cgroup: clean up the cftype array for the base cgroup files
[deliverable/linux.git] / kernel / cgroup.c
1 /*
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29 #include <linux/cgroup.h>
30 #include <linux/cred.h>
31 #include <linux/ctype.h>
32 #include <linux/errno.h>
33 #include <linux/init_task.h>
34 #include <linux/kernel.h>
35 #include <linux/list.h>
36 #include <linux/mm.h>
37 #include <linux/mutex.h>
38 #include <linux/mount.h>
39 #include <linux/pagemap.h>
40 #include <linux/proc_fs.h>
41 #include <linux/rcupdate.h>
42 #include <linux/sched.h>
43 #include <linux/backing-dev.h>
44 #include <linux/seq_file.h>
45 #include <linux/slab.h>
46 #include <linux/magic.h>
47 #include <linux/spinlock.h>
48 #include <linux/string.h>
49 #include <linux/sort.h>
50 #include <linux/kmod.h>
51 #include <linux/module.h>
52 #include <linux/delayacct.h>
53 #include <linux/cgroupstats.h>
54 #include <linux/hashtable.h>
55 #include <linux/namei.h>
56 #include <linux/pid_namespace.h>
57 #include <linux/idr.h>
58 #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
59 #include <linux/eventfd.h>
60 #include <linux/poll.h>
61 #include <linux/flex_array.h> /* used in cgroup_attach_task */
62 #include <linux/kthread.h>
63
64 #include <linux/atomic.h>
65
66 /* css deactivation bias, makes css->refcnt negative to deny new trygets */
67 #define CSS_DEACT_BIAS INT_MIN
68
69 /*
70 * cgroup_mutex is the master lock. Any modification to cgroup or its
71 * hierarchy must be performed while holding it.
72 *
73 * cgroup_root_mutex nests inside cgroup_mutex and should be held to modify
74 * cgroupfs_root of any cgroup hierarchy - subsys list, flags,
75 * release_agent_path and so on. Modifying requires both cgroup_mutex and
76 * cgroup_root_mutex. Readers can acquire either of the two. This is to
77 * break the following locking order cycle.
78 *
79 * A. cgroup_mutex -> cred_guard_mutex -> s_type->i_mutex_key -> namespace_sem
80 * B. namespace_sem -> cgroup_mutex
81 *
82 * B happens only through cgroup_show_options() and using cgroup_root_mutex
83 * breaks it.
84 */
85 #ifdef CONFIG_PROVE_RCU
86 DEFINE_MUTEX(cgroup_mutex);
87 EXPORT_SYMBOL_GPL(cgroup_mutex); /* only for task_subsys_state_check() */
88 #else
89 static DEFINE_MUTEX(cgroup_mutex);
90 #endif
91
92 static DEFINE_MUTEX(cgroup_root_mutex);
93
94 /*
95 * Generate an array of cgroup subsystem pointers. At boot time, this is
96 * populated with the built in subsystems, and modular subsystems are
97 * registered after that. The mutable section of this array is protected by
98 * cgroup_mutex.
99 */
100 #define SUBSYS(_x) [_x ## _subsys_id] = &_x ## _subsys,
101 #define IS_SUBSYS_ENABLED(option) IS_BUILTIN(option)
102 static struct cgroup_subsys *subsys[CGROUP_SUBSYS_COUNT] = {
103 #include <linux/cgroup_subsys.h>
104 };
105
106 /*
107 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
108 * subsystems that are otherwise unattached - it never has more than a
109 * single cgroup, and all tasks are part of that cgroup.
110 */
111 static struct cgroupfs_root rootnode;
112
113 /*
114 * cgroupfs file entry, pointed to from leaf dentry->d_fsdata.
115 */
116 struct cfent {
117 struct list_head node;
118 struct dentry *dentry;
119 struct cftype *type;
120
121 /* file xattrs */
122 struct simple_xattrs xattrs;
123 };
124
125 /*
126 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
127 * cgroup_subsys->use_id != 0.
128 */
129 #define CSS_ID_MAX (65535)
130 struct css_id {
131 /*
132 * The css to which this ID points. This pointer is set to valid value
133 * after cgroup is populated. If cgroup is removed, this will be NULL.
134 * This pointer is expected to be RCU-safe because destroy()
135 * is called after synchronize_rcu(). But for safe use, css_tryget()
136 * should be used for avoiding race.
137 */
138 struct cgroup_subsys_state __rcu *css;
139 /*
140 * ID of this css.
141 */
142 unsigned short id;
143 /*
144 * Depth in hierarchy which this ID belongs to.
145 */
146 unsigned short depth;
147 /*
148 * ID is freed by RCU. (and lookup routine is RCU safe.)
149 */
150 struct rcu_head rcu_head;
151 /*
152 * Hierarchy of CSS ID belongs to.
153 */
154 unsigned short stack[0]; /* Array of Length (depth+1) */
155 };
156
157 /*
158 * cgroup_event represents events which userspace want to receive.
159 */
160 struct cgroup_event {
161 /*
162 * Cgroup which the event belongs to.
163 */
164 struct cgroup *cgrp;
165 /*
166 * Control file which the event associated.
167 */
168 struct cftype *cft;
169 /*
170 * eventfd to signal userspace about the event.
171 */
172 struct eventfd_ctx *eventfd;
173 /*
174 * Each of these stored in a list by the cgroup.
175 */
176 struct list_head list;
177 /*
178 * All fields below needed to unregister event when
179 * userspace closes eventfd.
180 */
181 poll_table pt;
182 wait_queue_head_t *wqh;
183 wait_queue_t wait;
184 struct work_struct remove;
185 };
186
187 /* The list of hierarchy roots */
188
189 static LIST_HEAD(roots);
190 static int root_count;
191
192 /*
193 * Hierarchy ID allocation and mapping. It follows the same exclusion
194 * rules as other root ops - both cgroup_mutex and cgroup_root_mutex for
195 * writes, either for reads.
196 */
197 static DEFINE_IDR(cgroup_hierarchy_idr);
198
199 /* dummytop is a shorthand for the dummy hierarchy's top cgroup */
200 #define dummytop (&rootnode.top_cgroup)
201
202 static struct cgroup_name root_cgroup_name = { .name = "/" };
203
204 /* This flag indicates whether tasks in the fork and exit paths should
205 * check for fork/exit handlers to call. This avoids us having to do
206 * extra work in the fork/exit path if none of the subsystems need to
207 * be called.
208 */
209 static int need_forkexit_callback __read_mostly;
210
211 static int cgroup_destroy_locked(struct cgroup *cgrp);
212 static int cgroup_addrm_files(struct cgroup *cgrp, struct cgroup_subsys *subsys,
213 struct cftype cfts[], bool is_add);
214
215 static int css_unbias_refcnt(int refcnt)
216 {
217 return refcnt >= 0 ? refcnt : refcnt - CSS_DEACT_BIAS;
218 }
219
220 /* the current nr of refs, always >= 0 whether @css is deactivated or not */
221 static int css_refcnt(struct cgroup_subsys_state *css)
222 {
223 int v = atomic_read(&css->refcnt);
224
225 return css_unbias_refcnt(v);
226 }
227
228 /* convenient tests for these bits */
229 static inline bool cgroup_is_removed(const struct cgroup *cgrp)
230 {
231 return test_bit(CGRP_REMOVED, &cgrp->flags);
232 }
233
234 /**
235 * cgroup_is_descendant - test ancestry
236 * @cgrp: the cgroup to be tested
237 * @ancestor: possible ancestor of @cgrp
238 *
239 * Test whether @cgrp is a descendant of @ancestor. It also returns %true
240 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
241 * and @ancestor are accessible.
242 */
243 bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
244 {
245 while (cgrp) {
246 if (cgrp == ancestor)
247 return true;
248 cgrp = cgrp->parent;
249 }
250 return false;
251 }
252 EXPORT_SYMBOL_GPL(cgroup_is_descendant);
253
254 static int cgroup_is_releasable(const struct cgroup *cgrp)
255 {
256 const int bits =
257 (1 << CGRP_RELEASABLE) |
258 (1 << CGRP_NOTIFY_ON_RELEASE);
259 return (cgrp->flags & bits) == bits;
260 }
261
262 static int notify_on_release(const struct cgroup *cgrp)
263 {
264 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
265 }
266
267 /*
268 * for_each_subsys() allows you to iterate on each subsystem attached to
269 * an active hierarchy
270 */
271 #define for_each_subsys(_root, _ss) \
272 list_for_each_entry(_ss, &_root->subsys_list, sibling)
273
274 /* for_each_active_root() allows you to iterate across the active hierarchies */
275 #define for_each_active_root(_root) \
276 list_for_each_entry(_root, &roots, root_list)
277
278 static inline struct cgroup *__d_cgrp(struct dentry *dentry)
279 {
280 return dentry->d_fsdata;
281 }
282
283 static inline struct cfent *__d_cfe(struct dentry *dentry)
284 {
285 return dentry->d_fsdata;
286 }
287
288 static inline struct cftype *__d_cft(struct dentry *dentry)
289 {
290 return __d_cfe(dentry)->type;
291 }
292
293 /**
294 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
295 * @cgrp: the cgroup to be checked for liveness
296 *
297 * On success, returns true; the mutex should be later unlocked. On
298 * failure returns false with no lock held.
299 */
300 static bool cgroup_lock_live_group(struct cgroup *cgrp)
301 {
302 mutex_lock(&cgroup_mutex);
303 if (cgroup_is_removed(cgrp)) {
304 mutex_unlock(&cgroup_mutex);
305 return false;
306 }
307 return true;
308 }
309
310 /* the list of cgroups eligible for automatic release. Protected by
311 * release_list_lock */
312 static LIST_HEAD(release_list);
313 static DEFINE_RAW_SPINLOCK(release_list_lock);
314 static void cgroup_release_agent(struct work_struct *work);
315 static DECLARE_WORK(release_agent_work, cgroup_release_agent);
316 static void check_for_release(struct cgroup *cgrp);
317
318 /* Link structure for associating css_set objects with cgroups */
319 struct cg_cgroup_link {
320 /*
321 * List running through cg_cgroup_links associated with a
322 * cgroup, anchored on cgroup->css_sets
323 */
324 struct list_head cgrp_link_list;
325 struct cgroup *cgrp;
326 /*
327 * List running through cg_cgroup_links pointing at a
328 * single css_set object, anchored on css_set->cg_links
329 */
330 struct list_head cg_link_list;
331 struct css_set *cg;
332 };
333
334 /* The default css_set - used by init and its children prior to any
335 * hierarchies being mounted. It contains a pointer to the root state
336 * for each subsystem. Also used to anchor the list of css_sets. Not
337 * reference-counted, to improve performance when child cgroups
338 * haven't been created.
339 */
340
341 static struct css_set init_css_set;
342 static struct cg_cgroup_link init_css_set_link;
343
344 static int cgroup_init_idr(struct cgroup_subsys *ss,
345 struct cgroup_subsys_state *css);
346
347 /* css_set_lock protects the list of css_set objects, and the
348 * chain of tasks off each css_set. Nests outside task->alloc_lock
349 * due to cgroup_iter_start() */
350 static DEFINE_RWLOCK(css_set_lock);
351 static int css_set_count;
352
353 /*
354 * hash table for cgroup groups. This improves the performance to find
355 * an existing css_set. This hash doesn't (currently) take into
356 * account cgroups in empty hierarchies.
357 */
358 #define CSS_SET_HASH_BITS 7
359 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
360
361 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
362 {
363 int i;
364 unsigned long key = 0UL;
365
366 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
367 key += (unsigned long)css[i];
368 key = (key >> 16) ^ key;
369
370 return key;
371 }
372
373 /* We don't maintain the lists running through each css_set to its
374 * task until after the first call to cgroup_iter_start(). This
375 * reduces the fork()/exit() overhead for people who have cgroups
376 * compiled into their kernel but not actually in use */
377 static int use_task_css_set_links __read_mostly;
378
379 static void __put_css_set(struct css_set *cg, int taskexit)
380 {
381 struct cg_cgroup_link *link;
382 struct cg_cgroup_link *saved_link;
383 /*
384 * Ensure that the refcount doesn't hit zero while any readers
385 * can see it. Similar to atomic_dec_and_lock(), but for an
386 * rwlock
387 */
388 if (atomic_add_unless(&cg->refcount, -1, 1))
389 return;
390 write_lock(&css_set_lock);
391 if (!atomic_dec_and_test(&cg->refcount)) {
392 write_unlock(&css_set_lock);
393 return;
394 }
395
396 /* This css_set is dead. unlink it and release cgroup refcounts */
397 hash_del(&cg->hlist);
398 css_set_count--;
399
400 list_for_each_entry_safe(link, saved_link, &cg->cg_links,
401 cg_link_list) {
402 struct cgroup *cgrp = link->cgrp;
403 list_del(&link->cg_link_list);
404 list_del(&link->cgrp_link_list);
405
406 /*
407 * We may not be holding cgroup_mutex, and if cgrp->count is
408 * dropped to 0 the cgroup can be destroyed at any time, hence
409 * rcu_read_lock is used to keep it alive.
410 */
411 rcu_read_lock();
412 if (atomic_dec_and_test(&cgrp->count) &&
413 notify_on_release(cgrp)) {
414 if (taskexit)
415 set_bit(CGRP_RELEASABLE, &cgrp->flags);
416 check_for_release(cgrp);
417 }
418 rcu_read_unlock();
419
420 kfree(link);
421 }
422
423 write_unlock(&css_set_lock);
424 kfree_rcu(cg, rcu_head);
425 }
426
427 /*
428 * refcounted get/put for css_set objects
429 */
430 static inline void get_css_set(struct css_set *cg)
431 {
432 atomic_inc(&cg->refcount);
433 }
434
435 static inline void put_css_set(struct css_set *cg)
436 {
437 __put_css_set(cg, 0);
438 }
439
440 static inline void put_css_set_taskexit(struct css_set *cg)
441 {
442 __put_css_set(cg, 1);
443 }
444
445 /*
446 * compare_css_sets - helper function for find_existing_css_set().
447 * @cg: candidate css_set being tested
448 * @old_cg: existing css_set for a task
449 * @new_cgrp: cgroup that's being entered by the task
450 * @template: desired set of css pointers in css_set (pre-calculated)
451 *
452 * Returns true if "cg" matches "old_cg" except for the hierarchy
453 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
454 */
455 static bool compare_css_sets(struct css_set *cg,
456 struct css_set *old_cg,
457 struct cgroup *new_cgrp,
458 struct cgroup_subsys_state *template[])
459 {
460 struct list_head *l1, *l2;
461
462 if (memcmp(template, cg->subsys, sizeof(cg->subsys))) {
463 /* Not all subsystems matched */
464 return false;
465 }
466
467 /*
468 * Compare cgroup pointers in order to distinguish between
469 * different cgroups in heirarchies with no subsystems. We
470 * could get by with just this check alone (and skip the
471 * memcmp above) but on most setups the memcmp check will
472 * avoid the need for this more expensive check on almost all
473 * candidates.
474 */
475
476 l1 = &cg->cg_links;
477 l2 = &old_cg->cg_links;
478 while (1) {
479 struct cg_cgroup_link *cgl1, *cgl2;
480 struct cgroup *cg1, *cg2;
481
482 l1 = l1->next;
483 l2 = l2->next;
484 /* See if we reached the end - both lists are equal length. */
485 if (l1 == &cg->cg_links) {
486 BUG_ON(l2 != &old_cg->cg_links);
487 break;
488 } else {
489 BUG_ON(l2 == &old_cg->cg_links);
490 }
491 /* Locate the cgroups associated with these links. */
492 cgl1 = list_entry(l1, struct cg_cgroup_link, cg_link_list);
493 cgl2 = list_entry(l2, struct cg_cgroup_link, cg_link_list);
494 cg1 = cgl1->cgrp;
495 cg2 = cgl2->cgrp;
496 /* Hierarchies should be linked in the same order. */
497 BUG_ON(cg1->root != cg2->root);
498
499 /*
500 * If this hierarchy is the hierarchy of the cgroup
501 * that's changing, then we need to check that this
502 * css_set points to the new cgroup; if it's any other
503 * hierarchy, then this css_set should point to the
504 * same cgroup as the old css_set.
505 */
506 if (cg1->root == new_cgrp->root) {
507 if (cg1 != new_cgrp)
508 return false;
509 } else {
510 if (cg1 != cg2)
511 return false;
512 }
513 }
514 return true;
515 }
516
517 /*
518 * find_existing_css_set() is a helper for
519 * find_css_set(), and checks to see whether an existing
520 * css_set is suitable.
521 *
522 * oldcg: the cgroup group that we're using before the cgroup
523 * transition
524 *
525 * cgrp: the cgroup that we're moving into
526 *
527 * template: location in which to build the desired set of subsystem
528 * state objects for the new cgroup group
529 */
530 static struct css_set *find_existing_css_set(
531 struct css_set *oldcg,
532 struct cgroup *cgrp,
533 struct cgroup_subsys_state *template[])
534 {
535 int i;
536 struct cgroupfs_root *root = cgrp->root;
537 struct css_set *cg;
538 unsigned long key;
539
540 /*
541 * Build the set of subsystem state objects that we want to see in the
542 * new css_set. while subsystems can change globally, the entries here
543 * won't change, so no need for locking.
544 */
545 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
546 if (root->subsys_mask & (1UL << i)) {
547 /* Subsystem is in this hierarchy. So we want
548 * the subsystem state from the new
549 * cgroup */
550 template[i] = cgrp->subsys[i];
551 } else {
552 /* Subsystem is not in this hierarchy, so we
553 * don't want to change the subsystem state */
554 template[i] = oldcg->subsys[i];
555 }
556 }
557
558 key = css_set_hash(template);
559 hash_for_each_possible(css_set_table, cg, hlist, key) {
560 if (!compare_css_sets(cg, oldcg, cgrp, template))
561 continue;
562
563 /* This css_set matches what we need */
564 return cg;
565 }
566
567 /* No existing cgroup group matched */
568 return NULL;
569 }
570
571 static void free_cg_links(struct list_head *tmp)
572 {
573 struct cg_cgroup_link *link;
574 struct cg_cgroup_link *saved_link;
575
576 list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
577 list_del(&link->cgrp_link_list);
578 kfree(link);
579 }
580 }
581
582 /*
583 * allocate_cg_links() allocates "count" cg_cgroup_link structures
584 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
585 * success or a negative error
586 */
587 static int allocate_cg_links(int count, struct list_head *tmp)
588 {
589 struct cg_cgroup_link *link;
590 int i;
591 INIT_LIST_HEAD(tmp);
592 for (i = 0; i < count; i++) {
593 link = kmalloc(sizeof(*link), GFP_KERNEL);
594 if (!link) {
595 free_cg_links(tmp);
596 return -ENOMEM;
597 }
598 list_add(&link->cgrp_link_list, tmp);
599 }
600 return 0;
601 }
602
603 /**
604 * link_css_set - a helper function to link a css_set to a cgroup
605 * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
606 * @cg: the css_set to be linked
607 * @cgrp: the destination cgroup
608 */
609 static void link_css_set(struct list_head *tmp_cg_links,
610 struct css_set *cg, struct cgroup *cgrp)
611 {
612 struct cg_cgroup_link *link;
613
614 BUG_ON(list_empty(tmp_cg_links));
615 link = list_first_entry(tmp_cg_links, struct cg_cgroup_link,
616 cgrp_link_list);
617 link->cg = cg;
618 link->cgrp = cgrp;
619 atomic_inc(&cgrp->count);
620 list_move(&link->cgrp_link_list, &cgrp->css_sets);
621 /*
622 * Always add links to the tail of the list so that the list
623 * is sorted by order of hierarchy creation
624 */
625 list_add_tail(&link->cg_link_list, &cg->cg_links);
626 }
627
628 /*
629 * find_css_set() takes an existing cgroup group and a
630 * cgroup object, and returns a css_set object that's
631 * equivalent to the old group, but with the given cgroup
632 * substituted into the appropriate hierarchy. Must be called with
633 * cgroup_mutex held
634 */
635 static struct css_set *find_css_set(
636 struct css_set *oldcg, struct cgroup *cgrp)
637 {
638 struct css_set *res;
639 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
640
641 struct list_head tmp_cg_links;
642
643 struct cg_cgroup_link *link;
644 unsigned long key;
645
646 /* First see if we already have a cgroup group that matches
647 * the desired set */
648 read_lock(&css_set_lock);
649 res = find_existing_css_set(oldcg, cgrp, template);
650 if (res)
651 get_css_set(res);
652 read_unlock(&css_set_lock);
653
654 if (res)
655 return res;
656
657 res = kmalloc(sizeof(*res), GFP_KERNEL);
658 if (!res)
659 return NULL;
660
661 /* Allocate all the cg_cgroup_link objects that we'll need */
662 if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
663 kfree(res);
664 return NULL;
665 }
666
667 atomic_set(&res->refcount, 1);
668 INIT_LIST_HEAD(&res->cg_links);
669 INIT_LIST_HEAD(&res->tasks);
670 INIT_HLIST_NODE(&res->hlist);
671
672 /* Copy the set of subsystem state objects generated in
673 * find_existing_css_set() */
674 memcpy(res->subsys, template, sizeof(res->subsys));
675
676 write_lock(&css_set_lock);
677 /* Add reference counts and links from the new css_set. */
678 list_for_each_entry(link, &oldcg->cg_links, cg_link_list) {
679 struct cgroup *c = link->cgrp;
680 if (c->root == cgrp->root)
681 c = cgrp;
682 link_css_set(&tmp_cg_links, res, c);
683 }
684
685 BUG_ON(!list_empty(&tmp_cg_links));
686
687 css_set_count++;
688
689 /* Add this cgroup group to the hash table */
690 key = css_set_hash(res->subsys);
691 hash_add(css_set_table, &res->hlist, key);
692
693 write_unlock(&css_set_lock);
694
695 return res;
696 }
697
698 /*
699 * Return the cgroup for "task" from the given hierarchy. Must be
700 * called with cgroup_mutex held.
701 */
702 static struct cgroup *task_cgroup_from_root(struct task_struct *task,
703 struct cgroupfs_root *root)
704 {
705 struct css_set *css;
706 struct cgroup *res = NULL;
707
708 BUG_ON(!mutex_is_locked(&cgroup_mutex));
709 read_lock(&css_set_lock);
710 /*
711 * No need to lock the task - since we hold cgroup_mutex the
712 * task can't change groups, so the only thing that can happen
713 * is that it exits and its css is set back to init_css_set.
714 */
715 css = task->cgroups;
716 if (css == &init_css_set) {
717 res = &root->top_cgroup;
718 } else {
719 struct cg_cgroup_link *link;
720 list_for_each_entry(link, &css->cg_links, cg_link_list) {
721 struct cgroup *c = link->cgrp;
722 if (c->root == root) {
723 res = c;
724 break;
725 }
726 }
727 }
728 read_unlock(&css_set_lock);
729 BUG_ON(!res);
730 return res;
731 }
732
733 /*
734 * There is one global cgroup mutex. We also require taking
735 * task_lock() when dereferencing a task's cgroup subsys pointers.
736 * See "The task_lock() exception", at the end of this comment.
737 *
738 * A task must hold cgroup_mutex to modify cgroups.
739 *
740 * Any task can increment and decrement the count field without lock.
