d62a529db2f7f0d30ca26e9587bac81fc24b0659
[deliverable/linux.git] / kernel / cgroup.c
1 /*
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29 #include <linux/cgroup.h>
30 #include <linux/cred.h>
31 #include <linux/ctype.h>
32 #include <linux/errno.h>
33 #include <linux/fs.h>
34 #include <linux/init_task.h>
35 #include <linux/kernel.h>
36 #include <linux/list.h>
37 #include <linux/mm.h>
38 #include <linux/mutex.h>
39 #include <linux/mount.h>
40 #include <linux/pagemap.h>
41 #include <linux/proc_fs.h>
42 #include <linux/rcupdate.h>
43 #include <linux/sched.h>
44 #include <linux/backing-dev.h>
45 #include <linux/seq_file.h>
46 #include <linux/slab.h>
47 #include <linux/magic.h>
48 #include <linux/spinlock.h>
49 #include <linux/string.h>
50 #include <linux/sort.h>
51 #include <linux/kmod.h>
52 #include <linux/module.h>
53 #include <linux/delayacct.h>
54 #include <linux/cgroupstats.h>
55 #include <linux/hash.h>
56 #include <linux/namei.h>
57 #include <linux/pid_namespace.h>
58 #include <linux/idr.h>
59 #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
60 #include <linux/eventfd.h>
61 #include <linux/poll.h>
62 #include <linux/flex_array.h> /* used in cgroup_attach_proc */
63 #include <linux/kthread.h>
64
65 #include <linux/atomic.h>
66
67 /* css deactivation bias, makes css->refcnt negative to deny new trygets */
68 #define CSS_DEACT_BIAS INT_MIN
69
70 /*
71 * cgroup_mutex is the master lock. Any modification to cgroup or its
72 * hierarchy must be performed while holding it.
73 *
74 * cgroup_root_mutex nests inside cgroup_mutex and should be held to modify
75 * cgroupfs_root of any cgroup hierarchy - subsys list, flags,
76 * release_agent_path and so on. Modifying requires both cgroup_mutex and
77 * cgroup_root_mutex. Readers can acquire either of the two. This is to
78 * break the following locking order cycle.
79 *
80 * A. cgroup_mutex -> cred_guard_mutex -> s_type->i_mutex_key -> namespace_sem
81 * B. namespace_sem -> cgroup_mutex
82 *
83 * B happens only through cgroup_show_options() and using cgroup_root_mutex
84 * breaks it.
85 */
86 static DEFINE_MUTEX(cgroup_mutex);
87 static DEFINE_MUTEX(cgroup_root_mutex);
88
89 /*
90 * Generate an array of cgroup subsystem pointers. At boot time, this is
91 * populated with the built in subsystems, and modular subsystems are
92 * registered after that. The mutable section of this array is protected by
93 * cgroup_mutex.
94 */
95 #define SUBSYS(_x) [_x ## _subsys_id] = &_x ## _subsys,
96 #define IS_SUBSYS_ENABLED(option) IS_BUILTIN(option)
97 static struct cgroup_subsys *subsys[CGROUP_SUBSYS_COUNT] = {
98 #include <linux/cgroup_subsys.h>
99 };
100
101 #define MAX_CGROUP_ROOT_NAMELEN 64
102
103 /*
104 * A cgroupfs_root represents the root of a cgroup hierarchy,
105 * and may be associated with a superblock to form an active
106 * hierarchy
107 */
108 struct cgroupfs_root {
109 struct super_block *sb;
110
111 /*
112 * The bitmask of subsystems intended to be attached to this
113 * hierarchy
114 */
115 unsigned long subsys_mask;
116
117 /* Unique id for this hierarchy. */
118 int hierarchy_id;
119
120 /* The bitmask of subsystems currently attached to this hierarchy */
121 unsigned long actual_subsys_mask;
122
123 /* A list running through the attached subsystems */
124 struct list_head subsys_list;
125
126 /* The root cgroup for this hierarchy */
127 struct cgroup top_cgroup;
128
129 /* Tracks how many cgroups are currently defined in hierarchy.*/
130 int number_of_cgroups;
131
132 /* A list running through the active hierarchies */
133 struct list_head root_list;
134
135 /* All cgroups on this root, cgroup_mutex protected */
136 struct list_head allcg_list;
137
138 /* Hierarchy-specific flags */
139 unsigned long flags;
140
141 /* The path to use for release notifications. */
142 char release_agent_path[PATH_MAX];
143
144 /* The name for this hierarchy - may be empty */
145 char name[MAX_CGROUP_ROOT_NAMELEN];
146 };
147
148 /*
149 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
150 * subsystems that are otherwise unattached - it never has more than a
151 * single cgroup, and all tasks are part of that cgroup.
152 */
153 static struct cgroupfs_root rootnode;
154
155 /*
156 * cgroupfs file entry, pointed to from leaf dentry->d_fsdata.
157 */
158 struct cfent {
159 struct list_head node;
160 struct dentry *dentry;
161 struct cftype *type;
162 };
163
164 /*
165 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
166 * cgroup_subsys->use_id != 0.
167 */
168 #define CSS_ID_MAX (65535)
169 struct css_id {
170 /*
171 * The css to which this ID points. This pointer is set to valid value
172 * after cgroup is populated. If cgroup is removed, this will be NULL.
173 * This pointer is expected to be RCU-safe because destroy()
174 * is called after synchronize_rcu(). But for safe use, css_tryget()
175 * should be used for avoiding race.
176 */
177 struct cgroup_subsys_state __rcu *css;
178 /*
179 * ID of this css.
180 */
181 unsigned short id;
182 /*
183 * Depth in hierarchy which this ID belongs to.
184 */
185 unsigned short depth;
186 /*
187 * ID is freed by RCU. (and lookup routine is RCU safe.)
188 */
189 struct rcu_head rcu_head;
190 /*
191 * Hierarchy of CSS ID belongs to.
192 */
193 unsigned short stack[0]; /* Array of Length (depth+1) */
194 };
195
196 /*
197 * cgroup_event represents events which userspace want to receive.
198 */
199 struct cgroup_event {
200 /*
201 * Cgroup which the event belongs to.
202 */
203 struct cgroup *cgrp;
204 /*
205 * Control file which the event associated.
206 */
207 struct cftype *cft;
208 /*
209 * eventfd to signal userspace about the event.
210 */
211 struct eventfd_ctx *eventfd;
212 /*
213 * Each of these stored in a list by the cgroup.
214 */
215 struct list_head list;
216 /*
217 * All fields below needed to unregister event when
218 * userspace closes eventfd.
219 */
220 poll_table pt;
221 wait_queue_head_t *wqh;
222 wait_queue_t wait;
223 struct work_struct remove;
224 };
225
226 /* The list of hierarchy roots */
227
228 static LIST_HEAD(roots);
229 static int root_count;
230
231 static DEFINE_IDA(hierarchy_ida);
232 static int next_hierarchy_id;
233 static DEFINE_SPINLOCK(hierarchy_id_lock);
234
235 /* dummytop is a shorthand for the dummy hierarchy's top cgroup */
236 #define dummytop (&rootnode.top_cgroup)
237
238 /* This flag indicates whether tasks in the fork and exit paths should
239 * check for fork/exit handlers to call. This avoids us having to do
240 * extra work in the fork/exit path if none of the subsystems need to
241 * be called.
242 */
243 static int need_forkexit_callback __read_mostly;
244
245 #ifdef CONFIG_PROVE_LOCKING
246 int cgroup_lock_is_held(void)
247 {
248 return lockdep_is_held(&cgroup_mutex);
249 }
250 #else /* #ifdef CONFIG_PROVE_LOCKING */
251 int cgroup_lock_is_held(void)
252 {
253 return mutex_is_locked(&cgroup_mutex);
254 }
255 #endif /* #else #ifdef CONFIG_PROVE_LOCKING */
256
257 EXPORT_SYMBOL_GPL(cgroup_lock_is_held);
258
259 static int css_unbias_refcnt(int refcnt)
260 {
261 return refcnt >= 0 ? refcnt : refcnt - CSS_DEACT_BIAS;
262 }
263
264 /* the current nr of refs, always >= 0 whether @css is deactivated or not */
265 static int css_refcnt(struct cgroup_subsys_state *css)
266 {
267 int v = atomic_read(&css->refcnt);
268
269 return css_unbias_refcnt(v);
270 }
271
272 /* convenient tests for these bits */
273 inline int cgroup_is_removed(const struct cgroup *cgrp)
274 {
275 return test_bit(CGRP_REMOVED, &cgrp->flags);
276 }
277
278 /* bits in struct cgroupfs_root flags field */
279 enum {
280 ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
281 ROOT_XATTR, /* supports extended attributes */
282 };
283
284 static int cgroup_is_releasable(const struct cgroup *cgrp)
285 {
286 const int bits =
287 (1 << CGRP_RELEASABLE) |
288 (1 << CGRP_NOTIFY_ON_RELEASE);
289 return (cgrp->flags & bits) == bits;
290 }
291
292 static int notify_on_release(const struct cgroup *cgrp)
293 {
294 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
295 }
296
297 static int clone_children(const struct cgroup *cgrp)
298 {
299 return test_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
300 }
301
302 /*
303 * for_each_subsys() allows you to iterate on each subsystem attached to
304 * an active hierarchy
305 */
306 #define for_each_subsys(_root, _ss) \
307 list_for_each_entry(_ss, &_root->subsys_list, sibling)
308
309 /* for_each_active_root() allows you to iterate across the active hierarchies */
310 #define for_each_active_root(_root) \
311 list_for_each_entry(_root, &roots, root_list)
312
313 static inline struct cgroup *__d_cgrp(struct dentry *dentry)
314 {
315 return dentry->d_fsdata;
316 }
317
318 static inline struct cfent *__d_cfe(struct dentry *dentry)
319 {
320 return dentry->d_fsdata;
321 }
322
323 static inline struct cftype *__d_cft(struct dentry *dentry)
324 {
325 return __d_cfe(dentry)->type;
326 }
327
328 /* the list of cgroups eligible for automatic release. Protected by
329 * release_list_lock */
330 static LIST_HEAD(release_list);
331 static DEFINE_RAW_SPINLOCK(release_list_lock);
332 static void cgroup_release_agent(struct work_struct *work);
333 static DECLARE_WORK(release_agent_work, cgroup_release_agent);
334 static void check_for_release(struct cgroup *cgrp);
335
336 /* Link structure for associating css_set objects with cgroups */
337 struct cg_cgroup_link {
338 /*
339 * List running through cg_cgroup_links associated with a
340 * cgroup, anchored on cgroup->css_sets
341 */
342 struct list_head cgrp_link_list;
343 struct cgroup *cgrp;
344 /*
345 * List running through cg_cgroup_links pointing at a
346 * single css_set object, anchored on css_set->cg_links
347 */
348 struct list_head cg_link_list;
349 struct css_set *cg;
350 };
351
352 /* The default css_set - used by init and its children prior to any
353 * hierarchies being mounted. It contains a pointer to the root state
354 * for each subsystem. Also used to anchor the list of css_sets. Not
355 * reference-counted, to improve performance when child cgroups
356 * haven't been created.
357 */
358
359 static struct css_set init_css_set;
360 static struct cg_cgroup_link init_css_set_link;
361
362 static int cgroup_init_idr(struct cgroup_subsys *ss,
363 struct cgroup_subsys_state *css);
364
365 /* css_set_lock protects the list of css_set objects, and the
366 * chain of tasks off each css_set. Nests outside task->alloc_lock
367 * due to cgroup_iter_start() */
368 static DEFINE_RWLOCK(css_set_lock);
369 static int css_set_count;
370
371 /*
372 * hash table for cgroup groups. This improves the performance to find
373 * an existing css_set. This hash doesn't (currently) take into
374 * account cgroups in empty hierarchies.
375 */
376 #define CSS_SET_HASH_BITS 7
377 #define CSS_SET_TABLE_SIZE (1 << CSS_SET_HASH_BITS)
378 static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE];
379
380 static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[])
381 {
382 int i;
383 int index;
384 unsigned long tmp = 0UL;
385
386 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
387 tmp += (unsigned long)css[i];
388 tmp = (tmp >> 16) ^ tmp;
389
390 index = hash_long(tmp, CSS_SET_HASH_BITS);
391
392 return &css_set_table[index];
393 }
394
395 /* We don't maintain the lists running through each css_set to its
396 * task until after the first call to cgroup_iter_start(). This
397 * reduces the fork()/exit() overhead for people who have cgroups
398 * compiled into their kernel but not actually in use */
399 static int use_task_css_set_links __read_mostly;
400
401 static void __put_css_set(struct css_set *cg, int taskexit)
402 {
403 struct cg_cgroup_link *link;
404 struct cg_cgroup_link *saved_link;
405 /*
406 * Ensure that the refcount doesn't hit zero while any readers
407 * can see it. Similar to atomic_dec_and_lock(), but for an
408 * rwlock
409 */
410 if (atomic_add_unless(&cg->refcount, -1, 1))
411 return;
412 write_lock(&css_set_lock);
413 if (!atomic_dec_and_test(&cg->refcount)) {
414 write_unlock(&css_set_lock);
415 return;
416 }
417
418 /* This css_set is dead. unlink it and release cgroup refcounts */
419 hlist_del(&cg->hlist);
420 css_set_count--;
421
422 list_for_each_entry_safe(link, saved_link, &cg->cg_links,
423 cg_link_list) {
424 struct cgroup *cgrp = link->cgrp;
425 list_del(&link->cg_link_list);
426 list_del(&link->cgrp_link_list);
427 if (atomic_dec_and_test(&cgrp->count) &&
428 notify_on_release(cgrp)) {
429 if (taskexit)
430 set_bit(CGRP_RELEASABLE, &cgrp->flags);
431 check_for_release(cgrp);
432 }
433
434 kfree(link);
435 }
436
437 write_unlock(&css_set_lock);
438 kfree_rcu(cg, rcu_head);
439 }
440
441 /*
442 * refcounted get/put for css_set objects
443 */
444 static inline void get_css_set(struct css_set *cg)
445 {
446 atomic_inc(&cg->refcount);
447 }
448
449 static inline void put_css_set(struct css_set *cg)
450 {
451 __put_css_set(cg, 0);
452 }
453
454 static inline void put_css_set_taskexit(struct css_set *cg)
455 {
456 __put_css_set(cg, 1);
457 }
458
459 /*
460 * compare_css_sets - helper function for find_existing_css_set().
461 * @cg: candidate css_set being tested
462 * @old_cg: existing css_set for a task
463 * @new_cgrp: cgroup that's being entered by the task
464 * @template: desired set of css pointers in css_set (pre-calculated)
465 *
466 * Returns true if "cg" matches "old_cg" except for the hierarchy
467 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
468 */
469 static bool compare_css_sets(struct css_set *cg,
470 struct css_set *old_cg,
471 struct cgroup *new_cgrp,
472 struct cgroup_subsys_state *template[])
473 {
474 struct list_head *l1, *l2;
475
476 if (memcmp(template, cg->subsys, sizeof(cg->subsys))) {
477 /* Not all subsystems matched */
478 return false;
479 }
480
481 /*
482 * Compare cgroup pointers in order to distinguish between
483 * different cgroups in heirarchies with no subsystems. We
484 * could get by with just this check alone (and skip the
485 * memcmp above) but on most setups the memcmp check will
486 * avoid the need for this more expensive check on almost all
487 * candidates.
488 */
489
490 l1 = &cg->cg_links;
491 l2 = &old_cg->cg_links;
492 while (1) {
493 struct cg_cgroup_link *cgl1, *cgl2;
494 struct cgroup *cg1, *cg2;
495
496 l1 = l1->next;
497 l2 = l2->next;
498 /* See if we reached the end - both lists are equal length. */
499 if (l1 == &cg->cg_links) {
500 BUG_ON(l2 != &old_cg->cg_links);
501 break;
502 } else {
503 BUG_ON(l2 == &old_cg->cg_links);
504 }
505 /* Locate the cgroups associated with these links. */
506 cgl1 = list_entry(l1, struct cg_cgroup_link, cg_link_list);
507 cgl2 = list_entry(l2, struct cg_cgroup_link, cg_link_list);
508 cg1 = cgl1->cgrp;
509 cg2 = cgl2->cgrp;
510 /* Hierarchies should be linked in the same order. */
511 BUG_ON(cg1->root != cg2->root);
512
513 /*
514 * If this hierarchy is the hierarchy of the cgroup
515 * that's changing, then we need to check that this
516 * css_set points to the new cgroup; if it's any other
517 * hierarchy, then this css_set should point to the
518 * same cgroup as the old css_set.
519 */
520 if (cg1->root == new_cgrp->root) {
521 if (cg1 != new_cgrp)
522 return false;
523 } else {
524 if (cg1 != cg2)
525 return false;
526 }
527 }
528 return true;
529 }
530
531 /*
532 * find_existing_css_set() is a helper for
533 * find_css_set(), and checks to see whether an existing
534 * css_set is suitable.
535 *
536 * oldcg: the cgroup group that we're using before the cgroup
537 * transition
538 *
539 * cgrp: the cgroup that we're moving into
540 *
541 * template: location in which to build the desired set of subsystem
542 * state objects for the new cgroup group
543 */
544 static struct css_set *find_existing_css_set(
545 struct css_set *oldcg,
546 struct cgroup *cgrp,
547 struct cgroup_subsys_state *template[])
548 {
549 int i;
550 struct cgroupfs_root *root = cgrp->root;
551 struct hlist_head *hhead;
552 struct hlist_node *node;
553 struct css_set *cg;
554
555 /*
556 * Build the set of subsystem state objects that we want to see in the
557 * new css_set. while subsystems can change globally, the entries here
558 * won't change, so no need for locking.
559 */
560 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
561 if (root->subsys_mask & (1UL << i)) {
562 /* Subsystem is in this hierarchy. So we want
563 * the subsystem state from the new
564 * cgroup */
565 template[i] = cgrp->subsys[i];
566 } else {
567 /* Subsystem is not in this hierarchy, so we
568 * don't want to change the subsystem state */
569 template[i] = oldcg->subsys[i];
570 }
571 }
572
573 hhead = css_set_hash(template);
574 hlist_for_each_entry(cg, node, hhead, hlist) {
575 if (!compare_css_sets(cg, oldcg, cgrp, template))
576 continue;
577
578 /* This css_set matches what we need */
579 return cg;
580 }
581
582 /* No existing cgroup group matched */
583 return NULL;
584 }
585
586 static void free_cg_links(struct list_head *tmp)
587 {
588 struct cg_cgroup_link *link;
589 struct cg_cgroup_link *saved_link;
590
591 list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
592 list_del(&link->cgrp_link_list);
593 kfree(link);
594 }
595 }
596
597 /*
598 * allocate_cg_links() allocates "count" cg_cgroup_link structures
599 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
600 * success or a negative error
601 */
602 static int allocate_cg_links(int count, struct list_head *tmp)
603 {
604 struct cg_cgroup_link *link;
605 int i;
606 INIT_LIST_HEAD(tmp);
607 for (i = 0; i < count; i++) {
608 link = kmalloc(sizeof(*link), GFP_KERNEL);
609 if (!link) {
610 free_cg_links(tmp);
611 return -ENOMEM;
612 }
613 list_add(&link->cgrp_link_list, tmp);
614 }
615 return 0;
616 }
617
618 /**
619 * link_css_set - a helper function to link a css_set to a cgroup
620 * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
621 * @cg: the css_set to be linked
622 * @cgrp: the destination cgroup
623 */
624 static void link_css_set(struct list_head *tmp_cg_links,
625 struct css_set *cg, struct cgroup *cgrp)
626 {
627 struct cg_cgroup_link *link;
628
629 BUG_ON(list_empty(tmp_cg_links));
630 link = list_first_entry(tmp_cg_links, struct cg_cgroup_link,
631 cgrp_link_list);
632 link->cg = cg;
633 link->cgrp = cgrp;
634 atomic_inc(&cgrp->count);
635 list_move(&link->cgrp_link_list, &cgrp->css_sets);
636 /*
637 * Always add links to the tail of the list so that the list
638 * is sorted by order of hierarchy creation
639 */
640 list_add_tail(&link->cg_link_list, &cg->cg_links);
641 }
642
643 /*
644 * find_css_set() takes an existing cgroup group and a
645 * cgroup object, and returns a css_set object that's
646 * equivalent to the old group, but with the given cgroup
647 * substituted into the appropriate hierarchy. Must be called with
648 * cgroup_mutex held
649 */
650 static struct css_set *find_css_set(
651 struct css_set *oldcg, struct cgroup *cgrp)
652 {
653 struct css_set *res;
654 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
655
656 struct list_head tmp_cg_links;
657
658 struct hlist_head *hhead;
659 struct cg_cgroup_link *link;
660
661 /* First see if we already have a cgroup group that matches
662 * the desired set */
663 read_lock(&css_set_lock);
664 res = find_existing_css_set(oldcg, cgrp, template);
665 if (res)
666 get_css_set(res);
667 read_unlock(&css_set_lock);
668
669 if (res)
670 return res;
671
672 res = kmalloc(sizeof(*res), GFP_KERNEL);
673 if (!res)
674 return NULL;
675
676 /* Allocate all the cg_cgroup_link objects that we'll need */
677 if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
678 kfree(res);
679 return NULL;
680 }
681
682 atomic_set(&res->refcount, 1);
683 INIT_LIST_HEAD(&res->cg_links);
684 INIT_LIST_HEAD(&res->tasks);
685 INIT_HLIST_NODE(&res->hlist);
686
687 /* Copy the set of subsystem state objects generated in
688 * find_existing_css_set() */
689 memcpy(res->subsys, template, sizeof(res->subsys));
690
691 write_lock(&css_set_lock);
692 /* Add reference counts and links from the new css_set. */
693 list_for_each_entry(link, &oldcg->cg_links, cg_link_list) {
694 struct cgroup *c = link->cgrp;
695 if (c->root == cgrp->root)
696 c = cgrp;
697 link_css_set(&tmp_cg_links, res, c);
698 }
699
700 BUG_ON(!list_empty(&tmp_cg_links));
701
702 css_set_count++;
703
704 /* Add this cgroup group to the hash table */
705 hhead = css_set_hash(res->subsys);
706 hlist_add_head(&res->hlist, hhead);
707
708 write_unlock(&css_set_lock);
709
710 return res;
711 }
712
713 /*
714 * Return the cgroup for "task" from the given hierarchy. Must be
715 * called with cgroup_mutex held.
716 */
717 static struct cgroup *task_cgroup_from_root(struct task_struct *task,
718 struct cgroupfs_root *root)
719 {
720 struct css_set *css;
721 struct cgroup *res = NULL;
722
723 BUG_ON(!mutex_is_locked(&cgroup_mutex));
724 read_lock(&css_set_lock);
725 /*
726 * No need to lock the task - since we hold cgroup_mutex the
727 * task can't change groups, so the only thing that can happen
728 * is that it exits and its css is set back to init_css_set.
