTYPE_ONLY_ON_ROOT,
4216 .seq_show = cgroup_root_controllers_show,
4217 },
4218 {
4219 .name = "cgroup.controllers",
4220 .flags = CFTYPE_NOT_ON_ROOT,
4221 .seq_show = cgroup_controllers_show,
4222 },
4223 {
4224 .name = "cgroup.subtree_control",
4225 .seq_show = cgroup_subtree_control_show,
4226 .write = cgroup_subtree_control_write,
4227 },
4228 {
4229 .name = "cgroup.populated",
4230 .flags = CFTYPE_NOT_ON_ROOT,
4231 .seq_show = cgroup_populated_show,
4232 },
4233 { } /* terminate */
4234 };
4235
4236 /* cgroup core interface files for the legacy hierarchies */
4237 static struct cftype cgroup_legacy_base_files[] = {
4238 {
4239 .name = "cgroup.procs",
4240 .seq_start = cgroup_pidlist_start,
4241 .seq_next = cgroup_pidlist_next,
4242 .seq_stop = cgroup_pidlist_stop,
4243 .seq_show = cgroup_pidlist_show,
4244 .private = CGROUP_FILE_PROCS,
4245 .write = cgroup_procs_write,
4246 .mode = S_IRUGO | S_IWUSR,
4247 },
4248 {
4249 .name = "cgroup.clone_children",
4250 .read_u64 = cgroup_clone_children_read,
4251 .write_u64 = cgroup_clone_children_write,
4252 },
4253 {
4254 .name = "cgroup.sane_behavior",
4255 .flags = CFTYPE_ONLY_ON_ROOT,
4256 .seq_show = cgroup_sane_behavior_show,
4257 },
4258 {
4259 .name = "tasks",
4260 .seq_start = cgroup_pidlist_start,
4261 .seq_next = cgroup_pidlist_next,
4262 .seq_stop = cgroup_pidlist_stop,
4263 .seq_show = cgroup_pidlist_show,
4264 .private = CGROUP_FILE_TASKS,
4265 .write = cgroup_tasks_write,
4266 .mode = S_IRUGO | S_IWUSR,
4267 },
4268 {
4269 .name = "notify_on_release",
4270 .read_u64 = cgroup_read_notify_on_release,
4271 .write_u64 = cgroup_write_notify_on_release,
4272 },
4273 {
4274 .name = "release_agent",
4275 .flags = CFTYPE_ONLY_ON_ROOT,
4276 .seq_show = cgroup_release_agent_show,
4277 .write = cgroup_release_agent_write,
4278 .max_write_len = PATH_MAX - 1,
4279 },
4280 { } /* terminate */
4281 };
4282
4283 /**
4284 * cgroup_populate_dir - create subsys files in a cgroup directory
4285 * @cgrp: target cgroup
4286 * @subsys_mask: mask of the subsystem ids whose files should be added
4287 *
4288 * On failure, no file is added.
4289 */
4290 static int cgroup_populate_dir(struct cgroup *cgrp, unsigned int subsys_mask)
4291 {
4292 struct cgroup_subsys *ss;
4293 int i, ret = 0;
4294
4295 /* process cftsets of each subsystem */
4296 for_each_subsys(ss, i) {
4297 struct cftype *cfts;
4298
4299 if (!(subsys_mask & (1 << i)))
4300 continue;
4301
4302 list_for_each_entry(cfts, &ss->cfts, node) {
4303 ret = cgroup_addrm_files(cgrp, cfts, true);
4304 if (ret < 0)
4305 goto err;
4306 }
4307 }
4308 return 0;
4309 err:
4310 cgroup_clear_dir(cgrp, subsys_mask);
4311 return ret;
4312 }
4313
4314 /*
4315 * css destruction is four-stage process.
4316 *
4317 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4318 * Implemented in kill_css().
4319 *
4320 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
4321 * and thus css_tryget_online() is guaranteed to fail, the css can be
4322 * offlined by invoking offline_css(). After offlining, the base ref is
4323 * put. Implemented in css_killed_work_fn().
4324 *
4325 * 3. When the percpu_ref reaches zero, the only possible remaining
4326 * accessors are inside RCU read sections. css_release() schedules the
4327 * RCU callback.
4328 *
4329 * 4. After the grace period, the css can be freed. Implemented in
4330 * css_free_work_fn().
4331 *
4332 * It is actually hairier because both step 2 and 4 require process context
4333 * and thus involve punting to css->destroy_work adding two additional
4334 * steps to the already complex sequence.
4335 */
4336 static void css_free_work_fn(struct work_struct *work)
4337 {
4338 struct cgroup_subsys_state *css =
4339 container_of(work, struct cgroup_subsys_state, destroy_work);
4340 struct cgroup *cgrp = css->cgroup;
4341
4342 percpu_ref_exit(&css->refcnt);
4343
4344 if (css->ss) {
4345 /* css free path */
4346 if (css->parent)
4347 css_put(css->parent);
4348
4349 css->ss->css_free(css);
4350 cgroup_put(cgrp);
4351 } else {
4352 /* cgroup free path */
4353 atomic_dec(&cgrp->root->nr_cgrps);
4354 cgroup_pidlist_destroy_all(cgrp);
4355
4356 if (cgroup_parent(cgrp)) {
4357 /*
4358 * We get a ref to the parent, and put the ref when
4359 * this cgroup is being freed, so it's guaranteed
4360 * that the parent won't be destroyed before its
4361 * children.
4362 */
4363 cgroup_put(cgroup_parent(cgrp));
4364 kernfs_put(cgrp->kn);
4365 kfree(cgrp);
4366 } else {
4367 /*
4368 * This is root cgroup's refcnt reaching zero,
4369 * which indicates that the root should be
4370 * released.
