d35463bab487b3eb15346514b65547583a7b4e9e
[deliverable/linux.git] / kernel / cgroup.c
1 /*
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29 #include <linux/cgroup.h>
30 #include <linux/cred.h>
31 #include <linux/ctype.h>
32 #include <linux/errno.h>
33 #include <linux/fs.h>
34 #include <linux/init_task.h>
35 #include <linux/kernel.h>
36 #include <linux/list.h>
37 #include <linux/mm.h>
38 #include <linux/mutex.h>
39 #include <linux/mount.h>
40 #include <linux/pagemap.h>
41 #include <linux/proc_fs.h>
42 #include <linux/rcupdate.h>
43 #include <linux/sched.h>
44 #include <linux/backing-dev.h>
45 #include <linux/seq_file.h>
46 #include <linux/slab.h>
47 #include <linux/magic.h>
48 #include <linux/spinlock.h>
49 #include <linux/string.h>
50 #include <linux/sort.h>
51 #include <linux/kmod.h>
52 #include <linux/module.h>
53 #include <linux/delayacct.h>
54 #include <linux/cgroupstats.h>
55 #include <linux/hash.h>
56 #include <linux/namei.h>
57 #include <linux/pid_namespace.h>
58 #include <linux/idr.h>
59 #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
60 #include <linux/eventfd.h>
61 #include <linux/poll.h>
62 #include <linux/flex_array.h> /* used in cgroup_attach_proc */
63 #include <linux/kthread.h>
64
65 #include <linux/atomic.h>
66
67 /* css deactivation bias, makes css->refcnt negative to deny new trygets */
68 #define CSS_DEACT_BIAS INT_MIN
69
70 /*
71 * cgroup_mutex is the master lock. Any modification to cgroup or its
72 * hierarchy must be performed while holding it.
73 *
74 * cgroup_root_mutex nests inside cgroup_mutex and should be held to modify
75 * cgroupfs_root of any cgroup hierarchy - subsys list, flags,
76 * release_agent_path and so on. Modifying requires both cgroup_mutex and
77 * cgroup_root_mutex. Readers can acquire either of the two. This is to
78 * break the following locking order cycle.
79 *
80 * A. cgroup_mutex -> cred_guard_mutex -> s_type->i_mutex_key -> namespace_sem
81 * B. namespace_sem -> cgroup_mutex
82 *
83 * B happens only through cgroup_show_options() and using cgroup_root_mutex
84 * breaks it.
85 */
86 static DEFINE_MUTEX(cgroup_mutex);
87 static DEFINE_MUTEX(cgroup_root_mutex);
88
89 /*
90 * Generate an array of cgroup subsystem pointers. At boot time, this is
91 * populated with the built in subsystems, and modular subsystems are
92 * registered after that. The mutable section of this array is protected by
93 * cgroup_mutex.
94 */
95 #define SUBSYS(_x) [_x ## _subsys_id] = &_x ## _subsys,
96 #define IS_SUBSYS_ENABLED(option) IS_BUILTIN(option)
97 static struct cgroup_subsys *subsys[CGROUP_SUBSYS_COUNT] = {
98 #include <linux/cgroup_subsys.h>
99 };
100
101 #define MAX_CGROUP_ROOT_NAMELEN 64
102
103 /*
104 * A cgroupfs_root represents the root of a cgroup hierarchy,
105 * and may be associated with a superblock to form an active
106 * hierarchy
107 */
108 struct cgroupfs_root {
109 struct super_block *sb;
110
111 /*
112 * The bitmask of subsystems intended to be attached to this
113 * hierarchy
114 */
115 unsigned long subsys_mask;
116
117 /* Unique id for this hierarchy. */
118 int hierarchy_id;
119
120 /* The bitmask of subsystems currently attached to this hierarchy */
121 unsigned long actual_subsys_mask;
122
123 /* A list running through the attached subsystems */
124 struct list_head subsys_list;
125
126 /* The root cgroup for this hierarchy */
127 struct cgroup top_cgroup;
128
129 /* Tracks how many cgroups are currently defined in hierarchy.*/
130 int number_of_cgroups;
131
132 /* A list running through the active hierarchies */
133 struct list_head root_list;
134
135 /* All cgroups on this root, cgroup_mutex protected */
136 struct list_head allcg_list;
137
138 /* Hierarchy-specific flags */
139 unsigned long flags;
140
141 /* The path to use for release notifications. */
142 char release_agent_path[PATH_MAX];
143
144 /* The name for this hierarchy - may be empty */
145 char name[MAX_CGROUP_ROOT_NAMELEN];
146 };
147
148 /*
149 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
150 * subsystems that are otherwise unattached - it never has more than a
151 * single cgroup, and all tasks are part of that cgroup.
152 */
153 static struct cgroupfs_root rootnode;
154
155 /*
156 * cgroupfs file entry, pointed to from leaf dentry->d_fsdata.
157 */
158 struct cfent {
159 struct list_head node;
160 struct dentry *dentry;
161 struct cftype *type;
162 };
163
164 /*
165 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
166 * cgroup_subsys->use_id != 0.
167 */
168 #define CSS_ID_MAX (65535)
169 struct css_id {
170 /*
171 * The css to which this ID points. This pointer is set to valid value
172 * after cgroup is populated. If cgroup is removed, this will be NULL.
173 * This pointer is expected to be RCU-safe because destroy()
174 * is called after synchronize_rcu(). But for safe use, css_tryget()
175 * should be used for avoiding race.
176 */
177 struct cgroup_subsys_state __rcu *css;
178 /*
179 * ID of this css.
180 */
181 unsigned short id;
182 /*
183 * Depth in hierarchy which this ID belongs to.
184 */
185 unsigned short depth;
186 /*
187 * ID is freed by RCU. (and lookup routine is RCU safe.)
188 */
189 struct rcu_head rcu_head;
190 /*
191 * Hierarchy of CSS ID belongs to.
192 */
193 unsigned short stack[0]; /* Array of Length (depth+1) */
194 };
195
196 /*
197 * cgroup_event represents events which userspace want to receive.
198 */
199 struct cgroup_event {
200 /*
201 * Cgroup which the event belongs to.
202 */
203 struct cgroup *cgrp;
204 /*
205 * Control file which the event associated.
206 */
207 struct cftype *cft;
208 /*
209 * eventfd to signal userspace about the event.
210 */
211 struct eventfd_ctx *eventfd;
212 /*
213 * Each of these stored in a list by the cgroup.
214 */
215 struct list_head list;
216 /*
217 * All fields below needed to unregister event when
218 * userspace closes eventfd.
219 */
220 poll_table pt;
221 wait_queue_head_t *wqh;
222 wait_queue_t wait;
223 struct work_struct remove;
224 };
225
226 /* The list of hierarchy roots */
227
228 static LIST_HEAD(roots);
229 static int root_count;
230
231 static DEFINE_IDA(hierarchy_ida);
232 static int next_hierarchy_id;
233 static DEFINE_SPINLOCK(hierarchy_id_lock);
234
235 /* dummytop is a shorthand for the dummy hierarchy's top cgroup */
236 #define dummytop (&rootnode.top_cgroup)
237
238 /* This flag indicates whether tasks in the fork and exit paths should
239 * check for fork/exit handlers to call. This avoids us having to do
240 * extra work in the fork/exit path if none of the subsystems need to
241 * be called.
242 */
243 static int need_forkexit_callback __read_mostly;
244
245 static int cgroup_destroy_locked(struct cgroup *cgrp);
246
247 #ifdef CONFIG_PROVE_LOCKING
248 int cgroup_lock_is_held(void)
249 {
250 return lockdep_is_held(&cgroup_mutex);
251 }
252 #else /* #ifdef CONFIG_PROVE_LOCKING */
253 int cgroup_lock_is_held(void)
254 {
255 return mutex_is_locked(&cgroup_mutex);
256 }
257 #endif /* #else #ifdef CONFIG_PROVE_LOCKING */
258
259 EXPORT_SYMBOL_GPL(cgroup_lock_is_held);
260
261 static int css_unbias_refcnt(int refcnt)
262 {
263 return refcnt >= 0 ? refcnt : refcnt - CSS_DEACT_BIAS;
264 }
265
266 /* the current nr of refs, always >= 0 whether @css is deactivated or not */
267 static int css_refcnt(struct cgroup_subsys_state *css)
268 {
269 int v = atomic_read(&css->refcnt);
270
271 return css_unbias_refcnt(v);
272 }
273
274 /* convenient tests for these bits */
275 inline int cgroup_is_removed(const struct cgroup *cgrp)
276 {
277 return test_bit(CGRP_REMOVED, &cgrp->flags);
278 }
279
280 /* bits in struct cgroupfs_root flags field */
281 enum {
282 ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
283 ROOT_XATTR, /* supports extended attributes */
284 };
285
286 static int cgroup_is_releasable(const struct cgroup *cgrp)
287 {
288 const int bits =
289 (1 << CGRP_RELEASABLE) |
290 (1 << CGRP_NOTIFY_ON_RELEASE);
291 return (cgrp->flags & bits) == bits;
292 }
293
294 static int notify_on_release(const struct cgroup *cgrp)
295 {
296 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
297 }
298
299 static int clone_children(const struct cgroup *cgrp)
300 {
301 return test_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
302 }
303
304 /*
305 * for_each_subsys() allows you to iterate on each subsystem attached to
306 * an active hierarchy
307 */
308 #define for_each_subsys(_root, _ss) \
309 list_for_each_entry(_ss, &_root->subsys_list, sibling)
310
311 /* for_each_active_root() allows you to iterate across the active hierarchies */
312 #define for_each_active_root(_root) \
313 list_for_each_entry(_root, &roots, root_list)
314
315 static inline struct cgroup *__d_cgrp(struct dentry *dentry)
316 {
317 return dentry->d_fsdata;
318 }
319
320 static inline struct cfent *__d_cfe(struct dentry *dentry)
321 {
322 return dentry->d_fsdata;
323 }
324
325 static inline struct cftype *__d_cft(struct dentry *dentry)
326 {
327 return __d_cfe(dentry)->type;
328 }
329
330 /* the list of cgroups eligible for automatic release. Protected by
331 * release_list_lock */
332 static LIST_HEAD(release_list);
333 static DEFINE_RAW_SPINLOCK(release_list_lock);
334 static void cgroup_release_agent(struct work_struct *work);
335 static DECLARE_WORK(release_agent_work, cgroup_release_agent);
336 static void check_for_release(struct cgroup *cgrp);
337
338 /* Link structure for associating css_set objects with cgroups */
339 struct cg_cgroup_link {
340 /*
341 * List running through cg_cgroup_links associated with a
342 * cgroup, anchored on cgroup->css_sets
343 */
344 struct list_head cgrp_link_list;
345 struct cgroup *cgrp;
346 /*
347 * List running through cg_cgroup_links pointing at a
348 * single css_set object, anchored on css_set->cg_links
349 */
350 struct list_head cg_link_list;
351 struct css_set *cg;
352 };
353
354 /* The default css_set - used by init and its children prior to any
355 * hierarchies being mounted. It contains a pointer to the root state
356 * for each subsystem. Also used to anchor the list of css_sets. Not
357 * reference-counted, to improve performance when child cgroups
358 * haven't been created.
359 */
360
361 static struct css_set init_css_set;
362 static struct cg_cgroup_link init_css_set_link;
363
364 static int cgroup_init_idr(struct cgroup_subsys *ss,
365 struct cgroup_subsys_state *css);
366
367 /* css_set_lock protects the list of css_set objects, and the
368 * chain of tasks off each css_set. Nests outside task->alloc_lock
369 * due to cgroup_iter_start() */
370 static DEFINE_RWLOCK(css_set_lock);
371 static int css_set_count;
372
373 /*
374 * hash table for cgroup groups. This improves the performance to find
375 * an existing css_set. This hash doesn't (currently) take into
376 * account cgroups in empty hierarchies.
377 */
378 #define CSS_SET_HASH_BITS 7
379 #define CSS_SET_TABLE_SIZE (1 << CSS_SET_HASH_BITS)
380 static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE];
381
382 static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[])
383 {
384 int i;
385 int index;
386 unsigned long tmp = 0UL;
387
388 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
389 tmp += (unsigned long)css[i];
390 tmp = (tmp >> 16) ^ tmp;
391
392 index = hash_long(tmp, CSS_SET_HASH_BITS);
393
394 return &css_set_table[index];
395 }
396
397 /* We don't maintain the lists running through each css_set to its
398 * task until after the first call to cgroup_iter_start(). This
399 * reduces the fork()/exit() overhead for people who have cgroups
400 * compiled into their kernel but not actually in use */
401 static int use_task_css_set_links __read_mostly;
402
403 static void __put_css_set(struct css_set *cg, int taskexit)
404 {
405 struct cg_cgroup_link *link;
406 struct cg_cgroup_link *saved_link;
407 /*
408 * Ensure that the refcount doesn't hit zero while any readers
409 * can see it. Similar to atomic_dec_and_lock(), but for an
410 * rwlock
411 */
412 if (atomic_add_unless(&cg->refcount, -1, 1))
413 return;
414 write_lock(&css_set_lock);
415 if (!atomic_dec_and_test(&cg->refcount)) {
416 write_unlock(&css_set_lock);
417 return;
418 }
419
420 /* This css_set is dead. unlink it and release cgroup refcounts */
421 hlist_del(&cg->hlist);
422 css_set_count--;
423
424 list_for_each_entry_safe(link, saved_link, &cg->cg_links,
425 cg_link_list) {
426 struct cgroup *cgrp = link->cgrp;
427 list_del(&link->cg_link_list);
428 list_del(&link->cgrp_link_list);
429 if (atomic_dec_and_test(&cgrp->count) &&
430 notify_on_release(cgrp)) {
431 if (taskexit)
432 set_bit(CGRP_RELEASABLE, &cgrp->flags);
433 check_for_release(cgrp);
434 }
435
436 kfree(link);
437 }
438
439 write_unlock(&css_set_lock);
440 kfree_rcu(cg, rcu_head);
441 }
442
443 /*
444 * refcounted get/put for css_set objects
445 */
446 static inline void get_css_set(struct css_set *cg)
447 {
448 atomic_inc(&cg->refcount);
449 }
450
451 static inline void put_css_set(struct css_set *cg)
452 {
453 __put_css_set(cg, 0);
454 }
455
456 static inline void put_css_set_taskexit(struct css_set *cg)
457 {
458 __put_css_set(cg, 1);
459 }
460
461 /*
462 * compare_css_sets - helper function for find_existing_css_set().
463 * @cg: candidate css_set being tested
464 * @old_cg: existing css_set for a task
465 * @new_cgrp: cgroup that's being entered by the task
466 * @template: desired set of css pointers in css_set (pre-calculated)
467 *
468 * Returns true if "cg" matches "old_cg" except for the hierarchy
469 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
470 */
471 static bool compare_css_sets(struct css_set *cg,
472 struct css_set *old_cg,
473 struct cgroup *new_cgrp,
474 struct cgroup_subsys_state *template[])
475 {
476 struct list_head *l1, *l2;
477
478 if (memcmp(template, cg->subsys, sizeof(cg->subsys))) {
479 /* Not all subsystems matched */
480 return false;
481 }
482
483 /*
484 * Compare cgroup pointers in order to distinguish between
485 * different cgroups in heirarchies with no subsystems. We
486 * could get by with just this check alone (and skip the
487 * memcmp above) but on most setups the memcmp check will
488 * avoid the need for this more expensive check on almost all
489 * candidates.
490 */
491
492 l1 = &cg->cg_links;
493 l2 = &old_cg->cg_links;
494 while (1) {
495 struct cg_cgroup_link *cgl1, *cgl2;
496 struct cgroup *cg1, *cg2;
497
498 l1 = l1->next;
499 l2 = l2->next;
500 /* See if we reached the end - both lists are equal length. */
501 if (l1 == &cg->cg_links) {
502 BUG_ON(l2 != &old_cg->cg_links);
503 break;
504 } else {
505 BUG_ON(l2 == &old_cg->cg_links);
506 }
507 /* Locate the cgroups associated with these links. */
508 cgl1 = list_entry(l1, struct cg_cgroup_link, cg_link_list);
509 cgl2 = list_entry(l2, struct cg_cgroup_link, cg_link_list);
510 cg1 = cgl1->cgrp;
511 cg2 = cgl2->cgrp;
512 /* Hierarchies should be linked in the same order. */
513 BUG_ON(cg1->root != cg2->root);
514
515 /*
516 * If this hierarchy is the hierarchy of the cgroup
517 * that's changing, then we need to check that this
518 * css_set points to the new cgroup; if it's any other
519 * hierarchy, then this css_set should point to the
520 * same cgroup as the old css_set.
521 */
522 if (cg1->root == new_cgrp->root) {
523 if (cg1 != new_cgrp)
524 return false;
525 } else {
526 if (cg1 != cg2)
527 return false;
528 }
529 }
530 return true;
531 }
532
533 /*
534 * find_existing_css_set() is a helper for
535 * find_css_set(), and checks to see whether an existing
536 * css_set is suitable.
537 *
538 * oldcg: the cgroup group that we're using before the cgroup
539 * transition
540 *
541 * cgrp: the cgroup that we're moving into
542 *
543 * template: location in which to build the desired set of subsystem
544 * state objects for the new cgroup group
545 */
546 static struct css_set *find_existing_css_set(
547 struct css_set *oldcg,
548 struct cgroup *cgrp,
549 struct cgroup_subsys_state *template[])
550 {
551 int i;
552 struct cgroupfs_root *root = cgrp->root;
553 struct hlist_head *hhead;
554 struct hlist_node *node;
555 struct css_set *cg;
556
557 /*
558 * Build the set of subsystem state objects that we want to see in the
559 * new css_set. while subsystems can change globally, the entries here
560 * won't change, so no need for locking.
561 */
562 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
563 if (root->subsys_mask & (1UL << i)) {
564 /* Subsystem is in this hierarchy. So we want
565 * the subsystem state from the new
566 * cgroup */
567 template[i] = cgrp->subsys[i];
568 } else {
569 /* Subsystem is not in this hierarchy, so we
570 * don't want to change the subsystem state */
571 template[i] = oldcg->subsys[i];
572 }
573 }
574
575 hhead = css_set_hash(template);
576 hlist_for_each_entry(cg, node, hhead, hlist) {
577 if (!compare_css_sets(cg, oldcg, cgrp, template))
578 continue;
579
580 /* This css_set matches what we need */
581 return cg;
582 }
583
584 /* No existing cgroup group matched */
585 return NULL;
586 }
587
588 static void free_cg_links(struct list_head *tmp)
589 {
590 struct cg_cgroup_link *link;
591 struct cg_cgroup_link *saved_link;
592
593 list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
594 list_del(&link->cgrp_link_list);
595 kfree(link);
596 }
597 }
598
599 /*
600 * allocate_cg_links() allocates "count" cg_cgroup_link structures
601 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
602 * success or a negative error
603 */
604 static int allocate_cg_links(int count, struct list_head *tmp)
605 {
606 struct cg_cgroup_link *link;
607 int i;
608 INIT_LIST_HEAD(tmp);
609 for (i = 0; i < count; i++) {
610 link = kmalloc(sizeof(*link), GFP_KERNEL);
611 if (!link) {
612 free_cg_links(tmp);
613 return -ENOMEM;
614 }
615 list_add(&link->cgrp_link_list, tmp);
616 }
617 return 0;
618 }
619
620 /**
621 * link_css_set - a helper function to link a css_set to a cgroup
622 * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
623 * @cg: the css_set to be linked
624 * @cgrp: the destination cgroup
625 */
626 static void link_css_set(struct list_head *tmp_cg_links,
627 struct css_set *cg, struct cgroup *cgrp)
628 {
629 struct cg_cgroup_link *link;
630
631 BUG_ON(list_empty(tmp_cg_links));
632 link = list_first_entry(tmp_cg_links, struct cg_cgroup_link,
633 cgrp_link_list);
634 link->cg = cg;
635 link->cgrp = cgrp;
636 atomic_inc(&cgrp->count);
637 list_move(&link->cgrp_link_list, &cgrp->css_sets);
638 /*
639 * Always add links to the tail of the list so that the list
640 * is sorted by order of hierarchy creation
641 */
642 list_add_tail(&link->cg_link_list, &cg->cg_links);
643 }
644
645 /*
646 * find_css_set() takes an existing cgroup group and a
647 * cgroup object, and returns a css_set object that's
648 * equivalent to the old group, but with the given cgroup
649 * substituted into the appropriate hierarchy. Must be called with
650 * cgroup_mutex held
651 */
652 static struct css_set *find_css_set(
653 struct css_set *oldcg, struct cgroup *cgrp)
654 {
655 struct css_set *res;
656 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
657
658 struct list_head tmp_cg_links;
659
660 struct hlist_head *hhead;
661 struct cg_cgroup_link *link;
662
663 /* First see if we already have a cgroup group that matches
664 * the desired set */
665 read_lock(&css_set_lock);
666 res = find_existing_css_set(oldcg, cgrp, template);
667 if (res)
668 get_css_set(res);
669 read_unlock(&css_set_lock);
670
671 if (res)
672 return res;
673
674 res = kmalloc(sizeof(*res), GFP_KERNEL);
675 if (!res)
676 return NULL;
677
678 /* Allocate all the cg_cgroup_link objects that we'll need */
679 if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
680 kfree(res);
681 return NULL;
682 }
683
684 atomic_set(&res->refcount, 1);
685 INIT_LIST_HEAD(&res->cg_links);
686 INIT_LIST_HEAD(&res->tasks);
687 INIT_HLIST_NODE(&res->hlist);
688
689 /* Copy the set of subsystem state objects generated in
690 * find_existing_css_set() */
691 memcpy(res->subsys, template, sizeof(res->subsys));
692
693 write_lock(&css_set_lock);
694 /* Add reference counts and links from the new css_set. */
695 list_for_each_entry(link, &oldcg->cg_links, cg_link_list) {
696 struct cgroup *c = link->cgrp;
697 if (c->root == cgrp->root)
698 c = cgrp;
699 link_css_set(&tmp_cg_links, res, c);
700 }
701
702 BUG_ON(!list_empty(&tmp_cg_links));
703
704 css_set_count++;
705
706 /* Add this cgroup group to the hash table */
707 hhead = css_set_hash(res->subsys);
708 hlist_add_head(&res->hlist, hhead);
709
710 write_unlock(&css_set_lock);
711
712 return res;
713 }
714
715 /*
716 * Return the cgroup for "task" from the given hierarchy. Must be
717 * called with cgroup_mutex held.
718 */
719 static struct cgroup *task_cgroup_from_root(struct task_struct *task,
720 struct cgroupfs_root *root)
721 {
722 struct css_set *css;
723 struct cgroup *res = NULL;
724
725 BUG_ON(!mutex_is_locked(&cgroup_mutex));
726 read_lock(&css_set_lock);
727 /*
728 * No need to lock the task - since we hold cgroup_mutex the
729 * task can't change groups, so the only thing that can happen
730 * is that it exits and its css is set back to init_css_set.
731 */
732 css = task->cgroups;
733 if (css == &init_css_set) {
734 res = &root->top_cgroup;
735 } else {
736 struct cg_cgroup_link *link;
737 list_for_each_entry(link, &css->cg_links, cg_link_list) {
738 struct cgroup *c = link->cgrp;
739 if (c->root == root) {
740 res = c;
741 break;
742 }
743 }
744 }
745 read_unlock(&css_set_lock);
746 BUG_ON(!res);
747 return res;
748 }
749
750 /*
751 * There is one global cgroup mutex. We also require taking
752 * task_lock() when dereferencing a task's cgroup subsys pointers.