729 */
730 css = task->cgroups;
731 if (css == &init_css_set) {
732 res = &root->top_cgroup;
733 } else {
734 struct cg_cgroup_link *link;
735 list_for_each_entry(link, &css->cg_links, cg_link_list) {
736 struct cgroup *c = link->cgrp;
737 if (c->root == root) {
738 res = c;
739 break;
740 }
741 }
742 }
743 read_unlock(&css_set_lock);
744 BUG_ON(!res);
745 return res;
746 }
747
748 /*
749 * There is one global cgroup mutex. We also require taking
750 * task_lock() when dereferencing a task's cgroup subsys pointers.
751 * See "The task_lock() exception", at the end of this comment.
752 *
753 * A task must hold cgroup_mutex to modify cgroups.
754 *
755 * Any task can increment and decrement the count field without lock.
756 * So in general, code holding cgroup_mutex can't rely on the count
757 * field not changing. However, if the count goes to zero, then only
758 * cgroup_attach_task() can increment it again. Because a count of zero
759 * means that no tasks are currently attached, therefore there is no
760 * way a task attached to that cgroup can fork (the other way to
761 * increment the count). So code holding cgroup_mutex can safely
762 * assume that if the count is zero, it will stay zero. Similarly, if
763 * a task holds cgroup_mutex on a cgroup with zero count, it
764 * knows that the cgroup won't be removed, as cgroup_rmdir()
765 * needs that mutex.
766 *
767 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
768 * (usually) take cgroup_mutex. These are the two most performance
769 * critical pieces of code here. The exception occurs on cgroup_exit(),
770 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
771 * is taken, and if the cgroup count is zero, a usermode call made
772 * to the release agent with the name of the cgroup (path relative to
773 * the root of cgroup file system) as the argument.
774 *
775 * A cgroup can only be deleted if both its 'count' of using tasks
776 * is zero, and its list of 'children' cgroups is empty. Since all
777 * tasks in the system use _some_ cgroup, and since there is always at
778 * least one task in the system (init, pid == 1), therefore, top_cgroup
779 * always has either children cgroups and/or using tasks. So we don't
780 * need a special hack to ensure that top_cgroup cannot be deleted.
781 *
782 * The task_lock() exception
783 *
784 * The need for this exception arises from the action of
785 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
786 * another. It does so using cgroup_mutex, however there are
787 * several performance critical places that need to reference
788 * task->cgroup without the expense of grabbing a system global
789 * mutex. Therefore except as noted below, when dereferencing or, as
790 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
791 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
792 * the task_struct routinely used for such matters.
793 *
794 * P.S. One more locking exception. RCU is used to guard the
795 * update of a tasks cgroup pointer by cgroup_attach_task()
796 */
797
798 /**
799 * cgroup_lock - lock out any changes to cgroup structures
800 *
801 */
802 void cgroup_lock(void)
803 {
804 mutex_lock(&cgroup_mutex);
805 }
806 EXPORT_SYMBOL_GPL(cgroup_lock);
807
808 /**
809 * cgroup_unlock - release lock on cgroup changes
810 *
811 * Undo the lock taken in a previous cgroup_lock() call.
812 */
813 void cgroup_unlock(void)
814 {
815 mutex_unlock(&cgroup_mutex);
816 }
817 EXPORT_SYMBOL_GPL(cgroup_unlock);
818
819 /*
820 * A couple of forward declarations required, due to cyclic reference loop:
821 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
822 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
823 * -> cgroup_mkdir.
824 */
825
826 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode);
827 static struct dentry *cgroup_lookup(struct inode *, struct dentry *, unsigned int);
828 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
829 static int cgroup_populate_dir(struct cgroup *cgrp, bool base_files,
830 unsigned long subsys_mask);
831 static const struct inode_operations cgroup_dir_inode_operations;
832 static const struct file_operations proc_cgroupstats_operations;
833
834 static struct backing_dev_info cgroup_backing_dev_info = {
835 .name = "cgroup",
836 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
837 };
838
839 static int alloc_css_id(struct cgroup_subsys *ss,
840 struct cgroup *parent, struct cgroup *child);
841
842 static struct inode *cgroup_new_inode(umode_t mode, struct super_block *sb)
843 {
844 struct inode *inode = new_inode(sb);
845
846 if (inode) {
847 inode->i_ino = get_next_ino();
848 inode->i_mode = mode;
849 inode->i_uid = current_fsuid();
850 inode->i_gid = current_fsgid();
851 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
852 inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
853 }
854 return inode;
855 }
856
857 static void cgroup_diput(struct dentry *dentry, struct inode *inode)
858 {
859 /* is dentry a directory ? if so, kfree() associated cgroup */
860 if (S_ISDIR(inode->i_mode)) {
861 struct cgroup *cgrp = dentry->d_fsdata;
862 struct cgroup_subsys *ss;
863 BUG_ON(!(cgroup_is_removed(cgrp)));
864 /* It's possible for external users to be holding css
865 * reference counts on a cgroup; css_put() needs to
866 * be able to access the cgroup after decrementing
867 * the reference count in order to know if it needs to
868 * queue the cgroup to be handled by the release
869 * agent */
870 synchronize_rcu();
871
872 mutex_lock(&cgroup_mutex);
873 /*
874 * Release the subsystem state objects.
875 */
876 for_each_subsys(cgrp->root, ss)
877 ss->destroy(cgrp);
878
879 cgrp->root->number_of_cgroups--;
880 mutex_unlock(&cgroup_mutex);
881
882 /*
883 * Drop the active superblock reference that we took when we
884 * created the cgroup
885 */
886 deactivate_super(cgrp->root->sb);
887
888 /*
889 * if we're getting rid of the cgroup, refcount should ensure
890 * that there are no pidlists left.
891 */
892 BUG_ON(!list_empty(&cgrp->pidlists));
893
894 simple_xattrs_free(&cgrp->xattrs);
895
896 kfree_rcu(cgrp, rcu_head);
897 } else {
898 struct cfent *cfe = __d_cfe(dentry);
899 struct cgroup *cgrp = dentry->d_parent->d_fsdata;
900 struct cftype *cft = cfe->type;
901
902 WARN_ONCE(!list_empty(&cfe->node) &&
903 cgrp != &cgrp->root->top_cgroup,
904 "cfe still linked for %s\n", cfe->type->name);
905 kfree(cfe);
906 simple_xattrs_free(&cft->xattrs);
907 }
908 iput(inode);
909 }
910
911 static int cgroup_delete(const struct dentry *d)
912 {
913 return 1;
914 }
915
916 static void remove_dir(struct dentry *d)
917 {
918 struct dentry *parent = dget(d->d_parent);
919
920 d_delete(d);
921 simple_rmdir(parent->d_inode, d);
922 dput(parent);
923 }
924
925 static int cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
926 {
927 struct cfent *cfe;
928
929 lockdep_assert_held(&cgrp->dentry->d_inode->i_mutex);
930 lockdep_assert_held(&cgroup_mutex);
931
932 list_for_each_entry(cfe, &cgrp->files, node) {
933 struct dentry *d = cfe->dentry;
934
935 if (cft && cfe->type != cft)
936 continue;
937
938 dget(d);
939 d_delete(d);
940 simple_unlink(cgrp->dentry->d_inode, d);
941 list_del_init(&cfe->node);
942 dput(d);
943
944 return 0;
945 }
946 return -ENOENT;
947 }
948
949 /**
950 * cgroup_clear_directory - selective removal of base and subsystem files
951 * @dir: directory containing the files
952 * @base_files: true if the base files should be removed
953 * @subsys_mask: mask of the subsystem ids whose files should be removed
954 */
955 static void cgroup_clear_directory(struct dentry *dir, bool base_files,
956 unsigned long subsys_mask)
957 {
958 struct cgroup *cgrp = __d_cgrp(dir);
959 struct cgroup_subsys *ss;
960
961 for_each_subsys(cgrp->root, ss) {
962 struct cftype_set *set;
963 if (!test_bit(ss->subsys_id, &subsys_mask))
964 continue;
965 list_for_each_entry(set, &ss->cftsets, node)
966 cgroup_rm_file(cgrp, set->cfts);
967 }
968 if (base_files) {
969 while (!list_empty(&cgrp->files))
970 cgroup_rm_file(cgrp, NULL);
971 }
972 }
973
974 /*
975 * NOTE : the dentry must have been dget()'ed
976 */
977 static void cgroup_d_remove_dir(struct dentry *dentry)
978 {
979 struct dentry *parent;
980 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
981
982 cgroup_clear_directory(dentry, true, root->subsys_mask);
983
984 parent = dentry->d_parent;
985 spin_lock(&parent->d_lock);
986 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
987 list_del_init(&dentry->d_u.d_child);
988 spin_unlock(&dentry->d_lock);
989 spin_unlock(&parent->d_lock);
990 remove_dir(dentry);
991 }
992
993 /*
994 * Call with cgroup_mutex held. Drops reference counts on modules, including
995 * any duplicate ones that parse_cgroupfs_options took. If this function
996 * returns an error, no reference counts are touched.
997 */
998 static int rebind_subsystems(struct cgroupfs_root *root,
999 unsigned long final_subsys_mask)
1000 {
1001 unsigned long added_mask, removed_mask;
1002 struct cgroup *cgrp = &root->top_cgroup;
1003 int i;
1004
1005 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1006 BUG_ON(!mutex_is_locked(&cgroup_root_mutex));
1007
1008 removed_mask = root->actual_subsys_mask & ~final_subsys_mask;
1009 added_mask = final_subsys_mask & ~root->actual_subsys_mask;
1010 /* Check that any added subsystems are currently free */
1011 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1012 unsigned long bit = 1UL << i;
1013 struct cgroup_subsys *ss = subsys[i];
1014 if (!(bit & added_mask))
1015 continue;
1016 /*
1017 * Nobody should tell us to do a subsys that doesn't exist:
1018 * parse_cgroupfs_options should catch that case and refcounts
1019 * ensure that subsystems won't disappear once selected.
1020 */
1021 BUG_ON(ss == NULL);
1022 if (ss->root != &rootnode) {
1023 /* Subsystem isn't free */
1024 return -EBUSY;
1025 }
1026 }
1027
1028 /* Currently we don't handle adding/removing subsystems when
1029 * any child cgroups exist. This is theoretically supportable
1030 * but involves complex error handling, so it's being left until
1031 * later */
1032 if (root->number_of_cgroups > 1)
1033 return -EBUSY;
1034
1035 /* Process each subsystem */
1036 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1037 struct cgroup_subsys *ss = subsys[i];
1038 unsigned long bit = 1UL << i;
1039 if (bit & added_mask) {
1040 /* We're binding this subsystem to this hierarchy */
1041 BUG_ON(ss == NULL);
1042 BUG_ON(cgrp->subsys[i]);
1043 BUG_ON(!dummytop->subsys[i]);
1044 BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
1045 cgrp->subsys[i] = dummytop->subsys[i];
1046 cgrp->subsys[i]->cgroup = cgrp;
1047 list_move(&ss->sibling, &root->subsys_list);
1048 ss->root = root;
1049 if (ss->bind)
1050 ss->bind(cgrp);
1051 /* refcount was already taken, and we're keeping it */
1052 } else if (bit & removed_mask) {
1053 /* We're removing this subsystem */
1054 BUG_ON(ss == NULL);
1055 BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
1056 BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
1057 if (ss->bind)
1058 ss->bind(dummytop);
1059 dummytop->subsys[i]->cgroup = dummytop;
1060 cgrp->subsys[i] = NULL;
1061 subsys[i]->root = &rootnode;
1062 list_move(&ss->sibling, &rootnode.subsys_list);
1063 /* subsystem is now free - drop reference on module */
1064 module_put(ss->module);
1065 } else if (bit & final_subsys_mask) {
1066 /* Subsystem state should already exist */
1067 BUG_ON(ss == NULL);
1068 BUG_ON(!cgrp->subsys[i]);
1069 /*
1070 * a refcount was taken, but we already had one, so
1071 * drop the extra reference.
1072 */
1073 module_put(ss->module);
1074 #ifdef CONFIG_MODULE_UNLOAD
1075 BUG_ON(ss->module && !module_refcount(ss->module));
1076 #endif
1077 } else {
1078 /* Subsystem state shouldn't exist */
1079 BUG_ON(cgrp->subsys[i]);
1080 }
1081 }
1082 root->subsys_mask = root->actual_subsys_mask = final_subsys_mask;
1083 synchronize_rcu();
1084
1085 return 0;
1086 }
1087
1088 static int cgroup_show_options(struct seq_file *seq, struct dentry *dentry)
1089 {
1090 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
1091 struct cgroup_subsys *ss;
1092
1093 mutex_lock(&cgroup_root_mutex);
1094 for_each_subsys(root, ss)
1095 seq_printf(seq, ",%s", ss->name);
1096 if (test_bit(ROOT_NOPREFIX, &root->flags))
1097 seq_puts(seq, ",noprefix");
1098 if (test_bit(ROOT_XATTR, &root->flags))
1099 seq_puts(seq, ",xattr");
1100 if (strlen(root->release_agent_path))
1101 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
1102 if (clone_children(&root->top_cgroup))
1103 seq_puts(seq, ",clone_children");
1104 if (strlen(root->name))
1105 seq_printf(seq, ",name=%s", root->name);
1106 mutex_unlock(&cgroup_root_mutex);
1107 return 0;
1108 }
1109
1110 struct cgroup_sb_opts {
1111 unsigned long subsys_mask;
1112 unsigned long flags;
1113 char *release_agent;
1114 bool clone_children;
1115 char *name;
1116 /* User explicitly requested empty subsystem */
1117 bool none;
1118
1119 struct cgroupfs_root *new_root;
1120
1121 };
1122
1123 /*
1124 * Convert a hierarchy specifier into a bitmask of subsystems and flags. Call
1125 * with cgroup_mutex held to protect the subsys[] array. This function takes
1126 * refcounts on subsystems to be used, unless it returns error, in which case
1127 * no refcounts are taken.
1128 */
1129 static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
1130 {
1131 char *token, *o = data;
1132 bool all_ss = false, one_ss = false;
1133 unsigned long mask = (unsigned long)-1;
1134 int i;
1135 bool module_pin_failed = false;
1136
1137 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1138
1139 #ifdef CONFIG_CPUSETS
1140 mask = ~(1UL << cpuset_subsys_id);
1141 #endif
1142
1143 memset(opts, 0, sizeof(*opts));
1144
1145 while ((token = strsep(&o, ",")) != NULL) {
1146 if (!*token)
1147 return -EINVAL;
1148 if (!strcmp(token, "none")) {
1149 /* Explicitly have no subsystems */
1150 opts->none = true;
1151 continue;
1152 }
1153 if (!strcmp(token, "all")) {
1154 /* Mutually exclusive option 'all' + subsystem name */
1155 if (one_ss)
1156 return -EINVAL;
1157 all_ss = true;
1158 continue;
1159 }
1160 if (!strcmp(token, "noprefix")) {
1161 set_bit(ROOT_NOPREFIX, &opts->flags);
1162 continue;
1163 }
1164 if (!strcmp(token, "clone_children")) {
1165 opts->clone_children = true;
1166 continue;
1167 }
1168 if (!strcmp(token, "xattr")) {
1169 set_bit(ROOT_XATTR, &opts->flags);
1170 continue;
1171 }
1172 if (!strncmp(token, "release_agent=", 14)) {
1173 /* Specifying two release agents is forbidden */
1174 if (opts->release_agent)
1175 return -EINVAL;
1176 opts->release_agent =
1177 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
1178 if (!opts->release_agent)
1179 return -ENOMEM;
1180 continue;
1181 }
1182 if (!strncmp(token, "name=", 5)) {
1183 const char *name = token + 5;
1184 /* Can't specify an empty name */
1185 if (!strlen(name))
1186 return -EINVAL;
1187 /* Must match [\w.-]+ */
1188 for (i = 0; i < strlen(name); i++) {
1189 char c = name[i];
1190 if (isalnum(c))
1191 continue;
1192 if ((c == '.') || (c == '-') || (c == '_'))
1193 continue;
1194 return -EINVAL;
1195 }
1196 /* Specifying two names is forbidden */
1197 if (opts->name)
1198 return -EINVAL;
1199 opts->name = kstrndup(name,
1200 MAX_CGROUP_ROOT_NAMELEN - 1,
1201 GFP_KERNEL);
1202 if (!opts->name)
1203 return -ENOMEM;
1204
1205 continue;
1206 }
1207
1208 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1209 struct cgroup_subsys *ss = subsys[i];
1210 if (ss == NULL)
1211 continue;
1212 if (strcmp(token, ss->name))
1213 continue;
1214 if (ss->disabled)
1215 continue;
1216
1217 /* Mutually exclusive option 'all' + subsystem name */
1218 if (all_ss)
1219 return -EINVAL;
1220 set_bit(i, &opts->subsys_mask);
1221 one_ss = true;
1222
1223 break;
1224 }
1225 if (i == CGROUP_SUBSYS_COUNT)
1226 return -ENOENT;
1227 }
1228
1229 /*
1230 * If the 'all' option was specified select all the subsystems,
1231 * otherwise if 'none', 'name=' and a subsystem name options
1232 * were not specified, let's default to 'all'
1233 */
1234 if (all_ss || (!one_ss && !opts->none && !opts->name)) {
1235 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1236 struct cgroup_subsys *ss = subsys[i];
1237 if (ss == NULL)
1238 continue;
1239 if (ss->disabled)
1240 continue;
1241 set_bit(i, &opts->subsys_mask);
1242 }
1243 }
1244
1245 /* Consistency checks */
1246
1247 /*
1248 * Option noprefix was introduced just for backward compatibility
1249 * with the old cpuset, so we allow noprefix only if mounting just
1250 * the cpuset subsystem.
1251 */
1252 if (test_bit(ROOT_NOPREFIX, &opts->flags) &&
1253 (opts->subsys_mask & mask))
1254 return -EINVAL;
1255
1256
1257 /* Can't specify "none" and some subsystems */
1258 if (opts->subsys_mask && opts->none)
1259 return -EINVAL;
1260
1261 /*
1262 * We either have to specify by name or by subsystems. (So all
1263 * empty hierarchies must have a name).
1264 */
1265 if (!opts->subsys_mask && !opts->name)
1266 return -EINVAL;
1267
1268 /*
1269 * Grab references on all the modules we'll need, so the subsystems
1270 * don't dance around before rebind_subsystems attaches them. This may
1271 * take duplicate reference counts on a subsystem that's already used,
1272 * but rebind_subsystems handles this case.
1273 */
1274 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1275 unsigned long bit = 1UL << i;
1276
1277 if (!(bit & opts->subsys_mask))
1278 continue;
1279 if (!try_module_get(subsys[i]->module)) {
1280 module_pin_failed = true;
1281 break;
1282 }
1283 }
1284 if (module_pin_failed) {
1285 /*
1286 * oops, one of the modules was going away. this means that we
1287 * raced with a module_delete call, and to the user this is
1288 * essentially a "subsystem doesn't exist" case.