4371 */
4372 cgroup_destroy_root(cgrp->root);
4373 }
4374 }
4375 }
4376
4377 static void css_free_rcu_fn(struct rcu_head *rcu_head)
4378 {
4379 struct cgroup_subsys_state *css =
4380 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
4381
4382 INIT_WORK(&css->destroy_work, css_free_work_fn);
4383 queue_work(cgroup_destroy_wq, &css->destroy_work);
4384 }
4385
4386 static void css_release_work_fn(struct work_struct *work)
4387 {
4388 struct cgroup_subsys_state *css =
4389 container_of(work, struct cgroup_subsys_state, destroy_work);
4390 struct cgroup_subsys *ss = css->ss;
4391 struct cgroup *cgrp = css->cgroup;
4392
4393 mutex_lock(&cgroup_mutex);
4394
4395 css->flags |= CSS_RELEASED;
4396 list_del_rcu(&css->sibling);
4397
4398 if (ss) {
4399 /* css release path */
4400 cgroup_idr_remove(&ss->css_idr, css->id);
4401 } else {
4402 /* cgroup release path */
4403 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4404 cgrp->id = -1;
4405
4406 /*
4407 * There are two control paths which try to determine
4408 * cgroup from dentry without going through kernfs -
4409 * cgroupstats_build() and css_tryget_online_from_dir().
4410 * Those are supported by RCU protecting clearing of
4411 * cgrp->kn->priv backpointer.
4412 */
4413 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, NULL);
4414 }
4415
4416 mutex_unlock(&cgroup_mutex);
4417
4418 call_rcu(&css->rcu_head, css_free_rcu_fn);
4419 }
4420
4421 static void css_release(struct percpu_ref *ref)
4422 {
4423 struct cgroup_subsys_state *css =
4424 container_of(ref, struct cgroup_subsys_state, refcnt);
4425
4426 INIT_WORK(&css->destroy_work, css_release_work_fn);
4427 queue_work(cgroup_destroy_wq, &css->destroy_work);
4428 }
4429
4430 static void init_and_link_css(struct cgroup_subsys_state *css,
4431 struct cgroup_subsys *ss, struct cgroup *cgrp)
4432 {
4433 lockdep_assert_held(&cgroup_mutex);
4434
4435 cgroup_get(cgrp);
4436
4437 memset(css, 0, sizeof(*css));
4438 css->cgroup = cgrp;
4439 css->ss = ss;
4440 INIT_LIST_HEAD(&css->sibling);
4441 INIT_LIST_HEAD(&css->children);
4442 css->serial_nr = css_serial_nr_next++;
4443
4444 if (cgroup_parent(cgrp)) {
4445 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
4446 css_get(css->parent);
4447 }
4448
4449 BUG_ON(cgroup_css(cgrp, ss));
4450 }
4451
4452 /* invoke ->css_online() on a new CSS and mark it online if successful */
4453 static int online_css(struct cgroup_subsys_state *css)
4454 {
4455 struct cgroup_subsys *ss = css->ss;
4456 int ret = 0;
4457
4458 lockdep_assert_held(&cgroup_mutex);
4459
4460 if (ss->css_online)
4461 ret = ss->css_online(css);
4462 if (!ret) {
4463 css->flags |= CSS_ONLINE;
4464 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
4465 }
4466 return ret;
4467 }
4468
4469 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
4470 static void offline_css(struct cgroup_subsys_state *css)
4471 {
4472 struct cgroup_subsys *ss = css->ss;
4473
4474 lockdep_assert_held(&cgroup_mutex);
4475
4476 if (!(css->flags & CSS_ONLINE))
4477 return;
4478
4479 if (ss->css_offline)
4480 ss->css_offline(css);
4481
4482 css->flags &= ~CSS_ONLINE;
4483 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
4484
4485 wake_up_all(&css->cgroup->offline_waitq);
4486 }
4487
4488 /**
4489 * create_css - create a cgroup_subsys_state
4490 * @cgrp: the cgroup new css will be associated with
4491 * @ss: the subsys of new css
4492 * @visible: whether to create control knobs for the new css or not
4493 *
4494 * Create a new css associated with @cgrp - @ss pair. On success, the new
4495 * css is online and installed in @cgrp with all interface files created if
4496 * @visible. Returns 0 on success, -errno on failure.
4497 */
4498 static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
4499 bool visible)
4500 {
4501 struct cgroup *parent = cgroup_parent(cgrp);
4502 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
4503 struct cgroup_subsys_state *css;
4504 int err;
4505
4506 lockdep_assert_held(&cgroup_mutex);
4507
4508 css = ss->css_alloc(parent_css);
4509 if (IS_ERR(css))
4510 return PTR_ERR(css);
4511
4512 init_and_link_css(css, ss, cgrp);
4513
4514 err = percpu_ref_init(&css->refcnt, css_release);
4515 if (err)
4516 goto err_free_css;
4517
4518 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_NOWAIT);
4519 if (err < 0)
4520 goto err_free_percpu_ref;
4521 css->id = err;
4522
4523 if (visible) {
4524 err = cgroup_populate_dir(cgrp, 1 << ss->id);
4525 if (err)
4526 goto err_free_id;
4527 }
4528
4529 /* @css is ready to be brought online now, make it visible */
4530 list_add_tail_rcu(&css->sibling, &parent_css->children);
4531 cgroup_idr_replace(&ss->css_idr, css, css->id);
4532
4533 err = online_css(css);
4534 if (err)
4535 goto err_list_del;
4536
4537 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
4538 cgroup_parent(parent)) {
4539 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4540 current->comm, current->pid, ss->name);
4541 if (!strcmp(ss->name, "memory"))
4542 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
4543 ss->warned_broken_hierarchy = true;
4544 }
4545
4546 return 0;
4547
4548 err_list_del:
4549 list_del_rcu(&css->sibling);
4550 cgroup_clear_dir(css->cgroup, 1 << css->ss->id);
4551 err_free_id:
4552 cgroup_idr_remove(&ss->css_idr, css->id);
4553 err_free_percpu_ref:
4554 percpu_ref_exit(&css->refcnt);
4555 err_free_css:
4556 call_rcu(&css->rcu_head, css_free_rcu_fn);
4557 return err;
4558 }
4559
4560 static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
4561 umode_t mode)
4562 {
4563 struct cgroup *parent, *cgrp;
4564 struct cgroup_root *root;
4565 struct cgroup_subsys *ss;
4566 struct kernfs_node *kn;
4567 struct cftype *base_files;
4568 int ssid, ret;
4569
4570 /* Do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable.