753 * See "The task_lock() exception", at the end of this comment.
754 *
755 * A task must hold cgroup_mutex to modify cgroups.
756 *
757 * Any task can increment and decrement the count field without lock.
758 * So in general, code holding cgroup_mutex can't rely on the count
759 * field not changing. However, if the count goes to zero, then only
760 * cgroup_attach_task() can increment it again. Because a count of zero
761 * means that no tasks are currently attached, therefore there is no
762 * way a task attached to that cgroup can fork (the other way to
763 * increment the count). So code holding cgroup_mutex can safely
764 * assume that if the count is zero, it will stay zero. Similarly, if
765 * a task holds cgroup_mutex on a cgroup with zero count, it
766 * knows that the cgroup won't be removed, as cgroup_rmdir()
767 * needs that mutex.
768 *
769 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
770 * (usually) take cgroup_mutex. These are the two most performance
771 * critical pieces of code here. The exception occurs on cgroup_exit(),
772 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
773 * is taken, and if the cgroup count is zero, a usermode call made
774 * to the release agent with the name of the cgroup (path relative to
775 * the root of cgroup file system) as the argument.
776 *
777 * A cgroup can only be deleted if both its 'count' of using tasks
778 * is zero, and its list of 'children' cgroups is empty. Since all
779 * tasks in the system use _some_ cgroup, and since there is always at
780 * least one task in the system (init, pid == 1), therefore, top_cgroup
781 * always has either children cgroups and/or using tasks. So we don't
782 * need a special hack to ensure that top_cgroup cannot be deleted.
783 *
784 * The task_lock() exception
785 *
786 * The need for this exception arises from the action of
787 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
788 * another. It does so using cgroup_mutex, however there are
789 * several performance critical places that need to reference
790 * task->cgroup without the expense of grabbing a system global
791 * mutex. Therefore except as noted below, when dereferencing or, as
792 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
793 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
794 * the task_struct routinely used for such matters.
795 *
796 * P.S. One more locking exception. RCU is used to guard the
797 * update of a tasks cgroup pointer by cgroup_attach_task()
798 */
799
800 /**
801 * cgroup_lock - lock out any changes to cgroup structures
802 *
803 */
804 void cgroup_lock(void)
805 {
806 mutex_lock(&cgroup_mutex);
807 }
808 EXPORT_SYMBOL_GPL(cgroup_lock);
809
810 /**
811 * cgroup_unlock - release lock on cgroup changes
812 *
813 * Undo the lock taken in a previous cgroup_lock() call.
814 */
815 void cgroup_unlock(void)
816 {
817 mutex_unlock(&cgroup_mutex);
818 }
819 EXPORT_SYMBOL_GPL(cgroup_unlock);
820
821 /*
822 * A couple of forward declarations required, due to cyclic reference loop:
823 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
824 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
825 * -> cgroup_mkdir.
826 */
827
828 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode);
829 static struct dentry *cgroup_lookup(struct inode *, struct dentry *, unsigned int);
830 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
831 static int cgroup_populate_dir(struct cgroup *cgrp, bool base_files,
832 unsigned long subsys_mask);
833 static const struct inode_operations cgroup_dir_inode_operations;
834 static const struct file_operations proc_cgroupstats_operations;
835
836 static struct backing_dev_info cgroup_backing_dev_info = {
837 .name = "cgroup",
838 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
839 };
840
841 static int alloc_css_id(struct cgroup_subsys *ss,
842 struct cgroup *parent, struct cgroup *child);
843
844 static struct inode *cgroup_new_inode(umode_t mode, struct super_block *sb)
845 {
846 struct inode *inode = new_inode(sb);
847
848 if (inode) {
849 inode->i_ino = get_next_ino();
850 inode->i_mode = mode;
851 inode->i_uid = current_fsuid();
852 inode->i_gid = current_fsgid();
853 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
854 inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
855 }
856 return inode;
857 }
858
859 static void cgroup_diput(struct dentry *dentry, struct inode *inode)
860 {
861 /* is dentry a directory ? if so, kfree() associated cgroup */
862 if (S_ISDIR(inode->i_mode)) {
863 struct cgroup *cgrp = dentry->d_fsdata;
864 struct cgroup_subsys *ss;
865 BUG_ON(!(cgroup_is_removed(cgrp)));
866 /* It's possible for external users to be holding css
867 * reference counts on a cgroup; css_put() needs to
868 * be able to access the cgroup after decrementing
869 * the reference count in order to know if it needs to
870 * queue the cgroup to be handled by the release
871 * agent */
872 synchronize_rcu();
873
874 mutex_lock(&cgroup_mutex);
875 /*
876 * Release the subsystem state objects.
877 */
878 for_each_subsys(cgrp->root, ss)
879 ss->css_free(cgrp);
880
881 cgrp->root->number_of_cgroups--;
882 mutex_unlock(&cgroup_mutex);
883
884 /*
885 * Drop the active superblock reference that we took when we
886 * created the cgroup
887 */
888 deactivate_super(cgrp->root->sb);
889
890 /*
891 * if we're getting rid of the cgroup, refcount should ensure
892 * that there are no pidlists left.
893 */
894 BUG_ON(!list_empty(&cgrp->pidlists));
895
896 simple_xattrs_free(&cgrp->xattrs);
897
898 kfree_rcu(cgrp, rcu_head);
899 } else {
900 struct cfent *cfe = __d_cfe(dentry);
901 struct cgroup *cgrp = dentry->d_parent->d_fsdata;
902 struct cftype *cft = cfe->type;
903
904 WARN_ONCE(!list_empty(&cfe->node) &&
905 cgrp != &cgrp->root->top_cgroup,
906 "cfe still linked for %s\n", cfe->type->name);
907 kfree(cfe);
908 simple_xattrs_free(&cft->xattrs);
909 }
910 iput(inode);
911 }
912
913 static int cgroup_delete(const struct dentry *d)
914 {
915 return 1;
916 }
917
918 static void remove_dir(struct dentry *d)
919 {
920 struct dentry *parent = dget(d->d_parent);
921
922 d_delete(d);
923 simple_rmdir(parent->d_inode, d);
924 dput(parent);
925 }
926
927 static int cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
928 {
929 struct cfent *cfe;
930
931 lockdep_assert_held(&cgrp->dentry->d_inode->i_mutex);
932 lockdep_assert_held(&cgroup_mutex);
933
934 list_for_each_entry(cfe, &cgrp->files, node) {
935 struct dentry *d = cfe->dentry;
936
937 if (cft && cfe->type != cft)
938 continue;
939
940 dget(d);
941 d_delete(d);
942 simple_unlink(cgrp->dentry->d_inode, d);
943 list_del_init(&cfe->node);
944 dput(d);
945
946 return 0;
947 }
948 return -ENOENT;
949 }
950
951 /**
952 * cgroup_clear_directory - selective removal of base and subsystem files
953 * @dir: directory containing the files
954 * @base_files: true if the base files should be removed
955 * @subsys_mask: mask of the subsystem ids whose files should be removed
956 */
957 static void cgroup_clear_directory(struct dentry *dir, bool base_files,
958 unsigned long subsys_mask)
959 {
960 struct cgroup *cgrp = __d_cgrp(dir);
961 struct cgroup_subsys *ss;
962
963 for_each_subsys(cgrp->root, ss) {
964 struct cftype_set *set;
965 if (!test_bit(ss->subsys_id, &subsys_mask))
966 continue;
967 list_for_each_entry(set, &ss->cftsets, node)
968 cgroup_rm_file(cgrp, set->cfts);
969 }
970 if (base_files) {
971 while (!list_empty(&cgrp->files))
972 cgroup_rm_file(cgrp, NULL);
973 }
974 }
975
976 /*
977 * NOTE : the dentry must have been dget()'ed
978 */
979 static void cgroup_d_remove_dir(struct dentry *dentry)
980 {
981 struct dentry *parent;
982 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
983
984 cgroup_clear_directory(dentry, true, root->subsys_mask);
985
986 parent = dentry->d_parent;
987 spin_lock(&parent->d_lock);
988 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
989 list_del_init(&dentry->d_u.d_child);
990 spin_unlock(&dentry->d_lock);
991 spin_unlock(&parent->d_lock);
992 remove_dir(dentry);
993 }
994
995 /*
996 * Call with cgroup_mutex held. Drops reference counts on modules, including
997 * any duplicate ones that parse_cgroupfs_options took. If this function
998 * returns an error, no reference counts are touched.
999 */
1000 static int rebind_subsystems(struct cgroupfs_root *root,
1001 unsigned long final_subsys_mask)
1002 {
1003 unsigned long added_mask, removed_mask;
1004 struct cgroup *cgrp = &root->top_cgroup;
1005 int i;
1006
1007 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1008 BUG_ON(!mutex_is_locked(&cgroup_root_mutex));
1009
1010 removed_mask = root->actual_subsys_mask & ~final_subsys_mask;
1011 added_mask = final_subsys_mask & ~root->actual_subsys_mask;
1012 /* Check that any added subsystems are currently free */
1013 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1014 unsigned long bit = 1UL << i;
1015 struct cgroup_subsys *ss = subsys[i];
1016 if (!(bit & added_mask))
1017 continue;
1018 /*
1019 * Nobody should tell us to do a subsys that doesn't exist:
1020 * parse_cgroupfs_options should catch that case and refcounts
1021 * ensure that subsystems won't disappear once selected.
1022 */
1023 BUG_ON(ss == NULL);
1024 if (ss->root != &rootnode) {
1025 /* Subsystem isn't free */
1026 return -EBUSY;
1027 }
1028 }
1029
1030 /* Currently we don't handle adding/removing subsystems when
1031 * any child cgroups exist. This is theoretically supportable
1032 * but involves complex error handling, so it's being left until
1033 * later */
1034 if (root->number_of_cgroups > 1)
1035 return -EBUSY;
1036
1037 /* Process each subsystem */
1038 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1039 struct cgroup_subsys *ss = subsys[i];
1040 unsigned long bit = 1UL << i;
1041 if (bit & added_mask) {
1042 /* We're binding this subsystem to this hierarchy */
1043 BUG_ON(ss == NULL);
1044 BUG_ON(cgrp->subsys[i]);
1045 BUG_ON(!dummytop->subsys[i]);
1046 BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
1047 cgrp->subsys[i] = dummytop->subsys[i];
1048 cgrp->subsys[i]->cgroup = cgrp;
1049 list_move(&ss->sibling, &root->subsys_list);
1050 ss->root = root;
1051 if (ss->bind)
1052 ss->bind(cgrp);
1053 /* refcount was already taken, and we're keeping it */
1054 } else if (bit & removed_mask) {
1055 /* We're removing this subsystem */
1056 BUG_ON(ss == NULL);
1057 BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
1058 BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
1059 if (ss->bind)
1060 ss->bind(dummytop);
1061 dummytop->subsys[i]->cgroup = dummytop;
1062 cgrp->subsys[i] = NULL;
1063 subsys[i]->root = &rootnode;
1064 list_move(&ss->sibling, &rootnode.subsys_list);
1065 /* subsystem is now free - drop reference on module */
1066 module_put(ss->module);
1067 } else if (bit & final_subsys_mask) {
1068 /* Subsystem state should already exist */
1069 BUG_ON(ss == NULL);
1070 BUG_ON(!cgrp->subsys[i]);
1071 /*
1072 * a refcount was taken, but we already had one, so
1073 * drop the extra reference.
1074 */
1075 module_put(ss->module);
1076 #ifdef CONFIG_MODULE_UNLOAD
1077 BUG_ON(ss->module && !module_refcount(ss->module));
1078 #endif
1079 } else {
1080 /* Subsystem state shouldn't exist */
1081 BUG_ON(cgrp->subsys[i]);
1082 }
1083 }
1084 root->subsys_mask = root->actual_subsys_mask = final_subsys_mask;
1085 synchronize_rcu();
1086
1087 return 0;
1088 }
1089
1090 static int cgroup_show_options(struct seq_file *seq, struct dentry *dentry)
1091 {
1092 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
1093 struct cgroup_subsys *ss;
1094
1095 mutex_lock(&cgroup_root_mutex);
1096 for_each_subsys(root, ss)
1097 seq_printf(seq, ",%s", ss->name);
1098 if (test_bit(ROOT_NOPREFIX, &root->flags))
1099 seq_puts(seq, ",noprefix");
1100 if (test_bit(ROOT_XATTR, &root->flags))
1101 seq_puts(seq, ",xattr");
1102 if (strlen(root->release_agent_path))
1103 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
1104 if (clone_children(&root->top_cgroup))
1105 seq_puts(seq, ",clone_children");
1106 if (strlen(root->name))
1107 seq_printf(seq, ",name=%s", root->name);
1108 mutex_unlock(&cgroup_root_mutex);
1109 return 0;
1110 }
1111
1112 struct cgroup_sb_opts {
1113 unsigned long subsys_mask;
1114 unsigned long flags;
1115 char *release_agent;
1116 bool clone_children;
1117 char *name;
1118 /* User explicitly requested empty subsystem */
1119 bool none;
1120
1121 struct cgroupfs_root *new_root;
1122
1123 };
1124
1125 /*
1126 * Convert a hierarchy specifier into a bitmask of subsystems and flags. Call
1127 * with cgroup_mutex held to protect the subsys[] array. This function takes
1128 * refcounts on subsystems to be used, unless it returns error, in which case
1129 * no refcounts are taken.
1130 */
1131 static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
1132 {
1133 char *token, *o = data;
1134 bool all_ss = false, one_ss = false;
1135 unsigned long mask = (unsigned long)-1;
1136 int i;
1137 bool module_pin_failed = false;
1138
1139 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1140
1141 #ifdef CONFIG_CPUSETS
1142 mask = ~(1UL << cpuset_subsys_id);
1143 #endif
1144
1145 memset(opts, 0, sizeof(*opts));
1146
1147 while ((token = strsep(&o, ",")) != NULL) {
1148 if (!*token)
1149 return -EINVAL;
1150 if (!strcmp(token, "none")) {
1151 /* Explicitly have no subsystems */
1152 opts->none = true;
1153 continue;
1154 }
1155 if (!strcmp(token, "all")) {
1156 /* Mutually exclusive option 'all' + subsystem name */
1157 if (one_ss)
1158 return -EINVAL;
1159 all_ss = true;
1160 continue;
1161 }
1162 if (!strcmp(token, "noprefix")) {
1163 set_bit(ROOT_NOPREFIX, &opts->flags);
1164 continue;
1165 }
1166 if (!strcmp(token, "clone_children")) {
1167 opts->clone_children = true;
1168 continue;
1169 }
1170 if (!strcmp(token, "xattr")) {
1171 set_bit(ROOT_XATTR, &opts->flags);
1172 continue;
1173 }
1174 if (!strncmp(token, "release_agent=", 14)) {
1175 /* Specifying two release agents is forbidden */
1176 if (opts->release_agent)
1177 return -EINVAL;
1178 opts->release_agent =
1179 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
1180 if (!opts->release_agent)
1181 return -ENOMEM;
1182 continue;
1183 }
1184 if (!strncmp(token, "name=", 5)) {
1185 const char *name = token + 5;
1186 /* Can't specify an empty name */
1187 if (!strlen(name))
1188 return -EINVAL;
1189 /* Must match [\w.-]+ */
1190 for (i = 0; i < strlen(name); i++) {
1191 char c = name[i];
1192 if (isalnum(c))
1193 continue;
1194 if ((c == '.') || (c == '-') || (c == '_'))
1195 continue;
1196 return -EINVAL;
1197 }
1198 /* Specifying two names is forbidden */
1199 if (opts->name)
1200 return -EINVAL;
1201 opts->name = kstrndup(name,
1202 MAX_CGROUP_ROOT_NAMELEN - 1,
1203 GFP_KERNEL);
1204 if (!opts->name)
1205 return -ENOMEM;
1206
1207 continue;
1208 }
1209
1210 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1211 struct cgroup_subsys *ss = subsys[i];
1212 if (ss == NULL)
1213 continue;
1214 if (strcmp(token, ss->name))
1215 continue;
1216 if (ss->disabled)
1217 continue;
1218
1219 /* Mutually exclusive option 'all' + subsystem name */
1220 if (all_ss)
1221 return -EINVAL;
1222 set_bit(i, &opts->subsys_mask);
1223 one_ss = true;
1224
1225 break;
1226 }
1227 if (i == CGROUP_SUBSYS_COUNT)
1228 return -ENOENT;
1229 }
1230
1231 /*
1232 * If the 'all' option was specified select all the subsystems,
1233 * otherwise if 'none', 'name=' and a subsystem name options
1234 * were not specified, let's default to 'all'
1235 */
1236 if (all_ss || (!one_ss && !opts->none && !opts->name)) {
1237 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1238 struct cgroup_subsys *ss = subsys[i];
1239 if (ss == NULL)
1240 continue;
1241 if (ss->disabled)
1242 continue;
1243 set_bit(i, &opts->subsys_mask);
1244 }
1245 }
1246
1247 /* Consistency checks */
1248
1249 /*
1250 * Option noprefix was introduced just for backward compatibility
1251 * with the old cpuset, so we allow noprefix only if mounting just
1252 * the cpuset subsystem.
1253 */
1254 if (test_bit(ROOT_NOPREFIX, &opts->flags) &&
1255 (opts->subsys_mask & mask))
1256 return -EINVAL;
1257
1258
1259 /* Can't specify "none" and some subsystems */
1260 if (opts->subsys_mask && opts->none)
1261 return -EINVAL;
1262
1263 /*
1264 * We either have to specify by name or by subsystems. (So all
1265 * empty hierarchies must have a name).
1266 */
1267 if (!opts->subsys_mask && !opts->name)
1268 return -EINVAL;
1269
1270 /*
1271 * Grab references on all the modules we'll need, so the subsystems
1272 * don't dance around before rebind_subsystems attaches them. This may
1273 * take duplicate reference counts on a subsystem that's already used,
1274 * but rebind_subsystems handles this case.
1275 */
1276 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1277 unsigned long bit = 1UL << i;
1278
1279 if (!(bit & opts->subsys_mask))
1280 continue;
1281 if (!try_module_get(subsys[i]->module)) {
1282 module_pin_failed = true;
1283 break;
1284 }
1285 }
1286 if (module_pin_failed) {
1287 /*
1288 * oops, one of the modules was going away. this means that we
1289 * raced with a module_delete call, and to the user this is
1290 * essentially a "subsystem doesn't exist" case.
1291 */
1292 for (i--; i >= 0; i--) {
1293 /* drop refcounts only on the ones we took */
1294 unsigned long bit = 1UL << i;
1295
1296 if (!(bit & opts->subsys_mask))
1297 continue;
1298 module_put(subsys[i]->module);
1299 }
1300 return -ENOENT;
1301 }
1302
1303 return 0;
1304 }
1305
1306 static void drop_parsed_module_refcounts(unsigned long subsys_mask)
1307 {
1308 int i;
1309 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1310 unsigned long bit = 1UL << i;
1311
1312 if (!(bit & subsys_mask))
1313 continue;
1314 module_put(subsys[i]->module);
1315 }
1316 }
1317
1318 static int cgroup_remount(struct super_block *sb, int *flags, char *data)
1319 {
1320 int ret = 0;
1321 struct cgroupfs_root *root = sb->s_fs_info;
1322 struct cgroup *cgrp = &root->top_cgroup;
1323 struct cgroup_sb_opts opts;
1324 unsigned long added_mask, removed_mask;
1325
1326 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
1327 mutex_lock(&cgroup_mutex);
1328 mutex_lock(&cgroup_root_mutex);
1329
1330 /* See what subsystems are wanted */
1331 ret = parse_cgroupfs_options(data, &opts);
1332 if (ret)
1333 goto out_unlock;
1334
1335 /* See feature-removal-schedule.txt */
1336 if (opts.subsys_mask != root->actual_subsys_mask || opts.release_agent)
1337 pr_warning("cgroup: option changes via remount are deprecated (pid=%d comm=%s)\n",
1338 task_tgid_nr(current), current->comm);
1339
1340 added_mask = opts.subsys_mask & ~root->subsys_mask;
1341 removed_mask = root->subsys_mask & ~opts.subsys_mask;
1342
1343 /* Don't allow flags or name to change at remount */
1344 if (opts.flags != root->flags ||
1345 (opts.name && strcmp(opts.name, root->name))) {
1346 ret = -EINVAL;
1347 drop_parsed_module_refcounts(opts.subsys_mask);
1348 goto out_unlock;
1349 }
1350
1351 ret = rebind_subsystems(root, opts.subsys_mask);
1352 if (ret) {
1353 drop_parsed_module_refcounts(opts.subsys_mask);
1354 goto out_unlock;
1355 }
1356
1357 /* clear out any existing files and repopulate subsystem files */
1358 cgroup_clear_directory(cgrp->dentry, false, removed_mask);
1359 /* re-populate subsystem files */
1360 cgroup_populate_dir(cgrp, false, added_mask);
1361
1362 if (opts.release_agent)
1363 strcpy(root->release_agent_path, opts.release_agent);
1364 out_unlock:
1365 kfree(opts.release_agent);
1366 kfree(opts.name);
1367 mutex_unlock(&cgroup_root_mutex);
1368 mutex_unlock(&cgroup_mutex);
1369 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
1370 return ret;
1371 }
1372
1373 static const struct super_operations cgroup_ops = {
1374 .statfs = simple_statfs,
1375 .drop_inode = generic_delete_inode,
1376 .show_options = cgroup_show_options,
1377 .remount_fs = cgroup_remount,
1378 };
1379
1380 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1381 {
1382 INIT_LIST_HEAD(&cgrp->sibling);
1383 INIT_LIST_HEAD(&cgrp->children);
1384 INIT_LIST_HEAD(&cgrp->files);
1385 INIT_LIST_HEAD(&cgrp->css_sets);
1386 INIT_LIST_HEAD(&cgrp->allcg_node);
1387 INIT_LIST_HEAD(&cgrp->release_list);
1388 INIT_LIST_HEAD(&cgrp->pidlists);
1389 mutex_init(&cgrp->pidlist_mutex);
1390 INIT_LIST_HEAD(&cgrp->event_list);
1391 spin_lock_init(&cgrp->event_list_lock);
1392 simple_xattrs_init(&cgrp->xattrs);
1393 }
1394
1395 static void init_cgroup_root(struct cgroupfs_root *root)
1396 {
1397 struct cgroup *cgrp = &root->top_cgroup;
1398
1399 INIT_LIST_HEAD(&root->subsys_list);
1400 INIT_LIST_HEAD(&root->root_list);
1401 INIT_LIST_HEAD(&root->allcg_list);
1402 root->number_of_cgroups = 1;
1403 cgrp->root = root;
1404 cgrp->top_cgroup = cgrp;
1405 list_add_tail(&cgrp->allcg_node, &root->allcg_list);
1406 init_cgroup_housekeeping(cgrp);
1407 }
1408
1409 static bool init_root_id(struct cgroupfs_root *root)
1410 {
1411 int ret = 0;
1412
1413 do {
1414 if (!ida_pre_get(&hierarchy_ida, GFP_KERNEL))
1415 return false;
1416 spin_lock(&hierarchy_id_lock);
1417 /* Try to allocate the next unused ID */
1418 ret = ida_get_new_above(&hierarchy_ida, next_hierarchy_id,
1419 &root->hierarchy_id);
1420 if (ret == -ENOSPC)
1421 /* Try again starting from 0 */
1422 ret = ida_get_new(&hierarchy_ida, &root->hierarchy_id);
1423 if (!ret) {
1424 next_hierarchy_id = root->hierarchy_id + 1;
1425 } else if (ret != -EAGAIN) {
1426 /* Can only get here if the 31-bit IDR is full ... */
1427 BUG_ON(ret);
1428 }
1429 spin_unlock(&hierarchy_id_lock);
1430 } while (ret);
1431 return true;
1432 }
1433
1434 static int cgroup_test_super(struct super_block *sb, void *data)
1435 {
1436 struct cgroup_sb_opts *opts = data;
1437 struct cgroupfs_root *root = sb->s_fs_info;
1438
1439 /* If we asked for a name then it must match */
1440 if (opts->name && strcmp(opts->name, root->name))
1441 return 0;
1442
1443 /*
1444 * If we asked for subsystems (or explicitly for no
1445 * subsystems) then they must match
1446 */
1447 if ((opts->subsys_mask || opts->none)
1448 && (opts->subsys_mask != root->subsys_mask))
1449 return 0;
1450
1451 return 1;
1452 }
1453
1454 static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
1455 {
1456 struct cgroupfs_root *root;
1457
1458 if (!opts->subsys_mask && !opts->none)
1459 return NULL;
1460
1461 root = kzalloc(sizeof(*root), GFP_KERNEL);
1462 if (!root)
1463 return ERR_PTR(-ENOMEM);
1464
1465 if (!init_root_id(root)) {
1466 kfree(root);
1467 return ERR_PTR(-ENOMEM);
1468 }
1469 init_cgroup_root(root);
1470
1471 root->subsys_mask = opts->subsys_mask;
1472 root->flags = opts->flags;
1473 if (opts->release_agent)
1474 strcpy(root->release_agent_path, opts->release_agent);
1475 if (opts->name)
1476 strcpy(root->name, opts->name);
1477 if (opts->clone_children)
1478 set_bit(CGRP_CLONE_CHILDREN, &root->top_cgroup.flags);
1479 return root;
1480 }
1481
1482 static void cgroup_drop_root(struct cgroupfs_root *root)
1483 {
1484 if (!root)
1485 return;
1486
1487 BUG_ON(!root->hierarchy_id);
1488 spin_lock(&hierarchy_id_lock);
1489 ida_remove(&hierarchy_ida, root->hierarchy_id);
1490 spin_unlock(&hierarchy_id_lock);
1491 kfree(root);
1492 }
1493
1494 static int cgroup_set_super(struct super_block *sb, void *data)
1495 {
1496 int ret;
1497 struct cgroup_sb_opts *opts = data;
1498
1499 /* If we don't have a new root, we can't set up a new sb */
1500 if (!opts->new_root)
1501 return -EINVAL;
1502
1503 BUG_ON(!opts->subsys_mask && !opts->none);
1504
1505 ret = set_anon_super(sb, NULL);
1506 if (ret)
1507 return ret;
1508
1509 sb->s_fs_info = opts->new_root;
1510 opts->new_root->sb = sb;
1511
1512 sb->s_blocksize = PAGE_CACHE_SIZE;
1513 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
1514 sb->s_magic = CGROUP_SUPER_MAGIC;
1515 sb->s_op = &cgroup_ops;
1516
1517 return 0;
1518 }
1519
1520 static int cgroup_get_rootdir(struct super_block *sb)
1521 {
1522 static const struct dentry_operations cgroup_dops = {
1523 .d_iput = cgroup_diput,
1524 .d_delete = cgroup_delete,
1525 };
1526
1527 struct inode *inode =
1528 cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
1529
1530 if (!inode)
1531 return -ENOMEM;
1532
1533 inode->i_fop = &simple_dir_operations;
1534 inode->i_op = &cgroup_dir_inode_operations;
1535 /* directories start off with i_nlink == 2 (for "." entry) */
1536 inc_nlink(inode);
1537 sb->s_root = d_make_root(inode);
1538 if (!sb->s_root)
1539 return -ENOMEM;
1540 /* for everything else we want ->d_op set */
1541 sb->s_d_op = &cgroup_dops;
1542 return 0;
1543 }
1544
1545 static struct dentry *cgroup_mount(struct file_system_type *fs_type,
1546 int flags, const char *unused_dev_name,
1547 void *data)
1548 {
1549 struct cgroup_sb_opts opts;
1550 struct cgroupfs_root *root;
1551 int ret = 0;
1552 struct super_block *sb;
1553 struct cgroupfs_root *new_root;
1554 struct inode *inode;
1555
1556 /* First find the desired set of subsystems */
1557 mutex_lock(&cgroup_mutex);
1558 ret = parse_cgroupfs_options(data, &opts);
1559 mutex_unlock(&cgroup_mutex);
1560 if (ret)
1561 goto out_err;
1562
1563 /*
1564 * Allocate a new cgroup root. We may not need it if we're
1565 * reusing an existing hierarchy.