1289 */
1290 for (i--; i >= 0; i--) {
1291 /* drop refcounts only on the ones we took */
1292 unsigned long bit = 1UL << i;
1293
1294 if (!(bit & opts->subsys_mask))
1295 continue;
1296 module_put(subsys[i]->module);
1297 }
1298 return -ENOENT;
1299 }
1300
1301 return 0;
1302 }
1303
1304 static void drop_parsed_module_refcounts(unsigned long subsys_mask)
1305 {
1306 int i;
1307 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1308 unsigned long bit = 1UL << i;
1309
1310 if (!(bit & subsys_mask))
1311 continue;
1312 module_put(subsys[i]->module);
1313 }
1314 }
1315
1316 static int cgroup_remount(struct super_block *sb, int *flags, char *data)
1317 {
1318 int ret = 0;
1319 struct cgroupfs_root *root = sb->s_fs_info;
1320 struct cgroup *cgrp = &root->top_cgroup;
1321 struct cgroup_sb_opts opts;
1322 unsigned long added_mask, removed_mask;
1323
1324 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
1325 mutex_lock(&cgroup_mutex);
1326 mutex_lock(&cgroup_root_mutex);
1327
1328 /* See what subsystems are wanted */
1329 ret = parse_cgroupfs_options(data, &opts);
1330 if (ret)
1331 goto out_unlock;
1332
1333 /* See feature-removal-schedule.txt */
1334 if (opts.subsys_mask != root->actual_subsys_mask || opts.release_agent)
1335 pr_warning("cgroup: option changes via remount are deprecated (pid=%d comm=%s)\n",
1336 task_tgid_nr(current), current->comm);
1337
1338 added_mask = opts.subsys_mask & ~root->subsys_mask;
1339 removed_mask = root->subsys_mask & ~opts.subsys_mask;
1340
1341 /* Don't allow flags or name to change at remount */
1342 if (opts.flags != root->flags ||
1343 (opts.name && strcmp(opts.name, root->name))) {
1344 ret = -EINVAL;
1345 drop_parsed_module_refcounts(opts.subsys_mask);
1346 goto out_unlock;
1347 }
1348
1349 ret = rebind_subsystems(root, opts.subsys_mask);
1350 if (ret) {
1351 drop_parsed_module_refcounts(opts.subsys_mask);
1352 goto out_unlock;
1353 }
1354
1355 /* clear out any existing files and repopulate subsystem files */
1356 cgroup_clear_directory(cgrp->dentry, false, removed_mask);
1357 /* re-populate subsystem files */
1358 cgroup_populate_dir(cgrp, false, added_mask);
1359
1360 if (opts.release_agent)
1361 strcpy(root->release_agent_path, opts.release_agent);
1362 out_unlock:
1363 kfree(opts.release_agent);
1364 kfree(opts.name);
1365 mutex_unlock(&cgroup_root_mutex);
1366 mutex_unlock(&cgroup_mutex);
1367 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
1368 return ret;
1369 }
1370
1371 static const struct super_operations cgroup_ops = {
1372 .statfs = simple_statfs,
1373 .drop_inode = generic_delete_inode,
1374 .show_options = cgroup_show_options,
1375 .remount_fs = cgroup_remount,
1376 };
1377
1378 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1379 {
1380 INIT_LIST_HEAD(&cgrp->sibling);
1381 INIT_LIST_HEAD(&cgrp->children);
1382 INIT_LIST_HEAD(&cgrp->files);
1383 INIT_LIST_HEAD(&cgrp->css_sets);
1384 INIT_LIST_HEAD(&cgrp->allcg_node);
1385 INIT_LIST_HEAD(&cgrp->release_list);
1386 INIT_LIST_HEAD(&cgrp->pidlists);
1387 mutex_init(&cgrp->pidlist_mutex);
1388 INIT_LIST_HEAD(&cgrp->event_list);
1389 spin_lock_init(&cgrp->event_list_lock);
1390 simple_xattrs_init(&cgrp->xattrs);
1391 }
1392
1393 static void init_cgroup_root(struct cgroupfs_root *root)
1394 {
1395 struct cgroup *cgrp = &root->top_cgroup;
1396
1397 INIT_LIST_HEAD(&root->subsys_list);
1398 INIT_LIST_HEAD(&root->root_list);
1399 INIT_LIST_HEAD(&root->allcg_list);
1400 root->number_of_cgroups = 1;
1401 cgrp->root = root;
1402 cgrp->top_cgroup = cgrp;
1403 list_add_tail(&cgrp->allcg_node, &root->allcg_list);
1404 init_cgroup_housekeeping(cgrp);
1405 }
1406
1407 static bool init_root_id(struct cgroupfs_root *root)
1408 {
1409 int ret = 0;
1410
1411 do {
1412 if (!ida_pre_get(&hierarchy_ida, GFP_KERNEL))
1413 return false;
1414 spin_lock(&hierarchy_id_lock);
1415 /* Try to allocate the next unused ID */
1416 ret = ida_get_new_above(&hierarchy_ida, next_hierarchy_id,
1417 &root->hierarchy_id);
1418 if (ret == -ENOSPC)
1419 /* Try again starting from 0 */
1420 ret = ida_get_new(&hierarchy_ida, &root->hierarchy_id);
1421 if (!ret) {
1422 next_hierarchy_id = root->hierarchy_id + 1;
1423 } else if (ret != -EAGAIN) {
1424 /* Can only get here if the 31-bit IDR is full ... */
1425 BUG_ON(ret);
1426 }
1427 spin_unlock(&hierarchy_id_lock);
1428 } while (ret);
1429 return true;
1430 }
1431
1432 static int cgroup_test_super(struct super_block *sb, void *data)
1433 {
1434 struct cgroup_sb_opts *opts = data;
1435 struct cgroupfs_root *root = sb->s_fs_info;
1436
1437 /* If we asked for a name then it must match */
1438 if (opts->name && strcmp(opts->name, root->name))
1439 return 0;
1440
1441 /*
1442 * If we asked for subsystems (or explicitly for no
1443 * subsystems) then they must match
1444 */
1445 if ((opts->subsys_mask || opts->none)
1446 && (opts->subsys_mask != root->subsys_mask))
1447 return 0;
1448
1449 return 1;
1450 }
1451
1452 static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
1453 {
1454 struct cgroupfs_root *root;
1455
1456 if (!opts->subsys_mask && !opts->none)
1457 return NULL;
1458
1459 root = kzalloc(sizeof(*root), GFP_KERNEL);
1460 if (!root)
1461 return ERR_PTR(-ENOMEM);
1462
1463 if (!init_root_id(root)) {
1464 kfree(root);
1465 return ERR_PTR(-ENOMEM);
1466 }
1467 init_cgroup_root(root);
1468
1469 root->subsys_mask = opts->subsys_mask;
1470 root->flags = opts->flags;
1471 if (opts->release_agent)
1472 strcpy(root->release_agent_path, opts->release_agent);
1473 if (opts->name)
1474 strcpy(root->name, opts->name);
1475 if (opts->clone_children)
1476 set_bit(CGRP_CLONE_CHILDREN, &root->top_cgroup.flags);
1477 return root;
1478 }
1479
1480 static void cgroup_drop_root(struct cgroupfs_root *root)
1481 {
1482 if (!root)
1483 return;
1484
1485 BUG_ON(!root->hierarchy_id);
1486 spin_lock(&hierarchy_id_lock);
1487 ida_remove(&hierarchy_ida, root->hierarchy_id);
1488 spin_unlock(&hierarchy_id_lock);
1489 kfree(root);
1490 }
1491
1492 static int cgroup_set_super(struct super_block *sb, void *data)
1493 {
1494 int ret;
1495 struct cgroup_sb_opts *opts = data;
1496
1497 /* If we don't have a new root, we can't set up a new sb */
1498 if (!opts->new_root)
1499 return -EINVAL;
1500
1501 BUG_ON(!opts->subsys_mask && !opts->none);
1502
1503 ret = set_anon_super(sb, NULL);
1504 if (ret)
1505 return ret;
1506
1507 sb->s_fs_info = opts->new_root;
1508 opts->new_root->sb = sb;
1509
1510 sb->s_blocksize = PAGE_CACHE_SIZE;
1511 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
1512 sb->s_magic = CGROUP_SUPER_MAGIC;
1513 sb->s_op = &cgroup_ops;
1514
1515 return 0;
1516 }
1517
1518 static int cgroup_get_rootdir(struct super_block *sb)
1519 {
1520 static const struct dentry_operations cgroup_dops = {
1521 .d_iput = cgroup_diput,
1522 .d_delete = cgroup_delete,
1523 };
1524
1525 struct inode *inode =
1526 cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
1527
1528 if (!inode)
1529 return -ENOMEM;
1530
1531 inode->i_fop = &simple_dir_operations;
1532 inode->i_op = &cgroup_dir_inode_operations;
1533 /* directories start off with i_nlink == 2 (for "." entry) */
1534 inc_nlink(inode);
1535 sb->s_root = d_make_root(inode);
1536 if (!sb->s_root)
1537 return -ENOMEM;
1538 /* for everything else we want ->d_op set */
1539 sb->s_d_op = &cgroup_dops;
1540 return 0;
1541 }
1542
1543 static struct dentry *cgroup_mount(struct file_system_type *fs_type,
1544 int flags, const char *unused_dev_name,
1545 void *data)
1546 {
1547 struct cgroup_sb_opts opts;
1548 struct cgroupfs_root *root;
1549 int ret = 0;
1550 struct super_block *sb;
1551 struct cgroupfs_root *new_root;
1552 struct inode *inode;
1553
1554 /* First find the desired set of subsystems */
1555 mutex_lock(&cgroup_mutex);
1556 ret = parse_cgroupfs_options(data, &opts);
1557 mutex_unlock(&cgroup_mutex);
1558 if (ret)
1559 goto out_err;
1560
1561 /*
1562 * Allocate a new cgroup root. We may not need it if we're
1563 * reusing an existing hierarchy.
1564 */
1565 new_root = cgroup_root_from_opts(&opts);
1566 if (IS_ERR(new_root)) {
1567 ret = PTR_ERR(new_root);
1568 goto drop_modules;
1569 }
1570 opts.new_root = new_root;
1571
1572 /* Locate an existing or new sb for this hierarchy */
1573 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, 0, &opts);
1574 if (IS_ERR(sb)) {
1575 ret = PTR_ERR(sb);
1576 cgroup_drop_root(opts.new_root);
1577 goto drop_modules;
1578 }
1579
1580 root = sb->s_fs_info;
1581 BUG_ON(!root);
1582 if (root == opts.new_root) {
1583 /* We used the new root structure, so this is a new hierarchy */
1584 struct list_head tmp_cg_links;
1585 struct cgroup *root_cgrp = &root->top_cgroup;
1586 struct cgroupfs_root *existing_root;
1587 const struct cred *cred;
1588 int i;
1589
1590 BUG_ON(sb->s_root != NULL);
1591
1592 ret = cgroup_get_rootdir(sb);
1593 if (ret)
1594 goto drop_new_super;
1595 inode = sb->s_root->d_inode;
1596
1597 mutex_lock(&inode->i_mutex);
1598 mutex_lock(&cgroup_mutex);
1599 mutex_lock(&cgroup_root_mutex);
1600
1601 /* Check for name clashes with existing mounts */
1602 ret = -EBUSY;
1603 if (strlen(root->name))
1604 for_each_active_root(existing_root)
1605 if (!strcmp(existing_root->name, root->name))
1606 goto unlock_drop;
1607
1608 /*
1609 * We're accessing css_set_count without locking
1610 * css_set_lock here, but that's OK - it can only be
1611 * increased by someone holding cgroup_lock, and
1612 * that's us. The worst that can happen is that we
1613 * have some link structures left over
1614 */
1615 ret = allocate_cg_links(css_set_count, &tmp_cg_links);
1616 if (ret)
1617 goto unlock_drop;
1618
1619 ret = rebind_subsystems(root, root->subsys_mask);
1620 if (ret == -EBUSY) {
1621 free_cg_links(&tmp_cg_links);
1622 goto unlock_drop;
1623 }
1624 /*
1625 * There must be no failure case after here, since rebinding
1626 * takes care of subsystems' refcounts, which are explicitly
1627 * dropped in the failure exit path.
1628 */
1629
1630 /* EBUSY should be the only error here */
1631 BUG_ON(ret);
1632
1633 list_add(&root->root_list, &roots);
1634 root_count++;
1635
1636 sb->s_root->d_fsdata = root_cgrp;
1637 root->top_cgroup.dentry = sb->s_root;
1638
1639 /* Link the top cgroup in this hierarchy into all
1640 * the css_set objects */
1641 write_lock(&css_set_lock);
1642 for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
1643 struct hlist_head *hhead = &css_set_table[i];
1644 struct hlist_node *node;
1645 struct css_set *cg;
1646
1647 hlist_for_each_entry(cg, node, hhead, hlist)
1648 link_css_set(&tmp_cg_links, cg, root_cgrp);
1649 }
1650 write_unlock(&css_set_lock);
1651
1652 free_cg_links(&tmp_cg_links);
1653
1654 BUG_ON(!list_empty(&root_cgrp->children));
1655 BUG_ON(root->number_of_cgroups != 1);
1656
1657 cred = override_creds(&init_cred);
1658 cgroup_populate_dir(root_cgrp, true, root->subsys_mask);
1659 revert_creds(cred);
1660 mutex_unlock(&cgroup_root_mutex);
1661 mutex_unlock(&cgroup_mutex);
1662 mutex_unlock(&inode->i_mutex);
1663 } else {
1664 /*
1665 * We re-used an existing hierarchy - the new root (if
1666 * any) is not needed
1667 */
1668 cgroup_drop_root(opts.new_root);
1669 /* no subsys rebinding, so refcounts don't change */
1670 drop_parsed_module_refcounts(opts.subsys_mask);
1671 }
1672
1673 kfree(opts.release_agent);
1674 kfree(opts.name);
1675 return dget(sb->s_root);
1676
1677 unlock_drop:
1678 mutex_unlock(&cgroup_root_mutex);
1679 mutex_unlock(&cgroup_mutex);
1680 mutex_unlock(&inode->i_mutex);
1681 drop_new_super:
1682 deactivate_locked_super(sb);
1683 drop_modules:
1684 drop_parsed_module_refcounts(opts.subsys_mask);
1685 out_err:
1686 kfree(opts.release_agent);
1687 kfree(opts.name);
1688 return ERR_PTR(ret);
1689 }
1690
1691 static void cgroup_kill_sb(struct super_block *sb) {
1692 struct cgroupfs_root *root = sb->s_fs_info;
1693 struct cgroup *cgrp = &root->top_cgroup;
1694 int ret;
1695 struct cg_cgroup_link *link;
1696 struct cg_cgroup_link *saved_link;
1697
1698 BUG_ON(!root);
1699
1700 BUG_ON(root->number_of_cgroups != 1);
1701 BUG_ON(!list_empty(&cgrp->children));
1702
1703 mutex_lock(&cgroup_mutex);
1704 mutex_lock(&cgroup_root_mutex);
1705
1706 /* Rebind all subsystems back to the default hierarchy */
1707 ret = rebind_subsystems(root, 0);
1708 /* Shouldn't be able to fail ... */
1709 BUG_ON(ret);
1710
1711 /*
1712 * Release all the links from css_sets to this hierarchy's
1713 * root cgroup
1714 */
1715 write_lock(&css_set_lock);
1716
1717 list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
1718 cgrp_link_list) {
1719 list_del(&link->cg_link_list);
1720 list_del(&link->cgrp_link_list);
1721 kfree(link);
1722 }
1723 write_unlock(&css_set_lock);
1724
1725 if (!list_empty(&root->root_list)) {
1726 list_del(&root->root_list);
1727 root_count--;
1728 }
1729
1730 mutex_unlock(&cgroup_root_mutex);
1731 mutex_unlock(&cgroup_mutex);
1732
1733 simple_xattrs_free(&cgrp->xattrs);
1734
1735 kill_litter_super(sb);
1736 cgroup_drop_root(root);
1737 }
1738
1739 static struct file_system_type cgroup_fs_type = {
1740 .name = "cgroup",
1741 .mount = cgroup_mount,
1742 .kill_sb = cgroup_kill_sb,
1743 };
1744
1745 static struct kobject *cgroup_kobj;
1746
1747 /**
1748 * cgroup_path - generate the path of a cgroup
1749 * @cgrp: the cgroup in question
1750 * @buf: the buffer to write the path into
1751 * @buflen: the length of the buffer
1752 *
1753 * Called with cgroup_mutex held or else with an RCU-protected cgroup
1754 * reference. Writes path of cgroup into buf. Returns 0 on success,
1755 * -errno on error.
1756 */
1757 int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1758 {
1759 char *start;
1760 struct dentry *dentry = rcu_dereference_check(cgrp->dentry,
1761 cgroup_lock_is_held());
1762
1763 if (!dentry || cgrp == dummytop) {
1764 /*
1765 * Inactive subsystems have no dentry for their root
1766 * cgroup
1767 */
1768 strcpy(buf, "/");
1769 return 0;
1770 }
1771
1772 start = buf + buflen - 1;
1773
1774 *start = '\0';
1775 for (;;) {
1776 int len = dentry->d_name.len;
1777
1778 if ((start -= len) < buf)
1779 return -ENAMETOOLONG;
1780 memcpy(start, dentry->d_name.name, len);
1781 cgrp = cgrp->parent;
1782 if (!cgrp)
1783 break;
1784
1785 dentry = rcu_dereference_check(cgrp->dentry,
1786 cgroup_lock_is_held());
1787 if (!cgrp->parent)
1788 continue;
1789 if (--start < buf)
1790 return -ENAMETOOLONG;
1791 *start = '/';
1792 }
1793 memmove(buf, start, buf + buflen - start);
1794 return 0;
1795 }
1796 EXPORT_SYMBOL_GPL(cgroup_path);
1797
1798 /*
1799 * Control Group taskset
1800 */
1801 struct task_and_cgroup {
1802 struct task_struct *task;
1803 struct cgroup *cgrp;
1804 struct css_set *cg;
1805 };
1806
1807 struct cgroup_taskset {
1808 struct task_and_cgroup single;
1809 struct flex_array *tc_array;
1810 int tc_array_len;
1811 int idx;
1812 struct cgroup *cur_cgrp;
1813 };
1814
1815 /**
1816 * cgroup_taskset_first - reset taskset and return the first task
1817 * @tset: taskset of interest
1818 *
1819 * @tset iteration is initialized and the first task is returned.
1820 */
1821 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
1822 {
1823 if (tset->tc_array) {
1824 tset->idx = 0;
1825 return cgroup_taskset_next(tset);
1826 } else {
1827 tset->cur_cgrp = tset->single.cgrp;
1828 return tset->single.task;
1829 }
1830 }
1831 EXPORT_SYMBOL_GPL(cgroup_taskset_first);
1832
1833 /**
1834 * cgroup_taskset_next - iterate to the next task in taskset
1835 * @tset: taskset of interest
1836 *
1837 * Return the next task in @tset. Iteration must have been initialized
1838 * with cgroup_taskset_first().
1839 */
1840 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
1841 {
1842 struct task_and_cgroup *tc;
1843
1844 if (!tset->tc_array || tset->idx >= tset->tc_array_len)
1845 return NULL;
1846
1847 tc = flex_array_get(tset->tc_array, tset->idx++);
1848 tset->cur_cgrp = tc->cgrp;
1849 return tc->task;
1850 }
1851 EXPORT_SYMBOL_GPL(cgroup_taskset_next);
1852
1853 /**
1854 * cgroup_taskset_cur_cgroup - return the matching cgroup for the current task
1855 * @tset: taskset of interest
1856 *
1857 * Return the cgroup for the current (last returned) task of @tset. This
1858 * function must be preceded by either cgroup_taskset_first() or
1859 * cgroup_taskset_next().
1860 */
1861 struct cgroup *cgroup_taskset_cur_cgroup(struct cgroup_taskset *tset)
1862 {
1863 return tset->cur_cgrp;
1864 }
1865 EXPORT_SYMBOL_GPL(cgroup_taskset_cur_cgroup);
1866
1867 /**
1868 * cgroup_taskset_size - return the number of tasks in taskset
1869 * @tset: taskset of interest
1870 */
1871 int cgroup_taskset_size(struct cgroup_taskset *tset)
1872 {
1873 return tset->tc_array ? tset->tc_array_len : 1;
1874 }
1875 EXPORT_SYMBOL_GPL(cgroup_taskset_size);
1876
1877
1878 /*
1879 * cgroup_task_migrate - move a task from one cgroup to another.
1880 *
1881 * 'guarantee' is set if the caller promises that a new css_set for the task
1882 * will already exist. If not set, this function might sleep, and can fail with
1883 * -ENOMEM. Must be called with cgroup_mutex and threadgroup locked.
1884 */
1885 static void cgroup_task_migrate(struct cgroup *cgrp, struct cgroup *oldcgrp,
1886 struct task_struct *tsk, struct css_set *newcg)
1887 {
1888 struct css_set *oldcg;
1889
1890 /*
1891 * We are synchronized through threadgroup_lock() against PF_EXITING
1892 * setting such that we can't race against cgroup_exit() changing the
1893 * css_set to init_css_set and dropping the old one.
1894 */
1895 WARN_ON_ONCE(tsk->flags & PF_EXITING);
1896 oldcg = tsk->cgroups;
1897
1898 task_lock(tsk);
1899 rcu_assign_pointer(tsk->cgroups, newcg);
1900 task_unlock(tsk);
1901
1902 /* Update the css_set linked lists if we're using them */
1903 write_lock(&css_set_lock);
1904 if (!list_empty(&tsk->cg_list))
1905 list_move(&tsk->cg_list, &newcg->tasks);
1906 write_unlock(&css_set_lock);
1907
1908 /*
1909 * We just gained a reference on oldcg by taking it from the task. As
1910 * trading it for newcg is protected by cgroup_mutex, we're safe to drop
1911 * it here; it will be freed under RCU.
1912 */
1913 set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
1914 put_css_set(oldcg);
1915 }
1916
1917 /**
1918 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
1919 * @cgrp: the cgroup the task is attaching to
1920 * @tsk: the task to be attached
1921 *
1922 * Call with cgroup_mutex and threadgroup locked. May take task_lock of
1923 * @tsk during call.
1924 */
1925 int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
1926 {
1927 int retval = 0;
1928 struct cgroup_subsys *ss, *failed_ss = NULL;
1929 struct cgroup *oldcgrp;
1930 struct cgroupfs_root *root = cgrp->root;
1931 struct cgroup_taskset tset = { };
1932 struct css_set *newcg;
1933
1934 /* @tsk either already exited or can't exit until the end */
1935 if (tsk->flags & PF_EXITING)
1936 return -ESRCH;
1937
1938 /* Nothing to do if the task is already in that cgroup */
1939 oldcgrp = task_cgroup_from_root(tsk, root);
1940 if (cgrp == oldcgrp)
1941 return 0;
1942
1943 tset.single.task = tsk;
1944 tset.single.cgrp = oldcgrp;
1945
1946 for_each_subsys(root, ss) {
1947 if (ss->can_attach) {
1948 retval = ss->can_attach(cgrp, &tset);
1949 if (retval) {
1950 /*
1951 * Remember on which subsystem the can_attach()
1952 * failed, so that we only call cancel_attach()
1953 * against the subsystems whose can_attach()
1954 * succeeded. (See below)
1955 */
1956 failed_ss = ss;
1957 goto out;
1958 }
1959 }
1960 }
1961
1962 newcg = find_css_set(tsk->cgroups, cgrp);
1963 if (!newcg) {
1964 retval = -ENOMEM;
1965 goto out;
1966 }
1967
1968 cgroup_task_migrate(cgrp, oldcgrp, tsk, newcg);
1969
1970 for_each_subsys(root, ss) {
1971 if (ss->attach)
1972 ss->attach(cgrp, &tset);
1973 }
1974
1975 synchronize_rcu();
1976 out:
1977 if (retval) {
1978 for_each_subsys(root, ss) {
1979 if (ss == failed_ss)
1980 /*
1981 * This subsystem was the one that failed the
1982 * can_attach() check earlier, so we don't need
1983 * to call cancel_attach() against it or any
1984 * remaining subsystems.
1985 */
1986 break;
1987 if (ss->cancel_attach)
1988 ss->cancel_attach(cgrp, &tset);
1989 }
1990 }
1991 return retval;
1992 }
1993
1994 /**
1995 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
1996 * @from: attach to all cgroups of a given task
1997 * @tsk: the task to be attached
1998 */
1999 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2000 {
2001 struct cgroupfs_root *root;
2002 int retval = 0;
2003
2004 cgroup_lock();
2005 for_each_active_root(root) {
2006 struct cgroup *from_cg = task_cgroup_from_root(from, root);
2007
2008 retval = cgroup_attach_task(from_cg, tsk);
2009 if (retval)
2010 break;
2011 }
2012 cgroup_unlock();
2013
2014 return retval;
2015 }
2016 EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2017
2018 /**
2019 * cgroup_attach_proc - attach all threads in a threadgroup to a cgroup
2020 * @cgrp: the cgroup to attach to
2021 * @leader: the threadgroup leader task_struct of the group to be attached
2022 *
2023 * Call holding cgroup_mutex and the group_rwsem of the leader. Will take
2024 * task_lock of each thread in leader's threadgroup individually in turn.
2025 */
2026 static int cgroup_attach_proc(struct cgroup *cgrp, struct task_struct *leader)
2027 {
2028 int retval, i, group_size;
2029 struct cgroup_subsys *ss, *failed_ss = NULL;
2030 /* guaranteed to be initialized later, but the compiler needs this */
2031 struct cgroupfs_root *root = cgrp->root;
2032 /* threadgroup list cursor and array */
2033 struct task_struct *tsk;
2034 struct task_and_cgroup *tc;
2035 struct flex_array *group;
2036 struct cgroup_taskset tset = { };
2037
2038 /*
2039 * step 0: in order to do expensive, possibly blocking operations for
2040 * every thread, we cannot iterate the thread group list, since it needs
2041 * rcu or tasklist locked. instead, build an array of all threads in the
2042 * group - group_rwsem prevents new threads from appearing, and if
2043 * threads exit, this will just be an over-estimate.
2044 */
2045 group_size = get_nr_threads(leader);
2046 /* flex_array supports very large thread-groups better than kmalloc. */
2047 group = flex_array_alloc(sizeof(*tc), group_size, GFP_KERNEL);
2048 if (!group)
2049 return -ENOMEM;
2050 /* pre-allocate to guarantee space while iterating in rcu read-side. */
2051 retval = flex_array_prealloc(group, 0, group_size - 1, GFP_KERNEL);
2052 if (retval)
2053 goto out_free_group_list;
2054
2055 tsk = leader;
2056 i = 0;
2057 /*
2058 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2059 * already PF_EXITING could be freed from underneath us unless we
2060 * take an rcu_read_lock.