4571 */
4572 if (strchr(name, '\n'))
4573 return -EINVAL;
4574
4575 parent = cgroup_kn_lock_live(parent_kn);
4576 if (!parent)
4577 return -ENODEV;
4578 root = parent->root;
4579
4580 /* allocate the cgroup and its ID, 0 is reserved for the root */
4581 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
4582 if (!cgrp) {
4583 ret = -ENOMEM;
4584 goto out_unlock;
4585 }
4586
4587 ret = percpu_ref_init(&cgrp->self.refcnt, css_release);
4588 if (ret)
4589 goto out_free_cgrp;
4590
4591 /*
4592 * Temporarily set the pointer to NULL, so idr_find() won't return
4593 * a half-baked cgroup.
4594 */
4595 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_NOWAIT);
4596 if (cgrp->id < 0) {
4597 ret = -ENOMEM;
4598 goto out_cancel_ref;
4599 }
4600
4601 init_cgroup_housekeeping(cgrp);
4602
4603 cgrp->self.parent = &parent->self;
4604 cgrp->root = root;
4605
4606 if (notify_on_release(parent))
4607 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4608
4609 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4610 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
4611
4612 /* create the directory */
4613 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
4614 if (IS_ERR(kn)) {
4615 ret = PTR_ERR(kn);
4616 goto out_free_id;
4617 }
4618 cgrp->kn = kn;
4619
4620 /*
4621 * This extra ref will be put in cgroup_free_fn() and guarantees
4622 * that @cgrp->kn is always accessible.
4623 */
4624 kernfs_get(kn);
4625
4626 cgrp->self.serial_nr = css_serial_nr_next++;
4627
4628 /* allocation complete, commit to creation */
4629 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
4630 atomic_inc(&root->nr_cgrps);
4631 cgroup_get(parent);
4632
4633 /*
4634 * @cgrp is now fully operational. If something fails after this
4635 * point, it'll be released via the normal destruction path.
4636 */
4637 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
4638
4639 ret = cgroup_kn_set_ugid(kn);
4640 if (ret)
4641 goto out_destroy;
4642
4643 if (cgroup_on_dfl(cgrp))
4644 base_files = cgroup_dfl_base_files;
4645 else
4646 base_files = cgroup_legacy_base_files;
4647
4648 ret = cgroup_addrm_files(cgrp, base_files, true);
4649 if (ret)
4650 goto out_destroy;
4651
4652 /* let's create and online css's */
4653 for_each_subsys(ss, ssid) {
4654 if (parent->child_subsys_mask & (1 << ssid)) {
4655 ret = create_css(cgrp, ss,
4656 parent->subtree_control & (1 << ssid));
4657 if (ret)
4658 goto out_destroy;
4659 }
4660 }
4661
4662 /*
4663 * On the default hierarchy, a child doesn't automatically inherit
4664 * subtree_control from the parent. Each is configured manually.
4665 */
4666 if (!cgroup_on_dfl(cgrp)) {
4667 cgrp->subtree_control = parent->subtree_control;
4668 cgroup_refresh_child_subsys_mask(cgrp);
4669 }
4670
4671 kernfs_activate(kn);
4672
4673 ret = 0;
4674 goto out_unlock;
4675
4676 out_free_id:
4677 cgroup_idr_remove(&root->cgroup_idr, cgrp->id);
4678 out_cancel_ref:
4679 percpu_ref_exit(&cgrp->self.refcnt);
4680 out_free_cgrp:
4681 kfree(cgrp);
4682 out_unlock:
4683 cgroup_kn_unlock(parent_kn);
4684 return ret;
4685
4686 out_destroy:
4687 cgroup_destroy_locked(cgrp);
4688 goto out_unlock;
4689 }
4690
4691 /*
4692 * This is called when the refcnt of a css is confirmed to be killed.
4693 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
4694 * initate destruction and put the css ref from kill_css().
4695 */
4696 static void css_killed_work_fn(struct work_struct *work)
4697 {
4698 struct cgroup_subsys_state *css =
4699 container_of(work, struct cgroup_subsys_state, destroy_work);
4700
4701 mutex_lock(&cgroup_mutex);
4702 offline_css(css);
4703 mutex_unlock(&cgroup_mutex);
4704
4705 css_put(css);
4706 }
4707
4708 /* css kill confirmation processing requires process context, bounce */
4709 static void css_killed_ref_fn(struct percpu_ref *ref)
4710 {
4711 struct cgroup_subsys_state *css =
4712 container_of(ref, struct cgroup_subsys_state, refcnt);
4713
4714 INIT_WORK(&css->destroy_work, css_killed_work_fn);
4715 queue_work(cgroup_destroy_wq, &css->destroy_work);
4716 }
4717
4718 /**
4719 * kill_css - destroy a css
4720 * @css: css to destroy
4721 *
4722 * This function initiates destruction of @css by removing cgroup interface
4723 * files and putting its base reference. ->css_offline() will be invoked
4724 * asynchronously once css_tryget_online() is guaranteed to fail and when
4725 * the reference count reaches zero, @css will be released.
4726 */
4727 static void kill_css(struct cgroup_subsys_state *css)
4728 {
4729 lockdep_assert_held(&cgroup_mutex);
4730
4731 /*
4732 * This must happen before css is disassociated with its cgroup.
4733 * See seq_css() for details.