1566 */
1567 new_root = cgroup_root_from_opts(&opts);
1568 if (IS_ERR(new_root)) {
1569 ret = PTR_ERR(new_root);
1570 goto drop_modules;
1571 }
1572 opts.new_root = new_root;
1573
1574 /* Locate an existing or new sb for this hierarchy */
1575 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, 0, &opts);
1576 if (IS_ERR(sb)) {
1577 ret = PTR_ERR(sb);
1578 cgroup_drop_root(opts.new_root);
1579 goto drop_modules;
1580 }
1581
1582 root = sb->s_fs_info;
1583 BUG_ON(!root);
1584 if (root == opts.new_root) {
1585 /* We used the new root structure, so this is a new hierarchy */
1586 struct list_head tmp_cg_links;
1587 struct cgroup *root_cgrp = &root->top_cgroup;
1588 struct cgroupfs_root *existing_root;
1589 const struct cred *cred;
1590 int i;
1591
1592 BUG_ON(sb->s_root != NULL);
1593
1594 ret = cgroup_get_rootdir(sb);
1595 if (ret)
1596 goto drop_new_super;
1597 inode = sb->s_root->d_inode;
1598
1599 mutex_lock(&inode->i_mutex);
1600 mutex_lock(&cgroup_mutex);
1601 mutex_lock(&cgroup_root_mutex);
1602
1603 /* Check for name clashes with existing mounts */
1604 ret = -EBUSY;
1605 if (strlen(root->name))
1606 for_each_active_root(existing_root)
1607 if (!strcmp(existing_root->name, root->name))
1608 goto unlock_drop;
1609
1610 /*
1611 * We're accessing css_set_count without locking
1612 * css_set_lock here, but that's OK - it can only be
1613 * increased by someone holding cgroup_lock, and
1614 * that's us. The worst that can happen is that we
1615 * have some link structures left over
1616 */
1617 ret = allocate_cg_links(css_set_count, &tmp_cg_links);
1618 if (ret)
1619 goto unlock_drop;
1620
1621 ret = rebind_subsystems(root, root->subsys_mask);
1622 if (ret == -EBUSY) {
1623 free_cg_links(&tmp_cg_links);
1624 goto unlock_drop;
1625 }
1626 /*
1627 * There must be no failure case after here, since rebinding
1628 * takes care of subsystems' refcounts, which are explicitly
1629 * dropped in the failure exit path.
1630 */
1631
1632 /* EBUSY should be the only error here */
1633 BUG_ON(ret);
1634
1635 list_add(&root->root_list, &roots);
1636 root_count++;
1637
1638 sb->s_root->d_fsdata = root_cgrp;
1639 root->top_cgroup.dentry = sb->s_root;
1640
1641 /* Link the top cgroup in this hierarchy into all
1642 * the css_set objects */
1643 write_lock(&css_set_lock);
1644 for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
1645 struct hlist_head *hhead = &css_set_table[i];
1646 struct hlist_node *node;
1647 struct css_set *cg;
1648
1649 hlist_for_each_entry(cg, node, hhead, hlist)
1650 link_css_set(&tmp_cg_links, cg, root_cgrp);
1651 }
1652 write_unlock(&css_set_lock);
1653
1654 free_cg_links(&tmp_cg_links);
1655
1656 BUG_ON(!list_empty(&root_cgrp->children));
1657 BUG_ON(root->number_of_cgroups != 1);
1658
1659 cred = override_creds(&init_cred);
1660 cgroup_populate_dir(root_cgrp, true, root->subsys_mask);
1661 revert_creds(cred);
1662 mutex_unlock(&cgroup_root_mutex);
1663 mutex_unlock(&cgroup_mutex);
1664 mutex_unlock(&inode->i_mutex);
1665 } else {
1666 /*
1667 * We re-used an existing hierarchy - the new root (if
1668 * any) is not needed
1669 */
1670 cgroup_drop_root(opts.new_root);
1671 /* no subsys rebinding, so refcounts don't change */
1672 drop_parsed_module_refcounts(opts.subsys_mask);
1673 }
1674
1675 kfree(opts.release_agent);
1676 kfree(opts.name);
1677 return dget(sb->s_root);
1678
1679 unlock_drop:
1680 mutex_unlock(&cgroup_root_mutex);
1681 mutex_unlock(&cgroup_mutex);
1682 mutex_unlock(&inode->i_mutex);
1683 drop_new_super:
1684 deactivate_locked_super(sb);
1685 drop_modules:
1686 drop_parsed_module_refcounts(opts.subsys_mask);
1687 out_err:
1688 kfree(opts.release_agent);
1689 kfree(opts.name);
1690 return ERR_PTR(ret);
1691 }
1692
1693 static void cgroup_kill_sb(struct super_block *sb) {
1694 struct cgroupfs_root *root = sb->s_fs_info;
1695 struct cgroup *cgrp = &root->top_cgroup;
1696 int ret;
1697 struct cg_cgroup_link *link;
1698 struct cg_cgroup_link *saved_link;
1699
1700 BUG_ON(!root);
1701
1702 BUG_ON(root->number_of_cgroups != 1);
1703 BUG_ON(!list_empty(&cgrp->children));
1704
1705 mutex_lock(&cgroup_mutex);
1706 mutex_lock(&cgroup_root_mutex);
1707
1708 /* Rebind all subsystems back to the default hierarchy */
1709 ret = rebind_subsystems(root, 0);
1710 /* Shouldn't be able to fail ... */
1711 BUG_ON(ret);
1712
1713 /*
1714 * Release all the links from css_sets to this hierarchy's
1715 * root cgroup
1716 */
1717 write_lock(&css_set_lock);
1718
1719 list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
1720 cgrp_link_list) {
1721 list_del(&link->cg_link_list);
1722 list_del(&link->cgrp_link_list);
1723 kfree(link);
1724 }
1725 write_unlock(&css_set_lock);
1726
1727 if (!list_empty(&root->root_list)) {
1728 list_del(&root->root_list);
1729 root_count--;
1730 }
1731
1732 mutex_unlock(&cgroup_root_mutex);
1733 mutex_unlock(&cgroup_mutex);
1734
1735 simple_xattrs_free(&cgrp->xattrs);
1736
1737 kill_litter_super(sb);
1738 cgroup_drop_root(root);
1739 }
1740
1741 static struct file_system_type cgroup_fs_type = {
1742 .name = "cgroup",
1743 .mount = cgroup_mount,
1744 .kill_sb = cgroup_kill_sb,
1745 };
1746
1747 static struct kobject *cgroup_kobj;
1748
1749 /**
1750 * cgroup_path - generate the path of a cgroup
1751 * @cgrp: the cgroup in question
1752 * @buf: the buffer to write the path into
1753 * @buflen: the length of the buffer
1754 *
1755 * Called with cgroup_mutex held or else with an RCU-protected cgroup
1756 * reference. Writes path of cgroup into buf. Returns 0 on success,
1757 * -errno on error.
1758 */
1759 int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1760 {
1761 struct dentry *dentry = cgrp->dentry;
1762 char *start;
1763
1764 rcu_lockdep_assert(rcu_read_lock_held() || cgroup_lock_is_held(),
1765 "cgroup_path() called without proper locking");
1766
1767 if (!dentry || cgrp == dummytop) {
1768 /*
1769 * Inactive subsystems have no dentry for their root
1770 * cgroup
1771 */
1772 strcpy(buf, "/");
1773 return 0;
1774 }
1775
1776 start = buf + buflen - 1;
1777
1778 *start = '\0';
1779 for (;;) {
1780 int len = dentry->d_name.len;
1781
1782 if ((start -= len) < buf)
1783 return -ENAMETOOLONG;
1784 memcpy(start, dentry->d_name.name, len);
1785 cgrp = cgrp->parent;
1786 if (!cgrp)
1787 break;
1788
1789 dentry = cgrp->dentry;
1790 if (!cgrp->parent)
1791 continue;
1792 if (--start < buf)
1793 return -ENAMETOOLONG;
1794 *start = '/';
1795 }
1796 memmove(buf, start, buf + buflen - start);
1797 return 0;
1798 }
1799 EXPORT_SYMBOL_GPL(cgroup_path);
1800
1801 /*
1802 * Control Group taskset
1803 */
1804 struct task_and_cgroup {
1805 struct task_struct *task;
1806 struct cgroup *cgrp;
1807 struct css_set *cg;
1808 };
1809
1810 struct cgroup_taskset {
1811 struct task_and_cgroup single;
1812 struct flex_array *tc_array;
1813 int tc_array_len;
1814 int idx;
1815 struct cgroup *cur_cgrp;
1816 };
1817
1818 /**
1819 * cgroup_taskset_first - reset taskset and return the first task
1820 * @tset: taskset of interest
1821 *
1822 * @tset iteration is initialized and the first task is returned.
1823 */
1824 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
1825 {
1826 if (tset->tc_array) {
1827 tset->idx = 0;
1828 return cgroup_taskset_next(tset);
1829 } else {
1830 tset->cur_cgrp = tset->single.cgrp;
1831 return tset->single.task;
1832 }
1833 }
1834 EXPORT_SYMBOL_GPL(cgroup_taskset_first);
1835
1836 /**
1837 * cgroup_taskset_next - iterate to the next task in taskset
1838 * @tset: taskset of interest
1839 *
1840 * Return the next task in @tset. Iteration must have been initialized
1841 * with cgroup_taskset_first().
1842 */
1843 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
1844 {
1845 struct task_and_cgroup *tc;
1846
1847 if (!tset->tc_array || tset->idx >= tset->tc_array_len)
1848 return NULL;
1849
1850 tc = flex_array_get(tset->tc_array, tset->idx++);
1851 tset->cur_cgrp = tc->cgrp;
1852 return tc->task;
1853 }
1854 EXPORT_SYMBOL_GPL(cgroup_taskset_next);
1855
1856 /**
1857 * cgroup_taskset_cur_cgroup - return the matching cgroup for the current task
1858 * @tset: taskset of interest
1859 *
1860 * Return the cgroup for the current (last returned) task of @tset. This
1861 * function must be preceded by either cgroup_taskset_first() or
1862 * cgroup_taskset_next().
1863 */
1864 struct cgroup *cgroup_taskset_cur_cgroup(struct cgroup_taskset *tset)
1865 {
1866 return tset->cur_cgrp;
1867 }
1868 EXPORT_SYMBOL_GPL(cgroup_taskset_cur_cgroup);
1869
1870 /**
1871 * cgroup_taskset_size - return the number of tasks in taskset
1872 * @tset: taskset of interest
1873 */
1874 int cgroup_taskset_size(struct cgroup_taskset *tset)
1875 {
1876 return tset->tc_array ? tset->tc_array_len : 1;
1877 }
1878 EXPORT_SYMBOL_GPL(cgroup_taskset_size);
1879
1880
1881 /*
1882 * cgroup_task_migrate - move a task from one cgroup to another.
1883 *
1884 * 'guarantee' is set if the caller promises that a new css_set for the task
1885 * will already exist. If not set, this function might sleep, and can fail with
1886 * -ENOMEM. Must be called with cgroup_mutex and threadgroup locked.
1887 */
1888 static void cgroup_task_migrate(struct cgroup *cgrp, struct cgroup *oldcgrp,
1889 struct task_struct *tsk, struct css_set *newcg)
1890 {
1891 struct css_set *oldcg;
1892
1893 /*
1894 * We are synchronized through threadgroup_lock() against PF_EXITING
1895 * setting such that we can't race against cgroup_exit() changing the
1896 * css_set to init_css_set and dropping the old one.
1897 */
1898 WARN_ON_ONCE(tsk->flags & PF_EXITING);
1899 oldcg = tsk->cgroups;
1900
1901 task_lock(tsk);
1902 rcu_assign_pointer(tsk->cgroups, newcg);
1903 task_unlock(tsk);
1904
1905 /* Update the css_set linked lists if we're using them */
1906 write_lock(&css_set_lock);
1907 if (!list_empty(&tsk->cg_list))
1908 list_move(&tsk->cg_list, &newcg->tasks);
1909 write_unlock(&css_set_lock);
1910
1911 /*
1912 * We just gained a reference on oldcg by taking it from the task. As
1913 * trading it for newcg is protected by cgroup_mutex, we're safe to drop
1914 * it here; it will be freed under RCU.
1915 */
1916 set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
1917 put_css_set(oldcg);
1918 }
1919
1920 /**
1921 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
1922 * @cgrp: the cgroup the task is attaching to
1923 * @tsk: the task to be attached
1924 *
1925 * Call with cgroup_mutex and threadgroup locked. May take task_lock of
1926 * @tsk during call.
1927 */
1928 int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
1929 {
1930 int retval = 0;
1931 struct cgroup_subsys *ss, *failed_ss = NULL;
1932 struct cgroup *oldcgrp;
1933 struct cgroupfs_root *root = cgrp->root;
1934 struct cgroup_taskset tset = { };
1935 struct css_set *newcg;
1936
1937 /* @tsk either already exited or can't exit until the end */
1938 if (tsk->flags & PF_EXITING)
1939 return -ESRCH;
1940
1941 /* Nothing to do if the task is already in that cgroup */
1942 oldcgrp = task_cgroup_from_root(tsk, root);
1943 if (cgrp == oldcgrp)
1944 return 0;
1945
1946 tset.single.task = tsk;
1947 tset.single.cgrp = oldcgrp;
1948
1949 for_each_subsys(root, ss) {
1950 if (ss->can_attach) {
1951 retval = ss->can_attach(cgrp, &tset);
1952 if (retval) {
1953 /*
1954 * Remember on which subsystem the can_attach()
1955 * failed, so that we only call cancel_attach()
1956 * against the subsystems whose can_attach()
1957 * succeeded. (See below)
1958 */
1959 failed_ss = ss;
1960 goto out;
1961 }
1962 }
1963 }
1964
1965 newcg = find_css_set(tsk->cgroups, cgrp);
1966 if (!newcg) {
1967 retval = -ENOMEM;
1968 goto out;
1969 }
1970
1971 cgroup_task_migrate(cgrp, oldcgrp, tsk, newcg);
1972
1973 for_each_subsys(root, ss) {
1974 if (ss->attach)
1975 ss->attach(cgrp, &tset);
1976 }
1977
1978 synchronize_rcu();
1979 out:
1980 if (retval) {
1981 for_each_subsys(root, ss) {
1982 if (ss == failed_ss)
1983 /*
1984 * This subsystem was the one that failed the
1985 * can_attach() check earlier, so we don't need
1986 * to call cancel_attach() against it or any
1987 * remaining subsystems.
1988 */
1989 break;
1990 if (ss->cancel_attach)
1991 ss->cancel_attach(cgrp, &tset);
1992 }
1993 }
1994 return retval;
1995 }
1996
1997 /**
1998 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
1999 * @from: attach to all cgroups of a given task
2000 * @tsk: the task to be attached
2001 */
2002 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2003 {
2004 struct cgroupfs_root *root;
2005 int retval = 0;
2006
2007 cgroup_lock();
2008 for_each_active_root(root) {
2009 struct cgroup *from_cg = task_cgroup_from_root(from, root);
2010
2011 retval = cgroup_attach_task(from_cg, tsk);
2012 if (retval)
2013 break;
2014 }
2015 cgroup_unlock();
2016
2017 return retval;
2018 }
2019 EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2020
2021 /**
2022 * cgroup_attach_proc - attach all threads in a threadgroup to a cgroup
2023 * @cgrp: the cgroup to attach to
2024 * @leader: the threadgroup leader task_struct of the group to be attached
2025 *
2026 * Call holding cgroup_mutex and the group_rwsem of the leader. Will take
2027 * task_lock of each thread in leader's threadgroup individually in turn.
2028 */
2029 static int cgroup_attach_proc(struct cgroup *cgrp, struct task_struct *leader)
2030 {
2031 int retval, i, group_size;
2032 struct cgroup_subsys *ss, *failed_ss = NULL;
2033 /* guaranteed to be initialized later, but the compiler needs this */
2034 struct cgroupfs_root *root = cgrp->root;
2035 /* threadgroup list cursor and array */
2036 struct task_struct *tsk;
2037 struct task_and_cgroup *tc;
2038 struct flex_array *group;
2039 struct cgroup_taskset tset = { };
2040
2041 /*
2042 * step 0: in order to do expensive, possibly blocking operations for
2043 * every thread, we cannot iterate the thread group list, since it needs
2044 * rcu or tasklist locked. instead, build an array of all threads in the
2045 * group - group_rwsem prevents new threads from appearing, and if
2046 * threads exit, this will just be an over-estimate.
2047 */
2048 group_size = get_nr_threads(leader);
2049 /* flex_array supports very large thread-groups better than kmalloc. */
2050 group = flex_array_alloc(sizeof(*tc), group_size, GFP_KERNEL);
2051 if (!group)
2052 return -ENOMEM;
2053 /* pre-allocate to guarantee space while iterating in rcu read-side. */
2054 retval = flex_array_prealloc(group, 0, group_size - 1, GFP_KERNEL);
2055 if (retval)
2056 goto out_free_group_list;
2057
2058 tsk = leader;
2059 i = 0;
2060 /*
2061 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2062 * already PF_EXITING could be freed from underneath us unless we
2063 * take an rcu_read_lock.
2064 */
2065 rcu_read_lock();
2066 do {
2067 struct task_and_cgroup ent;
2068
2069 /* @tsk either already exited or can't exit until the end */
2070 if (tsk->flags & PF_EXITING)
2071 continue;
2072
2073 /* as per above, nr_threads may decrease, but not increase. */
2074 BUG_ON(i >= group_size);
2075 ent.task = tsk;
2076 ent.cgrp = task_cgroup_from_root(tsk, root);
2077 /* nothing to do if this task is already in the cgroup */
2078 if (ent.cgrp == cgrp)
2079 continue;
2080 /*
2081 * saying GFP_ATOMIC has no effect here because we did prealloc
2082 * earlier, but it's good form to communicate our expectations.
2083 */
2084 retval = flex_array_put(group, i, &ent, GFP_ATOMIC);
2085 BUG_ON(retval != 0);
2086 i++;
2087 } while_each_thread(leader, tsk);
2088 rcu_read_unlock();
2089 /* remember the number of threads in the array for later. */
2090 group_size = i;
2091 tset.tc_array = group;
2092 tset.tc_array_len = group_size;
2093
2094 /* methods shouldn't be called if no task is actually migrating */
2095 retval = 0;
2096 if (!group_size)
2097 goto out_free_group_list;
2098
2099 /*
2100 * step 1: check that we can legitimately attach to the cgroup.
2101 */
2102 for_each_subsys(root, ss) {
2103 if (ss->can_attach) {
2104 retval = ss->can_attach(cgrp, &tset);
2105 if (retval) {
2106 failed_ss = ss;
2107 goto out_cancel_attach;
2108 }
2109 }
2110 }
2111
2112 /*
2113 * step 2: make sure css_sets exist for all threads to be migrated.