741 * So in general, code holding cgroup_mutex can't rely on the count
742 * field not changing. However, if the count goes to zero, then only
743 * cgroup_attach_task() can increment it again. Because a count of zero
744 * means that no tasks are currently attached, therefore there is no
745 * way a task attached to that cgroup can fork (the other way to
746 * increment the count). So code holding cgroup_mutex can safely
747 * assume that if the count is zero, it will stay zero. Similarly, if
748 * a task holds cgroup_mutex on a cgroup with zero count, it
749 * knows that the cgroup won't be removed, as cgroup_rmdir()
750 * needs that mutex.
751 *
752 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
753 * (usually) take cgroup_mutex. These are the two most performance
754 * critical pieces of code here. The exception occurs on cgroup_exit(),
755 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
756 * is taken, and if the cgroup count is zero, a usermode call made
757 * to the release agent with the name of the cgroup (path relative to
758 * the root of cgroup file system) as the argument.
759 *
760 * A cgroup can only be deleted if both its 'count' of using tasks
761 * is zero, and its list of 'children' cgroups is empty. Since all
762 * tasks in the system use _some_ cgroup, and since there is always at
763 * least one task in the system (init, pid == 1), therefore, top_cgroup
764 * always has either children cgroups and/or using tasks. So we don't
765 * need a special hack to ensure that top_cgroup cannot be deleted.
766 *
767 * The task_lock() exception
768 *
769 * The need for this exception arises from the action of
770 * cgroup_attach_task(), which overwrites one task's cgroup pointer with
771 * another. It does so using cgroup_mutex, however there are
772 * several performance critical places that need to reference
773 * task->cgroup without the expense of grabbing a system global
774 * mutex. Therefore except as noted below, when dereferencing or, as
775 * in cgroup_attach_task(), modifying a task's cgroup pointer we use
776 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
777 * the task_struct routinely used for such matters.
778 *
779 * P.S. One more locking exception. RCU is used to guard the
780 * update of a tasks cgroup pointer by cgroup_attach_task()
781 */
782
783 /*
784 * A couple of forward declarations required, due to cyclic reference loop:
785 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
786 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
787 * -> cgroup_mkdir.
788 */
789
790 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode);
791 static struct dentry *cgroup_lookup(struct inode *, struct dentry *, unsigned int);
792 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
793 static int cgroup_populate_dir(struct cgroup *cgrp, bool base_files,
794 unsigned long subsys_mask);
795 static const struct inode_operations cgroup_dir_inode_operations;
796 static const struct file_operations proc_cgroupstats_operations;
797
798 static struct backing_dev_info cgroup_backing_dev_info = {
799 .name = "cgroup",
800 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
801 };
802
803 static int alloc_css_id(struct cgroup_subsys *ss,
804 struct cgroup *parent, struct cgroup *child);
805
806 static struct inode *cgroup_new_inode(umode_t mode, struct super_block *sb)
807 {
808 struct inode *inode = new_inode(sb);
809
810 if (inode) {
811 inode->i_ino = get_next_ino();
812 inode->i_mode = mode;
813 inode->i_uid = current_fsuid();
814 inode->i_gid = current_fsgid();
815 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
816 inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
817 }
818 return inode;
819 }
820
821 static struct cgroup_name *cgroup_alloc_name(struct dentry *dentry)
822 {
823 struct cgroup_name *name;
824
825 name = kmalloc(sizeof(*name) + dentry->d_name.len + 1, GFP_KERNEL);
826 if (!name)
827 return NULL;
828 strcpy(name->name, dentry->d_name.name);
829 return name;
830 }
831
832 static void cgroup_free_fn(struct work_struct *work)
833 {
834 struct cgroup *cgrp = container_of(work, struct cgroup, free_work);
835 struct cgroup_subsys *ss;
836
837 mutex_lock(&cgroup_mutex);
838 /*
839 * Release the subsystem state objects.
840 */
841 for_each_subsys(cgrp->root, ss)
842 ss->css_free(cgrp);
843
844 cgrp->root->number_of_cgroups--;
845 mutex_unlock(&cgroup_mutex);
846
847 /*
848 * We get a ref to the parent's dentry, and put the ref when
849 * this cgroup is being freed, so it's guaranteed that the
850 * parent won't be destroyed before its children.
851 */
852 dput(cgrp->parent->dentry);
853
854 ida_simple_remove(&cgrp->root->cgroup_ida, cgrp->id);
855
856 /*
857 * Drop the active superblock reference that we took when we
858 * created the cgroup. This will free cgrp->root, if we are
859 * holding the last reference to @sb.
860 */
861 deactivate_super(cgrp->root->sb);
862
863 /*
864 * if we're getting rid of the cgroup, refcount should ensure
865 * that there are no pidlists left.
866 */
867 BUG_ON(!list_empty(&cgrp->pidlists));
868
869 simple_xattrs_free(&cgrp->xattrs);
870
871 kfree(rcu_dereference_raw(cgrp->name));
872 kfree(cgrp);
873 }
874
875 static void cgroup_free_rcu(struct rcu_head *head)
876 {
877 struct cgroup *cgrp = container_of(head, struct cgroup, rcu_head);
878
879 schedule_work(&cgrp->free_work);
880 }
881
882 static void cgroup_diput(struct dentry *dentry, struct inode *inode)
883 {
884 /* is dentry a directory ? if so, kfree() associated cgroup */
885 if (S_ISDIR(inode->i_mode)) {
886 struct cgroup *cgrp = dentry->d_fsdata;
887
888 BUG_ON(!(cgroup_is_removed(cgrp)));
889 call_rcu(&cgrp->rcu_head, cgroup_free_rcu);
890 } else {
891 struct cfent *cfe = __d_cfe(dentry);
892 struct cgroup *cgrp = dentry->d_parent->d_fsdata;
893
894 WARN_ONCE(!list_empty(&cfe->node) &&
895 cgrp != &cgrp->root->top_cgroup,
896 "cfe still linked for %s\n", cfe->type->name);
897 simple_xattrs_free(&cfe->xattrs);
898 kfree(cfe);
899 }
900 iput(inode);
901 }
902
903 static int cgroup_delete(const struct dentry *d)
904 {
905 return 1;
906 }
907
908 static void remove_dir(struct dentry *d)
909 {
910 struct dentry *parent = dget(d->d_parent);
911
912 d_delete(d);
913 simple_rmdir(parent->d_inode, d);
914 dput(parent);
915 }
916
917 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
918 {
919 struct cfent *cfe;
920
921 lockdep_assert_held(&cgrp->dentry->d_inode->i_mutex);
922 lockdep_assert_held(&cgroup_mutex);
923
924 /*
925 * If we're doing cleanup due to failure of cgroup_create(),
926 * the corresponding @cfe may not exist.
927 */
928 list_for_each_entry(cfe, &cgrp->files, node) {
929 struct dentry *d = cfe->dentry;
930
931 if (cft && cfe->type != cft)
932 continue;
933
934 dget(d);
935 d_delete(d);
936 simple_unlink(cgrp->dentry->d_inode, d);
937 list_del_init(&cfe->node);
938 dput(d);
939
940 break;
941 }
942 }
943
944 /**
945 * cgroup_clear_directory - selective removal of base and subsystem files
946 * @dir: directory containing the files
947 * @base_files: true if the base files should be removed
948 * @subsys_mask: mask of the subsystem ids whose files should be removed
949 */
950 static void cgroup_clear_directory(struct dentry *dir, bool base_files,
951 unsigned long subsys_mask)
952 {
953 struct cgroup *cgrp = __d_cgrp(dir);
954 struct cgroup_subsys *ss;
955
956 for_each_subsys(cgrp->root, ss) {
957 struct cftype_set *set;
958 if (!test_bit(ss->subsys_id, &subsys_mask))
959 continue;
960 list_for_each_entry(set, &ss->cftsets, node)
961 cgroup_addrm_files(cgrp, NULL, set->cfts, false);
962 }
963 if (base_files) {
964 while (!list_empty(&cgrp->files))
965 cgroup_rm_file(cgrp, NULL);
966 }
967 }
968
969 /*
970 * NOTE : the dentry must have been dget()'ed
971 */
972 static void cgroup_d_remove_dir(struct dentry *dentry)
973 {
974 struct dentry *parent;
975 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
976
977 cgroup_clear_directory(dentry, true, root->subsys_mask);
978
979 parent = dentry->d_parent;
980 spin_lock(&parent->d_lock);
981 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
982 list_del_init(&dentry->d_u.d_child);
983 spin_unlock(&dentry->d_lock);
984 spin_unlock(&parent->d_lock);
985 remove_dir(dentry);
986 }
987
988 /*
989 * Call with cgroup_mutex held. Drops reference counts on modules, including
990 * any duplicate ones that parse_cgroupfs_options took. If this function
991 * returns an error, no reference counts are touched.
992 */
993 static int rebind_subsystems(struct cgroupfs_root *root,
994 unsigned long final_subsys_mask)
995 {
996 unsigned long added_mask, removed_mask;
997 struct cgroup *cgrp = &root->top_cgroup;
998 int i;
999
1000 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1001 BUG_ON(!mutex_is_locked(&cgroup_root_mutex));
1002
1003 removed_mask = root->actual_subsys_mask & ~final_subsys_mask;
1004 added_mask = final_subsys_mask & ~root->actual_subsys_mask;
1005 /* Check that any added subsystems are currently free */
1006 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1007 unsigned long bit = 1UL << i;
1008 struct cgroup_subsys *ss = subsys[i];
1009 if (!(bit & added_mask))
1010 continue;
1011 /*
1012 * Nobody should tell us to do a subsys that doesn't exist:
1013 * parse_cgroupfs_options should catch that case and refcounts
1014 * ensure that subsystems won't disappear once selected.
1015 */
1016 BUG_ON(ss == NULL);
1017 if (ss->root != &rootnode) {
1018 /* Subsystem isn't free */
1019 return -EBUSY;
1020 }
1021 }
1022
1023 /* Currently we don't handle adding/removing subsystems when
1024 * any child cgroups exist. This is theoretically supportable
1025 * but involves complex error handling, so it's being left until
1026 * later */
1027 if (root->number_of_cgroups > 1)
1028 return -EBUSY;
1029
1030 /* Process each subsystem */
1031 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1032 struct cgroup_subsys *ss = subsys[i];
1033 unsigned long bit = 1UL << i;
1034 if (bit & added_mask) {
1035 /* We're binding this subsystem to this hierarchy */
1036 BUG_ON(ss == NULL);
1037 BUG_ON(cgrp->subsys[i]);
1038 BUG_ON(!dummytop->subsys[i]);
1039 BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
1040 cgrp->subsys[i] = dummytop->subsys[i];
1041 cgrp->subsys[i]->cgroup = cgrp;
1042 list_move(&ss->sibling, &root->subsys_list);
1043 ss->root = root;
1044 if (ss->bind)
1045 ss->bind(cgrp);
1046 /* refcount was already taken, and we're keeping it */
1047 } else if (bit & removed_mask) {
1048 /* We're removing this subsystem */
1049 BUG_ON(ss == NULL);
1050 BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
1051 BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
1052 if (ss->bind)
1053 ss->bind(dummytop);
1054 dummytop->subsys[i]->cgroup = dummytop;
1055 cgrp->subsys[i] = NULL;
1056 subsys[i]->root = &rootnode;
1057 list_move(&ss->sibling, &rootnode.subsys_list);
1058 /* subsystem is now free - drop reference on module */
1059 module_put(ss->module);
1060 } else if (bit & final_subsys_mask) {
1061 /* Subsystem state should already exist */
1062 BUG_ON(ss == NULL);
1063 BUG_ON(!cgrp->subsys[i]);
1064 /*
1065 * a refcount was taken, but we already had one, so
1066 * drop the extra reference.
1067 */
1068 module_put(ss->module);
1069 #ifdef CONFIG_MODULE_UNLOAD
1070 BUG_ON(ss->module && !module_refcount(ss->module));
1071 #endif
1072 } else {
1073 /* Subsystem state shouldn't exist */
1074 BUG_ON(cgrp->subsys[i]);
1075 }
1076 }
1077 root->subsys_mask = root->actual_subsys_mask = final_subsys_mask;
1078
1079 return 0;
1080 }
1081
1082 static int cgroup_show_options(struct seq_file *seq, struct dentry *dentry)
1083 {
1084 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
1085 struct cgroup_subsys *ss;
1086
1087 mutex_lock(&cgroup_root_mutex);
1088 for_each_subsys(root, ss)
1089 seq_printf(seq, ",%s", ss->name);
1090 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR)
1091 seq_puts(seq, ",sane_behavior");
1092 if (root->flags & CGRP_ROOT_NOPREFIX)
1093 seq_puts(seq, ",noprefix");
1094 if (root->flags & CGRP_ROOT_XATTR)
1095 seq_puts(seq, ",xattr");
1096 if (strlen(root->release_agent_path))
1097 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
1098 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags))
1099 seq_puts(seq, ",clone_children");
1100 if (strlen(root->name))
1101 seq_printf(seq, ",name=%s", root->name);
1102 mutex_unlock(&cgroup_root_mutex);
1103 return 0;
1104 }
1105
1106 struct cgroup_sb_opts {
1107 unsigned long subsys_mask;
1108 unsigned long flags;
1109 char *release_agent;
1110 bool cpuset_clone_children;
1111 char *name;
1112 /* User explicitly requested empty subsystem */
1113 bool none;
1114
1115 struct cgroupfs_root *new_root;
1116
1117 };
1118
1119 /*
1120 * Convert a hierarchy specifier into a bitmask of subsystems and flags. Call
1121 * with cgroup_mutex held to protect the subsys[] array. This function takes
1122 * refcounts on subsystems to be used, unless it returns error, in which case
1123 * no refcounts are taken.
1124 */
1125 static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
1126 {
1127 char *token, *o = data;
1128 bool all_ss = false, one_ss = false;
1129 unsigned long mask = (unsigned long)-1;
1130 int i;
1131 bool module_pin_failed = false;
1132
1133 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1134
1135 #ifdef CONFIG_CPUSETS
1136 mask = ~(1UL << cpuset_subsys_id);
1137 #endif
1138
1139 memset(opts, 0, sizeof(*opts));
1140
1141 while ((token = strsep(&o, ",")) != NULL) {
1142 if (!*token)
1143 return -EINVAL;
1144 if (!strcmp(token, "none")) {
1145 /* Explicitly have no subsystems */
1146 opts->none = true;
1147 continue;
1148 }
1149 if (!strcmp(token, "all")) {
1150 /* Mutually exclusive option 'all' + subsystem name */
1151 if (one_ss)
1152 return -EINVAL;
1153 all_ss = true;
1154 continue;
1155 }
1156 if (!strcmp(token, "__DEVEL__sane_behavior")) {
1157 opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
1158 continue;
1159 }
1160 if (!strcmp(token, "noprefix")) {
1161 opts->flags |= CGRP_ROOT_NOPREFIX;
1162 continue;
1163 }
1164 if (!strcmp(token, "clone_children")) {
1165 opts->cpuset_clone_children = true;
1166 continue;
1167 }
1168 if (!strcmp(token, "xattr")) {
1169 opts->flags |= CGRP_ROOT_XATTR;
1170 continue;
1171 }
1172 if (!strncmp(token, "release_agent=", 14)) {
1173 /* Specifying two release agents is forbidden */
1174 if (opts->release_agent)
1175 return -EINVAL;
1176 opts->release_agent =
1177 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
1178 if (!opts->release_agent)
1179 return -ENOMEM;
1180 continue;
1181 }
1182 if (!strncmp(token, "name=", 5)) {
1183 const char *name = token + 5;
1184 /* Can't specify an empty name */
1185 if (!strlen(name))
1186 return -EINVAL;
1187 /* Must match [\w.-]+ */
1188 for (i = 0; i < strlen(name); i++) {
1189 char c = name[i];
1190 if (isalnum(c))
1191 continue;
1192 if ((c == '.') || (c == '-') || (c == '_'))
1193 continue;
1194 return -EINVAL;
1195 }
1196 /* Specifying two names is forbidden */
1197 if (opts->name)
1198 return -EINVAL;
1199 opts->name = kstrndup(name,
1200 MAX_CGROUP_ROOT_NAMELEN - 1,
1201 GFP_KERNEL);
1202 if (!opts->name)
1203 return -ENOMEM;
1204
1205 continue;
1206 }
1207
1208 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1209 struct cgroup_subsys *ss = subsys[i];
1210 if (ss == NULL)
1211 continue;
1212 if (strcmp(token, ss->name))
1213 continue;
1214 if (ss->disabled)
1215 continue;
1216
1217 /* Mutually exclusive option 'all' + subsystem name */
1218 if (all_ss)
1219 return -EINVAL;
1220 set_bit(i, &opts->subsys_mask);
1221 one_ss = true;
1222
1223 break;
1224 }
1225 if (i == CGROUP_SUBSYS_COUNT)
1226 return -ENOENT;
1227 }
1228
1229 /*
1230 * If the 'all' option was specified select all the subsystems,
1231 * otherwise if 'none', 'name=' and a subsystem name options
1232 * were not specified, let's default to 'all'
1233 */
1234 if (all_ss || (!one_ss && !opts->none && !opts->name)) {
1235 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1236 struct cgroup_subsys *ss = subsys[i];
1237 if (ss == NULL)
1238 continue;
1239 if (ss->disabled)
1240 continue;
1241 set_bit(i, &opts->subsys_mask);
1242 }
1243 }
1244
1245 /* Consistency checks */
1246
1247 if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1248 pr_warning("cgroup: sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
1249
1250 if (opts->flags & CGRP_ROOT_NOPREFIX) {
1251 pr_err("cgroup: sane_behavior: noprefix is not allowed\n");
1252 return -EINVAL;
1253 }
1254
1255 if (opts->cpuset_clone_children) {
1256 pr_err("cgroup: sane_behavior: clone_children is not allowed\n");
1257 return -EINVAL;
1258 }
1259 }
1260
1261 /*
1262 * Option noprefix was introduced just for backward compatibility
1263 * with the old cpuset, so we allow noprefix only if mounting just
1264 * the cpuset subsystem.
1265 */
1266 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
1267 return -EINVAL;
1268
1269
1270 /* Can't specify "none" and some subsystems */
1271 if (opts->subsys_mask && opts->none)
1272 return -EINVAL;
1273
1274 /*
1275 * We either have to specify by name or by subsystems. (So all
1276 * empty hierarchies must have a name).
1277 */
1278 if (!opts->subsys_mask && !opts->name)
1279 return -EINVAL;
1280
1281 /*
1282 * Grab references on all the modules we'll need, so the subsystems
1283 * don't dance around before rebind_subsystems attaches them. This may
1284 * take duplicate reference counts on a subsystem that's already used,
1285 * but rebind_subsystems handles this case.
1286 */
1287 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1288 unsigned long bit = 1UL << i;
1289
1290 if (!(bit & opts->subsys_mask))
1291 continue;
1292 if (!try_module_get(subsys[i]->module)) {
1293 module_pin_failed = true;
1294 break;
1295 }
1296 }
1297 if (module_pin_failed) {
1298 /*
1299 * oops, one of the modules was going away. this means that we
1300 * raced with a module_delete call, and to the user this is
1301 * essentially a "subsystem doesn't exist" case.
1302 */
1303 for (i--; i >= 0; i--) {
1304 /* drop refcounts only on the ones we took */
1305 unsigned long bit = 1UL << i;
1306
1307 if (!(bit & opts->subsys_mask))
1308 continue;
1309 module_put(subsys[i]->module);
1310 }
1311 return -ENOENT;
1312 }
1313
1314 return 0;
1315 }
1316
1317 static void drop_parsed_module_refcounts(unsigned long subsys_mask)
1318 {
1319 int i;
1320 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1321 unsigned long bit = 1UL << i;
1322
1323 if (!(bit & subsys_mask))
1324 continue;
1325 module_put(subsys[i]->module);
1326 }
1327 }
1328
1329 static int cgroup_remount(struct super_block *sb, int *flags, char *data)
1330 {
1331 int ret = 0;
1332 struct cgroupfs_root *root = sb->s_fs_info;
1333 struct cgroup *cgrp = &root->top_cgroup;
1334 struct cgroup_sb_opts opts;
1335 unsigned long added_mask, removed_mask;
1336
1337 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1338 pr_err("cgroup: sane_behavior: remount is not allowed\n");
1339 return -EINVAL;
1340 }
1341
1342 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
1343 mutex_lock(&cgroup_mutex);
1344 mutex_lock(&cgroup_root_mutex);
1345
1346 /* See what subsystems are wanted */
1347 ret = parse_cgroupfs_options(data, &opts);
1348 if (ret)
1349 goto out_unlock;
1350
1351 if (opts.subsys_mask != root->actual_subsys_mask || opts.release_agent)
1352 pr_warning("cgroup: option changes via remount are deprecated (pid=%d comm=%s)\n",
1353 task_tgid_nr(current), current->comm);
1354
1355 added_mask = opts.subsys_mask & ~root->subsys_mask;
1356 removed_mask = root->subsys_mask & ~opts.subsys_mask;
1357
1358 /* Don't allow flags or name to change at remount */
1359 if (opts.flags != root->flags ||
1360 (opts.name && strcmp(opts.name, root->name))) {
1361 ret = -EINVAL;
1362 drop_parsed_module_refcounts(opts.subsys_mask);
1363 goto out_unlock;
1364 }
1365
1366 /*
1367 * Clear out the files of subsystems that should be removed, do
1368 * this before rebind_subsystems, since rebind_subsystems may
1369 * change this hierarchy's subsys_list.
