c5f6fb28dd0e7badf197af28c9da6dfd8cf97dcb
[deliverable/linux.git] / kernel / cgroup.c
1 /*
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29 #include <linux/cgroup.h>
30 #include <linux/cred.h>
31 #include <linux/ctype.h>
32 #include <linux/errno.h>
33 #include <linux/fs.h>
34 #include <linux/init_task.h>
35 #include <linux/kernel.h>
36 #include <linux/list.h>
37 #include <linux/mm.h>
38 #include <linux/mutex.h>
39 #include <linux/mount.h>
40 #include <linux/pagemap.h>
41 #include <linux/proc_fs.h>
42 #include <linux/rcupdate.h>
43 #include <linux/sched.h>
44 #include <linux/backing-dev.h>
45 #include <linux/seq_file.h>
46 #include <linux/slab.h>
47 #include <linux/magic.h>
48 #include <linux/spinlock.h>
49 #include <linux/string.h>
50 #include <linux/sort.h>
51 #include <linux/kmod.h>
52 #include <linux/module.h>
53 #include <linux/delayacct.h>
54 #include <linux/cgroupstats.h>
55 #include <linux/hash.h>
56 #include <linux/namei.h>
57 #include <linux/pid_namespace.h>
58 #include <linux/idr.h>
59 #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
60 #include <linux/eventfd.h>
61 #include <linux/poll.h>
62 #include <linux/flex_array.h> /* used in cgroup_attach_proc */
63 #include <linux/kthread.h>
64
65 #include <linux/atomic.h>
66
67 /* css deactivation bias, makes css->refcnt negative to deny new trygets */
68 #define CSS_DEACT_BIAS INT_MIN
69
70 /*
71 * cgroup_mutex is the master lock. Any modification to cgroup or its
72 * hierarchy must be performed while holding it.
73 *
74 * cgroup_root_mutex nests inside cgroup_mutex and should be held to modify
75 * cgroupfs_root of any cgroup hierarchy - subsys list, flags,
76 * release_agent_path and so on. Modifying requires both cgroup_mutex and
77 * cgroup_root_mutex. Readers can acquire either of the two. This is to
78 * break the following locking order cycle.
79 *
80 * A. cgroup_mutex -> cred_guard_mutex -> s_type->i_mutex_key -> namespace_sem
81 * B. namespace_sem -> cgroup_mutex
82 *
83 * B happens only through cgroup_show_options() and using cgroup_root_mutex
84 * breaks it.
85 */
86 static DEFINE_MUTEX(cgroup_mutex);
87 static DEFINE_MUTEX(cgroup_root_mutex);
88
89 /*
90 * Generate an array of cgroup subsystem pointers. At boot time, this is
91 * populated up to CGROUP_BUILTIN_SUBSYS_COUNT, and modular subsystems are
92 * registered after that. The mutable section of this array is protected by
93 * cgroup_mutex.
94 */
95 #define SUBSYS(_x) &_x ## _subsys,
96 static struct cgroup_subsys *subsys[CGROUP_SUBSYS_COUNT] = {
97 #include <linux/cgroup_subsys.h>
98 };
99
100 #define MAX_CGROUP_ROOT_NAMELEN 64
101
102 /*
103 * A cgroupfs_root represents the root of a cgroup hierarchy,
104 * and may be associated with a superblock to form an active
105 * hierarchy
106 */
107 struct cgroupfs_root {
108 struct super_block *sb;
109
110 /*
111 * The bitmask of subsystems intended to be attached to this
112 * hierarchy
113 */
114 unsigned long subsys_bits;
115
116 /* Unique id for this hierarchy. */
117 int hierarchy_id;
118
119 /* The bitmask of subsystems currently attached to this hierarchy */
120 unsigned long actual_subsys_bits;
121
122 /* A list running through the attached subsystems */
123 struct list_head subsys_list;
124
125 /* The root cgroup for this hierarchy */
126 struct cgroup top_cgroup;
127
128 /* Tracks how many cgroups are currently defined in hierarchy.*/
129 int number_of_cgroups;
130
131 /* A list running through the active hierarchies */
132 struct list_head root_list;
133
134 /* All cgroups on this root, cgroup_mutex protected */
135 struct list_head allcg_list;
136
137 /* Hierarchy-specific flags */
138 unsigned long flags;
139
140 /* The path to use for release notifications. */
141 char release_agent_path[PATH_MAX];
142
143 /* The name for this hierarchy - may be empty */
144 char name[MAX_CGROUP_ROOT_NAMELEN];
145 };
146
147 /*
148 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
149 * subsystems that are otherwise unattached - it never has more than a
150 * single cgroup, and all tasks are part of that cgroup.
151 */
152 static struct cgroupfs_root rootnode;
153
154 /*
155 * cgroupfs file entry, pointed to from leaf dentry->d_fsdata.
156 */
157 struct cfent {
158 struct list_head node;
159 struct dentry *dentry;
160 struct cftype *type;
161 };
162
163 /*
164 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
165 * cgroup_subsys->use_id != 0.
166 */
167 #define CSS_ID_MAX (65535)
168 struct css_id {
169 /*
170 * The css to which this ID points. This pointer is set to valid value
171 * after cgroup is populated. If cgroup is removed, this will be NULL.
172 * This pointer is expected to be RCU-safe because destroy()
173 * is called after synchronize_rcu(). But for safe use, css_tryget()
174 * should be used for avoiding race.
175 */
176 struct cgroup_subsys_state __rcu *css;
177 /*
178 * ID of this css.
179 */
180 unsigned short id;
181 /*
182 * Depth in hierarchy which this ID belongs to.
183 */
184 unsigned short depth;
185 /*
186 * ID is freed by RCU. (and lookup routine is RCU safe.)
187 */
188 struct rcu_head rcu_head;
189 /*
190 * Hierarchy of CSS ID belongs to.
191 */
192 unsigned short stack[0]; /* Array of Length (depth+1) */
193 };
194
195 /*
196 * cgroup_event represents events which userspace want to receive.
197 */
198 struct cgroup_event {
199 /*
200 * Cgroup which the event belongs to.
201 */
202 struct cgroup *cgrp;
203 /*
204 * Control file which the event associated.
205 */
206 struct cftype *cft;
207 /*
208 * eventfd to signal userspace about the event.
209 */
210 struct eventfd_ctx *eventfd;
211 /*
212 * Each of these stored in a list by the cgroup.
213 */
214 struct list_head list;
215 /*
216 * All fields below needed to unregister event when
217 * userspace closes eventfd.
218 */
219 poll_table pt;
220 wait_queue_head_t *wqh;
221 wait_queue_t wait;
222 struct work_struct remove;
223 };
224
225 /* The list of hierarchy roots */
226
227 static LIST_HEAD(roots);
228 static int root_count;
229
230 static DEFINE_IDA(hierarchy_ida);
231 static int next_hierarchy_id;
232 static DEFINE_SPINLOCK(hierarchy_id_lock);
233
234 /* dummytop is a shorthand for the dummy hierarchy's top cgroup */
235 #define dummytop (&rootnode.top_cgroup)
236
237 /* This flag indicates whether tasks in the fork and exit paths should
238 * check for fork/exit handlers to call. This avoids us having to do
239 * extra work in the fork/exit path if none of the subsystems need to
240 * be called.
241 */
242 static int need_forkexit_callback __read_mostly;
243
244 #ifdef CONFIG_PROVE_LOCKING
245 int cgroup_lock_is_held(void)
246 {
247 return lockdep_is_held(&cgroup_mutex);
248 }
249 #else /* #ifdef CONFIG_PROVE_LOCKING */
250 int cgroup_lock_is_held(void)
251 {
252 return mutex_is_locked(&cgroup_mutex);
253 }
254 #endif /* #else #ifdef CONFIG_PROVE_LOCKING */
255
256 EXPORT_SYMBOL_GPL(cgroup_lock_is_held);
257
258 static int css_unbias_refcnt(int refcnt)
259 {
260 return refcnt >= 0 ? refcnt : refcnt - CSS_DEACT_BIAS;
261 }
262
263 /* the current nr of refs, always >= 0 whether @css is deactivated or not */
264 static int css_refcnt(struct cgroup_subsys_state *css)
265 {
266 int v = atomic_read(&css->refcnt);
267
268 return css_unbias_refcnt(v);
269 }
270
271 /* convenient tests for these bits */
272 inline int cgroup_is_removed(const struct cgroup *cgrp)
273 {
274 return test_bit(CGRP_REMOVED, &cgrp->flags);
275 }
276
277 /* bits in struct cgroupfs_root flags field */
278 enum {
279 ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
280 };
281
282 static int cgroup_is_releasable(const struct cgroup *cgrp)
283 {
284 const int bits =
285 (1 << CGRP_RELEASABLE) |
286 (1 << CGRP_NOTIFY_ON_RELEASE);
287 return (cgrp->flags & bits) == bits;
288 }
289
290 static int notify_on_release(const struct cgroup *cgrp)
291 {
292 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
293 }
294
295 static int clone_children(const struct cgroup *cgrp)
296 {
297 return test_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
298 }
299
300 /*
301 * for_each_subsys() allows you to iterate on each subsystem attached to
302 * an active hierarchy
303 */
304 #define for_each_subsys(_root, _ss) \
305 list_for_each_entry(_ss, &_root->subsys_list, sibling)
306
307 /* for_each_active_root() allows you to iterate across the active hierarchies */
308 #define for_each_active_root(_root) \
309 list_for_each_entry(_root, &roots, root_list)
310
311 static inline struct cgroup *__d_cgrp(struct dentry *dentry)
312 {
313 return dentry->d_fsdata;
314 }
315
316 static inline struct cfent *__d_cfe(struct dentry *dentry)
317 {
318 return dentry->d_fsdata;
319 }
320
321 static inline struct cftype *__d_cft(struct dentry *dentry)
322 {
323 return __d_cfe(dentry)->type;
324 }
325
326 /* the list of cgroups eligible for automatic release. Protected by
327 * release_list_lock */
328 static LIST_HEAD(release_list);
329 static DEFINE_RAW_SPINLOCK(release_list_lock);
330 static void cgroup_release_agent(struct work_struct *work);
331 static DECLARE_WORK(release_agent_work, cgroup_release_agent);
332 static void check_for_release(struct cgroup *cgrp);
333
334 /* Link structure for associating css_set objects with cgroups */
335 struct cg_cgroup_link {
336 /*
337 * List running through cg_cgroup_links associated with a
338 * cgroup, anchored on cgroup->css_sets
339 */
340 struct list_head cgrp_link_list;
341 struct cgroup *cgrp;
342 /*
343 * List running through cg_cgroup_links pointing at a
344 * single css_set object, anchored on css_set->cg_links
345 */
346 struct list_head cg_link_list;
347 struct css_set *cg;
348 };
349
350 /* The default css_set - used by init and its children prior to any
351 * hierarchies being mounted. It contains a pointer to the root state
352 * for each subsystem. Also used to anchor the list of css_sets. Not
353 * reference-counted, to improve performance when child cgroups
354 * haven't been created.
355 */
356
357 static struct css_set init_css_set;
358 static struct cg_cgroup_link init_css_set_link;
359
360 static int cgroup_init_idr(struct cgroup_subsys *ss,
361 struct cgroup_subsys_state *css);
362
363 /* css_set_lock protects the list of css_set objects, and the
364 * chain of tasks off each css_set. Nests outside task->alloc_lock
365 * due to cgroup_iter_start() */
366 static DEFINE_RWLOCK(css_set_lock);
367 static int css_set_count;
368
369 /*
370 * hash table for cgroup groups. This improves the performance to find
371 * an existing css_set. This hash doesn't (currently) take into
372 * account cgroups in empty hierarchies.
373 */
374 #define CSS_SET_HASH_BITS 7
375 #define CSS_SET_TABLE_SIZE (1 << CSS_SET_HASH_BITS)
376 static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE];
377
378 static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[])
379 {
380 int i;
381 int index;
382 unsigned long tmp = 0UL;
383
384 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
385 tmp += (unsigned long)css[i];
386 tmp = (tmp >> 16) ^ tmp;
387
388 index = hash_long(tmp, CSS_SET_HASH_BITS);
389
390 return &css_set_table[index];
391 }
392
393 /* We don't maintain the lists running through each css_set to its
394 * task until after the first call to cgroup_iter_start(). This
395 * reduces the fork()/exit() overhead for people who have cgroups
396 * compiled into their kernel but not actually in use */
397 static int use_task_css_set_links __read_mostly;
398
399 static void __put_css_set(struct css_set *cg, int taskexit)
400 {
401 struct cg_cgroup_link *link;
402 struct cg_cgroup_link *saved_link;
403 /*
404 * Ensure that the refcount doesn't hit zero while any readers
405 * can see it. Similar to atomic_dec_and_lock(), but for an
406 * rwlock
407 */
408 if (atomic_add_unless(&cg->refcount, -1, 1))
409 return;
410 write_lock(&css_set_lock);
411 if (!atomic_dec_and_test(&cg->refcount)) {
412 write_unlock(&css_set_lock);
413 return;
414 }
415
416 /* This css_set is dead. unlink it and release cgroup refcounts */
417 hlist_del(&cg->hlist);
418 css_set_count--;
419
420 list_for_each_entry_safe(link, saved_link, &cg->cg_links,
421 cg_link_list) {
422 struct cgroup *cgrp = link->cgrp;
423 list_del(&link->cg_link_list);
424 list_del(&link->cgrp_link_list);
425 if (atomic_dec_and_test(&cgrp->count) &&
426 notify_on_release(cgrp)) {
427 if (taskexit)
428 set_bit(CGRP_RELEASABLE, &cgrp->flags);
429 check_for_release(cgrp);
430 }
431
432 kfree(link);
433 }
434
435 write_unlock(&css_set_lock);
436 kfree_rcu(cg, rcu_head);
437 }
438
439 /*
440 * refcounted get/put for css_set objects
441 */
442 static inline void get_css_set(struct css_set *cg)
443 {
444 atomic_inc(&cg->refcount);
445 }
446
447 static inline void put_css_set(struct css_set *cg)
448 {
449 __put_css_set(cg, 0);
450 }
451
452 static inline void put_css_set_taskexit(struct css_set *cg)
453 {
454 __put_css_set(cg, 1);
455 }
456
457 /*
458 * compare_css_sets - helper function for find_existing_css_set().
459 * @cg: candidate css_set being tested
460 * @old_cg: existing css_set for a task
461 * @new_cgrp: cgroup that's being entered by the task
462 * @template: desired set of css pointers in css_set (pre-calculated)
463 *
464 * Returns true if "cg" matches "old_cg" except for the hierarchy
465 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
466 */
467 static bool compare_css_sets(struct css_set *cg,
468 struct css_set *old_cg,
469 struct cgroup *new_cgrp,
470 struct cgroup_subsys_state *template[])
471 {
472 struct list_head *l1, *l2;
473
474 if (memcmp(template, cg->subsys, sizeof(cg->subsys))) {
475 /* Not all subsystems matched */
476 return false;
477 }
478
479 /*
480 * Compare cgroup pointers in order to distinguish between
481 * different cgroups in heirarchies with no subsystems. We
482 * could get by with just this check alone (and skip the
483 * memcmp above) but on most setups the memcmp check will
484 * avoid the need for this more expensive check on almost all
485 * candidates.
486 */
487
488 l1 = &cg->cg_links;
489 l2 = &old_cg->cg_links;
490 while (1) {
491 struct cg_cgroup_link *cgl1, *cgl2;
492 struct cgroup *cg1, *cg2;
493
494 l1 = l1->next;
495 l2 = l2->next;
496 /* See if we reached the end - both lists are equal length. */
497 if (l1 == &cg->cg_links) {
498 BUG_ON(l2 != &old_cg->cg_links);
499 break;
500 } else {
501 BUG_ON(l2 == &old_cg->cg_links);
502 }
503 /* Locate the cgroups associated with these links. */
504 cgl1 = list_entry(l1, struct cg_cgroup_link, cg_link_list);
505 cgl2 = list_entry(l2, struct cg_cgroup_link, cg_link_list);
506 cg1 = cgl1->cgrp;
507 cg2 = cgl2->cgrp;
508 /* Hierarchies should be linked in the same order. */
509 BUG_ON(cg1->root != cg2->root);
510
511 /*
512 * If this hierarchy is the hierarchy of the cgroup
513 * that's changing, then we need to check that this
514 * css_set points to the new cgroup; if it's any other
515 * hierarchy, then this css_set should point to the
516 * same cgroup as the old css_set.
517 */
518 if (cg1->root == new_cgrp->root) {
519 if (cg1 != new_cgrp)
520 return false;
521 } else {
522 if (cg1 != cg2)
523 return false;
524 }
525 }
526 return true;
527 }
528
529 /*
530 * find_existing_css_set() is a helper for
531 * find_css_set(), and checks to see whether an existing
532 * css_set is suitable.
533 *
534 * oldcg: the cgroup group that we're using before the cgroup
535 * transition
536 *
537 * cgrp: the cgroup that we're moving into
538 *
539 * template: location in which to build the desired set of subsystem
540 * state objects for the new cgroup group
541 */
542 static struct css_set *find_existing_css_set(
543 struct css_set *oldcg,
544 struct cgroup *cgrp,
545 struct cgroup_subsys_state *template[])
546 {
547 int i;
548 struct cgroupfs_root *root = cgrp->root;
549 struct hlist_head *hhead;
550 struct hlist_node *node;
551 struct css_set *cg;
552
553 /*
554 * Build the set of subsystem state objects that we want to see in the
555 * new css_set. while subsystems can change globally, the entries here
556 * won't change, so no need for locking.
557 */
558 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
559 if (root->subsys_bits & (1UL << i)) {
560 /* Subsystem is in this hierarchy. So we want
561 * the subsystem state from the new
562 * cgroup */
563 template[i] = cgrp->subsys[i];
564 } else {
565 /* Subsystem is not in this hierarchy, so we
566 * don't want to change the subsystem state */
567 template[i] = oldcg->subsys[i];
568 }
569 }
570
571 hhead = css_set_hash(template);
572 hlist_for_each_entry(cg, node, hhead, hlist) {
573 if (!compare_css_sets(cg, oldcg, cgrp, template))
574 continue;
575
576 /* This css_set matches what we need */
577 return cg;
578 }
579
580 /* No existing cgroup group matched */
581 return NULL;
582 }
583
584 static void free_cg_links(struct list_head *tmp)
585 {
586 struct cg_cgroup_link *link;
587 struct cg_cgroup_link *saved_link;
588
589 list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
590 list_del(&link->cgrp_link_list);
591 kfree(link);
592 }
593 }
594
595 /*
596 * allocate_cg_links() allocates "count" cg_cgroup_link structures
597 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
598 * success or a negative error
599 */
600 static int allocate_cg_links(int count, struct list_head *tmp)
601 {
602 struct cg_cgroup_link *link;
603 int i;
604 INIT_LIST_HEAD(tmp);
605 for (i = 0; i < count; i++) {
606 link = kmalloc(sizeof(*link), GFP_KERNEL);
607 if (!link) {
608 free_cg_links(tmp);
609 return -ENOMEM;
610 }
611 list_add(&link->cgrp_link_list, tmp);
612 }
613 return 0;
614 }
615
616 /**
617 * link_css_set - a helper function to link a css_set to a cgroup
618 * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
619 * @cg: the css_set to be linked
620 * @cgrp: the destination cgroup
621 */
622 static void link_css_set(struct list_head *tmp_cg_links,
623 struct css_set *cg, struct cgroup *cgrp)
624 {
625 struct cg_cgroup_link *link;
626
627 BUG_ON(list_empty(tmp_cg_links));
628 link = list_first_entry(tmp_cg_links, struct cg_cgroup_link,
629 cgrp_link_list);
630 link->cg = cg;
631 link->cgrp = cgrp;
632 atomic_inc(&cgrp->count);
633 list_move(&link->cgrp_link_list, &cgrp->css_sets);
634 /*
635 * Always add links to the tail of the list so that the list
636 * is sorted by order of hierarchy creation
637 */
638 list_add_tail(&link->cg_link_list, &cg->cg_links);
639 }
640
641 /*
642 * find_css_set() takes an existing cgroup group and a
643 * cgroup object, and returns a css_set object that's
644 * equivalent to the old group, but with the given cgroup
645 * substituted into the appropriate hierarchy. Must be called with
646 * cgroup_mutex held
647 */
648 static struct css_set *find_css_set(
649 struct css_set *oldcg, struct cgroup *cgrp)
650 {
651 struct css_set *res;
652 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
653
654 struct list_head tmp_cg_links;
655
656 struct hlist_head *hhead;
657 struct cg_cgroup_link *link;
658
659 /* First see if we already have a cgroup group that matches
660 * the desired set */
661 read_lock(&css_set_lock);
662 res = find_existing_css_set(oldcg, cgrp, template);
663 if (res)
664 get_css_set(res);
665 read_unlock(&css_set_lock);
666
667 if (res)
668 return res;
669
670 res = kmalloc(sizeof(*res), GFP_KERNEL);
671 if (!res)
672 return NULL;
673
674 /* Allocate all the cg_cgroup_link objects that we'll need */
675 if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
676 kfree(res);
677 return NULL;
678 }
679
680 atomic_set(&res->refcount, 1);
681 INIT_LIST_HEAD(&res->cg_links);
682 INIT_LIST_HEAD(&res->tasks);
683 INIT_HLIST_NODE(&res->hlist);
684
685 /* Copy the set of subsystem state objects generated in
686 * find_existing_css_set() */
687 memcpy(res->subsys, template, sizeof(res->subsys));
688
689 write_lock(&css_set_lock);
690 /* Add reference counts and links from the new css_set. */
691 list_for_each_entry(link, &oldcg->cg_links, cg_link_list) {
692 struct cgroup *c = link->cgrp;
693 if (c->root == cgrp->root)
694 c = cgrp;
695 link_css_set(&tmp_cg_links, res, c);
696 }
697
698 BUG_ON(!list_empty(&tmp_cg_links));
699
700 css_set_count++;
701
702 /* Add this cgroup group to the hash table */
703 hhead = css_set_hash(res->subsys);
704 hlist_add_head(&res->hlist, hhead);
705
706 write_unlock(&css_set_lock);
707
708 return res;
709 }
710
711 /*
712 * Return the cgroup for "task" from the given hierarchy. Must be
713 * called with cgroup_mutex held.