4734 */
4735 cgroup_clear_dir(css->cgroup, 1 << css->ss->id);
4736
4737 /*
4738 * Killing would put the base ref, but we need to keep it alive
4739 * until after ->css_offline().
4740 */
4741 css_get(css);
4742
4743 /*
4744 * cgroup core guarantees that, by the time ->css_offline() is
4745 * invoked, no new css reference will be given out via
4746 * css_tryget_online(). We can't simply call percpu_ref_kill() and
4747 * proceed to offlining css's because percpu_ref_kill() doesn't
4748 * guarantee that the ref is seen as killed on all CPUs on return.
4749 *
4750 * Use percpu_ref_kill_and_confirm() to get notifications as each
4751 * css is confirmed to be seen as killed on all CPUs.
4752 */
4753 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
4754 }
4755
4756 /**
4757 * cgroup_destroy_locked - the first stage of cgroup destruction
4758 * @cgrp: cgroup to be destroyed
4759 *
4760 * css's make use of percpu refcnts whose killing latency shouldn't be
4761 * exposed to userland and are RCU protected. Also, cgroup core needs to
4762 * guarantee that css_tryget_online() won't succeed by the time
4763 * ->css_offline() is invoked. To satisfy all the requirements,
4764 * destruction is implemented in the following two steps.
4765 *
4766 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
4767 * userland visible parts and start killing the percpu refcnts of
4768 * css's. Set up so that the next stage will be kicked off once all
4769 * the percpu refcnts are confirmed to be killed.
4770 *
4771 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
4772 * rest of destruction. Once all cgroup references are gone, the
4773 * cgroup is RCU-freed.
4774 *
4775 * This function implements s1. After this step, @cgrp is gone as far as
4776 * the userland is concerned and a new cgroup with the same name may be
4777 * created. As cgroup doesn't care about the names internally, this
4778 * doesn't cause any problem.
4779 */
4780 static int cgroup_destroy_locked(struct cgroup *cgrp)
4781 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
4782 {
4783 struct cgroup_subsys_state *css;
4784 bool empty;
4785 int ssid;
4786
4787 lockdep_assert_held(&cgroup_mutex);
4788
4789 /*
4790 * css_set_rwsem synchronizes access to ->cset_links and prevents
4791 * @cgrp from being removed while put_css_set() is in progress.
4792 */
4793 down_read(&css_set_rwsem);
4794 empty = list_empty(&cgrp->cset_links);
4795 up_read(&css_set_rwsem);
4796 if (!empty)
4797 return -EBUSY;
4798
4799 /*
4800 * Make sure there's no live children. We can't test emptiness of
4801 * ->self.children as dead children linger on it while being
4802 * drained; otherwise, "rmdir parent/child parent" may fail.
4803 */
4804 if (css_has_online_children(&cgrp->self))
4805 return -EBUSY;
4806
4807 /*
4808 * Mark @cgrp dead. This prevents further task migration and child
4809 * creation by disabling cgroup_lock_live_group().
4810 */
4811 cgrp->self.flags &= ~CSS_ONLINE;
4812
4813 /* initiate massacre of all css's */
4814 for_each_css(css, ssid, cgrp)
4815 kill_css(css);
4816
4817 /* CSS_ONLINE is clear, remove from ->release_list for the last time */
4818 raw_spin_lock(&release_list_lock);
4819 if (!list_empty(&cgrp->release_list))
4820 list_del_init(&cgrp->release_list);
4821 raw_spin_unlock(&release_list_lock);
4822
4823 /*
4824 * Remove @cgrp directory along with the base files. @cgrp has an
4825 * extra ref on its kn.
4826 */
4827 kernfs_remove(cgrp->kn);
4828
4829 set_bit(CGRP_RELEASABLE, &cgroup_parent(cgrp)->flags);
4830 check_for_release(cgroup_parent(cgrp));
4831
4832 /* put the base reference */
4833 percpu_ref_kill(&cgrp->self.refcnt);
4834
4835 return 0;
4836 };
4837
4838 static int cgroup_rmdir(struct kernfs_node *kn)
4839 {
4840 struct cgroup *cgrp;
4841 int ret = 0;
4842
4843 cgrp = cgroup_kn_lock_live(kn);
4844 if (!cgrp)
4845 return 0;
4846 cgroup_get(cgrp); /* for @kn->priv clearing */
4847
4848 ret = cgroup_destroy_locked(cgrp);
4849
4850 cgroup_kn_unlock(kn);
4851
4852 cgroup_put(cgrp);
4853 return ret;
4854 }
4855
4856 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
4857 .remount_fs = cgroup_remount,
4858 .show_options = cgroup_show_options,
4859 .mkdir = cgroup_mkdir,
4860 .rmdir = cgroup_rmdir,
4861 .rename = cgroup_rename,
4862 };
4863
4864 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
4865 {
4866 struct cgroup_subsys_state *css;
4867
4868 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
4869
4870 mutex_lock(&cgroup_mutex);
4871
4872 idr_init(&ss->css_idr);
4873 INIT_LIST_HEAD(&ss->cfts);
4874
4875 /* Create the root cgroup state for this subsystem */
4876 ss->root = &cgrp_dfl_root;
4877 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
4878 /* We don't handle early failures gracefully */
4879 BUG_ON(IS_ERR(css));
4880 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
4881
4882 /*
4883 * Root csses are never destroyed and we can't initialize
4884 * percpu_ref during early init. Disable refcnting.