1370 */
1371 cgroup_clear_directory(cgrp->dentry, false, removed_mask);
1372
1373 ret = rebind_subsystems(root, opts.subsys_mask);
1374 if (ret) {
1375 /* rebind_subsystems failed, re-populate the removed files */
1376 cgroup_populate_dir(cgrp, false, removed_mask);
1377 drop_parsed_module_refcounts(opts.subsys_mask);
1378 goto out_unlock;
1379 }
1380
1381 /* re-populate subsystem files */
1382 cgroup_populate_dir(cgrp, false, added_mask);
1383
1384 if (opts.release_agent)
1385 strcpy(root->release_agent_path, opts.release_agent);
1386 out_unlock:
1387 kfree(opts.release_agent);
1388 kfree(opts.name);
1389 mutex_unlock(&cgroup_root_mutex);
1390 mutex_unlock(&cgroup_mutex);
1391 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
1392 return ret;
1393 }
1394
1395 static const struct super_operations cgroup_ops = {
1396 .statfs = simple_statfs,
1397 .drop_inode = generic_delete_inode,
1398 .show_options = cgroup_show_options,
1399 .remount_fs = cgroup_remount,
1400 };
1401
1402 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1403 {
1404 INIT_LIST_HEAD(&cgrp->sibling);
1405 INIT_LIST_HEAD(&cgrp->children);
1406 INIT_LIST_HEAD(&cgrp->files);
1407 INIT_LIST_HEAD(&cgrp->css_sets);
1408 INIT_LIST_HEAD(&cgrp->allcg_node);
1409 INIT_LIST_HEAD(&cgrp->release_list);
1410 INIT_LIST_HEAD(&cgrp->pidlists);
1411 INIT_WORK(&cgrp->free_work, cgroup_free_fn);
1412 mutex_init(&cgrp->pidlist_mutex);
1413 INIT_LIST_HEAD(&cgrp->event_list);
1414 spin_lock_init(&cgrp->event_list_lock);
1415 simple_xattrs_init(&cgrp->xattrs);
1416 }
1417
1418 static void init_cgroup_root(struct cgroupfs_root *root)
1419 {
1420 struct cgroup *cgrp = &root->top_cgroup;
1421
1422 INIT_LIST_HEAD(&root->subsys_list);
1423 INIT_LIST_HEAD(&root->root_list);
1424 INIT_LIST_HEAD(&root->allcg_list);
1425 root->number_of_cgroups = 1;
1426 cgrp->root = root;
1427 cgrp->name = &root_cgroup_name;
1428 init_cgroup_housekeeping(cgrp);
1429 list_add_tail(&cgrp->allcg_node, &root->allcg_list);
1430 }
1431
1432 static int cgroup_init_root_id(struct cgroupfs_root *root)
1433 {
1434 int id;
1435
1436 lockdep_assert_held(&cgroup_mutex);
1437 lockdep_assert_held(&cgroup_root_mutex);
1438
1439 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 2, 0, GFP_KERNEL);
1440 if (id < 0)
1441 return id;
1442
1443 root->hierarchy_id = id;
1444 return 0;
1445 }
1446
1447 static void cgroup_exit_root_id(struct cgroupfs_root *root)
1448 {
1449 lockdep_assert_held(&cgroup_mutex);
1450 lockdep_assert_held(&cgroup_root_mutex);
1451
1452 if (root->hierarchy_id) {
1453 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1454 root->hierarchy_id = 0;
1455 }
1456 }
1457
1458 static int cgroup_test_super(struct super_block *sb, void *data)
1459 {
1460 struct cgroup_sb_opts *opts = data;
1461 struct cgroupfs_root *root = sb->s_fs_info;
1462
1463 /* If we asked for a name then it must match */
1464 if (opts->name && strcmp(opts->name, root->name))
1465 return 0;
1466
1467 /*
1468 * If we asked for subsystems (or explicitly for no
1469 * subsystems) then they must match
1470 */
1471 if ((opts->subsys_mask || opts->none)
1472 && (opts->subsys_mask != root->subsys_mask))
1473 return 0;
1474
1475 return 1;
1476 }
1477
1478 static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
1479 {
1480 struct cgroupfs_root *root;
1481
1482 if (!opts->subsys_mask && !opts->none)
1483 return NULL;
1484
1485 root = kzalloc(sizeof(*root), GFP_KERNEL);
1486 if (!root)
1487 return ERR_PTR(-ENOMEM);
1488
1489 init_cgroup_root(root);
1490
1491 root->subsys_mask = opts->subsys_mask;
1492 root->flags = opts->flags;
1493 ida_init(&root->cgroup_ida);
1494 if (opts->release_agent)
1495 strcpy(root->release_agent_path, opts->release_agent);
1496 if (opts->name)
1497 strcpy(root->name, opts->name);
1498 if (opts->cpuset_clone_children)
1499 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags);
1500 return root;
1501 }
1502
1503 static void cgroup_free_root(struct cgroupfs_root *root)
1504 {
1505 if (root) {
1506 /* hierarhcy ID shoulid already have been released */
1507 WARN_ON_ONCE(root->hierarchy_id);
1508
1509 ida_destroy(&root->cgroup_ida);
1510 kfree(root);
1511 }
1512 }
1513
1514 static int cgroup_set_super(struct super_block *sb, void *data)
1515 {
1516 int ret;
1517 struct cgroup_sb_opts *opts = data;
1518
1519 /* If we don't have a new root, we can't set up a new sb */
1520 if (!opts->new_root)
1521 return -EINVAL;
1522
1523 BUG_ON(!opts->subsys_mask && !opts->none);
1524
1525 ret = set_anon_super(sb, NULL);
1526 if (ret)
1527 return ret;
1528
1529 sb->s_fs_info = opts->new_root;
1530 opts->new_root->sb = sb;
1531
1532 sb->s_blocksize = PAGE_CACHE_SIZE;
1533 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
1534 sb->s_magic = CGROUP_SUPER_MAGIC;
1535 sb->s_op = &cgroup_ops;
1536
1537 return 0;
1538 }
1539
1540 static int cgroup_get_rootdir(struct super_block *sb)
1541 {
1542 static const struct dentry_operations cgroup_dops = {
1543 .d_iput = cgroup_diput,
1544 .d_delete = cgroup_delete,
1545 };
1546
1547 struct inode *inode =
1548 cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
1549
1550 if (!inode)
1551 return -ENOMEM;
1552
1553 inode->i_fop = &simple_dir_operations;
1554 inode->i_op = &cgroup_dir_inode_operations;
1555 /* directories start off with i_nlink == 2 (for "." entry) */
1556 inc_nlink(inode);
1557 sb->s_root = d_make_root(inode);
1558 if (!sb->s_root)
1559 return -ENOMEM;
1560 /* for everything else we want ->d_op set */
1561 sb->s_d_op = &cgroup_dops;
1562 return 0;
1563 }
1564
1565 static struct dentry *cgroup_mount(struct file_system_type *fs_type,
1566 int flags, const char *unused_dev_name,
1567 void *data)
1568 {
1569 struct cgroup_sb_opts opts;
1570 struct cgroupfs_root *root;
1571 int ret = 0;
1572 struct super_block *sb;
1573 struct cgroupfs_root *new_root;
1574 struct inode *inode;
1575
1576 /* First find the desired set of subsystems */
1577 mutex_lock(&cgroup_mutex);
1578 ret = parse_cgroupfs_options(data, &opts);
1579 mutex_unlock(&cgroup_mutex);
1580 if (ret)
1581 goto out_err;
1582
1583 /*
1584 * Allocate a new cgroup root. We may not need it if we're
1585 * reusing an existing hierarchy.
1586 */
1587 new_root = cgroup_root_from_opts(&opts);
1588 if (IS_ERR(new_root)) {
1589 ret = PTR_ERR(new_root);
1590 goto drop_modules;
1591 }
1592 opts.new_root = new_root;
1593
1594 /* Locate an existing or new sb for this hierarchy */
1595 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, 0, &opts);
1596 if (IS_ERR(sb)) {
1597 ret = PTR_ERR(sb);
1598 cgroup_free_root(opts.new_root);
1599 goto drop_modules;
1600 }
1601
1602 root = sb->s_fs_info;
1603 BUG_ON(!root);
1604 if (root == opts.new_root) {
1605 /* We used the new root structure, so this is a new hierarchy */
1606 struct list_head tmp_cg_links;
1607 struct cgroup *root_cgrp = &root->top_cgroup;
1608 struct cgroupfs_root *existing_root;
1609 const struct cred *cred;
1610 int i;
1611 struct css_set *cg;
1612
1613 BUG_ON(sb->s_root != NULL);
1614
1615 ret = cgroup_get_rootdir(sb);
1616 if (ret)
1617 goto drop_new_super;
1618 inode = sb->s_root->d_inode;
1619
1620 mutex_lock(&inode->i_mutex);
1621 mutex_lock(&cgroup_mutex);
1622 mutex_lock(&cgroup_root_mutex);
1623
1624 /* Check for name clashes with existing mounts */
1625 ret = -EBUSY;
1626 if (strlen(root->name))
1627 for_each_active_root(existing_root)
1628 if (!strcmp(existing_root->name, root->name))
1629 goto unlock_drop;
1630
1631 /*
1632 * We're accessing css_set_count without locking
1633 * css_set_lock here, but that's OK - it can only be
1634 * increased by someone holding cgroup_lock, and
1635 * that's us. The worst that can happen is that we
1636 * have some link structures left over
1637 */
1638 ret = allocate_cg_links(css_set_count, &tmp_cg_links);
1639 if (ret)
1640 goto unlock_drop;
1641
1642 ret = cgroup_init_root_id(root);
1643 if (ret)
1644 goto unlock_drop;
1645
1646 ret = rebind_subsystems(root, root->subsys_mask);
1647 if (ret == -EBUSY) {
1648 free_cg_links(&tmp_cg_links);
1649 goto unlock_drop;
1650 }
1651 /*
1652 * There must be no failure case after here, since rebinding
1653 * takes care of subsystems' refcounts, which are explicitly
1654 * dropped in the failure exit path.
1655 */
1656
1657 /* EBUSY should be the only error here */
1658 BUG_ON(ret);
1659
1660 list_add(&root->root_list, &roots);
1661 root_count++;
1662
1663 sb->s_root->d_fsdata = root_cgrp;
1664 root->top_cgroup.dentry = sb->s_root;
1665
1666 /* Link the top cgroup in this hierarchy into all
1667 * the css_set objects */
1668 write_lock(&css_set_lock);
1669 hash_for_each(css_set_table, i, cg, hlist)
1670 link_css_set(&tmp_cg_links, cg, root_cgrp);
1671 write_unlock(&css_set_lock);
1672
1673 free_cg_links(&tmp_cg_links);
1674
1675 BUG_ON(!list_empty(&root_cgrp->children));
1676 BUG_ON(root->number_of_cgroups != 1);
1677
1678 cred = override_creds(&init_cred);
1679 cgroup_populate_dir(root_cgrp, true, root->subsys_mask);
1680 revert_creds(cred);
1681 mutex_unlock(&cgroup_root_mutex);
1682 mutex_unlock(&cgroup_mutex);
1683 mutex_unlock(&inode->i_mutex);
1684 } else {
1685 /*
1686 * We re-used an existing hierarchy - the new root (if
1687 * any) is not needed
1688 */
1689 cgroup_free_root(opts.new_root);
1690
1691 if (((root->flags | opts.flags) & CGRP_ROOT_SANE_BEHAVIOR) &&
1692 root->flags != opts.flags) {
1693 pr_err("cgroup: sane_behavior: new mount options should match the existing superblock\n");
1694 ret = -EINVAL;
1695 goto drop_new_super;
1696 }
1697
1698 /* no subsys rebinding, so refcounts don't change */
1699 drop_parsed_module_refcounts(opts.subsys_mask);
1700 }
1701
1702 kfree(opts.release_agent);
1703 kfree(opts.name);
1704 return dget(sb->s_root);
1705
1706 unlock_drop:
1707 cgroup_exit_root_id(root);
1708 mutex_unlock(&cgroup_root_mutex);
1709 mutex_unlock(&cgroup_mutex);
1710 mutex_unlock(&inode->i_mutex);
1711 drop_new_super:
1712 deactivate_locked_super(sb);
1713 drop_modules:
1714 drop_parsed_module_refcounts(opts.subsys_mask);
1715 out_err:
1716 kfree(opts.release_agent);
1717 kfree(opts.name);
1718 return ERR_PTR(ret);
1719 }
1720
1721 static void cgroup_kill_sb(struct super_block *sb) {
1722 struct cgroupfs_root *root = sb->s_fs_info;
1723 struct cgroup *cgrp = &root->top_cgroup;
1724 int ret;
1725 struct cg_cgroup_link *link;
1726 struct cg_cgroup_link *saved_link;
1727
1728 BUG_ON(!root);
1729
1730 BUG_ON(root->number_of_cgroups != 1);
1731 BUG_ON(!list_empty(&cgrp->children));
1732
1733 mutex_lock(&cgroup_mutex);
1734 mutex_lock(&cgroup_root_mutex);
1735
1736 /* Rebind all subsystems back to the default hierarchy */
1737 ret = rebind_subsystems(root, 0);
1738 /* Shouldn't be able to fail ... */
1739 BUG_ON(ret);
1740
1741 /*
1742 * Release all the links from css_sets to this hierarchy's
1743 * root cgroup
1744 */
1745 write_lock(&css_set_lock);
1746
1747 list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
1748 cgrp_link_list) {
1749 list_del(&link->cg_link_list);
1750 list_del(&link->cgrp_link_list);
1751 kfree(link);
1752 }
1753 write_unlock(&css_set_lock);
1754
1755 if (!list_empty(&root->root_list)) {
1756 list_del(&root->root_list);
1757 root_count--;
1758 }
1759
1760 cgroup_exit_root_id(root);
1761
1762 mutex_unlock(&cgroup_root_mutex);
1763 mutex_unlock(&cgroup_mutex);
1764
1765 simple_xattrs_free(&cgrp->xattrs);
1766
1767 kill_litter_super(sb);
1768 cgroup_free_root(root);
1769 }
1770
1771 static struct file_system_type cgroup_fs_type = {
1772 .name = "cgroup",
1773 .mount = cgroup_mount,
1774 .kill_sb = cgroup_kill_sb,
1775 };
1776
1777 static struct kobject *cgroup_kobj;
1778
1779 /**
1780 * cgroup_path - generate the path of a cgroup
1781 * @cgrp: the cgroup in question
1782 * @buf: the buffer to write the path into
1783 * @buflen: the length of the buffer
1784 *
1785 * Writes path of cgroup into buf. Returns 0 on success, -errno on error.
1786 *
1787 * We can't generate cgroup path using dentry->d_name, as accessing
1788 * dentry->name must be protected by irq-unsafe dentry->d_lock or parent
1789 * inode's i_mutex, while on the other hand cgroup_path() can be called
1790 * with some irq-safe spinlocks held.
1791 */
1792 int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1793 {
1794 int ret = -ENAMETOOLONG;
1795 char *start;
1796
1797 if (!cgrp->parent) {
1798 if (strlcpy(buf, "/", buflen) >= buflen)
1799 return -ENAMETOOLONG;
1800 return 0;
1801 }
1802
1803 start = buf + buflen - 1;
1804 *start = '\0';
1805
1806 rcu_read_lock();
1807 do {
1808 const char *name = cgroup_name(cgrp);
1809 int len;
1810
1811 len = strlen(name);
1812 if ((start -= len) < buf)
1813 goto out;
1814 memcpy(start, name, len);
1815
1816 if (--start < buf)
1817 goto out;
1818 *start = '/';
1819
1820 cgrp = cgrp->parent;
1821 } while (cgrp->parent);
1822 ret = 0;
1823 memmove(buf, start, buf + buflen - start);
1824 out:
1825 rcu_read_unlock();
1826 return ret;
1827 }
1828 EXPORT_SYMBOL_GPL(cgroup_path);
1829
1830 /**
1831 * task_cgroup_path_from_hierarchy - cgroup path of a task on a hierarchy
1832 * @task: target task
1833 * @hierarchy_id: the hierarchy to look up @task's cgroup from
1834 * @buf: the buffer to write the path into
1835 * @buflen: the length of the buffer
1836 *
1837 * Determine @task's cgroup on the hierarchy specified by @hierarchy_id and
1838 * copy its path into @buf. This function grabs cgroup_mutex and shouldn't
1839 * be used inside locks used by cgroup controller callbacks.
1840 */
1841 int task_cgroup_path_from_hierarchy(struct task_struct *task, int hierarchy_id,
1842 char *buf, size_t buflen)
1843 {
1844 struct cgroupfs_root *root;
1845 struct cgroup *cgrp = NULL;
1846 int ret = -ENOENT;
1847
1848 mutex_lock(&cgroup_mutex);
1849
1850 root = idr_find(&cgroup_hierarchy_idr, hierarchy_id);
1851 if (root) {
1852 cgrp = task_cgroup_from_root(task, root);
1853 ret = cgroup_path(cgrp, buf, buflen);
1854 }
1855
1856 mutex_unlock(&cgroup_mutex);
1857
1858 return ret;
1859 }
1860 EXPORT_SYMBOL_GPL(task_cgroup_path_from_hierarchy);
1861
1862 /*
1863 * Control Group taskset
1864 */
1865 struct task_and_cgroup {
1866 struct task_struct *task;
1867 struct cgroup *cgrp;
1868 struct css_set *cg;
1869 };
1870
1871 struct cgroup_taskset {
1872 struct task_and_cgroup single;
1873 struct flex_array *tc_array;
1874 int tc_array_len;
1875 int idx;
1876 struct cgroup *cur_cgrp;
1877 };
1878
1879 /**
1880 * cgroup_taskset_first - reset taskset and return the first task
1881 * @tset: taskset of interest
1882 *
1883 * @tset iteration is initialized and the first task is returned.
1884 */
1885 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
1886 {
1887 if (tset->tc_array) {
1888 tset->idx = 0;
1889 return cgroup_taskset_next(tset);
1890 } else {
1891 tset->cur_cgrp = tset->single.cgrp;
1892 return tset->single.task;
1893 }
1894 }
1895 EXPORT_SYMBOL_GPL(cgroup_taskset_first);
1896
1897 /**
1898 * cgroup_taskset_next - iterate to the next task in taskset
1899 * @tset: taskset of interest
1900 *
1901 * Return the next task in @tset. Iteration must have been initialized
1902 * with cgroup_taskset_first().
1903 */
1904 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
1905 {
1906 struct task_and_cgroup *tc;
1907
1908 if (!tset->tc_array || tset->idx >= tset->tc_array_len)
1909 return NULL;
1910
1911 tc = flex_array_get(tset->tc_array, tset->idx++);
1912 tset->cur_cgrp = tc->cgrp;
1913 return tc->task;
1914 }
1915 EXPORT_SYMBOL_GPL(cgroup_taskset_next);
1916
1917 /**
1918 * cgroup_taskset_cur_cgroup - return the matching cgroup for the current task
1919 * @tset: taskset of interest
1920 *
1921 * Return the cgroup for the current (last returned) task of @tset. This
1922 * function must be preceded by either cgroup_taskset_first() or
1923 * cgroup_taskset_next().
1924 */
1925 struct cgroup *cgroup_taskset_cur_cgroup(struct cgroup_taskset *tset)
1926 {
1927 return tset->cur_cgrp;
1928 }
1929 EXPORT_SYMBOL_GPL(cgroup_taskset_cur_cgroup);
1930
1931 /**
1932 * cgroup_taskset_size - return the number of tasks in taskset
1933 * @tset: taskset of interest
1934 */
1935 int cgroup_taskset_size(struct cgroup_taskset *tset)
1936 {
1937 return tset->tc_array ? tset->tc_array_len : 1;
1938 }
1939 EXPORT_SYMBOL_GPL(cgroup_taskset_size);
1940
1941
1942 /*
1943 * cgroup_task_migrate - move a task from one cgroup to another.
1944 *
1945 * Must be called with cgroup_mutex and threadgroup locked.
1946 */
1947 static void cgroup_task_migrate(struct cgroup *oldcgrp,
1948 struct task_struct *tsk, struct css_set *newcg)
1949 {
1950 struct css_set *oldcg;
1951
1952 /*
1953 * We are synchronized through threadgroup_lock() against PF_EXITING
1954 * setting such that we can't race against cgroup_exit() changing the
1955 * css_set to init_css_set and dropping the old one.
1956 */
1957 WARN_ON_ONCE(tsk->flags & PF_EXITING);
1958 oldcg = tsk->cgroups;
1959
1960 task_lock(tsk);
1961 rcu_assign_pointer(tsk->cgroups, newcg);
1962 task_unlock(tsk);
1963
1964 /* Update the css_set linked lists if we're using them */
1965 write_lock(&css_set_lock);
1966 if (!list_empty(&tsk->cg_list))
1967 list_move(&tsk->cg_list, &newcg->tasks);
1968 write_unlock(&css_set_lock);
1969
1970 /*
1971 * We just gained a reference on oldcg by taking it from the task. As
1972 * trading it for newcg is protected by cgroup_mutex, we're safe to drop
1973 * it here; it will be freed under RCU.
1974 */
1975 set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
1976 put_css_set(oldcg);
1977 }
1978
1979 /**
1980 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
1981 * @cgrp: the cgroup to attach to
1982 * @tsk: the task or the leader of the threadgroup to be attached
1983 * @threadgroup: attach the whole threadgroup?
1984 *
1985 * Call holding cgroup_mutex and the group_rwsem of the leader. Will take
1986 * task_lock of @tsk or each thread in the threadgroup individually in turn.
1987 */
1988 static int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk,
1989 bool threadgroup)
1990 {
1991 int retval, i, group_size;
1992 struct cgroup_subsys *ss, *failed_ss = NULL;
1993 struct cgroupfs_root *root = cgrp->root;
1994 /* threadgroup list cursor and array */
1995 struct task_struct *leader = tsk;
1996 struct task_and_cgroup *tc;
1997 struct flex_array *group;
1998 struct cgroup_taskset tset = { };
1999
2000 /*
2001 * step 0: in order to do expensive, possibly blocking operations for
2002 * every thread, we cannot iterate the thread group list, since it needs
2003 * rcu or tasklist locked. instead, build an array of all threads in the
2004 * group - group_rwsem prevents new threads from appearing, and if
2005 * threads exit, this will just be an over-estimate.
2006 */
2007 if (threadgroup)
2008 group_size = get_nr_threads(tsk);
2009 else
2010 group_size = 1;
2011 /* flex_array supports very large thread-groups better than kmalloc. */
2012 group = flex_array_alloc(sizeof(*tc), group_size, GFP_KERNEL);
2013 if (!group)
2014 return -ENOMEM;
2015 /* pre-allocate to guarantee space while iterating in rcu read-side. */
2016 retval = flex_array_prealloc(group, 0, group_size, GFP_KERNEL);
2017 if (retval)
2018 goto out_free_group_list;
2019
2020 i = 0;
2021 /*
2022 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2023 * already PF_EXITING could be freed from underneath us unless we
2024 * take an rcu_read_lock.
2025 */
2026 rcu_read_lock();
2027 do {
2028 struct task_and_cgroup ent;
2029
2030 /* @tsk either already exited or can't exit until the end */
2031 if (tsk->flags & PF_EXITING)
2032 continue;
2033
2034 /* as per above, nr_threads may decrease, but not increase. */
2035 BUG_ON(i >= group_size);
2036 ent.task = tsk;
2037 ent.cgrp = task_cgroup_from_root(tsk, root);
2038 /* nothing to do if this task is already in the cgroup */
2039 if (ent.cgrp == cgrp)
2040 continue;
2041 /*
2042 * saying GFP_ATOMIC has no effect here because we did prealloc
2043 * earlier, but it's good form to communicate our expectations.
2044 */
2045 retval = flex_array_put(group, i, &ent, GFP_ATOMIC);
2046 BUG_ON(retval != 0);
2047 i++;
2048
2049 if (!threadgroup)
2050 break;
2051 } while_each_thread(leader, tsk);
2052 rcu_read_unlock();
2053 /* remember the number of threads in the array for later. */
2054 group_size = i;
2055 tset.tc_array = group;
2056 tset.tc_array_len = group_size;
2057
2058 /* methods shouldn't be called if no task is actually migrating */
2059 retval = 0;
2060 if (!group_size)
2061 goto out_free_group_list;
2062
2063 /*
2064 * step 1: check that we can legitimately attach to the cgroup.
2065 */
2066 for_each_subsys(root, ss) {
2067 if (ss->can_attach) {
2068 retval = ss->can_attach(cgrp, &tset);
2069 if (retval) {
2070 failed_ss = ss;
2071 goto out_cancel_attach;
2072 }
2073 }
2074 }
2075
2076 /*
2077 * step 2: make sure css_sets exist for all threads to be migrated.
2078 * we use find_css_set, which allocates a new one if necessary.
2079 */
2080 for (i = 0; i < group_size; i++) {
2081 tc = flex_array_get(group, i);
2082 tc->cg = find_css_set(tc->task->cgroups, cgrp);
2083 if (!tc->cg) {
2084 retval = -ENOMEM;
2085 goto out_put_css_set_refs;
2086 }
2087 }
2088
2089 /*
2090 * step 3: now that we're guaranteed success wrt the css_sets,
2091 * proceed to move all tasks to the new cgroup. There are no
2092 * failure cases after here, so this is the commit point.