714 */
715 static struct cgroup *task_cgroup_from_root(struct task_struct *task,
716 struct cgroupfs_root *root)
717 {
718 struct css_set *css;
719 struct cgroup *res = NULL;
720
721 BUG_ON(!mutex_is_locked(&cgroup_mutex));
722 read_lock(&css_set_lock);
723 /*
724 * No need to lock the task - since we hold cgroup_mutex the
725 * task can't change groups, so the only thing that can happen
726 * is that it exits and its css is set back to init_css_set.
727 */
728 css = task->cgroups;
729 if (css == &init_css_set) {
730 res = &root->top_cgroup;
731 } else {
732 struct cg_cgroup_link *link;
733 list_for_each_entry(link, &css->cg_links, cg_link_list) {
734 struct cgroup *c = link->cgrp;
735 if (c->root == root) {
736 res = c;
737 break;
738 }
739 }
740 }
741 read_unlock(&css_set_lock);
742 BUG_ON(!res);
743 return res;
744 }
745
746 /*
747 * There is one global cgroup mutex. We also require taking
748 * task_lock() when dereferencing a task's cgroup subsys pointers.
749 * See "The task_lock() exception", at the end of this comment.
750 *
751 * A task must hold cgroup_mutex to modify cgroups.
752 *
753 * Any task can increment and decrement the count field without lock.
754 * So in general, code holding cgroup_mutex can't rely on the count
755 * field not changing. However, if the count goes to zero, then only
756 * cgroup_attach_task() can increment it again. Because a count of zero
757 * means that no tasks are currently attached, therefore there is no
758 * way a task attached to that cgroup can fork (the other way to
759 * increment the count). So code holding cgroup_mutex can safely
760 * assume that if the count is zero, it will stay zero. Similarly, if
761 * a task holds cgroup_mutex on a cgroup with zero count, it
762 * knows that the cgroup won't be removed, as cgroup_rmdir()
763 * needs that mutex.
764 *
765 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
766 * (usually) take cgroup_mutex. These are the two most performance
767 * critical pieces of code here. The exception occurs on cgroup_exit(),
768 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
769 * is taken, and if the cgroup count is zero, a usermode call made
770 * to the release agent with the name of the cgroup (path relative to
771 * the root of cgroup file system) as the argument.
772 *
773 * A cgroup can only be deleted if both its 'count' of using tasks
774 * is zero, and its list of 'children' cgroups is empty. Since all
775 * tasks in the system use _some_ cgroup, and since there is always at
776 * least one task in the system (init, pid == 1), therefore, top_cgroup
777 * always has either children cgroups and/or using tasks. So we don't
778 * need a special hack to ensure that top_cgroup cannot be deleted.
779 *
780 * The task_lock() exception
781 *
782 * The need for this exception arises from the action of
783 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
784 * another. It does so using cgroup_mutex, however there are
785 * several performance critical places that need to reference
786 * task->cgroup without the expense of grabbing a system global
787 * mutex. Therefore except as noted below, when dereferencing or, as
788 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
789 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
790 * the task_struct routinely used for such matters.
791 *
792 * P.S. One more locking exception. RCU is used to guard the
793 * update of a tasks cgroup pointer by cgroup_attach_task()
794 */
795
796 /**
797 * cgroup_lock - lock out any changes to cgroup structures
798 *
799 */
800 void cgroup_lock(void)
801 {
802 mutex_lock(&cgroup_mutex);
803 }
804 EXPORT_SYMBOL_GPL(cgroup_lock);
805
806 /**
807 * cgroup_unlock - release lock on cgroup changes
808 *
809 * Undo the lock taken in a previous cgroup_lock() call.
810 */
811 void cgroup_unlock(void)
812 {
813 mutex_unlock(&cgroup_mutex);
814 }
815 EXPORT_SYMBOL_GPL(cgroup_unlock);
816
817 /*
818 * A couple of forward declarations required, due to cyclic reference loop:
819 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
820 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
821 * -> cgroup_mkdir.
822 */
823
824 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode);
825 static struct dentry *cgroup_lookup(struct inode *, struct dentry *, unsigned int);
826 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
827 static int cgroup_populate_dir(struct cgroup *cgrp);
828 static const struct inode_operations cgroup_dir_inode_operations;
829 static const struct file_operations proc_cgroupstats_operations;
830
831 static struct backing_dev_info cgroup_backing_dev_info = {
832 .name = "cgroup",
833 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
834 };
835
836 static int alloc_css_id(struct cgroup_subsys *ss,
837 struct cgroup *parent, struct cgroup *child);
838
839 static struct inode *cgroup_new_inode(umode_t mode, struct super_block *sb)
840 {
841 struct inode *inode = new_inode(sb);
842
843 if (inode) {
844 inode->i_ino = get_next_ino();
845 inode->i_mode = mode;
846 inode->i_uid = current_fsuid();
847 inode->i_gid = current_fsgid();
848 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
849 inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
850 }
851 return inode;
852 }
853
854 static void cgroup_diput(struct dentry *dentry, struct inode *inode)
855 {
856 /* is dentry a directory ? if so, kfree() associated cgroup */
857 if (S_ISDIR(inode->i_mode)) {
858 struct cgroup *cgrp = dentry->d_fsdata;
859 struct cgroup_subsys *ss;
860 BUG_ON(!(cgroup_is_removed(cgrp)));
861 /* It's possible for external users to be holding css
862 * reference counts on a cgroup; css_put() needs to
863 * be able to access the cgroup after decrementing
864 * the reference count in order to know if it needs to
865 * queue the cgroup to be handled by the release
866 * agent */
867 synchronize_rcu();
868
869 mutex_lock(&cgroup_mutex);
870 /*
871 * Release the subsystem state objects.
872 */
873 for_each_subsys(cgrp->root, ss)
874 ss->destroy(cgrp);
875
876 cgrp->root->number_of_cgroups--;
877 mutex_unlock(&cgroup_mutex);
878
879 /*
880 * Drop the active superblock reference that we took when we
881 * created the cgroup
882 */
883 deactivate_super(cgrp->root->sb);
884
885 /*
886 * if we're getting rid of the cgroup, refcount should ensure
887 * that there are no pidlists left.
888 */
889 BUG_ON(!list_empty(&cgrp->pidlists));
890
891 kfree_rcu(cgrp, rcu_head);
892 } else {
893 struct cfent *cfe = __d_cfe(dentry);
894 struct cgroup *cgrp = dentry->d_parent->d_fsdata;
895
896 WARN_ONCE(!list_empty(&cfe->node) &&
897 cgrp != &cgrp->root->top_cgroup,
898 "cfe still linked for %s\n", cfe->type->name);
899 kfree(cfe);
900 }
901 iput(inode);
902 }
903
904 static int cgroup_delete(const struct dentry *d)
905 {
906 return 1;
907 }
908
909 static void remove_dir(struct dentry *d)
910 {
911 struct dentry *parent = dget(d->d_parent);
912
913 d_delete(d);
914 simple_rmdir(parent->d_inode, d);
915 dput(parent);
916 }
917
918 static int cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
919 {
920 struct cfent *cfe;
921
922 lockdep_assert_held(&cgrp->dentry->d_inode->i_mutex);
923 lockdep_assert_held(&cgroup_mutex);
924
925 list_for_each_entry(cfe, &cgrp->files, node) {
926 struct dentry *d = cfe->dentry;
927
928 if (cft && cfe->type != cft)
929 continue;
930
931 dget(d);
932 d_delete(d);
933 simple_unlink(cgrp->dentry->d_inode, d);
934 list_del_init(&cfe->node);
935 dput(d);
936
937 return 0;
938 }
939 return -ENOENT;
940 }
941
942 static void cgroup_clear_directory(struct dentry *dir)
943 {
944 struct cgroup *cgrp = __d_cgrp(dir);
945
946 while (!list_empty(&cgrp->files))
947 cgroup_rm_file(cgrp, NULL);
948 }
949
950 /*
951 * NOTE : the dentry must have been dget()'ed
952 */
953 static void cgroup_d_remove_dir(struct dentry *dentry)
954 {
955 struct dentry *parent;
956
957 cgroup_clear_directory(dentry);
958
959 parent = dentry->d_parent;
960 spin_lock(&parent->d_lock);
961 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
962 list_del_init(&dentry->d_u.d_child);
963 spin_unlock(&dentry->d_lock);
964 spin_unlock(&parent->d_lock);
965 remove_dir(dentry);
966 }
967
968 /*
969 * Call with cgroup_mutex held. Drops reference counts on modules, including
970 * any duplicate ones that parse_cgroupfs_options took. If this function
971 * returns an error, no reference counts are touched.
972 */
973 static int rebind_subsystems(struct cgroupfs_root *root,
974 unsigned long final_bits)
975 {
976 unsigned long added_bits, removed_bits;
977 struct cgroup *cgrp = &root->top_cgroup;
978 int i;
979
980 BUG_ON(!mutex_is_locked(&cgroup_mutex));
981 BUG_ON(!mutex_is_locked(&cgroup_root_mutex));
982
983 removed_bits = root->actual_subsys_bits & ~final_bits;
984 added_bits = final_bits & ~root->actual_subsys_bits;
985 /* Check that any added subsystems are currently free */
986 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
987 unsigned long bit = 1UL << i;
988 struct cgroup_subsys *ss = subsys[i];
989 if (!(bit & added_bits))
990 continue;
991 /*
992 * Nobody should tell us to do a subsys that doesn't exist:
993 * parse_cgroupfs_options should catch that case and refcounts
994 * ensure that subsystems won't disappear once selected.
995 */
996 BUG_ON(ss == NULL);
997 if (ss->root != &rootnode) {
998 /* Subsystem isn't free */
999 return -EBUSY;
1000 }
1001 }
1002
1003 /* Currently we don't handle adding/removing subsystems when
1004 * any child cgroups exist. This is theoretically supportable
1005 * but involves complex error handling, so it's being left until
1006 * later */
1007 if (root->number_of_cgroups > 1)
1008 return -EBUSY;
1009
1010 /* Process each subsystem */
1011 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1012 struct cgroup_subsys *ss = subsys[i];
1013 unsigned long bit = 1UL << i;
1014 if (bit & added_bits) {
1015 /* We're binding this subsystem to this hierarchy */
1016 BUG_ON(ss == NULL);
1017 BUG_ON(cgrp->subsys[i]);
1018 BUG_ON(!dummytop->subsys[i]);
1019 BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
1020 cgrp->subsys[i] = dummytop->subsys[i];
1021 cgrp->subsys[i]->cgroup = cgrp;
1022 list_move(&ss->sibling, &root->subsys_list);
1023 ss->root = root;
1024 if (ss->bind)
1025 ss->bind(cgrp);
1026 /* refcount was already taken, and we're keeping it */
1027 } else if (bit & removed_bits) {
1028 /* We're removing this subsystem */
1029 BUG_ON(ss == NULL);
1030 BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
1031 BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
1032 if (ss->bind)
1033 ss->bind(dummytop);
1034 dummytop->subsys[i]->cgroup = dummytop;
1035 cgrp->subsys[i] = NULL;
1036 subsys[i]->root = &rootnode;
1037 list_move(&ss->sibling, &rootnode.subsys_list);
1038 /* subsystem is now free - drop reference on module */
1039 module_put(ss->module);
1040 } else if (bit & final_bits) {
1041 /* Subsystem state should already exist */
1042 BUG_ON(ss == NULL);
1043 BUG_ON(!cgrp->subsys[i]);
1044 /*
1045 * a refcount was taken, but we already had one, so
1046 * drop the extra reference.
1047 */
1048 module_put(ss->module);
1049 #ifdef CONFIG_MODULE_UNLOAD
1050 BUG_ON(ss->module && !module_refcount(ss->module));
1051 #endif
1052 } else {
1053 /* Subsystem state shouldn't exist */
1054 BUG_ON(cgrp->subsys[i]);
1055 }
1056 }
1057 root->subsys_bits = root->actual_subsys_bits = final_bits;
1058 synchronize_rcu();
1059
1060 return 0;
1061 }
1062
1063 static int cgroup_show_options(struct seq_file *seq, struct dentry *dentry)
1064 {
1065 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
1066 struct cgroup_subsys *ss;
1067
1068 mutex_lock(&cgroup_root_mutex);
1069 for_each_subsys(root, ss)
1070 seq_printf(seq, ",%s", ss->name);
1071 if (test_bit(ROOT_NOPREFIX, &root->flags))
1072 seq_puts(seq, ",noprefix");
1073 if (strlen(root->release_agent_path))
1074 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
1075 if (clone_children(&root->top_cgroup))
1076 seq_puts(seq, ",clone_children");
1077 if (strlen(root->name))
1078 seq_printf(seq, ",name=%s", root->name);
1079 mutex_unlock(&cgroup_root_mutex);
1080 return 0;
1081 }
1082
1083 struct cgroup_sb_opts {
1084 unsigned long subsys_bits;
1085 unsigned long flags;
1086 char *release_agent;
1087 bool clone_children;
1088 char *name;
1089 /* User explicitly requested empty subsystem */
1090 bool none;
1091
1092 struct cgroupfs_root *new_root;
1093
1094 };
1095
1096 /*
1097 * Convert a hierarchy specifier into a bitmask of subsystems and flags. Call
1098 * with cgroup_mutex held to protect the subsys[] array. This function takes
1099 * refcounts on subsystems to be used, unless it returns error, in which case
1100 * no refcounts are taken.
1101 */
1102 static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
1103 {
1104 char *token, *o = data;
1105 bool all_ss = false, one_ss = false;
1106 unsigned long mask = (unsigned long)-1;
1107 int i;
1108 bool module_pin_failed = false;
1109
1110 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1111
1112 #ifdef CONFIG_CPUSETS
1113 mask = ~(1UL << cpuset_subsys_id);
1114 #endif
1115
1116 memset(opts, 0, sizeof(*opts));
1117
1118 while ((token = strsep(&o, ",")) != NULL) {
1119 if (!*token)
1120 return -EINVAL;
1121 if (!strcmp(token, "none")) {
1122 /* Explicitly have no subsystems */
1123 opts->none = true;
1124 continue;
1125 }
1126 if (!strcmp(token, "all")) {
1127 /* Mutually exclusive option 'all' + subsystem name */
1128 if (one_ss)
1129 return -EINVAL;
1130 all_ss = true;
1131 continue;
1132 }
1133 if (!strcmp(token, "noprefix")) {
1134 set_bit(ROOT_NOPREFIX, &opts->flags);
1135 continue;
1136 }
1137 if (!strcmp(token, "clone_children")) {
1138 opts->clone_children = true;
1139 continue;
1140 }
1141 if (!strncmp(token, "release_agent=", 14)) {
1142 /* Specifying two release agents is forbidden */
1143 if (opts->release_agent)
1144 return -EINVAL;
1145 opts->release_agent =
1146 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
1147 if (!opts->release_agent)
1148 return -ENOMEM;
1149 continue;
1150 }
1151 if (!strncmp(token, "name=", 5)) {
1152 const char *name = token + 5;
1153 /* Can't specify an empty name */
1154 if (!strlen(name))
1155 return -EINVAL;
1156 /* Must match [\w.-]+ */
1157 for (i = 0; i < strlen(name); i++) {
1158 char c = name[i];
1159 if (isalnum(c))
1160 continue;
1161 if ((c == '.') || (c == '-') || (c == '_'))
1162 continue;
1163 return -EINVAL;
1164 }
1165 /* Specifying two names is forbidden */
1166 if (opts->name)
1167 return -EINVAL;
1168 opts->name = kstrndup(name,
1169 MAX_CGROUP_ROOT_NAMELEN - 1,
1170 GFP_KERNEL);
1171 if (!opts->name)
1172 return -ENOMEM;
1173
1174 continue;
1175 }
1176
1177 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1178 struct cgroup_subsys *ss = subsys[i];
1179 if (ss == NULL)
1180 continue;
1181 if (strcmp(token, ss->name))
1182 continue;
1183 if (ss->disabled)
1184 continue;
1185
1186 /* Mutually exclusive option 'all' + subsystem name */
1187 if (all_ss)
1188 return -EINVAL;
1189 set_bit(i, &opts->subsys_bits);
1190 one_ss = true;
1191
1192 break;
1193 }
1194 if (i == CGROUP_SUBSYS_COUNT)
1195 return -ENOENT;
1196 }
1197
1198 /*
1199 * If the 'all' option was specified select all the subsystems,
1200 * otherwise if 'none', 'name=' and a subsystem name options
1201 * were not specified, let's default to 'all'
1202 */
1203 if (all_ss || (!one_ss && !opts->none && !opts->name)) {
1204 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1205 struct cgroup_subsys *ss = subsys[i];
1206 if (ss == NULL)
1207 continue;
1208 if (ss->disabled)
1209 continue;
1210 set_bit(i, &opts->subsys_bits);
1211 }
1212 }
1213
1214 /* Consistency checks */
1215
1216 /*
1217 * Option noprefix was introduced just for backward compatibility
1218 * with the old cpuset, so we allow noprefix only if mounting just
1219 * the cpuset subsystem.
1220 */
1221 if (test_bit(ROOT_NOPREFIX, &opts->flags) &&
1222 (opts->subsys_bits & mask))
1223 return -EINVAL;
1224
1225
1226 /* Can't specify "none" and some subsystems */
1227 if (opts->subsys_bits && opts->none)
1228 return -EINVAL;
1229
1230 /*
1231 * We either have to specify by name or by subsystems. (So all
1232 * empty hierarchies must have a name).
1233 */
1234 if (!opts->subsys_bits && !opts->name)
1235 return -EINVAL;
1236
1237 /*
1238 * Grab references on all the modules we'll need, so the subsystems
1239 * don't dance around before rebind_subsystems attaches them. This may
1240 * take duplicate reference counts on a subsystem that's already used,
1241 * but rebind_subsystems handles this case.
1242 */
1243 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
1244 unsigned long bit = 1UL << i;
1245
1246 if (!(bit & opts->subsys_bits))
1247 continue;
1248 if (!try_module_get(subsys[i]->module)) {
1249 module_pin_failed = true;
1250 break;
1251 }
1252 }
1253 if (module_pin_failed) {
1254 /*
1255 * oops, one of the modules was going away. this means that we
1256 * raced with a module_delete call, and to the user this is
1257 * essentially a "subsystem doesn't exist" case.