2114 * we use find_css_set, which allocates a new one if necessary.
2115 */
2116 for (i = 0; i < group_size; i++) {
2117 tc = flex_array_get(group, i);
2118 tc->cg = find_css_set(tc->task->cgroups, cgrp);
2119 if (!tc->cg) {
2120 retval = -ENOMEM;
2121 goto out_put_css_set_refs;
2122 }
2123 }
2124
2125 /*
2126 * step 3: now that we're guaranteed success wrt the css_sets,
2127 * proceed to move all tasks to the new cgroup. There are no
2128 * failure cases after here, so this is the commit point.
2129 */
2130 for (i = 0; i < group_size; i++) {
2131 tc = flex_array_get(group, i);
2132 cgroup_task_migrate(cgrp, tc->cgrp, tc->task, tc->cg);
2133 }
2134 /* nothing is sensitive to fork() after this point. */
2135
2136 /*
2137 * step 4: do subsystem attach callbacks.
2138 */
2139 for_each_subsys(root, ss) {
2140 if (ss->attach)
2141 ss->attach(cgrp, &tset);
2142 }
2143
2144 /*
2145 * step 5: success! and cleanup
2146 */
2147 synchronize_rcu();
2148 retval = 0;
2149 out_put_css_set_refs:
2150 if (retval) {
2151 for (i = 0; i < group_size; i++) {
2152 tc = flex_array_get(group, i);
2153 if (!tc->cg)
2154 break;
2155 put_css_set(tc->cg);
2156 }
2157 }
2158 out_cancel_attach:
2159 if (retval) {
2160 for_each_subsys(root, ss) {
2161 if (ss == failed_ss)
2162 break;
2163 if (ss->cancel_attach)
2164 ss->cancel_attach(cgrp, &tset);
2165 }
2166 }
2167 out_free_group_list:
2168 flex_array_free(group);
2169 return retval;
2170 }
2171
2172 /*
2173 * Find the task_struct of the task to attach by vpid and pass it along to the
2174 * function to attach either it or all tasks in its threadgroup. Will lock
2175 * cgroup_mutex and threadgroup; may take task_lock of task.
2176 */
2177 static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
2178 {
2179 struct task_struct *tsk;
2180 const struct cred *cred = current_cred(), *tcred;
2181 int ret;
2182
2183 if (!cgroup_lock_live_group(cgrp))
2184 return -ENODEV;
2185
2186 retry_find_task:
2187 rcu_read_lock();
2188 if (pid) {
2189 tsk = find_task_by_vpid(pid);
2190 if (!tsk) {
2191 rcu_read_unlock();
2192 ret= -ESRCH;
2193 goto out_unlock_cgroup;
2194 }
2195 /*
2196 * even if we're attaching all tasks in the thread group, we
2197 * only need to check permissions on one of them.
2198 */
2199 tcred = __task_cred(tsk);
2200 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2201 !uid_eq(cred->euid, tcred->uid) &&
2202 !uid_eq(cred->euid, tcred->suid)) {
2203 rcu_read_unlock();
2204 ret = -EACCES;
2205 goto out_unlock_cgroup;
2206 }
2207 } else
2208 tsk = current;
2209
2210 if (threadgroup)
2211 tsk = tsk->group_leader;
2212
2213 /*
2214 * Workqueue threads may acquire PF_THREAD_BOUND and become
2215 * trapped in a cpuset, or RT worker may be born in a cgroup
2216 * with no rt_runtime allocated. Just say no.
2217 */
2218 if (tsk == kthreadd_task || (tsk->flags & PF_THREAD_BOUND)) {
2219 ret = -EINVAL;
2220 rcu_read_unlock();
2221 goto out_unlock_cgroup;
2222 }
2223
2224 get_task_struct(tsk);
2225 rcu_read_unlock();
2226
2227 threadgroup_lock(tsk);
2228 if (threadgroup) {
2229 if (!thread_group_leader(tsk)) {
2230 /*
2231 * a race with de_thread from another thread's exec()
2232 * may strip us of our leadership, if this happens,
2233 * there is no choice but to throw this task away and
2234 * try again; this is
2235 * "double-double-toil-and-trouble-check locking".
2236 */
2237 threadgroup_unlock(tsk);
2238 put_task_struct(tsk);
2239 goto retry_find_task;
2240 }
2241 ret = cgroup_attach_proc(cgrp, tsk);
2242 } else
2243 ret = cgroup_attach_task(cgrp, tsk);
2244 threadgroup_unlock(tsk);
2245
2246 put_task_struct(tsk);
2247 out_unlock_cgroup:
2248 cgroup_unlock();
2249 return ret;
2250 }
2251
2252 static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
2253 {
2254 return attach_task_by_pid(cgrp, pid, false);
2255 }
2256
2257 static int cgroup_procs_write(struct cgroup *cgrp, struct cftype *cft, u64 tgid)
2258 {
2259 return attach_task_by_pid(cgrp, tgid, true);
2260 }
2261
2262 /**
2263 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
2264 * @cgrp: the cgroup to be checked for liveness
2265 *
2266 * On success, returns true; the lock should be later released with
2267 * cgroup_unlock(). On failure returns false with no lock held.
2268 */
2269 bool cgroup_lock_live_group(struct cgroup *cgrp)
2270 {
2271 mutex_lock(&cgroup_mutex);
2272 if (cgroup_is_removed(cgrp)) {
2273 mutex_unlock(&cgroup_mutex);
2274 return false;
2275 }
2276 return true;
2277 }
2278 EXPORT_SYMBOL_GPL(cgroup_lock_live_group);
2279
2280 static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
2281 const char *buffer)
2282 {
2283 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
2284 if (strlen(buffer) >= PATH_MAX)
2285 return -EINVAL;
2286 if (!cgroup_lock_live_group(cgrp))
2287 return -ENODEV;
2288 mutex_lock(&cgroup_root_mutex);
2289 strcpy(cgrp->root->release_agent_path, buffer);
2290 mutex_unlock(&cgroup_root_mutex);
2291 cgroup_unlock();
2292 return 0;
2293 }
2294
2295 static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
2296 struct seq_file *seq)
2297 {
2298 if (!cgroup_lock_live_group(cgrp))
2299 return -ENODEV;
2300 seq_puts(seq, cgrp->root->release_agent_path);
2301 seq_putc(seq, '\n');
2302 cgroup_unlock();
2303 return 0;
2304 }
2305
2306 /* A buffer size big enough for numbers or short strings */
2307 #define CGROUP_LOCAL_BUFFER_SIZE 64
2308
2309 static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
2310 struct file *file,
2311 const char __user *userbuf,
2312 size_t nbytes, loff_t *unused_ppos)
2313 {
2314 char buffer[CGROUP_LOCAL_BUFFER_SIZE];
2315 int retval = 0;
2316 char *end;
2317
2318 if (!nbytes)
2319 return -EINVAL;
2320 if (nbytes >= sizeof(buffer))
2321 return -E2BIG;
2322 if (copy_from_user(buffer, userbuf, nbytes))
2323 return -EFAULT;
2324
2325 buffer[nbytes] = 0; /* nul-terminate */
2326 if (cft->write_u64) {
2327 u64 val = simple_strtoull(strstrip(buffer), &end, 0);
2328 if (*end)
2329 return -EINVAL;
2330 retval = cft->write_u64(cgrp, cft, val);
2331 } else {
2332 s64 val = simple_strtoll(strstrip(buffer), &end, 0);
2333 if (*end)
2334 return -EINVAL;
2335 retval = cft->write_s64(cgrp, cft, val);
2336 }
2337 if (!retval)
2338 retval = nbytes;
2339 return retval;
2340 }
2341
2342 static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
2343 struct file *file,
2344 const char __user *userbuf,
2345 size_t nbytes, loff_t *unused_ppos)
2346 {
2347 char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
2348 int retval = 0;
2349 size_t max_bytes = cft->max_write_len;
2350 char *buffer = local_buffer;
2351
2352 if (!max_bytes)
2353 max_bytes = sizeof(local_buffer) - 1;
2354 if (nbytes >= max_bytes)
2355 return -E2BIG;
2356 /* Allocate a dynamic buffer if we need one */
2357 if (nbytes >= sizeof(local_buffer)) {
2358 buffer = kmalloc(nbytes + 1, GFP_KERNEL);
2359 if (buffer == NULL)
2360 return -ENOMEM;
2361 }
2362 if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
2363 retval = -EFAULT;
2364 goto out;
2365 }
2366
2367 buffer[nbytes] = 0; /* nul-terminate */
2368 retval = cft->write_string(cgrp, cft, strstrip(buffer));
2369 if (!retval)
2370 retval = nbytes;
2371 out:
2372 if (buffer != local_buffer)
2373 kfree(buffer);
2374 return retval;
2375 }
2376
2377 static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
2378 size_t nbytes, loff_t *ppos)
2379 {
2380 struct cftype *cft = __d_cft(file->f_dentry);
2381 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2382
2383 if (cgroup_is_removed(cgrp))
2384 return -ENODEV;
2385 if (cft->write)
2386 return cft->write(cgrp, cft, file, buf, nbytes, ppos);
2387 if (cft->write_u64 || cft->write_s64)
2388 return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
2389 if (cft->write_string)
2390 return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
2391 if (cft->trigger) {
2392 int ret = cft->trigger(cgrp, (unsigned int)cft->private);
2393 return ret ? ret : nbytes;
2394 }
2395 return -EINVAL;
2396 }
2397
2398 static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
2399 struct file *file,
2400 char __user *buf, size_t nbytes,
2401 loff_t *ppos)
2402 {
2403 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2404 u64 val = cft->read_u64(cgrp, cft);
2405 int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
2406
2407 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2408 }
2409
2410 static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
2411 struct file *file,
2412 char __user *buf, size_t nbytes,
2413 loff_t *ppos)
2414 {
2415 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2416 s64 val = cft->read_s64(cgrp, cft);
2417 int len = sprintf(tmp, "%lld\n", (long long) val);
2418
2419 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2420 }
2421
2422 static ssize_t cgroup_file_read(struct file *file, char __user *buf,
2423 size_t nbytes, loff_t *ppos)
2424 {
2425 struct cftype *cft = __d_cft(file->f_dentry);
2426 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2427
2428 if (cgroup_is_removed(cgrp))
2429 return -ENODEV;
2430
2431 if (cft->read)
2432 return cft->read(cgrp, cft, file, buf, nbytes, ppos);
2433 if (cft->read_u64)
2434 return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
2435 if (cft->read_s64)
2436 return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
2437 return -EINVAL;
2438 }
2439
2440 /*
2441 * seqfile ops/methods for returning structured data. Currently just
2442 * supports string->u64 maps, but can be extended in future.
2443 */
2444
2445 struct cgroup_seqfile_state {
2446 struct cftype *cft;
2447 struct cgroup *cgroup;
2448 };
2449
2450 static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
2451 {
2452 struct seq_file *sf = cb->state;
2453 return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
2454 }
2455
2456 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
2457 {
2458 struct cgroup_seqfile_state *state = m->private;
2459 struct cftype *cft = state->cft;
2460 if (cft->read_map) {
2461 struct cgroup_map_cb cb = {
2462 .fill = cgroup_map_add,
2463 .state = m,
2464 };
2465 return cft->read_map(state->cgroup, cft, &cb);
2466 }
2467 return cft->read_seq_string(state->cgroup, cft, m);
2468 }
2469
2470 static int cgroup_seqfile_release(struct inode *inode, struct file *file)
2471 {
2472 struct seq_file *seq = file->private_data;
2473 kfree(seq->private);
2474 return single_release(inode, file);
2475 }
2476
2477 static const struct file_operations cgroup_seqfile_operations = {
2478 .read = seq_read,
2479 .write = cgroup_file_write,
2480 .llseek = seq_lseek,
2481 .release = cgroup_seqfile_release,
2482 };
2483
2484 static int cgroup_file_open(struct inode *inode, struct file *file)
2485 {
2486 int err;
2487 struct cftype *cft;
2488
2489 err = generic_file_open(inode, file);
2490 if (err)
2491 return err;
2492 cft = __d_cft(file->f_dentry);
2493
2494 if (cft->read_map || cft->read_seq_string) {
2495 struct cgroup_seqfile_state *state =
2496 kzalloc(sizeof(*state), GFP_USER);
2497 if (!state)
2498 return -ENOMEM;
2499 state->cft = cft;
2500 state->cgroup = __d_cgrp(file->f_dentry->d_parent);
2501 file->f_op = &cgroup_seqfile_operations;
2502 err = single_open(file, cgroup_seqfile_show, state);
2503 if (err < 0)
2504 kfree(state);
2505 } else if (cft->open)
2506 err = cft->open(inode, file);
2507 else
2508 err = 0;
2509
2510 return err;
2511 }
2512
2513 static int cgroup_file_release(struct inode *inode, struct file *file)
2514 {
2515 struct cftype *cft = __d_cft(file->f_dentry);
2516 if (cft->release)
2517 return cft->release(inode, file);
2518 return 0;
2519 }
2520
2521 /*
2522 * cgroup_rename - Only allow simple rename of directories in place.
2523 */
2524 static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
2525 struct inode *new_dir, struct dentry *new_dentry)
2526 {
2527 if (!S_ISDIR(old_dentry->d_inode->i_mode))
2528 return -ENOTDIR;
2529 if (new_dentry->d_inode)
2530 return -EEXIST;
2531 if (old_dir != new_dir)
2532 return -EIO;
2533 return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
2534 }
2535
2536 static struct simple_xattrs *__d_xattrs(struct dentry *dentry)
2537 {
2538 if (S_ISDIR(dentry->d_inode->i_mode))
2539 return &__d_cgrp(dentry)->xattrs;
2540 else
2541 return &__d_cft(dentry)->xattrs;
2542 }
2543
2544 static inline int xattr_enabled(struct dentry *dentry)
2545 {
2546 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
2547 return test_bit(ROOT_XATTR, &root->flags);
2548 }
2549
2550 static bool is_valid_xattr(const char *name)
2551 {
2552 if (!strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN) ||
2553 !strncmp(name, XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN))
2554 return true;
2555 return false;
2556 }
2557
2558 static int cgroup_setxattr(struct dentry *dentry, const char *name,
2559 const void *val, size_t size, int flags)
2560 {
2561 if (!xattr_enabled(dentry))
2562 return -EOPNOTSUPP;
2563 if (!is_valid_xattr(name))
2564 return -EINVAL;
2565 return simple_xattr_set(__d_xattrs(dentry), name, val, size, flags);
2566 }
2567
2568 static int cgroup_removexattr(struct dentry *dentry, const char *name)
2569 {
2570 if (!xattr_enabled(dentry))
2571 return -EOPNOTSUPP;
2572 if (!is_valid_xattr(name))
2573 return -EINVAL;
2574 return simple_xattr_remove(__d_xattrs(dentry), name);
2575 }
2576
2577 static ssize_t cgroup_getxattr(struct dentry *dentry, const char *name,
2578 void *buf, size_t size)
2579 {
2580 if (!xattr_enabled(dentry))
2581 return -EOPNOTSUPP;
2582 if (!is_valid_xattr(name))
2583 return -EINVAL;
2584 return simple_xattr_get(__d_xattrs(dentry), name, buf, size);
2585 }
2586
2587 static ssize_t cgroup_listxattr(struct dentry *dentry, char *buf, size_t size)
2588 {
2589 if (!xattr_enabled(dentry))
2590 return -EOPNOTSUPP;
2591 return simple_xattr_list(__d_xattrs(dentry), buf, size);
2592 }
2593
2594 static const struct file_operations cgroup_file_operations = {
2595 .read = cgroup_file_read,
2596 .write = cgroup_file_write,
2597 .llseek = generic_file_llseek,
2598 .open = cgroup_file_open,
2599 .release = cgroup_file_release,
2600 };
2601
2602 static const struct inode_operations cgroup_file_inode_operations = {
2603 .setxattr = cgroup_setxattr,
2604 .getxattr = cgroup_getxattr,
2605 .listxattr = cgroup_listxattr,
2606 .removexattr = cgroup_removexattr,
2607 };
2608
2609 static const struct inode_operations cgroup_dir_inode_operations = {
2610 .lookup = cgroup_lookup,
2611 .mkdir = cgroup_mkdir,
2612 .rmdir = cgroup_rmdir,
2613 .rename = cgroup_rename,
2614 .setxattr = cgroup_setxattr,
2615 .getxattr = cgroup_getxattr,
2616 .listxattr = cgroup_listxattr,
2617 .removexattr = cgroup_removexattr,
2618 };
2619
2620 static struct dentry *cgroup_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
2621 {
2622 if (dentry->d_name.len > NAME_MAX)
2623 return ERR_PTR(-ENAMETOOLONG);
2624 d_add(dentry, NULL);
2625 return NULL;
2626 }
2627
2628 /*
2629 * Check if a file is a control file
2630 */
2631 static inline struct cftype *__file_cft(struct file *file)
2632 {
2633 if (file->f_dentry->d_inode->i_fop != &cgroup_file_operations)
2634 return ERR_PTR(-EINVAL);
2635 return __d_cft(file->f_dentry);
2636 }
2637
2638 static int cgroup_create_file(struct dentry *dentry, umode_t mode,
2639 struct super_block *sb)
2640 {
2641 struct inode *inode;
2642
2643 if (!dentry)
2644 return -ENOENT;
2645 if (dentry->d_inode)
2646 return -EEXIST;
2647
2648 inode = cgroup_new_inode(mode, sb);
2649 if (!inode)
2650 return -ENOMEM;
2651
2652 if (S_ISDIR(mode)) {
2653 inode->i_op = &cgroup_dir_inode_operations;
2654 inode->i_fop = &simple_dir_operations;
2655
2656 /* start off with i_nlink == 2 (for "." entry) */
2657 inc_nlink(inode);
2658 inc_nlink(dentry->d_parent->d_inode);
2659
2660 /*
2661 * Control reaches here with cgroup_mutex held.
2662 * @inode->i_mutex should nest outside cgroup_mutex but we
2663 * want to populate it immediately without releasing
2664 * cgroup_mutex. As @inode isn't visible to anyone else
2665 * yet, trylock will always succeed without affecting
2666 * lockdep checks.
2667 */
2668 WARN_ON_ONCE(!mutex_trylock(&inode->i_mutex));
2669 } else if (S_ISREG(mode)) {
2670 inode->i_size = 0;
2671 inode->i_fop = &cgroup_file_operations;
2672 inode->i_op = &cgroup_file_inode_operations;
2673 }
2674 d_instantiate(dentry, inode);
2675 dget(dentry); /* Extra count - pin the dentry in core */
2676 return 0;
2677 }
2678
2679 /**
2680 * cgroup_file_mode - deduce file mode of a control file
2681 * @cft: the control file in question
2682 *
2683 * returns cft->mode if ->mode is not 0
2684 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
2685 * returns S_IRUGO if it has only a read handler
2686 * returns S_IWUSR if it has only a write hander
2687 */
2688 static umode_t cgroup_file_mode(const struct cftype *cft)
2689 {
2690 umode_t mode = 0;
2691
2692 if (cft->mode)
2693 return cft->mode;
2694
2695 if (cft->read || cft->read_u64 || cft->read_s64 ||
2696 cft->read_map || cft->read_seq_string)
2697 mode |= S_IRUGO;
2698
2699 if (cft->write || cft->write_u64 || cft->write_s64 ||
2700 cft->write_string || cft->trigger)
2701 mode |= S_IWUSR;
2702
2703 return mode;
2704 }
2705
2706 static int cgroup_add_file(struct cgroup *cgrp, struct cgroup_subsys *subsys,
2707 struct cftype *cft)
2708 {
2709 struct dentry *dir = cgrp->dentry;
2710 struct cgroup *parent = __d_cgrp(dir);
2711 struct dentry *dentry;
2712 struct cfent *cfe;
2713 int error;
2714 umode_t mode;
2715 char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
2716
2717 simple_xattrs_init(&cft->xattrs);
2718
2719 /* does @cft->flags tell us to skip creation on @cgrp? */
2720 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgrp->parent)
2721 return 0;
2722 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgrp->parent)
2723 return 0;
2724
2725 if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
2726 strcpy(name, subsys->name);
2727 strcat(name, ".");
2728 }
2729 strcat(name, cft->name);
2730
2731 BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
2732
2733 cfe = kzalloc(sizeof(*cfe), GFP_KERNEL);
2734 if (!cfe)
2735 return -ENOMEM;
2736
2737 dentry = lookup_one_len(name, dir, strlen(name));
2738 if (IS_ERR(dentry)) {
2739 error = PTR_ERR(dentry);
2740 goto out;
2741 }
2742
2743 mode = cgroup_file_mode(cft);
2744 error = cgroup_create_file(dentry, mode | S_IFREG, cgrp->root->sb);
2745 if (!error) {
2746 cfe->type = (void *)cft;
2747 cfe->dentry = dentry;
2748 dentry->d_fsdata = cfe;
2749 list_add_tail(&cfe->node, &parent->files);
2750 cfe = NULL;
2751 }
2752 dput(dentry);
2753 out:
2754 kfree(cfe);
2755 return error;
2756 }
2757
2758 static int cgroup_addrm_files(struct cgroup *cgrp, struct cgroup_subsys *subsys,
2759 struct cftype cfts[], bool is_add)
2760 {
2761 struct cftype *cft;
2762 int err, ret = 0;
2763
2764 for (cft = cfts; cft->name[0] != '\0'; cft++) {
2765 if (is_add)
2766 err = cgroup_add_file(cgrp, subsys, cft);
2767 else
2768 err = cgroup_rm_file(cgrp, cft);
2769 if (err) {
2770 pr_warning("cgroup_addrm_files: failed to %s %s, err=%d\n",
2771 is_add ? "add" : "remove", cft->name, err);
2772 ret = err;
2773 }
2774 }
2775 return ret;
2776 }
2777
2778 static DEFINE_MUTEX(cgroup_cft_mutex);
2779
2780 static void cgroup_cfts_prepare(void)
2781 __acquires(&cgroup_cft_mutex) __acquires(&cgroup_mutex)
2782 {
2783 /*
2784 * Thanks to the entanglement with vfs inode locking, we can't walk
2785 * the existing cgroups under cgroup_mutex and create files.
2786 * Instead, we increment reference on all cgroups and build list of
2787 * them using @cgrp->cft_q_node. Grab cgroup_cft_mutex to ensure
2788 * exclusive access to the field.
2789 */
2790 mutex_lock(&cgroup_cft_mutex);
2791 mutex_lock(&cgroup_mutex);
2792 }
2793
2794 static void cgroup_cfts_commit(struct cgroup_subsys *ss,
2795 struct cftype *cfts, bool is_add)
2796 __releases(&cgroup_mutex) __releases(&cgroup_cft_mutex)
2797 {
2798 LIST_HEAD(pending);
2799 struct cgroup *cgrp, *n;
2800
2801 /* %NULL @cfts indicates abort and don't bother if @ss isn't attached */
2802 if (cfts && ss->root != &rootnode) {
2803 list_for_each_entry(cgrp, &ss->root->allcg_list, allcg_node) {
2804 dget(cgrp->dentry);
2805 list_add_tail(&cgrp->cft_q_node, &pending);
2806 }
2807 }
2808
2809 mutex_unlock(&cgroup_mutex);
2810
2811 /*
2812 * All new cgroups will see @cfts update on @ss->cftsets. Add/rm
2813 * files for all cgroups which were created before.