2061 */
2062 rcu_read_lock();
2063 do {
2064 struct task_and_cgroup ent;
2065
2066 /* @tsk either already exited or can't exit until the end */
2067 if (tsk->flags & PF_EXITING)
2068 continue;
2069
2070 /* as per above, nr_threads may decrease, but not increase. */
2071 BUG_ON(i >= group_size);
2072 ent.task = tsk;
2073 ent.cgrp = task_cgroup_from_root(tsk, root);
2074 /* nothing to do if this task is already in the cgroup */
2075 if (ent.cgrp == cgrp)
2076 continue;
2077 /*
2078 * saying GFP_ATOMIC has no effect here because we did prealloc
2079 * earlier, but it's good form to communicate our expectations.
2080 */
2081 retval = flex_array_put(group, i, &ent, GFP_ATOMIC);
2082 BUG_ON(retval != 0);
2083 i++;
2084 } while_each_thread(leader, tsk);
2085 rcu_read_unlock();
2086 /* remember the number of threads in the array for later. */
2087 group_size = i;
2088 tset.tc_array = group;
2089 tset.tc_array_len = group_size;
2090
2091 /* methods shouldn't be called if no task is actually migrating */
2092 retval = 0;
2093 if (!group_size)
2094 goto out_free_group_list;
2095
2096 /*
2097 * step 1: check that we can legitimately attach to the cgroup.
2098 */
2099 for_each_subsys(root, ss) {
2100 if (ss->can_attach) {
2101 retval = ss->can_attach(cgrp, &tset);
2102 if (retval) {
2103 failed_ss = ss;
2104 goto out_cancel_attach;
2105 }
2106 }
2107 }
2108
2109 /*
2110 * step 2: make sure css_sets exist for all threads to be migrated.
2111 * we use find_css_set, which allocates a new one if necessary.
2112 */
2113 for (i = 0; i < group_size; i++) {
2114 tc = flex_array_get(group, i);
2115 tc->cg = find_css_set(tc->task->cgroups, cgrp);
2116 if (!tc->cg) {
2117 retval = -ENOMEM;
2118 goto out_put_css_set_refs;
2119 }
2120 }
2121
2122 /*
2123 * step 3: now that we're guaranteed success wrt the css_sets,
2124 * proceed to move all tasks to the new cgroup. There are no
2125 * failure cases after here, so this is the commit point.
2126 */
2127 for (i = 0; i < group_size; i++) {
2128 tc = flex_array_get(group, i);
2129 cgroup_task_migrate(cgrp, tc->cgrp, tc->task, tc->cg);
2130 }
2131 /* nothing is sensitive to fork() after this point. */
2132
2133 /*
2134 * step 4: do subsystem attach callbacks.
2135 */
2136 for_each_subsys(root, ss) {
2137 if (ss->attach)
2138 ss->attach(cgrp, &tset);
2139 }
2140
2141 /*
2142 * step 5: success! and cleanup
2143 */
2144 synchronize_rcu();
2145 retval = 0;
2146 out_put_css_set_refs:
2147 if (retval) {
2148 for (i = 0; i < group_size; i++) {
2149 tc = flex_array_get(group, i);
2150 if (!tc->cg)
2151 break;
2152 put_css_set(tc->cg);
2153 }
2154 }
2155 out_cancel_attach:
2156 if (retval) {
2157 for_each_subsys(root, ss) {
2158 if (ss == failed_ss)
2159 break;
2160 if (ss->cancel_attach)
2161 ss->cancel_attach(cgrp, &tset);
2162 }
2163 }
2164 out_free_group_list:
2165 flex_array_free(group);
2166 return retval;
2167 }
2168
2169 /*
2170 * Find the task_struct of the task to attach by vpid and pass it along to the
2171 * function to attach either it or all tasks in its threadgroup. Will lock
2172 * cgroup_mutex and threadgroup; may take task_lock of task.
2173 */
2174 static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
2175 {
2176 struct task_struct *tsk;
2177 const struct cred *cred = current_cred(), *tcred;
2178 int ret;
2179
2180 if (!cgroup_lock_live_group(cgrp))
2181 return -ENODEV;
2182
2183 retry_find_task:
2184 rcu_read_lock();
2185 if (pid) {
2186 tsk = find_task_by_vpid(pid);
2187 if (!tsk) {
2188 rcu_read_unlock();
2189 ret= -ESRCH;
2190 goto out_unlock_cgroup;
2191 }
2192 /*
2193 * even if we're attaching all tasks in the thread group, we
2194 * only need to check permissions on one of them.
2195 */
2196 tcred = __task_cred(tsk);
2197 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2198 !uid_eq(cred->euid, tcred->uid) &&
2199 !uid_eq(cred->euid, tcred->suid)) {
2200 rcu_read_unlock();
2201 ret = -EACCES;
2202 goto out_unlock_cgroup;
2203 }
2204 } else
2205 tsk = current;
2206
2207 if (threadgroup)
2208 tsk = tsk->group_leader;
2209
2210 /*
2211 * Workqueue threads may acquire PF_THREAD_BOUND and become
2212 * trapped in a cpuset, or RT worker may be born in a cgroup
2213 * with no rt_runtime allocated. Just say no.
2214 */
2215 if (tsk == kthreadd_task || (tsk->flags & PF_THREAD_BOUND)) {
2216 ret = -EINVAL;
2217 rcu_read_unlock();
2218 goto out_unlock_cgroup;
2219 }
2220
2221 get_task_struct(tsk);
2222 rcu_read_unlock();
2223
2224 threadgroup_lock(tsk);
2225 if (threadgroup) {
2226 if (!thread_group_leader(tsk)) {
2227 /*
2228 * a race with de_thread from another thread's exec()
2229 * may strip us of our leadership, if this happens,
2230 * there is no choice but to throw this task away and
2231 * try again; this is
2232 * "double-double-toil-and-trouble-check locking".
2233 */
2234 threadgroup_unlock(tsk);
2235 put_task_struct(tsk);
2236 goto retry_find_task;
2237 }
2238 ret = cgroup_attach_proc(cgrp, tsk);
2239 } else
2240 ret = cgroup_attach_task(cgrp, tsk);
2241 threadgroup_unlock(tsk);
2242
2243 put_task_struct(tsk);
2244 out_unlock_cgroup:
2245 cgroup_unlock();
2246 return ret;
2247 }
2248
2249 static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
2250 {
2251 return attach_task_by_pid(cgrp, pid, false);
2252 }
2253
2254 static int cgroup_procs_write(struct cgroup *cgrp, struct cftype *cft, u64 tgid)
2255 {
2256 return attach_task_by_pid(cgrp, tgid, true);
2257 }
2258
2259 /**
2260 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
2261 * @cgrp: the cgroup to be checked for liveness
2262 *
2263 * On success, returns true; the lock should be later released with
2264 * cgroup_unlock(). On failure returns false with no lock held.
2265 */
2266 bool cgroup_lock_live_group(struct cgroup *cgrp)
2267 {
2268 mutex_lock(&cgroup_mutex);
2269 if (cgroup_is_removed(cgrp)) {
2270 mutex_unlock(&cgroup_mutex);
2271 return false;
2272 }
2273 return true;
2274 }
2275 EXPORT_SYMBOL_GPL(cgroup_lock_live_group);
2276
2277 static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
2278 const char *buffer)
2279 {
2280 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
2281 if (strlen(buffer) >= PATH_MAX)
2282 return -EINVAL;
2283 if (!cgroup_lock_live_group(cgrp))
2284 return -ENODEV;
2285 mutex_lock(&cgroup_root_mutex);
2286 strcpy(cgrp->root->release_agent_path, buffer);
2287 mutex_unlock(&cgroup_root_mutex);
2288 cgroup_unlock();
2289 return 0;
2290 }
2291
2292 static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
2293 struct seq_file *seq)
2294 {
2295 if (!cgroup_lock_live_group(cgrp))
2296 return -ENODEV;
2297 seq_puts(seq, cgrp->root->release_agent_path);
2298 seq_putc(seq, '\n');
2299 cgroup_unlock();
2300 return 0;
2301 }
2302
2303 /* A buffer size big enough for numbers or short strings */
2304 #define CGROUP_LOCAL_BUFFER_SIZE 64
2305
2306 static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
2307 struct file *file,
2308 const char __user *userbuf,
2309 size_t nbytes, loff_t *unused_ppos)
2310 {
2311 char buffer[CGROUP_LOCAL_BUFFER_SIZE];
2312 int retval = 0;
2313 char *end;
2314
2315 if (!nbytes)
2316 return -EINVAL;
2317 if (nbytes >= sizeof(buffer))
2318 return -E2BIG;
2319 if (copy_from_user(buffer, userbuf, nbytes))
2320 return -EFAULT;
2321
2322 buffer[nbytes] = 0; /* nul-terminate */
2323 if (cft->write_u64) {
2324 u64 val = simple_strtoull(strstrip(buffer), &end, 0);
2325 if (*end)
2326 return -EINVAL;
2327 retval = cft->write_u64(cgrp, cft, val);
2328 } else {
2329 s64 val = simple_strtoll(strstrip(buffer), &end, 0);
2330 if (*end)
2331 return -EINVAL;
2332 retval = cft->write_s64(cgrp, cft, val);
2333 }
2334 if (!retval)
2335 retval = nbytes;
2336 return retval;
2337 }
2338
2339 static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
2340 struct file *file,
2341 const char __user *userbuf,
2342 size_t nbytes, loff_t *unused_ppos)
2343 {
2344 char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
2345 int retval = 0;
2346 size_t max_bytes = cft->max_write_len;
2347 char *buffer = local_buffer;
2348
2349 if (!max_bytes)
2350 max_bytes = sizeof(local_buffer) - 1;
2351 if (nbytes >= max_bytes)
2352 return -E2BIG;
2353 /* Allocate a dynamic buffer if we need one */
2354 if (nbytes >= sizeof(local_buffer)) {
2355 buffer = kmalloc(nbytes + 1, GFP_KERNEL);
2356 if (buffer == NULL)
2357 return -ENOMEM;
2358 }
2359 if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
2360 retval = -EFAULT;
2361 goto out;
2362 }
2363
2364 buffer[nbytes] = 0; /* nul-terminate */
2365 retval = cft->write_string(cgrp, cft, strstrip(buffer));
2366 if (!retval)
2367 retval = nbytes;
2368 out:
2369 if (buffer != local_buffer)
2370 kfree(buffer);
2371 return retval;
2372 }
2373
2374 static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
2375 size_t nbytes, loff_t *ppos)
2376 {
2377 struct cftype *cft = __d_cft(file->f_dentry);
2378 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2379
2380 if (cgroup_is_removed(cgrp))
2381 return -ENODEV;
2382 if (cft->write)
2383 return cft->write(cgrp, cft, file, buf, nbytes, ppos);
2384 if (cft->write_u64 || cft->write_s64)
2385 return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
2386 if (cft->write_string)
2387 return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
2388 if (cft->trigger) {
2389 int ret = cft->trigger(cgrp, (unsigned int)cft->private);
2390 return ret ? ret : nbytes;
2391 }
2392 return -EINVAL;
2393 }
2394
2395 static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
2396 struct file *file,
2397 char __user *buf, size_t nbytes,
2398 loff_t *ppos)
2399 {
2400 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2401 u64 val = cft->read_u64(cgrp, cft);
2402 int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
2403
2404 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2405 }
2406
2407 static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
2408 struct file *file,
2409 char __user *buf, size_t nbytes,
2410 loff_t *ppos)
2411 {
2412 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2413 s64 val = cft->read_s64(cgrp, cft);
2414 int len = sprintf(tmp, "%lld\n", (long long) val);
2415
2416 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2417 }
2418
2419 static ssize_t cgroup_file_read(struct file *file, char __user *buf,
2420 size_t nbytes, loff_t *ppos)
2421 {
2422 struct cftype *cft = __d_cft(file->f_dentry);
2423 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2424
2425 if (cgroup_is_removed(cgrp))
2426 return -ENODEV;
2427
2428 if (cft->read)
2429 return cft->read(cgrp, cft, file, buf, nbytes, ppos);
2430 if (cft->read_u64)
2431 return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
2432 if (cft->read_s64)
2433 return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
2434 return -EINVAL;
2435 }
2436
2437 /*
2438 * seqfile ops/methods for returning structured data. Currently just
2439 * supports string->u64 maps, but can be extended in future.
2440 */
2441
2442 struct cgroup_seqfile_state {
2443 struct cftype *cft;
2444 struct cgroup *cgroup;
2445 };
2446
2447 static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
2448 {
2449 struct seq_file *sf = cb->state;
2450 return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
2451 }
2452
2453 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
2454 {
2455 struct cgroup_seqfile_state *state = m->private;
2456 struct cftype *cft = state->cft;
2457 if (cft->read_map) {
2458 struct cgroup_map_cb cb = {
2459 .fill = cgroup_map_add,
2460 .state = m,
2461 };
2462 return cft->read_map(state->cgroup, cft, &cb);
2463 }
2464 return cft->read_seq_string(state->cgroup, cft, m);
2465 }
2466
2467 static int cgroup_seqfile_release(struct inode *inode, struct file *file)
2468 {
2469 struct seq_file *seq = file->private_data;
2470 kfree(seq->private);
2471 return single_release(inode, file);
2472 }
2473
2474 static const struct file_operations cgroup_seqfile_operations = {
2475 .read = seq_read,
2476 .write = cgroup_file_write,
2477 .llseek = seq_lseek,
2478 .release = cgroup_seqfile_release,
2479 };
2480
2481 static int cgroup_file_open(struct inode *inode, struct file *file)
2482 {
2483 int err;
2484 struct cftype *cft;
2485
2486 err = generic_file_open(inode, file);
2487 if (err)
2488 return err;
2489 cft = __d_cft(file->f_dentry);
2490
2491 if (cft->read_map || cft->read_seq_string) {
2492 struct cgroup_seqfile_state *state =
2493 kzalloc(sizeof(*state), GFP_USER);
2494 if (!state)
2495 return -ENOMEM;
2496 state->cft = cft;
2497 state->cgroup = __d_cgrp(file->f_dentry->d_parent);
2498 file->f_op = &cgroup_seqfile_operations;
2499 err = single_open(file, cgroup_seqfile_show, state);
2500 if (err < 0)
2501 kfree(state);
2502 } else if (cft->open)
2503 err = cft->open(inode, file);
2504 else
2505 err = 0;
2506
2507 return err;
2508 }
2509
2510 static int cgroup_file_release(struct inode *inode, struct file *file)
2511 {
2512 struct cftype *cft = __d_cft(file->f_dentry);
2513 if (cft->release)
2514 return cft->release(inode, file);
2515 return 0;
2516 }
2517
2518 /*
2519 * cgroup_rename - Only allow simple rename of directories in place.
2520 */
2521 static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
2522 struct inode *new_dir, struct dentry *new_dentry)
2523 {
2524 if (!S_ISDIR(old_dentry->d_inode->i_mode))
2525 return -ENOTDIR;
2526 if (new_dentry->d_inode)
2527 return -EEXIST;
2528 if (old_dir != new_dir)
2529 return -EIO;
2530 return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
2531 }
2532
2533 static struct simple_xattrs *__d_xattrs(struct dentry *dentry)
2534 {
2535 if (S_ISDIR(dentry->d_inode->i_mode))
2536 return &__d_cgrp(dentry)->xattrs;
2537 else
2538 return &__d_cft(dentry)->xattrs;
2539 }
2540
2541 static inline int xattr_enabled(struct dentry *dentry)
2542 {
2543 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
2544 return test_bit(ROOT_XATTR, &root->flags);
2545 }
2546
2547 static bool is_valid_xattr(const char *name)
2548 {
2549 if (!strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN) ||
2550 !strncmp(name, XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN))
2551 return true;
2552 return false;
2553 }
2554
2555 static int cgroup_setxattr(struct dentry *dentry, const char *name,
2556 const void *val, size_t size, int flags)
2557 {
2558 if (!xattr_enabled(dentry))
2559 return -EOPNOTSUPP;
2560 if (!is_valid_xattr(name))
2561 return -EINVAL;
2562 return simple_xattr_set(__d_xattrs(dentry), name, val, size, flags);
2563 }
2564
2565 static int cgroup_removexattr(struct dentry *dentry, const char *name)
2566 {
2567 if (!xattr_enabled(dentry))
2568 return -EOPNOTSUPP;
2569 if (!is_valid_xattr(name))
2570 return -EINVAL;
2571 return simple_xattr_remove(__d_xattrs(dentry), name);
2572 }
2573
2574 static ssize_t cgroup_getxattr(struct dentry *dentry, const char *name,
2575 void *buf, size_t size)
2576 {
2577 if (!xattr_enabled(dentry))
2578 return -EOPNOTSUPP;
2579 if (!is_valid_xattr(name))
2580 return -EINVAL;
2581 return simple_xattr_get(__d_xattrs(dentry), name, buf, size);
2582 }
2583
2584 static ssize_t cgroup_listxattr(struct dentry *dentry, char *buf, size_t size)
2585 {
2586 if (!xattr_enabled(dentry))
2587 return -EOPNOTSUPP;
2588 return simple_xattr_list(__d_xattrs(dentry), buf, size);
2589 }
2590
2591 static const struct file_operations cgroup_file_operations = {
2592 .read = cgroup_file_read,
2593 .write = cgroup_file_write,
2594 .llseek = generic_file_llseek,
2595 .open = cgroup_file_open,
2596 .release = cgroup_file_release,
2597 };
2598
2599 static const struct inode_operations cgroup_file_inode_operations = {
2600 .setxattr = cgroup_setxattr,
2601 .getxattr = cgroup_getxattr,
2602 .listxattr = cgroup_listxattr,
2603 .removexattr = cgroup_removexattr,
2604 };
2605
2606 static const struct inode_operations cgroup_dir_inode_operations = {
2607 .lookup = cgroup_lookup,
2608 .mkdir = cgroup_mkdir,
2609 .rmdir = cgroup_rmdir,
2610 .rename = cgroup_rename,
2611 .setxattr = cgroup_setxattr,
2612 .getxattr = cgroup_getxattr,
2613 .listxattr = cgroup_listxattr,
2614 .removexattr = cgroup_removexattr,
2615 };
2616
2617 static struct dentry *cgroup_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
2618 {
2619 if (dentry->d_name.len > NAME_MAX)
2620 return ERR_PTR(-ENAMETOOLONG);
2621 d_add(dentry, NULL);
2622 return NULL;
2623 }
2624
2625 /*
2626 * Check if a file is a control file
2627 */
2628 static inline struct cftype *__file_cft(struct file *file)
2629 {
2630 if (file->f_dentry->d_inode->i_fop != &cgroup_file_operations)
2631 return ERR_PTR(-EINVAL);
2632 return __d_cft(file->f_dentry);
2633 }
2634
2635 static int cgroup_create_file(struct dentry *dentry, umode_t mode,
2636 struct super_block *sb)
2637 {
2638 struct inode *inode;
2639
2640 if (!dentry)
2641 return -ENOENT;
2642 if (dentry->d_inode)
2643 return -EEXIST;
2644
2645 inode = cgroup_new_inode(mode, sb);
2646 if (!inode)
2647 return -ENOMEM;
2648
2649 if (S_ISDIR(mode)) {
2650 inode->i_op = &cgroup_dir_inode_operations;
2651 inode->i_fop = &simple_dir_operations;
2652
2653 /* start off with i_nlink == 2 (for "." entry) */
2654 inc_nlink(inode);
2655 inc_nlink(dentry->d_parent->d_inode);
2656
2657 /* start with the directory inode held, so that we can
2658 * populate it without racing with another mkdir */
2659 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
2660 } else if (S_ISREG(mode)) {
2661 inode->i_size = 0;
2662 inode->i_fop = &cgroup_file_operations;
2663 inode->i_op = &cgroup_file_inode_operations;
2664 }
2665 d_instantiate(dentry, inode);
2666 dget(dentry); /* Extra count - pin the dentry in core */
2667 return 0;
2668 }
2669
2670 /**
2671 * cgroup_file_mode - deduce file mode of a control file
2672 * @cft: the control file in question
2673 *
2674 * returns cft->mode if ->mode is not 0
2675 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
2676 * returns S_IRUGO if it has only a read handler
2677 * returns S_IWUSR if it has only a write hander
2678 */
2679 static umode_t cgroup_file_mode(const struct cftype *cft)
2680 {
2681 umode_t mode = 0;
2682
2683 if (cft->mode)
2684 return cft->mode;
2685
2686 if (cft->read || cft->read_u64 || cft->read_s64 ||
2687 cft->read_map || cft->read_seq_string)
2688 mode |= S_IRUGO;
2689
2690 if (cft->write || cft->write_u64 || cft->write_s64 ||
2691 cft->write_string || cft->trigger)
2692 mode |= S_IWUSR;
2693
2694 return mode;
2695 }
2696
2697 static int cgroup_add_file(struct cgroup *cgrp, struct cgroup_subsys *subsys,
2698 struct cftype *cft)
2699 {
2700 struct dentry *dir = cgrp->dentry;
2701 struct cgroup *parent = __d_cgrp(dir);
2702 struct dentry *dentry;
2703 struct cfent *cfe;
2704 int error;
2705 umode_t mode;
2706 char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
2707
2708 simple_xattrs_init(&cft->xattrs);
2709
2710 /* does @cft->flags tell us to skip creation on @cgrp? */
2711 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgrp->parent)
2712 return 0;
2713 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgrp->parent)
2714 return 0;
2715
2716 if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
2717 strcpy(name, subsys->name);
2718 strcat(name, ".");
2719 }
2720 strcat(name, cft->name);
2721
2722 BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
2723
2724 cfe = kzalloc(sizeof(*cfe), GFP_KERNEL);
2725 if (!cfe)
2726 return -ENOMEM;
2727
2728 dentry = lookup_one_len(name, dir, strlen(name));
2729 if (IS_ERR(dentry)) {
2730 error = PTR_ERR(dentry);
2731 goto out;
2732 }
2733
2734 mode = cgroup_file_mode(cft);
2735 error = cgroup_create_file(dentry, mode | S_IFREG, cgrp->root->sb);
2736 if (!error) {
2737 cfe->type = (void *)cft;
2738 cfe->dentry = dentry;
2739 dentry->d_fsdata = cfe;
2740 list_add_tail(&cfe->node, &parent->files);
2741 cfe = NULL;
2742 }
2743 dput(dentry);
2744 out:
2745 kfree(cfe);
2746 return error;
2747 }
2748
2749 static int cgroup_addrm_files(struct cgroup *cgrp, struct cgroup_subsys *subsys,
2750 struct cftype cfts[], bool is_add)
2751 {
2752 struct cftype *cft;
2753 int err, ret = 0;
2754
2755 for (cft = cfts; cft->name[0] != '\0'; cft++) {
2756 if (is_add)
2757 err = cgroup_add_file(cgrp, subsys, cft);
2758 else
2759 err = cgroup_rm_file(cgrp, cft);
2760 if (err) {
2761 pr_warning("cgroup_addrm_files: failed to %s %s, err=%d\n",
2762 is_add ? "add" : "remove", cft->name, err);
2763 ret = err;
2764 }
2765 }
2766 return ret;
2767 }
2768
2769 static DEFINE_MUTEX(cgroup_cft_mutex);
2770
2771 static void cgroup_cfts_prepare(void)
2772 __acquires(&cgroup_cft_mutex) __acquires(&cgroup_mutex)
2773 {
2774 /*
2775 * Thanks to the entanglement with vfs inode locking, we can't walk
2776 * the existing cgroups under cgroup_mutex and create files.