1258 */
1259 for (i--; i >= CGROUP_BUILTIN_SUBSYS_COUNT; i--) {
1260 /* drop refcounts only on the ones we took */
1261 unsigned long bit = 1UL << i;
1262
1263 if (!(bit & opts->subsys_bits))
1264 continue;
1265 module_put(subsys[i]->module);
1266 }
1267 return -ENOENT;
1268 }
1269
1270 return 0;
1271 }
1272
1273 static void drop_parsed_module_refcounts(unsigned long subsys_bits)
1274 {
1275 int i;
1276 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
1277 unsigned long bit = 1UL << i;
1278
1279 if (!(bit & subsys_bits))
1280 continue;
1281 module_put(subsys[i]->module);
1282 }
1283 }
1284
1285 static int cgroup_remount(struct super_block *sb, int *flags, char *data)
1286 {
1287 int ret = 0;
1288 struct cgroupfs_root *root = sb->s_fs_info;
1289 struct cgroup *cgrp = &root->top_cgroup;
1290 struct cgroup_sb_opts opts;
1291
1292 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
1293 mutex_lock(&cgroup_mutex);
1294 mutex_lock(&cgroup_root_mutex);
1295
1296 /* See what subsystems are wanted */
1297 ret = parse_cgroupfs_options(data, &opts);
1298 if (ret)
1299 goto out_unlock;
1300
1301 /* See feature-removal-schedule.txt */
1302 if (opts.subsys_bits != root->actual_subsys_bits || opts.release_agent)
1303 pr_warning("cgroup: option changes via remount are deprecated (pid=%d comm=%s)\n",
1304 task_tgid_nr(current), current->comm);
1305
1306 /* Don't allow flags or name to change at remount */
1307 if (opts.flags != root->flags ||
1308 (opts.name && strcmp(opts.name, root->name))) {
1309 ret = -EINVAL;
1310 drop_parsed_module_refcounts(opts.subsys_bits);
1311 goto out_unlock;
1312 }
1313
1314 ret = rebind_subsystems(root, opts.subsys_bits);
1315 if (ret) {
1316 drop_parsed_module_refcounts(opts.subsys_bits);
1317 goto out_unlock;
1318 }
1319
1320 /* clear out any existing files and repopulate subsystem files */
1321 cgroup_clear_directory(cgrp->dentry);
1322 cgroup_populate_dir(cgrp);
1323
1324 if (opts.release_agent)
1325 strcpy(root->release_agent_path, opts.release_agent);
1326 out_unlock:
1327 kfree(opts.release_agent);
1328 kfree(opts.name);
1329 mutex_unlock(&cgroup_root_mutex);
1330 mutex_unlock(&cgroup_mutex);
1331 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
1332 return ret;
1333 }
1334
1335 static const struct super_operations cgroup_ops = {
1336 .statfs = simple_statfs,
1337 .drop_inode = generic_delete_inode,
1338 .show_options = cgroup_show_options,
1339 .remount_fs = cgroup_remount,
1340 };
1341
1342 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1343 {
1344 INIT_LIST_HEAD(&cgrp->sibling);
1345 INIT_LIST_HEAD(&cgrp->children);
1346 INIT_LIST_HEAD(&cgrp->files);
1347 INIT_LIST_HEAD(&cgrp->css_sets);
1348 INIT_LIST_HEAD(&cgrp->release_list);
1349 INIT_LIST_HEAD(&cgrp->pidlists);
1350 mutex_init(&cgrp->pidlist_mutex);
1351 INIT_LIST_HEAD(&cgrp->event_list);
1352 spin_lock_init(&cgrp->event_list_lock);
1353 }
1354
1355 static void init_cgroup_root(struct cgroupfs_root *root)
1356 {
1357 struct cgroup *cgrp = &root->top_cgroup;
1358
1359 INIT_LIST_HEAD(&root->subsys_list);
1360 INIT_LIST_HEAD(&root->root_list);
1361 INIT_LIST_HEAD(&root->allcg_list);
1362 root->number_of_cgroups = 1;
1363 cgrp->root = root;
1364 cgrp->top_cgroup = cgrp;
1365 list_add_tail(&cgrp->allcg_node, &root->allcg_list);
1366 init_cgroup_housekeeping(cgrp);
1367 }
1368
1369 static bool init_root_id(struct cgroupfs_root *root)
1370 {
1371 int ret = 0;
1372
1373 do {
1374 if (!ida_pre_get(&hierarchy_ida, GFP_KERNEL))
1375 return false;
1376 spin_lock(&hierarchy_id_lock);
1377 /* Try to allocate the next unused ID */
1378 ret = ida_get_new_above(&hierarchy_ida, next_hierarchy_id,
1379 &root->hierarchy_id);
1380 if (ret == -ENOSPC)
1381 /* Try again starting from 0 */
1382 ret = ida_get_new(&hierarchy_ida, &root->hierarchy_id);
1383 if (!ret) {
1384 next_hierarchy_id = root->hierarchy_id + 1;
1385 } else if (ret != -EAGAIN) {
1386 /* Can only get here if the 31-bit IDR is full ... */
1387 BUG_ON(ret);
1388 }
1389 spin_unlock(&hierarchy_id_lock);
1390 } while (ret);
1391 return true;
1392 }
1393
1394 static int cgroup_test_super(struct super_block *sb, void *data)
1395 {
1396 struct cgroup_sb_opts *opts = data;
1397 struct cgroupfs_root *root = sb->s_fs_info;
1398
1399 /* If we asked for a name then it must match */
1400 if (opts->name && strcmp(opts->name, root->name))
1401 return 0;
1402
1403 /*
1404 * If we asked for subsystems (or explicitly for no
1405 * subsystems) then they must match
1406 */
1407 if ((opts->subsys_bits || opts->none)
1408 && (opts->subsys_bits != root->subsys_bits))
1409 return 0;
1410
1411 return 1;
1412 }
1413
1414 static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
1415 {
1416 struct cgroupfs_root *root;
1417
1418 if (!opts->subsys_bits && !opts->none)
1419 return NULL;
1420
1421 root = kzalloc(sizeof(*root), GFP_KERNEL);
1422 if (!root)
1423 return ERR_PTR(-ENOMEM);
1424
1425 if (!init_root_id(root)) {
1426 kfree(root);
1427 return ERR_PTR(-ENOMEM);
1428 }
1429 init_cgroup_root(root);
1430
1431 root->subsys_bits = opts->subsys_bits;
1432 root->flags = opts->flags;
1433 if (opts->release_agent)
1434 strcpy(root->release_agent_path, opts->release_agent);
1435 if (opts->name)
1436 strcpy(root->name, opts->name);
1437 if (opts->clone_children)
1438 set_bit(CGRP_CLONE_CHILDREN, &root->top_cgroup.flags);
1439 return root;
1440 }
1441
1442 static void cgroup_drop_root(struct cgroupfs_root *root)
1443 {
1444 if (!root)
1445 return;
1446
1447 BUG_ON(!root->hierarchy_id);
1448 spin_lock(&hierarchy_id_lock);
1449 ida_remove(&hierarchy_ida, root->hierarchy_id);
1450 spin_unlock(&hierarchy_id_lock);
1451 kfree(root);
1452 }
1453
1454 static int cgroup_set_super(struct super_block *sb, void *data)
1455 {
1456 int ret;
1457 struct cgroup_sb_opts *opts = data;
1458
1459 /* If we don't have a new root, we can't set up a new sb */
1460 if (!opts->new_root)
1461 return -EINVAL;
1462
1463 BUG_ON(!opts->subsys_bits && !opts->none);
1464
1465 ret = set_anon_super(sb, NULL);
1466 if (ret)
1467 return ret;
1468
1469 sb->s_fs_info = opts->new_root;
1470 opts->new_root->sb = sb;
1471
1472 sb->s_blocksize = PAGE_CACHE_SIZE;
1473 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
1474 sb->s_magic = CGROUP_SUPER_MAGIC;
1475 sb->s_op = &cgroup_ops;
1476
1477 return 0;
1478 }
1479
1480 static int cgroup_get_rootdir(struct super_block *sb)
1481 {
1482 static const struct dentry_operations cgroup_dops = {
1483 .d_iput = cgroup_diput,
1484 .d_delete = cgroup_delete,
1485 };
1486
1487 struct inode *inode =
1488 cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
1489
1490 if (!inode)
1491 return -ENOMEM;
1492
1493 inode->i_fop = &simple_dir_operations;
1494 inode->i_op = &cgroup_dir_inode_operations;
1495 /* directories start off with i_nlink == 2 (for "." entry) */
1496 inc_nlink(inode);
1497 sb->s_root = d_make_root(inode);
1498 if (!sb->s_root)
1499 return -ENOMEM;
1500 /* for everything else we want ->d_op set */
1501 sb->s_d_op = &cgroup_dops;
1502 return 0;
1503 }
1504
1505 static struct dentry *cgroup_mount(struct file_system_type *fs_type,
1506 int flags, const char *unused_dev_name,
1507 void *data)
1508 {
1509 struct cgroup_sb_opts opts;
1510 struct cgroupfs_root *root;
1511 int ret = 0;
1512 struct super_block *sb;
1513 struct cgroupfs_root *new_root;
1514 struct inode *inode;
1515
1516 /* First find the desired set of subsystems */
1517 mutex_lock(&cgroup_mutex);
1518 ret = parse_cgroupfs_options(data, &opts);
1519 mutex_unlock(&cgroup_mutex);
1520 if (ret)
1521 goto out_err;
1522
1523 /*
1524 * Allocate a new cgroup root. We may not need it if we're
1525 * reusing an existing hierarchy.
1526 */
1527 new_root = cgroup_root_from_opts(&opts);
1528 if (IS_ERR(new_root)) {
1529 ret = PTR_ERR(new_root);
1530 goto drop_modules;
1531 }
1532 opts.new_root = new_root;
1533
1534 /* Locate an existing or new sb for this hierarchy */
1535 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, 0, &opts);
1536 if (IS_ERR(sb)) {
1537 ret = PTR_ERR(sb);
1538 cgroup_drop_root(opts.new_root);
1539 goto drop_modules;
1540 }
1541
1542 root = sb->s_fs_info;
1543 BUG_ON(!root);
1544 if (root == opts.new_root) {
1545 /* We used the new root structure, so this is a new hierarchy */
1546 struct list_head tmp_cg_links;
1547 struct cgroup *root_cgrp = &root->top_cgroup;
1548 struct cgroupfs_root *existing_root;
1549 const struct cred *cred;
1550 int i;
1551
1552 BUG_ON(sb->s_root != NULL);
1553
1554 ret = cgroup_get_rootdir(sb);
1555 if (ret)
1556 goto drop_new_super;
1557 inode = sb->s_root->d_inode;
1558
1559 mutex_lock(&inode->i_mutex);
1560 mutex_lock(&cgroup_mutex);
1561 mutex_lock(&cgroup_root_mutex);
1562
1563 /* Check for name clashes with existing mounts */
1564 ret = -EBUSY;
1565 if (strlen(root->name))
1566 for_each_active_root(existing_root)
1567 if (!strcmp(existing_root->name, root->name))
1568 goto unlock_drop;
1569
1570 /*
1571 * We're accessing css_set_count without locking
1572 * css_set_lock here, but that's OK - it can only be
1573 * increased by someone holding cgroup_lock, and
1574 * that's us. The worst that can happen is that we
1575 * have some link structures left over
1576 */
1577 ret = allocate_cg_links(css_set_count, &tmp_cg_links);
1578 if (ret)
1579 goto unlock_drop;
1580
1581 ret = rebind_subsystems(root, root->subsys_bits);
1582 if (ret == -EBUSY) {
1583 free_cg_links(&tmp_cg_links);
1584 goto unlock_drop;
1585 }
1586 /*
1587 * There must be no failure case after here, since rebinding
1588 * takes care of subsystems' refcounts, which are explicitly
1589 * dropped in the failure exit path.
1590 */
1591
1592 /* EBUSY should be the only error here */
1593 BUG_ON(ret);
1594
1595 list_add(&root->root_list, &roots);
1596 root_count++;
1597
1598 sb->s_root->d_fsdata = root_cgrp;
1599 root->top_cgroup.dentry = sb->s_root;
1600
1601 /* Link the top cgroup in this hierarchy into all
1602 * the css_set objects */
1603 write_lock(&css_set_lock);
1604 for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
1605 struct hlist_head *hhead = &css_set_table[i];
1606 struct hlist_node *node;
1607 struct css_set *cg;
1608
1609 hlist_for_each_entry(cg, node, hhead, hlist)
1610 link_css_set(&tmp_cg_links, cg, root_cgrp);
1611 }
1612 write_unlock(&css_set_lock);
1613
1614 free_cg_links(&tmp_cg_links);
1615
1616 BUG_ON(!list_empty(&root_cgrp->sibling));
1617 BUG_ON(!list_empty(&root_cgrp->children));
1618 BUG_ON(root->number_of_cgroups != 1);
1619
1620 cred = override_creds(&init_cred);
1621 cgroup_populate_dir(root_cgrp);
1622 revert_creds(cred);
1623 mutex_unlock(&cgroup_root_mutex);
1624 mutex_unlock(&cgroup_mutex);
1625 mutex_unlock(&inode->i_mutex);
1626 } else {
1627 /*
1628 * We re-used an existing hierarchy - the new root (if
1629 * any) is not needed
1630 */
1631 cgroup_drop_root(opts.new_root);
1632 /* no subsys rebinding, so refcounts don't change */
1633 drop_parsed_module_refcounts(opts.subsys_bits);
1634 }
1635
1636 kfree(opts.release_agent);
1637 kfree(opts.name);
1638 return dget(sb->s_root);
1639
1640 unlock_drop:
1641 mutex_unlock(&cgroup_root_mutex);
1642 mutex_unlock(&cgroup_mutex);
1643 mutex_unlock(&inode->i_mutex);
1644 drop_new_super:
1645 deactivate_locked_super(sb);
1646 drop_modules:
1647 drop_parsed_module_refcounts(opts.subsys_bits);
1648 out_err:
1649 kfree(opts.release_agent);
1650 kfree(opts.name);
1651 return ERR_PTR(ret);
1652 }
1653
1654 static void cgroup_kill_sb(struct super_block *sb) {
1655 struct cgroupfs_root *root = sb->s_fs_info;
1656 struct cgroup *cgrp = &root->top_cgroup;
1657 int ret;
1658 struct cg_cgroup_link *link;
1659 struct cg_cgroup_link *saved_link;
1660
1661 BUG_ON(!root);
1662
1663 BUG_ON(root->number_of_cgroups != 1);
1664 BUG_ON(!list_empty(&cgrp->children));
1665 BUG_ON(!list_empty(&cgrp->sibling));
1666
1667 mutex_lock(&cgroup_mutex);
1668 mutex_lock(&cgroup_root_mutex);
1669
1670 /* Rebind all subsystems back to the default hierarchy */
1671 ret = rebind_subsystems(root, 0);
1672 /* Shouldn't be able to fail ... */
1673 BUG_ON(ret);
1674
1675 /*
1676 * Release all the links from css_sets to this hierarchy's
1677 * root cgroup
1678 */
1679 write_lock(&css_set_lock);
1680
1681 list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
1682 cgrp_link_list) {
1683 list_del(&link->cg_link_list);
1684 list_del(&link->cgrp_link_list);
1685 kfree(link);
1686 }
1687 write_unlock(&css_set_lock);
1688
1689 if (!list_empty(&root->root_list)) {
1690 list_del(&root->root_list);
1691 root_count--;
1692 }
1693
1694 mutex_unlock(&cgroup_root_mutex);
1695 mutex_unlock(&cgroup_mutex);
1696
1697 kill_litter_super(sb);
1698 cgroup_drop_root(root);
1699 }
1700
1701 static struct file_system_type cgroup_fs_type = {
1702 .name = "cgroup",
1703 .mount = cgroup_mount,
1704 .kill_sb = cgroup_kill_sb,
1705 };
1706
1707 static struct kobject *cgroup_kobj;
1708
1709 /**
1710 * cgroup_path - generate the path of a cgroup
1711 * @cgrp: the cgroup in question
1712 * @buf: the buffer to write the path into
1713 * @buflen: the length of the buffer
1714 *
1715 * Called with cgroup_mutex held or else with an RCU-protected cgroup
1716 * reference. Writes path of cgroup into buf. Returns 0 on success,
1717 * -errno on error.
1718 */
1719 int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1720 {
1721 char *start;
1722 struct dentry *dentry = rcu_dereference_check(cgrp->dentry,
1723 cgroup_lock_is_held());
1724
1725 if (!dentry || cgrp == dummytop) {
1726 /*
1727 * Inactive subsystems have no dentry for their root
1728 * cgroup
1729 */
1730 strcpy(buf, "/");
1731 return 0;
1732 }
1733
1734 start = buf + buflen;
1735
1736 *--start = '\0';
1737 for (;;) {
1738 int len = dentry->d_name.len;
1739
1740 if ((start -= len) < buf)
1741 return -ENAMETOOLONG;
1742 memcpy(start, dentry->d_name.name, len);
1743 cgrp = cgrp->parent;
1744 if (!cgrp)
1745 break;
1746
1747 dentry = rcu_dereference_check(cgrp->dentry,
1748 cgroup_lock_is_held());
1749 if (!cgrp->parent)
1750 continue;
1751 if (--start < buf)
1752 return -ENAMETOOLONG;
1753 *start = '/';
1754 }
1755 memmove(buf, start, buf + buflen - start);
1756 return 0;
1757 }
1758 EXPORT_SYMBOL_GPL(cgroup_path);
1759
1760 /*
1761 * Control Group taskset
1762 */
1763 struct task_and_cgroup {
1764 struct task_struct *task;
1765 struct cgroup *cgrp;
1766 struct css_set *cg;
1767 };
1768
1769 struct cgroup_taskset {
1770 struct task_and_cgroup single;
1771 struct flex_array *tc_array;
1772 int tc_array_len;
1773 int idx;
1774 struct cgroup *cur_cgrp;
1775 };
1776
1777 /**
1778 * cgroup_taskset_first - reset taskset and return the first task
1779 * @tset: taskset of interest
1780 *
1781 * @tset iteration is initialized and the first task is returned.
1782 */
1783 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
1784 {
1785 if (tset->tc_array) {
1786 tset->idx = 0;
1787 return cgroup_taskset_next(tset);
1788 } else {
1789 tset->cur_cgrp = tset->single.cgrp;
1790 return tset->single.task;
1791 }
1792 }
1793 EXPORT_SYMBOL_GPL(cgroup_taskset_first);
1794
1795 /**
1796 * cgroup_taskset_next - iterate to the next task in taskset
1797 * @tset: taskset of interest
1798 *
1799 * Return the next task in @tset. Iteration must have been initialized
1800 * with cgroup_taskset_first().
1801 */
1802 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
1803 {
1804 struct task_and_cgroup *tc;
1805
1806 if (!tset->tc_array || tset->idx >= tset->tc_array_len)
1807 return NULL;
1808
1809 tc = flex_array_get(tset->tc_array, tset->idx++);
1810 tset->cur_cgrp = tc->cgrp;
1811 return tc->task;
1812 }
1813 EXPORT_SYMBOL_GPL(cgroup_taskset_next);
1814
1815 /**
1816 * cgroup_taskset_cur_cgroup - return the matching cgroup for the current task
1817 * @tset: taskset of interest
1818 *
1819 * Return the cgroup for the current (last returned) task of @tset. This
1820 * function must be preceded by either cgroup_taskset_first() or
1821 * cgroup_taskset_next().
1822 */
1823 struct cgroup *cgroup_taskset_cur_cgroup(struct cgroup_taskset *tset)
1824 {
1825 return tset->cur_cgrp;
1826 }
1827 EXPORT_SYMBOL_GPL(cgroup_taskset_cur_cgroup);
1828
1829 /**
1830 * cgroup_taskset_size - return the number of tasks in taskset
1831 * @tset: taskset of interest
1832 */
1833 int cgroup_taskset_size(struct cgroup_taskset *tset)
1834 {
1835 return tset->tc_array ? tset->tc_array_len : 1;
1836 }
1837 EXPORT_SYMBOL_GPL(cgroup_taskset_size);
1838
1839
1840 /*
1841 * cgroup_task_migrate - move a task from one cgroup to another.
1842 *
1843 * 'guarantee' is set if the caller promises that a new css_set for the task
1844 * will already exist. If not set, this function might sleep, and can fail with
1845 * -ENOMEM. Must be called with cgroup_mutex and threadgroup locked.
1846 */
1847 static void cgroup_task_migrate(struct cgroup *cgrp, struct cgroup *oldcgrp,
1848 struct task_struct *tsk, struct css_set *newcg)
1849 {
1850 struct css_set *oldcg;
1851
1852 /*
1853 * We are synchronized through threadgroup_lock() against PF_EXITING
1854 * setting such that we can't race against cgroup_exit() changing the
1855 * css_set to init_css_set and dropping the old one.
1856 */
1857 WARN_ON_ONCE(tsk->flags & PF_EXITING);
1858 oldcg = tsk->cgroups;
1859
1860 task_lock(tsk);
1861 rcu_assign_pointer(tsk->cgroups, newcg);
1862 task_unlock(tsk);
1863
1864 /* Update the css_set linked lists if we're using them */
1865 write_lock(&css_set_lock);
1866 if (!list_empty(&tsk->cg_list))
1867 list_move(&tsk->cg_list, &newcg->tasks);
1868 write_unlock(&css_set_lock);
1869
1870 /*
1871 * We just gained a reference on oldcg by taking it from the task. As
1872 * trading it for newcg is protected by cgroup_mutex, we're safe to drop
1873 * it here; it will be freed under RCU.
1874 */
1875 put_css_set(oldcg);
1876
1877 set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
1878 }
1879
1880 /**
1881 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
1882 * @cgrp: the cgroup the task is attaching to
1883 * @tsk: the task to be attached
1884 *
1885 * Call with cgroup_mutex and threadgroup locked. May take task_lock of
1886 * @tsk during call.
1887 */
1888 int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
1889 {
1890 int retval = 0;
1891 struct cgroup_subsys *ss, *failed_ss = NULL;
1892 struct cgroup *oldcgrp;
1893 struct cgroupfs_root *root = cgrp->root;
1894 struct cgroup_taskset tset = { };
1895 struct css_set *newcg;
1896
1897 /* @tsk either already exited or can't exit until the end */
1898 if (tsk->flags & PF_EXITING)
1899 return -ESRCH;
1900
1901 /* Nothing to do if the task is already in that cgroup */
1902 oldcgrp = task_cgroup_from_root(tsk, root);
1903 if (cgrp == oldcgrp)
1904 return 0;
1905
1906 tset.single.task = tsk;
1907 tset.single.cgrp = oldcgrp;
1908
1909 for_each_subsys(root, ss) {
1910 if (ss->can_attach) {
1911 retval = ss->can_attach(cgrp, &tset);
1912 if (retval) {
1913 /*
1914 * Remember on which subsystem the can_attach()
1915 * failed, so that we only call cancel_attach()
1916 * against the subsystems whose can_attach()
1917 * succeeded. (See below)
1918 */
1919 failed_ss = ss;
1920 goto out;
1921 }
1922 }
1923 }
1924
1925 newcg = find_css_set(tsk->cgroups, cgrp);
1926 if (!newcg) {
1927 retval = -ENOMEM;
1928 goto out;
1929 }
1930
1931 cgroup_task_migrate(cgrp, oldcgrp, tsk, newcg);
1932
1933 for_each_subsys(root, ss) {
1934 if (ss->attach)
1935 ss->attach(cgrp, &tset);
1936 }
1937
1938 synchronize_rcu();
1939 out:
1940 if (retval) {
1941 for_each_subsys(root, ss) {
1942 if (ss == failed_ss)
1943 /*
1944 * This subsystem was the one that failed the
1945 * can_attach() check earlier, so we don't need
1946 * to call cancel_attach() against it or any
1947 * remaining subsystems.
1948 */
1949 break;
1950 if (ss->cancel_attach)
1951 ss->cancel_attach(cgrp, &tset);
1952 }
1953 }
1954 return retval;
1955 }
1956
1957 /**
1958 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
1959 * @from: attach to all cgroups of a given task
1960 * @tsk: the task to be attached
1961 */
1962 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
1963 {
1964 struct cgroupfs_root *root;
1965 int retval = 0;
1966
1967 cgroup_lock();
1968 for_each_active_root(root) {
1969 struct cgroup *from_cg = task_cgroup_from_root(from, root);
1970
1971 retval = cgroup_attach_task(from_cg, tsk);
1972 if (retval)
1973 break;
1974 }
1975 cgroup_unlock();
1976
1977 return retval;
1978 }
1979 EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
1980
1981 /**
1982 * cgroup_attach_proc - attach all threads in a threadgroup to a cgroup
1983 * @cgrp: the cgroup to attach to
1984 * @leader: the threadgroup leader task_struct of the group to be attached
1985 *
1986 * Call holding cgroup_mutex and the group_rwsem of the leader. Will take
1987 * task_lock of each thread in leader's threadgroup individually in turn.
1988 */
1989 static int cgroup_attach_proc(struct cgroup *cgrp, struct task_struct *leader)
1990 {
1991 int retval, i, group_size;
1992 struct cgroup_subsys *ss, *failed_ss = NULL;
1993 /* guaranteed to be initialized later, but the compiler needs this */
1994 struct cgroupfs_root *root = cgrp->root;
1995 /* threadgroup list cursor and array */
1996 struct task_struct *tsk;
1997 struct task_and_cgroup *tc;
1998 struct flex_array *group;
1999 struct cgroup_taskset tset = { };
2000
2001 /*
2002 * step 0: in order to do expensive, possibly blocking operations for
2003 * every thread, we cannot iterate the thread group list, since it needs
2004 * rcu or tasklist locked. instead, build an array of all threads in the
2005 * group - group_rwsem prevents new threads from appearing, and if
2006 * threads exit, this will just be an over-estimate.
2007 */
2008 group_size = get_nr_threads(leader);
2009 /* flex_array supports very large thread-groups better than kmalloc. */
2010 group = flex_array_alloc(sizeof(*tc), group_size, GFP_KERNEL);
2011 if (!group)
2012 return -ENOMEM;
2013 /* pre-allocate to guarantee space while iterating in rcu read-side. */
2014 retval = flex_array_prealloc(group, 0, group_size - 1, GFP_KERNEL);
2015 if (retval)
2016 goto out_free_group_list;
2017
2018 tsk = leader;
2019 i = 0;
2020 /*
2021 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2022 * already PF_EXITING could be freed from underneath us unless we
2023 * take an rcu_read_lock.