2814 */
2815 list_for_each_entry_safe(cgrp, n, &pending, cft_q_node) {
2816 struct inode *inode = cgrp->dentry->d_inode;
2817
2818 mutex_lock(&inode->i_mutex);
2819 mutex_lock(&cgroup_mutex);
2820 if (!cgroup_is_removed(cgrp))
2821 cgroup_addrm_files(cgrp, ss, cfts, is_add);
2822 mutex_unlock(&cgroup_mutex);
2823 mutex_unlock(&inode->i_mutex);
2824
2825 list_del_init(&cgrp->cft_q_node);
2826 dput(cgrp->dentry);
2827 }
2828
2829 mutex_unlock(&cgroup_cft_mutex);
2830 }
2831
2832 /**
2833 * cgroup_add_cftypes - add an array of cftypes to a subsystem
2834 * @ss: target cgroup subsystem
2835 * @cfts: zero-length name terminated array of cftypes
2836 *
2837 * Register @cfts to @ss. Files described by @cfts are created for all
2838 * existing cgroups to which @ss is attached and all future cgroups will
2839 * have them too. This function can be called anytime whether @ss is
2840 * attached or not.
2841 *
2842 * Returns 0 on successful registration, -errno on failure. Note that this
2843 * function currently returns 0 as long as @cfts registration is successful
2844 * even if some file creation attempts on existing cgroups fail.
2845 */
2846 int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2847 {
2848 struct cftype_set *set;
2849
2850 set = kzalloc(sizeof(*set), GFP_KERNEL);
2851 if (!set)
2852 return -ENOMEM;
2853
2854 cgroup_cfts_prepare();
2855 set->cfts = cfts;
2856 list_add_tail(&set->node, &ss->cftsets);
2857 cgroup_cfts_commit(ss, cfts, true);
2858
2859 return 0;
2860 }
2861 EXPORT_SYMBOL_GPL(cgroup_add_cftypes);
2862
2863 /**
2864 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
2865 * @ss: target cgroup subsystem
2866 * @cfts: zero-length name terminated array of cftypes
2867 *
2868 * Unregister @cfts from @ss. Files described by @cfts are removed from
2869 * all existing cgroups to which @ss is attached and all future cgroups
2870 * won't have them either. This function can be called anytime whether @ss
2871 * is attached or not.
2872 *
2873 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2874 * registered with @ss.
2875 */
2876 int cgroup_rm_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2877 {
2878 struct cftype_set *set;
2879
2880 cgroup_cfts_prepare();
2881
2882 list_for_each_entry(set, &ss->cftsets, node) {
2883 if (set->cfts == cfts) {
2884 list_del_init(&set->node);
2885 cgroup_cfts_commit(ss, cfts, false);
2886 return 0;
2887 }
2888 }
2889
2890 cgroup_cfts_commit(ss, NULL, false);
2891 return -ENOENT;
2892 }
2893
2894 /**
2895 * cgroup_task_count - count the number of tasks in a cgroup.
2896 * @cgrp: the cgroup in question
2897 *
2898 * Return the number of tasks in the cgroup.
2899 */
2900 int cgroup_task_count(const struct cgroup *cgrp)
2901 {
2902 int count = 0;
2903 struct cg_cgroup_link *link;
2904
2905 read_lock(&css_set_lock);
2906 list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
2907 count += atomic_read(&link->cg->refcount);
2908 }
2909 read_unlock(&css_set_lock);
2910 return count;
2911 }
2912
2913 /*
2914 * Advance a list_head iterator. The iterator should be positioned at
2915 * the start of a css_set
2916 */
2917 static void cgroup_advance_iter(struct cgroup *cgrp,
2918 struct cgroup_iter *it)
2919 {
2920 struct list_head *l = it->cg_link;
2921 struct cg_cgroup_link *link;
2922 struct css_set *cg;
2923
2924 /* Advance to the next non-empty css_set */
2925 do {
2926 l = l->next;
2927 if (l == &cgrp->css_sets) {
2928 it->cg_link = NULL;
2929 return;
2930 }
2931 link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
2932 cg = link->cg;
2933 } while (list_empty(&cg->tasks));
2934 it->cg_link = l;
2935 it->task = cg->tasks.next;
2936 }
2937
2938 /*
2939 * To reduce the fork() overhead for systems that are not actually
2940 * using their cgroups capability, we don't maintain the lists running
2941 * through each css_set to its tasks until we see the list actually
2942 * used - in other words after the first call to cgroup_iter_start().
2943 */
2944 static void cgroup_enable_task_cg_lists(void)
2945 {
2946 struct task_struct *p, *g;
2947 write_lock(&css_set_lock);
2948 use_task_css_set_links = 1;
2949 /*
2950 * We need tasklist_lock because RCU is not safe against
2951 * while_each_thread(). Besides, a forking task that has passed
2952 * cgroup_post_fork() without seeing use_task_css_set_links = 1
2953 * is not guaranteed to have its child immediately visible in the
2954 * tasklist if we walk through it with RCU.
2955 */
2956 read_lock(&tasklist_lock);
2957 do_each_thread(g, p) {
2958 task_lock(p);
2959 /*
2960 * We should check if the process is exiting, otherwise
2961 * it will race with cgroup_exit() in that the list
2962 * entry won't be deleted though the process has exited.
2963 */
2964 if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
2965 list_add(&p->cg_list, &p->cgroups->tasks);
2966 task_unlock(p);
2967 } while_each_thread(g, p);
2968 read_unlock(&tasklist_lock);
2969 write_unlock(&css_set_lock);
2970 }
2971
2972 /**
2973 * cgroup_next_descendant_pre - find the next descendant for pre-order walk
2974 * @pos: the current position (%NULL to initiate traversal)
2975 * @cgroup: cgroup whose descendants to walk
2976 *
2977 * To be used by cgroup_for_each_descendant_pre(). Find the next
2978 * descendant to visit for pre-order traversal of @cgroup's descendants.
2979 */
2980 struct cgroup *cgroup_next_descendant_pre(struct cgroup *pos,
2981 struct cgroup *cgroup)
2982 {
2983 struct cgroup *next;
2984
2985 WARN_ON_ONCE(!rcu_read_lock_held());
2986
2987 /* if first iteration, pretend we just visited @cgroup */
2988 if (!pos) {
2989 if (list_empty(&cgroup->children))
2990 return NULL;
2991 pos = cgroup;
2992 }
2993
2994 /* visit the first child if exists */
2995 next = list_first_or_null_rcu(&pos->children, struct cgroup, sibling);
2996 if (next)
2997 return next;
2998
2999 /* no child, visit my or the closest ancestor's next sibling */
3000 do {
3001 next = list_entry_rcu(pos->sibling.next, struct cgroup,
3002 sibling);
3003 if (&next->sibling != &pos->parent->children)
3004 return next;
3005
3006 pos = pos->parent;
3007 } while (pos != cgroup);
3008
3009 return NULL;
3010 }
3011 EXPORT_SYMBOL_GPL(cgroup_next_descendant_pre);
3012
3013 static struct cgroup *cgroup_leftmost_descendant(struct cgroup *pos)
3014 {
3015 struct cgroup *last;
3016
3017 do {
3018 last = pos;
3019 pos = list_first_or_null_rcu(&pos->children, struct cgroup,
3020 sibling);
3021 } while (pos);
3022
3023 return last;
3024 }
3025
3026 /**
3027 * cgroup_next_descendant_post - find the next descendant for post-order walk
3028 * @pos: the current position (%NULL to initiate traversal)
3029 * @cgroup: cgroup whose descendants to walk
3030 *
3031 * To be used by cgroup_for_each_descendant_post(). Find the next
3032 * descendant to visit for post-order traversal of @cgroup's descendants.
3033 */
3034 struct cgroup *cgroup_next_descendant_post(struct cgroup *pos,
3035 struct cgroup *cgroup)
3036 {
3037 struct cgroup *next;
3038
3039 WARN_ON_ONCE(!rcu_read_lock_held());
3040
3041 /* if first iteration, visit the leftmost descendant */
3042 if (!pos) {
3043 next = cgroup_leftmost_descendant(cgroup);
3044 return next != cgroup ? next : NULL;
3045 }
3046
3047 /* if there's an unvisited sibling, visit its leftmost descendant */
3048 next = list_entry_rcu(pos->sibling.next, struct cgroup, sibling);
3049 if (&next->sibling != &pos->parent->children)
3050 return cgroup_leftmost_descendant(next);
3051
3052 /* no sibling left, visit parent */
3053 next = pos->parent;
3054 return next != cgroup ? next : NULL;
3055 }
3056 EXPORT_SYMBOL_GPL(cgroup_next_descendant_post);
3057
3058 void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
3059 __acquires(css_set_lock)
3060 {
3061 /*
3062 * The first time anyone tries to iterate across a cgroup,
3063 * we need to enable the list linking each css_set to its
3064 * tasks, and fix up all existing tasks.
3065 */
3066 if (!use_task_css_set_links)
3067 cgroup_enable_task_cg_lists();
3068
3069 read_lock(&css_set_lock);
3070 it->cg_link = &cgrp->css_sets;
3071 cgroup_advance_iter(cgrp, it);
3072 }
3073
3074 struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
3075 struct cgroup_iter *it)
3076 {
3077 struct task_struct *res;
3078 struct list_head *l = it->task;
3079 struct cg_cgroup_link *link;
3080
3081 /* If the iterator cg is NULL, we have no tasks */
3082 if (!it->cg_link)
3083 return NULL;
3084 res = list_entry(l, struct task_struct, cg_list);
3085 /* Advance iterator to find next entry */
3086 l = l->next;
3087 link = list_entry(it->cg_link, struct cg_cgroup_link, cgrp_link_list);
3088 if (l == &link->cg->tasks) {
3089 /* We reached the end of this task list - move on to
3090 * the next cg_cgroup_link */
3091 cgroup_advance_iter(cgrp, it);
3092 } else {
3093 it->task = l;
3094 }
3095 return res;
3096 }
3097
3098 void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
3099 __releases(css_set_lock)
3100 {
3101 read_unlock(&css_set_lock);
3102 }
3103
3104 static inline int started_after_time(struct task_struct *t1,
3105 struct timespec *time,
3106 struct task_struct *t2)
3107 {
3108 int start_diff = timespec_compare(&t1->start_time, time);
3109 if (start_diff > 0) {
3110 return 1;
3111 } else if (start_diff < 0) {
3112 return 0;
3113 } else {
3114 /*
3115 * Arbitrarily, if two processes started at the same
3116 * time, we'll say that the lower pointer value
3117 * started first. Note that t2 may have exited by now
3118 * so this may not be a valid pointer any longer, but
3119 * that's fine - it still serves to distinguish
3120 * between two tasks started (effectively) simultaneously.
3121 */
3122 return t1 > t2;
3123 }
3124 }
3125
3126 /*
3127 * This function is a callback from heap_insert() and is used to order
3128 * the heap.
3129 * In this case we order the heap in descending task start time.
3130 */
3131 static inline int started_after(void *p1, void *p2)
3132 {
3133 struct task_struct *t1 = p1;
3134 struct task_struct *t2 = p2;
3135 return started_after_time(t1, &t2->start_time, t2);
3136 }
3137
3138 /**
3139 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
3140 * @scan: struct cgroup_scanner containing arguments for the scan
3141 *
3142 * Arguments include pointers to callback functions test_task() and
3143 * process_task().
3144 * Iterate through all the tasks in a cgroup, calling test_task() for each,
3145 * and if it returns true, call process_task() for it also.
3146 * The test_task pointer may be NULL, meaning always true (select all tasks).
3147 * Effectively duplicates cgroup_iter_{start,next,end}()
3148 * but does not lock css_set_lock for the call to process_task().
3149 * The struct cgroup_scanner may be embedded in any structure of the caller's
3150 * creation.
3151 * It is guaranteed that process_task() will act on every task that
3152 * is a member of the cgroup for the duration of this call. This
3153 * function may or may not call process_task() for tasks that exit
3154 * or move to a different cgroup during the call, or are forked or
3155 * move into the cgroup during the call.
3156 *
3157 * Note that test_task() may be called with locks held, and may in some
3158 * situations be called multiple times for the same task, so it should
3159 * be cheap.
3160 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
3161 * pre-allocated and will be used for heap operations (and its "gt" member will
3162 * be overwritten), else a temporary heap will be used (allocation of which
3163 * may cause this function to fail).
3164 */
3165 int cgroup_scan_tasks(struct cgroup_scanner *scan)
3166 {
3167 int retval, i;
3168 struct cgroup_iter it;
3169 struct task_struct *p, *dropped;
3170 /* Never dereference latest_task, since it's not refcounted */
3171 struct task_struct *latest_task = NULL;
3172 struct ptr_heap tmp_heap;
3173 struct ptr_heap *heap;
3174 struct timespec latest_time = { 0, 0 };
3175
3176 if (scan->heap) {
3177 /* The caller supplied our heap and pre-allocated its memory */
3178 heap = scan->heap;
3179 heap->gt = &started_after;
3180 } else {
3181 /* We need to allocate our own heap memory */
3182 heap = &tmp_heap;
3183 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
3184 if (retval)
3185 /* cannot allocate the heap */
3186 return retval;
3187 }
3188
3189 again:
3190 /*
3191 * Scan tasks in the cgroup, using the scanner's "test_task" callback
3192 * to determine which are of interest, and using the scanner's
3193 * "process_task" callback to process any of them that need an update.
3194 * Since we don't want to hold any locks during the task updates,
3195 * gather tasks to be processed in a heap structure.
3196 * The heap is sorted by descending task start time.
3197 * If the statically-sized heap fills up, we overflow tasks that
3198 * started later, and in future iterations only consider tasks that
3199 * started after the latest task in the previous pass. This
3200 * guarantees forward progress and that we don't miss any tasks.
3201 */
3202 heap->size = 0;
3203 cgroup_iter_start(scan->cg, &it);
3204 while ((p = cgroup_iter_next(scan->cg, &it))) {
3205 /*
3206 * Only affect tasks that qualify per the caller's callback,
3207 * if he provided one
3208 */
3209 if (scan->test_task && !scan->test_task(p, scan))
3210 continue;
3211 /*
3212 * Only process tasks that started after the last task
3213 * we processed
3214 */
3215 if (!started_after_time(p, &latest_time, latest_task))
3216 continue;
3217 dropped = heap_insert(heap, p);
3218 if (dropped == NULL) {
3219 /*
3220 * The new task was inserted; the heap wasn't
3221 * previously full
3222 */
3223 get_task_struct(p);
3224 } else if (dropped != p) {
3225 /*
3226 * The new task was inserted, and pushed out a
3227 * different task
3228 */
3229 get_task_struct(p);
3230 put_task_struct(dropped);
3231 }
3232 /*
3233 * Else the new task was newer than anything already in
3234 * the heap and wasn't inserted
3235 */
3236 }
3237 cgroup_iter_end(scan->cg, &it);
3238
3239 if (heap->size) {
3240 for (i = 0; i < heap->size; i++) {
3241 struct task_struct *q = heap->ptrs[i];
3242 if (i == 0) {
3243 latest_time = q->start_time;
3244 latest_task = q;
3245 }
3246 /* Process the task per the caller's callback */
3247 scan->process_task(q, scan);
3248 put_task_struct(q);
3249 }
3250 /*
3251 * If we had to process any tasks at all, scan again
3252 * in case some of them were in the middle of forking
3253 * children that didn't get processed.
3254 * Not the most efficient way to do it, but it avoids
3255 * having to take callback_mutex in the fork path
3256 */
3257 goto again;
3258 }
3259 if (heap == &tmp_heap)
3260 heap_free(&tmp_heap);
3261 return 0;
3262 }
3263
3264 /*
3265 * Stuff for reading the 'tasks'/'procs' files.
3266 *
3267 * Reading this file can return large amounts of data if a cgroup has
3268 * *lots* of attached tasks. So it may need several calls to read(),
3269 * but we cannot guarantee that the information we produce is correct
3270 * unless we produce it entirely atomically.
3271 *
3272 */
3273
3274 /* which pidlist file are we talking about? */
3275 enum cgroup_filetype {
3276 CGROUP_FILE_PROCS,
3277 CGROUP_FILE_TASKS,
3278 };
3279
3280 /*
3281 * A pidlist is a list of pids that virtually represents the contents of one
3282 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
3283 * a pair (one each for procs, tasks) for each pid namespace that's relevant
3284 * to the cgroup.
3285 */
3286 struct cgroup_pidlist {
3287 /*
3288 * used to find which pidlist is wanted. doesn't change as long as
3289 * this particular list stays in the list.
3290 */
3291 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
3292 /* array of xids */
3293 pid_t *list;
3294 /* how many elements the above list has */
3295 int length;
3296 /* how many files are using the current array */
3297 int use_count;
3298 /* each of these stored in a list by its cgroup */
3299 struct list_head links;
3300 /* pointer to the cgroup we belong to, for list removal purposes */
3301 struct cgroup *owner;
3302 /* protects the other fields */
3303 struct rw_semaphore mutex;
3304 };
3305
3306 /*
3307 * The following two functions "fix" the issue where there are more pids
3308 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3309 * TODO: replace with a kernel-wide solution to this problem
3310 */
3311 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
3312 static void *pidlist_allocate(int count)
3313 {
3314 if (PIDLIST_TOO_LARGE(count))
3315 return vmalloc(count * sizeof(pid_t));
3316 else
3317 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
3318 }
3319 static void pidlist_free(void *p)
3320 {
3321 if (is_vmalloc_addr(p))
3322 vfree(p);
3323 else
3324 kfree(p);
3325 }
3326 static void *pidlist_resize(void *p, int newcount)
3327 {
3328 void *newlist;
3329 /* note: if new alloc fails, old p will still be valid either way */
3330 if (is_vmalloc_addr(p)) {
3331 newlist = vmalloc(newcount * sizeof(pid_t));
3332 if (!newlist)
3333 return NULL;
3334 memcpy(newlist, p, newcount * sizeof(pid_t));
3335 vfree(p);
3336 } else {
3337 newlist = krealloc(p, newcount * sizeof(pid_t), GFP_KERNEL);
3338 }
3339 return newlist;
3340 }
3341
3342 /*
3343 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
3344 * If the new stripped list is sufficiently smaller and there's enough memory
3345 * to allocate a new buffer, will let go of the unneeded memory. Returns the
3346 * number of unique elements.
3347 */
3348 /* is the size difference enough that we should re-allocate the array? */
3349 #define PIDLIST_REALLOC_DIFFERENCE(old, new) ((old) - PAGE_SIZE >= (new))
3350 static int pidlist_uniq(pid_t **p, int length)
3351 {
3352 int src, dest = 1;
3353 pid_t *list = *p;
3354 pid_t *newlist;
3355
3356 /*
3357 * we presume the 0th element is unique, so i starts at 1. trivial
3358 * edge cases first; no work needs to be done for either
3359 */
3360 if (length == 0 || length == 1)
3361 return length;
3362 /* src and dest walk down the list; dest counts unique elements */
3363 for (src = 1; src < length; src++) {
3364 /* find next unique element */
3365 while (list[src] == list[src-1]) {
3366 src++;
3367 if (src == length)
3368 goto after;
3369 }
3370 /* dest always points to where the next unique element goes */
3371 list[dest] = list[src];
3372 dest++;
3373 }
3374 after:
3375 /*
3376 * if the length difference is large enough, we want to allocate a
3377 * smaller buffer to save memory. if this fails due to out of memory,
3378 * we'll just stay with what we've got.
3379 */
3380 if (PIDLIST_REALLOC_DIFFERENCE(length, dest)) {
3381 newlist = pidlist_resize(list, dest);
3382 if (newlist)
3383 *p = newlist;
3384 }
3385 return dest;
3386 }
3387
3388 static int cmppid(const void *a, const void *b)
3389 {
3390 return *(pid_t *)a - *(pid_t *)b;
3391 }
3392
3393 /*
3394 * find the appropriate pidlist for our purpose (given procs vs tasks)
3395 * returns with the lock on that pidlist already held, and takes care
3396 * of the use count, or returns NULL with no locks held if we're out of
3397 * memory.
3398 */
3399 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3400 enum cgroup_filetype type)
3401 {
3402 struct cgroup_pidlist *l;
3403 /* don't need task_nsproxy() if we're looking at ourself */
3404 struct pid_namespace *ns = current->nsproxy->pid_ns;
3405
3406 /*
3407 * We can't drop the pidlist_mutex before taking the l->mutex in case
3408 * the last ref-holder is trying to remove l from the list at the same
3409 * time. Holding the pidlist_mutex precludes somebody taking whichever
3410 * list we find out from under us - compare release_pid_array().
3411 */
3412 mutex_lock(&cgrp->pidlist_mutex);
3413 list_for_each_entry(l, &cgrp->pidlists, links) {
3414 if (l->key.type == type && l->key.ns == ns) {
3415 /* make sure l doesn't vanish out from under us */
3416 down_write(&l->mutex);
3417 mutex_unlock(&cgrp->pidlist_mutex);
3418 return l;
3419 }
3420 }
3421 /* entry not found; create a new one */
3422 l = kmalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
3423 if (!l) {
3424 mutex_unlock(&cgrp->pidlist_mutex);
3425 return l;
3426 }
3427 init_rwsem(&l->mutex);
3428 down_write(&l->mutex);
3429 l->key.type = type;
3430 l->key.ns = get_pid_ns(ns);
3431 l->use_count = 0; /* don't increment here */
3432 l->list = NULL;
3433 l->owner = cgrp;
3434 list_add(&l->links, &cgrp->pidlists);
3435 mutex_unlock(&cgrp->pidlist_mutex);
3436 return l;
3437 }
3438
3439 /*
3440 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3441 */
3442 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3443 struct cgroup_pidlist **lp)
3444 {
3445 pid_t *array;
3446 int length;
3447 int pid, n = 0; /* used for populating the array */
3448 struct cgroup_iter it;
3449 struct task_struct *tsk;
3450 struct cgroup_pidlist *l;
3451
3452 /*
3453 * If cgroup gets more users after we read count, we won't have
3454 * enough space - tough. This race is indistinguishable to the
3455 * caller from the case that the additional cgroup users didn't
3456 * show up until sometime later on.
3457 */
3458 length = cgroup_task_count(cgrp);
3459 array = pidlist_allocate(length);
3460 if (!array)
3461 return -ENOMEM;
3462 /* now, populate the array */
3463 cgroup_iter_start(cgrp, &it);
3464 while ((tsk = cgroup_iter_next(cgrp, &it))) {
3465 if (unlikely(n == length))
3466 break;
3467 /* get tgid or pid for procs or tasks file respectively */
3468 if (type == CGROUP_FILE_PROCS)
3469 pid = task_tgid_vnr(tsk);
3470 else
3471 pid = task_pid_vnr(tsk);
3472 if (pid > 0) /* make sure to only use valid results */
3473 array[n++] = pid;
3474 }
3475 cgroup_iter_end(cgrp, &it);
3476 length = n;
3477 /* now sort & (if procs) strip out duplicates */
3478 sort(array, length, sizeof(pid_t), cmppid, NULL);
3479 if (type == CGROUP_FILE_PROCS)
3480 length = pidlist_uniq(&array, length);
3481 l = cgroup_pidlist_find(cgrp, type);
3482 if (!l) {
3483 pidlist_free(array);
3484 return -ENOMEM;
3485 }
3486 /* store array, freeing old if necessary - lock already held */
3487 pidlist_free(l->list);
3488 l->list = array;
3489 l->length = length;
3490 l->use_count++;
3491 up_write(&l->mutex);
3492 *lp = l;
3493 return 0;
3494 }
3495
3496 /**
3497 * cgroupstats_build - build and fill cgroupstats
3498 * @stats: cgroupstats to fill information into
3499 * @dentry: A dentry entry belonging to the cgroup for which stats have
3500 * been requested.