2777 * Instead, we increment reference on all cgroups and build list of
2778 * them using @cgrp->cft_q_node. Grab cgroup_cft_mutex to ensure
2779 * exclusive access to the field.
2780 */
2781 mutex_lock(&cgroup_cft_mutex);
2782 mutex_lock(&cgroup_mutex);
2783 }
2784
2785 static void cgroup_cfts_commit(struct cgroup_subsys *ss,
2786 struct cftype *cfts, bool is_add)
2787 __releases(&cgroup_mutex) __releases(&cgroup_cft_mutex)
2788 {
2789 LIST_HEAD(pending);
2790 struct cgroup *cgrp, *n;
2791
2792 /* %NULL @cfts indicates abort and don't bother if @ss isn't attached */
2793 if (cfts && ss->root != &rootnode) {
2794 list_for_each_entry(cgrp, &ss->root->allcg_list, allcg_node) {
2795 dget(cgrp->dentry);
2796 list_add_tail(&cgrp->cft_q_node, &pending);
2797 }
2798 }
2799
2800 mutex_unlock(&cgroup_mutex);
2801
2802 /*
2803 * All new cgroups will see @cfts update on @ss->cftsets. Add/rm
2804 * files for all cgroups which were created before.
2805 */
2806 list_for_each_entry_safe(cgrp, n, &pending, cft_q_node) {
2807 struct inode *inode = cgrp->dentry->d_inode;
2808
2809 mutex_lock(&inode->i_mutex);
2810 mutex_lock(&cgroup_mutex);
2811 if (!cgroup_is_removed(cgrp))
2812 cgroup_addrm_files(cgrp, ss, cfts, is_add);
2813 mutex_unlock(&cgroup_mutex);
2814 mutex_unlock(&inode->i_mutex);
2815
2816 list_del_init(&cgrp->cft_q_node);
2817 dput(cgrp->dentry);
2818 }
2819
2820 mutex_unlock(&cgroup_cft_mutex);
2821 }
2822
2823 /**
2824 * cgroup_add_cftypes - add an array of cftypes to a subsystem
2825 * @ss: target cgroup subsystem
2826 * @cfts: zero-length name terminated array of cftypes
2827 *
2828 * Register @cfts to @ss. Files described by @cfts are created for all
2829 * existing cgroups to which @ss is attached and all future cgroups will
2830 * have them too. This function can be called anytime whether @ss is
2831 * attached or not.
2832 *
2833 * Returns 0 on successful registration, -errno on failure. Note that this
2834 * function currently returns 0 as long as @cfts registration is successful
2835 * even if some file creation attempts on existing cgroups fail.
2836 */
2837 int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2838 {
2839 struct cftype_set *set;
2840
2841 set = kzalloc(sizeof(*set), GFP_KERNEL);
2842 if (!set)
2843 return -ENOMEM;
2844
2845 cgroup_cfts_prepare();
2846 set->cfts = cfts;
2847 list_add_tail(&set->node, &ss->cftsets);
2848 cgroup_cfts_commit(ss, cfts, true);
2849
2850 return 0;
2851 }
2852 EXPORT_SYMBOL_GPL(cgroup_add_cftypes);
2853
2854 /**
2855 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
2856 * @ss: target cgroup subsystem
2857 * @cfts: zero-length name terminated array of cftypes
2858 *
2859 * Unregister @cfts from @ss. Files described by @cfts are removed from
2860 * all existing cgroups to which @ss is attached and all future cgroups
2861 * won't have them either. This function can be called anytime whether @ss
2862 * is attached or not.
2863 *
2864 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2865 * registered with @ss.
2866 */
2867 int cgroup_rm_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2868 {
2869 struct cftype_set *set;
2870
2871 cgroup_cfts_prepare();
2872
2873 list_for_each_entry(set, &ss->cftsets, node) {
2874 if (set->cfts == cfts) {
2875 list_del_init(&set->node);
2876 cgroup_cfts_commit(ss, cfts, false);
2877 return 0;
2878 }
2879 }
2880
2881 cgroup_cfts_commit(ss, NULL, false);
2882 return -ENOENT;
2883 }
2884
2885 /**
2886 * cgroup_task_count - count the number of tasks in a cgroup.
2887 * @cgrp: the cgroup in question
2888 *
2889 * Return the number of tasks in the cgroup.
2890 */
2891 int cgroup_task_count(const struct cgroup *cgrp)
2892 {
2893 int count = 0;
2894 struct cg_cgroup_link *link;
2895
2896 read_lock(&css_set_lock);
2897 list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
2898 count += atomic_read(&link->cg->refcount);
2899 }
2900 read_unlock(&css_set_lock);
2901 return count;
2902 }
2903
2904 /*
2905 * Advance a list_head iterator. The iterator should be positioned at
2906 * the start of a css_set
2907 */
2908 static void cgroup_advance_iter(struct cgroup *cgrp,
2909 struct cgroup_iter *it)
2910 {
2911 struct list_head *l = it->cg_link;
2912 struct cg_cgroup_link *link;
2913 struct css_set *cg;
2914
2915 /* Advance to the next non-empty css_set */
2916 do {
2917 l = l->next;
2918 if (l == &cgrp->css_sets) {
2919 it->cg_link = NULL;
2920 return;
2921 }
2922 link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
2923 cg = link->cg;
2924 } while (list_empty(&cg->tasks));
2925 it->cg_link = l;
2926 it->task = cg->tasks.next;
2927 }
2928
2929 /*
2930 * To reduce the fork() overhead for systems that are not actually
2931 * using their cgroups capability, we don't maintain the lists running
2932 * through each css_set to its tasks until we see the list actually
2933 * used - in other words after the first call to cgroup_iter_start().
2934 */
2935 static void cgroup_enable_task_cg_lists(void)
2936 {
2937 struct task_struct *p, *g;
2938 write_lock(&css_set_lock);
2939 use_task_css_set_links = 1;
2940 /*
2941 * We need tasklist_lock because RCU is not safe against
2942 * while_each_thread(). Besides, a forking task that has passed
2943 * cgroup_post_fork() without seeing use_task_css_set_links = 1
2944 * is not guaranteed to have its child immediately visible in the
2945 * tasklist if we walk through it with RCU.
2946 */
2947 read_lock(&tasklist_lock);
2948 do_each_thread(g, p) {
2949 task_lock(p);
2950 /*
2951 * We should check if the process is exiting, otherwise
2952 * it will race with cgroup_exit() in that the list
2953 * entry won't be deleted though the process has exited.
2954 */
2955 if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
2956 list_add(&p->cg_list, &p->cgroups->tasks);
2957 task_unlock(p);
2958 } while_each_thread(g, p);
2959 read_unlock(&tasklist_lock);
2960 write_unlock(&css_set_lock);
2961 }
2962
2963 /**
2964 * cgroup_next_descendant_pre - find the next descendant for pre-order walk
2965 * @pos: the current position (%NULL to initiate traversal)
2966 * @cgroup: cgroup whose descendants to walk
2967 *
2968 * To be used by cgroup_for_each_descendant_pre(). Find the next
2969 * descendant to visit for pre-order traversal of @cgroup's descendants.
2970 */
2971 struct cgroup *cgroup_next_descendant_pre(struct cgroup *pos,
2972 struct cgroup *cgroup)
2973 {
2974 struct cgroup *next;
2975
2976 WARN_ON_ONCE(!rcu_read_lock_held());
2977
2978 /* if first iteration, pretend we just visited @cgroup */
2979 if (!pos) {
2980 if (list_empty(&cgroup->children))
2981 return NULL;
2982 pos = cgroup;
2983 }
2984
2985 /* visit the first child if exists */
2986 next = list_first_or_null_rcu(&pos->children, struct cgroup, sibling);
2987 if (next)
2988 return next;
2989
2990 /* no child, visit my or the closest ancestor's next sibling */
2991 do {
2992 next = list_entry_rcu(pos->sibling.next, struct cgroup,
2993 sibling);
2994 if (&next->sibling != &pos->parent->children)
2995 return next;
2996
2997 pos = pos->parent;
2998 } while (pos != cgroup);
2999
3000 return NULL;
3001 }
3002 EXPORT_SYMBOL_GPL(cgroup_next_descendant_pre);
3003
3004 static struct cgroup *cgroup_leftmost_descendant(struct cgroup *pos)
3005 {
3006 struct cgroup *last;
3007
3008 do {
3009 last = pos;
3010 pos = list_first_or_null_rcu(&pos->children, struct cgroup,
3011 sibling);
3012 } while (pos);
3013
3014 return last;
3015 }
3016
3017 /**
3018 * cgroup_next_descendant_post - find the next descendant for post-order walk
3019 * @pos: the current position (%NULL to initiate traversal)
3020 * @cgroup: cgroup whose descendants to walk
3021 *
3022 * To be used by cgroup_for_each_descendant_post(). Find the next
3023 * descendant to visit for post-order traversal of @cgroup's descendants.
3024 */
3025 struct cgroup *cgroup_next_descendant_post(struct cgroup *pos,
3026 struct cgroup *cgroup)
3027 {
3028 struct cgroup *next;
3029
3030 WARN_ON_ONCE(!rcu_read_lock_held());
3031
3032 /* if first iteration, visit the leftmost descendant */
3033 if (!pos) {
3034 next = cgroup_leftmost_descendant(cgroup);
3035 return next != cgroup ? next : NULL;
3036 }
3037
3038 /* if there's an unvisited sibling, visit its leftmost descendant */
3039 next = list_entry_rcu(pos->sibling.next, struct cgroup, sibling);
3040 if (&next->sibling != &pos->parent->children)
3041 return cgroup_leftmost_descendant(next);
3042
3043 /* no sibling left, visit parent */
3044 next = pos->parent;
3045 return next != cgroup ? next : NULL;
3046 }
3047 EXPORT_SYMBOL_GPL(cgroup_next_descendant_post);
3048
3049 void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
3050 __acquires(css_set_lock)
3051 {
3052 /*
3053 * The first time anyone tries to iterate across a cgroup,
3054 * we need to enable the list linking each css_set to its
3055 * tasks, and fix up all existing tasks.
3056 */
3057 if (!use_task_css_set_links)
3058 cgroup_enable_task_cg_lists();
3059
3060 read_lock(&css_set_lock);
3061 it->cg_link = &cgrp->css_sets;
3062 cgroup_advance_iter(cgrp, it);
3063 }
3064
3065 struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
3066 struct cgroup_iter *it)
3067 {
3068 struct task_struct *res;
3069 struct list_head *l = it->task;
3070 struct cg_cgroup_link *link;
3071
3072 /* If the iterator cg is NULL, we have no tasks */
3073 if (!it->cg_link)
3074 return NULL;
3075 res = list_entry(l, struct task_struct, cg_list);
3076 /* Advance iterator to find next entry */
3077 l = l->next;
3078 link = list_entry(it->cg_link, struct cg_cgroup_link, cgrp_link_list);
3079 if (l == &link->cg->tasks) {
3080 /* We reached the end of this task list - move on to
3081 * the next cg_cgroup_link */
3082 cgroup_advance_iter(cgrp, it);
3083 } else {
3084 it->task = l;
3085 }
3086 return res;
3087 }
3088
3089 void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
3090 __releases(css_set_lock)
3091 {
3092 read_unlock(&css_set_lock);
3093 }
3094
3095 static inline int started_after_time(struct task_struct *t1,
3096 struct timespec *time,
3097 struct task_struct *t2)
3098 {
3099 int start_diff = timespec_compare(&t1->start_time, time);
3100 if (start_diff > 0) {
3101 return 1;
3102 } else if (start_diff < 0) {
3103 return 0;
3104 } else {
3105 /*
3106 * Arbitrarily, if two processes started at the same
3107 * time, we'll say that the lower pointer value
3108 * started first. Note that t2 may have exited by now
3109 * so this may not be a valid pointer any longer, but
3110 * that's fine - it still serves to distinguish
3111 * between two tasks started (effectively) simultaneously.
3112 */
3113 return t1 > t2;
3114 }
3115 }
3116
3117 /*
3118 * This function is a callback from heap_insert() and is used to order
3119 * the heap.
3120 * In this case we order the heap in descending task start time.
3121 */
3122 static inline int started_after(void *p1, void *p2)
3123 {
3124 struct task_struct *t1 = p1;
3125 struct task_struct *t2 = p2;
3126 return started_after_time(t1, &t2->start_time, t2);
3127 }
3128
3129 /**
3130 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
3131 * @scan: struct cgroup_scanner containing arguments for the scan
3132 *
3133 * Arguments include pointers to callback functions test_task() and
3134 * process_task().
3135 * Iterate through all the tasks in a cgroup, calling test_task() for each,
3136 * and if it returns true, call process_task() for it also.
3137 * The test_task pointer may be NULL, meaning always true (select all tasks).
3138 * Effectively duplicates cgroup_iter_{start,next,end}()
3139 * but does not lock css_set_lock for the call to process_task().
3140 * The struct cgroup_scanner may be embedded in any structure of the caller's
3141 * creation.
3142 * It is guaranteed that process_task() will act on every task that
3143 * is a member of the cgroup for the duration of this call. This
3144 * function may or may not call process_task() for tasks that exit
3145 * or move to a different cgroup during the call, or are forked or
3146 * move into the cgroup during the call.
3147 *
3148 * Note that test_task() may be called with locks held, and may in some
3149 * situations be called multiple times for the same task, so it should
3150 * be cheap.
3151 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
3152 * pre-allocated and will be used for heap operations (and its "gt" member will
3153 * be overwritten), else a temporary heap will be used (allocation of which
3154 * may cause this function to fail).
3155 */
3156 int cgroup_scan_tasks(struct cgroup_scanner *scan)
3157 {
3158 int retval, i;
3159 struct cgroup_iter it;
3160 struct task_struct *p, *dropped;
3161 /* Never dereference latest_task, since it's not refcounted */
3162 struct task_struct *latest_task = NULL;
3163 struct ptr_heap tmp_heap;
3164 struct ptr_heap *heap;
3165 struct timespec latest_time = { 0, 0 };
3166
3167 if (scan->heap) {
3168 /* The caller supplied our heap and pre-allocated its memory */
3169 heap = scan->heap;
3170 heap->gt = &started_after;
3171 } else {
3172 /* We need to allocate our own heap memory */
3173 heap = &tmp_heap;
3174 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
3175 if (retval)
3176 /* cannot allocate the heap */
3177 return retval;
3178 }
3179
3180 again:
3181 /*
3182 * Scan tasks in the cgroup, using the scanner's "test_task" callback
3183 * to determine which are of interest, and using the scanner's
3184 * "process_task" callback to process any of them that need an update.
3185 * Since we don't want to hold any locks during the task updates,
3186 * gather tasks to be processed in a heap structure.
3187 * The heap is sorted by descending task start time.
3188 * If the statically-sized heap fills up, we overflow tasks that
3189 * started later, and in future iterations only consider tasks that
3190 * started after the latest task in the previous pass. This
3191 * guarantees forward progress and that we don't miss any tasks.
3192 */
3193 heap->size = 0;
3194 cgroup_iter_start(scan->cg, &it);
3195 while ((p = cgroup_iter_next(scan->cg, &it))) {
3196 /*
3197 * Only affect tasks that qualify per the caller's callback,
3198 * if he provided one
3199 */
3200 if (scan->test_task && !scan->test_task(p, scan))
3201 continue;
3202 /*
3203 * Only process tasks that started after the last task
3204 * we processed
3205 */
3206 if (!started_after_time(p, &latest_time, latest_task))
3207 continue;
3208 dropped = heap_insert(heap, p);
3209 if (dropped == NULL) {
3210 /*
3211 * The new task was inserted; the heap wasn't
3212 * previously full
3213 */
3214 get_task_struct(p);
3215 } else if (dropped != p) {
3216 /*
3217 * The new task was inserted, and pushed out a
3218 * different task
3219 */
3220 get_task_struct(p);
3221 put_task_struct(dropped);
3222 }
3223 /*
3224 * Else the new task was newer than anything already in
3225 * the heap and wasn't inserted
3226 */
3227 }
3228 cgroup_iter_end(scan->cg, &it);
3229
3230 if (heap->size) {
3231 for (i = 0; i < heap->size; i++) {
3232 struct task_struct *q = heap->ptrs[i];
3233 if (i == 0) {
3234 latest_time = q->start_time;
3235 latest_task = q;
3236 }
3237 /* Process the task per the caller's callback */
3238 scan->process_task(q, scan);
3239 put_task_struct(q);
3240 }
3241 /*
3242 * If we had to process any tasks at all, scan again
3243 * in case some of them were in the middle of forking
3244 * children that didn't get processed.
3245 * Not the most efficient way to do it, but it avoids
3246 * having to take callback_mutex in the fork path
3247 */
3248 goto again;
3249 }
3250 if (heap == &tmp_heap)
3251 heap_free(&tmp_heap);
3252 return 0;
3253 }
3254
3255 /*
3256 * Stuff for reading the 'tasks'/'procs' files.
3257 *
3258 * Reading this file can return large amounts of data if a cgroup has
3259 * *lots* of attached tasks. So it may need several calls to read(),
3260 * but we cannot guarantee that the information we produce is correct
3261 * unless we produce it entirely atomically.
3262 *
3263 */
3264
3265 /* which pidlist file are we talking about? */
3266 enum cgroup_filetype {
3267 CGROUP_FILE_PROCS,
3268 CGROUP_FILE_TASKS,
3269 };
3270
3271 /*
3272 * A pidlist is a list of pids that virtually represents the contents of one
3273 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
3274 * a pair (one each for procs, tasks) for each pid namespace that's relevant
3275 * to the cgroup.
3276 */
3277 struct cgroup_pidlist {
3278 /*
3279 * used to find which pidlist is wanted. doesn't change as long as
3280 * this particular list stays in the list.
3281 */
3282 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
3283 /* array of xids */
3284 pid_t *list;
3285 /* how many elements the above list has */
3286 int length;
3287 /* how many files are using the current array */
3288 int use_count;
3289 /* each of these stored in a list by its cgroup */
3290 struct list_head links;
3291 /* pointer to the cgroup we belong to, for list removal purposes */
3292 struct cgroup *owner;
3293 /* protects the other fields */
3294 struct rw_semaphore mutex;
3295 };
3296
3297 /*
3298 * The following two functions "fix" the issue where there are more pids
3299 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3300 * TODO: replace with a kernel-wide solution to this problem
3301 */
3302 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
3303 static void *pidlist_allocate(int count)
3304 {
3305 if (PIDLIST_TOO_LARGE(count))
3306 return vmalloc(count * sizeof(pid_t));
3307 else
3308 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
3309 }
3310 static void pidlist_free(void *p)
3311 {
3312 if (is_vmalloc_addr(p))
3313 vfree(p);
3314 else
3315 kfree(p);
3316 }
3317 static void *pidlist_resize(void *p, int newcount)
3318 {
3319 void *newlist;
3320 /* note: if new alloc fails, old p will still be valid either way */
3321 if (is_vmalloc_addr(p)) {
3322 newlist = vmalloc(newcount * sizeof(pid_t));
3323 if (!newlist)
3324 return NULL;
3325 memcpy(newlist, p, newcount * sizeof(pid_t));
3326 vfree(p);
3327 } else {
3328 newlist = krealloc(p, newcount * sizeof(pid_t), GFP_KERNEL);
3329 }
3330 return newlist;
3331 }
3332
3333 /*
3334 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
3335 * If the new stripped list is sufficiently smaller and there's enough memory
3336 * to allocate a new buffer, will let go of the unneeded memory. Returns the
3337 * number of unique elements.
3338 */
3339 /* is the size difference enough that we should re-allocate the array? */
3340 #define PIDLIST_REALLOC_DIFFERENCE(old, new) ((old) - PAGE_SIZE >= (new))
3341 static int pidlist_uniq(pid_t **p, int length)
3342 {
3343 int src, dest = 1;
3344 pid_t *list = *p;
3345 pid_t *newlist;
3346
3347 /*
3348 * we presume the 0th element is unique, so i starts at 1. trivial
3349 * edge cases first; no work needs to be done for either
3350 */
3351 if (length == 0 || length == 1)
3352 return length;
3353 /* src and dest walk down the list; dest counts unique elements */
3354 for (src = 1; src < length; src++) {
3355 /* find next unique element */
3356 while (list[src] == list[src-1]) {
3357 src++;
3358 if (src == length)
3359 goto after;
3360 }
3361 /* dest always points to where the next unique element goes */
3362 list[dest] = list[src];
3363 dest++;
3364 }
3365 after:
3366 /*
3367 * if the length difference is large enough, we want to allocate a
3368 * smaller buffer to save memory. if this fails due to out of memory,
3369 * we'll just stay with what we've got.
3370 */
3371 if (PIDLIST_REALLOC_DIFFERENCE(length, dest)) {
3372 newlist = pidlist_resize(list, dest);
3373 if (newlist)
3374 *p = newlist;
3375 }
3376 return dest;
3377 }
3378
3379 static int cmppid(const void *a, const void *b)
3380 {
3381 return *(pid_t *)a - *(pid_t *)b;
3382 }
3383
3384 /*
3385 * find the appropriate pidlist for our purpose (given procs vs tasks)
3386 * returns with the lock on that pidlist already held, and takes care
3387 * of the use count, or returns NULL with no locks held if we're out of
3388 * memory.
3389 */
3390 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3391 enum cgroup_filetype type)
3392 {
3393 struct cgroup_pidlist *l;
3394 /* don't need task_nsproxy() if we're looking at ourself */
3395 struct pid_namespace *ns = current->nsproxy->pid_ns;
3396
3397 /*
3398 * We can't drop the pidlist_mutex before taking the l->mutex in case
3399 * the last ref-holder is trying to remove l from the list at the same
3400 * time. Holding the pidlist_mutex precludes somebody taking whichever
3401 * list we find out from under us - compare release_pid_array().