4885 */
4886 css->flags |= CSS_NO_REF;
4887
4888 if (early) {
4889 /* allocation can't be done safely during early init */
4890 css->id = 1;
4891 } else {
4892 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
4893 BUG_ON(css->id < 0);
4894 }
4895
4896 /* Update the init_css_set to contain a subsys
4897 * pointer to this state - since the subsystem is
4898 * newly registered, all tasks and hence the
4899 * init_css_set is in the subsystem's root cgroup. */
4900 init_css_set.subsys[ss->id] = css;
4901
4902 need_forkexit_callback |= ss->fork || ss->exit;
4903
4904 /* At system boot, before all subsystems have been
4905 * registered, no tasks have been forked, so we don't
4906 * need to invoke fork callbacks here. */
4907 BUG_ON(!list_empty(&init_task.tasks));
4908
4909 BUG_ON(online_css(css));
4910
4911 mutex_unlock(&cgroup_mutex);
4912 }
4913
4914 /**
4915 * cgroup_init_early - cgroup initialization at system boot
4916 *
4917 * Initialize cgroups at system boot, and initialize any
4918 * subsystems that request early init.
4919 */
4920 int __init cgroup_init_early(void)
4921 {
4922 static struct cgroup_sb_opts __initdata opts;
4923 struct cgroup_subsys *ss;
4924 int i;
4925
4926 init_cgroup_root(&cgrp_dfl_root, &opts);
4927 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
4928
4929 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
4930
4931 for_each_subsys(ss, i) {
4932 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
4933 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p name:id=%d:%s\n",
4934 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
4935 ss->id, ss->name);
4936 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
4937 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
4938
4939 ss->id = i;
4940 ss->name = cgroup_subsys_name[i];
4941
4942 if (ss->early_init)
4943 cgroup_init_subsys(ss, true);
4944 }
4945 return 0;
4946 }
4947
4948 /**
4949 * cgroup_init - cgroup initialization
4950 *
4951 * Register cgroup filesystem and /proc file, and initialize
4952 * any subsystems that didn't request early init.
4953 */
4954 int __init cgroup_init(void)
4955 {
4956 struct cgroup_subsys *ss;
4957 unsigned long key;
4958 int ssid, err;
4959
4960 BUG_ON(cgroup_init_cftypes(NULL, cgroup_dfl_base_files));
4961 BUG_ON(cgroup_init_cftypes(NULL, cgroup_legacy_base_files));
4962
4963 mutex_lock(&cgroup_mutex);
4964
4965 /* Add init_css_set to the hash table */
4966 key = css_set_hash(init_css_set.subsys);
4967 hash_add(css_set_table, &init_css_set.hlist, key);
4968
4969 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
4970
4971 mutex_unlock(&cgroup_mutex);
4972
4973 for_each_subsys(ss, ssid) {
4974 if (ss->early_init) {
4975 struct cgroup_subsys_state *css =
4976 init_css_set.subsys[ss->id];
4977
4978 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
4979 GFP_KERNEL);
4980 BUG_ON(css->id < 0);
4981 } else {
4982 cgroup_init_subsys(ss, false);
4983 }
4984
4985 list_add_tail(&init_css_set.e_cset_node[ssid],
4986 &cgrp_dfl_root.cgrp.e_csets[ssid]);
4987
4988 /*
4989 * Setting dfl_root subsys_mask needs to consider the
4990 * disabled flag and cftype registration needs kmalloc,
4991 * both of which aren't available during early_init.
4992 */
4993 if (ss->disabled)
4994 continue;
4995
4996 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
4997
4998 if (cgroup_legacy_files_on_dfl && !ss->dfl_cftypes)
4999 ss->dfl_cftypes = ss->legacy_cftypes;
5000
5001 if (!ss->dfl_cftypes)
5002 cgrp_dfl_root_inhibit_ss_mask |= 1 << ss->id;
5003
5004 if (ss->dfl_cftypes == ss->legacy_cftypes) {
5005 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5006 } else {
5007 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5008 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
5009 }
5010 }
5011
5012 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
5013 if (!cgroup_kobj)
5014 return -ENOMEM;
5015
5016 err = register_filesystem(&cgroup_fs_type);
5017 if (err < 0) {
5018 kobject_put(cgroup_kobj);
5019 return err;
5020 }
5021
5022 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
5023 return 0;
5024 }
5025
5026 static int __init cgroup_wq_init(void)
5027 {
5028 /*
5029 * There isn't much point in executing destruction path in
5030 * parallel. Good chunk is serialized with cgroup_mutex anyway.
5031 * Use 1 for @max_active.
5032 *
5033 * We would prefer to do this in cgroup_init() above, but that
5034 * is called before init_workqueues(): so leave this until after.
5035 */
5036 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
5037 BUG_ON(!cgroup_destroy_wq);
5038
5039 /*
5040 * Used to destroy pidlists and separate to serve as flush domain.
5041 * Cap @max_active to 1 too.
5042 */
5043 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
5044 0, 1);
5045 BUG_ON(!cgroup_pidlist_destroy_wq);
5046
5047 return 0;
5048 }
5049 core_initcall(cgroup_wq_init);
5050
5051 /*
5052 * proc_cgroup_show()
5053 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5054 * - Used for /proc/<pid>/cgroup.