2093 */
2094 for (i = 0; i < group_size; i++) {
2095 tc = flex_array_get(group, i);
2096 cgroup_task_migrate(tc->cgrp, tc->task, tc->cg);
2097 }
2098 /* nothing is sensitive to fork() after this point. */
2099
2100 /*
2101 * step 4: do subsystem attach callbacks.
2102 */
2103 for_each_subsys(root, ss) {
2104 if (ss->attach)
2105 ss->attach(cgrp, &tset);
2106 }
2107
2108 /*
2109 * step 5: success! and cleanup
2110 */
2111 retval = 0;
2112 out_put_css_set_refs:
2113 if (retval) {
2114 for (i = 0; i < group_size; i++) {
2115 tc = flex_array_get(group, i);
2116 if (!tc->cg)
2117 break;
2118 put_css_set(tc->cg);
2119 }
2120 }
2121 out_cancel_attach:
2122 if (retval) {
2123 for_each_subsys(root, ss) {
2124 if (ss == failed_ss)
2125 break;
2126 if (ss->cancel_attach)
2127 ss->cancel_attach(cgrp, &tset);
2128 }
2129 }
2130 out_free_group_list:
2131 flex_array_free(group);
2132 return retval;
2133 }
2134
2135 /*
2136 * Find the task_struct of the task to attach by vpid and pass it along to the
2137 * function to attach either it or all tasks in its threadgroup. Will lock
2138 * cgroup_mutex and threadgroup; may take task_lock of task.
2139 */
2140 static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
2141 {
2142 struct task_struct *tsk;
2143 const struct cred *cred = current_cred(), *tcred;
2144 int ret;
2145
2146 if (!cgroup_lock_live_group(cgrp))
2147 return -ENODEV;
2148
2149 retry_find_task:
2150 rcu_read_lock();
2151 if (pid) {
2152 tsk = find_task_by_vpid(pid);
2153 if (!tsk) {
2154 rcu_read_unlock();
2155 ret= -ESRCH;
2156 goto out_unlock_cgroup;
2157 }
2158 /*
2159 * even if we're attaching all tasks in the thread group, we
2160 * only need to check permissions on one of them.
2161 */
2162 tcred = __task_cred(tsk);
2163 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2164 !uid_eq(cred->euid, tcred->uid) &&
2165 !uid_eq(cred->euid, tcred->suid)) {
2166 rcu_read_unlock();
2167 ret = -EACCES;
2168 goto out_unlock_cgroup;
2169 }
2170 } else
2171 tsk = current;
2172
2173 if (threadgroup)
2174 tsk = tsk->group_leader;
2175
2176 /*
2177 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
2178 * trapped in a cpuset, or RT worker may be born in a cgroup
2179 * with no rt_runtime allocated. Just say no.
2180 */
2181 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
2182 ret = -EINVAL;
2183 rcu_read_unlock();
2184 goto out_unlock_cgroup;
2185 }
2186
2187 get_task_struct(tsk);
2188 rcu_read_unlock();
2189
2190 threadgroup_lock(tsk);
2191 if (threadgroup) {
2192 if (!thread_group_leader(tsk)) {
2193 /*
2194 * a race with de_thread from another thread's exec()
2195 * may strip us of our leadership, if this happens,
2196 * there is no choice but to throw this task away and
2197 * try again; this is
2198 * "double-double-toil-and-trouble-check locking".
2199 */
2200 threadgroup_unlock(tsk);
2201 put_task_struct(tsk);
2202 goto retry_find_task;
2203 }
2204 }
2205
2206 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
2207
2208 threadgroup_unlock(tsk);
2209
2210 put_task_struct(tsk);
2211 out_unlock_cgroup:
2212 mutex_unlock(&cgroup_mutex);
2213 return ret;
2214 }
2215
2216 /**
2217 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2218 * @from: attach to all cgroups of a given task
2219 * @tsk: the task to be attached
2220 */
2221 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2222 {
2223 struct cgroupfs_root *root;
2224 int retval = 0;
2225
2226 mutex_lock(&cgroup_mutex);
2227 for_each_active_root(root) {
2228 struct cgroup *from_cg = task_cgroup_from_root(from, root);
2229
2230 retval = cgroup_attach_task(from_cg, tsk, false);
2231 if (retval)
2232 break;
2233 }
2234 mutex_unlock(&cgroup_mutex);
2235
2236 return retval;
2237 }
2238 EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2239
2240 static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
2241 {
2242 return attach_task_by_pid(cgrp, pid, false);
2243 }
2244
2245 static int cgroup_procs_write(struct cgroup *cgrp, struct cftype *cft, u64 tgid)
2246 {
2247 return attach_task_by_pid(cgrp, tgid, true);
2248 }
2249
2250 static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
2251 const char *buffer)
2252 {
2253 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
2254 if (strlen(buffer) >= PATH_MAX)
2255 return -EINVAL;
2256 if (!cgroup_lock_live_group(cgrp))
2257 return -ENODEV;
2258 mutex_lock(&cgroup_root_mutex);
2259 strcpy(cgrp->root->release_agent_path, buffer);
2260 mutex_unlock(&cgroup_root_mutex);
2261 mutex_unlock(&cgroup_mutex);
2262 return 0;
2263 }
2264
2265 static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
2266 struct seq_file *seq)
2267 {
2268 if (!cgroup_lock_live_group(cgrp))
2269 return -ENODEV;
2270 seq_puts(seq, cgrp->root->release_agent_path);
2271 seq_putc(seq, '\n');
2272 mutex_unlock(&cgroup_mutex);
2273 return 0;
2274 }
2275
2276 static int cgroup_sane_behavior_show(struct cgroup *cgrp, struct cftype *cft,
2277 struct seq_file *seq)
2278 {
2279 seq_printf(seq, "%d\n", cgroup_sane_behavior(cgrp));
2280 return 0;
2281 }
2282
2283 /* A buffer size big enough for numbers or short strings */
2284 #define CGROUP_LOCAL_BUFFER_SIZE 64
2285
2286 static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
2287 struct file *file,
2288 const char __user *userbuf,
2289 size_t nbytes, loff_t *unused_ppos)
2290 {
2291 char buffer[CGROUP_LOCAL_BUFFER_SIZE];
2292 int retval = 0;
2293 char *end;
2294
2295 if (!nbytes)
2296 return -EINVAL;
2297 if (nbytes >= sizeof(buffer))
2298 return -E2BIG;
2299 if (copy_from_user(buffer, userbuf, nbytes))
2300 return -EFAULT;
2301
2302 buffer[nbytes] = 0; /* nul-terminate */
2303 if (cft->write_u64) {
2304 u64 val = simple_strtoull(strstrip(buffer), &end, 0);
2305 if (*end)
2306 return -EINVAL;
2307 retval = cft->write_u64(cgrp, cft, val);
2308 } else {
2309 s64 val = simple_strtoll(strstrip(buffer), &end, 0);
2310 if (*end)
2311 return -EINVAL;
2312 retval = cft->write_s64(cgrp, cft, val);
2313 }
2314 if (!retval)
2315 retval = nbytes;
2316 return retval;
2317 }
2318
2319 static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
2320 struct file *file,
2321 const char __user *userbuf,
2322 size_t nbytes, loff_t *unused_ppos)
2323 {
2324 char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
2325 int retval = 0;
2326 size_t max_bytes = cft->max_write_len;
2327 char *buffer = local_buffer;
2328
2329 if (!max_bytes)
2330 max_bytes = sizeof(local_buffer) - 1;
2331 if (nbytes >= max_bytes)
2332 return -E2BIG;
2333 /* Allocate a dynamic buffer if we need one */
2334 if (nbytes >= sizeof(local_buffer)) {
2335 buffer = kmalloc(nbytes + 1, GFP_KERNEL);
2336 if (buffer == NULL)
2337 return -ENOMEM;
2338 }
2339 if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
2340 retval = -EFAULT;
2341 goto out;
2342 }
2343
2344 buffer[nbytes] = 0; /* nul-terminate */
2345 retval = cft->write_string(cgrp, cft, strstrip(buffer));
2346 if (!retval)
2347 retval = nbytes;
2348 out:
2349 if (buffer != local_buffer)
2350 kfree(buffer);
2351 return retval;
2352 }
2353
2354 static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
2355 size_t nbytes, loff_t *ppos)
2356 {
2357 struct cftype *cft = __d_cft(file->f_dentry);
2358 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2359
2360 if (cgroup_is_removed(cgrp))
2361 return -ENODEV;
2362 if (cft->write)
2363 return cft->write(cgrp, cft, file, buf, nbytes, ppos);
2364 if (cft->write_u64 || cft->write_s64)
2365 return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
2366 if (cft->write_string)
2367 return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
2368 if (cft->trigger) {
2369 int ret = cft->trigger(cgrp, (unsigned int)cft->private);
2370 return ret ? ret : nbytes;
2371 }
2372 return -EINVAL;
2373 }
2374
2375 static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
2376 struct file *file,
2377 char __user *buf, size_t nbytes,
2378 loff_t *ppos)
2379 {
2380 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2381 u64 val = cft->read_u64(cgrp, cft);
2382 int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
2383
2384 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2385 }
2386
2387 static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
2388 struct file *file,
2389 char __user *buf, size_t nbytes,
2390 loff_t *ppos)
2391 {
2392 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2393 s64 val = cft->read_s64(cgrp, cft);
2394 int len = sprintf(tmp, "%lld\n", (long long) val);
2395
2396 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2397 }
2398
2399 static ssize_t cgroup_file_read(struct file *file, char __user *buf,
2400 size_t nbytes, loff_t *ppos)
2401 {
2402 struct cftype *cft = __d_cft(file->f_dentry);
2403 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2404
2405 if (cgroup_is_removed(cgrp))
2406 return -ENODEV;
2407
2408 if (cft->read)
2409 return cft->read(cgrp, cft, file, buf, nbytes, ppos);
2410 if (cft->read_u64)
2411 return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
2412 if (cft->read_s64)
2413 return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
2414 return -EINVAL;
2415 }
2416
2417 /*
2418 * seqfile ops/methods for returning structured data. Currently just
2419 * supports string->u64 maps, but can be extended in future.
2420 */
2421
2422 struct cgroup_seqfile_state {
2423 struct cftype *cft;
2424 struct cgroup *cgroup;
2425 };
2426
2427 static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
2428 {
2429 struct seq_file *sf = cb->state;
2430 return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
2431 }
2432
2433 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
2434 {
2435 struct cgroup_seqfile_state *state = m->private;
2436 struct cftype *cft = state->cft;
2437 if (cft->read_map) {
2438 struct cgroup_map_cb cb = {
2439 .fill = cgroup_map_add,
2440 .state = m,
2441 };
2442 return cft->read_map(state->cgroup, cft, &cb);
2443 }
2444 return cft->read_seq_string(state->cgroup, cft, m);
2445 }
2446
2447 static int cgroup_seqfile_release(struct inode *inode, struct file *file)
2448 {
2449 struct seq_file *seq = file->private_data;
2450 kfree(seq->private);
2451 return single_release(inode, file);
2452 }
2453
2454 static const struct file_operations cgroup_seqfile_operations = {
2455 .read = seq_read,
2456 .write = cgroup_file_write,
2457 .llseek = seq_lseek,
2458 .release = cgroup_seqfile_release,
2459 };
2460
2461 static int cgroup_file_open(struct inode *inode, struct file *file)
2462 {
2463 int err;
2464 struct cftype *cft;
2465
2466 err = generic_file_open(inode, file);
2467 if (err)
2468 return err;
2469 cft = __d_cft(file->f_dentry);
2470
2471 if (cft->read_map || cft->read_seq_string) {
2472 struct cgroup_seqfile_state *state =
2473 kzalloc(sizeof(*state), GFP_USER);
2474 if (!state)
2475 return -ENOMEM;
2476 state->cft = cft;
2477 state->cgroup = __d_cgrp(file->f_dentry->d_parent);
2478 file->f_op = &cgroup_seqfile_operations;
2479 err = single_open(file, cgroup_seqfile_show, state);
2480 if (err < 0)
2481 kfree(state);
2482 } else if (cft->open)
2483 err = cft->open(inode, file);
2484 else
2485 err = 0;
2486
2487 return err;
2488 }
2489
2490 static int cgroup_file_release(struct inode *inode, struct file *file)
2491 {
2492 struct cftype *cft = __d_cft(file->f_dentry);
2493 if (cft->release)
2494 return cft->release(inode, file);
2495 return 0;
2496 }
2497
2498 /*
2499 * cgroup_rename - Only allow simple rename of directories in place.
2500 */
2501 static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
2502 struct inode *new_dir, struct dentry *new_dentry)
2503 {
2504 int ret;
2505 struct cgroup_name *name, *old_name;
2506 struct cgroup *cgrp;
2507
2508 /*
2509 * It's convinient to use parent dir's i_mutex to protected
2510 * cgrp->name.
2511 */
2512 lockdep_assert_held(&old_dir->i_mutex);
2513
2514 if (!S_ISDIR(old_dentry->d_inode->i_mode))
2515 return -ENOTDIR;
2516 if (new_dentry->d_inode)
2517 return -EEXIST;
2518 if (old_dir != new_dir)
2519 return -EIO;
2520
2521 cgrp = __d_cgrp(old_dentry);
2522
2523 name = cgroup_alloc_name(new_dentry);
2524 if (!name)
2525 return -ENOMEM;
2526
2527 ret = simple_rename(old_dir, old_dentry, new_dir, new_dentry);
2528 if (ret) {
2529 kfree(name);
2530 return ret;
2531 }
2532
2533 old_name = cgrp->name;
2534 rcu_assign_pointer(cgrp->name, name);
2535
2536 kfree_rcu(old_name, rcu_head);
2537 return 0;
2538 }
2539
2540 static struct simple_xattrs *__d_xattrs(struct dentry *dentry)
2541 {
2542 if (S_ISDIR(dentry->d_inode->i_mode))
2543 return &__d_cgrp(dentry)->xattrs;
2544 else
2545 return &__d_cfe(dentry)->xattrs;
2546 }
2547
2548 static inline int xattr_enabled(struct dentry *dentry)
2549 {
2550 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
2551 return root->flags & CGRP_ROOT_XATTR;
2552 }
2553
2554 static bool is_valid_xattr(const char *name)
2555 {
2556 if (!strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN) ||
2557 !strncmp(name, XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN))
2558 return true;
2559 return false;
2560 }
2561
2562 static int cgroup_setxattr(struct dentry *dentry, const char *name,
2563 const void *val, size_t size, int flags)
2564 {
2565 if (!xattr_enabled(dentry))
2566 return -EOPNOTSUPP;
2567 if (!is_valid_xattr(name))
2568 return -EINVAL;
2569 return simple_xattr_set(__d_xattrs(dentry), name, val, size, flags);
2570 }
2571
2572 static int cgroup_removexattr(struct dentry *dentry, const char *name)
2573 {
2574 if (!xattr_enabled(dentry))
2575 return -EOPNOTSUPP;
2576 if (!is_valid_xattr(name))
2577 return -EINVAL;
2578 return simple_xattr_remove(__d_xattrs(dentry), name);
2579 }
2580
2581 static ssize_t cgroup_getxattr(struct dentry *dentry, const char *name,
2582 void *buf, size_t size)
2583 {
2584 if (!xattr_enabled(dentry))
2585 return -EOPNOTSUPP;
2586 if (!is_valid_xattr(name))
2587 return -EINVAL;
2588 return simple_xattr_get(__d_xattrs(dentry), name, buf, size);
2589 }
2590
2591 static ssize_t cgroup_listxattr(struct dentry *dentry, char *buf, size_t size)
2592 {
2593 if (!xattr_enabled(dentry))
2594 return -EOPNOTSUPP;
2595 return simple_xattr_list(__d_xattrs(dentry), buf, size);
2596 }
2597
2598 static const struct file_operations cgroup_file_operations = {
2599 .read = cgroup_file_read,
2600 .write = cgroup_file_write,
2601 .llseek = generic_file_llseek,
2602 .open = cgroup_file_open,
2603 .release = cgroup_file_release,
2604 };
2605
2606 static const struct inode_operations cgroup_file_inode_operations = {
2607 .setxattr = cgroup_setxattr,
2608 .getxattr = cgroup_getxattr,
2609 .listxattr = cgroup_listxattr,
2610 .removexattr = cgroup_removexattr,
2611 };
2612
2613 static const struct inode_operations cgroup_dir_inode_operations = {
2614 .lookup = cgroup_lookup,
2615 .mkdir = cgroup_mkdir,
2616 .rmdir = cgroup_rmdir,
2617 .rename = cgroup_rename,
2618 .setxattr = cgroup_setxattr,
2619 .getxattr = cgroup_getxattr,
2620 .listxattr = cgroup_listxattr,
2621 .removexattr = cgroup_removexattr,
2622 };
2623
2624 static struct dentry *cgroup_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
2625 {
2626 if (dentry->d_name.len > NAME_MAX)
2627 return ERR_PTR(-ENAMETOOLONG);
2628 d_add(dentry, NULL);
2629 return NULL;
2630 }
2631
2632 /*
2633 * Check if a file is a control file
2634 */
2635 static inline struct cftype *__file_cft(struct file *file)
2636 {
2637 if (file_inode(file)->i_fop != &cgroup_file_operations)
2638 return ERR_PTR(-EINVAL);
2639 return __d_cft(file->f_dentry);
2640 }
2641
2642 static int cgroup_create_file(struct dentry *dentry, umode_t mode,
2643 struct super_block *sb)
2644 {
2645 struct inode *inode;
2646
2647 if (!dentry)
2648 return -ENOENT;
2649 if (dentry->d_inode)
2650 return -EEXIST;
2651
2652 inode = cgroup_new_inode(mode, sb);
2653 if (!inode)
2654 return -ENOMEM;
2655
2656 if (S_ISDIR(mode)) {
2657 inode->i_op = &cgroup_dir_inode_operations;
2658 inode->i_fop = &simple_dir_operations;
2659
2660 /* start off with i_nlink == 2 (for "." entry) */
2661 inc_nlink(inode);
2662 inc_nlink(dentry->d_parent->d_inode);
2663
2664 /*
2665 * Control reaches here with cgroup_mutex held.
2666 * @inode->i_mutex should nest outside cgroup_mutex but we
2667 * want to populate it immediately without releasing
2668 * cgroup_mutex. As @inode isn't visible to anyone else
2669 * yet, trylock will always succeed without affecting
2670 * lockdep checks.
2671 */
2672 WARN_ON_ONCE(!mutex_trylock(&inode->i_mutex));
2673 } else if (S_ISREG(mode)) {
2674 inode->i_size = 0;
2675 inode->i_fop = &cgroup_file_operations;
2676 inode->i_op = &cgroup_file_inode_operations;
2677 }
2678 d_instantiate(dentry, inode);
2679 dget(dentry); /* Extra count - pin the dentry in core */
2680 return 0;
2681 }
2682
2683 /**
2684 * cgroup_file_mode - deduce file mode of a control file
2685 * @cft: the control file in question
2686 *
2687 * returns cft->mode if ->mode is not 0
2688 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
2689 * returns S_IRUGO if it has only a read handler
2690 * returns S_IWUSR if it has only a write hander
2691 */
2692 static umode_t cgroup_file_mode(const struct cftype *cft)
2693 {
2694 umode_t mode = 0;
2695
2696 if (cft->mode)
2697 return cft->mode;
2698
2699 if (cft->read || cft->read_u64 || cft->read_s64 ||
2700 cft->read_map || cft->read_seq_string)
2701 mode |= S_IRUGO;
2702
2703 if (cft->write || cft->write_u64 || cft->write_s64 ||
2704 cft->write_string || cft->trigger)
2705 mode |= S_IWUSR;
2706
2707 return mode;
2708 }
2709
2710 static int cgroup_add_file(struct cgroup *cgrp, struct cgroup_subsys *subsys,
2711 struct cftype *cft)
2712 {
2713 struct dentry *dir = cgrp->dentry;
2714 struct cgroup *parent = __d_cgrp(dir);
2715 struct dentry *dentry;
2716 struct cfent *cfe;
2717 int error;
2718 umode_t mode;
2719 char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
2720
2721 if (subsys && !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) {
2722 strcpy(name, subsys->name);
2723 strcat(name, ".");
2724 }
2725 strcat(name, cft->name);
2726
2727 BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
2728
2729 cfe = kzalloc(sizeof(*cfe), GFP_KERNEL);
2730 if (!cfe)
2731 return -ENOMEM;
2732
2733 dentry = lookup_one_len(name, dir, strlen(name));
2734 if (IS_ERR(dentry)) {
2735 error = PTR_ERR(dentry);
2736 goto out;
2737 }
2738
2739 cfe->type = (void *)cft;
2740 cfe->dentry = dentry;
2741 dentry->d_fsdata = cfe;
2742 simple_xattrs_init(&cfe->xattrs);
2743
2744 mode = cgroup_file_mode(cft);
2745 error = cgroup_create_file(dentry, mode | S_IFREG, cgrp->root->sb);
2746 if (!error) {
2747 list_add_tail(&cfe->node, &parent->files);
2748 cfe = NULL;
2749 }
2750 dput(dentry);
2751 out:
2752 kfree(cfe);
2753 return error;
2754 }
2755
2756 static int cgroup_addrm_files(struct cgroup *cgrp, struct cgroup_subsys *subsys,
2757 struct cftype cfts[], bool is_add)
2758 {
2759 struct cftype *cft;
2760 int err, ret = 0;
2761
2762 for (cft = cfts; cft->name[0] != '\0'; cft++) {
2763 /* does cft->flags tell us to skip this file on @cgrp? */
2764 if ((cft->flags & CFTYPE_INSANE) && cgroup_sane_behavior(cgrp))
2765 continue;
2766 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgrp->parent)
2767 continue;
2768 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgrp->parent)
2769 continue;
2770
2771 if (is_add) {
2772 err = cgroup_add_file(cgrp, subsys, cft);
2773 if (err)
2774 pr_warn("cgroup_addrm_files: failed to add %s, err=%d\n",
2775 cft->name, err);
2776 ret = err;
2777 } else {
2778 cgroup_rm_file(cgrp, cft);
2779 }
2780 }
2781 return ret;
2782 }
2783
2784 static DEFINE_MUTEX(cgroup_cft_mutex);
2785
2786 static void cgroup_cfts_prepare(void)
2787 __acquires(&cgroup_cft_mutex) __acquires(&cgroup_mutex)
2788 {
2789 /*
2790 * Thanks to the entanglement with vfs inode locking, we can't walk
2791 * the existing cgroups under cgroup_mutex and create files.
2792 * Instead, we increment reference on all cgroups and build list of
2793 * them using @cgrp->cft_q_node. Grab cgroup_cft_mutex to ensure
2794 * exclusive access to the field.
2795 */
2796 mutex_lock(&cgroup_cft_mutex);
2797 mutex_lock(&cgroup_mutex);
2798 }
2799
2800 static void cgroup_cfts_commit(struct cgroup_subsys *ss,
2801 struct cftype *cfts, bool is_add)
2802 __releases(&cgroup_mutex) __releases(&cgroup_cft_mutex)
2803 {
2804 LIST_HEAD(pending);
2805 struct cgroup *cgrp, *n;
2806
2807 /* %NULL @cfts indicates abort and don't bother if @ss isn't attached */
2808 if (cfts && ss->root != &rootnode) {
2809 list_for_each_entry(cgrp, &ss->root->allcg_list, allcg_node) {
2810 dget(cgrp->dentry);
2811 list_add_tail(&cgrp->cft_q_node, &pending);
2812 }
2813 }
2814
2815 mutex_unlock(&cgroup_mutex);
2816
2817 /*
2818 * All new cgroups will see @cfts update on @ss->cftsets. Add/rm
2819 * files for all cgroups which were created before.