3501 *
3502 * Build and fill cgroupstats so that taskstats can export it to user
3503 * space.
3504 */
3505 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
3506 {
3507 int ret = -EINVAL;
3508 struct cgroup *cgrp;
3509 struct cgroup_iter it;
3510 struct task_struct *tsk;
3511
3512 /*
3513 * Validate dentry by checking the superblock operations,
3514 * and make sure it's a directory.
3515 */
3516 if (dentry->d_sb->s_op != &cgroup_ops ||
3517 !S_ISDIR(dentry->d_inode->i_mode))
3518 goto err;
3519
3520 ret = 0;
3521 cgrp = dentry->d_fsdata;
3522
3523 cgroup_iter_start(cgrp, &it);
3524 while ((tsk = cgroup_iter_next(cgrp, &it))) {
3525 switch (tsk->state) {
3526 case TASK_RUNNING:
3527 stats->nr_running++;
3528 break;
3529 case TASK_INTERRUPTIBLE:
3530 stats->nr_sleeping++;
3531 break;
3532 case TASK_UNINTERRUPTIBLE:
3533 stats->nr_uninterruptible++;
3534 break;
3535 case TASK_STOPPED:
3536 stats->nr_stopped++;
3537 break;
3538 default:
3539 if (delayacct_is_task_waiting_on_io(tsk))
3540 stats->nr_io_wait++;
3541 break;
3542 }
3543 }
3544 cgroup_iter_end(cgrp, &it);
3545
3546 err:
3547 return ret;
3548 }
3549
3550
3551 /*
3552 * seq_file methods for the tasks/procs files. The seq_file position is the
3553 * next pid to display; the seq_file iterator is a pointer to the pid
3554 * in the cgroup->l->list array.
3555 */
3556
3557 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
3558 {
3559 /*
3560 * Initially we receive a position value that corresponds to
3561 * one more than the last pid shown (or 0 on the first call or
3562 * after a seek to the start). Use a binary-search to find the
3563 * next pid to display, if any
3564 */
3565 struct cgroup_pidlist *l = s->private;
3566 int index = 0, pid = *pos;
3567 int *iter;
3568
3569 down_read(&l->mutex);
3570 if (pid) {
3571 int end = l->length;
3572
3573 while (index < end) {
3574 int mid = (index + end) / 2;
3575 if (l->list[mid] == pid) {
3576 index = mid;
3577 break;
3578 } else if (l->list[mid] <= pid)
3579 index = mid + 1;
3580 else
3581 end = mid;
3582 }
3583 }
3584 /* If we're off the end of the array, we're done */
3585 if (index >= l->length)
3586 return NULL;
3587 /* Update the abstract position to be the actual pid that we found */
3588 iter = l->list + index;
3589 *pos = *iter;
3590 return iter;
3591 }
3592
3593 static void cgroup_pidlist_stop(struct seq_file *s, void *v)
3594 {
3595 struct cgroup_pidlist *l = s->private;
3596 up_read(&l->mutex);
3597 }
3598
3599 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
3600 {
3601 struct cgroup_pidlist *l = s->private;
3602 pid_t *p = v;
3603 pid_t *end = l->list + l->length;
3604 /*
3605 * Advance to the next pid in the array. If this goes off the
3606 * end, we're done
3607 */
3608 p++;
3609 if (p >= end) {
3610 return NULL;
3611 } else {
3612 *pos = *p;
3613 return p;
3614 }
3615 }
3616
3617 static int cgroup_pidlist_show(struct seq_file *s, void *v)
3618 {
3619 return seq_printf(s, "%d\n", *(int *)v);
3620 }
3621
3622 /*
3623 * seq_operations functions for iterating on pidlists through seq_file -
3624 * independent of whether it's tasks or procs
3625 */
3626 static const struct seq_operations cgroup_pidlist_seq_operations = {
3627 .start = cgroup_pidlist_start,
3628 .stop = cgroup_pidlist_stop,
3629 .next = cgroup_pidlist_next,
3630 .show = cgroup_pidlist_show,
3631 };
3632
3633 static void cgroup_release_pid_array(struct cgroup_pidlist *l)
3634 {
3635 /*
3636 * the case where we're the last user of this particular pidlist will
3637 * have us remove it from the cgroup's list, which entails taking the
3638 * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
3639 * pidlist_mutex, we have to take pidlist_mutex first.
3640 */
3641 mutex_lock(&l->owner->pidlist_mutex);
3642 down_write(&l->mutex);
3643 BUG_ON(!l->use_count);
3644 if (!--l->use_count) {
3645 /* we're the last user if refcount is 0; remove and free */
3646 list_del(&l->links);
3647 mutex_unlock(&l->owner->pidlist_mutex);
3648 pidlist_free(l->list);
3649 put_pid_ns(l->key.ns);
3650 up_write(&l->mutex);
3651 kfree(l);
3652 return;
3653 }
3654 mutex_unlock(&l->owner->pidlist_mutex);
3655 up_write(&l->mutex);
3656 }
3657
3658 static int cgroup_pidlist_release(struct inode *inode, struct file *file)
3659 {
3660 struct cgroup_pidlist *l;
3661 if (!(file->f_mode & FMODE_READ))
3662 return 0;
3663 /*
3664 * the seq_file will only be initialized if the file was opened for
3665 * reading; hence we check if it's not null only in that case.
3666 */
3667 l = ((struct seq_file *)file->private_data)->private;
3668 cgroup_release_pid_array(l);
3669 return seq_release(inode, file);
3670 }
3671
3672 static const struct file_operations cgroup_pidlist_operations = {
3673 .read = seq_read,
3674 .llseek = seq_lseek,
3675 .write = cgroup_file_write,
3676 .release = cgroup_pidlist_release,
3677 };
3678
3679 /*
3680 * The following functions handle opens on a file that displays a pidlist
3681 * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
3682 * in the cgroup.
3683 */
3684 /* helper function for the two below it */
3685 static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type)
3686 {
3687 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
3688 struct cgroup_pidlist *l;
3689 int retval;
3690
3691 /* Nothing to do for write-only files */
3692 if (!(file->f_mode & FMODE_READ))
3693 return 0;
3694
3695 /* have the array populated */
3696 retval = pidlist_array_load(cgrp, type, &l);
3697 if (retval)
3698 return retval;
3699 /* configure file information */
3700 file->f_op = &cgroup_pidlist_operations;
3701
3702 retval = seq_open(file, &cgroup_pidlist_seq_operations);
3703 if (retval) {
3704 cgroup_release_pid_array(l);
3705 return retval;
3706 }
3707 ((struct seq_file *)file->private_data)->private = l;
3708 return 0;
3709 }
3710 static int cgroup_tasks_open(struct inode *unused, struct file *file)
3711 {
3712 return cgroup_pidlist_open(file, CGROUP_FILE_TASKS);
3713 }
3714 static int cgroup_procs_open(struct inode *unused, struct file *file)
3715 {
3716 return cgroup_pidlist_open(file, CGROUP_FILE_PROCS);
3717 }
3718
3719 static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
3720 struct cftype *cft)
3721 {
3722 return notify_on_release(cgrp);
3723 }
3724
3725 static int cgroup_write_notify_on_release(struct cgroup *cgrp,
3726 struct cftype *cft,
3727 u64 val)
3728 {
3729 clear_bit(CGRP_RELEASABLE, &cgrp->flags);
3730 if (val)
3731 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3732 else
3733 clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3734 return 0;
3735 }
3736
3737 /*
3738 * Unregister event and free resources.
3739 *
3740 * Gets called from workqueue.
3741 */
3742 static void cgroup_event_remove(struct work_struct *work)
3743 {
3744 struct cgroup_event *event = container_of(work, struct cgroup_event,
3745 remove);
3746 struct cgroup *cgrp = event->cgrp;
3747
3748 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3749
3750 eventfd_ctx_put(event->eventfd);
3751 kfree(event);
3752 dput(cgrp->dentry);
3753 }
3754
3755 /*
3756 * Gets called on POLLHUP on eventfd when user closes it.
3757 *
3758 * Called with wqh->lock held and interrupts disabled.
3759 */
3760 static int cgroup_event_wake(wait_queue_t *wait, unsigned mode,
3761 int sync, void *key)
3762 {
3763 struct cgroup_event *event = container_of(wait,
3764 struct cgroup_event, wait);
3765 struct cgroup *cgrp = event->cgrp;
3766 unsigned long flags = (unsigned long)key;
3767
3768 if (flags & POLLHUP) {
3769 __remove_wait_queue(event->wqh, &event->wait);
3770 spin_lock(&cgrp->event_list_lock);
3771 list_del(&event->list);
3772 spin_unlock(&cgrp->event_list_lock);
3773 /*
3774 * We are in atomic context, but cgroup_event_remove() may
3775 * sleep, so we have to call it in workqueue.
3776 */
3777 schedule_work(&event->remove);
3778 }
3779
3780 return 0;
3781 }
3782
3783 static void cgroup_event_ptable_queue_proc(struct file *file,
3784 wait_queue_head_t *wqh, poll_table *pt)
3785 {
3786 struct cgroup_event *event = container_of(pt,
3787 struct cgroup_event, pt);
3788
3789 event->wqh = wqh;
3790 add_wait_queue(wqh, &event->wait);
3791 }
3792
3793 /*
3794 * Parse input and register new cgroup event handler.
3795 *
3796 * Input must be in format '<event_fd> <control_fd> <args>'.
3797 * Interpretation of args is defined by control file implementation.
3798 */
3799 static int cgroup_write_event_control(struct cgroup *cgrp, struct cftype *cft,
3800 const char *buffer)
3801 {
3802 struct cgroup_event *event = NULL;
3803 unsigned int efd, cfd;
3804 struct file *efile = NULL;
3805 struct file *cfile = NULL;
3806 char *endp;
3807 int ret;
3808
3809 efd = simple_strtoul(buffer, &endp, 10);
3810 if (*endp != ' ')
3811 return -EINVAL;
3812 buffer = endp + 1;
3813
3814 cfd = simple_strtoul(buffer, &endp, 10);
3815 if ((*endp != ' ') && (*endp != '\0'))
3816 return -EINVAL;
3817 buffer = endp + 1;
3818
3819 event = kzalloc(sizeof(*event), GFP_KERNEL);
3820 if (!event)
3821 return -ENOMEM;
3822 event->cgrp = cgrp;
3823 INIT_LIST_HEAD(&event->list);
3824 init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc);
3825 init_waitqueue_func_entry(&event->wait, cgroup_event_wake);
3826 INIT_WORK(&event->remove, cgroup_event_remove);
3827
3828 efile = eventfd_fget(efd);
3829 if (IS_ERR(efile)) {
3830 ret = PTR_ERR(efile);
3831 goto fail;
3832 }
3833
3834 event->eventfd = eventfd_ctx_fileget(efile);
3835 if (IS_ERR(event->eventfd)) {
3836 ret = PTR_ERR(event->eventfd);
3837 goto fail;
3838 }
3839
3840 cfile = fget(cfd);
3841 if (!cfile) {
3842 ret = -EBADF;
3843 goto fail;
3844 }
3845
3846 /* the process need read permission on control file */
3847 /* AV: shouldn't we check that it's been opened for read instead? */
3848 ret = inode_permission(cfile->f_path.dentry->d_inode, MAY_READ);
3849 if (ret < 0)
3850 goto fail;
3851
3852 event->cft = __file_cft(cfile);
3853 if (IS_ERR(event->cft)) {
3854 ret = PTR_ERR(event->cft);
3855 goto fail;
3856 }
3857
3858 if (!event->cft->register_event || !event->cft->unregister_event) {
3859 ret = -EINVAL;
3860 goto fail;
3861 }
3862
3863 ret = event->cft->register_event(cgrp, event->cft,
3864 event->eventfd, buffer);
3865 if (ret)
3866 goto fail;
3867
3868 if (efile->f_op->poll(efile, &event->pt) & POLLHUP) {
3869 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3870 ret = 0;
3871 goto fail;
3872 }
3873
3874 /*
3875 * Events should be removed after rmdir of cgroup directory, but before
3876 * destroying subsystem state objects. Let's take reference to cgroup
3877 * directory dentry to do that.
3878 */
3879 dget(cgrp->dentry);
3880
3881 spin_lock(&cgrp->event_list_lock);
3882 list_add(&event->list, &cgrp->event_list);
3883 spin_unlock(&cgrp->event_list_lock);
3884
3885 fput(cfile);
3886 fput(efile);
3887
3888 return 0;
3889
3890 fail:
3891 if (cfile)
3892 fput(cfile);
3893
3894 if (event && event->eventfd && !IS_ERR(event->eventfd))
3895 eventfd_ctx_put(event->eventfd);
3896
3897 if (!IS_ERR_OR_NULL(efile))
3898 fput(efile);
3899
3900 kfree(event);
3901
3902 return ret;
3903 }
3904
3905 static u64 cgroup_clone_children_read(struct cgroup *cgrp,
3906 struct cftype *cft)
3907 {
3908 return clone_children(cgrp);
3909 }
3910
3911 static int cgroup_clone_children_write(struct cgroup *cgrp,
3912 struct cftype *cft,
3913 u64 val)
3914 {
3915 if (val)
3916 set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3917 else
3918 clear_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3919 return 0;
3920 }
3921
3922 /*
3923 * for the common functions, 'private' gives the type of file
3924 */
3925 /* for hysterical raisins, we can't put this on the older files */
3926 #define CGROUP_FILE_GENERIC_PREFIX "cgroup."
3927 static struct cftype files[] = {
3928 {
3929 .name = "tasks",
3930 .open = cgroup_tasks_open,
3931 .write_u64 = cgroup_tasks_write,
3932 .release = cgroup_pidlist_release,
3933 .mode = S_IRUGO | S_IWUSR,
3934 },
3935 {
3936 .name = CGROUP_FILE_GENERIC_PREFIX "procs",
3937 .open = cgroup_procs_open,
3938 .write_u64 = cgroup_procs_write,
3939 .release = cgroup_pidlist_release,
3940 .mode = S_IRUGO | S_IWUSR,
3941 },
3942 {
3943 .name = "notify_on_release",
3944 .read_u64 = cgroup_read_notify_on_release,
3945 .write_u64 = cgroup_write_notify_on_release,
3946 },
3947 {
3948 .name = CGROUP_FILE_GENERIC_PREFIX "event_control",
3949 .write_string = cgroup_write_event_control,
3950 .mode = S_IWUGO,
3951 },
3952 {
3953 .name = "cgroup.clone_children",
3954 .read_u64 = cgroup_clone_children_read,
3955 .write_u64 = cgroup_clone_children_write,
3956 },
3957 {
3958 .name = "release_agent",
3959 .flags = CFTYPE_ONLY_ON_ROOT,
3960 .read_seq_string = cgroup_release_agent_show,
3961 .write_string = cgroup_release_agent_write,
3962 .max_write_len = PATH_MAX,
3963 },
3964 { } /* terminate */
3965 };
3966
3967 /**
3968 * cgroup_populate_dir - selectively creation of files in a directory
3969 * @cgrp: target cgroup
3970 * @base_files: true if the base files should be added
3971 * @subsys_mask: mask of the subsystem ids whose files should be added
3972 */
3973 static int cgroup_populate_dir(struct cgroup *cgrp, bool base_files,
3974 unsigned long subsys_mask)
3975 {
3976 int err;
3977 struct cgroup_subsys *ss;
3978
3979 if (base_files) {
3980 err = cgroup_addrm_files(cgrp, NULL, files, true);
3981 if (err < 0)
3982 return err;
3983 }
3984
3985 /* process cftsets of each subsystem */
3986 for_each_subsys(cgrp->root, ss) {
3987 struct cftype_set *set;
3988 if (!test_bit(ss->subsys_id, &subsys_mask))
3989 continue;
3990
3991 list_for_each_entry(set, &ss->cftsets, node)
3992 cgroup_addrm_files(cgrp, ss, set->cfts, true);
3993 }
3994
3995 /* This cgroup is ready now */
3996 for_each_subsys(cgrp->root, ss) {
3997 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3998 /*
3999 * Update id->css pointer and make this css visible from
4000 * CSS ID functions. This pointer will be dereferened
4001 * from RCU-read-side without locks.
4002 */
4003 if (css->id)
4004 rcu_assign_pointer(css->id->css, css);
4005 }
4006
4007 return 0;
4008 }
4009
4010 static void css_dput_fn(struct work_struct *work)
4011 {
4012 struct cgroup_subsys_state *css =
4013 container_of(work, struct cgroup_subsys_state, dput_work);
4014 struct dentry *dentry = css->cgroup->dentry;
4015 struct super_block *sb = dentry->d_sb;
4016
4017 atomic_inc(&sb->s_active);
4018 dput(dentry);
4019 deactivate_super(sb);
4020 }
4021
4022 static void init_cgroup_css(struct cgroup_subsys_state *css,
4023 struct cgroup_subsys *ss,
4024 struct cgroup *cgrp)
4025 {
4026 css->cgroup = cgrp;
4027 atomic_set(&css->refcnt, 1);
4028 css->flags = 0;
4029 css->id = NULL;
4030 if (cgrp == dummytop)
4031 css->flags |= CSS_ROOT;
4032 BUG_ON(cgrp->subsys[ss->subsys_id]);
4033 cgrp->subsys[ss->subsys_id] = css;
4034
4035 /*
4036 * css holds an extra ref to @cgrp->dentry which is put on the last
4037 * css_put(). dput() requires process context, which css_put() may
4038 * be called without. @css->dput_work will be used to invoke
4039 * dput() asynchronously from css_put().
4040 */
4041 INIT_WORK(&css->dput_work, css_dput_fn);
4042 }
4043
4044 /* invoke ->post_create() on a new CSS and mark it online if successful */
4045 static int online_css(struct cgroup_subsys *ss, struct cgroup *cgrp)
4046 {
4047 int ret = 0;
4048
4049 lockdep_assert_held(&cgroup_mutex);
4050
4051 if (ss->css_online)
4052 ret = ss->css_online(cgrp);
4053 if (!ret)
4054 cgrp->subsys[ss->subsys_id]->flags |= CSS_ONLINE;
4055 return ret;
4056 }
4057
4058 /* if the CSS is online, invoke ->pre_destory() on it and mark it offline */
4059 static void offline_css(struct cgroup_subsys *ss, struct cgroup *cgrp)
4060 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
4061 {
4062 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
4063
4064 lockdep_assert_held(&cgroup_mutex);
4065
4066 if (!(css->flags & CSS_ONLINE))
4067 return;
4068
4069 /*
4070 * css_offline() should be called with cgroup_mutex unlocked. See
4071 * 3fa59dfbc3 ("cgroup: fix potential deadlock in pre_destroy") for
4072 * details. This temporary unlocking should go away once
4073 * cgroup_mutex is unexported from controllers.
4074 */
4075 if (ss->css_offline) {
4076 mutex_unlock(&cgroup_mutex);
4077 ss->css_offline(cgrp);
4078 mutex_lock(&cgroup_mutex);
4079 }
4080
4081 cgrp->subsys[ss->subsys_id]->flags &= ~CSS_ONLINE;
4082 }
4083
4084 /*
4085 * cgroup_create - create a cgroup
4086 * @parent: cgroup that will be parent of the new cgroup
4087 * @dentry: dentry of the new cgroup
4088 * @mode: mode to set on new inode
4089 *
4090 * Must be called with the mutex on the parent inode held
4091 */
4092 static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
4093 umode_t mode)
4094 {
4095 struct cgroup *cgrp;
4096 struct cgroupfs_root *root = parent->root;
4097 int err = 0;
4098 struct cgroup_subsys *ss;
4099 struct super_block *sb = root->sb;
4100
4101 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
4102 if (!cgrp)
4103 return -ENOMEM;
4104
4105 /*
4106 * Only live parents can have children. Note that the liveliness
4107 * check isn't strictly necessary because cgroup_mkdir() and
4108 * cgroup_rmdir() are fully synchronized by i_mutex; however, do it
4109 * anyway so that locking is contained inside cgroup proper and we
4110 * don't get nasty surprises if we ever grow another caller.
4111 */
4112 if (!cgroup_lock_live_group(parent)) {
4113 err = -ENODEV;
4114 goto err_free_cgrp;
4115 }
4116
4117 /* Grab a reference on the superblock so the hierarchy doesn't
4118 * get deleted on unmount if there are child cgroups. This
4119 * can be done outside cgroup_mutex, since the sb can't
4120 * disappear while someone has an open control file on the
4121 * fs */
4122 atomic_inc(&sb->s_active);
4123
4124 init_cgroup_housekeeping(cgrp);
4125
4126 cgrp->parent = parent;
4127 cgrp->root = parent->root;
4128 cgrp->top_cgroup = parent->top_cgroup;
4129
4130 if (notify_on_release(parent))
4131 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4132
4133 if (clone_children(parent))
4134 set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
4135
4136 for_each_subsys(root, ss) {
4137 struct cgroup_subsys_state *css;
4138
4139 css = ss->css_alloc(cgrp);
4140 if (IS_ERR(css)) {
4141 err = PTR_ERR(css);
4142 goto err_free_all;
4143 }
4144 init_cgroup_css(css, ss, cgrp);
4145 if (ss->use_id) {
4146 err = alloc_css_id(ss, parent, cgrp);
4147 if (err)
4148 goto err_free_all;
4149 }
4150 /* At error, ->css_free() callback has to free assigned ID. */
4151 if (clone_children(parent) && ss->post_clone)
4152 ss->post_clone(cgrp);
4153
4154 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
4155 parent->parent) {
4156 pr_warning("cgroup: %s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4157 current->comm, current->pid, ss->name);
4158 if (!strcmp(ss->name, "memory"))
4159 pr_warning("cgroup: \"memory\" requires setting use_hierarchy to 1 on the root.\n");
4160 ss->warned_broken_hierarchy = true;
4161 }
4162 }
4163
4164 /*
4165 * Create directory. cgroup_create_file() returns with the new
4166 * directory locked on success so that it can be populated without
4167 * dropping cgroup_mutex.
4168 */
4169 err = cgroup_create_file(dentry, S_IFDIR | mode, sb);
4170 if (err < 0)
4171 goto err_free_all;
4172 lockdep_assert_held(&dentry->d_inode->i_mutex);
4173
4174 /* allocation complete, commit to creation */
4175 dentry->d_fsdata = cgrp;
4176 cgrp->dentry = dentry;
4177 list_add_tail(&cgrp->allcg_node, &root->allcg_list);
4178 list_add_tail_rcu(&cgrp->sibling, &cgrp->parent->children);
4179 root->number_of_cgroups++;
4180
4181 /* each css holds a ref to the cgroup's dentry */
4182 for_each_subsys(root, ss)
4183 dget(dentry);
4184
4185 /* creation succeeded, notify subsystems */
4186 for_each_subsys(root, ss) {
4187 err = online_css(ss, cgrp);
4188 if (err)
4189 goto err_destroy;
4190 }
4191
4192 err = cgroup_populate_dir(cgrp, true, root->subsys_mask);
4193 if (err)
4194 goto err_destroy;
4195
4196 mutex_unlock(&cgroup_mutex);
4197 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
4198
4199 return 0;
4200
4201 err_free_all:
4202 for_each_subsys(root, ss) {
4203 if (cgrp->subsys[ss->subsys_id])
4204 ss->css_free(cgrp);
4205 }
4206 mutex_unlock(&cgroup_mutex);
4207 /* Release the reference count that we took on the superblock */
4208 deactivate_super(sb);
4209 err_free_cgrp:
4210 kfree(cgrp);
4211 return err;
4212
4213 err_destroy:
4214 cgroup_destroy_locked(cgrp);
4215 mutex_unlock(&cgroup_mutex);
4216 mutex_unlock(&dentry->d_inode->i_mutex);
4217 return err;
4218 }
4219
4220 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
4221 {
4222 struct cgroup *c_parent = dentry->d_parent->d_fsdata;
4223
4224 /* the vfs holds inode->i_mutex already */
4225 return cgroup_create(c_parent, dentry, mode | S_IFDIR);
4226 }
4227
4228 /*
4229 * Check the reference count on each subsystem. Since we already
4230 * established that there are no tasks in the cgroup, if the css refcount
4231 * is also 1, then there should be no outstanding references, so the
4232 * subsystem is safe to destroy. We scan across all subsystems rather than
4233 * using the per-hierarchy linked list of mounted subsystems since we can
4234 * be called via check_for_release() with no synchronization other than
4235 * RCU, and the subsystem linked list isn't RCU-safe.