5055 */
5056
5057 /* TODO: Use a proper seq_file iterator */
5058 int proc_cgroup_show(struct seq_file *m, void *v)
5059 {
5060 struct pid *pid;
5061 struct task_struct *tsk;
5062 char *buf, *path;
5063 int retval;
5064 struct cgroup_root *root;
5065
5066 retval = -ENOMEM;
5067 buf = kmalloc(PATH_MAX, GFP_KERNEL);
5068 if (!buf)
5069 goto out;
5070
5071 retval = -ESRCH;
5072 pid = m->private;
5073 tsk = get_pid_task(pid, PIDTYPE_PID);
5074 if (!tsk)
5075 goto out_free;
5076
5077 retval = 0;
5078
5079 mutex_lock(&cgroup_mutex);
5080 down_read(&css_set_rwsem);
5081
5082 for_each_root(root) {
5083 struct cgroup_subsys *ss;
5084 struct cgroup *cgrp;
5085 int ssid, count = 0;
5086
5087 if (root == &cgrp_dfl_root && !cgrp_dfl_root_visible)
5088 continue;
5089
5090 seq_printf(m, "%d:", root->hierarchy_id);
5091 for_each_subsys(ss, ssid)
5092 if (root->subsys_mask & (1 << ssid))
5093 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
5094 if (strlen(root->name))
5095 seq_printf(m, "%sname=%s", count ? "," : "",
5096 root->name);
5097 seq_putc(m, ':');
5098 cgrp = task_cgroup_from_root(tsk, root);
5099 path = cgroup_path(cgrp, buf, PATH_MAX);
5100 if (!path) {
5101 retval = -ENAMETOOLONG;
5102 goto out_unlock;
5103 }
5104 seq_puts(m, path);
5105 seq_putc(m, '\n');
5106 }
5107
5108 out_unlock:
5109 up_read(&css_set_rwsem);
5110 mutex_unlock(&cgroup_mutex);
5111 put_task_struct(tsk);
5112 out_free:
5113 kfree(buf);
5114 out:
5115 return retval;
5116 }
5117
5118 /* Display information about each subsystem and each hierarchy */
5119 static int proc_cgroupstats_show(struct seq_file *m, void *v)
5120 {
5121 struct cgroup_subsys *ss;
5122 int i;
5123
5124 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
5125 /*
5126 * ideally we don't want subsystems moving around while we do this.
5127 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
5128 * subsys/hierarchy state.
5129 */
5130 mutex_lock(&cgroup_mutex);
5131
5132 for_each_subsys(ss, i)
5133 seq_printf(m, "%s\t%d\t%d\t%d\n",
5134 ss->name, ss->root->hierarchy_id,
5135 atomic_read(&ss->root->nr_cgrps), !ss->disabled);
5136
5137 mutex_unlock(&cgroup_mutex);
5138 return 0;
5139 }
5140
5141 static int cgroupstats_open(struct inode *inode, struct file *file)
5142 {
5143 return single_open(file, proc_cgroupstats_show, NULL);
5144 }
5145
5146 static const struct file_operations proc_cgroupstats_operations = {
5147 .open = cgroupstats_open,
5148 .read = seq_read,
5149 .llseek = seq_lseek,
5150 .release = single_release,
5151 };
5152
5153 /**
5154 * cgroup_fork - initialize cgroup related fields during copy_process()
5155 * @child: pointer to task_struct of forking parent process.
5156 *
5157 * A task is associated with the init_css_set until cgroup_post_fork()
5158 * attaches it to the parent's css_set. Empty cg_list indicates that
5159 * @child isn't holding reference to its css_set.
5160 */
5161 void cgroup_fork(struct task_struct *child)
5162 {
5163 RCU_INIT_POINTER(child->cgroups, &init_css_set);
5164 INIT_LIST_HEAD(&child->cg_list);
5165 }
5166
5167 /**
5168 * cgroup_post_fork - called on a new task after adding it to the task list
5169 * @child: the task in question
5170 *
5171 * Adds the task to the list running through its css_set if necessary and
5172 * call the subsystem fork() callbacks. Has to be after the task is
5173 * visible on the task list in case we race with the first call to
5174 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5175 * list.
5176 */
5177 void cgroup_post_fork(struct task_struct *child)
5178 {
5179 struct cgroup_subsys *ss;
5180 int i;
5181
5182 /*
5183 * This may race against cgroup_enable_task_cg_links(). As that
5184 * function sets use_task_css_set_links before grabbing
5185 * tasklist_lock and we just went through tasklist_lock to add
5186 * @child, it's guaranteed that either we see the set
5187 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5188 * @child during its iteration.
5189 *
5190 * If we won the race, @child is associated with %current's
5191 * css_set. Grabbing css_set_rwsem guarantees both that the
5192 * association is stable, and, on completion of the parent's
5193 * migration, @child is visible in the source of migration or
5194 * already in the destination cgroup. This guarantee is necessary
5195 * when implementing operations which need to migrate all tasks of
5196 * a cgroup to another.
5197 *
5198 * Note that if we lose to cgroup_enable_task_cg_links(), @child
5199 * will remain in init_css_set. This is safe because all tasks are
5200 * in the init_css_set before cg_links is enabled and there's no
5201 * operation which transfers all tasks out of init_css_set.
5202 */
5203 if (use_task_css_set_links) {
5204 struct css_set *cset;
5205
5206 down_write(&css_set_rwsem);
5207 cset = task_css_set(current);
5208 if (list_empty(&child->cg_list)) {
5209 rcu_assign_pointer(child->cgroups, cset);
5210 list_add(&child->cg_list, &cset->tasks);
5211 get_css_set(cset);
5212 }
5213 up_write(&css_set_rwsem);
5214 }
5215
5216 /*
5217 * Call ss->fork(). This must happen after @child is linked on
5218 * css_set; otherwise, @child might change state between ->fork()
5219 * and addition to css_set.
5220 */
5221 if (need_forkexit_callback) {
5222 for_each_subsys(ss, i)
5223 if (ss->fork)
5224 ss->fork(child);
5225 }
5226 }
5227
5228 /**
5229 * cgroup_exit - detach cgroup from exiting task
5230 * @tsk: pointer to task_struct of exiting process
5231 *
5232 * Description: Detach cgroup from @tsk and release it.
5233 *
5234 * Note that cgroups marked notify_on_release force every task in
5235 * them to take the global cgroup_mutex mutex when exiting.
5236 * This could impact scaling on very large systems. Be reluctant to
5237 * use notify_on_release cgroups where very high task exit scaling
5238 * is required on large systems.
5239 *
5240 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
5241 * call cgroup_exit() while the task is still competent to handle
5242 * notify_on_release(), then leave the task attached to the root cgroup in
5243 * each hierarchy for the remainder of its exit. No need to bother with
5244 * init_css_set refcnting. init_css_set never goes away and we can't race
5245 * with migration path - PF_EXITING is visible to migration path.