2820 */
2821 list_for_each_entry_safe(cgrp, n, &pending, cft_q_node) {
2822 struct inode *inode = cgrp->dentry->d_inode;
2823
2824 mutex_lock(&inode->i_mutex);
2825 mutex_lock(&cgroup_mutex);
2826 if (!cgroup_is_removed(cgrp))
2827 cgroup_addrm_files(cgrp, ss, cfts, is_add);
2828 mutex_unlock(&cgroup_mutex);
2829 mutex_unlock(&inode->i_mutex);
2830
2831 list_del_init(&cgrp->cft_q_node);
2832 dput(cgrp->dentry);
2833 }
2834
2835 mutex_unlock(&cgroup_cft_mutex);
2836 }
2837
2838 /**
2839 * cgroup_add_cftypes - add an array of cftypes to a subsystem
2840 * @ss: target cgroup subsystem
2841 * @cfts: zero-length name terminated array of cftypes
2842 *
2843 * Register @cfts to @ss. Files described by @cfts are created for all
2844 * existing cgroups to which @ss is attached and all future cgroups will
2845 * have them too. This function can be called anytime whether @ss is
2846 * attached or not.
2847 *
2848 * Returns 0 on successful registration, -errno on failure. Note that this
2849 * function currently returns 0 as long as @cfts registration is successful
2850 * even if some file creation attempts on existing cgroups fail.
2851 */
2852 int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2853 {
2854 struct cftype_set *set;
2855
2856 set = kzalloc(sizeof(*set), GFP_KERNEL);
2857 if (!set)
2858 return -ENOMEM;
2859
2860 cgroup_cfts_prepare();
2861 set->cfts = cfts;
2862 list_add_tail(&set->node, &ss->cftsets);
2863 cgroup_cfts_commit(ss, cfts, true);
2864
2865 return 0;
2866 }
2867 EXPORT_SYMBOL_GPL(cgroup_add_cftypes);
2868
2869 /**
2870 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
2871 * @ss: target cgroup subsystem
2872 * @cfts: zero-length name terminated array of cftypes
2873 *
2874 * Unregister @cfts from @ss. Files described by @cfts are removed from
2875 * all existing cgroups to which @ss is attached and all future cgroups
2876 * won't have them either. This function can be called anytime whether @ss
2877 * is attached or not.
2878 *
2879 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2880 * registered with @ss.
2881 */
2882 int cgroup_rm_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2883 {
2884 struct cftype_set *set;
2885
2886 cgroup_cfts_prepare();
2887
2888 list_for_each_entry(set, &ss->cftsets, node) {
2889 if (set->cfts == cfts) {
2890 list_del_init(&set->node);
2891 cgroup_cfts_commit(ss, cfts, false);
2892 return 0;
2893 }
2894 }
2895
2896 cgroup_cfts_commit(ss, NULL, false);
2897 return -ENOENT;
2898 }
2899
2900 /**
2901 * cgroup_task_count - count the number of tasks in a cgroup.
2902 * @cgrp: the cgroup in question
2903 *
2904 * Return the number of tasks in the cgroup.
2905 */
2906 int cgroup_task_count(const struct cgroup *cgrp)
2907 {
2908 int count = 0;
2909 struct cg_cgroup_link *link;
2910
2911 read_lock(&css_set_lock);
2912 list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
2913 count += atomic_read(&link->cg->refcount);
2914 }
2915 read_unlock(&css_set_lock);
2916 return count;
2917 }
2918
2919 /*
2920 * Advance a list_head iterator. The iterator should be positioned at
2921 * the start of a css_set
2922 */
2923 static void cgroup_advance_iter(struct cgroup *cgrp,
2924 struct cgroup_iter *it)
2925 {
2926 struct list_head *l = it->cg_link;
2927 struct cg_cgroup_link *link;
2928 struct css_set *cg;
2929
2930 /* Advance to the next non-empty css_set */
2931 do {
2932 l = l->next;
2933 if (l == &cgrp->css_sets) {
2934 it->cg_link = NULL;
2935 return;
2936 }
2937 link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
2938 cg = link->cg;
2939 } while (list_empty(&cg->tasks));
2940 it->cg_link = l;
2941 it->task = cg->tasks.next;
2942 }
2943
2944 /*
2945 * To reduce the fork() overhead for systems that are not actually
2946 * using their cgroups capability, we don't maintain the lists running
2947 * through each css_set to its tasks until we see the list actually
2948 * used - in other words after the first call to cgroup_iter_start().
2949 */
2950 static void cgroup_enable_task_cg_lists(void)
2951 {
2952 struct task_struct *p, *g;
2953 write_lock(&css_set_lock);
2954 use_task_css_set_links = 1;
2955 /*
2956 * We need tasklist_lock because RCU is not safe against
2957 * while_each_thread(). Besides, a forking task that has passed
2958 * cgroup_post_fork() without seeing use_task_css_set_links = 1
2959 * is not guaranteed to have its child immediately visible in the
2960 * tasklist if we walk through it with RCU.
2961 */
2962 read_lock(&tasklist_lock);
2963 do_each_thread(g, p) {
2964 task_lock(p);
2965 /*
2966 * We should check if the process is exiting, otherwise
2967 * it will race with cgroup_exit() in that the list
2968 * entry won't be deleted though the process has exited.
2969 */
2970 if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
2971 list_add(&p->cg_list, &p->cgroups->tasks);
2972 task_unlock(p);
2973 } while_each_thread(g, p);
2974 read_unlock(&tasklist_lock);
2975 write_unlock(&css_set_lock);
2976 }
2977
2978 /**
2979 * cgroup_next_sibling - find the next sibling of a given cgroup
2980 * @pos: the current cgroup
2981 *
2982 * This function returns the next sibling of @pos and should be called
2983 * under RCU read lock. The only requirement is that @pos is accessible.
2984 * The next sibling is guaranteed to be returned regardless of @pos's
2985 * state.
2986 */
2987 struct cgroup *cgroup_next_sibling(struct cgroup *pos)
2988 {
2989 struct cgroup *next;
2990
2991 WARN_ON_ONCE(!rcu_read_lock_held());
2992
2993 /*
2994 * @pos could already have been removed. Once a cgroup is removed,
2995 * its ->sibling.next is no longer updated when its next sibling
2996 * changes. As CGRP_REMOVED is set on removal which is fully
2997 * serialized, if we see it unasserted, it's guaranteed that the
2998 * next sibling hasn't finished its grace period even if it's
2999 * already removed, and thus safe to dereference from this RCU
3000 * critical section. If ->sibling.next is inaccessible,
3001 * cgroup_is_removed() is guaranteed to be visible as %true here.
3002 */
3003 if (likely(!cgroup_is_removed(pos))) {
3004 next = list_entry_rcu(pos->sibling.next, struct cgroup, sibling);
3005 if (&next->sibling != &pos->parent->children)
3006 return next;
3007 return NULL;
3008 }
3009
3010 /*
3011 * Can't dereference the next pointer. Each cgroup is given a
3012 * monotonically increasing unique serial number and always
3013 * appended to the sibling list, so the next one can be found by
3014 * walking the parent's children until we see a cgroup with higher
3015 * serial number than @pos's.
3016 *
3017 * While this path can be slow, it's taken only when either the
3018 * current cgroup is removed or iteration and removal race.
3019 */
3020 list_for_each_entry_rcu(next, &pos->parent->children, sibling)
3021 if (next->serial_nr > pos->serial_nr)
3022 return next;
3023 return NULL;
3024 }
3025 EXPORT_SYMBOL_GPL(cgroup_next_sibling);
3026
3027 /**
3028 * cgroup_next_descendant_pre - find the next descendant for pre-order walk
3029 * @pos: the current position (%NULL to initiate traversal)
3030 * @cgroup: cgroup whose descendants to walk
3031 *
3032 * To be used by cgroup_for_each_descendant_pre(). Find the next
3033 * descendant to visit for pre-order traversal of @cgroup's descendants.
3034 *
3035 * While this function requires RCU read locking, it doesn't require the
3036 * whole traversal to be contained in a single RCU critical section. This
3037 * function will return the correct next descendant as long as both @pos
3038 * and @cgroup are accessible and @pos is a descendant of @cgroup.
3039 */
3040 struct cgroup *cgroup_next_descendant_pre(struct cgroup *pos,
3041 struct cgroup *cgroup)
3042 {
3043 struct cgroup *next;
3044
3045 WARN_ON_ONCE(!rcu_read_lock_held());
3046
3047 /* if first iteration, pretend we just visited @cgroup */
3048 if (!pos)
3049 pos = cgroup;
3050
3051 /* visit the first child if exists */
3052 next = list_first_or_null_rcu(&pos->children, struct cgroup, sibling);
3053 if (next)
3054 return next;
3055
3056 /* no child, visit my or the closest ancestor's next sibling */
3057 while (pos != cgroup) {
3058 next = cgroup_next_sibling(pos);
3059 if (next)
3060 return next;
3061 pos = pos->parent;
3062 }
3063
3064 return NULL;
3065 }
3066 EXPORT_SYMBOL_GPL(cgroup_next_descendant_pre);
3067
3068 /**
3069 * cgroup_rightmost_descendant - return the rightmost descendant of a cgroup
3070 * @pos: cgroup of interest
3071 *
3072 * Return the rightmost descendant of @pos. If there's no descendant,
3073 * @pos is returned. This can be used during pre-order traversal to skip
3074 * subtree of @pos.
3075 *
3076 * While this function requires RCU read locking, it doesn't require the
3077 * whole traversal to be contained in a single RCU critical section. This
3078 * function will return the correct rightmost descendant as long as @pos is
3079 * accessible.
3080 */
3081 struct cgroup *cgroup_rightmost_descendant(struct cgroup *pos)
3082 {
3083 struct cgroup *last, *tmp;
3084
3085 WARN_ON_ONCE(!rcu_read_lock_held());
3086
3087 do {
3088 last = pos;
3089 /* ->prev isn't RCU safe, walk ->next till the end */
3090 pos = NULL;
3091 list_for_each_entry_rcu(tmp, &last->children, sibling)
3092 pos = tmp;
3093 } while (pos);
3094
3095 return last;
3096 }
3097 EXPORT_SYMBOL_GPL(cgroup_rightmost_descendant);
3098
3099 static struct cgroup *cgroup_leftmost_descendant(struct cgroup *pos)
3100 {
3101 struct cgroup *last;
3102
3103 do {
3104 last = pos;
3105 pos = list_first_or_null_rcu(&pos->children, struct cgroup,
3106 sibling);
3107 } while (pos);
3108
3109 return last;
3110 }
3111
3112 /**
3113 * cgroup_next_descendant_post - find the next descendant for post-order walk
3114 * @pos: the current position (%NULL to initiate traversal)
3115 * @cgroup: cgroup whose descendants to walk
3116 *
3117 * To be used by cgroup_for_each_descendant_post(). Find the next
3118 * descendant to visit for post-order traversal of @cgroup's descendants.
3119 *
3120 * While this function requires RCU read locking, it doesn't require the
3121 * whole traversal to be contained in a single RCU critical section. This
3122 * function will return the correct next descendant as long as both @pos
3123 * and @cgroup are accessible and @pos is a descendant of @cgroup.
3124 */
3125 struct cgroup *cgroup_next_descendant_post(struct cgroup *pos,
3126 struct cgroup *cgroup)
3127 {
3128 struct cgroup *next;
3129
3130 WARN_ON_ONCE(!rcu_read_lock_held());
3131
3132 /* if first iteration, visit the leftmost descendant */
3133 if (!pos) {
3134 next = cgroup_leftmost_descendant(cgroup);
3135 return next != cgroup ? next : NULL;
3136 }
3137
3138 /* if there's an unvisited sibling, visit its leftmost descendant */
3139 next = cgroup_next_sibling(pos);
3140 if (next)
3141 return cgroup_leftmost_descendant(next);
3142
3143 /* no sibling left, visit parent */
3144 next = pos->parent;
3145 return next != cgroup ? next : NULL;
3146 }
3147 EXPORT_SYMBOL_GPL(cgroup_next_descendant_post);
3148
3149 void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
3150 __acquires(css_set_lock)
3151 {
3152 /*
3153 * The first time anyone tries to iterate across a cgroup,
3154 * we need to enable the list linking each css_set to its
3155 * tasks, and fix up all existing tasks.
3156 */
3157 if (!use_task_css_set_links)
3158 cgroup_enable_task_cg_lists();
3159
3160 read_lock(&css_set_lock);
3161 it->cg_link = &cgrp->css_sets;
3162 cgroup_advance_iter(cgrp, it);
3163 }
3164
3165 struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
3166 struct cgroup_iter *it)
3167 {
3168 struct task_struct *res;
3169 struct list_head *l = it->task;
3170 struct cg_cgroup_link *link;
3171
3172 /* If the iterator cg is NULL, we have no tasks */
3173 if (!it->cg_link)
3174 return NULL;
3175 res = list_entry(l, struct task_struct, cg_list);
3176 /* Advance iterator to find next entry */
3177 l = l->next;
3178 link = list_entry(it->cg_link, struct cg_cgroup_link, cgrp_link_list);
3179 if (l == &link->cg->tasks) {
3180 /* We reached the end of this task list - move on to
3181 * the next cg_cgroup_link */
3182 cgroup_advance_iter(cgrp, it);
3183 } else {
3184 it->task = l;
3185 }
3186 return res;
3187 }
3188
3189 void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
3190 __releases(css_set_lock)
3191 {
3192 read_unlock(&css_set_lock);
3193 }
3194
3195 static inline int started_after_time(struct task_struct *t1,
3196 struct timespec *time,
3197 struct task_struct *t2)
3198 {
3199 int start_diff = timespec_compare(&t1->start_time, time);
3200 if (start_diff > 0) {
3201 return 1;
3202 } else if (start_diff < 0) {
3203 return 0;
3204 } else {
3205 /*
3206 * Arbitrarily, if two processes started at the same
3207 * time, we'll say that the lower pointer value
3208 * started first. Note that t2 may have exited by now
3209 * so this may not be a valid pointer any longer, but
3210 * that's fine - it still serves to distinguish
3211 * between two tasks started (effectively) simultaneously.
3212 */
3213 return t1 > t2;
3214 }
3215 }
3216
3217 /*
3218 * This function is a callback from heap_insert() and is used to order
3219 * the heap.
3220 * In this case we order the heap in descending task start time.
3221 */
3222 static inline int started_after(void *p1, void *p2)
3223 {
3224 struct task_struct *t1 = p1;
3225 struct task_struct *t2 = p2;
3226 return started_after_time(t1, &t2->start_time, t2);
3227 }
3228
3229 /**
3230 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
3231 * @scan: struct cgroup_scanner containing arguments for the scan
3232 *
3233 * Arguments include pointers to callback functions test_task() and
3234 * process_task().
3235 * Iterate through all the tasks in a cgroup, calling test_task() for each,
3236 * and if it returns true, call process_task() for it also.
3237 * The test_task pointer may be NULL, meaning always true (select all tasks).
3238 * Effectively duplicates cgroup_iter_{start,next,end}()
3239 * but does not lock css_set_lock for the call to process_task().
3240 * The struct cgroup_scanner may be embedded in any structure of the caller's
3241 * creation.
3242 * It is guaranteed that process_task() will act on every task that
3243 * is a member of the cgroup for the duration of this call. This
3244 * function may or may not call process_task() for tasks that exit
3245 * or move to a different cgroup during the call, or are forked or
3246 * move into the cgroup during the call.
3247 *
3248 * Note that test_task() may be called with locks held, and may in some
3249 * situations be called multiple times for the same task, so it should
3250 * be cheap.
3251 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
3252 * pre-allocated and will be used for heap operations (and its "gt" member will
3253 * be overwritten), else a temporary heap will be used (allocation of which
3254 * may cause this function to fail).
3255 */
3256 int cgroup_scan_tasks(struct cgroup_scanner *scan)
3257 {
3258 int retval, i;
3259 struct cgroup_iter it;
3260 struct task_struct *p, *dropped;
3261 /* Never dereference latest_task, since it's not refcounted */
3262 struct task_struct *latest_task = NULL;
3263 struct ptr_heap tmp_heap;
3264 struct ptr_heap *heap;
3265 struct timespec latest_time = { 0, 0 };
3266
3267 if (scan->heap) {
3268 /* The caller supplied our heap and pre-allocated its memory */
3269 heap = scan->heap;
3270 heap->gt = &started_after;
3271 } else {
3272 /* We need to allocate our own heap memory */
3273 heap = &tmp_heap;
3274 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
3275 if (retval)
3276 /* cannot allocate the heap */
3277 return retval;
3278 }
3279
3280 again:
3281 /*
3282 * Scan tasks in the cgroup, using the scanner's "test_task" callback
3283 * to determine which are of interest, and using the scanner's
3284 * "process_task" callback to process any of them that need an update.
3285 * Since we don't want to hold any locks during the task updates,
3286 * gather tasks to be processed in a heap structure.
3287 * The heap is sorted by descending task start time.
3288 * If the statically-sized heap fills up, we overflow tasks that
3289 * started later, and in future iterations only consider tasks that
3290 * started after the latest task in the previous pass. This
3291 * guarantees forward progress and that we don't miss any tasks.
3292 */
3293 heap->size = 0;
3294 cgroup_iter_start(scan->cg, &it);
3295 while ((p = cgroup_iter_next(scan->cg, &it))) {
3296 /*
3297 * Only affect tasks that qualify per the caller's callback,
3298 * if he provided one
3299 */
3300 if (scan->test_task && !scan->test_task(p, scan))
3301 continue;
3302 /*
3303 * Only process tasks that started after the last task
3304 * we processed
3305 */
3306 if (!started_after_time(p, &latest_time, latest_task))
3307 continue;
3308 dropped = heap_insert(heap, p);
3309 if (dropped == NULL) {
3310 /*
3311 * The new task was inserted; the heap wasn't
3312 * previously full
3313 */
3314 get_task_struct(p);
3315 } else if (dropped != p) {
3316 /*
3317 * The new task was inserted, and pushed out a
3318 * different task
3319 */
3320 get_task_struct(p);
3321 put_task_struct(dropped);
3322 }
3323 /*
3324 * Else the new task was newer than anything already in
3325 * the heap and wasn't inserted
3326 */
3327 }
3328 cgroup_iter_end(scan->cg, &it);
3329
3330 if (heap->size) {
3331 for (i = 0; i < heap->size; i++) {
3332 struct task_struct *q = heap->ptrs[i];
3333 if (i == 0) {
3334 latest_time = q->start_time;
3335 latest_task = q;
3336 }
3337 /* Process the task per the caller's callback */
3338 scan->process_task(q, scan);
3339 put_task_struct(q);
3340 }
3341 /*
3342 * If we had to process any tasks at all, scan again
3343 * in case some of them were in the middle of forking
3344 * children that didn't get processed.
3345 * Not the most efficient way to do it, but it avoids
3346 * having to take callback_mutex in the fork path
3347 */
3348 goto again;
3349 }
3350 if (heap == &tmp_heap)
3351 heap_free(&tmp_heap);
3352 return 0;
3353 }
3354
3355 static void cgroup_transfer_one_task(struct task_struct *task,
3356 struct cgroup_scanner *scan)
3357 {
3358 struct cgroup *new_cgroup = scan->data;
3359
3360 mutex_lock(&cgroup_mutex);
3361 cgroup_attach_task(new_cgroup, task, false);
3362 mutex_unlock(&cgroup_mutex);
3363 }
3364
3365 /**
3366 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
3367 * @to: cgroup to which the tasks will be moved
3368 * @from: cgroup in which the tasks currently reside
3369 */
3370 int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
3371 {
3372 struct cgroup_scanner scan;
3373
3374 scan.cg = from;
3375 scan.test_task = NULL; /* select all tasks in cgroup */
3376 scan.process_task = cgroup_transfer_one_task;
3377 scan.heap = NULL;
3378 scan.data = to;
3379
3380 return cgroup_scan_tasks(&scan);
3381 }
3382
3383 /*
3384 * Stuff for reading the 'tasks'/'procs' files.
3385 *
3386 * Reading this file can return large amounts of data if a cgroup has
3387 * *lots* of attached tasks. So it may need several calls to read(),
3388 * but we cannot guarantee that the information we produce is correct
3389 * unless we produce it entirely atomically.
3390 *
3391 */
3392
3393 /* which pidlist file are we talking about? */
3394 enum cgroup_filetype {
3395 CGROUP_FILE_PROCS,
3396 CGROUP_FILE_TASKS,
3397 };
3398
3399 /*
3400 * A pidlist is a list of pids that virtually represents the contents of one
3401 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
3402 * a pair (one each for procs, tasks) for each pid namespace that's relevant
3403 * to the cgroup.
3404 */
3405 struct cgroup_pidlist {
3406 /*
3407 * used to find which pidlist is wanted. doesn't change as long as
3408 * this particular list stays in the list.
3409 */
3410 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
3411 /* array of xids */
3412 pid_t *list;
3413 /* how many elements the above list has */
3414 int length;
3415 /* how many files are using the current array */
3416 int use_count;
3417 /* each of these stored in a list by its cgroup */
3418 struct list_head links;
3419 /* pointer to the cgroup we belong to, for list removal purposes */
3420 struct cgroup *owner;
3421 /* protects the other fields */
3422 struct rw_semaphore mutex;
3423 };
3424
3425 /*
3426 * The following two functions "fix" the issue where there are more pids
3427 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3428 * TODO: replace with a kernel-wide solution to this problem
3429 */
3430 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
3431 static void *pidlist_allocate(int count)
3432 {
3433 if (PIDLIST_TOO_LARGE(count))
3434 return vmalloc(count * sizeof(pid_t));
3435 else
3436 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
3437 }
3438 static void pidlist_free(void *p)
3439 {
3440 if (is_vmalloc_addr(p))
3441 vfree(p);
3442 else
3443 kfree(p);
3444 }
3445
3446 /*
3447 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
3448 * Returns the number of unique elements.
3449 */
3450 static int pidlist_uniq(pid_t *list, int length)
3451 {
3452 int src, dest = 1;
3453
3454 /*
3455 * we presume the 0th element is unique, so i starts at 1. trivial
3456 * edge cases first; no work needs to be done for either
3457 */
3458 if (length == 0 || length == 1)
3459 return length;
3460 /* src and dest walk down the list; dest counts unique elements */
3461 for (src = 1; src < length; src++) {
3462 /* find next unique element */
3463 while (list[src] == list[src-1]) {
3464 src++;
3465 if (src == length)
3466 goto after;
3467 }
3468 /* dest always points to where the next unique element goes */
3469 list[dest] = list[src];
3470 dest++;
3471 }
3472 after:
3473 return dest;
3474 }
3475
3476 static int cmppid(const void *a, const void *b)
3477 {
3478 return *(pid_t *)a - *(pid_t *)b;
3479 }
3480
3481 /*
3482 * find the appropriate pidlist for our purpose (given procs vs tasks)
3483 * returns with the lock on that pidlist already held, and takes care
3484 * of the use count, or returns NULL with no locks held if we're out of
3485 * memory.