3402 */
3403 mutex_lock(&cgrp->pidlist_mutex);
3404 list_for_each_entry(l, &cgrp->pidlists, links) {
3405 if (l->key.type == type && l->key.ns == ns) {
3406 /* make sure l doesn't vanish out from under us */
3407 down_write(&l->mutex);
3408 mutex_unlock(&cgrp->pidlist_mutex);
3409 return l;
3410 }
3411 }
3412 /* entry not found; create a new one */
3413 l = kmalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
3414 if (!l) {
3415 mutex_unlock(&cgrp->pidlist_mutex);
3416 return l;
3417 }
3418 init_rwsem(&l->mutex);
3419 down_write(&l->mutex);
3420 l->key.type = type;
3421 l->key.ns = get_pid_ns(ns);
3422 l->use_count = 0; /* don't increment here */
3423 l->list = NULL;
3424 l->owner = cgrp;
3425 list_add(&l->links, &cgrp->pidlists);
3426 mutex_unlock(&cgrp->pidlist_mutex);
3427 return l;
3428 }
3429
3430 /*
3431 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3432 */
3433 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3434 struct cgroup_pidlist **lp)
3435 {
3436 pid_t *array;
3437 int length;
3438 int pid, n = 0; /* used for populating the array */
3439 struct cgroup_iter it;
3440 struct task_struct *tsk;
3441 struct cgroup_pidlist *l;
3442
3443 /*
3444 * If cgroup gets more users after we read count, we won't have
3445 * enough space - tough. This race is indistinguishable to the
3446 * caller from the case that the additional cgroup users didn't
3447 * show up until sometime later on.
3448 */
3449 length = cgroup_task_count(cgrp);
3450 array = pidlist_allocate(length);
3451 if (!array)
3452 return -ENOMEM;
3453 /* now, populate the array */
3454 cgroup_iter_start(cgrp, &it);
3455 while ((tsk = cgroup_iter_next(cgrp, &it))) {
3456 if (unlikely(n == length))
3457 break;
3458 /* get tgid or pid for procs or tasks file respectively */
3459 if (type == CGROUP_FILE_PROCS)
3460 pid = task_tgid_vnr(tsk);
3461 else
3462 pid = task_pid_vnr(tsk);
3463 if (pid > 0) /* make sure to only use valid results */
3464 array[n++] = pid;
3465 }
3466 cgroup_iter_end(cgrp, &it);
3467 length = n;
3468 /* now sort & (if procs) strip out duplicates */
3469 sort(array, length, sizeof(pid_t), cmppid, NULL);
3470 if (type == CGROUP_FILE_PROCS)
3471 length = pidlist_uniq(&array, length);
3472 l = cgroup_pidlist_find(cgrp, type);
3473 if (!l) {
3474 pidlist_free(array);
3475 return -ENOMEM;
3476 }
3477 /* store array, freeing old if necessary - lock already held */
3478 pidlist_free(l->list);
3479 l->list = array;
3480 l->length = length;
3481 l->use_count++;
3482 up_write(&l->mutex);
3483 *lp = l;
3484 return 0;
3485 }
3486
3487 /**
3488 * cgroupstats_build - build and fill cgroupstats
3489 * @stats: cgroupstats to fill information into
3490 * @dentry: A dentry entry belonging to the cgroup for which stats have
3491 * been requested.
3492 *
3493 * Build and fill cgroupstats so that taskstats can export it to user
3494 * space.
3495 */
3496 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
3497 {
3498 int ret = -EINVAL;
3499 struct cgroup *cgrp;
3500 struct cgroup_iter it;
3501 struct task_struct *tsk;
3502
3503 /*
3504 * Validate dentry by checking the superblock operations,
3505 * and make sure it's a directory.
3506 */
3507 if (dentry->d_sb->s_op != &cgroup_ops ||
3508 !S_ISDIR(dentry->d_inode->i_mode))
3509 goto err;
3510
3511 ret = 0;
3512 cgrp = dentry->d_fsdata;
3513
3514 cgroup_iter_start(cgrp, &it);
3515 while ((tsk = cgroup_iter_next(cgrp, &it))) {
3516 switch (tsk->state) {
3517 case TASK_RUNNING:
3518 stats->nr_running++;
3519 break;
3520 case TASK_INTERRUPTIBLE:
3521 stats->nr_sleeping++;
3522 break;
3523 case TASK_UNINTERRUPTIBLE:
3524 stats->nr_uninterruptible++;
3525 break;
3526 case TASK_STOPPED:
3527 stats->nr_stopped++;
3528 break;
3529 default:
3530 if (delayacct_is_task_waiting_on_io(tsk))
3531 stats->nr_io_wait++;
3532 break;
3533 }
3534 }
3535 cgroup_iter_end(cgrp, &it);
3536
3537 err:
3538 return ret;
3539 }
3540
3541
3542 /*
3543 * seq_file methods for the tasks/procs files. The seq_file position is the
3544 * next pid to display; the seq_file iterator is a pointer to the pid
3545 * in the cgroup->l->list array.
3546 */
3547
3548 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
3549 {
3550 /*
3551 * Initially we receive a position value that corresponds to
3552 * one more than the last pid shown (or 0 on the first call or
3553 * after a seek to the start). Use a binary-search to find the
3554 * next pid to display, if any
3555 */
3556 struct cgroup_pidlist *l = s->private;
3557 int index = 0, pid = *pos;
3558 int *iter;
3559
3560 down_read(&l->mutex);
3561 if (pid) {
3562 int end = l->length;
3563
3564 while (index < end) {
3565 int mid = (index + end) / 2;
3566 if (l->list[mid] == pid) {
3567 index = mid;
3568 break;
3569 } else if (l->list[mid] <= pid)
3570 index = mid + 1;
3571 else
3572 end = mid;
3573 }
3574 }
3575 /* If we're off the end of the array, we're done */
3576 if (index >= l->length)
3577 return NULL;
3578 /* Update the abstract position to be the actual pid that we found */
3579 iter = l->list + index;
3580 *pos = *iter;
3581 return iter;
3582 }
3583
3584 static void cgroup_pidlist_stop(struct seq_file *s, void *v)
3585 {
3586 struct cgroup_pidlist *l = s->private;
3587 up_read(&l->mutex);
3588 }
3589
3590 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
3591 {
3592 struct cgroup_pidlist *l = s->private;
3593 pid_t *p = v;
3594 pid_t *end = l->list + l->length;
3595 /*
3596 * Advance to the next pid in the array. If this goes off the
3597 * end, we're done
3598 */
3599 p++;
3600 if (p >= end) {
3601 return NULL;
3602 } else {
3603 *pos = *p;
3604 return p;
3605 }
3606 }
3607
3608 static int cgroup_pidlist_show(struct seq_file *s, void *v)
3609 {
3610 return seq_printf(s, "%d\n", *(int *)v);
3611 }
3612
3613 /*
3614 * seq_operations functions for iterating on pidlists through seq_file -
3615 * independent of whether it's tasks or procs
3616 */
3617 static const struct seq_operations cgroup_pidlist_seq_operations = {
3618 .start = cgroup_pidlist_start,
3619 .stop = cgroup_pidlist_stop,
3620 .next = cgroup_pidlist_next,
3621 .show = cgroup_pidlist_show,
3622 };
3623
3624 static void cgroup_release_pid_array(struct cgroup_pidlist *l)
3625 {
3626 /*
3627 * the case where we're the last user of this particular pidlist will
3628 * have us remove it from the cgroup's list, which entails taking the
3629 * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
3630 * pidlist_mutex, we have to take pidlist_mutex first.
3631 */
3632 mutex_lock(&l->owner->pidlist_mutex);
3633 down_write(&l->mutex);
3634 BUG_ON(!l->use_count);
3635 if (!--l->use_count) {
3636 /* we're the last user if refcount is 0; remove and free */
3637 list_del(&l->links);
3638 mutex_unlock(&l->owner->pidlist_mutex);
3639 pidlist_free(l->list);
3640 put_pid_ns(l->key.ns);
3641 up_write(&l->mutex);
3642 kfree(l);
3643 return;
3644 }
3645 mutex_unlock(&l->owner->pidlist_mutex);
3646 up_write(&l->mutex);
3647 }
3648
3649 static int cgroup_pidlist_release(struct inode *inode, struct file *file)
3650 {
3651 struct cgroup_pidlist *l;
3652 if (!(file->f_mode & FMODE_READ))
3653 return 0;
3654 /*
3655 * the seq_file will only be initialized if the file was opened for
3656 * reading; hence we check if it's not null only in that case.
3657 */
3658 l = ((struct seq_file *)file->private_data)->private;
3659 cgroup_release_pid_array(l);
3660 return seq_release(inode, file);
3661 }
3662
3663 static const struct file_operations cgroup_pidlist_operations = {
3664 .read = seq_read,
3665 .llseek = seq_lseek,
3666 .write = cgroup_file_write,
3667 .release = cgroup_pidlist_release,
3668 };
3669
3670 /*
3671 * The following functions handle opens on a file that displays a pidlist
3672 * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
3673 * in the cgroup.
3674 */
3675 /* helper function for the two below it */
3676 static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type)
3677 {
3678 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
3679 struct cgroup_pidlist *l;
3680 int retval;
3681
3682 /* Nothing to do for write-only files */
3683 if (!(file->f_mode & FMODE_READ))
3684 return 0;
3685
3686 /* have the array populated */
3687 retval = pidlist_array_load(cgrp, type, &l);
3688 if (retval)
3689 return retval;
3690 /* configure file information */
3691 file->f_op = &cgroup_pidlist_operations;
3692
3693 retval = seq_open(file, &cgroup_pidlist_seq_operations);
3694 if (retval) {
3695 cgroup_release_pid_array(l);
3696 return retval;
3697 }
3698 ((struct seq_file *)file->private_data)->private = l;
3699 return 0;
3700 }
3701 static int cgroup_tasks_open(struct inode *unused, struct file *file)
3702 {
3703 return cgroup_pidlist_open(file, CGROUP_FILE_TASKS);
3704 }
3705 static int cgroup_procs_open(struct inode *unused, struct file *file)
3706 {
3707 return cgroup_pidlist_open(file, CGROUP_FILE_PROCS);
3708 }
3709
3710 static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
3711 struct cftype *cft)
3712 {
3713 return notify_on_release(cgrp);
3714 }
3715
3716 static int cgroup_write_notify_on_release(struct cgroup *cgrp,
3717 struct cftype *cft,
3718 u64 val)
3719 {
3720 clear_bit(CGRP_RELEASABLE, &cgrp->flags);
3721 if (val)
3722 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3723 else
3724 clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3725 return 0;
3726 }
3727
3728 /*
3729 * Unregister event and free resources.
3730 *
3731 * Gets called from workqueue.
3732 */
3733 static void cgroup_event_remove(struct work_struct *work)
3734 {
3735 struct cgroup_event *event = container_of(work, struct cgroup_event,
3736 remove);
3737 struct cgroup *cgrp = event->cgrp;
3738
3739 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3740
3741 eventfd_ctx_put(event->eventfd);
3742 kfree(event);
3743 dput(cgrp->dentry);
3744 }
3745
3746 /*
3747 * Gets called on POLLHUP on eventfd when user closes it.
3748 *
3749 * Called with wqh->lock held and interrupts disabled.
3750 */
3751 static int cgroup_event_wake(wait_queue_t *wait, unsigned mode,
3752 int sync, void *key)
3753 {
3754 struct cgroup_event *event = container_of(wait,
3755 struct cgroup_event, wait);
3756 struct cgroup *cgrp = event->cgrp;
3757 unsigned long flags = (unsigned long)key;
3758
3759 if (flags & POLLHUP) {
3760 __remove_wait_queue(event->wqh, &event->wait);
3761 spin_lock(&cgrp->event_list_lock);
3762 list_del(&event->list);
3763 spin_unlock(&cgrp->event_list_lock);
3764 /*
3765 * We are in atomic context, but cgroup_event_remove() may
3766 * sleep, so we have to call it in workqueue.
3767 */
3768 schedule_work(&event->remove);
3769 }
3770
3771 return 0;
3772 }
3773
3774 static void cgroup_event_ptable_queue_proc(struct file *file,
3775 wait_queue_head_t *wqh, poll_table *pt)
3776 {
3777 struct cgroup_event *event = container_of(pt,
3778 struct cgroup_event, pt);
3779
3780 event->wqh = wqh;
3781 add_wait_queue(wqh, &event->wait);
3782 }
3783
3784 /*
3785 * Parse input and register new cgroup event handler.
3786 *
3787 * Input must be in format '<event_fd> <control_fd> <args>'.
3788 * Interpretation of args is defined by control file implementation.
3789 */
3790 static int cgroup_write_event_control(struct cgroup *cgrp, struct cftype *cft,
3791 const char *buffer)
3792 {
3793 struct cgroup_event *event = NULL;
3794 unsigned int efd, cfd;
3795 struct file *efile = NULL;
3796 struct file *cfile = NULL;
3797 char *endp;
3798 int ret;
3799
3800 efd = simple_strtoul(buffer, &endp, 10);
3801 if (*endp != ' ')
3802 return -EINVAL;
3803 buffer = endp + 1;
3804
3805 cfd = simple_strtoul(buffer, &endp, 10);
3806 if ((*endp != ' ') && (*endp != '\0'))
3807 return -EINVAL;
3808 buffer = endp + 1;
3809
3810 event = kzalloc(sizeof(*event), GFP_KERNEL);
3811 if (!event)
3812 return -ENOMEM;
3813 event->cgrp = cgrp;
3814 INIT_LIST_HEAD(&event->list);
3815 init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc);
3816 init_waitqueue_func_entry(&event->wait, cgroup_event_wake);
3817 INIT_WORK(&event->remove, cgroup_event_remove);
3818
3819 efile = eventfd_fget(efd);
3820 if (IS_ERR(efile)) {
3821 ret = PTR_ERR(efile);
3822 goto fail;
3823 }
3824
3825 event->eventfd = eventfd_ctx_fileget(efile);
3826 if (IS_ERR(event->eventfd)) {
3827 ret = PTR_ERR(event->eventfd);
3828 goto fail;
3829 }
3830
3831 cfile = fget(cfd);
3832 if (!cfile) {
3833 ret = -EBADF;
3834 goto fail;
3835 }
3836
3837 /* the process need read permission on control file */
3838 /* AV: shouldn't we check that it's been opened for read instead? */
3839 ret = inode_permission(cfile->f_path.dentry->d_inode, MAY_READ);
3840 if (ret < 0)
3841 goto fail;
3842
3843 event->cft = __file_cft(cfile);
3844 if (IS_ERR(event->cft)) {
3845 ret = PTR_ERR(event->cft);
3846 goto fail;
3847 }
3848
3849 if (!event->cft->register_event || !event->cft->unregister_event) {
3850 ret = -EINVAL;
3851 goto fail;
3852 }
3853
3854 ret = event->cft->register_event(cgrp, event->cft,
3855 event->eventfd, buffer);
3856 if (ret)
3857 goto fail;
3858
3859 if (efile->f_op->poll(efile, &event->pt) & POLLHUP) {
3860 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3861 ret = 0;
3862 goto fail;
3863 }
3864
3865 /*
3866 * Events should be removed after rmdir of cgroup directory, but before
3867 * destroying subsystem state objects. Let's take reference to cgroup
3868 * directory dentry to do that.
3869 */
3870 dget(cgrp->dentry);
3871
3872 spin_lock(&cgrp->event_list_lock);
3873 list_add(&event->list, &cgrp->event_list);
3874 spin_unlock(&cgrp->event_list_lock);
3875
3876 fput(cfile);
3877 fput(efile);
3878
3879 return 0;
3880
3881 fail:
3882 if (cfile)
3883 fput(cfile);
3884
3885 if (event && event->eventfd && !IS_ERR(event->eventfd))
3886 eventfd_ctx_put(event->eventfd);
3887
3888 if (!IS_ERR_OR_NULL(efile))
3889 fput(efile);
3890
3891 kfree(event);
3892
3893 return ret;
3894 }
3895
3896 static u64 cgroup_clone_children_read(struct cgroup *cgrp,
3897 struct cftype *cft)
3898 {
3899 return clone_children(cgrp);
3900 }
3901
3902 static int cgroup_clone_children_write(struct cgroup *cgrp,
3903 struct cftype *cft,
3904 u64 val)
3905 {
3906 if (val)
3907 set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3908 else
3909 clear_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3910 return 0;
3911 }
3912
3913 /*
3914 * for the common functions, 'private' gives the type of file
3915 */
3916 /* for hysterical raisins, we can't put this on the older files */
3917 #define CGROUP_FILE_GENERIC_PREFIX "cgroup."
3918 static struct cftype files[] = {
3919 {
3920 .name = "tasks",
3921 .open = cgroup_tasks_open,
3922 .write_u64 = cgroup_tasks_write,
3923 .release = cgroup_pidlist_release,
3924 .mode = S_IRUGO | S_IWUSR,
3925 },
3926 {
3927 .name = CGROUP_FILE_GENERIC_PREFIX "procs",
3928 .open = cgroup_procs_open,
3929 .write_u64 = cgroup_procs_write,
3930 .release = cgroup_pidlist_release,
3931 .mode = S_IRUGO | S_IWUSR,
3932 },
3933 {
3934 .name = "notify_on_release",
3935 .read_u64 = cgroup_read_notify_on_release,
3936 .write_u64 = cgroup_write_notify_on_release,
3937 },
3938 {
3939 .name = CGROUP_FILE_GENERIC_PREFIX "event_control",
3940 .write_string = cgroup_write_event_control,
3941 .mode = S_IWUGO,
3942 },
3943 {
3944 .name = "cgroup.clone_children",
3945 .read_u64 = cgroup_clone_children_read,
3946 .write_u64 = cgroup_clone_children_write,
3947 },
3948 {
3949 .name = "release_agent",
3950 .flags = CFTYPE_ONLY_ON_ROOT,
3951 .read_seq_string = cgroup_release_agent_show,
3952 .write_string = cgroup_release_agent_write,
3953 .max_write_len = PATH_MAX,
3954 },
3955 { } /* terminate */
3956 };
3957
3958 /**
3959 * cgroup_populate_dir - selectively creation of files in a directory
3960 * @cgrp: target cgroup
3961 * @base_files: true if the base files should be added
3962 * @subsys_mask: mask of the subsystem ids whose files should be added
3963 */
3964 static int cgroup_populate_dir(struct cgroup *cgrp, bool base_files,
3965 unsigned long subsys_mask)
3966 {
3967 int err;
3968 struct cgroup_subsys *ss;
3969
3970 if (base_files) {
3971 err = cgroup_addrm_files(cgrp, NULL, files, true);
3972 if (err < 0)
3973 return err;
3974 }
3975
3976 /* process cftsets of each subsystem */
3977 for_each_subsys(cgrp->root, ss) {
3978 struct cftype_set *set;
3979 if (!test_bit(ss->subsys_id, &subsys_mask))
3980 continue;
3981
3982 list_for_each_entry(set, &ss->cftsets, node)
3983 cgroup_addrm_files(cgrp, ss, set->cfts, true);
3984 }
3985
3986 /* This cgroup is ready now */
3987 for_each_subsys(cgrp->root, ss) {
3988 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3989 /*
3990 * Update id->css pointer and make this css visible from
3991 * CSS ID functions. This pointer will be dereferened
3992 * from RCU-read-side without locks.
3993 */
3994 if (css->id)
3995 rcu_assign_pointer(css->id->css, css);
3996 }
3997
3998 return 0;
3999 }
4000
4001 static void css_dput_fn(struct work_struct *work)
4002 {
4003 struct cgroup_subsys_state *css =
4004 container_of(work, struct cgroup_subsys_state, dput_work);
4005 struct dentry *dentry = css->cgroup->dentry;
4006 struct super_block *sb = dentry->d_sb;
4007
4008 atomic_inc(&sb->s_active);
4009 dput(dentry);
4010 deactivate_super(sb);
4011 }
4012
4013 static void init_cgroup_css(struct cgroup_subsys_state *css,
4014 struct cgroup_subsys *ss,
4015 struct cgroup *cgrp)
4016 {
4017 css->cgroup = cgrp;
4018 atomic_set(&css->refcnt, 1);
4019 css->flags = 0;
4020 css->id = NULL;
4021 if (cgrp == dummytop)
4022 set_bit(CSS_ROOT, &css->flags);
4023 BUG_ON(cgrp->subsys[ss->subsys_id]);
4024 cgrp->subsys[ss->subsys_id] = css;
4025
4026 /*
4027 * css holds an extra ref to @cgrp->dentry which is put on the last
4028 * css_put(). dput() requires process context, which css_put() may
4029 * be called without. @css->dput_work will be used to invoke
4030 * dput() asynchronously from css_put().
4031 */
4032 INIT_WORK(&css->dput_work, css_dput_fn);
4033 }
4034
4035 /*
4036 * cgroup_create - create a cgroup
4037 * @parent: cgroup that will be parent of the new cgroup
4038 * @dentry: dentry of the new cgroup
4039 * @mode: mode to set on new inode
4040 *
4041 * Must be called with the mutex on the parent inode held
4042 */
4043 static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
4044 umode_t mode)
4045 {
4046 struct cgroup *cgrp;
4047 struct cgroupfs_root *root = parent->root;
4048 int err = 0;
4049 struct cgroup_subsys *ss;
4050 struct super_block *sb = root->sb;
4051
4052 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
4053 if (!cgrp)
4054 return -ENOMEM;
4055
4056 /*
4057 * Only live parents can have children. Note that the liveliness
4058 * check isn't strictly necessary because cgroup_mkdir() and
4059 * cgroup_rmdir() are fully synchronized by i_mutex; however, do it
4060 * anyway so that locking is contained inside cgroup proper and we
4061 * don't get nasty surprises if we ever grow another caller.
4062 */
4063 if (!cgroup_lock_live_group(parent)) {
4064 err = -ENODEV;
4065 goto err_free;
4066 }
4067
4068 /* Grab a reference on the superblock so the hierarchy doesn't
4069 * get deleted on unmount if there are child cgroups. This
4070 * can be done outside cgroup_mutex, since the sb can't
4071 * disappear while someone has an open control file on the
4072 * fs */
4073 atomic_inc(&sb->s_active);
4074
4075 init_cgroup_housekeeping(cgrp);
4076
4077 cgrp->parent = parent;
4078 cgrp->root = parent->root;
4079 cgrp->top_cgroup = parent->top_cgroup;
4080
4081 if (notify_on_release(parent))
4082 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4083
4084 if (clone_children(parent))
4085 set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
4086
4087 for_each_subsys(root, ss) {
4088 struct cgroup_subsys_state *css;
4089
4090 css = ss->create(cgrp);
4091 if (IS_ERR(css)) {
4092 err = PTR_ERR(css);
4093 goto err_destroy;
4094 }
4095 init_cgroup_css(css, ss, cgrp);
4096 if (ss->use_id) {
4097 err = alloc_css_id(ss, parent, cgrp);
4098 if (err)
4099 goto err_destroy;
4100 }
4101 /* At error, ->destroy() callback has to free assigned ID. */
4102 if (clone_children(parent) && ss->post_clone)
4103 ss->post_clone(cgrp);
4104
4105 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
4106 parent->parent) {
4107 pr_warning("cgroup: %s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4108 current->comm, current->pid, ss->name);
4109 if (!strcmp(ss->name, "memory"))
4110 pr_warning("cgroup: \"memory\" requires setting use_hierarchy to 1 on the root.\n");
4111 ss->warned_broken_hierarchy = true;
4112 }
4113 }
4114
4115 /*
4116 * Create directory. cgroup_create_file() returns with the new
4117 * directory locked on success so that it can be populated without
4118 * dropping cgroup_mutex.