2024 */
2025 rcu_read_lock();
2026 do {
2027 struct task_and_cgroup ent;
2028
2029 /* @tsk either already exited or can't exit until the end */
2030 if (tsk->flags & PF_EXITING)
2031 continue;
2032
2033 /* as per above, nr_threads may decrease, but not increase. */
2034 BUG_ON(i >= group_size);
2035 ent.task = tsk;
2036 ent.cgrp = task_cgroup_from_root(tsk, root);
2037 /* nothing to do if this task is already in the cgroup */
2038 if (ent.cgrp == cgrp)
2039 continue;
2040 /*
2041 * saying GFP_ATOMIC has no effect here because we did prealloc
2042 * earlier, but it's good form to communicate our expectations.
2043 */
2044 retval = flex_array_put(group, i, &ent, GFP_ATOMIC);
2045 BUG_ON(retval != 0);
2046 i++;
2047 } while_each_thread(leader, tsk);
2048 rcu_read_unlock();
2049 /* remember the number of threads in the array for later. */
2050 group_size = i;
2051 tset.tc_array = group;
2052 tset.tc_array_len = group_size;
2053
2054 /* methods shouldn't be called if no task is actually migrating */
2055 retval = 0;
2056 if (!group_size)
2057 goto out_free_group_list;
2058
2059 /*
2060 * step 1: check that we can legitimately attach to the cgroup.
2061 */
2062 for_each_subsys(root, ss) {
2063 if (ss->can_attach) {
2064 retval = ss->can_attach(cgrp, &tset);
2065 if (retval) {
2066 failed_ss = ss;
2067 goto out_cancel_attach;
2068 }
2069 }
2070 }
2071
2072 /*
2073 * step 2: make sure css_sets exist for all threads to be migrated.
2074 * we use find_css_set, which allocates a new one if necessary.
2075 */
2076 for (i = 0; i < group_size; i++) {
2077 tc = flex_array_get(group, i);
2078 tc->cg = find_css_set(tc->task->cgroups, cgrp);
2079 if (!tc->cg) {
2080 retval = -ENOMEM;
2081 goto out_put_css_set_refs;
2082 }
2083 }
2084
2085 /*
2086 * step 3: now that we're guaranteed success wrt the css_sets,
2087 * proceed to move all tasks to the new cgroup. There are no
2088 * failure cases after here, so this is the commit point.
2089 */
2090 for (i = 0; i < group_size; i++) {
2091 tc = flex_array_get(group, i);
2092 cgroup_task_migrate(cgrp, tc->cgrp, tc->task, tc->cg);
2093 }
2094 /* nothing is sensitive to fork() after this point. */
2095
2096 /*
2097 * step 4: do subsystem attach callbacks.
2098 */
2099 for_each_subsys(root, ss) {
2100 if (ss->attach)
2101 ss->attach(cgrp, &tset);
2102 }
2103
2104 /*
2105 * step 5: success! and cleanup
2106 */
2107 synchronize_rcu();
2108 retval = 0;
2109 out_put_css_set_refs:
2110 if (retval) {
2111 for (i = 0; i < group_size; i++) {
2112 tc = flex_array_get(group, i);
2113 if (!tc->cg)
2114 break;
2115 put_css_set(tc->cg);
2116 }
2117 }
2118 out_cancel_attach:
2119 if (retval) {
2120 for_each_subsys(root, ss) {
2121 if (ss == failed_ss)
2122 break;
2123 if (ss->cancel_attach)
2124 ss->cancel_attach(cgrp, &tset);
2125 }
2126 }
2127 out_free_group_list:
2128 flex_array_free(group);
2129 return retval;
2130 }
2131
2132 /*
2133 * Find the task_struct of the task to attach by vpid and pass it along to the
2134 * function to attach either it or all tasks in its threadgroup. Will lock
2135 * cgroup_mutex and threadgroup; may take task_lock of task.
2136 */
2137 static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
2138 {
2139 struct task_struct *tsk;
2140 const struct cred *cred = current_cred(), *tcred;
2141 int ret;
2142
2143 if (!cgroup_lock_live_group(cgrp))
2144 return -ENODEV;
2145
2146 retry_find_task:
2147 rcu_read_lock();
2148 if (pid) {
2149 tsk = find_task_by_vpid(pid);
2150 if (!tsk) {
2151 rcu_read_unlock();
2152 ret= -ESRCH;
2153 goto out_unlock_cgroup;
2154 }
2155 /*
2156 * even if we're attaching all tasks in the thread group, we
2157 * only need to check permissions on one of them.
2158 */
2159 tcred = __task_cred(tsk);
2160 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2161 !uid_eq(cred->euid, tcred->uid) &&
2162 !uid_eq(cred->euid, tcred->suid)) {
2163 rcu_read_unlock();
2164 ret = -EACCES;
2165 goto out_unlock_cgroup;
2166 }
2167 } else
2168 tsk = current;
2169
2170 if (threadgroup)
2171 tsk = tsk->group_leader;
2172
2173 /*
2174 * Workqueue threads may acquire PF_THREAD_BOUND and become
2175 * trapped in a cpuset, or RT worker may be born in a cgroup
2176 * with no rt_runtime allocated. Just say no.
2177 */
2178 if (tsk == kthreadd_task || (tsk->flags & PF_THREAD_BOUND)) {
2179 ret = -EINVAL;
2180 rcu_read_unlock();
2181 goto out_unlock_cgroup;
2182 }
2183
2184 get_task_struct(tsk);
2185 rcu_read_unlock();
2186
2187 threadgroup_lock(tsk);
2188 if (threadgroup) {
2189 if (!thread_group_leader(tsk)) {
2190 /*
2191 * a race with de_thread from another thread's exec()
2192 * may strip us of our leadership, if this happens,
2193 * there is no choice but to throw this task away and
2194 * try again; this is
2195 * "double-double-toil-and-trouble-check locking".
2196 */
2197 threadgroup_unlock(tsk);
2198 put_task_struct(tsk);
2199 goto retry_find_task;
2200 }
2201 ret = cgroup_attach_proc(cgrp, tsk);
2202 } else
2203 ret = cgroup_attach_task(cgrp, tsk);
2204 threadgroup_unlock(tsk);
2205
2206 put_task_struct(tsk);
2207 out_unlock_cgroup:
2208 cgroup_unlock();
2209 return ret;
2210 }
2211
2212 static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
2213 {
2214 return attach_task_by_pid(cgrp, pid, false);
2215 }
2216
2217 static int cgroup_procs_write(struct cgroup *cgrp, struct cftype *cft, u64 tgid)
2218 {
2219 return attach_task_by_pid(cgrp, tgid, true);
2220 }
2221
2222 /**
2223 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
2224 * @cgrp: the cgroup to be checked for liveness
2225 *
2226 * On success, returns true; the lock should be later released with
2227 * cgroup_unlock(). On failure returns false with no lock held.
2228 */
2229 bool cgroup_lock_live_group(struct cgroup *cgrp)
2230 {
2231 mutex_lock(&cgroup_mutex);
2232 if (cgroup_is_removed(cgrp)) {
2233 mutex_unlock(&cgroup_mutex);
2234 return false;
2235 }
2236 return true;
2237 }
2238 EXPORT_SYMBOL_GPL(cgroup_lock_live_group);
2239
2240 static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
2241 const char *buffer)
2242 {
2243 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
2244 if (strlen(buffer) >= PATH_MAX)
2245 return -EINVAL;
2246 if (!cgroup_lock_live_group(cgrp))
2247 return -ENODEV;
2248 mutex_lock(&cgroup_root_mutex);
2249 strcpy(cgrp->root->release_agent_path, buffer);
2250 mutex_unlock(&cgroup_root_mutex);
2251 cgroup_unlock();
2252 return 0;
2253 }
2254
2255 static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
2256 struct seq_file *seq)
2257 {
2258 if (!cgroup_lock_live_group(cgrp))
2259 return -ENODEV;
2260 seq_puts(seq, cgrp->root->release_agent_path);
2261 seq_putc(seq, '\n');
2262 cgroup_unlock();
2263 return 0;
2264 }
2265
2266 /* A buffer size big enough for numbers or short strings */
2267 #define CGROUP_LOCAL_BUFFER_SIZE 64
2268
2269 static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
2270 struct file *file,
2271 const char __user *userbuf,
2272 size_t nbytes, loff_t *unused_ppos)
2273 {
2274 char buffer[CGROUP_LOCAL_BUFFER_SIZE];
2275 int retval = 0;
2276 char *end;
2277
2278 if (!nbytes)
2279 return -EINVAL;
2280 if (nbytes >= sizeof(buffer))
2281 return -E2BIG;
2282 if (copy_from_user(buffer, userbuf, nbytes))
2283 return -EFAULT;
2284
2285 buffer[nbytes] = 0; /* nul-terminate */
2286 if (cft->write_u64) {
2287 u64 val = simple_strtoull(strstrip(buffer), &end, 0);
2288 if (*end)
2289 return -EINVAL;
2290 retval = cft->write_u64(cgrp, cft, val);
2291 } else {
2292 s64 val = simple_strtoll(strstrip(buffer), &end, 0);
2293 if (*end)
2294 return -EINVAL;
2295 retval = cft->write_s64(cgrp, cft, val);
2296 }
2297 if (!retval)
2298 retval = nbytes;
2299 return retval;
2300 }
2301
2302 static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
2303 struct file *file,
2304 const char __user *userbuf,
2305 size_t nbytes, loff_t *unused_ppos)
2306 {
2307 char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
2308 int retval = 0;
2309 size_t max_bytes = cft->max_write_len;
2310 char *buffer = local_buffer;
2311
2312 if (!max_bytes)
2313 max_bytes = sizeof(local_buffer) - 1;
2314 if (nbytes >= max_bytes)
2315 return -E2BIG;
2316 /* Allocate a dynamic buffer if we need one */
2317 if (nbytes >= sizeof(local_buffer)) {
2318 buffer = kmalloc(nbytes + 1, GFP_KERNEL);
2319 if (buffer == NULL)
2320 return -ENOMEM;
2321 }
2322 if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
2323 retval = -EFAULT;
2324 goto out;
2325 }
2326
2327 buffer[nbytes] = 0; /* nul-terminate */
2328 retval = cft->write_string(cgrp, cft, strstrip(buffer));
2329 if (!retval)
2330 retval = nbytes;
2331 out:
2332 if (buffer != local_buffer)
2333 kfree(buffer);
2334 return retval;
2335 }
2336
2337 static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
2338 size_t nbytes, loff_t *ppos)
2339 {
2340 struct cftype *cft = __d_cft(file->f_dentry);
2341 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2342
2343 if (cgroup_is_removed(cgrp))
2344 return -ENODEV;
2345 if (cft->write)
2346 return cft->write(cgrp, cft, file, buf, nbytes, ppos);
2347 if (cft->write_u64 || cft->write_s64)
2348 return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
2349 if (cft->write_string)
2350 return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
2351 if (cft->trigger) {
2352 int ret = cft->trigger(cgrp, (unsigned int)cft->private);
2353 return ret ? ret : nbytes;
2354 }
2355 return -EINVAL;
2356 }
2357
2358 static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
2359 struct file *file,
2360 char __user *buf, size_t nbytes,
2361 loff_t *ppos)
2362 {
2363 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2364 u64 val = cft->read_u64(cgrp, cft);
2365 int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
2366
2367 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2368 }
2369
2370 static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
2371 struct file *file,
2372 char __user *buf, size_t nbytes,
2373 loff_t *ppos)
2374 {
2375 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2376 s64 val = cft->read_s64(cgrp, cft);
2377 int len = sprintf(tmp, "%lld\n", (long long) val);
2378
2379 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2380 }
2381
2382 static ssize_t cgroup_file_read(struct file *file, char __user *buf,
2383 size_t nbytes, loff_t *ppos)
2384 {
2385 struct cftype *cft = __d_cft(file->f_dentry);
2386 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2387
2388 if (cgroup_is_removed(cgrp))
2389 return -ENODEV;
2390
2391 if (cft->read)
2392 return cft->read(cgrp, cft, file, buf, nbytes, ppos);
2393 if (cft->read_u64)
2394 return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
2395 if (cft->read_s64)
2396 return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
2397 return -EINVAL;
2398 }
2399
2400 /*
2401 * seqfile ops/methods for returning structured data. Currently just
2402 * supports string->u64 maps, but can be extended in future.
2403 */
2404
2405 struct cgroup_seqfile_state {
2406 struct cftype *cft;
2407 struct cgroup *cgroup;
2408 };
2409
2410 static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
2411 {
2412 struct seq_file *sf = cb->state;
2413 return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
2414 }
2415
2416 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
2417 {
2418 struct cgroup_seqfile_state *state = m->private;
2419 struct cftype *cft = state->cft;
2420 if (cft->read_map) {
2421 struct cgroup_map_cb cb = {
2422 .fill = cgroup_map_add,
2423 .state = m,
2424 };
2425 return cft->read_map(state->cgroup, cft, &cb);
2426 }
2427 return cft->read_seq_string(state->cgroup, cft, m);
2428 }
2429
2430 static int cgroup_seqfile_release(struct inode *inode, struct file *file)
2431 {
2432 struct seq_file *seq = file->private_data;
2433 kfree(seq->private);
2434 return single_release(inode, file);
2435 }
2436
2437 static const struct file_operations cgroup_seqfile_operations = {
2438 .read = seq_read,
2439 .write = cgroup_file_write,
2440 .llseek = seq_lseek,
2441 .release = cgroup_seqfile_release,
2442 };
2443
2444 static int cgroup_file_open(struct inode *inode, struct file *file)
2445 {
2446 int err;
2447 struct cftype *cft;
2448
2449 err = generic_file_open(inode, file);
2450 if (err)
2451 return err;
2452 cft = __d_cft(file->f_dentry);
2453
2454 if (cft->read_map || cft->read_seq_string) {
2455 struct cgroup_seqfile_state *state =
2456 kzalloc(sizeof(*state), GFP_USER);
2457 if (!state)
2458 return -ENOMEM;
2459 state->cft = cft;
2460 state->cgroup = __d_cgrp(file->f_dentry->d_parent);
2461 file->f_op = &cgroup_seqfile_operations;
2462 err = single_open(file, cgroup_seqfile_show, state);
2463 if (err < 0)
2464 kfree(state);
2465 } else if (cft->open)
2466 err = cft->open(inode, file);
2467 else
2468 err = 0;
2469
2470 return err;
2471 }
2472
2473 static int cgroup_file_release(struct inode *inode, struct file *file)
2474 {
2475 struct cftype *cft = __d_cft(file->f_dentry);
2476 if (cft->release)
2477 return cft->release(inode, file);
2478 return 0;
2479 }
2480
2481 /*
2482 * cgroup_rename - Only allow simple rename of directories in place.
2483 */
2484 static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
2485 struct inode *new_dir, struct dentry *new_dentry)
2486 {
2487 if (!S_ISDIR(old_dentry->d_inode->i_mode))
2488 return -ENOTDIR;
2489 if (new_dentry->d_inode)
2490 return -EEXIST;
2491 if (old_dir != new_dir)
2492 return -EIO;
2493 return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
2494 }
2495
2496 static const struct file_operations cgroup_file_operations = {
2497 .read = cgroup_file_read,
2498 .write = cgroup_file_write,
2499 .llseek = generic_file_llseek,
2500 .open = cgroup_file_open,
2501 .release = cgroup_file_release,
2502 };
2503
2504 static const struct inode_operations cgroup_dir_inode_operations = {
2505 .lookup = cgroup_lookup,
2506 .mkdir = cgroup_mkdir,
2507 .rmdir = cgroup_rmdir,
2508 .rename = cgroup_rename,
2509 };
2510
2511 static struct dentry *cgroup_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
2512 {
2513 if (dentry->d_name.len > NAME_MAX)
2514 return ERR_PTR(-ENAMETOOLONG);
2515 d_add(dentry, NULL);
2516 return NULL;
2517 }
2518
2519 /*
2520 * Check if a file is a control file
2521 */
2522 static inline struct cftype *__file_cft(struct file *file)
2523 {
2524 if (file->f_dentry->d_inode->i_fop != &cgroup_file_operations)
2525 return ERR_PTR(-EINVAL);
2526 return __d_cft(file->f_dentry);
2527 }
2528
2529 static int cgroup_create_file(struct dentry *dentry, umode_t mode,
2530 struct super_block *sb)
2531 {
2532 struct inode *inode;
2533
2534 if (!dentry)
2535 return -ENOENT;
2536 if (dentry->d_inode)
2537 return -EEXIST;
2538
2539 inode = cgroup_new_inode(mode, sb);
2540 if (!inode)
2541 return -ENOMEM;
2542
2543 if (S_ISDIR(mode)) {
2544 inode->i_op = &cgroup_dir_inode_operations;
2545 inode->i_fop = &simple_dir_operations;
2546
2547 /* start off with i_nlink == 2 (for "." entry) */
2548 inc_nlink(inode);
2549
2550 /* start with the directory inode held, so that we can
2551 * populate it without racing with another mkdir */
2552 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
2553 } else if (S_ISREG(mode)) {
2554 inode->i_size = 0;
2555 inode->i_fop = &cgroup_file_operations;
2556 }
2557 d_instantiate(dentry, inode);
2558 dget(dentry); /* Extra count - pin the dentry in core */
2559 return 0;
2560 }
2561
2562 /*
2563 * cgroup_create_dir - create a directory for an object.
2564 * @cgrp: the cgroup we create the directory for. It must have a valid
2565 * ->parent field. And we are going to fill its ->dentry field.
2566 * @dentry: dentry of the new cgroup
2567 * @mode: mode to set on new directory.
2568 */
2569 static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
2570 umode_t mode)
2571 {
2572 struct dentry *parent;
2573 int error = 0;
2574
2575 parent = cgrp->parent->dentry;
2576 error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
2577 if (!error) {
2578 dentry->d_fsdata = cgrp;
2579 inc_nlink(parent->d_inode);
2580 rcu_assign_pointer(cgrp->dentry, dentry);
2581 dget(dentry);
2582 }
2583 dput(dentry);
2584
2585 return error;
2586 }
2587
2588 /**
2589 * cgroup_file_mode - deduce file mode of a control file
2590 * @cft: the control file in question
2591 *
2592 * returns cft->mode if ->mode is not 0
2593 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
2594 * returns S_IRUGO if it has only a read handler
2595 * returns S_IWUSR if it has only a write hander
2596 */
2597 static umode_t cgroup_file_mode(const struct cftype *cft)
2598 {
2599 umode_t mode = 0;
2600
2601 if (cft->mode)
2602 return cft->mode;
2603
2604 if (cft->read || cft->read_u64 || cft->read_s64 ||
2605 cft->read_map || cft->read_seq_string)
2606 mode |= S_IRUGO;
2607
2608 if (cft->write || cft->write_u64 || cft->write_s64 ||
2609 cft->write_string || cft->trigger)
2610 mode |= S_IWUSR;
2611
2612 return mode;
2613 }
2614
2615 static int cgroup_add_file(struct cgroup *cgrp, struct cgroup_subsys *subsys,
2616 const struct cftype *cft)
2617 {
2618 struct dentry *dir = cgrp->dentry;
2619 struct cgroup *parent = __d_cgrp(dir);
2620 struct dentry *dentry;
2621 struct cfent *cfe;
2622 int error;
2623 umode_t mode;
2624 char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
2625
2626 /* does @cft->flags tell us to skip creation on @cgrp? */
2627 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgrp->parent)
2628 return 0;
2629 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgrp->parent)
2630 return 0;
2631
2632 if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
2633 strcpy(name, subsys->name);
2634 strcat(name, ".");
2635 }
2636 strcat(name, cft->name);
2637
2638 BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
2639
2640 cfe = kzalloc(sizeof(*cfe), GFP_KERNEL);
2641 if (!cfe)
2642 return -ENOMEM;
2643
2644 dentry = lookup_one_len(name, dir, strlen(name));
2645 if (IS_ERR(dentry)) {
2646 error = PTR_ERR(dentry);
2647 goto out;
2648 }
2649
2650 mode = cgroup_file_mode(cft);
2651 error = cgroup_create_file(dentry, mode | S_IFREG, cgrp->root->sb);
2652 if (!error) {
2653 cfe->type = (void *)cft;
2654 cfe->dentry = dentry;
2655 dentry->d_fsdata = cfe;
2656 list_add_tail(&cfe->node, &parent->files);
2657 cfe = NULL;
2658 }
2659 dput(dentry);
2660 out:
2661 kfree(cfe);
2662 return error;
2663 }
2664
2665 static int cgroup_addrm_files(struct cgroup *cgrp, struct cgroup_subsys *subsys,
2666 const struct cftype cfts[], bool is_add)
2667 {
2668 const struct cftype *cft;
2669 int err, ret = 0;
2670
2671 for (cft = cfts; cft->name[0] != '\0'; cft++) {
2672 if (is_add)
2673 err = cgroup_add_file(cgrp, subsys, cft);
2674 else
2675 err = cgroup_rm_file(cgrp, cft);
2676 if (err) {
2677 pr_warning("cgroup_addrm_files: failed to %s %s, err=%d\n",
2678 is_add ? "add" : "remove", cft->name, err);
2679 ret = err;
2680 }
2681 }
2682 return ret;
2683 }
2684
2685 static DEFINE_MUTEX(cgroup_cft_mutex);
2686
2687 static void cgroup_cfts_prepare(void)
2688 __acquires(&cgroup_cft_mutex) __acquires(&cgroup_mutex)
2689 {
2690 /*
2691 * Thanks to the entanglement with vfs inode locking, we can't walk
2692 * the existing cgroups under cgroup_mutex and create files.
2693 * Instead, we increment reference on all cgroups and build list of
2694 * them using @cgrp->cft_q_node. Grab cgroup_cft_mutex to ensure
2695 * exclusive access to the field.
2696 */
2697 mutex_lock(&cgroup_cft_mutex);
2698 mutex_lock(&cgroup_mutex);
2699 }
2700
2701 static void cgroup_cfts_commit(struct cgroup_subsys *ss,
2702 const struct cftype *cfts, bool is_add)
2703 __releases(&cgroup_mutex) __releases(&cgroup_cft_mutex)
2704 {
2705 LIST_HEAD(pending);
2706 struct cgroup *cgrp, *n;
2707
2708 /* %NULL @cfts indicates abort and don't bother if @ss isn't attached */
2709 if (cfts && ss->root != &rootnode) {
2710 list_for_each_entry(cgrp, &ss->root->allcg_list, allcg_node) {
2711 dget(cgrp->dentry);
2712 list_add_tail(&cgrp->cft_q_node, &pending);
2713 }
2714 }
2715
2716 mutex_unlock(&cgroup_mutex);
2717
2718 /*
2719 * All new cgroups will see @cfts update on @ss->cftsets. Add/rm
2720 * files for all cgroups which were created before.