3486 */
3487 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3488 enum cgroup_filetype type)
3489 {
3490 struct cgroup_pidlist *l;
3491 /* don't need task_nsproxy() if we're looking at ourself */
3492 struct pid_namespace *ns = task_active_pid_ns(current);
3493
3494 /*
3495 * We can't drop the pidlist_mutex before taking the l->mutex in case
3496 * the last ref-holder is trying to remove l from the list at the same
3497 * time. Holding the pidlist_mutex precludes somebody taking whichever
3498 * list we find out from under us - compare release_pid_array().
3499 */
3500 mutex_lock(&cgrp->pidlist_mutex);
3501 list_for_each_entry(l, &cgrp->pidlists, links) {
3502 if (l->key.type == type && l->key.ns == ns) {
3503 /* make sure l doesn't vanish out from under us */
3504 down_write(&l->mutex);
3505 mutex_unlock(&cgrp->pidlist_mutex);
3506 return l;
3507 }
3508 }
3509 /* entry not found; create a new one */
3510 l = kmalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
3511 if (!l) {
3512 mutex_unlock(&cgrp->pidlist_mutex);
3513 return l;
3514 }
3515 init_rwsem(&l->mutex);
3516 down_write(&l->mutex);
3517 l->key.type = type;
3518 l->key.ns = get_pid_ns(ns);
3519 l->use_count = 0; /* don't increment here */
3520 l->list = NULL;
3521 l->owner = cgrp;
3522 list_add(&l->links, &cgrp->pidlists);
3523 mutex_unlock(&cgrp->pidlist_mutex);
3524 return l;
3525 }
3526
3527 /*
3528 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3529 */
3530 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3531 struct cgroup_pidlist **lp)
3532 {
3533 pid_t *array;
3534 int length;
3535 int pid, n = 0; /* used for populating the array */
3536 struct cgroup_iter it;
3537 struct task_struct *tsk;
3538 struct cgroup_pidlist *l;
3539
3540 /*
3541 * If cgroup gets more users after we read count, we won't have
3542 * enough space - tough. This race is indistinguishable to the
3543 * caller from the case that the additional cgroup users didn't
3544 * show up until sometime later on.
3545 */
3546 length = cgroup_task_count(cgrp);
3547 array = pidlist_allocate(length);
3548 if (!array)
3549 return -ENOMEM;
3550 /* now, populate the array */
3551 cgroup_iter_start(cgrp, &it);
3552 while ((tsk = cgroup_iter_next(cgrp, &it))) {
3553 if (unlikely(n == length))
3554 break;
3555 /* get tgid or pid for procs or tasks file respectively */
3556 if (type == CGROUP_FILE_PROCS)
3557 pid = task_tgid_vnr(tsk);
3558 else
3559 pid = task_pid_vnr(tsk);
3560 if (pid > 0) /* make sure to only use valid results */
3561 array[n++] = pid;
3562 }
3563 cgroup_iter_end(cgrp, &it);
3564 length = n;
3565 /* now sort & (if procs) strip out duplicates */
3566 sort(array, length, sizeof(pid_t), cmppid, NULL);
3567 if (type == CGROUP_FILE_PROCS)
3568 length = pidlist_uniq(array, length);
3569 l = cgroup_pidlist_find(cgrp, type);
3570 if (!l) {
3571 pidlist_free(array);
3572 return -ENOMEM;
3573 }
3574 /* store array, freeing old if necessary - lock already held */
3575 pidlist_free(l->list);
3576 l->list = array;
3577 l->length = length;
3578 l->use_count++;
3579 up_write(&l->mutex);
3580 *lp = l;
3581 return 0;
3582 }
3583
3584 /**
3585 * cgroupstats_build - build and fill cgroupstats
3586 * @stats: cgroupstats to fill information into
3587 * @dentry: A dentry entry belonging to the cgroup for which stats have
3588 * been requested.
3589 *
3590 * Build and fill cgroupstats so that taskstats can export it to user
3591 * space.
3592 */
3593 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
3594 {
3595 int ret = -EINVAL;
3596 struct cgroup *cgrp;
3597 struct cgroup_iter it;
3598 struct task_struct *tsk;
3599
3600 /*
3601 * Validate dentry by checking the superblock operations,
3602 * and make sure it's a directory.
3603 */
3604 if (dentry->d_sb->s_op != &cgroup_ops ||
3605 !S_ISDIR(dentry->d_inode->i_mode))
3606 goto err;
3607
3608 ret = 0;
3609 cgrp = dentry->d_fsdata;
3610
3611 cgroup_iter_start(cgrp, &it);
3612 while ((tsk = cgroup_iter_next(cgrp, &it))) {
3613 switch (tsk->state) {
3614 case TASK_RUNNING:
3615 stats->nr_running++;
3616 break;
3617 case TASK_INTERRUPTIBLE:
3618 stats->nr_sleeping++;
3619 break;
3620 case TASK_UNINTERRUPTIBLE:
3621 stats->nr_uninterruptible++;
3622 break;
3623 case TASK_STOPPED:
3624 stats->nr_stopped++;
3625 break;
3626 default:
3627 if (delayacct_is_task_waiting_on_io(tsk))
3628 stats->nr_io_wait++;
3629 break;
3630 }
3631 }
3632 cgroup_iter_end(cgrp, &it);
3633
3634 err:
3635 return ret;
3636 }
3637
3638
3639 /*
3640 * seq_file methods for the tasks/procs files. The seq_file position is the
3641 * next pid to display; the seq_file iterator is a pointer to the pid
3642 * in the cgroup->l->list array.
3643 */
3644
3645 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
3646 {
3647 /*
3648 * Initially we receive a position value that corresponds to
3649 * one more than the last pid shown (or 0 on the first call or
3650 * after a seek to the start). Use a binary-search to find the
3651 * next pid to display, if any
3652 */
3653 struct cgroup_pidlist *l = s->private;
3654 int index = 0, pid = *pos;
3655 int *iter;
3656
3657 down_read(&l->mutex);
3658 if (pid) {
3659 int end = l->length;
3660
3661 while (index < end) {
3662 int mid = (index + end) / 2;
3663 if (l->list[mid] == pid) {
3664 index = mid;
3665 break;
3666 } else if (l->list[mid] <= pid)
3667 index = mid + 1;
3668 else
3669 end = mid;
3670 }
3671 }
3672 /* If we're off the end of the array, we're done */
3673 if (index >= l->length)
3674 return NULL;
3675 /* Update the abstract position to be the actual pid that we found */
3676 iter = l->list + index;
3677 *pos = *iter;
3678 return iter;
3679 }
3680
3681 static void cgroup_pidlist_stop(struct seq_file *s, void *v)
3682 {
3683 struct cgroup_pidlist *l = s->private;
3684 up_read(&l->mutex);
3685 }
3686
3687 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
3688 {
3689 struct cgroup_pidlist *l = s->private;
3690 pid_t *p = v;
3691 pid_t *end = l->list + l->length;
3692 /*
3693 * Advance to the next pid in the array. If this goes off the
3694 * end, we're done
3695 */
3696 p++;
3697 if (p >= end) {
3698 return NULL;
3699 } else {
3700 *pos = *p;
3701 return p;
3702 }
3703 }
3704
3705 static int cgroup_pidlist_show(struct seq_file *s, void *v)
3706 {
3707 return seq_printf(s, "%d\n", *(int *)v);
3708 }
3709
3710 /*
3711 * seq_operations functions for iterating on pidlists through seq_file -
3712 * independent of whether it's tasks or procs
3713 */
3714 static const struct seq_operations cgroup_pidlist_seq_operations = {
3715 .start = cgroup_pidlist_start,
3716 .stop = cgroup_pidlist_stop,
3717 .next = cgroup_pidlist_next,
3718 .show = cgroup_pidlist_show,
3719 };
3720
3721 static void cgroup_release_pid_array(struct cgroup_pidlist *l)
3722 {
3723 /*
3724 * the case where we're the last user of this particular pidlist will
3725 * have us remove it from the cgroup's list, which entails taking the
3726 * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
3727 * pidlist_mutex, we have to take pidlist_mutex first.
3728 */
3729 mutex_lock(&l->owner->pidlist_mutex);
3730 down_write(&l->mutex);
3731 BUG_ON(!l->use_count);
3732 if (!--l->use_count) {
3733 /* we're the last user if refcount is 0; remove and free */
3734 list_del(&l->links);
3735 mutex_unlock(&l->owner->pidlist_mutex);
3736 pidlist_free(l->list);
3737 put_pid_ns(l->key.ns);
3738 up_write(&l->mutex);
3739 kfree(l);
3740 return;
3741 }
3742 mutex_unlock(&l->owner->pidlist_mutex);
3743 up_write(&l->mutex);
3744 }
3745
3746 static int cgroup_pidlist_release(struct inode *inode, struct file *file)
3747 {
3748 struct cgroup_pidlist *l;
3749 if (!(file->f_mode & FMODE_READ))
3750 return 0;
3751 /*
3752 * the seq_file will only be initialized if the file was opened for
3753 * reading; hence we check if it's not null only in that case.
3754 */
3755 l = ((struct seq_file *)file->private_data)->private;
3756 cgroup_release_pid_array(l);
3757 return seq_release(inode, file);
3758 }
3759
3760 static const struct file_operations cgroup_pidlist_operations = {
3761 .read = seq_read,
3762 .llseek = seq_lseek,
3763 .write = cgroup_file_write,
3764 .release = cgroup_pidlist_release,
3765 };
3766
3767 /*
3768 * The following functions handle opens on a file that displays a pidlist
3769 * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
3770 * in the cgroup.
3771 */
3772 /* helper function for the two below it */
3773 static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type)
3774 {
3775 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
3776 struct cgroup_pidlist *l;
3777 int retval;
3778
3779 /* Nothing to do for write-only files */
3780 if (!(file->f_mode & FMODE_READ))
3781 return 0;
3782
3783 /* have the array populated */
3784 retval = pidlist_array_load(cgrp, type, &l);
3785 if (retval)
3786 return retval;
3787 /* configure file information */
3788 file->f_op = &cgroup_pidlist_operations;
3789
3790 retval = seq_open(file, &cgroup_pidlist_seq_operations);
3791 if (retval) {
3792 cgroup_release_pid_array(l);
3793 return retval;
3794 }
3795 ((struct seq_file *)file->private_data)->private = l;
3796 return 0;
3797 }
3798 static int cgroup_tasks_open(struct inode *unused, struct file *file)
3799 {
3800 return cgroup_pidlist_open(file, CGROUP_FILE_TASKS);
3801 }
3802 static int cgroup_procs_open(struct inode *unused, struct file *file)
3803 {
3804 return cgroup_pidlist_open(file, CGROUP_FILE_PROCS);
3805 }
3806
3807 static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
3808 struct cftype *cft)
3809 {
3810 return notify_on_release(cgrp);
3811 }
3812
3813 static int cgroup_write_notify_on_release(struct cgroup *cgrp,
3814 struct cftype *cft,
3815 u64 val)
3816 {
3817 clear_bit(CGRP_RELEASABLE, &cgrp->flags);
3818 if (val)
3819 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3820 else
3821 clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3822 return 0;
3823 }
3824
3825 /*
3826 * Unregister event and free resources.
3827 *
3828 * Gets called from workqueue.
3829 */
3830 static void cgroup_event_remove(struct work_struct *work)
3831 {
3832 struct cgroup_event *event = container_of(work, struct cgroup_event,
3833 remove);
3834 struct cgroup *cgrp = event->cgrp;
3835
3836 remove_wait_queue(event->wqh, &event->wait);
3837
3838 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3839
3840 /* Notify userspace the event is going away. */
3841 eventfd_signal(event->eventfd, 1);
3842
3843 eventfd_ctx_put(event->eventfd);
3844 kfree(event);
3845 dput(cgrp->dentry);
3846 }
3847
3848 /*
3849 * Gets called on POLLHUP on eventfd when user closes it.
3850 *
3851 * Called with wqh->lock held and interrupts disabled.
3852 */
3853 static int cgroup_event_wake(wait_queue_t *wait, unsigned mode,
3854 int sync, void *key)
3855 {
3856 struct cgroup_event *event = container_of(wait,
3857 struct cgroup_event, wait);
3858 struct cgroup *cgrp = event->cgrp;
3859 unsigned long flags = (unsigned long)key;
3860
3861 if (flags & POLLHUP) {
3862 /*
3863 * If the event has been detached at cgroup removal, we
3864 * can simply return knowing the other side will cleanup
3865 * for us.
3866 *
3867 * We can't race against event freeing since the other
3868 * side will require wqh->lock via remove_wait_queue(),
3869 * which we hold.
3870 */
3871 spin_lock(&cgrp->event_list_lock);
3872 if (!list_empty(&event->list)) {
3873 list_del_init(&event->list);
3874 /*
3875 * We are in atomic context, but cgroup_event_remove()
3876 * may sleep, so we have to call it in workqueue.
3877 */
3878 schedule_work(&event->remove);
3879 }
3880 spin_unlock(&cgrp->event_list_lock);
3881 }
3882
3883 return 0;
3884 }
3885
3886 static void cgroup_event_ptable_queue_proc(struct file *file,
3887 wait_queue_head_t *wqh, poll_table *pt)
3888 {
3889 struct cgroup_event *event = container_of(pt,
3890 struct cgroup_event, pt);
3891
3892 event->wqh = wqh;
3893 add_wait_queue(wqh, &event->wait);
3894 }
3895
3896 /*
3897 * Parse input and register new cgroup event handler.
3898 *
3899 * Input must be in format '<event_fd> <control_fd> <args>'.
3900 * Interpretation of args is defined by control file implementation.
3901 */
3902 static int cgroup_write_event_control(struct cgroup *cgrp, struct cftype *cft,
3903 const char *buffer)
3904 {
3905 struct cgroup_event *event = NULL;
3906 struct cgroup *cgrp_cfile;
3907 unsigned int efd, cfd;
3908 struct file *efile = NULL;
3909 struct file *cfile = NULL;
3910 char *endp;
3911 int ret;
3912
3913 efd = simple_strtoul(buffer, &endp, 10);
3914 if (*endp != ' ')
3915 return -EINVAL;
3916 buffer = endp + 1;
3917
3918 cfd = simple_strtoul(buffer, &endp, 10);
3919 if ((*endp != ' ') && (*endp != '\0'))
3920 return -EINVAL;
3921 buffer = endp + 1;
3922
3923 event = kzalloc(sizeof(*event), GFP_KERNEL);
3924 if (!event)
3925 return -ENOMEM;
3926 event->cgrp = cgrp;
3927 INIT_LIST_HEAD(&event->list);
3928 init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc);
3929 init_waitqueue_func_entry(&event->wait, cgroup_event_wake);
3930 INIT_WORK(&event->remove, cgroup_event_remove);
3931
3932 efile = eventfd_fget(efd);
3933 if (IS_ERR(efile)) {
3934 ret = PTR_ERR(efile);
3935 goto fail;
3936 }
3937
3938 event->eventfd = eventfd_ctx_fileget(efile);
3939 if (IS_ERR(event->eventfd)) {
3940 ret = PTR_ERR(event->eventfd);
3941 goto fail;
3942 }
3943
3944 cfile = fget(cfd);
3945 if (!cfile) {
3946 ret = -EBADF;
3947 goto fail;
3948 }
3949
3950 /* the process need read permission on control file */
3951 /* AV: shouldn't we check that it's been opened for read instead? */
3952 ret = inode_permission(file_inode(cfile), MAY_READ);
3953 if (ret < 0)
3954 goto fail;
3955
3956 event->cft = __file_cft(cfile);
3957 if (IS_ERR(event->cft)) {
3958 ret = PTR_ERR(event->cft);
3959 goto fail;
3960 }
3961
3962 /*
3963 * The file to be monitored must be in the same cgroup as
3964 * cgroup.event_control is.
3965 */
3966 cgrp_cfile = __d_cgrp(cfile->f_dentry->d_parent);
3967 if (cgrp_cfile != cgrp) {
3968 ret = -EINVAL;
3969 goto fail;
3970 }
3971
3972 if (!event->cft->register_event || !event->cft->unregister_event) {
3973 ret = -EINVAL;
3974 goto fail;
3975 }
3976
3977 ret = event->cft->register_event(cgrp, event->cft,
3978 event->eventfd, buffer);
3979 if (ret)
3980 goto fail;
3981
3982 efile->f_op->poll(efile, &event->pt);
3983
3984 /*
3985 * Events should be removed after rmdir of cgroup directory, but before
3986 * destroying subsystem state objects. Let's take reference to cgroup
3987 * directory dentry to do that.
3988 */
3989 dget(cgrp->dentry);
3990
3991 spin_lock(&cgrp->event_list_lock);
3992 list_add(&event->list, &cgrp->event_list);
3993 spin_unlock(&cgrp->event_list_lock);
3994
3995 fput(cfile);
3996 fput(efile);
3997
3998 return 0;
3999
4000 fail:
4001 if (cfile)
4002 fput(cfile);
4003
4004 if (event && event->eventfd && !IS_ERR(event->eventfd))
4005 eventfd_ctx_put(event->eventfd);
4006
4007 if (!IS_ERR_OR_NULL(efile))
4008 fput(efile);
4009
4010 kfree(event);
4011
4012 return ret;
4013 }
4014
4015 static u64 cgroup_clone_children_read(struct cgroup *cgrp,
4016 struct cftype *cft)
4017 {
4018 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
4019 }
4020
4021 static int cgroup_clone_children_write(struct cgroup *cgrp,
4022 struct cftype *cft,
4023 u64 val)
4024 {
4025 if (val)
4026 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
4027 else
4028 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
4029 return 0;
4030 }
4031
4032 static struct cftype cgroup_base_files[] = {
4033 {
4034 .name = "cgroup.procs",
4035 .open = cgroup_procs_open,
4036 .write_u64 = cgroup_procs_write,
4037 .release = cgroup_pidlist_release,
4038 .mode = S_IRUGO | S_IWUSR,
4039 },
4040 {
4041 .name = "cgroup.event_control",
4042 .write_string = cgroup_write_event_control,
4043 .mode = S_IWUGO,
4044 },
4045 {
4046 .name = "cgroup.clone_children",
4047 .flags = CFTYPE_INSANE,
4048 .read_u64 = cgroup_clone_children_read,
4049 .write_u64 = cgroup_clone_children_write,
4050 },
4051 {
4052 .name = "cgroup.sane_behavior",
4053 .flags = CFTYPE_ONLY_ON_ROOT,
4054 .read_seq_string = cgroup_sane_behavior_show,
4055 },
4056
4057 /*
4058 * Historical crazy stuff. These don't have "cgroup." prefix and
4059 * don't exist if sane_behavior. If you're depending on these, be
4060 * prepared to be burned.
4061 */
4062 {
4063 .name = "tasks",
4064 .flags = CFTYPE_INSANE, /* use "procs" instead */
4065 .open = cgroup_tasks_open,
4066 .write_u64 = cgroup_tasks_write,
4067 .release = cgroup_pidlist_release,
4068 .mode = S_IRUGO | S_IWUSR,
4069 },
4070 {
4071 .name = "notify_on_release",
4072 .flags = CFTYPE_INSANE,
4073 .read_u64 = cgroup_read_notify_on_release,
4074 .write_u64 = cgroup_write_notify_on_release,
4075 },
4076 {
4077 .name = "release_agent",
4078 .flags = CFTYPE_INSANE | CFTYPE_ONLY_ON_ROOT,
4079 .read_seq_string = cgroup_release_agent_show,
4080 .write_string = cgroup_release_agent_write,
4081 .max_write_len = PATH_MAX,
4082 },
4083 { } /* terminate */
4084 };
4085
4086 /**
4087 * cgroup_populate_dir - selectively creation of files in a directory
4088 * @cgrp: target cgroup
4089 * @base_files: true if the base files should be added
4090 * @subsys_mask: mask of the subsystem ids whose files should be added
4091 */
4092 static int cgroup_populate_dir(struct cgroup *cgrp, bool base_files,
4093 unsigned long subsys_mask)
4094 {
4095 int err;
4096 struct cgroup_subsys *ss;
4097
4098 if (base_files) {
4099 err = cgroup_addrm_files(cgrp, NULL, cgroup_base_files, true);
4100 if (err < 0)
4101 return err;
4102 }
4103
4104 /* process cftsets of each subsystem */
4105 for_each_subsys(cgrp->root, ss) {
4106 struct cftype_set *set;
4107 if (!test_bit(ss->subsys_id, &subsys_mask))
4108 continue;
4109
4110 list_for_each_entry(set, &ss->cftsets, node)
4111 cgroup_addrm_files(cgrp, ss, set->cfts, true);
4112 }
4113
4114 /* This cgroup is ready now */
4115 for_each_subsys(cgrp->root, ss) {
4116 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
4117 /*
4118 * Update id->css pointer and make this css visible from
4119 * CSS ID functions. This pointer will be dereferened
4120 * from RCU-read-side without locks.
4121 */
4122 if (css->id)
4123 rcu_assign_pointer(css->id->css, css);
4124 }
4125
4126 return 0;
4127 }
4128
4129 static void css_dput_fn(struct work_struct *work)
4130 {
4131 struct cgroup_subsys_state *css =
4132 container_of(work, struct cgroup_subsys_state, dput_work);
4133 struct dentry *dentry = css->cgroup->dentry;
4134 struct super_block *sb = dentry->d_sb;
4135
4136 atomic_inc(&sb->s_active);
4137 dput(dentry);
4138 deactivate_super(sb);
4139 }
4140
4141 static void init_cgroup_css(struct cgroup_subsys_state *css,
4142 struct cgroup_subsys *ss,
4143 struct cgroup *cgrp)
4144 {
4145 css->cgroup = cgrp;
4146 atomic_set(&css->refcnt, 1);
4147 css->flags = 0;
4148 css->id = NULL;
4149 if (cgrp == dummytop)
4150 css->flags |= CSS_ROOT;
4151 BUG_ON(cgrp->subsys[ss->subsys_id]);
4152 cgrp->subsys[ss->subsys_id] = css;
4153
4154 /*
4155 * css holds an extra ref to @cgrp->dentry which is put on the last
4156 * css_put(). dput() requires process context, which css_put() may
4157 * be called without. @css->dput_work will be used to invoke
4158 * dput() asynchronously from css_put().