4236 */
4237 static int cgroup_has_css_refs(struct cgroup *cgrp)
4238 {
4239 int i;
4240
4241 /*
4242 * We won't need to lock the subsys array, because the subsystems
4243 * we're concerned about aren't going anywhere since our cgroup root
4244 * has a reference on them.
4245 */
4246 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4247 struct cgroup_subsys *ss = subsys[i];
4248 struct cgroup_subsys_state *css;
4249
4250 /* Skip subsystems not present or not in this hierarchy */
4251 if (ss == NULL || ss->root != cgrp->root)
4252 continue;
4253
4254 css = cgrp->subsys[ss->subsys_id];
4255 /*
4256 * When called from check_for_release() it's possible
4257 * that by this point the cgroup has been removed
4258 * and the css deleted. But a false-positive doesn't
4259 * matter, since it can only happen if the cgroup
4260 * has been deleted and hence no longer needs the
4261 * release agent to be called anyway.
4262 */
4263 if (css && css_refcnt(css) > 1)
4264 return 1;
4265 }
4266 return 0;
4267 }
4268
4269 static int cgroup_destroy_locked(struct cgroup *cgrp)
4270 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
4271 {
4272 struct dentry *d = cgrp->dentry;
4273 struct cgroup *parent = cgrp->parent;
4274 DEFINE_WAIT(wait);
4275 struct cgroup_event *event, *tmp;
4276 struct cgroup_subsys *ss;
4277
4278 lockdep_assert_held(&d->d_inode->i_mutex);
4279 lockdep_assert_held(&cgroup_mutex);
4280
4281 if (atomic_read(&cgrp->count) || !list_empty(&cgrp->children))
4282 return -EBUSY;
4283
4284 /*
4285 * Block new css_tryget() by deactivating refcnt and mark @cgrp
4286 * removed. This makes future css_tryget() and child creation
4287 * attempts fail thus maintaining the removal conditions verified
4288 * above.
4289 */
4290 for_each_subsys(cgrp->root, ss) {
4291 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
4292
4293 WARN_ON(atomic_read(&css->refcnt) < 0);
4294 atomic_add(CSS_DEACT_BIAS, &css->refcnt);
4295 }
4296 set_bit(CGRP_REMOVED, &cgrp->flags);
4297
4298 /* tell subsystems to initate destruction */
4299 for_each_subsys(cgrp->root, ss)
4300 offline_css(ss, cgrp);
4301
4302 /*
4303 * Put all the base refs. Each css holds an extra reference to the
4304 * cgroup's dentry and cgroup removal proceeds regardless of css
4305 * refs. On the last put of each css, whenever that may be, the
4306 * extra dentry ref is put so that dentry destruction happens only
4307 * after all css's are released.
4308 */
4309 for_each_subsys(cgrp->root, ss)
4310 css_put(cgrp->subsys[ss->subsys_id]);
4311
4312 raw_spin_lock(&release_list_lock);
4313 if (!list_empty(&cgrp->release_list))
4314 list_del_init(&cgrp->release_list);
4315 raw_spin_unlock(&release_list_lock);
4316
4317 /* delete this cgroup from parent->children */
4318 list_del_rcu(&cgrp->sibling);
4319 list_del_init(&cgrp->allcg_node);
4320
4321 dget(d);
4322 cgroup_d_remove_dir(d);
4323 dput(d);
4324
4325 set_bit(CGRP_RELEASABLE, &parent->flags);
4326 check_for_release(parent);
4327
4328 /*
4329 * Unregister events and notify userspace.
4330 * Notify userspace about cgroup removing only after rmdir of cgroup
4331 * directory to avoid race between userspace and kernelspace
4332 */
4333 spin_lock(&cgrp->event_list_lock);
4334 list_for_each_entry_safe(event, tmp, &cgrp->event_list, list) {
4335 list_del(&event->list);
4336 remove_wait_queue(event->wqh, &event->wait);
4337 eventfd_signal(event->eventfd, 1);
4338 schedule_work(&event->remove);
4339 }
4340 spin_unlock(&cgrp->event_list_lock);
4341
4342 return 0;
4343 }
4344
4345 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
4346 {
4347 int ret;
4348
4349 mutex_lock(&cgroup_mutex);
4350 ret = cgroup_destroy_locked(dentry->d_fsdata);
4351 mutex_unlock(&cgroup_mutex);
4352
4353 return ret;
4354 }
4355
4356 static void __init_or_module cgroup_init_cftsets(struct cgroup_subsys *ss)
4357 {
4358 INIT_LIST_HEAD(&ss->cftsets);
4359
4360 /*
4361 * base_cftset is embedded in subsys itself, no need to worry about
4362 * deregistration.
4363 */
4364 if (ss->base_cftypes) {
4365 ss->base_cftset.cfts = ss->base_cftypes;
4366 list_add_tail(&ss->base_cftset.node, &ss->cftsets);
4367 }
4368 }
4369
4370 static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
4371 {
4372 struct cgroup_subsys_state *css;
4373
4374 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
4375
4376 mutex_lock(&cgroup_mutex);
4377
4378 /* init base cftset */
4379 cgroup_init_cftsets(ss);
4380
4381 /* Create the top cgroup state for this subsystem */
4382 list_add(&ss->sibling, &rootnode.subsys_list);
4383 ss->root = &rootnode;
4384 css = ss->css_alloc(dummytop);
4385 /* We don't handle early failures gracefully */
4386 BUG_ON(IS_ERR(css));
4387 init_cgroup_css(css, ss, dummytop);
4388
4389 /* Update the init_css_set to contain a subsys
4390 * pointer to this state - since the subsystem is
4391 * newly registered, all tasks and hence the
4392 * init_css_set is in the subsystem's top cgroup. */
4393 init_css_set.subsys[ss->subsys_id] = css;
4394
4395 need_forkexit_callback |= ss->fork || ss->exit;
4396
4397 /* At system boot, before all subsystems have been
4398 * registered, no tasks have been forked, so we don't
4399 * need to invoke fork callbacks here. */
4400 BUG_ON(!list_empty(&init_task.tasks));
4401
4402 ss->active = 1;
4403 BUG_ON(online_css(ss, dummytop));
4404
4405 mutex_unlock(&cgroup_mutex);
4406
4407 /* this function shouldn't be used with modular subsystems, since they
4408 * need to register a subsys_id, among other things */
4409 BUG_ON(ss->module);
4410 }
4411
4412 /**
4413 * cgroup_load_subsys: load and register a modular subsystem at runtime
4414 * @ss: the subsystem to load
4415 *
4416 * This function should be called in a modular subsystem's initcall. If the
4417 * subsystem is built as a module, it will be assigned a new subsys_id and set
4418 * up for use. If the subsystem is built-in anyway, work is delegated to the
4419 * simpler cgroup_init_subsys.
4420 */
4421 int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss)
4422 {
4423 struct cgroup_subsys_state *css;
4424 int i, ret;
4425
4426 /* check name and function validity */
4427 if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN ||
4428 ss->css_alloc == NULL || ss->css_free == NULL)
4429 return -EINVAL;
4430
4431 /*
4432 * we don't support callbacks in modular subsystems. this check is
4433 * before the ss->module check for consistency; a subsystem that could
4434 * be a module should still have no callbacks even if the user isn't
4435 * compiling it as one.
4436 */
4437 if (ss->fork || ss->exit)
4438 return -EINVAL;
4439
4440 /*
4441 * an optionally modular subsystem is built-in: we want to do nothing,
4442 * since cgroup_init_subsys will have already taken care of it.
4443 */
4444 if (ss->module == NULL) {
4445 /* a sanity check */
4446 BUG_ON(subsys[ss->subsys_id] != ss);
4447 return 0;
4448 }
4449
4450 /* init base cftset */
4451 cgroup_init_cftsets(ss);
4452
4453 mutex_lock(&cgroup_mutex);
4454 subsys[ss->subsys_id] = ss;
4455
4456 /*
4457 * no ss->css_alloc seems to need anything important in the ss
4458 * struct, so this can happen first (i.e. before the rootnode
4459 * attachment).
4460 */
4461 css = ss->css_alloc(dummytop);
4462 if (IS_ERR(css)) {
4463 /* failure case - need to deassign the subsys[] slot. */
4464 subsys[ss->subsys_id] = NULL;
4465 mutex_unlock(&cgroup_mutex);
4466 return PTR_ERR(css);
4467 }
4468
4469 list_add(&ss->sibling, &rootnode.subsys_list);
4470 ss->root = &rootnode;
4471
4472 /* our new subsystem will be attached to the dummy hierarchy. */
4473 init_cgroup_css(css, ss, dummytop);
4474 /* init_idr must be after init_cgroup_css because it sets css->id. */
4475 if (ss->use_id) {
4476 ret = cgroup_init_idr(ss, css);
4477 if (ret)
4478 goto err_unload;
4479 }
4480
4481 /*
4482 * Now we need to entangle the css into the existing css_sets. unlike
4483 * in cgroup_init_subsys, there are now multiple css_sets, so each one
4484 * will need a new pointer to it; done by iterating the css_set_table.
4485 * furthermore, modifying the existing css_sets will corrupt the hash
4486 * table state, so each changed css_set will need its hash recomputed.
4487 * this is all done under the css_set_lock.
4488 */
4489 write_lock(&css_set_lock);
4490 for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
4491 struct css_set *cg;
4492 struct hlist_node *node, *tmp;
4493 struct hlist_head *bucket = &css_set_table[i], *new_bucket;
4494
4495 hlist_for_each_entry_safe(cg, node, tmp, bucket, hlist) {
4496 /* skip entries that we already rehashed */
4497 if (cg->subsys[ss->subsys_id])
4498 continue;
4499 /* remove existing entry */
4500 hlist_del(&cg->hlist);
4501 /* set new value */
4502 cg->subsys[ss->subsys_id] = css;
4503 /* recompute hash and restore entry */
4504 new_bucket = css_set_hash(cg->subsys);
4505 hlist_add_head(&cg->hlist, new_bucket);
4506 }
4507 }
4508 write_unlock(&css_set_lock);
4509
4510 ss->active = 1;
4511 ret = online_css(ss, dummytop);
4512 if (ret)
4513 goto err_unload;
4514
4515 /* success! */
4516 mutex_unlock(&cgroup_mutex);
4517 return 0;
4518
4519 err_unload:
4520 mutex_unlock(&cgroup_mutex);
4521 /* @ss can't be mounted here as try_module_get() would fail */
4522 cgroup_unload_subsys(ss);
4523 return ret;
4524 }
4525 EXPORT_SYMBOL_GPL(cgroup_load_subsys);
4526
4527 /**
4528 * cgroup_unload_subsys: unload a modular subsystem
4529 * @ss: the subsystem to unload
4530 *
4531 * This function should be called in a modular subsystem's exitcall. When this
4532 * function is invoked, the refcount on the subsystem's module will be 0, so
4533 * the subsystem will not be attached to any hierarchy.
4534 */
4535 void cgroup_unload_subsys(struct cgroup_subsys *ss)
4536 {
4537 struct cg_cgroup_link *link;
4538 struct hlist_head *hhead;
4539
4540 BUG_ON(ss->module == NULL);
4541
4542 /*
4543 * we shouldn't be called if the subsystem is in use, and the use of
4544 * try_module_get in parse_cgroupfs_options should ensure that it
4545 * doesn't start being used while we're killing it off.
4546 */
4547 BUG_ON(ss->root != &rootnode);
4548
4549 mutex_lock(&cgroup_mutex);
4550
4551 offline_css(ss, dummytop);
4552 ss->active = 0;
4553
4554 if (ss->use_id) {
4555 idr_remove_all(&ss->idr);
4556 idr_destroy(&ss->idr);
4557 }
4558
4559 /* deassign the subsys_id */
4560 subsys[ss->subsys_id] = NULL;
4561
4562 /* remove subsystem from rootnode's list of subsystems */
4563 list_del_init(&ss->sibling);
4564
4565 /*
4566 * disentangle the css from all css_sets attached to the dummytop. as
4567 * in loading, we need to pay our respects to the hashtable gods.
4568 */
4569 write_lock(&css_set_lock);
4570 list_for_each_entry(link, &dummytop->css_sets, cgrp_link_list) {
4571 struct css_set *cg = link->cg;
4572
4573 hlist_del(&cg->hlist);
4574 cg->subsys[ss->subsys_id] = NULL;
4575 hhead = css_set_hash(cg->subsys);
4576 hlist_add_head(&cg->hlist, hhead);
4577 }
4578 write_unlock(&css_set_lock);
4579
4580 /*
4581 * remove subsystem's css from the dummytop and free it - need to
4582 * free before marking as null because ss->css_free needs the
4583 * cgrp->subsys pointer to find their state. note that this also
4584 * takes care of freeing the css_id.
4585 */
4586 ss->css_free(dummytop);
4587 dummytop->subsys[ss->subsys_id] = NULL;
4588
4589 mutex_unlock(&cgroup_mutex);
4590 }
4591 EXPORT_SYMBOL_GPL(cgroup_unload_subsys);
4592
4593 /**
4594 * cgroup_init_early - cgroup initialization at system boot
4595 *
4596 * Initialize cgroups at system boot, and initialize any
4597 * subsystems that request early init.
4598 */
4599 int __init cgroup_init_early(void)
4600 {
4601 int i;
4602 atomic_set(&init_css_set.refcount, 1);
4603 INIT_LIST_HEAD(&init_css_set.cg_links);
4604 INIT_LIST_HEAD(&init_css_set.tasks);
4605 INIT_HLIST_NODE(&init_css_set.hlist);
4606 css_set_count = 1;
4607 init_cgroup_root(&rootnode);
4608 root_count = 1;
4609 init_task.cgroups = &init_css_set;
4610
4611 init_css_set_link.cg = &init_css_set;
4612 init_css_set_link.cgrp = dummytop;
4613 list_add(&init_css_set_link.cgrp_link_list,
4614 &rootnode.top_cgroup.css_sets);
4615 list_add(&init_css_set_link.cg_link_list,
4616 &init_css_set.cg_links);
4617
4618 for (i = 0; i < CSS_SET_TABLE_SIZE; i++)
4619 INIT_HLIST_HEAD(&css_set_table[i]);
4620
4621 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4622 struct cgroup_subsys *ss = subsys[i];
4623
4624 /* at bootup time, we don't worry about modular subsystems */
4625 if (!ss || ss->module)
4626 continue;
4627
4628 BUG_ON(!ss->name);
4629 BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
4630 BUG_ON(!ss->css_alloc);
4631 BUG_ON(!ss->css_free);
4632 if (ss->subsys_id != i) {
4633 printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
4634 ss->name, ss->subsys_id);
4635 BUG();
4636 }
4637
4638 if (ss->early_init)
4639 cgroup_init_subsys(ss);
4640 }
4641 return 0;
4642 }
4643
4644 /**
4645 * cgroup_init - cgroup initialization
4646 *
4647 * Register cgroup filesystem and /proc file, and initialize
4648 * any subsystems that didn't request early init.
4649 */
4650 int __init cgroup_init(void)
4651 {
4652 int err;
4653 int i;
4654 struct hlist_head *hhead;
4655
4656 err = bdi_init(&cgroup_backing_dev_info);
4657 if (err)
4658 return err;
4659
4660 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4661 struct cgroup_subsys *ss = subsys[i];
4662
4663 /* at bootup time, we don't worry about modular subsystems */
4664 if (!ss || ss->module)
4665 continue;
4666 if (!ss->early_init)
4667 cgroup_init_subsys(ss);
4668 if (ss->use_id)
4669 cgroup_init_idr(ss, init_css_set.subsys[ss->subsys_id]);
4670 }
4671
4672 /* Add init_css_set to the hash table */
4673 hhead = css_set_hash(init_css_set.subsys);
4674 hlist_add_head(&init_css_set.hlist, hhead);
4675 BUG_ON(!init_root_id(&rootnode));
4676
4677 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
4678 if (!cgroup_kobj) {
4679 err = -ENOMEM;
4680 goto out;
4681 }
4682
4683 err = register_filesystem(&cgroup_fs_type);
4684 if (err < 0) {
4685 kobject_put(cgroup_kobj);
4686 goto out;
4687 }
4688
4689 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
4690
4691 out:
4692 if (err)
4693 bdi_destroy(&cgroup_backing_dev_info);
4694
4695 return err;
4696 }
4697
4698 /*
4699 * proc_cgroup_show()
4700 * - Print task's cgroup paths into seq_file, one line for each hierarchy
4701 * - Used for /proc/<pid>/cgroup.
4702 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
4703 * doesn't really matter if tsk->cgroup changes after we read it,
4704 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
4705 * anyway. No need to check that tsk->cgroup != NULL, thanks to
4706 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
4707 * cgroup to top_cgroup.
4708 */
4709
4710 /* TODO: Use a proper seq_file iterator */
4711 static int proc_cgroup_show(struct seq_file *m, void *v)
4712 {
4713 struct pid *pid;
4714 struct task_struct *tsk;
4715 char *buf;
4716 int retval;
4717 struct cgroupfs_root *root;
4718
4719 retval = -ENOMEM;
4720 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4721 if (!buf)
4722 goto out;
4723
4724 retval = -ESRCH;
4725 pid = m->private;
4726 tsk = get_pid_task(pid, PIDTYPE_PID);
4727 if (!tsk)
4728 goto out_free;
4729
4730 retval = 0;
4731
4732 mutex_lock(&cgroup_mutex);
4733
4734 for_each_active_root(root) {
4735 struct cgroup_subsys *ss;
4736 struct cgroup *cgrp;
4737 int count = 0;
4738
4739 seq_printf(m, "%d:", root->hierarchy_id);
4740 for_each_subsys(root, ss)
4741 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
4742 if (strlen(root->name))
4743 seq_printf(m, "%sname=%s", count ? "," : "",
4744 root->name);
4745 seq_putc(m, ':');
4746 cgrp = task_cgroup_from_root(tsk, root);
4747 retval = cgroup_path(cgrp, buf, PAGE_SIZE);
4748 if (retval < 0)
4749 goto out_unlock;
4750 seq_puts(m, buf);
4751 seq_putc(m, '\n');
4752 }
4753
4754 out_unlock:
4755 mutex_unlock(&cgroup_mutex);
4756 put_task_struct(tsk);
4757 out_free:
4758 kfree(buf);
4759 out:
4760 return retval;
4761 }
4762
4763 static int cgroup_open(struct inode *inode, struct file *file)
4764 {
4765 struct pid *pid = PROC_I(inode)->pid;
4766 return single_open(file, proc_cgroup_show, pid);
4767 }
4768
4769 const struct file_operations proc_cgroup_operations = {
4770 .open = cgroup_open,
4771 .read = seq_read,
4772 .llseek = seq_lseek,
4773 .release = single_release,
4774 };
4775
4776 /* Display information about each subsystem and each hierarchy */
4777 static int proc_cgroupstats_show(struct seq_file *m, void *v)
4778 {
4779 int i;
4780
4781 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
4782 /*
4783 * ideally we don't want subsystems moving around while we do this.
4784 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
4785 * subsys/hierarchy state.
4786 */
4787 mutex_lock(&cgroup_mutex);
4788 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4789 struct cgroup_subsys *ss = subsys[i];
4790 if (ss == NULL)
4791 continue;
4792 seq_printf(m, "%s\t%d\t%d\t%d\n",
4793 ss->name, ss->root->hierarchy_id,
4794 ss->root->number_of_cgroups, !ss->disabled);
4795 }
4796 mutex_unlock(&cgroup_mutex);
4797 return 0;
4798 }
4799
4800 static int cgroupstats_open(struct inode *inode, struct file *file)
4801 {
4802 return single_open(file, proc_cgroupstats_show, NULL);
4803 }
4804
4805 static const struct file_operations proc_cgroupstats_operations = {
4806 .open = cgroupstats_open,
4807 .read = seq_read,
4808 .llseek = seq_lseek,
4809 .release = single_release,
4810 };
4811
4812 /**
4813 * cgroup_fork - attach newly forked task to its parents cgroup.
4814 * @child: pointer to task_struct of forking parent process.
4815 *
4816 * Description: A task inherits its parent's cgroup at fork().
4817 *
4818 * A pointer to the shared css_set was automatically copied in
4819 * fork.c by dup_task_struct(). However, we ignore that copy, since
4820 * it was not made under the protection of RCU or cgroup_mutex, so
4821 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
4822 * have already changed current->cgroups, allowing the previously
4823 * referenced cgroup group to be removed and freed.
4824 *
4825 * At the point that cgroup_fork() is called, 'current' is the parent
4826 * task, and the passed argument 'child' points to the child task.
4827 */
4828 void cgroup_fork(struct task_struct *child)
4829 {
4830 task_lock(current);
4831 child->cgroups = current->cgroups;
4832 get_css_set(child->cgroups);
4833 task_unlock(current);
4834 INIT_LIST_HEAD(&child->cg_list);
4835 }
4836
4837 /**
4838 * cgroup_post_fork - called on a new task after adding it to the task list
4839 * @child: the task in question
4840 *
4841 * Adds the task to the list running through its css_set if necessary and
4842 * call the subsystem fork() callbacks. Has to be after the task is
4843 * visible on the task list in case we race with the first call to
4844 * cgroup_iter_start() - to guarantee that the new task ends up on its
4845 * list.
4846 */
4847 void cgroup_post_fork(struct task_struct *child)
4848 {
4849 int i;
4850
4851 /*
4852 * use_task_css_set_links is set to 1 before we walk the tasklist
4853 * under the tasklist_lock and we read it here after we added the child
4854 * to the tasklist under the tasklist_lock as well. If the child wasn't
4855 * yet in the tasklist when we walked through it from
4856 * cgroup_enable_task_cg_lists(), then use_task_css_set_links value
4857 * should be visible now due to the paired locking and barriers implied
4858 * by LOCK/UNLOCK: it is written before the tasklist_lock unlock
4859 * in cgroup_enable_task_cg_lists() and read here after the tasklist_lock
4860 * lock on fork.
4861 */
4862 if (use_task_css_set_links) {
4863 write_lock(&css_set_lock);
4864 task_lock(child);
4865 if (list_empty(&child->cg_list))
4866 list_add(&child->cg_list, &child->cgroups->tasks);
4867 task_unlock(child);
4868 write_unlock(&css_set_lock);
4869 }
4870
4871 /*
4872 * Call ss->fork(). This must happen after @child is linked on
4873 * css_set; otherwise, @child might change state between ->fork()
4874 * and addition to css_set.