2721 */
2722 list_for_each_entry_safe(cgrp, n, &pending, cft_q_node) {
2723 struct inode *inode = cgrp->dentry->d_inode;
2724
2725 mutex_lock(&inode->i_mutex);
2726 mutex_lock(&cgroup_mutex);
2727 if (!cgroup_is_removed(cgrp))
2728 cgroup_addrm_files(cgrp, ss, cfts, is_add);
2729 mutex_unlock(&cgroup_mutex);
2730 mutex_unlock(&inode->i_mutex);
2731
2732 list_del_init(&cgrp->cft_q_node);
2733 dput(cgrp->dentry);
2734 }
2735
2736 mutex_unlock(&cgroup_cft_mutex);
2737 }
2738
2739 /**
2740 * cgroup_add_cftypes - add an array of cftypes to a subsystem
2741 * @ss: target cgroup subsystem
2742 * @cfts: zero-length name terminated array of cftypes
2743 *
2744 * Register @cfts to @ss. Files described by @cfts are created for all
2745 * existing cgroups to which @ss is attached and all future cgroups will
2746 * have them too. This function can be called anytime whether @ss is
2747 * attached or not.
2748 *
2749 * Returns 0 on successful registration, -errno on failure. Note that this
2750 * function currently returns 0 as long as @cfts registration is successful
2751 * even if some file creation attempts on existing cgroups fail.
2752 */
2753 int cgroup_add_cftypes(struct cgroup_subsys *ss, const struct cftype *cfts)
2754 {
2755 struct cftype_set *set;
2756
2757 set = kzalloc(sizeof(*set), GFP_KERNEL);
2758 if (!set)
2759 return -ENOMEM;
2760
2761 cgroup_cfts_prepare();
2762 set->cfts = cfts;
2763 list_add_tail(&set->node, &ss->cftsets);
2764 cgroup_cfts_commit(ss, cfts, true);
2765
2766 return 0;
2767 }
2768 EXPORT_SYMBOL_GPL(cgroup_add_cftypes);
2769
2770 /**
2771 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
2772 * @ss: target cgroup subsystem
2773 * @cfts: zero-length name terminated array of cftypes
2774 *
2775 * Unregister @cfts from @ss. Files described by @cfts are removed from
2776 * all existing cgroups to which @ss is attached and all future cgroups
2777 * won't have them either. This function can be called anytime whether @ss
2778 * is attached or not.
2779 *
2780 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2781 * registered with @ss.
2782 */
2783 int cgroup_rm_cftypes(struct cgroup_subsys *ss, const struct cftype *cfts)
2784 {
2785 struct cftype_set *set;
2786
2787 cgroup_cfts_prepare();
2788
2789 list_for_each_entry(set, &ss->cftsets, node) {
2790 if (set->cfts == cfts) {
2791 list_del_init(&set->node);
2792 cgroup_cfts_commit(ss, cfts, false);
2793 return 0;
2794 }
2795 }
2796
2797 cgroup_cfts_commit(ss, NULL, false);
2798 return -ENOENT;
2799 }
2800
2801 /**
2802 * cgroup_task_count - count the number of tasks in a cgroup.
2803 * @cgrp: the cgroup in question
2804 *
2805 * Return the number of tasks in the cgroup.
2806 */
2807 int cgroup_task_count(const struct cgroup *cgrp)
2808 {
2809 int count = 0;
2810 struct cg_cgroup_link *link;
2811
2812 read_lock(&css_set_lock);
2813 list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
2814 count += atomic_read(&link->cg->refcount);
2815 }
2816 read_unlock(&css_set_lock);
2817 return count;
2818 }
2819
2820 /*
2821 * Advance a list_head iterator. The iterator should be positioned at
2822 * the start of a css_set
2823 */
2824 static void cgroup_advance_iter(struct cgroup *cgrp,
2825 struct cgroup_iter *it)
2826 {
2827 struct list_head *l = it->cg_link;
2828 struct cg_cgroup_link *link;
2829 struct css_set *cg;
2830
2831 /* Advance to the next non-empty css_set */
2832 do {
2833 l = l->next;
2834 if (l == &cgrp->css_sets) {
2835 it->cg_link = NULL;
2836 return;
2837 }
2838 link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
2839 cg = link->cg;
2840 } while (list_empty(&cg->tasks));
2841 it->cg_link = l;
2842 it->task = cg->tasks.next;
2843 }
2844
2845 /*
2846 * To reduce the fork() overhead for systems that are not actually
2847 * using their cgroups capability, we don't maintain the lists running
2848 * through each css_set to its tasks until we see the list actually
2849 * used - in other words after the first call to cgroup_iter_start().
2850 */
2851 static void cgroup_enable_task_cg_lists(void)
2852 {
2853 struct task_struct *p, *g;
2854 write_lock(&css_set_lock);
2855 use_task_css_set_links = 1;
2856 /*
2857 * We need tasklist_lock because RCU is not safe against
2858 * while_each_thread(). Besides, a forking task that has passed
2859 * cgroup_post_fork() without seeing use_task_css_set_links = 1
2860 * is not guaranteed to have its child immediately visible in the
2861 * tasklist if we walk through it with RCU.
2862 */
2863 read_lock(&tasklist_lock);
2864 do_each_thread(g, p) {
2865 task_lock(p);
2866 /*
2867 * We should check if the process is exiting, otherwise
2868 * it will race with cgroup_exit() in that the list
2869 * entry won't be deleted though the process has exited.
2870 */
2871 if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
2872 list_add(&p->cg_list, &p->cgroups->tasks);
2873 task_unlock(p);
2874 } while_each_thread(g, p);
2875 read_unlock(&tasklist_lock);
2876 write_unlock(&css_set_lock);
2877 }
2878
2879 void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
2880 __acquires(css_set_lock)
2881 {
2882 /*
2883 * The first time anyone tries to iterate across a cgroup,
2884 * we need to enable the list linking each css_set to its
2885 * tasks, and fix up all existing tasks.
2886 */
2887 if (!use_task_css_set_links)
2888 cgroup_enable_task_cg_lists();
2889
2890 read_lock(&css_set_lock);
2891 it->cg_link = &cgrp->css_sets;
2892 cgroup_advance_iter(cgrp, it);
2893 }
2894
2895 struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
2896 struct cgroup_iter *it)
2897 {
2898 struct task_struct *res;
2899 struct list_head *l = it->task;
2900 struct cg_cgroup_link *link;
2901
2902 /* If the iterator cg is NULL, we have no tasks */
2903 if (!it->cg_link)
2904 return NULL;
2905 res = list_entry(l, struct task_struct, cg_list);
2906 /* Advance iterator to find next entry */
2907 l = l->next;
2908 link = list_entry(it->cg_link, struct cg_cgroup_link, cgrp_link_list);
2909 if (l == &link->cg->tasks) {
2910 /* We reached the end of this task list - move on to
2911 * the next cg_cgroup_link */
2912 cgroup_advance_iter(cgrp, it);
2913 } else {
2914 it->task = l;
2915 }
2916 return res;
2917 }
2918
2919 void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
2920 __releases(css_set_lock)
2921 {
2922 read_unlock(&css_set_lock);
2923 }
2924
2925 static inline int started_after_time(struct task_struct *t1,
2926 struct timespec *time,
2927 struct task_struct *t2)
2928 {
2929 int start_diff = timespec_compare(&t1->start_time, time);
2930 if (start_diff > 0) {
2931 return 1;
2932 } else if (start_diff < 0) {
2933 return 0;
2934 } else {
2935 /*
2936 * Arbitrarily, if two processes started at the same
2937 * time, we'll say that the lower pointer value
2938 * started first. Note that t2 may have exited by now
2939 * so this may not be a valid pointer any longer, but
2940 * that's fine - it still serves to distinguish
2941 * between two tasks started (effectively) simultaneously.
2942 */
2943 return t1 > t2;
2944 }
2945 }
2946
2947 /*
2948 * This function is a callback from heap_insert() and is used to order
2949 * the heap.
2950 * In this case we order the heap in descending task start time.
2951 */
2952 static inline int started_after(void *p1, void *p2)
2953 {
2954 struct task_struct *t1 = p1;
2955 struct task_struct *t2 = p2;
2956 return started_after_time(t1, &t2->start_time, t2);
2957 }
2958
2959 /**
2960 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
2961 * @scan: struct cgroup_scanner containing arguments for the scan
2962 *
2963 * Arguments include pointers to callback functions test_task() and
2964 * process_task().
2965 * Iterate through all the tasks in a cgroup, calling test_task() for each,
2966 * and if it returns true, call process_task() for it also.
2967 * The test_task pointer may be NULL, meaning always true (select all tasks).
2968 * Effectively duplicates cgroup_iter_{start,next,end}()
2969 * but does not lock css_set_lock for the call to process_task().
2970 * The struct cgroup_scanner may be embedded in any structure of the caller's
2971 * creation.
2972 * It is guaranteed that process_task() will act on every task that
2973 * is a member of the cgroup for the duration of this call. This
2974 * function may or may not call process_task() for tasks that exit
2975 * or move to a different cgroup during the call, or are forked or
2976 * move into the cgroup during the call.
2977 *
2978 * Note that test_task() may be called with locks held, and may in some
2979 * situations be called multiple times for the same task, so it should
2980 * be cheap.
2981 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
2982 * pre-allocated and will be used for heap operations (and its "gt" member will
2983 * be overwritten), else a temporary heap will be used (allocation of which
2984 * may cause this function to fail).
2985 */
2986 int cgroup_scan_tasks(struct cgroup_scanner *scan)
2987 {
2988 int retval, i;
2989 struct cgroup_iter it;
2990 struct task_struct *p, *dropped;
2991 /* Never dereference latest_task, since it's not refcounted */
2992 struct task_struct *latest_task = NULL;
2993 struct ptr_heap tmp_heap;
2994 struct ptr_heap *heap;
2995 struct timespec latest_time = { 0, 0 };
2996
2997 if (scan->heap) {
2998 /* The caller supplied our heap and pre-allocated its memory */
2999 heap = scan->heap;
3000 heap->gt = &started_after;
3001 } else {
3002 /* We need to allocate our own heap memory */
3003 heap = &tmp_heap;
3004 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
3005 if (retval)
3006 /* cannot allocate the heap */
3007 return retval;
3008 }
3009
3010 again:
3011 /*
3012 * Scan tasks in the cgroup, using the scanner's "test_task" callback
3013 * to determine which are of interest, and using the scanner's
3014 * "process_task" callback to process any of them that need an update.
3015 * Since we don't want to hold any locks during the task updates,
3016 * gather tasks to be processed in a heap structure.
3017 * The heap is sorted by descending task start time.
3018 * If the statically-sized heap fills up, we overflow tasks that
3019 * started later, and in future iterations only consider tasks that
3020 * started after the latest task in the previous pass. This
3021 * guarantees forward progress and that we don't miss any tasks.
3022 */
3023 heap->size = 0;
3024 cgroup_iter_start(scan->cg, &it);
3025 while ((p = cgroup_iter_next(scan->cg, &it))) {
3026 /*
3027 * Only affect tasks that qualify per the caller's callback,
3028 * if he provided one
3029 */
3030 if (scan->test_task && !scan->test_task(p, scan))
3031 continue;
3032 /*
3033 * Only process tasks that started after the last task
3034 * we processed
3035 */
3036 if (!started_after_time(p, &latest_time, latest_task))
3037 continue;
3038 dropped = heap_insert(heap, p);
3039 if (dropped == NULL) {
3040 /*
3041 * The new task was inserted; the heap wasn't
3042 * previously full
3043 */
3044 get_task_struct(p);
3045 } else if (dropped != p) {
3046 /*
3047 * The new task was inserted, and pushed out a
3048 * different task
3049 */
3050 get_task_struct(p);
3051 put_task_struct(dropped);
3052 }
3053 /*
3054 * Else the new task was newer than anything already in
3055 * the heap and wasn't inserted
3056 */
3057 }
3058 cgroup_iter_end(scan->cg, &it);
3059
3060 if (heap->size) {
3061 for (i = 0; i < heap->size; i++) {
3062 struct task_struct *q = heap->ptrs[i];
3063 if (i == 0) {
3064 latest_time = q->start_time;
3065 latest_task = q;
3066 }
3067 /* Process the task per the caller's callback */
3068 scan->process_task(q, scan);
3069 put_task_struct(q);
3070 }
3071 /*
3072 * If we had to process any tasks at all, scan again
3073 * in case some of them were in the middle of forking
3074 * children that didn't get processed.
3075 * Not the most efficient way to do it, but it avoids
3076 * having to take callback_mutex in the fork path
3077 */
3078 goto again;
3079 }
3080 if (heap == &tmp_heap)
3081 heap_free(&tmp_heap);
3082 return 0;
3083 }
3084
3085 /*
3086 * Stuff for reading the 'tasks'/'procs' files.
3087 *
3088 * Reading this file can return large amounts of data if a cgroup has
3089 * *lots* of attached tasks. So it may need several calls to read(),
3090 * but we cannot guarantee that the information we produce is correct
3091 * unless we produce it entirely atomically.
3092 *
3093 */
3094
3095 /* which pidlist file are we talking about? */
3096 enum cgroup_filetype {
3097 CGROUP_FILE_PROCS,
3098 CGROUP_FILE_TASKS,
3099 };
3100
3101 /*
3102 * A pidlist is a list of pids that virtually represents the contents of one
3103 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
3104 * a pair (one each for procs, tasks) for each pid namespace that's relevant
3105 * to the cgroup.
3106 */
3107 struct cgroup_pidlist {
3108 /*
3109 * used to find which pidlist is wanted. doesn't change as long as
3110 * this particular list stays in the list.
3111 */
3112 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
3113 /* array of xids */
3114 pid_t *list;
3115 /* how many elements the above list has */
3116 int length;
3117 /* how many files are using the current array */
3118 int use_count;
3119 /* each of these stored in a list by its cgroup */
3120 struct list_head links;
3121 /* pointer to the cgroup we belong to, for list removal purposes */
3122 struct cgroup *owner;
3123 /* protects the other fields */
3124 struct rw_semaphore mutex;
3125 };
3126
3127 /*
3128 * The following two functions "fix" the issue where there are more pids
3129 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3130 * TODO: replace with a kernel-wide solution to this problem
3131 */
3132 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
3133 static void *pidlist_allocate(int count)
3134 {
3135 if (PIDLIST_TOO_LARGE(count))
3136 return vmalloc(count * sizeof(pid_t));
3137 else
3138 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
3139 }
3140 static void pidlist_free(void *p)
3141 {
3142 if (is_vmalloc_addr(p))
3143 vfree(p);
3144 else
3145 kfree(p);
3146 }
3147 static void *pidlist_resize(void *p, int newcount)
3148 {
3149 void *newlist;
3150 /* note: if new alloc fails, old p will still be valid either way */
3151 if (is_vmalloc_addr(p)) {
3152 newlist = vmalloc(newcount * sizeof(pid_t));
3153 if (!newlist)
3154 return NULL;
3155 memcpy(newlist, p, newcount * sizeof(pid_t));
3156 vfree(p);
3157 } else {
3158 newlist = krealloc(p, newcount * sizeof(pid_t), GFP_KERNEL);
3159 }
3160 return newlist;
3161 }
3162
3163 /*
3164 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
3165 * If the new stripped list is sufficiently smaller and there's enough memory
3166 * to allocate a new buffer, will let go of the unneeded memory. Returns the
3167 * number of unique elements.
3168 */
3169 /* is the size difference enough that we should re-allocate the array? */
3170 #define PIDLIST_REALLOC_DIFFERENCE(old, new) ((old) - PAGE_SIZE >= (new))
3171 static int pidlist_uniq(pid_t **p, int length)
3172 {
3173 int src, dest = 1;
3174 pid_t *list = *p;
3175 pid_t *newlist;
3176
3177 /*
3178 * we presume the 0th element is unique, so i starts at 1. trivial
3179 * edge cases first; no work needs to be done for either
3180 */
3181 if (length == 0 || length == 1)
3182 return length;
3183 /* src and dest walk down the list; dest counts unique elements */
3184 for (src = 1; src < length; src++) {
3185 /* find next unique element */
3186 while (list[src] == list[src-1]) {
3187 src++;
3188 if (src == length)
3189 goto after;
3190 }
3191 /* dest always points to where the next unique element goes */
3192 list[dest] = list[src];
3193 dest++;
3194 }
3195 after:
3196 /*
3197 * if the length difference is large enough, we want to allocate a
3198 * smaller buffer to save memory. if this fails due to out of memory,
3199 * we'll just stay with what we've got.
3200 */
3201 if (PIDLIST_REALLOC_DIFFERENCE(length, dest)) {
3202 newlist = pidlist_resize(list, dest);
3203 if (newlist)
3204 *p = newlist;
3205 }
3206 return dest;
3207 }
3208
3209 static int cmppid(const void *a, const void *b)
3210 {
3211 return *(pid_t *)a - *(pid_t *)b;
3212 }
3213
3214 /*
3215 * find the appropriate pidlist for our purpose (given procs vs tasks)
3216 * returns with the lock on that pidlist already held, and takes care
3217 * of the use count, or returns NULL with no locks held if we're out of
3218 * memory.
3219 */
3220 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3221 enum cgroup_filetype type)
3222 {
3223 struct cgroup_pidlist *l;
3224 /* don't need task_nsproxy() if we're looking at ourself */
3225 struct pid_namespace *ns = current->nsproxy->pid_ns;
3226
3227 /*
3228 * We can't drop the pidlist_mutex before taking the l->mutex in case
3229 * the last ref-holder is trying to remove l from the list at the same
3230 * time. Holding the pidlist_mutex precludes somebody taking whichever
3231 * list we find out from under us - compare release_pid_array().
3232 */
3233 mutex_lock(&cgrp->pidlist_mutex);
3234 list_for_each_entry(l, &cgrp->pidlists, links) {
3235 if (l->key.type == type && l->key.ns == ns) {
3236 /* make sure l doesn't vanish out from under us */
3237 down_write(&l->mutex);
3238 mutex_unlock(&cgrp->pidlist_mutex);
3239 return l;
3240 }
3241 }
3242 /* entry not found; create a new one */
3243 l = kmalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
3244 if (!l) {
3245 mutex_unlock(&cgrp->pidlist_mutex);
3246 return l;
3247 }
3248 init_rwsem(&l->mutex);
3249 down_write(&l->mutex);
3250 l->key.type = type;
3251 l->key.ns = get_pid_ns(ns);
3252 l->use_count = 0; /* don't increment here */
3253 l->list = NULL;
3254 l->owner = cgrp;
3255 list_add(&l->links, &cgrp->pidlists);
3256 mutex_unlock(&cgrp->pidlist_mutex);
3257 return l;
3258 }
3259
3260 /*
3261 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3262 */
3263 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3264 struct cgroup_pidlist **lp)
3265 {
3266 pid_t *array;
3267 int length;
3268 int pid, n = 0; /* used for populating the array */
3269 struct cgroup_iter it;
3270 struct task_struct *tsk;
3271 struct cgroup_pidlist *l;
3272
3273 /*
3274 * If cgroup gets more users after we read count, we won't have
3275 * enough space - tough. This race is indistinguishable to the
3276 * caller from the case that the additional cgroup users didn't
3277 * show up until sometime later on.
3278 */
3279 length = cgroup_task_count(cgrp);
3280 array = pidlist_allocate(length);
3281 if (!array)
3282 return -ENOMEM;
3283 /* now, populate the array */
3284 cgroup_iter_start(cgrp, &it);
3285 while ((tsk = cgroup_iter_next(cgrp, &it))) {
3286 if (unlikely(n == length))
3287 break;
3288 /* get tgid or pid for procs or tasks file respectively */
3289 if (type == CGROUP_FILE_PROCS)
3290 pid = task_tgid_vnr(tsk);
3291 else
3292 pid = task_pid_vnr(tsk);
3293 if (pid > 0) /* make sure to only use valid results */
3294 array[n++] = pid;
3295 }
3296 cgroup_iter_end(cgrp, &it);
3297 length = n;
3298 /* now sort & (if procs) strip out duplicates */
3299 sort(array, length, sizeof(pid_t), cmppid, NULL);
3300 if (type == CGROUP_FILE_PROCS)
3301 length = pidlist_uniq(&array, length);
3302 l = cgroup_pidlist_find(cgrp, type);
3303 if (!l) {
3304 pidlist_free(array);
3305 return -ENOMEM;
3306 }
3307 /* store array, freeing old if necessary - lock already held */
3308 pidlist_free(l->list);
3309 l->list = array;
3310 l->length = length;
3311 l->use_count++;
3312 up_write(&l->mutex);
3313 *lp = l;
3314 return 0;
3315 }
3316
3317 /**
3318 * cgroupstats_build - build and fill cgroupstats
3319 * @stats: cgroupstats to fill information into
3320 * @dentry: A dentry entry belonging to the cgroup for which stats have
3321 * been requested.
3322 *
3323 * Build and fill cgroupstats so that taskstats can export it to user
3324 * space.
3325 */
3326 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
3327 {
3328 int ret = -EINVAL;
3329 struct cgroup *cgrp;
3330 struct cgroup_iter it;
3331 struct task_struct *tsk;
3332
3333 /*
3334 * Validate dentry by checking the superblock operations,
3335 * and make sure it's a directory.
3336 */
3337 if (dentry->d_sb->s_op != &cgroup_ops ||
3338 !S_ISDIR(dentry->d_inode->i_mode))
3339 goto err;
3340
3341 ret = 0;
3342 cgrp = dentry->d_fsdata;
3343
3344 cgroup_iter_start(cgrp, &it);
3345 while ((tsk = cgroup_iter_next(cgrp, &it))) {
3346 switch (tsk->state) {
3347 case TASK_RUNNING:
3348 stats->nr_running++;
3349 break;
3350 case TASK_INTERRUPTIBLE:
3351 stats->nr_sleeping++;
3352 break;
3353 case TASK_UNINTERRUPTIBLE:
3354 stats->nr_uninterruptible++;
3355 break;
3356 case TASK_STOPPED:
3357 stats->nr_stopped++;
3358 break;
3359 default:
3360 if (delayacct_is_task_waiting_on_io(tsk))
3361 stats->nr_io_wait++;
3362 break;
3363 }
3364 }
3365 cgroup_iter_end(cgrp, &it);
3366
3367 err:
3368 return ret;
3369 }
3370
3371
3372 /*
3373 * seq_file methods for the tasks/procs files. The seq_file position is the
3374 * next pid to display; the seq_file iterator is a pointer to the pid
3375 * in the cgroup->l->list array.