5246 */
5247 void cgroup_exit(struct task_struct *tsk)
5248 {
5249 struct cgroup_subsys *ss;
5250 struct css_set *cset;
5251 bool put_cset = false;
5252 int i;
5253
5254 /*
5255 * Unlink from @tsk from its css_set. As migration path can't race
5256 * with us, we can check cg_list without grabbing css_set_rwsem.
5257 */
5258 if (!list_empty(&tsk->cg_list)) {
5259 down_write(&css_set_rwsem);
5260 list_del_init(&tsk->cg_list);
5261 up_write(&css_set_rwsem);
5262 put_cset = true;
5263 }
5264
5265 /* Reassign the task to the init_css_set. */
5266 cset = task_css_set(tsk);
5267 RCU_INIT_POINTER(tsk->cgroups, &init_css_set);
5268
5269 if (need_forkexit_callback) {
5270 /* see cgroup_post_fork() for details */
5271 for_each_subsys(ss, i) {
5272 if (ss->exit) {
5273 struct cgroup_subsys_state *old_css = cset->subsys[i];
5274 struct cgroup_subsys_state *css = task_css(tsk, i);
5275
5276 ss->exit(css, old_css, tsk);
5277 }
5278 }
5279 }
5280
5281 if (put_cset)
5282 put_css_set(cset, true);
5283 }
5284
5285 static void check_for_release(struct cgroup *cgrp)
5286 {
5287 if (cgroup_is_releasable(cgrp) && list_empty(&cgrp->cset_links) &&
5288 !css_has_online_children(&cgrp->self)) {
5289 /*
5290 * Control Group is currently removeable. If it's not
5291 * already queued for a userspace notification, queue
5292 * it now
5293 */
5294 int need_schedule_work = 0;
5295
5296 raw_spin_lock(&release_list_lock);
5297 if (!cgroup_is_dead(cgrp) &&
5298 list_empty(&cgrp->release_list)) {
5299 list_add(&cgrp->release_list, &release_list);
5300 need_schedule_work = 1;
5301 }
5302 raw_spin_unlock(&release_list_lock);
5303 if (need_schedule_work)
5304 schedule_work(&release_agent_work);
5305 }
5306 }
5307
5308 /*
5309 * Notify userspace when a cgroup is released, by running the
5310 * configured release agent with the name of the cgroup (path
5311 * relative to the root of cgroup file system) as the argument.
5312 *
5313 * Most likely, this user command will try to rmdir this cgroup.
5314 *
5315 * This races with the possibility that some other task will be
5316 * attached to this cgroup before it is removed, or that some other
5317 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5318 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5319 * unused, and this cgroup will be reprieved from its death sentence,
5320 * to continue to serve a useful existence. Next time it's released,
5321 * we will get notified again, if it still has 'notify_on_release' set.
5322 *
5323 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5324 * means only wait until the task is successfully execve()'d. The
5325 * separate release agent task is forked by call_usermodehelper(),
5326 * then control in this thread returns here, without waiting for the
5327 * release agent task. We don't bother to wait because the caller of
5328 * this routine has no use for the exit status of the release agent
5329 * task, so no sense holding our caller up for that.
5330 */
5331 static void cgroup_release_agent(struct work_struct *work)
5332 {
5333 BUG_ON(work != &release_agent_work);
5334 mutex_lock(&cgroup_mutex);
5335 raw_spin_lock(&release_list_lock);
5336 while (!list_empty(&release_list)) {
5337 char *argv[3], *envp[3];
5338 int i;
5339 char *pathbuf = NULL, *agentbuf = NULL, *path;
5340 struct cgroup *cgrp = list_entry(release_list.next,
5341 struct cgroup,
5342 release_list);
5343 list_del_init(&cgrp->release_list);
5344 raw_spin_unlock(&release_list_lock);
5345 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
5346 if (!pathbuf)
5347 goto continue_free;
5348 path = cgroup_path(cgrp, pathbuf, PATH_MAX);
5349 if (!path)
5350 goto continue_free;
5351 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5352 if (!agentbuf)
5353 goto continue_free;
5354
5355 i = 0;
5356 argv[i++] = agentbuf;
5357 argv[i++] = path;
5358 argv[i] = NULL;
5359
5360 i = 0;
5361 /* minimal command environment */
5362 envp[i++] = "HOME=/";
5363 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5364 envp[i] = NULL;
5365
5366 /* Drop the lock while we invoke the usermode helper,
5367 * since the exec could involve hitting disk and hence
5368 * be a slow process */
5369 mutex_unlock(&cgroup_mutex);
5370 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
5371 mutex_lock(&cgroup_mutex);
5372 continue_free:
5373 kfree(pathbuf);
5374 kfree(agentbuf);
5375 raw_spin_lock(&release_list_lock);
5376 }
5377 raw_spin_unlock(&release_list_lock);
5378 mutex_unlock(&cgroup_mutex);
5379 }
5380
5381 static int __init cgroup_disable(char *str)
5382 {
5383 struct cgroup_subsys *ss;
5384 char *token;
5385 int i;
5386
5387 while ((token = strsep(&str, ",")) != NULL) {
5388 if (!*token)
5389 continue;
5390
5391 for_each_subsys(ss, i) {
5392 if (!strcmp(token, ss->name)) {
5393 ss->disabled = 1;
5394 printk(KERN_INFO "Disabling %s control group"
5395 " subsystem\n", ss->name);
5396 break;
5397 }
5398 }
5399 }
5400 return 1;
5401 }
5402 __setup("cgroup_disable=", cgroup_disable);
5403
5404 static int __init cgroup_set_legacy_files_on_dfl(char *str)
5405 {
5406 printk("cgroup: using legacy files on the default hierarchy\n");
5407 cgroup_legacy_files_on_dfl = true;
5408 return 0;
5409 }
5410 __setup("cgroup__DEVEL__legacy_files_on_dfl", cgroup_set_legacy_files_on_dfl);
5411
5412 /**
5413 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
5414 * @dentry: directory dentry of interest
5415 * @ss: subsystem of interest
5416 *
5417 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
5418 * to get the corresponding css and return it. If such css doesn't exist
5419 * or can't be pinned, an ERR_PTR value is returned.