4159 */
4160 INIT_WORK(&css->dput_work, css_dput_fn);
4161 }
4162
4163 /* invoke ->post_create() on a new CSS and mark it online if successful */
4164 static int online_css(struct cgroup_subsys *ss, struct cgroup *cgrp)
4165 {
4166 int ret = 0;
4167
4168 lockdep_assert_held(&cgroup_mutex);
4169
4170 if (ss->css_online)
4171 ret = ss->css_online(cgrp);
4172 if (!ret)
4173 cgrp->subsys[ss->subsys_id]->flags |= CSS_ONLINE;
4174 return ret;
4175 }
4176
4177 /* if the CSS is online, invoke ->pre_destory() on it and mark it offline */
4178 static void offline_css(struct cgroup_subsys *ss, struct cgroup *cgrp)
4179 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
4180 {
4181 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
4182
4183 lockdep_assert_held(&cgroup_mutex);
4184
4185 if (!(css->flags & CSS_ONLINE))
4186 return;
4187
4188 if (ss->css_offline)
4189 ss->css_offline(cgrp);
4190
4191 cgrp->subsys[ss->subsys_id]->flags &= ~CSS_ONLINE;
4192 }
4193
4194 /*
4195 * cgroup_create - create a cgroup
4196 * @parent: cgroup that will be parent of the new cgroup
4197 * @dentry: dentry of the new cgroup
4198 * @mode: mode to set on new inode
4199 *
4200 * Must be called with the mutex on the parent inode held
4201 */
4202 static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
4203 umode_t mode)
4204 {
4205 static atomic64_t serial_nr_cursor = ATOMIC64_INIT(0);
4206 struct cgroup *cgrp;
4207 struct cgroup_name *name;
4208 struct cgroupfs_root *root = parent->root;
4209 int err = 0;
4210 struct cgroup_subsys *ss;
4211 struct super_block *sb = root->sb;
4212
4213 /* allocate the cgroup and its ID, 0 is reserved for the root */
4214 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
4215 if (!cgrp)
4216 return -ENOMEM;
4217
4218 name = cgroup_alloc_name(dentry);
4219 if (!name)
4220 goto err_free_cgrp;
4221 rcu_assign_pointer(cgrp->name, name);
4222
4223 cgrp->id = ida_simple_get(&root->cgroup_ida, 1, 0, GFP_KERNEL);
4224 if (cgrp->id < 0)
4225 goto err_free_name;
4226
4227 /*
4228 * Only live parents can have children. Note that the liveliness
4229 * check isn't strictly necessary because cgroup_mkdir() and
4230 * cgroup_rmdir() are fully synchronized by i_mutex; however, do it
4231 * anyway so that locking is contained inside cgroup proper and we
4232 * don't get nasty surprises if we ever grow another caller.
4233 */
4234 if (!cgroup_lock_live_group(parent)) {
4235 err = -ENODEV;
4236 goto err_free_id;
4237 }
4238
4239 /* Grab a reference on the superblock so the hierarchy doesn't
4240 * get deleted on unmount if there are child cgroups. This
4241 * can be done outside cgroup_mutex, since the sb can't
4242 * disappear while someone has an open control file on the
4243 * fs */
4244 atomic_inc(&sb->s_active);
4245
4246 init_cgroup_housekeeping(cgrp);
4247
4248 dentry->d_fsdata = cgrp;
4249 cgrp->dentry = dentry;
4250
4251 cgrp->parent = parent;
4252 cgrp->root = parent->root;
4253
4254 if (notify_on_release(parent))
4255 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4256
4257 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4258 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
4259
4260 for_each_subsys(root, ss) {
4261 struct cgroup_subsys_state *css;
4262
4263 css = ss->css_alloc(cgrp);
4264 if (IS_ERR(css)) {
4265 err = PTR_ERR(css);
4266 goto err_free_all;
4267 }
4268 init_cgroup_css(css, ss, cgrp);
4269 if (ss->use_id) {
4270 err = alloc_css_id(ss, parent, cgrp);
4271 if (err)
4272 goto err_free_all;
4273 }
4274 }
4275
4276 /*
4277 * Create directory. cgroup_create_file() returns with the new
4278 * directory locked on success so that it can be populated without
4279 * dropping cgroup_mutex.
4280 */
4281 err = cgroup_create_file(dentry, S_IFDIR | mode, sb);
4282 if (err < 0)
4283 goto err_free_all;
4284 lockdep_assert_held(&dentry->d_inode->i_mutex);
4285
4286 /*
4287 * Assign a monotonically increasing serial number. With the list
4288 * appending below, it guarantees that sibling cgroups are always
4289 * sorted in the ascending serial number order on the parent's
4290 * ->children.
4291 */
4292 cgrp->serial_nr = atomic64_inc_return(&serial_nr_cursor);
4293
4294 /* allocation complete, commit to creation */
4295 list_add_tail(&cgrp->allcg_node, &root->allcg_list);
4296 list_add_tail_rcu(&cgrp->sibling, &cgrp->parent->children);
4297 root->number_of_cgroups++;
4298
4299 /* each css holds a ref to the cgroup's dentry */
4300 for_each_subsys(root, ss)
4301 dget(dentry);
4302
4303 /* hold a ref to the parent's dentry */
4304 dget(parent->dentry);
4305
4306 /* creation succeeded, notify subsystems */
4307 for_each_subsys(root, ss) {
4308 err = online_css(ss, cgrp);
4309 if (err)
4310 goto err_destroy;
4311
4312 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
4313 parent->parent) {
4314 pr_warning("cgroup: %s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4315 current->comm, current->pid, ss->name);
4316 if (!strcmp(ss->name, "memory"))
4317 pr_warning("cgroup: \"memory\" requires setting use_hierarchy to 1 on the root.\n");
4318 ss->warned_broken_hierarchy = true;
4319 }
4320 }
4321
4322 err = cgroup_populate_dir(cgrp, true, root->subsys_mask);
4323 if (err)
4324 goto err_destroy;
4325
4326 mutex_unlock(&cgroup_mutex);
4327 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
4328
4329 return 0;
4330
4331 err_free_all:
4332 for_each_subsys(root, ss) {
4333 if (cgrp->subsys[ss->subsys_id])
4334 ss->css_free(cgrp);
4335 }
4336 mutex_unlock(&cgroup_mutex);
4337 /* Release the reference count that we took on the superblock */
4338 deactivate_super(sb);
4339 err_free_id:
4340 ida_simple_remove(&root->cgroup_ida, cgrp->id);
4341 err_free_name:
4342 kfree(rcu_dereference_raw(cgrp->name));
4343 err_free_cgrp:
4344 kfree(cgrp);
4345 return err;
4346
4347 err_destroy:
4348 cgroup_destroy_locked(cgrp);
4349 mutex_unlock(&cgroup_mutex);
4350 mutex_unlock(&dentry->d_inode->i_mutex);
4351 return err;
4352 }
4353
4354 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
4355 {
4356 struct cgroup *c_parent = dentry->d_parent->d_fsdata;
4357
4358 /* the vfs holds inode->i_mutex already */
4359 return cgroup_create(c_parent, dentry, mode | S_IFDIR);
4360 }
4361
4362 static int cgroup_destroy_locked(struct cgroup *cgrp)
4363 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
4364 {
4365 struct dentry *d = cgrp->dentry;
4366 struct cgroup *parent = cgrp->parent;
4367 struct cgroup_event *event, *tmp;
4368 struct cgroup_subsys *ss;
4369
4370 lockdep_assert_held(&d->d_inode->i_mutex);
4371 lockdep_assert_held(&cgroup_mutex);
4372
4373 if (atomic_read(&cgrp->count) || !list_empty(&cgrp->children))
4374 return -EBUSY;
4375
4376 /*
4377 * Block new css_tryget() by deactivating refcnt and mark @cgrp
4378 * removed. This makes future css_tryget() and child creation
4379 * attempts fail thus maintaining the removal conditions verified
4380 * above.
4381 *
4382 * Note that CGRP_REMVOED clearing is depended upon by
4383 * cgroup_next_sibling() to resume iteration after dropping RCU
4384 * read lock. See cgroup_next_sibling() for details.
4385 */
4386 for_each_subsys(cgrp->root, ss) {
4387 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
4388
4389 WARN_ON(atomic_read(&css->refcnt) < 0);
4390 atomic_add(CSS_DEACT_BIAS, &css->refcnt);
4391 }
4392 set_bit(CGRP_REMOVED, &cgrp->flags);
4393
4394 /* tell subsystems to initate destruction */
4395 for_each_subsys(cgrp->root, ss)
4396 offline_css(ss, cgrp);
4397
4398 /*
4399 * Put all the base refs. Each css holds an extra reference to the
4400 * cgroup's dentry and cgroup removal proceeds regardless of css
4401 * refs. On the last put of each css, whenever that may be, the
4402 * extra dentry ref is put so that dentry destruction happens only
4403 * after all css's are released.
4404 */
4405 for_each_subsys(cgrp->root, ss)
4406 css_put(cgrp->subsys[ss->subsys_id]);
4407
4408 raw_spin_lock(&release_list_lock);
4409 if (!list_empty(&cgrp->release_list))
4410 list_del_init(&cgrp->release_list);
4411 raw_spin_unlock(&release_list_lock);
4412
4413 /* delete this cgroup from parent->children */
4414 list_del_rcu(&cgrp->sibling);
4415 list_del_init(&cgrp->allcg_node);
4416
4417 dget(d);
4418 cgroup_d_remove_dir(d);
4419 dput(d);
4420
4421 set_bit(CGRP_RELEASABLE, &parent->flags);
4422 check_for_release(parent);
4423
4424 /*
4425 * Unregister events and notify userspace.
4426 * Notify userspace about cgroup removing only after rmdir of cgroup
4427 * directory to avoid race between userspace and kernelspace.
4428 */
4429 spin_lock(&cgrp->event_list_lock);
4430 list_for_each_entry_safe(event, tmp, &cgrp->event_list, list) {
4431 list_del_init(&event->list);
4432 schedule_work(&event->remove);
4433 }
4434 spin_unlock(&cgrp->event_list_lock);
4435
4436 return 0;
4437 }
4438
4439 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
4440 {
4441 int ret;
4442
4443 mutex_lock(&cgroup_mutex);
4444 ret = cgroup_destroy_locked(dentry->d_fsdata);
4445 mutex_unlock(&cgroup_mutex);
4446
4447 return ret;
4448 }
4449
4450 static void __init_or_module cgroup_init_cftsets(struct cgroup_subsys *ss)
4451 {
4452 INIT_LIST_HEAD(&ss->cftsets);
4453
4454 /*
4455 * base_cftset is embedded in subsys itself, no need to worry about
4456 * deregistration.
4457 */
4458 if (ss->base_cftypes) {
4459 ss->base_cftset.cfts = ss->base_cftypes;
4460 list_add_tail(&ss->base_cftset.node, &ss->cftsets);
4461 }
4462 }
4463
4464 static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
4465 {
4466 struct cgroup_subsys_state *css;
4467
4468 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
4469
4470 mutex_lock(&cgroup_mutex);
4471
4472 /* init base cftset */
4473 cgroup_init_cftsets(ss);
4474
4475 /* Create the top cgroup state for this subsystem */
4476 list_add(&ss->sibling, &rootnode.subsys_list);
4477 ss->root = &rootnode;
4478 css = ss->css_alloc(dummytop);
4479 /* We don't handle early failures gracefully */
4480 BUG_ON(IS_ERR(css));
4481 init_cgroup_css(css, ss, dummytop);
4482
4483 /* Update the init_css_set to contain a subsys
4484 * pointer to this state - since the subsystem is
4485 * newly registered, all tasks and hence the
4486 * init_css_set is in the subsystem's top cgroup. */
4487 init_css_set.subsys[ss->subsys_id] = css;
4488
4489 need_forkexit_callback |= ss->fork || ss->exit;
4490
4491 /* At system boot, before all subsystems have been
4492 * registered, no tasks have been forked, so we don't
4493 * need to invoke fork callbacks here. */
4494 BUG_ON(!list_empty(&init_task.tasks));
4495
4496 BUG_ON(online_css(ss, dummytop));
4497
4498 mutex_unlock(&cgroup_mutex);
4499
4500 /* this function shouldn't be used with modular subsystems, since they
4501 * need to register a subsys_id, among other things */
4502 BUG_ON(ss->module);
4503 }
4504
4505 /**
4506 * cgroup_load_subsys: load and register a modular subsystem at runtime
4507 * @ss: the subsystem to load
4508 *
4509 * This function should be called in a modular subsystem's initcall. If the
4510 * subsystem is built as a module, it will be assigned a new subsys_id and set
4511 * up for use. If the subsystem is built-in anyway, work is delegated to the
4512 * simpler cgroup_init_subsys.
4513 */
4514 int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss)
4515 {
4516 struct cgroup_subsys_state *css;
4517 int i, ret;
4518 struct hlist_node *tmp;
4519 struct css_set *cg;
4520 unsigned long key;
4521
4522 /* check name and function validity */
4523 if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN ||
4524 ss->css_alloc == NULL || ss->css_free == NULL)
4525 return -EINVAL;
4526
4527 /*
4528 * we don't support callbacks in modular subsystems. this check is
4529 * before the ss->module check for consistency; a subsystem that could
4530 * be a module should still have no callbacks even if the user isn't
4531 * compiling it as one.
4532 */
4533 if (ss->fork || ss->exit)
4534 return -EINVAL;
4535
4536 /*
4537 * an optionally modular subsystem is built-in: we want to do nothing,
4538 * since cgroup_init_subsys will have already taken care of it.
4539 */
4540 if (ss->module == NULL) {
4541 /* a sanity check */
4542 BUG_ON(subsys[ss->subsys_id] != ss);
4543 return 0;
4544 }
4545
4546 /* init base cftset */
4547 cgroup_init_cftsets(ss);
4548
4549 mutex_lock(&cgroup_mutex);
4550 subsys[ss->subsys_id] = ss;
4551
4552 /*
4553 * no ss->css_alloc seems to need anything important in the ss
4554 * struct, so this can happen first (i.e. before the rootnode
4555 * attachment).
4556 */
4557 css = ss->css_alloc(dummytop);
4558 if (IS_ERR(css)) {
4559 /* failure case - need to deassign the subsys[] slot. */
4560 subsys[ss->subsys_id] = NULL;
4561 mutex_unlock(&cgroup_mutex);
4562 return PTR_ERR(css);
4563 }
4564
4565 list_add(&ss->sibling, &rootnode.subsys_list);
4566 ss->root = &rootnode;
4567
4568 /* our new subsystem will be attached to the dummy hierarchy. */
4569 init_cgroup_css(css, ss, dummytop);
4570 /* init_idr must be after init_cgroup_css because it sets css->id. */
4571 if (ss->use_id) {
4572 ret = cgroup_init_idr(ss, css);
4573 if (ret)
4574 goto err_unload;
4575 }
4576
4577 /*
4578 * Now we need to entangle the css into the existing css_sets. unlike
4579 * in cgroup_init_subsys, there are now multiple css_sets, so each one
4580 * will need a new pointer to it; done by iterating the css_set_table.
4581 * furthermore, modifying the existing css_sets will corrupt the hash
4582 * table state, so each changed css_set will need its hash recomputed.
4583 * this is all done under the css_set_lock.
4584 */
4585 write_lock(&css_set_lock);
4586 hash_for_each_safe(css_set_table, i, tmp, cg, hlist) {
4587 /* skip entries that we already rehashed */
4588 if (cg->subsys[ss->subsys_id])
4589 continue;
4590 /* remove existing entry */
4591 hash_del(&cg->hlist);
4592 /* set new value */
4593 cg->subsys[ss->subsys_id] = css;
4594 /* recompute hash and restore entry */
4595 key = css_set_hash(cg->subsys);
4596 hash_add(css_set_table, &cg->hlist, key);
4597 }
4598 write_unlock(&css_set_lock);
4599
4600 ret = online_css(ss, dummytop);
4601 if (ret)
4602 goto err_unload;
4603
4604 /* success! */
4605 mutex_unlock(&cgroup_mutex);
4606 return 0;
4607
4608 err_unload:
4609 mutex_unlock(&cgroup_mutex);
4610 /* @ss can't be mounted here as try_module_get() would fail */
4611 cgroup_unload_subsys(ss);
4612 return ret;
4613 }
4614 EXPORT_SYMBOL_GPL(cgroup_load_subsys);
4615
4616 /**
4617 * cgroup_unload_subsys: unload a modular subsystem
4618 * @ss: the subsystem to unload
4619 *
4620 * This function should be called in a modular subsystem's exitcall. When this
4621 * function is invoked, the refcount on the subsystem's module will be 0, so
4622 * the subsystem will not be attached to any hierarchy.
4623 */
4624 void cgroup_unload_subsys(struct cgroup_subsys *ss)
4625 {
4626 struct cg_cgroup_link *link;
4627
4628 BUG_ON(ss->module == NULL);
4629
4630 /*
4631 * we shouldn't be called if the subsystem is in use, and the use of
4632 * try_module_get in parse_cgroupfs_options should ensure that it
4633 * doesn't start being used while we're killing it off.
4634 */
4635 BUG_ON(ss->root != &rootnode);
4636
4637 mutex_lock(&cgroup_mutex);
4638
4639 offline_css(ss, dummytop);
4640
4641 if (ss->use_id)
4642 idr_destroy(&ss->idr);
4643
4644 /* deassign the subsys_id */
4645 subsys[ss->subsys_id] = NULL;
4646
4647 /* remove subsystem from rootnode's list of subsystems */
4648 list_del_init(&ss->sibling);
4649
4650 /*
4651 * disentangle the css from all css_sets attached to the dummytop. as
4652 * in loading, we need to pay our respects to the hashtable gods.
4653 */
4654 write_lock(&css_set_lock);
4655 list_for_each_entry(link, &dummytop->css_sets, cgrp_link_list) {
4656 struct css_set *cg = link->cg;
4657 unsigned long key;
4658
4659 hash_del(&cg->hlist);
4660 cg->subsys[ss->subsys_id] = NULL;
4661 key = css_set_hash(cg->subsys);
4662 hash_add(css_set_table, &cg->hlist, key);
4663 }
4664 write_unlock(&css_set_lock);
4665
4666 /*
4667 * remove subsystem's css from the dummytop and free it - need to
4668 * free before marking as null because ss->css_free needs the
4669 * cgrp->subsys pointer to find their state. note that this also
4670 * takes care of freeing the css_id.
4671 */
4672 ss->css_free(dummytop);
4673 dummytop->subsys[ss->subsys_id] = NULL;
4674
4675 mutex_unlock(&cgroup_mutex);
4676 }
4677 EXPORT_SYMBOL_GPL(cgroup_unload_subsys);
4678
4679 /**
4680 * cgroup_init_early - cgroup initialization at system boot
4681 *
4682 * Initialize cgroups at system boot, and initialize any
4683 * subsystems that request early init.
4684 */
4685 int __init cgroup_init_early(void)
4686 {
4687 int i;
4688 atomic_set(&init_css_set.refcount, 1);
4689 INIT_LIST_HEAD(&init_css_set.cg_links);
4690 INIT_LIST_HEAD(&init_css_set.tasks);
4691 INIT_HLIST_NODE(&init_css_set.hlist);
4692 css_set_count = 1;
4693 init_cgroup_root(&rootnode);
4694 root_count = 1;
4695 init_task.cgroups = &init_css_set;
4696
4697 init_css_set_link.cg = &init_css_set;
4698 init_css_set_link.cgrp = dummytop;
4699 list_add(&init_css_set_link.cgrp_link_list,
4700 &rootnode.top_cgroup.css_sets);
4701 list_add(&init_css_set_link.cg_link_list,
4702 &init_css_set.cg_links);
4703
4704 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4705 struct cgroup_subsys *ss = subsys[i];
4706
4707 /* at bootup time, we don't worry about modular subsystems */
4708 if (!ss || ss->module)
4709 continue;
4710
4711 BUG_ON(!ss->name);
4712 BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
4713 BUG_ON(!ss->css_alloc);
4714 BUG_ON(!ss->css_free);
4715 if (ss->subsys_id != i) {
4716 printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
4717 ss->name, ss->subsys_id);
4718 BUG();
4719 }
4720
4721 if (ss->early_init)
4722 cgroup_init_subsys(ss);
4723 }
4724 return 0;
4725 }
4726
4727 /**
4728 * cgroup_init - cgroup initialization
4729 *
4730 * Register cgroup filesystem and /proc file, and initialize
4731 * any subsystems that didn't request early init.
4732 */
4733 int __init cgroup_init(void)
4734 {
4735 int err;
4736 int i;
4737 unsigned long key;
4738
4739 err = bdi_init(&cgroup_backing_dev_info);
4740 if (err)
4741 return err;
4742
4743 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4744 struct cgroup_subsys *ss = subsys[i];
4745
4746 /* at bootup time, we don't worry about modular subsystems */
4747 if (!ss || ss->module)
4748 continue;
4749 if (!ss->early_init)
4750 cgroup_init_subsys(ss);
4751 if (ss->use_id)
4752 cgroup_init_idr(ss, init_css_set.subsys[ss->subsys_id]);
4753 }
4754
4755 /* Add init_css_set to the hash table */
4756 key = css_set_hash(init_css_set.subsys);
4757 hash_add(css_set_table, &init_css_set.hlist, key);
4758
4759 /* allocate id for the dummy hierarchy */
4760 mutex_lock(&cgroup_mutex);
4761 mutex_lock(&cgroup_root_mutex);
4762
4763 BUG_ON(cgroup_init_root_id(&rootnode));
4764
4765 mutex_unlock(&cgroup_root_mutex);
4766 mutex_unlock(&cgroup_mutex);
4767
4768 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
4769 if (!cgroup_kobj) {
4770 err = -ENOMEM;
4771 goto out;
4772 }
4773
4774 err = register_filesystem(&cgroup_fs_type);
4775 if (err < 0) {
4776 kobject_put(cgroup_kobj);
4777 goto out;
4778 }
4779
4780 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
4781
4782 out:
4783 if (err)
4784 bdi_destroy(&cgroup_backing_dev_info);
4785
4786 return err;
4787 }
4788
4789 /*
4790 * proc_cgroup_show()
4791 * - Print task's cgroup paths into seq_file, one line for each hierarchy
4792 * - Used for /proc/<pid>/cgroup.
4793 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
4794 * doesn't really matter if tsk->cgroup changes after we read it,
4795 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
4796 * anyway. No need to check that tsk->cgroup != NULL, thanks to
4797 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
4798 * cgroup to top_cgroup.
4799 */
4800
4801 /* TODO: Use a proper seq_file iterator */
4802 int proc_cgroup_show(struct seq_file *m, void *v)
4803 {
4804 struct pid *pid;
4805 struct task_struct *tsk;
4806 char *buf;
4807 int retval;
4808 struct cgroupfs_root *root;
4809
4810 retval = -ENOMEM;
4811 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4812 if (!buf)
4813 goto out;
4814
4815 retval = -ESRCH;
4816 pid = m->private;
4817 tsk = get_pid_task(pid, PIDTYPE_PID);
4818 if (!tsk)
4819 goto out_free;
4820
4821 retval = 0;
4822
4823 mutex_lock(&cgroup_mutex);
4824
4825 for_each_active_root(root) {
4826 struct cgroup_subsys *ss;
4827 struct cgroup *cgrp;
4828 int count = 0;
4829
4830 seq_printf(m, "%d:", root->hierarchy_id);
4831 for_each_subsys(root, ss)
4832 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
4833 if (strlen(root->name))
4834 seq_printf(m, "%sname=%s", count ? "," : "",
4835 root->name);
4836 seq_putc(m, ':');
4837 cgrp = task_cgroup_from_root(tsk, root);
4838 retval = cgroup_path(cgrp, buf, PAGE_SIZE);
4839 if (retval < 0)
4840 goto out_unlock;
4841 seq_puts(m, buf);
4842 seq_putc(m, '\n');
4843 }
4844
4845 out_unlock:
4846 mutex_unlock(&cgroup_mutex);
4847 put_task_struct(tsk);
4848 out_free:
4849 kfree(buf);
4850 out:
4851 return retval;
4852 }
4853
4854 /* Display information about each subsystem and each hierarchy */
4855 static int proc_cgroupstats_show(struct seq_file *m, void *v)
4856 {
4857 int i;
4858
4859 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
4860 /*
4861 * ideally we don't want subsystems moving around while we do this.
4862 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
4863 * subsys/hierarchy state.