4119 */
4120 err = cgroup_create_file(dentry, S_IFDIR | mode, sb);
4121 if (err < 0)
4122 goto err_destroy;
4123 lockdep_assert_held(&dentry->d_inode->i_mutex);
4124
4125 /* allocation complete, commit to creation */
4126 dentry->d_fsdata = cgrp;
4127 rcu_assign_pointer(cgrp->dentry, dentry);
4128 list_add_tail(&cgrp->allcg_node, &root->allcg_list);
4129 list_add_tail_rcu(&cgrp->sibling, &cgrp->parent->children);
4130 root->number_of_cgroups++;
4131
4132 for_each_subsys(root, ss) {
4133 /* each css holds a ref to the cgroup's dentry */
4134 dget(dentry);
4135
4136 /* creation succeeded, notify subsystems */
4137 if (ss->post_create)
4138 ss->post_create(cgrp);
4139 }
4140
4141 err = cgroup_populate_dir(cgrp, true, root->subsys_mask);
4142 /* If err < 0, we have a half-filled directory - oh well ;) */
4143
4144 mutex_unlock(&cgroup_mutex);
4145 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
4146
4147 return 0;
4148
4149 err_destroy:
4150 for_each_subsys(root, ss) {
4151 if (cgrp->subsys[ss->subsys_id])
4152 ss->destroy(cgrp);
4153 }
4154 mutex_unlock(&cgroup_mutex);
4155 /* Release the reference count that we took on the superblock */
4156 deactivate_super(sb);
4157 err_free:
4158 kfree(cgrp);
4159 return err;
4160 }
4161
4162 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
4163 {
4164 struct cgroup *c_parent = dentry->d_parent->d_fsdata;
4165
4166 /* the vfs holds inode->i_mutex already */
4167 return cgroup_create(c_parent, dentry, mode | S_IFDIR);
4168 }
4169
4170 /*
4171 * Check the reference count on each subsystem. Since we already
4172 * established that there are no tasks in the cgroup, if the css refcount
4173 * is also 1, then there should be no outstanding references, so the
4174 * subsystem is safe to destroy. We scan across all subsystems rather than
4175 * using the per-hierarchy linked list of mounted subsystems since we can
4176 * be called via check_for_release() with no synchronization other than
4177 * RCU, and the subsystem linked list isn't RCU-safe.
4178 */
4179 static int cgroup_has_css_refs(struct cgroup *cgrp)
4180 {
4181 int i;
4182
4183 /*
4184 * We won't need to lock the subsys array, because the subsystems
4185 * we're concerned about aren't going anywhere since our cgroup root
4186 * has a reference on them.
4187 */
4188 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4189 struct cgroup_subsys *ss = subsys[i];
4190 struct cgroup_subsys_state *css;
4191
4192 /* Skip subsystems not present or not in this hierarchy */
4193 if (ss == NULL || ss->root != cgrp->root)
4194 continue;
4195
4196 css = cgrp->subsys[ss->subsys_id];
4197 /*
4198 * When called from check_for_release() it's possible
4199 * that by this point the cgroup has been removed
4200 * and the css deleted. But a false-positive doesn't
4201 * matter, since it can only happen if the cgroup
4202 * has been deleted and hence no longer needs the
4203 * release agent to be called anyway.
4204 */
4205 if (css && css_refcnt(css) > 1)
4206 return 1;
4207 }
4208 return 0;
4209 }
4210
4211 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
4212 {
4213 struct cgroup *cgrp = dentry->d_fsdata;
4214 struct dentry *d;
4215 struct cgroup *parent;
4216 DEFINE_WAIT(wait);
4217 struct cgroup_event *event, *tmp;
4218 struct cgroup_subsys *ss;
4219
4220 /* the vfs holds both inode->i_mutex already */
4221 mutex_lock(&cgroup_mutex);
4222 parent = cgrp->parent;
4223 if (atomic_read(&cgrp->count) || !list_empty(&cgrp->children)) {
4224 mutex_unlock(&cgroup_mutex);
4225 return -EBUSY;
4226 }
4227
4228 /*
4229 * Block new css_tryget() by deactivating refcnt and mark @cgrp
4230 * removed. This makes future css_tryget() and child creation
4231 * attempts fail thus maintaining the removal conditions verified
4232 * above.
4233 */
4234 for_each_subsys(cgrp->root, ss) {
4235 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
4236
4237 WARN_ON(atomic_read(&css->refcnt) < 0);
4238 atomic_add(CSS_DEACT_BIAS, &css->refcnt);
4239 }
4240 set_bit(CGRP_REMOVED, &cgrp->flags);
4241
4242 /*
4243 * Tell subsystems to initate destruction. pre_destroy() should be
4244 * called with cgroup_mutex unlocked. See 3fa59dfbc3 ("cgroup: fix
4245 * potential deadlock in pre_destroy") for details.
4246 */
4247 mutex_unlock(&cgroup_mutex);
4248 for_each_subsys(cgrp->root, ss)
4249 if (ss->pre_destroy)
4250 ss->pre_destroy(cgrp);
4251 mutex_lock(&cgroup_mutex);
4252
4253 /*
4254 * Put all the base refs. Each css holds an extra reference to the
4255 * cgroup's dentry and cgroup removal proceeds regardless of css
4256 * refs. On the last put of each css, whenever that may be, the
4257 * extra dentry ref is put so that dentry destruction happens only
4258 * after all css's are released.
4259 */
4260 for_each_subsys(cgrp->root, ss)
4261 css_put(cgrp->subsys[ss->subsys_id]);
4262
4263 raw_spin_lock(&release_list_lock);
4264 if (!list_empty(&cgrp->release_list))
4265 list_del_init(&cgrp->release_list);
4266 raw_spin_unlock(&release_list_lock);
4267
4268 /* delete this cgroup from parent->children */
4269 list_del_rcu(&cgrp->sibling);
4270
4271 list_del_init(&cgrp->allcg_node);
4272
4273 d = dget(cgrp->dentry);
4274
4275 cgroup_d_remove_dir(d);
4276 dput(d);
4277
4278 set_bit(CGRP_RELEASABLE, &parent->flags);
4279 check_for_release(parent);
4280
4281 /*
4282 * Unregister events and notify userspace.
4283 * Notify userspace about cgroup removing only after rmdir of cgroup
4284 * directory to avoid race between userspace and kernelspace
4285 */
4286 spin_lock(&cgrp->event_list_lock);
4287 list_for_each_entry_safe(event, tmp, &cgrp->event_list, list) {
4288 list_del(&event->list);
4289 remove_wait_queue(event->wqh, &event->wait);
4290 eventfd_signal(event->eventfd, 1);
4291 schedule_work(&event->remove);
4292 }
4293 spin_unlock(&cgrp->event_list_lock);
4294
4295 mutex_unlock(&cgroup_mutex);
4296 return 0;
4297 }
4298
4299 static void __init_or_module cgroup_init_cftsets(struct cgroup_subsys *ss)
4300 {
4301 INIT_LIST_HEAD(&ss->cftsets);
4302
4303 /*
4304 * base_cftset is embedded in subsys itself, no need to worry about
4305 * deregistration.
4306 */
4307 if (ss->base_cftypes) {
4308 ss->base_cftset.cfts = ss->base_cftypes;
4309 list_add_tail(&ss->base_cftset.node, &ss->cftsets);
4310 }
4311 }
4312
4313 static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
4314 {
4315 struct cgroup_subsys_state *css;
4316
4317 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
4318
4319 /* init base cftset */
4320 cgroup_init_cftsets(ss);
4321
4322 /* Create the top cgroup state for this subsystem */
4323 list_add(&ss->sibling, &rootnode.subsys_list);
4324 ss->root = &rootnode;
4325 css = ss->create(dummytop);
4326 /* We don't handle early failures gracefully */
4327 BUG_ON(IS_ERR(css));
4328 init_cgroup_css(css, ss, dummytop);
4329
4330 /* Update the init_css_set to contain a subsys
4331 * pointer to this state - since the subsystem is
4332 * newly registered, all tasks and hence the
4333 * init_css_set is in the subsystem's top cgroup. */
4334 init_css_set.subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
4335
4336 need_forkexit_callback |= ss->fork || ss->exit;
4337
4338 /* At system boot, before all subsystems have been
4339 * registered, no tasks have been forked, so we don't
4340 * need to invoke fork callbacks here. */
4341 BUG_ON(!list_empty(&init_task.tasks));
4342
4343 ss->active = 1;
4344
4345 if (ss->post_create)
4346 ss->post_create(&ss->root->top_cgroup);
4347
4348 /* this function shouldn't be used with modular subsystems, since they
4349 * need to register a subsys_id, among other things */
4350 BUG_ON(ss->module);
4351 }
4352
4353 /**
4354 * cgroup_load_subsys: load and register a modular subsystem at runtime
4355 * @ss: the subsystem to load
4356 *
4357 * This function should be called in a modular subsystem's initcall. If the
4358 * subsystem is built as a module, it will be assigned a new subsys_id and set
4359 * up for use. If the subsystem is built-in anyway, work is delegated to the
4360 * simpler cgroup_init_subsys.
4361 */
4362 int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss)
4363 {
4364 int i;
4365 struct cgroup_subsys_state *css;
4366
4367 /* check name and function validity */
4368 if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN ||
4369 ss->create == NULL || ss->destroy == NULL)
4370 return -EINVAL;
4371
4372 /*
4373 * we don't support callbacks in modular subsystems. this check is
4374 * before the ss->module check for consistency; a subsystem that could
4375 * be a module should still have no callbacks even if the user isn't
4376 * compiling it as one.
4377 */
4378 if (ss->fork || ss->exit)
4379 return -EINVAL;
4380
4381 /*
4382 * an optionally modular subsystem is built-in: we want to do nothing,
4383 * since cgroup_init_subsys will have already taken care of it.
4384 */
4385 if (ss->module == NULL) {
4386 /* a sanity check */
4387 BUG_ON(subsys[ss->subsys_id] != ss);
4388 return 0;
4389 }
4390
4391 /* init base cftset */
4392 cgroup_init_cftsets(ss);
4393
4394 mutex_lock(&cgroup_mutex);
4395 subsys[ss->subsys_id] = ss;
4396
4397 /*
4398 * no ss->create seems to need anything important in the ss struct, so
4399 * this can happen first (i.e. before the rootnode attachment).
4400 */
4401 css = ss->create(dummytop);
4402 if (IS_ERR(css)) {
4403 /* failure case - need to deassign the subsys[] slot. */
4404 subsys[ss->subsys_id] = NULL;
4405 mutex_unlock(&cgroup_mutex);
4406 return PTR_ERR(css);
4407 }
4408
4409 list_add(&ss->sibling, &rootnode.subsys_list);
4410 ss->root = &rootnode;
4411
4412 /* our new subsystem will be attached to the dummy hierarchy. */
4413 init_cgroup_css(css, ss, dummytop);
4414 /* init_idr must be after init_cgroup_css because it sets css->id. */
4415 if (ss->use_id) {
4416 int ret = cgroup_init_idr(ss, css);
4417 if (ret) {
4418 dummytop->subsys[ss->subsys_id] = NULL;
4419 ss->destroy(dummytop);
4420 subsys[ss->subsys_id] = NULL;
4421 mutex_unlock(&cgroup_mutex);
4422 return ret;
4423 }
4424 }
4425
4426 /*
4427 * Now we need to entangle the css into the existing css_sets. unlike
4428 * in cgroup_init_subsys, there are now multiple css_sets, so each one
4429 * will need a new pointer to it; done by iterating the css_set_table.
4430 * furthermore, modifying the existing css_sets will corrupt the hash
4431 * table state, so each changed css_set will need its hash recomputed.
4432 * this is all done under the css_set_lock.
4433 */
4434 write_lock(&css_set_lock);
4435 for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
4436 struct css_set *cg;
4437 struct hlist_node *node, *tmp;
4438 struct hlist_head *bucket = &css_set_table[i], *new_bucket;
4439
4440 hlist_for_each_entry_safe(cg, node, tmp, bucket, hlist) {
4441 /* skip entries that we already rehashed */
4442 if (cg->subsys[ss->subsys_id])
4443 continue;
4444 /* remove existing entry */
4445 hlist_del(&cg->hlist);
4446 /* set new value */
4447 cg->subsys[ss->subsys_id] = css;
4448 /* recompute hash and restore entry */
4449 new_bucket = css_set_hash(cg->subsys);
4450 hlist_add_head(&cg->hlist, new_bucket);
4451 }
4452 }
4453 write_unlock(&css_set_lock);
4454
4455 ss->active = 1;
4456
4457 if (ss->post_create)
4458 ss->post_create(&ss->root->top_cgroup);
4459
4460 /* success! */
4461 mutex_unlock(&cgroup_mutex);
4462 return 0;
4463 }
4464 EXPORT_SYMBOL_GPL(cgroup_load_subsys);
4465
4466 /**
4467 * cgroup_unload_subsys: unload a modular subsystem
4468 * @ss: the subsystem to unload
4469 *
4470 * This function should be called in a modular subsystem's exitcall. When this
4471 * function is invoked, the refcount on the subsystem's module will be 0, so
4472 * the subsystem will not be attached to any hierarchy.
4473 */
4474 void cgroup_unload_subsys(struct cgroup_subsys *ss)
4475 {
4476 struct cg_cgroup_link *link;
4477 struct hlist_head *hhead;
4478
4479 BUG_ON(ss->module == NULL);
4480
4481 /*
4482 * we shouldn't be called if the subsystem is in use, and the use of
4483 * try_module_get in parse_cgroupfs_options should ensure that it
4484 * doesn't start being used while we're killing it off.
4485 */
4486 BUG_ON(ss->root != &rootnode);
4487
4488 mutex_lock(&cgroup_mutex);
4489 /* deassign the subsys_id */
4490 subsys[ss->subsys_id] = NULL;
4491
4492 /* remove subsystem from rootnode's list of subsystems */
4493 list_del_init(&ss->sibling);
4494
4495 /*
4496 * disentangle the css from all css_sets attached to the dummytop. as
4497 * in loading, we need to pay our respects to the hashtable gods.
4498 */
4499 write_lock(&css_set_lock);
4500 list_for_each_entry(link, &dummytop->css_sets, cgrp_link_list) {
4501 struct css_set *cg = link->cg;
4502
4503 hlist_del(&cg->hlist);
4504 BUG_ON(!cg->subsys[ss->subsys_id]);
4505 cg->subsys[ss->subsys_id] = NULL;
4506 hhead = css_set_hash(cg->subsys);
4507 hlist_add_head(&cg->hlist, hhead);
4508 }
4509 write_unlock(&css_set_lock);
4510
4511 /*
4512 * remove subsystem's css from the dummytop and free it - need to free
4513 * before marking as null because ss->destroy needs the cgrp->subsys
4514 * pointer to find their state. note that this also takes care of
4515 * freeing the css_id.
4516 */
4517 ss->destroy(dummytop);
4518 dummytop->subsys[ss->subsys_id] = NULL;
4519
4520 mutex_unlock(&cgroup_mutex);
4521 }
4522 EXPORT_SYMBOL_GPL(cgroup_unload_subsys);
4523
4524 /**
4525 * cgroup_init_early - cgroup initialization at system boot
4526 *
4527 * Initialize cgroups at system boot, and initialize any
4528 * subsystems that request early init.
4529 */
4530 int __init cgroup_init_early(void)
4531 {
4532 int i;
4533 atomic_set(&init_css_set.refcount, 1);
4534 INIT_LIST_HEAD(&init_css_set.cg_links);
4535 INIT_LIST_HEAD(&init_css_set.tasks);
4536 INIT_HLIST_NODE(&init_css_set.hlist);
4537 css_set_count = 1;
4538 init_cgroup_root(&rootnode);
4539 root_count = 1;
4540 init_task.cgroups = &init_css_set;
4541
4542 init_css_set_link.cg = &init_css_set;
4543 init_css_set_link.cgrp = dummytop;
4544 list_add(&init_css_set_link.cgrp_link_list,
4545 &rootnode.top_cgroup.css_sets);
4546 list_add(&init_css_set_link.cg_link_list,
4547 &init_css_set.cg_links);
4548
4549 for (i = 0; i < CSS_SET_TABLE_SIZE; i++)
4550 INIT_HLIST_HEAD(&css_set_table[i]);
4551
4552 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4553 struct cgroup_subsys *ss = subsys[i];
4554
4555 /* at bootup time, we don't worry about modular subsystems */
4556 if (!ss || ss->module)
4557 continue;
4558
4559 BUG_ON(!ss->name);
4560 BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
4561 BUG_ON(!ss->create);
4562 BUG_ON(!ss->destroy);
4563 if (ss->subsys_id != i) {
4564 printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
4565 ss->name, ss->subsys_id);
4566 BUG();
4567 }
4568
4569 if (ss->early_init)
4570 cgroup_init_subsys(ss);
4571 }
4572 return 0;
4573 }
4574
4575 /**
4576 * cgroup_init - cgroup initialization
4577 *
4578 * Register cgroup filesystem and /proc file, and initialize
4579 * any subsystems that didn't request early init.
4580 */
4581 int __init cgroup_init(void)
4582 {
4583 int err;
4584 int i;
4585 struct hlist_head *hhead;
4586
4587 err = bdi_init(&cgroup_backing_dev_info);
4588 if (err)
4589 return err;
4590
4591 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4592 struct cgroup_subsys *ss = subsys[i];
4593
4594 /* at bootup time, we don't worry about modular subsystems */
4595 if (!ss || ss->module)
4596 continue;
4597 if (!ss->early_init)
4598 cgroup_init_subsys(ss);
4599 if (ss->use_id)
4600 cgroup_init_idr(ss, init_css_set.subsys[ss->subsys_id]);
4601 }
4602
4603 /* Add init_css_set to the hash table */
4604 hhead = css_set_hash(init_css_set.subsys);
4605 hlist_add_head(&init_css_set.hlist, hhead);
4606 BUG_ON(!init_root_id(&rootnode));
4607
4608 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
4609 if (!cgroup_kobj) {
4610 err = -ENOMEM;
4611 goto out;
4612 }
4613
4614 err = register_filesystem(&cgroup_fs_type);
4615 if (err < 0) {
4616 kobject_put(cgroup_kobj);
4617 goto out;
4618 }
4619
4620 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
4621
4622 out:
4623 if (err)
4624 bdi_destroy(&cgroup_backing_dev_info);
4625
4626 return err;
4627 }
4628
4629 /*
4630 * proc_cgroup_show()
4631 * - Print task's cgroup paths into seq_file, one line for each hierarchy
4632 * - Used for /proc/<pid>/cgroup.
4633 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
4634 * doesn't really matter if tsk->cgroup changes after we read it,
4635 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
4636 * anyway. No need to check that tsk->cgroup != NULL, thanks to
4637 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
4638 * cgroup to top_cgroup.
4639 */
4640
4641 /* TODO: Use a proper seq_file iterator */
4642 static int proc_cgroup_show(struct seq_file *m, void *v)
4643 {
4644 struct pid *pid;
4645 struct task_struct *tsk;
4646 char *buf;
4647 int retval;
4648 struct cgroupfs_root *root;
4649
4650 retval = -ENOMEM;
4651 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4652 if (!buf)
4653 goto out;
4654
4655 retval = -ESRCH;
4656 pid = m->private;
4657 tsk = get_pid_task(pid, PIDTYPE_PID);
4658 if (!tsk)
4659 goto out_free;
4660
4661 retval = 0;
4662
4663 mutex_lock(&cgroup_mutex);
4664
4665 for_each_active_root(root) {
4666 struct cgroup_subsys *ss;
4667 struct cgroup *cgrp;
4668 int count = 0;
4669
4670 seq_printf(m, "%d:", root->hierarchy_id);
4671 for_each_subsys(root, ss)
4672 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
4673 if (strlen(root->name))
4674 seq_printf(m, "%sname=%s", count ? "," : "",
4675 root->name);
4676 seq_putc(m, ':');
4677 cgrp = task_cgroup_from_root(tsk, root);
4678 retval = cgroup_path(cgrp, buf, PAGE_SIZE);
4679 if (retval < 0)
4680 goto out_unlock;
4681 seq_puts(m, buf);
4682 seq_putc(m, '\n');
4683 }
4684
4685 out_unlock:
4686 mutex_unlock(&cgroup_mutex);
4687 put_task_struct(tsk);
4688 out_free:
4689 kfree(buf);
4690 out:
4691 return retval;
4692 }
4693
4694 static int cgroup_open(struct inode *inode, struct file *file)
4695 {
4696 struct pid *pid = PROC_I(inode)->pid;
4697 return single_open(file, proc_cgroup_show, pid);
4698 }
4699
4700 const struct file_operations proc_cgroup_operations = {
4701 .open = cgroup_open,
4702 .read = seq_read,
4703 .llseek = seq_lseek,
4704 .release = single_release,
4705 };
4706
4707 /* Display information about each subsystem and each hierarchy */
4708 static int proc_cgroupstats_show(struct seq_file *m, void *v)
4709 {
4710 int i;
4711
4712 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
4713 /*
4714 * ideally we don't want subsystems moving around while we do this.
4715 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
4716 * subsys/hierarchy state.
4717 */
4718 mutex_lock(&cgroup_mutex);
4719 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4720 struct cgroup_subsys *ss = subsys[i];
4721 if (ss == NULL)
4722 continue;
4723 seq_printf(m, "%s\t%d\t%d\t%d\n",
4724 ss->name, ss->root->hierarchy_id,
4725 ss->root->number_of_cgroups, !ss->disabled);
4726 }
4727 mutex_unlock(&cgroup_mutex);
4728 return 0;
4729 }
4730
4731 static int cgroupstats_open(struct inode *inode, struct file *file)
4732 {
4733 return single_open(file, proc_cgroupstats_show, NULL);
4734 }
4735
4736 static const struct file_operations proc_cgroupstats_operations = {
4737 .open = cgroupstats_open,
4738 .read = seq_read,
4739 .llseek = seq_lseek,
4740 .release = single_release,
4741 };
4742
4743 /**
4744 * cgroup_fork - attach newly forked task to its parents cgroup.
4745 * @child: pointer to task_struct of forking parent process.
4746 *
4747 * Description: A task inherits its parent's cgroup at fork().
4748 *
4749 * A pointer to the shared css_set was automatically copied in
4750 * fork.c by dup_task_struct(). However, we ignore that copy, since
4751 * it was not made under the protection of RCU or cgroup_mutex, so
4752 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
4753 * have already changed current->cgroups, allowing the previously
4754 * referenced cgroup group to be removed and freed.
4755 *
4756 * At the point that cgroup_fork() is called, 'current' is the parent
4757 * task, and the passed argument 'child' points to the child task.