3376 */
3377
3378 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
3379 {
3380 /*
3381 * Initially we receive a position value that corresponds to
3382 * one more than the last pid shown (or 0 on the first call or
3383 * after a seek to the start). Use a binary-search to find the
3384 * next pid to display, if any
3385 */
3386 struct cgroup_pidlist *l = s->private;
3387 int index = 0, pid = *pos;
3388 int *iter;
3389
3390 down_read(&l->mutex);
3391 if (pid) {
3392 int end = l->length;
3393
3394 while (index < end) {
3395 int mid = (index + end) / 2;
3396 if (l->list[mid] == pid) {
3397 index = mid;
3398 break;
3399 } else if (l->list[mid] <= pid)
3400 index = mid + 1;
3401 else
3402 end = mid;
3403 }
3404 }
3405 /* If we're off the end of the array, we're done */
3406 if (index >= l->length)
3407 return NULL;
3408 /* Update the abstract position to be the actual pid that we found */
3409 iter = l->list + index;
3410 *pos = *iter;
3411 return iter;
3412 }
3413
3414 static void cgroup_pidlist_stop(struct seq_file *s, void *v)
3415 {
3416 struct cgroup_pidlist *l = s->private;
3417 up_read(&l->mutex);
3418 }
3419
3420 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
3421 {
3422 struct cgroup_pidlist *l = s->private;
3423 pid_t *p = v;
3424 pid_t *end = l->list + l->length;
3425 /*
3426 * Advance to the next pid in the array. If this goes off the
3427 * end, we're done
3428 */
3429 p++;
3430 if (p >= end) {
3431 return NULL;
3432 } else {
3433 *pos = *p;
3434 return p;
3435 }
3436 }
3437
3438 static int cgroup_pidlist_show(struct seq_file *s, void *v)
3439 {
3440 return seq_printf(s, "%d\n", *(int *)v);
3441 }
3442
3443 /*
3444 * seq_operations functions for iterating on pidlists through seq_file -
3445 * independent of whether it's tasks or procs
3446 */
3447 static const struct seq_operations cgroup_pidlist_seq_operations = {
3448 .start = cgroup_pidlist_start,
3449 .stop = cgroup_pidlist_stop,
3450 .next = cgroup_pidlist_next,
3451 .show = cgroup_pidlist_show,
3452 };
3453
3454 static void cgroup_release_pid_array(struct cgroup_pidlist *l)
3455 {
3456 /*
3457 * the case where we're the last user of this particular pidlist will
3458 * have us remove it from the cgroup's list, which entails taking the
3459 * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
3460 * pidlist_mutex, we have to take pidlist_mutex first.
3461 */
3462 mutex_lock(&l->owner->pidlist_mutex);
3463 down_write(&l->mutex);
3464 BUG_ON(!l->use_count);
3465 if (!--l->use_count) {
3466 /* we're the last user if refcount is 0; remove and free */
3467 list_del(&l->links);
3468 mutex_unlock(&l->owner->pidlist_mutex);
3469 pidlist_free(l->list);
3470 put_pid_ns(l->key.ns);
3471 up_write(&l->mutex);
3472 kfree(l);
3473 return;
3474 }
3475 mutex_unlock(&l->owner->pidlist_mutex);
3476 up_write(&l->mutex);
3477 }
3478
3479 static int cgroup_pidlist_release(struct inode *inode, struct file *file)
3480 {
3481 struct cgroup_pidlist *l;
3482 if (!(file->f_mode & FMODE_READ))
3483 return 0;
3484 /*
3485 * the seq_file will only be initialized if the file was opened for
3486 * reading; hence we check if it's not null only in that case.
3487 */
3488 l = ((struct seq_file *)file->private_data)->private;
3489 cgroup_release_pid_array(l);
3490 return seq_release(inode, file);
3491 }
3492
3493 static const struct file_operations cgroup_pidlist_operations = {
3494 .read = seq_read,
3495 .llseek = seq_lseek,
3496 .write = cgroup_file_write,
3497 .release = cgroup_pidlist_release,
3498 };
3499
3500 /*
3501 * The following functions handle opens on a file that displays a pidlist
3502 * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
3503 * in the cgroup.
3504 */
3505 /* helper function for the two below it */
3506 static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type)
3507 {
3508 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
3509 struct cgroup_pidlist *l;
3510 int retval;
3511
3512 /* Nothing to do for write-only files */
3513 if (!(file->f_mode & FMODE_READ))
3514 return 0;
3515
3516 /* have the array populated */
3517 retval = pidlist_array_load(cgrp, type, &l);
3518 if (retval)
3519 return retval;
3520 /* configure file information */
3521 file->f_op = &cgroup_pidlist_operations;
3522
3523 retval = seq_open(file, &cgroup_pidlist_seq_operations);
3524 if (retval) {
3525 cgroup_release_pid_array(l);
3526 return retval;
3527 }
3528 ((struct seq_file *)file->private_data)->private = l;
3529 return 0;
3530 }
3531 static int cgroup_tasks_open(struct inode *unused, struct file *file)
3532 {
3533 return cgroup_pidlist_open(file, CGROUP_FILE_TASKS);
3534 }
3535 static int cgroup_procs_open(struct inode *unused, struct file *file)
3536 {
3537 return cgroup_pidlist_open(file, CGROUP_FILE_PROCS);
3538 }
3539
3540 static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
3541 struct cftype *cft)
3542 {
3543 return notify_on_release(cgrp);
3544 }
3545
3546 static int cgroup_write_notify_on_release(struct cgroup *cgrp,
3547 struct cftype *cft,
3548 u64 val)
3549 {
3550 clear_bit(CGRP_RELEASABLE, &cgrp->flags);
3551 if (val)
3552 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3553 else
3554 clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3555 return 0;
3556 }
3557
3558 /*
3559 * Unregister event and free resources.
3560 *
3561 * Gets called from workqueue.
3562 */
3563 static void cgroup_event_remove(struct work_struct *work)
3564 {
3565 struct cgroup_event *event = container_of(work, struct cgroup_event,
3566 remove);
3567 struct cgroup *cgrp = event->cgrp;
3568
3569 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3570
3571 eventfd_ctx_put(event->eventfd);
3572 kfree(event);
3573 dput(cgrp->dentry);
3574 }
3575
3576 /*
3577 * Gets called on POLLHUP on eventfd when user closes it.
3578 *
3579 * Called with wqh->lock held and interrupts disabled.
3580 */
3581 static int cgroup_event_wake(wait_queue_t *wait, unsigned mode,
3582 int sync, void *key)
3583 {
3584 struct cgroup_event *event = container_of(wait,
3585 struct cgroup_event, wait);
3586 struct cgroup *cgrp = event->cgrp;
3587 unsigned long flags = (unsigned long)key;
3588
3589 if (flags & POLLHUP) {
3590 __remove_wait_queue(event->wqh, &event->wait);
3591 spin_lock(&cgrp->event_list_lock);
3592 list_del(&event->list);
3593 spin_unlock(&cgrp->event_list_lock);
3594 /*
3595 * We are in atomic context, but cgroup_event_remove() may
3596 * sleep, so we have to call it in workqueue.
3597 */
3598 schedule_work(&event->remove);
3599 }
3600
3601 return 0;
3602 }
3603
3604 static void cgroup_event_ptable_queue_proc(struct file *file,
3605 wait_queue_head_t *wqh, poll_table *pt)
3606 {
3607 struct cgroup_event *event = container_of(pt,
3608 struct cgroup_event, pt);
3609
3610 event->wqh = wqh;
3611 add_wait_queue(wqh, &event->wait);
3612 }
3613
3614 /*
3615 * Parse input and register new cgroup event handler.
3616 *
3617 * Input must be in format '<event_fd> <control_fd> <args>'.
3618 * Interpretation of args is defined by control file implementation.
3619 */
3620 static int cgroup_write_event_control(struct cgroup *cgrp, struct cftype *cft,
3621 const char *buffer)
3622 {
3623 struct cgroup_event *event = NULL;
3624 unsigned int efd, cfd;
3625 struct file *efile = NULL;
3626 struct file *cfile = NULL;
3627 char *endp;
3628 int ret;
3629
3630 efd = simple_strtoul(buffer, &endp, 10);
3631 if (*endp != ' ')
3632 return -EINVAL;
3633 buffer = endp + 1;
3634
3635 cfd = simple_strtoul(buffer, &endp, 10);
3636 if ((*endp != ' ') && (*endp != '\0'))
3637 return -EINVAL;
3638 buffer = endp + 1;
3639
3640 event = kzalloc(sizeof(*event), GFP_KERNEL);
3641 if (!event)
3642 return -ENOMEM;
3643 event->cgrp = cgrp;
3644 INIT_LIST_HEAD(&event->list);
3645 init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc);
3646 init_waitqueue_func_entry(&event->wait, cgroup_event_wake);
3647 INIT_WORK(&event->remove, cgroup_event_remove);
3648
3649 efile = eventfd_fget(efd);
3650 if (IS_ERR(efile)) {
3651 ret = PTR_ERR(efile);
3652 goto fail;
3653 }
3654
3655 event->eventfd = eventfd_ctx_fileget(efile);
3656 if (IS_ERR(event->eventfd)) {
3657 ret = PTR_ERR(event->eventfd);
3658 goto fail;
3659 }
3660
3661 cfile = fget(cfd);
3662 if (!cfile) {
3663 ret = -EBADF;
3664 goto fail;
3665 }
3666
3667 /* the process need read permission on control file */
3668 /* AV: shouldn't we check that it's been opened for read instead? */
3669 ret = inode_permission(cfile->f_path.dentry->d_inode, MAY_READ);
3670 if (ret < 0)
3671 goto fail;
3672
3673 event->cft = __file_cft(cfile);
3674 if (IS_ERR(event->cft)) {
3675 ret = PTR_ERR(event->cft);
3676 goto fail;
3677 }
3678
3679 if (!event->cft->register_event || !event->cft->unregister_event) {
3680 ret = -EINVAL;
3681 goto fail;
3682 }
3683
3684 ret = event->cft->register_event(cgrp, event->cft,
3685 event->eventfd, buffer);
3686 if (ret)
3687 goto fail;
3688
3689 if (efile->f_op->poll(efile, &event->pt) & POLLHUP) {
3690 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3691 ret = 0;
3692 goto fail;
3693 }
3694
3695 /*
3696 * Events should be removed after rmdir of cgroup directory, but before
3697 * destroying subsystem state objects. Let's take reference to cgroup
3698 * directory dentry to do that.
3699 */
3700 dget(cgrp->dentry);
3701
3702 spin_lock(&cgrp->event_list_lock);
3703 list_add(&event->list, &cgrp->event_list);
3704 spin_unlock(&cgrp->event_list_lock);
3705
3706 fput(cfile);
3707 fput(efile);
3708
3709 return 0;
3710
3711 fail:
3712 if (cfile)
3713 fput(cfile);
3714
3715 if (event && event->eventfd && !IS_ERR(event->eventfd))
3716 eventfd_ctx_put(event->eventfd);
3717
3718 if (!IS_ERR_OR_NULL(efile))
3719 fput(efile);
3720
3721 kfree(event);
3722
3723 return ret;
3724 }
3725
3726 static u64 cgroup_clone_children_read(struct cgroup *cgrp,
3727 struct cftype *cft)
3728 {
3729 return clone_children(cgrp);
3730 }
3731
3732 static int cgroup_clone_children_write(struct cgroup *cgrp,
3733 struct cftype *cft,
3734 u64 val)
3735 {
3736 if (val)
3737 set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3738 else
3739 clear_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3740 return 0;
3741 }
3742
3743 /*
3744 * for the common functions, 'private' gives the type of file
3745 */
3746 /* for hysterical raisins, we can't put this on the older files */
3747 #define CGROUP_FILE_GENERIC_PREFIX "cgroup."
3748 static struct cftype files[] = {
3749 {
3750 .name = "tasks",
3751 .open = cgroup_tasks_open,
3752 .write_u64 = cgroup_tasks_write,
3753 .release = cgroup_pidlist_release,
3754 .mode = S_IRUGO | S_IWUSR,
3755 },
3756 {
3757 .name = CGROUP_FILE_GENERIC_PREFIX "procs",
3758 .open = cgroup_procs_open,
3759 .write_u64 = cgroup_procs_write,
3760 .release = cgroup_pidlist_release,
3761 .mode = S_IRUGO | S_IWUSR,
3762 },
3763 {
3764 .name = "notify_on_release",
3765 .read_u64 = cgroup_read_notify_on_release,
3766 .write_u64 = cgroup_write_notify_on_release,
3767 },
3768 {
3769 .name = CGROUP_FILE_GENERIC_PREFIX "event_control",
3770 .write_string = cgroup_write_event_control,
3771 .mode = S_IWUGO,
3772 },
3773 {
3774 .name = "cgroup.clone_children",
3775 .read_u64 = cgroup_clone_children_read,
3776 .write_u64 = cgroup_clone_children_write,
3777 },
3778 {
3779 .name = "release_agent",
3780 .flags = CFTYPE_ONLY_ON_ROOT,
3781 .read_seq_string = cgroup_release_agent_show,
3782 .write_string = cgroup_release_agent_write,
3783 .max_write_len = PATH_MAX,
3784 },
3785 { } /* terminate */
3786 };
3787
3788 static int cgroup_populate_dir(struct cgroup *cgrp)
3789 {
3790 int err;
3791 struct cgroup_subsys *ss;
3792
3793 err = cgroup_addrm_files(cgrp, NULL, files, true);
3794 if (err < 0)
3795 return err;
3796
3797 /* process cftsets of each subsystem */
3798 for_each_subsys(cgrp->root, ss) {
3799 struct cftype_set *set;
3800
3801 list_for_each_entry(set, &ss->cftsets, node)
3802 cgroup_addrm_files(cgrp, ss, set->cfts, true);
3803 }
3804
3805 /* This cgroup is ready now */
3806 for_each_subsys(cgrp->root, ss) {
3807 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3808 /*
3809 * Update id->css pointer and make this css visible from
3810 * CSS ID functions. This pointer will be dereferened
3811 * from RCU-read-side without locks.
3812 */
3813 if (css->id)
3814 rcu_assign_pointer(css->id->css, css);
3815 }
3816
3817 return 0;
3818 }
3819
3820 static void css_dput_fn(struct work_struct *work)
3821 {
3822 struct cgroup_subsys_state *css =
3823 container_of(work, struct cgroup_subsys_state, dput_work);
3824 struct dentry *dentry = css->cgroup->dentry;
3825 struct super_block *sb = dentry->d_sb;
3826
3827 atomic_inc(&sb->s_active);
3828 dput(dentry);
3829 deactivate_super(sb);
3830 }
3831
3832 static void init_cgroup_css(struct cgroup_subsys_state *css,
3833 struct cgroup_subsys *ss,
3834 struct cgroup *cgrp)
3835 {
3836 css->cgroup = cgrp;
3837 atomic_set(&css->refcnt, 1);
3838 css->flags = 0;
3839 css->id = NULL;
3840 if (cgrp == dummytop)
3841 set_bit(CSS_ROOT, &css->flags);
3842 BUG_ON(cgrp->subsys[ss->subsys_id]);
3843 cgrp->subsys[ss->subsys_id] = css;
3844
3845 /*
3846 * css holds an extra ref to @cgrp->dentry which is put on the last
3847 * css_put(). dput() requires process context, which css_put() may
3848 * be called without. @css->dput_work will be used to invoke
3849 * dput() asynchronously from css_put().
3850 */
3851 INIT_WORK(&css->dput_work, css_dput_fn);
3852 }
3853
3854 /*
3855 * cgroup_create - create a cgroup
3856 * @parent: cgroup that will be parent of the new cgroup
3857 * @dentry: dentry of the new cgroup
3858 * @mode: mode to set on new inode
3859 *
3860 * Must be called with the mutex on the parent inode held
3861 */
3862 static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
3863 umode_t mode)
3864 {
3865 struct cgroup *cgrp;
3866 struct cgroupfs_root *root = parent->root;
3867 int err = 0;
3868 struct cgroup_subsys *ss;
3869 struct super_block *sb = root->sb;
3870
3871 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
3872 if (!cgrp)
3873 return -ENOMEM;
3874
3875 /*
3876 * Only live parents can have children. Note that the liveliness
3877 * check isn't strictly necessary because cgroup_mkdir() and
3878 * cgroup_rmdir() are fully synchronized by i_mutex; however, do it
3879 * anyway so that locking is contained inside cgroup proper and we
3880 * don't get nasty surprises if we ever grow another caller.
3881 */
3882 if (!cgroup_lock_live_group(parent)) {
3883 err = -ENODEV;
3884 goto err_free;
3885 }
3886
3887 /* Grab a reference on the superblock so the hierarchy doesn't
3888 * get deleted on unmount if there are child cgroups. This
3889 * can be done outside cgroup_mutex, since the sb can't
3890 * disappear while someone has an open control file on the
3891 * fs */
3892 atomic_inc(&sb->s_active);
3893
3894 init_cgroup_housekeeping(cgrp);
3895
3896 cgrp->parent = parent;
3897 cgrp->root = parent->root;
3898 cgrp->top_cgroup = parent->top_cgroup;
3899
3900 if (notify_on_release(parent))
3901 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3902
3903 if (clone_children(parent))
3904 set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3905
3906 for_each_subsys(root, ss) {
3907 struct cgroup_subsys_state *css = ss->create(cgrp);
3908
3909 if (IS_ERR(css)) {
3910 err = PTR_ERR(css);
3911 goto err_destroy;
3912 }
3913 init_cgroup_css(css, ss, cgrp);
3914 if (ss->use_id) {
3915 err = alloc_css_id(ss, parent, cgrp);
3916 if (err)
3917 goto err_destroy;
3918 }
3919 /* At error, ->destroy() callback has to free assigned ID. */
3920 if (clone_children(parent) && ss->post_clone)
3921 ss->post_clone(cgrp);
3922 }
3923
3924 list_add(&cgrp->sibling, &cgrp->parent->children);
3925 root->number_of_cgroups++;
3926
3927 err = cgroup_create_dir(cgrp, dentry, mode);
3928 if (err < 0)
3929 goto err_remove;
3930
3931 /* each css holds a ref to the cgroup's dentry */
3932 for_each_subsys(root, ss)
3933 dget(dentry);
3934
3935 /* The cgroup directory was pre-locked for us */
3936 BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
3937
3938 list_add_tail(&cgrp->allcg_node, &root->allcg_list);
3939
3940 err = cgroup_populate_dir(cgrp);
3941 /* If err < 0, we have a half-filled directory - oh well ;) */
3942
3943 mutex_unlock(&cgroup_mutex);
3944 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
3945
3946 return 0;
3947
3948 err_remove:
3949
3950 list_del(&cgrp->sibling);
3951 root->number_of_cgroups--;
3952
3953 err_destroy:
3954
3955 for_each_subsys(root, ss) {
3956 if (cgrp->subsys[ss->subsys_id])
3957 ss->destroy(cgrp);
3958 }
3959
3960 mutex_unlock(&cgroup_mutex);
3961
3962 /* Release the reference count that we took on the superblock */
3963 deactivate_super(sb);
3964 err_free:
3965 kfree(cgrp);
3966 return err;
3967 }
3968
3969 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3970 {
3971 struct cgroup *c_parent = dentry->d_parent->d_fsdata;
3972
3973 /* the vfs holds inode->i_mutex already */
3974 return cgroup_create(c_parent, dentry, mode | S_IFDIR);
3975 }
3976
3977 /*
3978 * Check the reference count on each subsystem. Since we already
3979 * established that there are no tasks in the cgroup, if the css refcount
3980 * is also 1, then there should be no outstanding references, so the
3981 * subsystem is safe to destroy. We scan across all subsystems rather than
3982 * using the per-hierarchy linked list of mounted subsystems since we can
3983 * be called via check_for_release() with no synchronization other than
3984 * RCU, and the subsystem linked list isn't RCU-safe.
3985 */
3986 static int cgroup_has_css_refs(struct cgroup *cgrp)
3987 {
3988 int i;
3989
3990 /*
3991 * We won't need to lock the subsys array, because the subsystems
3992 * we're concerned about aren't going anywhere since our cgroup root
3993 * has a reference on them.
3994 */
3995 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3996 struct cgroup_subsys *ss = subsys[i];
3997 struct cgroup_subsys_state *css;
3998
3999 /* Skip subsystems not present or not in this hierarchy */
4000 if (ss == NULL || ss->root != cgrp->root)
4001 continue;
4002
4003 css = cgrp->subsys[ss->subsys_id];
4004 /*
4005 * When called from check_for_release() it's possible
4006 * that by this point the cgroup has been removed
4007 * and the css deleted. But a false-positive doesn't
4008 * matter, since it can only happen if the cgroup
4009 * has been deleted and hence no longer needs the
4010 * release agent to be called anyway.
4011 */
4012 if (css && css_refcnt(css) > 1)
4013 return 1;
4014 }
4015 return 0;
4016 }
4017
4018 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
4019 {
4020 struct cgroup *cgrp = dentry->d_fsdata;
4021 struct dentry *d;
4022 struct cgroup *parent;
4023 DEFINE_WAIT(wait);
4024 struct cgroup_event *event, *tmp;
4025 struct cgroup_subsys *ss;
4026
4027 /* the vfs holds both inode->i_mutex already */
4028 mutex_lock(&cgroup_mutex);
4029 parent = cgrp->parent;
4030 if (atomic_read(&cgrp->count) || !list_empty(&cgrp->children)) {
4031 mutex_unlock(&cgroup_mutex);
4032 return -EBUSY;
4033 }
4034
4035 /*
4036 * Block new css_tryget() by deactivating refcnt and mark @cgrp
4037 * removed. This makes future css_tryget() and child creation
4038 * attempts fail thus maintaining the removal conditions verified
4039 * above.
4040 */
4041 for_each_subsys(cgrp->root, ss) {
4042 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
4043
4044 WARN_ON(atomic_read(&css->refcnt) < 0);
4045 atomic_add(CSS_DEACT_BIAS, &css->refcnt);
4046 }
4047 set_bit(CGRP_REMOVED, &cgrp->flags);
4048
4049 /*
4050 * Tell subsystems to initate destruction. pre_destroy() should be
4051 * called with cgroup_mutex unlocked. See 3fa59dfbc3 ("cgroup: fix
4052 * potential deadlock in pre_destroy") for details.