4864 */
4865 mutex_lock(&cgroup_mutex);
4866 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4867 struct cgroup_subsys *ss = subsys[i];
4868 if (ss == NULL)
4869 continue;
4870 seq_printf(m, "%s\t%d\t%d\t%d\n",
4871 ss->name, ss->root->hierarchy_id,
4872 ss->root->number_of_cgroups, !ss->disabled);
4873 }
4874 mutex_unlock(&cgroup_mutex);
4875 return 0;
4876 }
4877
4878 static int cgroupstats_open(struct inode *inode, struct file *file)
4879 {
4880 return single_open(file, proc_cgroupstats_show, NULL);
4881 }
4882
4883 static const struct file_operations proc_cgroupstats_operations = {
4884 .open = cgroupstats_open,
4885 .read = seq_read,
4886 .llseek = seq_lseek,
4887 .release = single_release,
4888 };
4889
4890 /**
4891 * cgroup_fork - attach newly forked task to its parents cgroup.
4892 * @child: pointer to task_struct of forking parent process.
4893 *
4894 * Description: A task inherits its parent's cgroup at fork().
4895 *
4896 * A pointer to the shared css_set was automatically copied in
4897 * fork.c by dup_task_struct(). However, we ignore that copy, since
4898 * it was not made under the protection of RCU or cgroup_mutex, so
4899 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
4900 * have already changed current->cgroups, allowing the previously
4901 * referenced cgroup group to be removed and freed.
4902 *
4903 * At the point that cgroup_fork() is called, 'current' is the parent
4904 * task, and the passed argument 'child' points to the child task.
4905 */
4906 void cgroup_fork(struct task_struct *child)
4907 {
4908 task_lock(current);
4909 child->cgroups = current->cgroups;
4910 get_css_set(child->cgroups);
4911 task_unlock(current);
4912 INIT_LIST_HEAD(&child->cg_list);
4913 }
4914
4915 /**
4916 * cgroup_post_fork - called on a new task after adding it to the task list
4917 * @child: the task in question
4918 *
4919 * Adds the task to the list running through its css_set if necessary and
4920 * call the subsystem fork() callbacks. Has to be after the task is
4921 * visible on the task list in case we race with the first call to
4922 * cgroup_iter_start() - to guarantee that the new task ends up on its
4923 * list.
4924 */
4925 void cgroup_post_fork(struct task_struct *child)
4926 {
4927 int i;
4928
4929 /*
4930 * use_task_css_set_links is set to 1 before we walk the tasklist
4931 * under the tasklist_lock and we read it here after we added the child
4932 * to the tasklist under the tasklist_lock as well. If the child wasn't
4933 * yet in the tasklist when we walked through it from
4934 * cgroup_enable_task_cg_lists(), then use_task_css_set_links value
4935 * should be visible now due to the paired locking and barriers implied
4936 * by LOCK/UNLOCK: it is written before the tasklist_lock unlock
4937 * in cgroup_enable_task_cg_lists() and read here after the tasklist_lock
4938 * lock on fork.
4939 */
4940 if (use_task_css_set_links) {
4941 write_lock(&css_set_lock);
4942 task_lock(child);
4943 if (list_empty(&child->cg_list))
4944 list_add(&child->cg_list, &child->cgroups->tasks);
4945 task_unlock(child);
4946 write_unlock(&css_set_lock);
4947 }
4948
4949 /*
4950 * Call ss->fork(). This must happen after @child is linked on
4951 * css_set; otherwise, @child might change state between ->fork()
4952 * and addition to css_set.
4953 */
4954 if (need_forkexit_callback) {
4955 /*
4956 * fork/exit callbacks are supported only for builtin
4957 * subsystems, and the builtin section of the subsys
4958 * array is immutable, so we don't need to lock the
4959 * subsys array here. On the other hand, modular section
4960 * of the array can be freed at module unload, so we
4961 * can't touch that.
4962 */
4963 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4964 struct cgroup_subsys *ss = subsys[i];
4965
4966 if (ss->fork)
4967 ss->fork(child);
4968 }
4969 }
4970 }
4971
4972 /**
4973 * cgroup_exit - detach cgroup from exiting task
4974 * @tsk: pointer to task_struct of exiting process
4975 * @run_callback: run exit callbacks?
4976 *
4977 * Description: Detach cgroup from @tsk and release it.
4978 *
4979 * Note that cgroups marked notify_on_release force every task in
4980 * them to take the global cgroup_mutex mutex when exiting.
4981 * This could impact scaling on very large systems. Be reluctant to
4982 * use notify_on_release cgroups where very high task exit scaling
4983 * is required on large systems.
4984 *
4985 * the_top_cgroup_hack:
4986 *
4987 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
4988 *
4989 * We call cgroup_exit() while the task is still competent to
4990 * handle notify_on_release(), then leave the task attached to the
4991 * root cgroup in each hierarchy for the remainder of its exit.
4992 *
4993 * To do this properly, we would increment the reference count on
4994 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
4995 * code we would add a second cgroup function call, to drop that
4996 * reference. This would just create an unnecessary hot spot on
4997 * the top_cgroup reference count, to no avail.
4998 *
4999 * Normally, holding a reference to a cgroup without bumping its
5000 * count is unsafe. The cgroup could go away, or someone could
5001 * attach us to a different cgroup, decrementing the count on
5002 * the first cgroup that we never incremented. But in this case,
5003 * top_cgroup isn't going away, and either task has PF_EXITING set,
5004 * which wards off any cgroup_attach_task() attempts, or task is a failed
5005 * fork, never visible to cgroup_attach_task.
5006 */
5007 void cgroup_exit(struct task_struct *tsk, int run_callbacks)
5008 {
5009 struct css_set *cg;
5010 int i;
5011
5012 /*
5013 * Unlink from the css_set task list if necessary.
5014 * Optimistically check cg_list before taking
5015 * css_set_lock
5016 */
5017 if (!list_empty(&tsk->cg_list)) {
5018 write_lock(&css_set_lock);
5019 if (!list_empty(&tsk->cg_list))
5020 list_del_init(&tsk->cg_list);
5021 write_unlock(&css_set_lock);
5022 }
5023
5024 /* Reassign the task to the init_css_set. */
5025 task_lock(tsk);
5026 cg = tsk->cgroups;
5027 tsk->cgroups = &init_css_set;
5028
5029 if (run_callbacks && need_forkexit_callback) {
5030 /*
5031 * fork/exit callbacks are supported only for builtin
5032 * subsystems, see cgroup_post_fork() for details.
5033 */
5034 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
5035 struct cgroup_subsys *ss = subsys[i];
5036
5037 if (ss->exit) {
5038 struct cgroup *old_cgrp =
5039 rcu_dereference_raw(cg->subsys[i])->cgroup;
5040 struct cgroup *cgrp = task_cgroup(tsk, i);
5041 ss->exit(cgrp, old_cgrp, tsk);
5042 }
5043 }
5044 }
5045 task_unlock(tsk);
5046
5047 put_css_set_taskexit(cg);
5048 }
5049
5050 static void check_for_release(struct cgroup *cgrp)
5051 {
5052 /* All of these checks rely on RCU to keep the cgroup
5053 * structure alive */
5054 if (cgroup_is_releasable(cgrp) &&
5055 !atomic_read(&cgrp->count) && list_empty(&cgrp->children)) {
5056 /*
5057 * Control Group is currently removeable. If it's not
5058 * already queued for a userspace notification, queue
5059 * it now
5060 */
5061 int need_schedule_work = 0;
5062
5063 raw_spin_lock(&release_list_lock);
5064 if (!cgroup_is_removed(cgrp) &&
5065 list_empty(&cgrp->release_list)) {
5066 list_add(&cgrp->release_list, &release_list);
5067 need_schedule_work = 1;
5068 }
5069 raw_spin_unlock(&release_list_lock);
5070 if (need_schedule_work)
5071 schedule_work(&release_agent_work);
5072 }
5073 }
5074
5075 /* Caller must verify that the css is not for root cgroup */
5076 bool __css_tryget(struct cgroup_subsys_state *css)
5077 {
5078 while (true) {
5079 int t, v;
5080
5081 v = css_refcnt(css);
5082 t = atomic_cmpxchg(&css->refcnt, v, v + 1);
5083 if (likely(t == v))
5084 return true;
5085 else if (t < 0)
5086 return false;
5087 cpu_relax();
5088 }
5089 }
5090 EXPORT_SYMBOL_GPL(__css_tryget);
5091
5092 /* Caller must verify that the css is not for root cgroup */
5093 void __css_put(struct cgroup_subsys_state *css)
5094 {
5095 int v;
5096
5097 v = css_unbias_refcnt(atomic_dec_return(&css->refcnt));
5098 if (v == 0)
5099 schedule_work(&css->dput_work);
5100 }
5101 EXPORT_SYMBOL_GPL(__css_put);
5102
5103 /*
5104 * Notify userspace when a cgroup is released, by running the
5105 * configured release agent with the name of the cgroup (path
5106 * relative to the root of cgroup file system) as the argument.
5107 *
5108 * Most likely, this user command will try to rmdir this cgroup.
5109 *
5110 * This races with the possibility that some other task will be
5111 * attached to this cgroup before it is removed, or that some other
5112 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5113 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5114 * unused, and this cgroup will be reprieved from its death sentence,
5115 * to continue to serve a useful existence. Next time it's released,
5116 * we will get notified again, if it still has 'notify_on_release' set.
5117 *
5118 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5119 * means only wait until the task is successfully execve()'d. The
5120 * separate release agent task is forked by call_usermodehelper(),
5121 * then control in this thread returns here, without waiting for the
5122 * release agent task. We don't bother to wait because the caller of
5123 * this routine has no use for the exit status of the release agent
5124 * task, so no sense holding our caller up for that.
5125 */
5126 static void cgroup_release_agent(struct work_struct *work)
5127 {
5128 BUG_ON(work != &release_agent_work);
5129 mutex_lock(&cgroup_mutex);
5130 raw_spin_lock(&release_list_lock);
5131 while (!list_empty(&release_list)) {
5132 char *argv[3], *envp[3];
5133 int i;
5134 char *pathbuf = NULL, *agentbuf = NULL;
5135 struct cgroup *cgrp = list_entry(release_list.next,
5136 struct cgroup,
5137 release_list);
5138 list_del_init(&cgrp->release_list);
5139 raw_spin_unlock(&release_list_lock);
5140 pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
5141 if (!pathbuf)
5142 goto continue_free;
5143 if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
5144 goto continue_free;
5145 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5146 if (!agentbuf)
5147 goto continue_free;
5148
5149 i = 0;
5150 argv[i++] = agentbuf;
5151 argv[i++] = pathbuf;
5152 argv[i] = NULL;
5153
5154 i = 0;
5155 /* minimal command environment */
5156 envp[i++] = "HOME=/";
5157 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5158 envp[i] = NULL;
5159
5160 /* Drop the lock while we invoke the usermode helper,
5161 * since the exec could involve hitting disk and hence
5162 * be a slow process */
5163 mutex_unlock(&cgroup_mutex);
5164 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
5165 mutex_lock(&cgroup_mutex);
5166 continue_free:
5167 kfree(pathbuf);
5168 kfree(agentbuf);
5169 raw_spin_lock(&release_list_lock);
5170 }
5171 raw_spin_unlock(&release_list_lock);
5172 mutex_unlock(&cgroup_mutex);
5173 }
5174
5175 static int __init cgroup_disable(char *str)
5176 {
5177 int i;
5178 char *token;
5179
5180 while ((token = strsep(&str, ",")) != NULL) {
5181 if (!*token)
5182 continue;
5183 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
5184 struct cgroup_subsys *ss = subsys[i];
5185
5186 /*
5187 * cgroup_disable, being at boot time, can't
5188 * know about module subsystems, so we don't
5189 * worry about them.
5190 */
5191 if (!ss || ss->module)
5192 continue;
5193
5194 if (!strcmp(token, ss->name)) {
5195 ss->disabled = 1;
5196 printk(KERN_INFO "Disabling %s control group"
5197 " subsystem\n", ss->name);
5198 break;
5199 }
5200 }
5201 }
5202 return 1;
5203 }
5204 __setup("cgroup_disable=", cgroup_disable);
5205
5206 /*
5207 * Functons for CSS ID.
5208 */
5209
5210 /*
5211 *To get ID other than 0, this should be called when !cgroup_is_removed().
5212 */
5213 unsigned short css_id(struct cgroup_subsys_state *css)
5214 {
5215 struct css_id *cssid;
5216
5217 /*
5218 * This css_id() can return correct value when somone has refcnt
5219 * on this or this is under rcu_read_lock(). Once css->id is allocated,
5220 * it's unchanged until freed.
5221 */
5222 cssid = rcu_dereference_check(css->id, css_refcnt(css));
5223
5224 if (cssid)
5225 return cssid->id;
5226 return 0;
5227 }
5228 EXPORT_SYMBOL_GPL(css_id);
5229
5230 unsigned short css_depth(struct cgroup_subsys_state *css)
5231 {
5232 struct css_id *cssid;
5233
5234 cssid = rcu_dereference_check(css->id, css_refcnt(css));
5235
5236 if (cssid)
5237 return cssid->depth;
5238 return 0;
5239 }
5240 EXPORT_SYMBOL_GPL(css_depth);
5241
5242 /**
5243 * css_is_ancestor - test "root" css is an ancestor of "child"
5244 * @child: the css to be tested.
5245 * @root: the css supporsed to be an ancestor of the child.
5246 *
5247 * Returns true if "root" is an ancestor of "child" in its hierarchy. Because
5248 * this function reads css->id, the caller must hold rcu_read_lock().
5249 * But, considering usual usage, the csses should be valid objects after test.
5250 * Assuming that the caller will do some action to the child if this returns
5251 * returns true, the caller must take "child";s reference count.
5252 * If "child" is valid object and this returns true, "root" is valid, too.
5253 */
5254
5255 bool css_is_ancestor(struct cgroup_subsys_state *child,
5256 const struct cgroup_subsys_state *root)
5257 {
5258 struct css_id *child_id;
5259 struct css_id *root_id;
5260
5261 child_id = rcu_dereference(child->id);
5262 if (!child_id)
5263 return false;
5264 root_id = rcu_dereference(root->id);
5265 if (!root_id)
5266 return false;
5267 if (child_id->depth < root_id->depth)
5268 return false;
5269 if (child_id->stack[root_id->depth] != root_id->id)
5270 return false;
5271 return true;
5272 }
5273
5274 void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
5275 {
5276 struct css_id *id = css->id;
5277 /* When this is called before css_id initialization, id can be NULL */
5278 if (!id)
5279 return;
5280
5281 BUG_ON(!ss->use_id);
5282
5283 rcu_assign_pointer(id->css, NULL);
5284 rcu_assign_pointer(css->id, NULL);
5285 spin_lock(&ss->id_lock);
5286 idr_remove(&ss->idr, id->id);
5287 spin_unlock(&ss->id_lock);
5288 kfree_rcu(id, rcu_head);
5289 }
5290 EXPORT_SYMBOL_GPL(free_css_id);
5291
5292 /*
5293 * This is called by init or create(). Then, calls to this function are
5294 * always serialized (By cgroup_mutex() at create()).
5295 */
5296
5297 static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
5298 {
5299 struct css_id *newid;
5300 int ret, size;
5301
5302 BUG_ON(!ss->use_id);
5303
5304 size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
5305 newid = kzalloc(size, GFP_KERNEL);
5306 if (!newid)
5307 return ERR_PTR(-ENOMEM);
5308
5309 idr_preload(GFP_KERNEL);
5310 spin_lock(&ss->id_lock);
5311 /* Don't use 0. allocates an ID of 1-65535 */
5312 ret = idr_alloc(&ss->idr, newid, 1, CSS_ID_MAX + 1, GFP_NOWAIT);
5313 spin_unlock(&ss->id_lock);
5314 idr_preload_end();
5315
5316 /* Returns error when there are no free spaces for new ID.*/
5317 if (ret < 0)
5318 goto err_out;
5319
5320 newid->id = ret;
5321 newid->depth = depth;
5322 return newid;
5323 err_out:
5324 kfree(newid);
5325 return ERR_PTR(ret);
5326
5327 }
5328
5329 static int __init_or_module cgroup_init_idr(struct cgroup_subsys *ss,
5330 struct cgroup_subsys_state *rootcss)
5331 {
5332 struct css_id *newid;
5333
5334 spin_lock_init(&ss->id_lock);
5335 idr_init(&ss->idr);
5336
5337 newid = get_new_cssid(ss, 0);
5338 if (IS_ERR(newid))
5339 return PTR_ERR(newid);
5340
5341 newid->stack[0] = newid->id;
5342 newid->css = rootcss;
5343 rootcss->id = newid;
5344 return 0;
5345 }
5346
5347 static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
5348 struct cgroup *child)
5349 {
5350 int subsys_id, i, depth = 0;
5351 struct cgroup_subsys_state *parent_css, *child_css;
5352 struct css_id *child_id, *parent_id;
5353
5354 subsys_id = ss->subsys_id;
5355 parent_css = parent->subsys[subsys_id];
5356 child_css = child->subsys[subsys_id];
5357 parent_id = parent_css->id;
5358 depth = parent_id->depth + 1;
5359
5360 child_id = get_new_cssid(ss, depth);
5361 if (IS_ERR(child_id))
5362 return PTR_ERR(child_id);
5363
5364 for (i = 0; i < depth; i++)
5365 child_id->stack[i] = parent_id->stack[i];
5366 child_id->stack[depth] = child_id->id;
5367 /*
5368 * child_id->css pointer will be set after this cgroup is available
5369 * see cgroup_populate_dir()
5370 */
5371 rcu_assign_pointer(child_css->id, child_id);
5372
5373 return 0;
5374 }
5375
5376 /**
5377 * css_lookup - lookup css by id
5378 * @ss: cgroup subsys to be looked into.
5379 * @id: the id
5380 *
5381 * Returns pointer to cgroup_subsys_state if there is valid one with id.
5382 * NULL if not. Should be called under rcu_read_lock()
5383 */
5384 struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
5385 {
5386 struct css_id *cssid = NULL;
5387
5388 BUG_ON(!ss->use_id);
5389 cssid = idr_find(&ss->idr, id);
5390
5391 if (unlikely(!cssid))
5392 return NULL;
5393
5394 return rcu_dereference(cssid->css);
5395 }
5396 EXPORT_SYMBOL_GPL(css_lookup);
5397
5398 /*
5399 * get corresponding css from file open on cgroupfs directory
5400 */
5401 struct cgroup_subsys_state *cgroup_css_from_dir(struct file *f, int id)
5402 {
5403 struct cgroup *cgrp;
5404 struct inode *inode;
5405 struct cgroup_subsys_state *css;
5406
5407 inode = file_inode(f);
5408 /* check in cgroup filesystem dir */
5409 if (inode->i_op != &cgroup_dir_inode_operations)
5410 return ERR_PTR(-EBADF);
5411
5412 if (id < 0 || id >= CGROUP_SUBSYS_COUNT)
5413 return ERR_PTR(-EINVAL);
5414
5415 /* get cgroup */
5416 cgrp = __d_cgrp(f->f_dentry);
5417 css = cgrp->subsys[id];
5418 return css ? css : ERR_PTR(-ENOENT);
5419 }
5420
5421 #ifdef CONFIG_CGROUP_DEBUG
5422 static struct cgroup_subsys_state *debug_css_alloc(struct cgroup *cont)
5423 {
5424 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5425
5426 if (!css)
5427 return ERR_PTR(-ENOMEM);
5428
5429 return css;
5430 }
5431
5432 static void debug_css_free(struct cgroup *cont)
5433 {
5434 kfree(cont->subsys[debug_subsys_id]);
5435 }
5436
5437 static u64 cgroup_refcount_read(struct cgroup *cont, struct cftype *cft)
5438 {
5439 return atomic_read(&cont->count);
5440 }
5441
5442 static u64 debug_taskcount_read(struct cgroup *cont, struct cftype *cft)
5443 {
5444 return cgroup_task_count(cont);
5445 }
5446
5447 static u64 current_css_set_read(struct cgroup *cont, struct cftype *cft)
5448 {
5449 return (u64)(unsigned long)current->cgroups;
5450 }
5451
5452 static u64 current_css_set_refcount_read(struct cgroup *cont,
5453 struct cftype *cft)
5454 {
5455 u64 count;
5456
5457 rcu_read_lock();
5458 count = atomic_read(&current->cgroups->refcount);
5459 rcu_read_unlock();
5460 return count;
5461 }
5462
5463 static int current_css_set_cg_links_read(struct cgroup *cont,
5464 struct cftype *cft,
5465 struct seq_file *seq)
5466 {
5467 struct cg_cgroup_link *link;
5468 struct css_set *cg;
5469
5470 read_lock(&css_set_lock);
5471 rcu_read_lock();
5472 cg = rcu_dereference(current->cgroups);
5473 list_for_each_entry(link, &cg->cg_links, cg_link_list) {
5474 struct cgroup *c = link->cgrp;
5475 const char *name;
5476
5477 if (c->dentry)
5478 name = c->dentry->d_name.name;
5479 else
5480 name = "?";
5481 seq_printf(seq, "Root %d group %s\n",
5482 c->root->hierarchy_id, name);
5483 }
5484 rcu_read_unlock();
5485 read_unlock(&css_set_lock);
5486 return 0;
5487 }
5488
5489 #define MAX_TASKS_SHOWN_PER_CSS 25
5490 static int cgroup_css_links_read(struct cgroup *cont,
5491 struct cftype *cft,
5492 struct seq_file *seq)
5493 {
5494 struct cg_cgroup_link *link;
5495
5496 read_lock(&css_set_lock);
5497 list_for_each_entry(link, &cont->css_sets, cgrp_link_list) {
5498 struct css_set *cg = link->cg;
5499 struct task_struct *task;
5500 int count = 0;
5501 seq_printf(seq, "css_set %p\n", cg);
5502 list_for_each_entry(task, &cg->tasks, cg_list) {
5503 if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
5504 seq_puts(seq, " ...\n");
5505 break;
5506 } else {
5507 seq_printf(seq, " task %d\n",
5508 task_pid_vnr(task));
5509 }
5510 }
5511 }
5512 read_unlock(&css_set_lock);
5513 return 0;
5514 }
5515
5516 static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft)
5517 {
5518 return test_bit(CGRP_RELEASABLE, &cgrp->flags);
5519 }
5520
5521 static struct cftype debug_files[] = {
5522 {
5523 .name = "cgroup_refcount",
5524 .read_u64 = cgroup_refcount_read,
5525 },
5526 {
5527 .name = "taskcount",
5528 .read_u64 = debug_taskcount_read,
5529 },
5530
5531 {
5532 .name = "current_css_set",
5533 .read_u64 = current_css_set_read,
5534 },
5535
5536 {
5537 .name = "current_css_set_refcount",
5538 .read_u64 = current_css_set_refcount_read,
5539 },
5540
5541 {
5542 .name = "current_css_set_cg_links",
5543 .read_seq_string = current_css_set_cg_links_read,
5544 },
5545
5546 {
5547 .name = "cgroup_css_links",
5548 .read_seq_string = cgroup_css_links_read,
5549 },
5550
5551 {
5552 .name = "releasable",
5553 .read_u64 = releasable_read,
5554 },
5555
5556 { } /* terminate */
5557 };
5558
5559 struct cgroup_subsys debug_subsys = {
5560 .name = "debug",
5561 .css_alloc = debug_css_alloc,
5562 .css_free = debug_css_free,
5563 .subsys_id = debug_subsys_id,
5564 .base_cftypes = debug_files,
5565 };
5566 #endif /* CONFIG_CGROUP_DEBUG */
This page took 0.148691 seconds and 5 git commands to generate.