4875 */
4876 if (need_forkexit_callback) {
4877 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4878 struct cgroup_subsys *ss = subsys[i];
4879
4880 /*
4881 * fork/exit callbacks are supported only for
4882 * builtin subsystems and we don't need further
4883 * synchronization as they never go away.
4884 */
4885 if (!ss || ss->module)
4886 continue;
4887
4888 if (ss->fork)
4889 ss->fork(child);
4890 }
4891 }
4892 }
4893
4894 /**
4895 * cgroup_exit - detach cgroup from exiting task
4896 * @tsk: pointer to task_struct of exiting process
4897 * @run_callback: run exit callbacks?
4898 *
4899 * Description: Detach cgroup from @tsk and release it.
4900 *
4901 * Note that cgroups marked notify_on_release force every task in
4902 * them to take the global cgroup_mutex mutex when exiting.
4903 * This could impact scaling on very large systems. Be reluctant to
4904 * use notify_on_release cgroups where very high task exit scaling
4905 * is required on large systems.
4906 *
4907 * the_top_cgroup_hack:
4908 *
4909 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
4910 *
4911 * We call cgroup_exit() while the task is still competent to
4912 * handle notify_on_release(), then leave the task attached to the
4913 * root cgroup in each hierarchy for the remainder of its exit.
4914 *
4915 * To do this properly, we would increment the reference count on
4916 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
4917 * code we would add a second cgroup function call, to drop that
4918 * reference. This would just create an unnecessary hot spot on
4919 * the top_cgroup reference count, to no avail.
4920 *
4921 * Normally, holding a reference to a cgroup without bumping its
4922 * count is unsafe. The cgroup could go away, or someone could
4923 * attach us to a different cgroup, decrementing the count on
4924 * the first cgroup that we never incremented. But in this case,
4925 * top_cgroup isn't going away, and either task has PF_EXITING set,
4926 * which wards off any cgroup_attach_task() attempts, or task is a failed
4927 * fork, never visible to cgroup_attach_task.
4928 */
4929 void cgroup_exit(struct task_struct *tsk, int run_callbacks)
4930 {
4931 struct css_set *cg;
4932 int i;
4933
4934 /*
4935 * Unlink from the css_set task list if necessary.
4936 * Optimistically check cg_list before taking
4937 * css_set_lock
4938 */
4939 if (!list_empty(&tsk->cg_list)) {
4940 write_lock(&css_set_lock);
4941 if (!list_empty(&tsk->cg_list))
4942 list_del_init(&tsk->cg_list);
4943 write_unlock(&css_set_lock);
4944 }
4945
4946 /* Reassign the task to the init_css_set. */
4947 task_lock(tsk);
4948 cg = tsk->cgroups;
4949 tsk->cgroups = &init_css_set;
4950
4951 if (run_callbacks && need_forkexit_callback) {
4952 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4953 struct cgroup_subsys *ss = subsys[i];
4954
4955 /* modular subsystems can't use callbacks */
4956 if (!ss || ss->module)
4957 continue;
4958
4959 if (ss->exit) {
4960 struct cgroup *old_cgrp =
4961 rcu_dereference_raw(cg->subsys[i])->cgroup;
4962 struct cgroup *cgrp = task_cgroup(tsk, i);
4963 ss->exit(cgrp, old_cgrp, tsk);
4964 }
4965 }
4966 }
4967 task_unlock(tsk);
4968
4969 if (cg)
4970 put_css_set_taskexit(cg);
4971 }
4972
4973 /**
4974 * cgroup_is_descendant - see if @cgrp is a descendant of @task's cgrp
4975 * @cgrp: the cgroup in question
4976 * @task: the task in question
4977 *
4978 * See if @cgrp is a descendant of @task's cgroup in the appropriate
4979 * hierarchy.
4980 *
4981 * If we are sending in dummytop, then presumably we are creating
4982 * the top cgroup in the subsystem.
4983 *
4984 * Called only by the ns (nsproxy) cgroup.
4985 */
4986 int cgroup_is_descendant(const struct cgroup *cgrp, struct task_struct *task)
4987 {
4988 int ret;
4989 struct cgroup *target;
4990
4991 if (cgrp == dummytop)
4992 return 1;
4993
4994 target = task_cgroup_from_root(task, cgrp->root);
4995 while (cgrp != target && cgrp!= cgrp->top_cgroup)
4996 cgrp = cgrp->parent;
4997 ret = (cgrp == target);
4998 return ret;
4999 }
5000
5001 static void check_for_release(struct cgroup *cgrp)
5002 {
5003 /* All of these checks rely on RCU to keep the cgroup
5004 * structure alive */
5005 if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
5006 && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
5007 /* Control Group is currently removeable. If it's not
5008 * already queued for a userspace notification, queue
5009 * it now */
5010 int need_schedule_work = 0;
5011 raw_spin_lock(&release_list_lock);
5012 if (!cgroup_is_removed(cgrp) &&
5013 list_empty(&cgrp->release_list)) {
5014 list_add(&cgrp->release_list, &release_list);
5015 need_schedule_work = 1;
5016 }
5017 raw_spin_unlock(&release_list_lock);
5018 if (need_schedule_work)
5019 schedule_work(&release_agent_work);
5020 }
5021 }
5022
5023 /* Caller must verify that the css is not for root cgroup */
5024 bool __css_tryget(struct cgroup_subsys_state *css)
5025 {
5026 while (true) {
5027 int t, v;
5028
5029 v = css_refcnt(css);
5030 t = atomic_cmpxchg(&css->refcnt, v, v + 1);
5031 if (likely(t == v))
5032 return true;
5033 else if (t < 0)
5034 return false;
5035 cpu_relax();
5036 }
5037 }
5038 EXPORT_SYMBOL_GPL(__css_tryget);
5039
5040 /* Caller must verify that the css is not for root cgroup */
5041 void __css_put(struct cgroup_subsys_state *css)
5042 {
5043 struct cgroup *cgrp = css->cgroup;
5044 int v;
5045
5046 rcu_read_lock();
5047 v = css_unbias_refcnt(atomic_dec_return(&css->refcnt));
5048
5049 switch (v) {
5050 case 1:
5051 if (notify_on_release(cgrp)) {
5052 set_bit(CGRP_RELEASABLE, &cgrp->flags);
5053 check_for_release(cgrp);
5054 }
5055 break;
5056 case 0:
5057 schedule_work(&css->dput_work);
5058 break;
5059 }
5060 rcu_read_unlock();
5061 }
5062 EXPORT_SYMBOL_GPL(__css_put);
5063
5064 /*
5065 * Notify userspace when a cgroup is released, by running the
5066 * configured release agent with the name of the cgroup (path
5067 * relative to the root of cgroup file system) as the argument.
5068 *
5069 * Most likely, this user command will try to rmdir this cgroup.
5070 *
5071 * This races with the possibility that some other task will be
5072 * attached to this cgroup before it is removed, or that some other
5073 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5074 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5075 * unused, and this cgroup will be reprieved from its death sentence,
5076 * to continue to serve a useful existence. Next time it's released,
5077 * we will get notified again, if it still has 'notify_on_release' set.
5078 *
5079 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5080 * means only wait until the task is successfully execve()'d. The
5081 * separate release agent task is forked by call_usermodehelper(),
5082 * then control in this thread returns here, without waiting for the
5083 * release agent task. We don't bother to wait because the caller of
5084 * this routine has no use for the exit status of the release agent
5085 * task, so no sense holding our caller up for that.
5086 */
5087 static void cgroup_release_agent(struct work_struct *work)
5088 {
5089 BUG_ON(work != &release_agent_work);
5090 mutex_lock(&cgroup_mutex);
5091 raw_spin_lock(&release_list_lock);
5092 while (!list_empty(&release_list)) {
5093 char *argv[3], *envp[3];
5094 int i;
5095 char *pathbuf = NULL, *agentbuf = NULL;
5096 struct cgroup *cgrp = list_entry(release_list.next,
5097 struct cgroup,
5098 release_list);
5099 list_del_init(&cgrp->release_list);
5100 raw_spin_unlock(&release_list_lock);
5101 pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
5102 if (!pathbuf)
5103 goto continue_free;
5104 if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
5105 goto continue_free;
5106 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5107 if (!agentbuf)
5108 goto continue_free;
5109
5110 i = 0;
5111 argv[i++] = agentbuf;
5112 argv[i++] = pathbuf;
5113 argv[i] = NULL;
5114
5115 i = 0;
5116 /* minimal command environment */
5117 envp[i++] = "HOME=/";
5118 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5119 envp[i] = NULL;
5120
5121 /* Drop the lock while we invoke the usermode helper,
5122 * since the exec could involve hitting disk and hence
5123 * be a slow process */
5124 mutex_unlock(&cgroup_mutex);
5125 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
5126 mutex_lock(&cgroup_mutex);
5127 continue_free:
5128 kfree(pathbuf);
5129 kfree(agentbuf);
5130 raw_spin_lock(&release_list_lock);
5131 }
5132 raw_spin_unlock(&release_list_lock);
5133 mutex_unlock(&cgroup_mutex);
5134 }
5135
5136 static int __init cgroup_disable(char *str)
5137 {
5138 int i;
5139 char *token;
5140
5141 while ((token = strsep(&str, ",")) != NULL) {
5142 if (!*token)
5143 continue;
5144 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
5145 struct cgroup_subsys *ss = subsys[i];
5146
5147 /*
5148 * cgroup_disable, being at boot time, can't
5149 * know about module subsystems, so we don't
5150 * worry about them.
5151 */
5152 if (!ss || ss->module)
5153 continue;
5154
5155 if (!strcmp(token, ss->name)) {
5156 ss->disabled = 1;
5157 printk(KERN_INFO "Disabling %s control group"
5158 " subsystem\n", ss->name);
5159 break;
5160 }
5161 }
5162 }
5163 return 1;
5164 }
5165 __setup("cgroup_disable=", cgroup_disable);
5166
5167 /*
5168 * Functons for CSS ID.
5169 */
5170
5171 /*
5172 *To get ID other than 0, this should be called when !cgroup_is_removed().
5173 */
5174 unsigned short css_id(struct cgroup_subsys_state *css)
5175 {
5176 struct css_id *cssid;
5177
5178 /*
5179 * This css_id() can return correct value when somone has refcnt
5180 * on this or this is under rcu_read_lock(). Once css->id is allocated,
5181 * it's unchanged until freed.
5182 */
5183 cssid = rcu_dereference_check(css->id, css_refcnt(css));
5184
5185 if (cssid)
5186 return cssid->id;
5187 return 0;
5188 }
5189 EXPORT_SYMBOL_GPL(css_id);
5190
5191 unsigned short css_depth(struct cgroup_subsys_state *css)
5192 {
5193 struct css_id *cssid;
5194
5195 cssid = rcu_dereference_check(css->id, css_refcnt(css));
5196
5197 if (cssid)
5198 return cssid->depth;
5199 return 0;
5200 }
5201 EXPORT_SYMBOL_GPL(css_depth);
5202
5203 /**
5204 * css_is_ancestor - test "root" css is an ancestor of "child"
5205 * @child: the css to be tested.
5206 * @root: the css supporsed to be an ancestor of the child.
5207 *
5208 * Returns true if "root" is an ancestor of "child" in its hierarchy. Because
5209 * this function reads css->id, the caller must hold rcu_read_lock().
5210 * But, considering usual usage, the csses should be valid objects after test.
5211 * Assuming that the caller will do some action to the child if this returns
5212 * returns true, the caller must take "child";s reference count.
5213 * If "child" is valid object and this returns true, "root" is valid, too.
5214 */
5215
5216 bool css_is_ancestor(struct cgroup_subsys_state *child,
5217 const struct cgroup_subsys_state *root)
5218 {
5219 struct css_id *child_id;
5220 struct css_id *root_id;
5221
5222 child_id = rcu_dereference(child->id);
5223 if (!child_id)
5224 return false;
5225 root_id = rcu_dereference(root->id);
5226 if (!root_id)
5227 return false;
5228 if (child_id->depth < root_id->depth)
5229 return false;
5230 if (child_id->stack[root_id->depth] != root_id->id)
5231 return false;
5232 return true;
5233 }
5234
5235 void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
5236 {
5237 struct css_id *id = css->id;
5238 /* When this is called before css_id initialization, id can be NULL */
5239 if (!id)
5240 return;
5241
5242 BUG_ON(!ss->use_id);
5243
5244 rcu_assign_pointer(id->css, NULL);
5245 rcu_assign_pointer(css->id, NULL);
5246 spin_lock(&ss->id_lock);
5247 idr_remove(&ss->idr, id->id);
5248 spin_unlock(&ss->id_lock);
5249 kfree_rcu(id, rcu_head);
5250 }
5251 EXPORT_SYMBOL_GPL(free_css_id);
5252
5253 /*
5254 * This is called by init or create(). Then, calls to this function are
5255 * always serialized (By cgroup_mutex() at create()).
5256 */
5257
5258 static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
5259 {
5260 struct css_id *newid;
5261 int myid, error, size;
5262
5263 BUG_ON(!ss->use_id);
5264
5265 size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
5266 newid = kzalloc(size, GFP_KERNEL);
5267 if (!newid)
5268 return ERR_PTR(-ENOMEM);
5269 /* get id */
5270 if (unlikely(!idr_pre_get(&ss->idr, GFP_KERNEL))) {
5271 error = -ENOMEM;
5272 goto err_out;
5273 }
5274 spin_lock(&ss->id_lock);
5275 /* Don't use 0. allocates an ID of 1-65535 */
5276 error = idr_get_new_above(&ss->idr, newid, 1, &myid);
5277 spin_unlock(&ss->id_lock);
5278
5279 /* Returns error when there are no free spaces for new ID.*/
5280 if (error) {
5281 error = -ENOSPC;
5282 goto err_out;
5283 }
5284 if (myid > CSS_ID_MAX)
5285 goto remove_idr;
5286
5287 newid->id = myid;
5288 newid->depth = depth;
5289 return newid;
5290 remove_idr:
5291 error = -ENOSPC;
5292 spin_lock(&ss->id_lock);
5293 idr_remove(&ss->idr, myid);
5294 spin_unlock(&ss->id_lock);
5295 err_out:
5296 kfree(newid);
5297 return ERR_PTR(error);
5298
5299 }
5300
5301 static int __init_or_module cgroup_init_idr(struct cgroup_subsys *ss,
5302 struct cgroup_subsys_state *rootcss)
5303 {
5304 struct css_id *newid;
5305
5306 spin_lock_init(&ss->id_lock);
5307 idr_init(&ss->idr);
5308
5309 newid = get_new_cssid(ss, 0);
5310 if (IS_ERR(newid))
5311 return PTR_ERR(newid);
5312
5313 newid->stack[0] = newid->id;
5314 newid->css = rootcss;
5315 rootcss->id = newid;
5316 return 0;
5317 }
5318
5319 static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
5320 struct cgroup *child)
5321 {
5322 int subsys_id, i, depth = 0;
5323 struct cgroup_subsys_state *parent_css, *child_css;
5324 struct css_id *child_id, *parent_id;
5325
5326 subsys_id = ss->subsys_id;
5327 parent_css = parent->subsys[subsys_id];
5328 child_css = child->subsys[subsys_id];
5329 parent_id = parent_css->id;
5330 depth = parent_id->depth + 1;
5331
5332 child_id = get_new_cssid(ss, depth);
5333 if (IS_ERR(child_id))
5334 return PTR_ERR(child_id);
5335
5336 for (i = 0; i < depth; i++)
5337 child_id->stack[i] = parent_id->stack[i];
5338 child_id->stack[depth] = child_id->id;
5339 /*
5340 * child_id->css pointer will be set after this cgroup is available
5341 * see cgroup_populate_dir()
5342 */
5343 rcu_assign_pointer(child_css->id, child_id);
5344
5345 return 0;
5346 }
5347
5348 /**
5349 * css_lookup - lookup css by id
5350 * @ss: cgroup subsys to be looked into.
5351 * @id: the id
5352 *
5353 * Returns pointer to cgroup_subsys_state if there is valid one with id.
5354 * NULL if not. Should be called under rcu_read_lock()
5355 */
5356 struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
5357 {
5358 struct css_id *cssid = NULL;
5359
5360 BUG_ON(!ss->use_id);
5361 cssid = idr_find(&ss->idr, id);
5362
5363 if (unlikely(!cssid))
5364 return NULL;
5365
5366 return rcu_dereference(cssid->css);
5367 }
5368 EXPORT_SYMBOL_GPL(css_lookup);
5369
5370 /**
5371 * css_get_next - lookup next cgroup under specified hierarchy.
5372 * @ss: pointer to subsystem
5373 * @id: current position of iteration.
5374 * @root: pointer to css. search tree under this.
5375 * @foundid: position of found object.
5376 *
5377 * Search next css under the specified hierarchy of rootid. Calling under
5378 * rcu_read_lock() is necessary. Returns NULL if it reaches the end.
5379 */
5380 struct cgroup_subsys_state *
5381 css_get_next(struct cgroup_subsys *ss, int id,
5382 struct cgroup_subsys_state *root, int *foundid)
5383 {
5384 struct cgroup_subsys_state *ret = NULL;
5385 struct css_id *tmp;
5386 int tmpid;
5387 int rootid = css_id(root);
5388 int depth = css_depth(root);
5389
5390 if (!rootid)
5391 return NULL;
5392
5393 BUG_ON(!ss->use_id);
5394 WARN_ON_ONCE(!rcu_read_lock_held());
5395
5396 /* fill start point for scan */
5397 tmpid = id;
5398 while (1) {
5399 /*
5400 * scan next entry from bitmap(tree), tmpid is updated after
5401 * idr_get_next().
5402 */
5403 tmp = idr_get_next(&ss->idr, &tmpid);
5404 if (!tmp)
5405 break;
5406 if (tmp->depth >= depth && tmp->stack[depth] == rootid) {
5407 ret = rcu_dereference(tmp->css);
5408 if (ret) {
5409 *foundid = tmpid;
5410 break;
5411 }
5412 }
5413 /* continue to scan from next id */
5414 tmpid = tmpid + 1;
5415 }
5416 return ret;
5417 }
5418
5419 /*
5420 * get corresponding css from file open on cgroupfs directory
5421 */
5422 struct cgroup_subsys_state *cgroup_css_from_dir(struct file *f, int id)
5423 {
5424 struct cgroup *cgrp;
5425 struct inode *inode;
5426 struct cgroup_subsys_state *css;
5427
5428 inode = f->f_dentry->d_inode;
5429 /* check in cgroup filesystem dir */
5430 if (inode->i_op != &cgroup_dir_inode_operations)
5431 return ERR_PTR(-EBADF);
5432
5433 if (id < 0 || id >= CGROUP_SUBSYS_COUNT)
5434 return ERR_PTR(-EINVAL);
5435
5436 /* get cgroup */
5437 cgrp = __d_cgrp(f->f_dentry);
5438 css = cgrp->subsys[id];
5439 return css ? css : ERR_PTR(-ENOENT);
5440 }
5441
5442 #ifdef CONFIG_CGROUP_DEBUG
5443 static struct cgroup_subsys_state *debug_css_alloc(struct cgroup *cont)
5444 {
5445 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5446
5447 if (!css)
5448 return ERR_PTR(-ENOMEM);
5449
5450 return css;
5451 }
5452
5453 static void debug_css_free(struct cgroup *cont)
5454 {
5455 kfree(cont->subsys[debug_subsys_id]);
5456 }
5457
5458 static u64 cgroup_refcount_read(struct cgroup *cont, struct cftype *cft)
5459 {
5460 return atomic_read(&cont->count);
5461 }
5462
5463 static u64 debug_taskcount_read(struct cgroup *cont, struct cftype *cft)
5464 {
5465 return cgroup_task_count(cont);
5466 }
5467
5468 static u64 current_css_set_read(struct cgroup *cont, struct cftype *cft)
5469 {
5470 return (u64)(unsigned long)current->cgroups;
5471 }
5472
5473 static u64 current_css_set_refcount_read(struct cgroup *cont,
5474 struct cftype *cft)
5475 {
5476 u64 count;
5477
5478 rcu_read_lock();
5479 count = atomic_read(&current->cgroups->refcount);
5480 rcu_read_unlock();
5481 return count;
5482 }
5483
5484 static int current_css_set_cg_links_read(struct cgroup *cont,
5485 struct cftype *cft,
5486 struct seq_file *seq)
5487 {
5488 struct cg_cgroup_link *link;
5489 struct css_set *cg;
5490
5491 read_lock(&css_set_lock);
5492 rcu_read_lock();
5493 cg = rcu_dereference(current->cgroups);
5494 list_for_each_entry(link, &cg->cg_links, cg_link_list) {
5495 struct cgroup *c = link->cgrp;
5496 const char *name;
5497
5498 if (c->dentry)
5499 name = c->dentry->d_name.name;
5500 else
5501 name = "?";
5502 seq_printf(seq, "Root %d group %s\n",
5503 c->root->hierarchy_id, name);
5504 }
5505 rcu_read_unlock();
5506 read_unlock(&css_set_lock);
5507 return 0;
5508 }
5509
5510 #define MAX_TASKS_SHOWN_PER_CSS 25
5511 static int cgroup_css_links_read(struct cgroup *cont,
5512 struct cftype *cft,
5513 struct seq_file *seq)
5514 {
5515 struct cg_cgroup_link *link;
5516
5517 read_lock(&css_set_lock);
5518 list_for_each_entry(link, &cont->css_sets, cgrp_link_list) {
5519 struct css_set *cg = link->cg;
5520 struct task_struct *task;
5521 int count = 0;
5522 seq_printf(seq, "css_set %p\n", cg);
5523 list_for_each_entry(task, &cg->tasks, cg_list) {
5524 if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
5525 seq_puts(seq, " ...\n");
5526 break;
5527 } else {
5528 seq_printf(seq, " task %d\n",
5529 task_pid_vnr(task));
5530 }
5531 }
5532 }
5533 read_unlock(&css_set_lock);
5534 return 0;
5535 }
5536
5537 static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft)
5538 {
5539 return test_bit(CGRP_RELEASABLE, &cgrp->flags);
5540 }
5541
5542 static struct cftype debug_files[] = {
5543 {
5544 .name = "cgroup_refcount",
5545 .read_u64 = cgroup_refcount_read,
5546 },
5547 {
5548 .name = "taskcount",
5549 .read_u64 = debug_taskcount_read,
5550 },
5551
5552 {
5553 .name = "current_css_set",
5554 .read_u64 = current_css_set_read,
5555 },
5556
5557 {
5558 .name = "current_css_set_refcount",
5559 .read_u64 = current_css_set_refcount_read,
5560 },
5561
5562 {
5563 .name = "current_css_set_cg_links",
5564 .read_seq_string = current_css_set_cg_links_read,
5565 },
5566
5567 {
5568 .name = "cgroup_css_links",
5569 .read_seq_string = cgroup_css_links_read,
5570 },
5571
5572 {
5573 .name = "releasable",
5574 .read_u64 = releasable_read,
5575 },
5576
5577 { } /* terminate */
5578 };
5579
5580 struct cgroup_subsys debug_subsys = {
5581 .name = "debug",
5582 .css_alloc = debug_css_alloc,
5583 .css_free = debug_css_free,
5584 .subsys_id = debug_subsys_id,
5585 .base_cftypes = debug_files,
5586 };
5587 #endif /* CONFIG_CGROUP_DEBUG */
This page took 0.159042 seconds and 4 git commands to generate.