5420 */
5421 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
5422 struct cgroup_subsys *ss)
5423 {
5424 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
5425 struct cgroup_subsys_state *css = NULL;
5426 struct cgroup *cgrp;
5427
5428 /* is @dentry a cgroup dir? */
5429 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
5430 kernfs_type(kn) != KERNFS_DIR)
5431 return ERR_PTR(-EBADF);
5432
5433 rcu_read_lock();
5434
5435 /*
5436 * This path doesn't originate from kernfs and @kn could already
5437 * have been or be removed at any point. @kn->priv is RCU
5438 * protected for this access. See css_release_work_fn() for details.
5439 */
5440 cgrp = rcu_dereference(kn->priv);
5441 if (cgrp)
5442 css = cgroup_css(cgrp, ss);
5443
5444 if (!css || !css_tryget_online(css))
5445 css = ERR_PTR(-ENOENT);
5446
5447 rcu_read_unlock();
5448 return css;
5449 }
5450
5451 /**
5452 * css_from_id - lookup css by id
5453 * @id: the cgroup id
5454 * @ss: cgroup subsys to be looked into
5455 *
5456 * Returns the css if there's valid one with @id, otherwise returns NULL.
5457 * Should be called under rcu_read_lock().
5458 */
5459 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
5460 {
5461 WARN_ON_ONCE(!rcu_read_lock_held());
5462 return idr_find(&ss->css_idr, id);
5463 }
5464
5465 #ifdef CONFIG_CGROUP_DEBUG
5466 static struct cgroup_subsys_state *
5467 debug_css_alloc(struct cgroup_subsys_state *parent_css)
5468 {
5469 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5470
5471 if (!css)
5472 return ERR_PTR(-ENOMEM);
5473
5474 return css;
5475 }
5476
5477 static void debug_css_free(struct cgroup_subsys_state *css)
5478 {
5479 kfree(css);
5480 }
5481
5482 static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
5483 struct cftype *cft)
5484 {
5485 return cgroup_task_count(css->cgroup);
5486 }
5487
5488 static u64 current_css_set_read(struct cgroup_subsys_state *css,
5489 struct cftype *cft)
5490 {
5491 return (u64)(unsigned long)current->cgroups;
5492 }
5493
5494 static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
5495 struct cftype *cft)
5496 {
5497 u64 count;
5498
5499 rcu_read_lock();
5500 count = atomic_read(&task_css_set(current)->refcount);
5501 rcu_read_unlock();
5502 return count;
5503 }
5504
5505 static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
5506 {
5507 struct cgrp_cset_link *link;
5508 struct css_set *cset;
5509 char *name_buf;
5510
5511 name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
5512 if (!name_buf)
5513 return -ENOMEM;
5514
5515 down_read(&css_set_rwsem);
5516 rcu_read_lock();
5517 cset = rcu_dereference(current->cgroups);
5518 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
5519 struct cgroup *c = link->cgrp;
5520
5521 cgroup_name(c, name_buf, NAME_MAX + 1);
5522 seq_printf(seq, "Root %d group %s\n",
5523 c->root->hierarchy_id, name_buf);
5524 }
5525 rcu_read_unlock();
5526 up_read(&css_set_rwsem);
5527 kfree(name_buf);
5528 return 0;
5529 }
5530
5531 #define MAX_TASKS_SHOWN_PER_CSS 25
5532 static int cgroup_css_links_read(struct seq_file *seq, void *v)
5533 {
5534 struct cgroup_subsys_state *css = seq_css(seq);
5535 struct cgrp_cset_link *link;
5536
5537 down_read(&css_set_rwsem);
5538 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
5539 struct css_set *cset = link->cset;
5540 struct task_struct *task;
5541 int count = 0;
5542
5543 seq_printf(seq, "css_set %p\n", cset);
5544
5545 list_for_each_entry(task, &cset->tasks, cg_list) {
5546 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5547 goto overflow;
5548 seq_printf(seq, " task %d\n", task_pid_vnr(task));
5549 }
5550
5551 list_for_each_entry(task, &cset->mg_tasks, cg_list) {
5552 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5553 goto overflow;
5554 seq_printf(seq, " task %d\n", task_pid_vnr(task));
5555 }
5556 continue;
5557 overflow:
5558 seq_puts(seq, " ...\n");
5559 }
5560 up_read(&css_set_rwsem);
5561 return 0;
5562 }
5563
5564 static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
5565 {
5566 return test_bit(CGRP_RELEASABLE, &css->cgroup->flags);
5567 }
5568
5569 static struct cftype debug_files[] = {
5570 {
5571 .name = "taskcount",
5572 .read_u64 = debug_taskcount_read,
5573 },
5574
5575 {
5576 .name = "current_css_set",
5577 .read_u64 = current_css_set_read,
5578 },
5579
5580 {
5581 .name = "current_css_set_refcount",
5582 .read_u64 = current_css_set_refcount_read,
5583 },
5584
5585 {
5586 .name = "current_css_set_cg_links",
5587 .seq_show = current_css_set_cg_links_read,
5588 },
5589
5590 {
5591 .name = "cgroup_css_links",
5592 .seq_show = cgroup_css_links_read,
5593 },
5594
5595 {
5596 .name = "releasable",
5597 .read_u64 = releasable_read,
5598 },
5599
5600 { } /* terminate */
5601 };
5602
5603 struct cgroup_subsys debug_cgrp_subsys = {
5604 .css_alloc = debug_css_alloc,
5605 .css_free = debug_css_free,
5606 .legacy_cftypes = debug_files,
5607 };
5608 #endif /* CONFIG_CGROUP_DEBUG */
This page took 0.286522 seconds and 5 git commands to generate.