4053 */
4054 mutex_unlock(&cgroup_mutex);
4055 for_each_subsys(cgrp->root, ss)
4056 if (ss->pre_destroy)
4057 WARN_ON_ONCE(ss->pre_destroy(cgrp));
4058 mutex_lock(&cgroup_mutex);
4059
4060 /*
4061 * Put all the base refs. Each css holds an extra reference to the
4062 * cgroup's dentry and cgroup removal proceeds regardless of css
4063 * refs. On the last put of each css, whenever that may be, the
4064 * extra dentry ref is put so that dentry destruction happens only
4065 * after all css's are released.
4066 */
4067 for_each_subsys(cgrp->root, ss)
4068 css_put(cgrp->subsys[ss->subsys_id]);
4069
4070 raw_spin_lock(&release_list_lock);
4071 if (!list_empty(&cgrp->release_list))
4072 list_del_init(&cgrp->release_list);
4073 raw_spin_unlock(&release_list_lock);
4074
4075 /* delete this cgroup from parent->children */
4076 list_del_init(&cgrp->sibling);
4077
4078 list_del_init(&cgrp->allcg_node);
4079
4080 d = dget(cgrp->dentry);
4081
4082 cgroup_d_remove_dir(d);
4083 dput(d);
4084
4085 set_bit(CGRP_RELEASABLE, &parent->flags);
4086 check_for_release(parent);
4087
4088 /*
4089 * Unregister events and notify userspace.
4090 * Notify userspace about cgroup removing only after rmdir of cgroup
4091 * directory to avoid race between userspace and kernelspace
4092 */
4093 spin_lock(&cgrp->event_list_lock);
4094 list_for_each_entry_safe(event, tmp, &cgrp->event_list, list) {
4095 list_del(&event->list);
4096 remove_wait_queue(event->wqh, &event->wait);
4097 eventfd_signal(event->eventfd, 1);
4098 schedule_work(&event->remove);
4099 }
4100 spin_unlock(&cgrp->event_list_lock);
4101
4102 mutex_unlock(&cgroup_mutex);
4103 return 0;
4104 }
4105
4106 static void __init_or_module cgroup_init_cftsets(struct cgroup_subsys *ss)
4107 {
4108 INIT_LIST_HEAD(&ss->cftsets);
4109
4110 /*
4111 * base_cftset is embedded in subsys itself, no need to worry about
4112 * deregistration.
4113 */
4114 if (ss->base_cftypes) {
4115 ss->base_cftset.cfts = ss->base_cftypes;
4116 list_add_tail(&ss->base_cftset.node, &ss->cftsets);
4117 }
4118 }
4119
4120 static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
4121 {
4122 struct cgroup_subsys_state *css;
4123
4124 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
4125
4126 /* init base cftset */
4127 cgroup_init_cftsets(ss);
4128
4129 /* Create the top cgroup state for this subsystem */
4130 list_add(&ss->sibling, &rootnode.subsys_list);
4131 ss->root = &rootnode;
4132 css = ss->create(dummytop);
4133 /* We don't handle early failures gracefully */
4134 BUG_ON(IS_ERR(css));
4135 init_cgroup_css(css, ss, dummytop);
4136
4137 /* Update the init_css_set to contain a subsys
4138 * pointer to this state - since the subsystem is
4139 * newly registered, all tasks and hence the
4140 * init_css_set is in the subsystem's top cgroup. */
4141 init_css_set.subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
4142
4143 need_forkexit_callback |= ss->fork || ss->exit;
4144
4145 /* At system boot, before all subsystems have been
4146 * registered, no tasks have been forked, so we don't
4147 * need to invoke fork callbacks here. */
4148 BUG_ON(!list_empty(&init_task.tasks));
4149
4150 ss->active = 1;
4151
4152 /* this function shouldn't be used with modular subsystems, since they
4153 * need to register a subsys_id, among other things */
4154 BUG_ON(ss->module);
4155 }
4156
4157 /**
4158 * cgroup_load_subsys: load and register a modular subsystem at runtime
4159 * @ss: the subsystem to load
4160 *
4161 * This function should be called in a modular subsystem's initcall. If the
4162 * subsystem is built as a module, it will be assigned a new subsys_id and set
4163 * up for use. If the subsystem is built-in anyway, work is delegated to the
4164 * simpler cgroup_init_subsys.
4165 */
4166 int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss)
4167 {
4168 int i;
4169 struct cgroup_subsys_state *css;
4170
4171 /* check name and function validity */
4172 if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN ||
4173 ss->create == NULL || ss->destroy == NULL)
4174 return -EINVAL;
4175
4176 /*
4177 * we don't support callbacks in modular subsystems. this check is
4178 * before the ss->module check for consistency; a subsystem that could
4179 * be a module should still have no callbacks even if the user isn't
4180 * compiling it as one.
4181 */
4182 if (ss->fork || ss->exit)
4183 return -EINVAL;
4184
4185 /*
4186 * an optionally modular subsystem is built-in: we want to do nothing,
4187 * since cgroup_init_subsys will have already taken care of it.
4188 */
4189 if (ss->module == NULL) {
4190 /* a few sanity checks */
4191 BUG_ON(ss->subsys_id >= CGROUP_BUILTIN_SUBSYS_COUNT);
4192 BUG_ON(subsys[ss->subsys_id] != ss);
4193 return 0;
4194 }
4195
4196 /* init base cftset */
4197 cgroup_init_cftsets(ss);
4198
4199 /*
4200 * need to register a subsys id before anything else - for example,
4201 * init_cgroup_css needs it.
4202 */
4203 mutex_lock(&cgroup_mutex);
4204 /* find the first empty slot in the array */
4205 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
4206 if (subsys[i] == NULL)
4207 break;
4208 }
4209 if (i == CGROUP_SUBSYS_COUNT) {
4210 /* maximum number of subsystems already registered! */
4211 mutex_unlock(&cgroup_mutex);
4212 return -EBUSY;
4213 }
4214 /* assign ourselves the subsys_id */
4215 ss->subsys_id = i;
4216 subsys[i] = ss;
4217
4218 /*
4219 * no ss->create seems to need anything important in the ss struct, so
4220 * this can happen first (i.e. before the rootnode attachment).
4221 */
4222 css = ss->create(dummytop);
4223 if (IS_ERR(css)) {
4224 /* failure case - need to deassign the subsys[] slot. */
4225 subsys[i] = NULL;
4226 mutex_unlock(&cgroup_mutex);
4227 return PTR_ERR(css);
4228 }
4229
4230 list_add(&ss->sibling, &rootnode.subsys_list);
4231 ss->root = &rootnode;
4232
4233 /* our new subsystem will be attached to the dummy hierarchy. */
4234 init_cgroup_css(css, ss, dummytop);
4235 /* init_idr must be after init_cgroup_css because it sets css->id. */
4236 if (ss->use_id) {
4237 int ret = cgroup_init_idr(ss, css);
4238 if (ret) {
4239 dummytop->subsys[ss->subsys_id] = NULL;
4240 ss->destroy(dummytop);
4241 subsys[i] = NULL;
4242 mutex_unlock(&cgroup_mutex);
4243 return ret;
4244 }
4245 }
4246
4247 /*
4248 * Now we need to entangle the css into the existing css_sets. unlike
4249 * in cgroup_init_subsys, there are now multiple css_sets, so each one
4250 * will need a new pointer to it; done by iterating the css_set_table.
4251 * furthermore, modifying the existing css_sets will corrupt the hash
4252 * table state, so each changed css_set will need its hash recomputed.
4253 * this is all done under the css_set_lock.
4254 */
4255 write_lock(&css_set_lock);
4256 for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
4257 struct css_set *cg;
4258 struct hlist_node *node, *tmp;
4259 struct hlist_head *bucket = &css_set_table[i], *new_bucket;
4260
4261 hlist_for_each_entry_safe(cg, node, tmp, bucket, hlist) {
4262 /* skip entries that we already rehashed */
4263 if (cg->subsys[ss->subsys_id])
4264 continue;
4265 /* remove existing entry */
4266 hlist_del(&cg->hlist);
4267 /* set new value */
4268 cg->subsys[ss->subsys_id] = css;
4269 /* recompute hash and restore entry */
4270 new_bucket = css_set_hash(cg->subsys);
4271 hlist_add_head(&cg->hlist, new_bucket);
4272 }
4273 }
4274 write_unlock(&css_set_lock);
4275
4276 ss->active = 1;
4277
4278 /* success! */
4279 mutex_unlock(&cgroup_mutex);
4280 return 0;
4281 }
4282 EXPORT_SYMBOL_GPL(cgroup_load_subsys);
4283
4284 /**
4285 * cgroup_unload_subsys: unload a modular subsystem
4286 * @ss: the subsystem to unload
4287 *
4288 * This function should be called in a modular subsystem's exitcall. When this
4289 * function is invoked, the refcount on the subsystem's module will be 0, so
4290 * the subsystem will not be attached to any hierarchy.
4291 */
4292 void cgroup_unload_subsys(struct cgroup_subsys *ss)
4293 {
4294 struct cg_cgroup_link *link;
4295 struct hlist_head *hhead;
4296
4297 BUG_ON(ss->module == NULL);
4298
4299 /*
4300 * we shouldn't be called if the subsystem is in use, and the use of
4301 * try_module_get in parse_cgroupfs_options should ensure that it
4302 * doesn't start being used while we're killing it off.
4303 */
4304 BUG_ON(ss->root != &rootnode);
4305
4306 mutex_lock(&cgroup_mutex);
4307 /* deassign the subsys_id */
4308 BUG_ON(ss->subsys_id < CGROUP_BUILTIN_SUBSYS_COUNT);
4309 subsys[ss->subsys_id] = NULL;
4310
4311 /* remove subsystem from rootnode's list of subsystems */
4312 list_del_init(&ss->sibling);
4313
4314 /*
4315 * disentangle the css from all css_sets attached to the dummytop. as
4316 * in loading, we need to pay our respects to the hashtable gods.
4317 */
4318 write_lock(&css_set_lock);
4319 list_for_each_entry(link, &dummytop->css_sets, cgrp_link_list) {
4320 struct css_set *cg = link->cg;
4321
4322 hlist_del(&cg->hlist);
4323 BUG_ON(!cg->subsys[ss->subsys_id]);
4324 cg->subsys[ss->subsys_id] = NULL;
4325 hhead = css_set_hash(cg->subsys);
4326 hlist_add_head(&cg->hlist, hhead);
4327 }
4328 write_unlock(&css_set_lock);
4329
4330 /*
4331 * remove subsystem's css from the dummytop and free it - need to free
4332 * before marking as null because ss->destroy needs the cgrp->subsys
4333 * pointer to find their state. note that this also takes care of
4334 * freeing the css_id.
4335 */
4336 ss->destroy(dummytop);
4337 dummytop->subsys[ss->subsys_id] = NULL;
4338
4339 mutex_unlock(&cgroup_mutex);
4340 }
4341 EXPORT_SYMBOL_GPL(cgroup_unload_subsys);
4342
4343 /**
4344 * cgroup_init_early - cgroup initialization at system boot
4345 *
4346 * Initialize cgroups at system boot, and initialize any
4347 * subsystems that request early init.
4348 */
4349 int __init cgroup_init_early(void)
4350 {
4351 int i;
4352 atomic_set(&init_css_set.refcount, 1);
4353 INIT_LIST_HEAD(&init_css_set.cg_links);
4354 INIT_LIST_HEAD(&init_css_set.tasks);
4355 INIT_HLIST_NODE(&init_css_set.hlist);
4356 css_set_count = 1;
4357 init_cgroup_root(&rootnode);
4358 root_count = 1;
4359 init_task.cgroups = &init_css_set;
4360
4361 init_css_set_link.cg = &init_css_set;
4362 init_css_set_link.cgrp = dummytop;
4363 list_add(&init_css_set_link.cgrp_link_list,
4364 &rootnode.top_cgroup.css_sets);
4365 list_add(&init_css_set_link.cg_link_list,
4366 &init_css_set.cg_links);
4367
4368 for (i = 0; i < CSS_SET_TABLE_SIZE; i++)
4369 INIT_HLIST_HEAD(&css_set_table[i]);
4370
4371 /* at bootup time, we don't worry about modular subsystems */
4372 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4373 struct cgroup_subsys *ss = subsys[i];
4374
4375 BUG_ON(!ss->name);
4376 BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
4377 BUG_ON(!ss->create);
4378 BUG_ON(!ss->destroy);
4379 if (ss->subsys_id != i) {
4380 printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
4381 ss->name, ss->subsys_id);
4382 BUG();
4383 }
4384
4385 if (ss->early_init)
4386 cgroup_init_subsys(ss);
4387 }
4388 return 0;
4389 }
4390
4391 /**
4392 * cgroup_init - cgroup initialization
4393 *
4394 * Register cgroup filesystem and /proc file, and initialize
4395 * any subsystems that didn't request early init.
4396 */
4397 int __init cgroup_init(void)
4398 {
4399 int err;
4400 int i;
4401 struct hlist_head *hhead;
4402
4403 err = bdi_init(&cgroup_backing_dev_info);
4404 if (err)
4405 return err;
4406
4407 /* at bootup time, we don't worry about modular subsystems */
4408 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4409 struct cgroup_subsys *ss = subsys[i];
4410 if (!ss->early_init)
4411 cgroup_init_subsys(ss);
4412 if (ss->use_id)
4413 cgroup_init_idr(ss, init_css_set.subsys[ss->subsys_id]);
4414 }
4415
4416 /* Add init_css_set to the hash table */
4417 hhead = css_set_hash(init_css_set.subsys);
4418 hlist_add_head(&init_css_set.hlist, hhead);
4419 BUG_ON(!init_root_id(&rootnode));
4420
4421 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
4422 if (!cgroup_kobj) {
4423 err = -ENOMEM;
4424 goto out;
4425 }
4426
4427 err = register_filesystem(&cgroup_fs_type);
4428 if (err < 0) {
4429 kobject_put(cgroup_kobj);
4430 goto out;
4431 }
4432
4433 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
4434
4435 out:
4436 if (err)
4437 bdi_destroy(&cgroup_backing_dev_info);
4438
4439 return err;
4440 }
4441
4442 /*
4443 * proc_cgroup_show()
4444 * - Print task's cgroup paths into seq_file, one line for each hierarchy
4445 * - Used for /proc/<pid>/cgroup.
4446 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
4447 * doesn't really matter if tsk->cgroup changes after we read it,
4448 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
4449 * anyway. No need to check that tsk->cgroup != NULL, thanks to
4450 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
4451 * cgroup to top_cgroup.
4452 */
4453
4454 /* TODO: Use a proper seq_file iterator */
4455 static int proc_cgroup_show(struct seq_file *m, void *v)
4456 {
4457 struct pid *pid;
4458 struct task_struct *tsk;
4459 char *buf;
4460 int retval;
4461 struct cgroupfs_root *root;
4462
4463 retval = -ENOMEM;
4464 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4465 if (!buf)
4466 goto out;
4467
4468 retval = -ESRCH;
4469 pid = m->private;
4470 tsk = get_pid_task(pid, PIDTYPE_PID);
4471 if (!tsk)
4472 goto out_free;
4473
4474 retval = 0;
4475
4476 mutex_lock(&cgroup_mutex);
4477
4478 for_each_active_root(root) {
4479 struct cgroup_subsys *ss;
4480 struct cgroup *cgrp;
4481 int count = 0;
4482
4483 seq_printf(m, "%d:", root->hierarchy_id);
4484 for_each_subsys(root, ss)
4485 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
4486 if (strlen(root->name))
4487 seq_printf(m, "%sname=%s", count ? "," : "",
4488 root->name);
4489 seq_putc(m, ':');
4490 cgrp = task_cgroup_from_root(tsk, root);
4491 retval = cgroup_path(cgrp, buf, PAGE_SIZE);
4492 if (retval < 0)
4493 goto out_unlock;
4494 seq_puts(m, buf);
4495 seq_putc(m, '\n');
4496 }
4497
4498 out_unlock:
4499 mutex_unlock(&cgroup_mutex);
4500 put_task_struct(tsk);
4501 out_free:
4502 kfree(buf);
4503 out:
4504 return retval;
4505 }
4506
4507 static int cgroup_open(struct inode *inode, struct file *file)
4508 {
4509 struct pid *pid = PROC_I(inode)->pid;
4510 return single_open(file, proc_cgroup_show, pid);
4511 }
4512
4513 const struct file_operations proc_cgroup_operations = {
4514 .open = cgroup_open,
4515 .read = seq_read,
4516 .llseek = seq_lseek,
4517 .release = single_release,
4518 };
4519
4520 /* Display information about each subsystem and each hierarchy */
4521 static int proc_cgroupstats_show(struct seq_file *m, void *v)
4522 {
4523 int i;
4524
4525 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
4526 /*
4527 * ideally we don't want subsystems moving around while we do this.
4528 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
4529 * subsys/hierarchy state.
4530 */
4531 mutex_lock(&cgroup_mutex);
4532 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4533 struct cgroup_subsys *ss = subsys[i];
4534 if (ss == NULL)
4535 continue;
4536 seq_printf(m, "%s\t%d\t%d\t%d\n",
4537 ss->name, ss->root->hierarchy_id,
4538 ss->root->number_of_cgroups, !ss->disabled);
4539 }
4540 mutex_unlock(&cgroup_mutex);
4541 return 0;
4542 }
4543
4544 static int cgroupstats_open(struct inode *inode, struct file *file)
4545 {
4546 return single_open(file, proc_cgroupstats_show, NULL);
4547 }
4548
4549 static const struct file_operations proc_cgroupstats_operations = {
4550 .open = cgroupstats_open,
4551 .read = seq_read,
4552 .llseek = seq_lseek,
4553 .release = single_release,
4554 };
4555
4556 /**
4557 * cgroup_fork - attach newly forked task to its parents cgroup.
4558 * @child: pointer to task_struct of forking parent process.
4559 *
4560 * Description: A task inherits its parent's cgroup at fork().
4561 *
4562 * A pointer to the shared css_set was automatically copied in
4563 * fork.c by dup_task_struct(). However, we ignore that copy, since
4564 * it was not made under the protection of RCU, cgroup_mutex or
4565 * threadgroup_change_begin(), so it might no longer be a valid
4566 * cgroup pointer. cgroup_attach_task() might have already changed
4567 * current->cgroups, allowing the previously referenced cgroup
4568 * group to be removed and freed.
4569 *
4570 * Outside the pointer validity we also need to process the css_set
4571 * inheritance between threadgoup_change_begin() and
4572 * threadgoup_change_end(), this way there is no leak in any process
4573 * wide migration performed by cgroup_attach_proc() that could otherwise
4574 * miss a thread because it is too early or too late in the fork stage.
4575 *
4576 * At the point that cgroup_fork() is called, 'current' is the parent
4577 * task, and the passed argument 'child' points to the child task.
4578 */
4579 void cgroup_fork(struct task_struct *child)
4580 {
4581 /*
4582 * We don't need to task_lock() current because current->cgroups
4583 * can't be changed concurrently here. The parent obviously hasn't
4584 * exited and called cgroup_exit(), and we are synchronized against
4585 * cgroup migration through threadgroup_change_begin().
4586 */
4587 child->cgroups = current->cgroups;
4588 get_css_set(child->cgroups);
4589 INIT_LIST_HEAD(&child->cg_list);
4590 }
4591
4592 /**
4593 * cgroup_fork_callbacks - run fork callbacks
4594 * @child: the new task
4595 *
4596 * Called on a new task very soon before adding it to the
4597 * tasklist. No need to take any locks since no-one can
4598 * be operating on this task.
4599 */
4600 void cgroup_fork_callbacks(struct task_struct *child)
4601 {
4602 if (need_forkexit_callback) {
4603 int i;
4604 /*
4605 * forkexit callbacks are only supported for builtin
4606 * subsystems, and the builtin section of the subsys array is
4607 * immutable, so we don't need to lock the subsys array here.
4608 */
4609 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4610 struct cgroup_subsys *ss = subsys[i];
4611 if (ss->fork)
4612 ss->fork(child);
4613 }
4614 }
4615 }
4616
4617 /**
4618 * cgroup_post_fork - called on a new task after adding it to the task list
4619 * @child: the task in question
4620 *
4621 * Adds the task to the list running through its css_set if necessary.
4622 * Has to be after the task is visible on the task list in case we race
4623 * with the first call to cgroup_iter_start() - to guarantee that the
4624 * new task ends up on its list.
4625 */
4626 void cgroup_post_fork(struct task_struct *child)
4627 {
4628 /*
4629 * use_task_css_set_links is set to 1 before we walk the tasklist
4630 * under the tasklist_lock and we read it here after we added the child
4631 * to the tasklist under the tasklist_lock as well. If the child wasn't
4632 * yet in the tasklist when we walked through it from
4633 * cgroup_enable_task_cg_lists(), then use_task_css_set_links value
4634 * should be visible now due to the paired locking and barriers implied
4635 * by LOCK/UNLOCK: it is written before the tasklist_lock unlock
4636 * in cgroup_enable_task_cg_lists() and read here after the tasklist_lock
4637 * lock on fork.
4638 */
4639 if (use_task_css_set_links) {
4640 write_lock(&css_set_lock);
4641 if (list_empty(&child->cg_list)) {
4642 /*
4643 * It's safe to use child->cgroups without task_lock()
4644 * here because we are protected through
4645 * threadgroup_change_begin() against concurrent
4646 * css_set change in cgroup_task_migrate(). Also
4647 * the task can't exit at that point until
4648 * wake_up_new_task() is called, so we are protected
4649 * against cgroup_exit() setting child->cgroup to
4650 * init_css_set.
4651 */
4652 list_add(&child->cg_list, &child->cgroups->tasks);
4653 }
4654 write_unlock(&css_set_lock);
4655 }
4656 }
4657 /**
4658 * cgroup_exit - detach cgroup from exiting task
4659 * @tsk: pointer to task_struct of exiting process
4660 * @run_callback: run exit callbacks?
4661 *
4662 * Description: Detach cgroup from @tsk and release it.
4663 *
4664 * Note that cgroups marked notify_on_release force every task in
4665 * them to take the global cgroup_mutex mutex when exiting.
4666 * This could impact scaling on very large systems. Be reluctant to
4667 * use notify_on_release cgroups where very high task exit scaling
4668 * is required on large systems.
4669 *
4670 * the_top_cgroup_hack:
4671 *
4672 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
4673 *
4674 * We call cgroup_exit() while the task is still competent to
4675 * handle notify_on_release(), then leave the task attached to the
4676 * root cgroup in each hierarchy for the remainder of its exit.
4677 *
4678 * To do this properly, we would increment the reference count on
4679 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
4680 * code we would add a second cgroup function call, to drop that
4681 * reference. This would just create an unnecessary hot spot on
4682 * the top_cgroup reference count, to no avail.
4683 *
4684 * Normally, holding a reference to a cgroup without bumping its
4685 * count is unsafe. The cgroup could go away, or someone could
4686 * attach us to a different cgroup, decrementing the count on
4687 * the first cgroup that we never incremented. But in this case,
4688 * top_cgroup isn't going away, and either task has PF_EXITING set,
4689 * which wards off any cgroup_attach_task() attempts, or task is a failed
4690 * fork, never visible to cgroup_attach_task.
4691 */
4692 void cgroup_exit(struct task_struct *tsk, int run_callbacks)
4693 {
4694 struct css_set *cg;
4695 int i;
4696
4697 /*
4698 * Unlink from the css_set task list if necessary.
4699 * Optimistically check cg_list before taking
4700 * css_set_lock
4701 */
4702 if (!list_empty(&tsk->cg_list)) {
4703 write_lock(&css_set_lock);
4704 if (!list_empty(&tsk->cg_list))
4705 list_del_init(&tsk->cg_list);
4706 write_unlock(&css_set_lock);
4707 }
4708
4709 /* Reassign the task to the init_css_set. */
4710 task_lock(tsk);
4711 cg = tsk->cgroups;
4712 tsk->cgroups = &init_css_set;
4713
4714 if (run_callbacks && need_forkexit_callback) {
4715 /*
4716 * modular subsystems can't use callbacks, so no need to lock
4717 * the subsys array
4718 */
4719 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4720 struct cgroup_subsys *ss = subsys[i];
4721 if (ss->exit) {
4722 struct cgroup *old_cgrp =
4723 rcu_dereference_raw(cg->subsys[i])->cgroup;
4724 struct cgroup *cgrp = task_cgroup(tsk, i);
4725 ss->exit(cgrp, old_cgrp, tsk);
4726 }
4727 }
4728 }
4729 task_unlock(tsk);
4730
4731 if (cg)
4732 put_css_set_taskexit(cg);
4733 }
4734
4735 /**
4736 * cgroup_is_descendant - see if @cgrp is a descendant of @task's cgrp
4737 * @cgrp: the cgroup in question
4738 * @task: the task in question
4739 *
4740 * See if @cgrp is a descendant of @task's cgroup in the appropriate
4741 * hierarchy.
4742 *
4743 * If we are sending in dummytop, then presumably we are creating
4744 * the top cgroup in the subsystem.
4745 *
4746 * Called only by the ns (nsproxy) cgroup.
4747 */
4748 int cgroup_is_descendant(const struct cgroup *cgrp, struct task_struct *task)
4749 {
4750 int ret;
4751 struct cgroup *target;
4752
4753 if (cgrp == dummytop)
4754 return 1;
4755
4756 target = task_cgroup_from_root(task, cgrp->root);
4757 while (cgrp != target && cgrp!= cgrp->top_cgroup)
4758 cgrp = cgrp->parent;
4759 ret = (cgrp == target);
4760 return ret;
4761 }
4762
4763 static void check_for_release(struct cgroup *cgrp)
4764 {
4765 /* All of these checks rely on RCU to keep the cgroup
4766 * structure alive */
4767 if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
4768 && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
4769 /* Control Group is currently removeable. If it's not
4770 * already queued for a userspace notification, queue
4771 * it now */
4772 int need_schedule_work = 0;
4773 raw_spin_lock(&release_list_lock);
4774 if (!cgroup_is_removed(cgrp) &&
4775 list_empty(&cgrp->release_list)) {
4776 list_add(&cgrp->release_list, &release_list);
4777 need_schedule_work = 1;
4778 }
4779 raw_spin_unlock(&release_list_lock);
4780 if (need_schedule_work)
4781 schedule_work(&release_agent_work);
4782 }
4783 }
4784
4785 /* Caller must verify that the css is not for root cgroup */
4786 bool __css_tryget(struct cgroup_subsys_state *css)
4787 {
4788 while (true) {
4789 int t, v;
4790
4791 v = css_refcnt(css);
4792 t = atomic_cmpxchg(&css->refcnt, v, v + 1);
4793 if (likely(t == v))
4794 return true;
4795 else if (t < 0)
4796 return false;
4797 cpu_relax();
4798 }
4799 }
4800 EXPORT_SYMBOL_GPL(__css_tryget);
4801
4802 /* Caller must verify that the css is not for root cgroup */
4803 void __css_put(struct cgroup_subsys_state *css)
4804 {
4805 struct cgroup *cgrp = css->cgroup;
4806 int v;
4807
4808 rcu_read_lock();
4809 v = css_unbias_refcnt(atomic_dec_return(&css->refcnt));
4810
4811 switch (v) {
4812 case 1:
4813 if (notify_on_release(cgrp)) {
4814 set_bit(CGRP_RELEASABLE, &cgrp->flags);
4815 check_for_release(cgrp);
4816 }
4817 break;
4818 case 0:
4819 schedule_work(&css->dput_work);
4820 break;
4821 }
4822 rcu_read_unlock();
4823 }
4824 EXPORT_SYMBOL_GPL(__css_put);
4825
4826 /*
4827 * Notify userspace when a cgroup is released, by running the
4828 * configured release agent with the name of the cgroup (path
4829 * relative to the root of cgroup file system) as the argument.
4830 *
4831 * Most likely, this user command will try to rmdir this cgroup.
4832 *
4833 * This races with the possibility that some other task will be
4834 * attached to this cgroup before it is removed, or that some other
4835 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
4836 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
4837 * unused, and this cgroup will be reprieved from its death sentence,
4838 * to continue to serve a useful existence. Next time it's released,
4839 * we will get notified again, if it still has 'notify_on_release' set.
4840 *
4841 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
4842 * means only wait until the task is successfully execve()'d. The
4843 * separate release agent task is forked by call_usermodehelper(),
4844 * then control in this thread returns here, without waiting for the
4845 * release agent task. We don't bother to wait because the caller of
4846 * this routine has no use for the exit status of the release agent
4847 * task, so no sense holding our caller up for that.
4848 */
4849 static void cgroup_release_agent(struct work_struct *work)
4850 {
4851 BUG_ON(work != &release_agent_work);
4852 mutex_lock(&cgroup_mutex);
4853 raw_spin_lock(&release_list_lock);
4854 while (!list_empty(&release_list)) {
4855 char *argv[3], *envp[3];
4856 int i;
4857 char *pathbuf = NULL, *agentbuf = NULL;
4858 struct cgroup *cgrp = list_entry(release_list.next,
4859 struct cgroup,
4860 release_list);
4861 list_del_init(&cgrp->release_list);
4862 raw_spin_unlock(&release_list_lock);
4863 pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4864 if (!pathbuf)
4865 goto continue_free;
4866 if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
4867 goto continue_free;
4868 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
4869 if (!agentbuf)
4870 goto continue_free;
4871
4872 i = 0;
4873 argv[i++] = agentbuf;
4874 argv[i++] = pathbuf;
4875 argv[i] = NULL;
4876
4877 i = 0;
4878 /* minimal command environment */
4879 envp[i++] = "HOME=/";
4880 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
4881 envp[i] = NULL;
4882
4883 /* Drop the lock while we invoke the usermode helper,
4884 * since the exec could involve hitting disk and hence
4885 * be a slow process */
4886 mutex_unlock(&cgroup_mutex);
4887 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
4888 mutex_lock(&cgroup_mutex);
4889 continue_free:
4890 kfree(pathbuf);
4891 kfree(agentbuf);
4892 raw_spin_lock(&release_list_lock);
4893 }
4894 raw_spin_unlock(&release_list_lock);
4895 mutex_unlock(&cgroup_mutex);
4896 }
4897
4898 static int __init cgroup_disable(char *str)
4899 {
4900 int i;
4901 char *token;
4902
4903 while ((token = strsep(&str, ",")) != NULL) {
4904 if (!*token)
4905 continue;
4906 /*
4907 * cgroup_disable, being at boot time, can't know about module
4908 * subsystems, so we don't worry about them.
4909 */
4910 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4911 struct cgroup_subsys *ss = subsys[i];
4912
4913 if (!strcmp(token, ss->name)) {
4914 ss->disabled = 1;
4915 printk(KERN_INFO "Disabling %s control group"
4916 " subsystem\n", ss->name);
4917 break;
4918 }
4919 }
4920 }
4921 return 1;
4922 }
4923 __setup("cgroup_disable=", cgroup_disable);
4924
4925 /*
4926 * Functons for CSS ID.
4927 */
4928
4929 /*
4930 *To get ID other than 0, this should be called when !cgroup_is_removed().
4931 */
4932 unsigned short css_id(struct cgroup_subsys_state *css)
4933 {
4934 struct css_id *cssid;
4935
4936 /*
4937 * This css_id() can return correct value when somone has refcnt
4938 * on this or this is under rcu_read_lock(). Once css->id is allocated,
4939 * it's unchanged until freed.
4940 */
4941 cssid = rcu_dereference_check(css->id, css_refcnt(css));
4942
4943 if (cssid)
4944 return cssid->id;
4945 return 0;
4946 }
4947 EXPORT_SYMBOL_GPL(css_id);
4948
4949 unsigned short css_depth(struct cgroup_subsys_state *css)
4950 {
4951 struct css_id *cssid;
4952
4953 cssid = rcu_dereference_check(css->id, css_refcnt(css));
4954
4955 if (cssid)
4956 return cssid->depth;
4957 return 0;
4958 }
4959 EXPORT_SYMBOL_GPL(css_depth);
4960
4961 /**
4962 * css_is_ancestor - test "root" css is an ancestor of "child"
4963 * @child: the css to be tested.
4964 * @root: the css supporsed to be an ancestor of the child.
4965 *
4966 * Returns true if "root" is an ancestor of "child" in its hierarchy. Because
4967 * this function reads css->id, the caller must hold rcu_read_lock().
4968 * But, considering usual usage, the csses should be valid objects after test.
4969 * Assuming that the caller will do some action to the child if this returns
4970 * returns true, the caller must take "child";s reference count.
4971 * If "child" is valid object and this returns true, "root" is valid, too.
4972 */
4973
4974 bool css_is_ancestor(struct cgroup_subsys_state *child,
4975 const struct cgroup_subsys_state *root)
4976 {
4977 struct css_id *child_id;
4978 struct css_id *root_id;
4979
4980 child_id = rcu_dereference(child->id);
4981 if (!child_id)
4982 return false;
4983 root_id = rcu_dereference(root->id);
4984 if (!root_id)
4985 return false;
4986 if (child_id->depth < root_id->depth)
4987 return false;
4988 if (child_id->stack[root_id->depth] != root_id->id)
4989 return false;
4990 return true;
4991 }
4992
4993 void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
4994 {
4995 struct css_id *id = css->id;
4996 /* When this is called before css_id initialization, id can be NULL */
4997 if (!id)
4998 return;
4999
5000 BUG_ON(!ss->use_id);
5001
5002 rcu_assign_pointer(id->css, NULL);
5003 rcu_assign_pointer(css->id, NULL);
5004 spin_lock(&ss->id_lock);
5005 idr_remove(&ss->idr, id->id);
5006 spin_unlock(&ss->id_lock);
5007 kfree_rcu(id, rcu_head);
5008 }
5009 EXPORT_SYMBOL_GPL(free_css_id);
5010
5011 /*
5012 * This is called by init or create(). Then, calls to this function are
5013 * always serialized (By cgroup_mutex() at create()).
5014 */
5015
5016 static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
5017 {
5018 struct css_id *newid;
5019 int myid, error, size;
5020
5021 BUG_ON(!ss->use_id);
5022
5023 size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
5024 newid = kzalloc(size, GFP_KERNEL);
5025 if (!newid)
5026 return ERR_PTR(-ENOMEM);
5027 /* get id */
5028 if (unlikely(!idr_pre_get(&ss->idr, GFP_KERNEL))) {
5029 error = -ENOMEM;
5030 goto err_out;
5031 }
5032 spin_lock(&ss->id_lock);
5033 /* Don't use 0. allocates an ID of 1-65535 */
5034 error = idr_get_new_above(&ss->idr, newid, 1, &myid);
5035 spin_unlock(&ss->id_lock);
5036
5037 /* Returns error when there are no free spaces for new ID.*/
5038 if (error) {
5039 error = -ENOSPC;
5040 goto err_out;
5041 }
5042 if (myid > CSS_ID_MAX)
5043 goto remove_idr;
5044
5045 newid->id = myid;
5046 newid->depth = depth;
5047 return newid;
5048 remove_idr:
5049 error = -ENOSPC;
5050 spin_lock(&ss->id_lock);
5051 idr_remove(&ss->idr, myid);
5052 spin_unlock(&ss->id_lock);
5053 err_out:
5054 kfree(newid);
5055 return ERR_PTR(error);
5056
5057 }
5058
5059 static int __init_or_module cgroup_init_idr(struct cgroup_subsys *ss,
5060 struct cgroup_subsys_state *rootcss)
5061 {
5062 struct css_id *newid;
5063
5064 spin_lock_init(&ss->id_lock);
5065 idr_init(&ss->idr);
5066
5067 newid = get_new_cssid(ss, 0);
5068 if (IS_ERR(newid))
5069 return PTR_ERR(newid);
5070
5071 newid->stack[0] = newid->id;
5072 newid->css = rootcss;
5073 rootcss->id = newid;
5074 return 0;
5075 }
5076
5077 static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
5078 struct cgroup *child)
5079 {
5080 int subsys_id, i, depth = 0;
5081 struct cgroup_subsys_state *parent_css, *child_css;
5082 struct css_id *child_id, *parent_id;
5083
5084 subsys_id = ss->subsys_id;
5085 parent_css = parent->subsys[subsys_id];
5086 child_css = child->subsys[subsys_id];
5087 parent_id = parent_css->id;
5088 depth = parent_id->depth + 1;
5089
5090 child_id = get_new_cssid(ss, depth);
5091 if (IS_ERR(child_id))
5092 return PTR_ERR(child_id);
5093
5094 for (i = 0; i < depth; i++)
5095 child_id->stack[i] = parent_id->stack[i];
5096 child_id->stack[depth] = child_id->id;
5097 /*
5098 * child_id->css pointer will be set after this cgroup is available
5099 * see cgroup_populate_dir()
5100 */
5101 rcu_assign_pointer(child_css->id, child_id);
5102
5103 return 0;
5104 }
5105
5106 /**
5107 * css_lookup - lookup css by id
5108 * @ss: cgroup subsys to be looked into.
5109 * @id: the id
5110 *
5111 * Returns pointer to cgroup_subsys_state if there is valid one with id.
5112 * NULL if not. Should be called under rcu_read_lock()
5113 */
5114 struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
5115 {
5116 struct css_id *cssid = NULL;
5117
5118 BUG_ON(!ss->use_id);
5119 cssid = idr_find(&ss->idr, id);
5120
5121 if (unlikely(!cssid))
5122 return NULL;
5123
5124 return rcu_dereference(cssid->css);
5125 }
5126 EXPORT_SYMBOL_GPL(css_lookup);
5127
5128 /**
5129 * css_get_next - lookup next cgroup under specified hierarchy.
5130 * @ss: pointer to subsystem
5131 * @id: current position of iteration.
5132 * @root: pointer to css. search tree under this.
5133 * @foundid: position of found object.
5134 *
5135 * Search next css under the specified hierarchy of rootid. Calling under
5136 * rcu_read_lock() is necessary. Returns NULL if it reaches the end.
5137 */
5138 struct cgroup_subsys_state *
5139 css_get_next(struct cgroup_subsys *ss, int id,
5140 struct cgroup_subsys_state *root, int *foundid)
5141 {
5142 struct cgroup_subsys_state *ret = NULL;
5143 struct css_id *tmp;
5144 int tmpid;
5145 int rootid = css_id(root);
5146 int depth = css_depth(root);
5147
5148 if (!rootid)
5149 return NULL;
5150
5151 BUG_ON(!ss->use_id);
5152 WARN_ON_ONCE(!rcu_read_lock_held());
5153
5154 /* fill start point for scan */
5155 tmpid = id;
5156 while (1) {
5157 /*
5158 * scan next entry from bitmap(tree), tmpid is updated after
5159 * idr_get_next().
5160 */
5161 tmp = idr_get_next(&ss->idr, &tmpid);
5162 if (!tmp)
5163 break;
5164 if (tmp->depth >= depth && tmp->stack[depth] == rootid) {
5165 ret = rcu_dereference(tmp->css);
5166 if (ret) {
5167 *foundid = tmpid;
5168 break;
5169 }
5170 }
5171 /* continue to scan from next id */
5172 tmpid = tmpid + 1;
5173 }
5174 return ret;
5175 }
5176
5177 /*
5178 * get corresponding css from file open on cgroupfs directory
5179 */
5180 struct cgroup_subsys_state *cgroup_css_from_dir(struct file *f, int id)
5181 {
5182 struct cgroup *cgrp;
5183 struct inode *inode;
5184 struct cgroup_subsys_state *css;
5185
5186 inode = f->f_dentry->d_inode;
5187 /* check in cgroup filesystem dir */
5188 if (inode->i_op != &cgroup_dir_inode_operations)
5189 return ERR_PTR(-EBADF);
5190
5191 if (id < 0 || id >= CGROUP_SUBSYS_COUNT)
5192 return ERR_PTR(-EINVAL);
5193
5194 /* get cgroup */
5195 cgrp = __d_cgrp(f->f_dentry);
5196 css = cgrp->subsys[id];
5197 return css ? css : ERR_PTR(-ENOENT);
5198 }
5199
5200 #ifdef CONFIG_CGROUP_DEBUG
5201 static struct cgroup_subsys_state *debug_create(struct cgroup *cont)
5202 {
5203 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5204
5205 if (!css)
5206 return ERR_PTR(-ENOMEM);
5207
5208 return css;
5209 }
5210
5211 static void debug_destroy(struct cgroup *cont)
5212 {
5213 kfree(cont->subsys[debug_subsys_id]);
5214 }
5215
5216 static u64 cgroup_refcount_read(struct cgroup *cont, struct cftype *cft)
5217 {
5218 return atomic_read(&cont->count);
5219 }
5220
5221 static u64 debug_taskcount_read(struct cgroup *cont, struct cftype *cft)
5222 {
5223 return cgroup_task_count(cont);
5224 }
5225
5226 static u64 current_css_set_read(struct cgroup *cont, struct cftype *cft)
5227 {
5228 return (u64)(unsigned long)current->cgroups;
5229 }
5230
5231 static u64 current_css_set_refcount_read(struct cgroup *cont,
5232 struct cftype *cft)
5233 {
5234 u64 count;
5235
5236 rcu_read_lock();
5237 count = atomic_read(&current->cgroups->refcount);
5238 rcu_read_unlock();
5239 return count;
5240 }
5241
5242 static int current_css_set_cg_links_read(struct cgroup *cont,
5243 struct cftype *cft,
5244 struct seq_file *seq)
5245 {
5246 struct cg_cgroup_link *link;
5247 struct css_set *cg;
5248
5249 read_lock(&css_set_lock);
5250 rcu_read_lock();
5251 cg = rcu_dereference(current->cgroups);
5252 list_for_each_entry(link, &cg->cg_links, cg_link_list) {
5253 struct cgroup *c = link->cgrp;
5254 const char *name;
5255
5256 if (c->dentry)
5257 name = c->dentry->d_name.name;
5258 else
5259 name = "?";
5260 seq_printf(seq, "Root %d group %s\n",
5261 c->root->hierarchy_id, name);
5262 }
5263 rcu_read_unlock();
5264 read_unlock(&css_set_lock);
5265 return 0;
5266 }
5267
5268 #define MAX_TASKS_SHOWN_PER_CSS 25
5269 static int cgroup_css_links_read(struct cgroup *cont,
5270 struct cftype *cft,
5271 struct seq_file *seq)
5272 {
5273 struct cg_cgroup_link *link;
5274
5275 read_lock(&css_set_lock);
5276 list_for_each_entry(link, &cont->css_sets, cgrp_link_list) {
5277 struct css_set *cg = link->cg;
5278 struct task_struct *task;
5279 int count = 0;
5280 seq_printf(seq, "css_set %p\n", cg);
5281 list_for_each_entry(task, &cg->tasks, cg_list) {
5282 if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
5283 seq_puts(seq, " ...\n");
5284 break;
5285 } else {
5286 seq_printf(seq, " task %d\n",
5287 task_pid_vnr(task));
5288 }
5289 }
5290 }
5291 read_unlock(&css_set_lock);
5292 return 0;
5293 }
5294
5295 static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft)
5296 {
5297 return test_bit(CGRP_RELEASABLE, &cgrp->flags);
5298 }
5299
5300 static struct cftype debug_files[] = {
5301 {
5302 .name = "cgroup_refcount",
5303 .read_u64 = cgroup_refcount_read,
5304 },
5305 {
5306 .name = "taskcount",
5307 .read_u64 = debug_taskcount_read,
5308 },
5309
5310 {
5311 .name = "current_css_set",
5312 .read_u64 = current_css_set_read,
5313 },
5314
5315 {
5316 .name = "current_css_set_refcount",
5317 .read_u64 = current_css_set_refcount_read,
5318 },
5319
5320 {
5321 .name = "current_css_set_cg_links",
5322 .read_seq_string = current_css_set_cg_links_read,
5323 },
5324
5325 {
5326 .name = "cgroup_css_links",
5327 .read_seq_string = cgroup_css_links_read,
5328 },
5329
5330 {
5331 .name = "releasable",
5332 .read_u64 = releasable_read,
5333 },
5334
5335 { } /* terminate */
5336 };
5337
5338 struct cgroup_subsys debug_subsys = {
5339 .name = "debug",
5340 .create = debug_create,
5341 .destroy = debug_destroy,
5342 .subsys_id = debug_subsys_id,
5343 .base_cftypes = debug_files,
5344 };
5345 #endif /* CONFIG_CGROUP_DEBUG */
This page took 0.21294 seconds and 4 git commands to generate.