4758 */
4759 void cgroup_fork(struct task_struct *child)
4760 {
4761 task_lock(current);
4762 child->cgroups = current->cgroups;
4763 get_css_set(child->cgroups);
4764 task_unlock(current);
4765 INIT_LIST_HEAD(&child->cg_list);
4766 }
4767
4768 /**
4769 * cgroup_post_fork - called on a new task after adding it to the task list
4770 * @child: the task in question
4771 *
4772 * Adds the task to the list running through its css_set if necessary and
4773 * call the subsystem fork() callbacks. Has to be after the task is
4774 * visible on the task list in case we race with the first call to
4775 * cgroup_iter_start() - to guarantee that the new task ends up on its
4776 * list.
4777 */
4778 void cgroup_post_fork(struct task_struct *child)
4779 {
4780 int i;
4781
4782 /*
4783 * use_task_css_set_links is set to 1 before we walk the tasklist
4784 * under the tasklist_lock and we read it here after we added the child
4785 * to the tasklist under the tasklist_lock as well. If the child wasn't
4786 * yet in the tasklist when we walked through it from
4787 * cgroup_enable_task_cg_lists(), then use_task_css_set_links value
4788 * should be visible now due to the paired locking and barriers implied
4789 * by LOCK/UNLOCK: it is written before the tasklist_lock unlock
4790 * in cgroup_enable_task_cg_lists() and read here after the tasklist_lock
4791 * lock on fork.
4792 */
4793 if (use_task_css_set_links) {
4794 write_lock(&css_set_lock);
4795 task_lock(child);
4796 if (list_empty(&child->cg_list))
4797 list_add(&child->cg_list, &child->cgroups->tasks);
4798 task_unlock(child);
4799 write_unlock(&css_set_lock);
4800 }
4801
4802 /*
4803 * Call ss->fork(). This must happen after @child is linked on
4804 * css_set; otherwise, @child might change state between ->fork()
4805 * and addition to css_set.
4806 */
4807 if (need_forkexit_callback) {
4808 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4809 struct cgroup_subsys *ss = subsys[i];
4810
4811 /*
4812 * fork/exit callbacks are supported only for
4813 * builtin subsystems and we don't need further
4814 * synchronization as they never go away.
4815 */
4816 if (!ss || ss->module)
4817 continue;
4818
4819 if (ss->fork)
4820 ss->fork(child);
4821 }
4822 }
4823 }
4824
4825 /**
4826 * cgroup_exit - detach cgroup from exiting task
4827 * @tsk: pointer to task_struct of exiting process
4828 * @run_callback: run exit callbacks?
4829 *
4830 * Description: Detach cgroup from @tsk and release it.
4831 *
4832 * Note that cgroups marked notify_on_release force every task in
4833 * them to take the global cgroup_mutex mutex when exiting.
4834 * This could impact scaling on very large systems. Be reluctant to
4835 * use notify_on_release cgroups where very high task exit scaling
4836 * is required on large systems.
4837 *
4838 * the_top_cgroup_hack:
4839 *
4840 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
4841 *
4842 * We call cgroup_exit() while the task is still competent to
4843 * handle notify_on_release(), then leave the task attached to the
4844 * root cgroup in each hierarchy for the remainder of its exit.
4845 *
4846 * To do this properly, we would increment the reference count on
4847 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
4848 * code we would add a second cgroup function call, to drop that
4849 * reference. This would just create an unnecessary hot spot on
4850 * the top_cgroup reference count, to no avail.
4851 *
4852 * Normally, holding a reference to a cgroup without bumping its
4853 * count is unsafe. The cgroup could go away, or someone could
4854 * attach us to a different cgroup, decrementing the count on
4855 * the first cgroup that we never incremented. But in this case,
4856 * top_cgroup isn't going away, and either task has PF_EXITING set,
4857 * which wards off any cgroup_attach_task() attempts, or task is a failed
4858 * fork, never visible to cgroup_attach_task.
4859 */
4860 void cgroup_exit(struct task_struct *tsk, int run_callbacks)
4861 {
4862 struct css_set *cg;
4863 int i;
4864
4865 /*
4866 * Unlink from the css_set task list if necessary.
4867 * Optimistically check cg_list before taking
4868 * css_set_lock
4869 */
4870 if (!list_empty(&tsk->cg_list)) {
4871 write_lock(&css_set_lock);
4872 if (!list_empty(&tsk->cg_list))
4873 list_del_init(&tsk->cg_list);
4874 write_unlock(&css_set_lock);
4875 }
4876
4877 /* Reassign the task to the init_css_set. */
4878 task_lock(tsk);
4879 cg = tsk->cgroups;
4880 tsk->cgroups = &init_css_set;
4881
4882 if (run_callbacks && need_forkexit_callback) {
4883 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4884 struct cgroup_subsys *ss = subsys[i];
4885
4886 /* modular subsystems can't use callbacks */
4887 if (!ss || ss->module)
4888 continue;
4889
4890 if (ss->exit) {
4891 struct cgroup *old_cgrp =
4892 rcu_dereference_raw(cg->subsys[i])->cgroup;
4893 struct cgroup *cgrp = task_cgroup(tsk, i);
4894 ss->exit(cgrp, old_cgrp, tsk);
4895 }
4896 }
4897 }
4898 task_unlock(tsk);
4899
4900 if (cg)
4901 put_css_set_taskexit(cg);
4902 }
4903
4904 /**
4905 * cgroup_is_descendant - see if @cgrp is a descendant of @task's cgrp
4906 * @cgrp: the cgroup in question
4907 * @task: the task in question
4908 *
4909 * See if @cgrp is a descendant of @task's cgroup in the appropriate
4910 * hierarchy.
4911 *
4912 * If we are sending in dummytop, then presumably we are creating
4913 * the top cgroup in the subsystem.
4914 *
4915 * Called only by the ns (nsproxy) cgroup.
4916 */
4917 int cgroup_is_descendant(const struct cgroup *cgrp, struct task_struct *task)
4918 {
4919 int ret;
4920 struct cgroup *target;
4921
4922 if (cgrp == dummytop)
4923 return 1;
4924
4925 target = task_cgroup_from_root(task, cgrp->root);
4926 while (cgrp != target && cgrp!= cgrp->top_cgroup)
4927 cgrp = cgrp->parent;
4928 ret = (cgrp == target);
4929 return ret;
4930 }
4931
4932 static void check_for_release(struct cgroup *cgrp)
4933 {
4934 /* All of these checks rely on RCU to keep the cgroup
4935 * structure alive */
4936 if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
4937 && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
4938 /* Control Group is currently removeable. If it's not
4939 * already queued for a userspace notification, queue
4940 * it now */
4941 int need_schedule_work = 0;
4942 raw_spin_lock(&release_list_lock);
4943 if (!cgroup_is_removed(cgrp) &&
4944 list_empty(&cgrp->release_list)) {
4945 list_add(&cgrp->release_list, &release_list);
4946 need_schedule_work = 1;
4947 }
4948 raw_spin_unlock(&release_list_lock);
4949 if (need_schedule_work)
4950 schedule_work(&release_agent_work);
4951 }
4952 }
4953
4954 /* Caller must verify that the css is not for root cgroup */
4955 bool __css_tryget(struct cgroup_subsys_state *css)
4956 {
4957 while (true) {
4958 int t, v;
4959
4960 v = css_refcnt(css);
4961 t = atomic_cmpxchg(&css->refcnt, v, v + 1);
4962 if (likely(t == v))
4963 return true;
4964 else if (t < 0)
4965 return false;
4966 cpu_relax();
4967 }
4968 }
4969 EXPORT_SYMBOL_GPL(__css_tryget);
4970
4971 /* Caller must verify that the css is not for root cgroup */
4972 void __css_put(struct cgroup_subsys_state *css)
4973 {
4974 struct cgroup *cgrp = css->cgroup;
4975 int v;
4976
4977 rcu_read_lock();
4978 v = css_unbias_refcnt(atomic_dec_return(&css->refcnt));
4979
4980 switch (v) {
4981 case 1:
4982 if (notify_on_release(cgrp)) {
4983 set_bit(CGRP_RELEASABLE, &cgrp->flags);
4984 check_for_release(cgrp);
4985 }
4986 break;
4987 case 0:
4988 schedule_work(&css->dput_work);
4989 break;
4990 }
4991 rcu_read_unlock();
4992 }
4993 EXPORT_SYMBOL_GPL(__css_put);
4994
4995 /*
4996 * Notify userspace when a cgroup is released, by running the
4997 * configured release agent with the name of the cgroup (path
4998 * relative to the root of cgroup file system) as the argument.
4999 *
5000 * Most likely, this user command will try to rmdir this cgroup.
5001 *
5002 * This races with the possibility that some other task will be
5003 * attached to this cgroup before it is removed, or that some other
5004 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5005 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5006 * unused, and this cgroup will be reprieved from its death sentence,
5007 * to continue to serve a useful existence. Next time it's released,
5008 * we will get notified again, if it still has 'notify_on_release' set.
5009 *
5010 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5011 * means only wait until the task is successfully execve()'d. The
5012 * separate release agent task is forked by call_usermodehelper(),
5013 * then control in this thread returns here, without waiting for the
5014 * release agent task. We don't bother to wait because the caller of
5015 * this routine has no use for the exit status of the release agent
5016 * task, so no sense holding our caller up for that.
5017 */
5018 static void cgroup_release_agent(struct work_struct *work)
5019 {
5020 BUG_ON(work != &release_agent_work);
5021 mutex_lock(&cgroup_mutex);
5022 raw_spin_lock(&release_list_lock);
5023 while (!list_empty(&release_list)) {
5024 char *argv[3], *envp[3];
5025 int i;
5026 char *pathbuf = NULL, *agentbuf = NULL;
5027 struct cgroup *cgrp = list_entry(release_list.next,
5028 struct cgroup,
5029 release_list);
5030 list_del_init(&cgrp->release_list);
5031 raw_spin_unlock(&release_list_lock);
5032 pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
5033 if (!pathbuf)
5034 goto continue_free;
5035 if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
5036 goto continue_free;
5037 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5038 if (!agentbuf)
5039 goto continue_free;
5040
5041 i = 0;
5042 argv[i++] = agentbuf;
5043 argv[i++] = pathbuf;
5044 argv[i] = NULL;
5045
5046 i = 0;
5047 /* minimal command environment */
5048 envp[i++] = "HOME=/";
5049 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5050 envp[i] = NULL;
5051
5052 /* Drop the lock while we invoke the usermode helper,
5053 * since the exec could involve hitting disk and hence
5054 * be a slow process */
5055 mutex_unlock(&cgroup_mutex);
5056 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
5057 mutex_lock(&cgroup_mutex);
5058 continue_free:
5059 kfree(pathbuf);
5060 kfree(agentbuf);
5061 raw_spin_lock(&release_list_lock);
5062 }
5063 raw_spin_unlock(&release_list_lock);
5064 mutex_unlock(&cgroup_mutex);
5065 }
5066
5067 static int __init cgroup_disable(char *str)
5068 {
5069 int i;
5070 char *token;
5071
5072 while ((token = strsep(&str, ",")) != NULL) {
5073 if (!*token)
5074 continue;
5075 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
5076 struct cgroup_subsys *ss = subsys[i];
5077
5078 /*
5079 * cgroup_disable, being at boot time, can't
5080 * know about module subsystems, so we don't
5081 * worry about them.
5082 */
5083 if (!ss || ss->module)
5084 continue;
5085
5086 if (!strcmp(token, ss->name)) {
5087 ss->disabled = 1;
5088 printk(KERN_INFO "Disabling %s control group"
5089 " subsystem\n", ss->name);
5090 break;
5091 }
5092 }
5093 }
5094 return 1;
5095 }
5096 __setup("cgroup_disable=", cgroup_disable);
5097
5098 /*
5099 * Functons for CSS ID.
5100 */
5101
5102 /*
5103 *To get ID other than 0, this should be called when !cgroup_is_removed().
5104 */
5105 unsigned short css_id(struct cgroup_subsys_state *css)
5106 {
5107 struct css_id *cssid;
5108
5109 /*
5110 * This css_id() can return correct value when somone has refcnt
5111 * on this or this is under rcu_read_lock(). Once css->id is allocated,
5112 * it's unchanged until freed.
5113 */
5114 cssid = rcu_dereference_check(css->id, css_refcnt(css));
5115
5116 if (cssid)
5117 return cssid->id;
5118 return 0;
5119 }
5120 EXPORT_SYMBOL_GPL(css_id);
5121
5122 unsigned short css_depth(struct cgroup_subsys_state *css)
5123 {
5124 struct css_id *cssid;
5125
5126 cssid = rcu_dereference_check(css->id, css_refcnt(css));
5127
5128 if (cssid)
5129 return cssid->depth;
5130 return 0;
5131 }
5132 EXPORT_SYMBOL_GPL(css_depth);
5133
5134 /**
5135 * css_is_ancestor - test "root" css is an ancestor of "child"
5136 * @child: the css to be tested.
5137 * @root: the css supporsed to be an ancestor of the child.
5138 *
5139 * Returns true if "root" is an ancestor of "child" in its hierarchy. Because
5140 * this function reads css->id, the caller must hold rcu_read_lock().
5141 * But, considering usual usage, the csses should be valid objects after test.
5142 * Assuming that the caller will do some action to the child if this returns
5143 * returns true, the caller must take "child";s reference count.
5144 * If "child" is valid object and this returns true, "root" is valid, too.
5145 */
5146
5147 bool css_is_ancestor(struct cgroup_subsys_state *child,
5148 const struct cgroup_subsys_state *root)
5149 {
5150 struct css_id *child_id;
5151 struct css_id *root_id;
5152
5153 child_id = rcu_dereference(child->id);
5154 if (!child_id)
5155 return false;
5156 root_id = rcu_dereference(root->id);
5157 if (!root_id)
5158 return false;
5159 if (child_id->depth < root_id->depth)
5160 return false;
5161 if (child_id->stack[root_id->depth] != root_id->id)
5162 return false;
5163 return true;
5164 }
5165
5166 void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
5167 {
5168 struct css_id *id = css->id;
5169 /* When this is called before css_id initialization, id can be NULL */
5170 if (!id)
5171 return;
5172
5173 BUG_ON(!ss->use_id);
5174
5175 rcu_assign_pointer(id->css, NULL);
5176 rcu_assign_pointer(css->id, NULL);
5177 spin_lock(&ss->id_lock);
5178 idr_remove(&ss->idr, id->id);
5179 spin_unlock(&ss->id_lock);
5180 kfree_rcu(id, rcu_head);
5181 }
5182 EXPORT_SYMBOL_GPL(free_css_id);
5183
5184 /*
5185 * This is called by init or create(). Then, calls to this function are
5186 * always serialized (By cgroup_mutex() at create()).
5187 */
5188
5189 static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
5190 {
5191 struct css_id *newid;
5192 int myid, error, size;
5193
5194 BUG_ON(!ss->use_id);
5195
5196 size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
5197 newid = kzalloc(size, GFP_KERNEL);
5198 if (!newid)
5199 return ERR_PTR(-ENOMEM);
5200 /* get id */
5201 if (unlikely(!idr_pre_get(&ss->idr, GFP_KERNEL))) {
5202 error = -ENOMEM;
5203 goto err_out;
5204 }
5205 spin_lock(&ss->id_lock);
5206 /* Don't use 0. allocates an ID of 1-65535 */
5207 error = idr_get_new_above(&ss->idr, newid, 1, &myid);
5208 spin_unlock(&ss->id_lock);
5209
5210 /* Returns error when there are no free spaces for new ID.*/
5211 if (error) {
5212 error = -ENOSPC;
5213 goto err_out;
5214 }
5215 if (myid > CSS_ID_MAX)
5216 goto remove_idr;
5217
5218 newid->id = myid;
5219 newid->depth = depth;
5220 return newid;
5221 remove_idr:
5222 error = -ENOSPC;
5223 spin_lock(&ss->id_lock);
5224 idr_remove(&ss->idr, myid);
5225 spin_unlock(&ss->id_lock);
5226 err_out:
5227 kfree(newid);
5228 return ERR_PTR(error);
5229
5230 }
5231
5232 static int __init_or_module cgroup_init_idr(struct cgroup_subsys *ss,
5233 struct cgroup_subsys_state *rootcss)
5234 {
5235 struct css_id *newid;
5236
5237 spin_lock_init(&ss->id_lock);
5238 idr_init(&ss->idr);
5239
5240 newid = get_new_cssid(ss, 0);
5241 if (IS_ERR(newid))
5242 return PTR_ERR(newid);
5243
5244 newid->stack[0] = newid->id;
5245 newid->css = rootcss;
5246 rootcss->id = newid;
5247 return 0;
5248 }
5249
5250 static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
5251 struct cgroup *child)
5252 {
5253 int subsys_id, i, depth = 0;
5254 struct cgroup_subsys_state *parent_css, *child_css;
5255 struct css_id *child_id, *parent_id;
5256
5257 subsys_id = ss->subsys_id;
5258 parent_css = parent->subsys[subsys_id];
5259 child_css = child->subsys[subsys_id];
5260 parent_id = parent_css->id;
5261 depth = parent_id->depth + 1;
5262
5263 child_id = get_new_cssid(ss, depth);
5264 if (IS_ERR(child_id))
5265 return PTR_ERR(child_id);
5266
5267 for (i = 0; i < depth; i++)
5268 child_id->stack[i] = parent_id->stack[i];
5269 child_id->stack[depth] = child_id->id;
5270 /*
5271 * child_id->css pointer will be set after this cgroup is available
5272 * see cgroup_populate_dir()
5273 */
5274 rcu_assign_pointer(child_css->id, child_id);
5275
5276 return 0;
5277 }
5278
5279 /**
5280 * css_lookup - lookup css by id
5281 * @ss: cgroup subsys to be looked into.
5282 * @id: the id
5283 *
5284 * Returns pointer to cgroup_subsys_state if there is valid one with id.
5285 * NULL if not. Should be called under rcu_read_lock()
5286 */
5287 struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
5288 {
5289 struct css_id *cssid = NULL;
5290
5291 BUG_ON(!ss->use_id);
5292 cssid = idr_find(&ss->idr, id);
5293
5294 if (unlikely(!cssid))
5295 return NULL;
5296
5297 return rcu_dereference(cssid->css);
5298 }
5299 EXPORT_SYMBOL_GPL(css_lookup);
5300
5301 /**
5302 * css_get_next - lookup next cgroup under specified hierarchy.
5303 * @ss: pointer to subsystem
5304 * @id: current position of iteration.
5305 * @root: pointer to css. search tree under this.
5306 * @foundid: position of found object.
5307 *
5308 * Search next css under the specified hierarchy of rootid. Calling under
5309 * rcu_read_lock() is necessary. Returns NULL if it reaches the end.
5310 */
5311 struct cgroup_subsys_state *
5312 css_get_next(struct cgroup_subsys *ss, int id,
5313 struct cgroup_subsys_state *root, int *foundid)
5314 {
5315 struct cgroup_subsys_state *ret = NULL;
5316 struct css_id *tmp;
5317 int tmpid;
5318 int rootid = css_id(root);
5319 int depth = css_depth(root);
5320
5321 if (!rootid)
5322 return NULL;
5323
5324 BUG_ON(!ss->use_id);
5325 WARN_ON_ONCE(!rcu_read_lock_held());
5326
5327 /* fill start point for scan */
5328 tmpid = id;
5329 while (1) {
5330 /*
5331 * scan next entry from bitmap(tree), tmpid is updated after
5332 * idr_get_next().
5333 */
5334 tmp = idr_get_next(&ss->idr, &tmpid);
5335 if (!tmp)
5336 break;
5337 if (tmp->depth >= depth && tmp->stack[depth] == rootid) {
5338 ret = rcu_dereference(tmp->css);
5339 if (ret) {
5340 *foundid = tmpid;
5341 break;
5342 }
5343 }
5344 /* continue to scan from next id */
5345 tmpid = tmpid + 1;
5346 }
5347 return ret;
5348 }
5349
5350 /*
5351 * get corresponding css from file open on cgroupfs directory
5352 */
5353 struct cgroup_subsys_state *cgroup_css_from_dir(struct file *f, int id)
5354 {
5355 struct cgroup *cgrp;
5356 struct inode *inode;
5357 struct cgroup_subsys_state *css;
5358
5359 inode = f->f_dentry->d_inode;
5360 /* check in cgroup filesystem dir */
5361 if (inode->i_op != &cgroup_dir_inode_operations)
5362 return ERR_PTR(-EBADF);
5363
5364 if (id < 0 || id >= CGROUP_SUBSYS_COUNT)
5365 return ERR_PTR(-EINVAL);
5366
5367 /* get cgroup */
5368 cgrp = __d_cgrp(f->f_dentry);
5369 css = cgrp->subsys[id];
5370 return css ? css : ERR_PTR(-ENOENT);
5371 }
5372
5373 #ifdef CONFIG_CGROUP_DEBUG
5374 static struct cgroup_subsys_state *debug_create(struct cgroup *cont)
5375 {
5376 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5377
5378 if (!css)
5379 return ERR_PTR(-ENOMEM);
5380
5381 return css;
5382 }
5383
5384 static void debug_destroy(struct cgroup *cont)
5385 {
5386 kfree(cont->subsys[debug_subsys_id]);
5387 }
5388
5389 static u64 cgroup_refcount_read(struct cgroup *cont, struct cftype *cft)
5390 {
5391 return atomic_read(&cont->count);
5392 }
5393
5394 static u64 debug_taskcount_read(struct cgroup *cont, struct cftype *cft)
5395 {
5396 return cgroup_task_count(cont);
5397 }
5398
5399 static u64 current_css_set_read(struct cgroup *cont, struct cftype *cft)
5400 {
5401 return (u64)(unsigned long)current->cgroups;
5402 }
5403
5404 static u64 current_css_set_refcount_read(struct cgroup *cont,
5405 struct cftype *cft)
5406 {
5407 u64 count;
5408
5409 rcu_read_lock();
5410 count = atomic_read(&current->cgroups->refcount);
5411 rcu_read_unlock();
5412 return count;
5413 }
5414
5415 static int current_css_set_cg_links_read(struct cgroup *cont,
5416 struct cftype *cft,
5417 struct seq_file *seq)
5418 {
5419 struct cg_cgroup_link *link;
5420 struct css_set *cg;
5421
5422 read_lock(&css_set_lock);
5423 rcu_read_lock();
5424 cg = rcu_dereference(current->cgroups);
5425 list_for_each_entry(link, &cg->cg_links, cg_link_list) {
5426 struct cgroup *c = link->cgrp;
5427 const char *name;
5428
5429 if (c->dentry)
5430 name = c->dentry->d_name.name;
5431 else
5432 name = "?";
5433 seq_printf(seq, "Root %d group %s\n",
5434 c->root->hierarchy_id, name);
5435 }
5436 rcu_read_unlock();
5437 read_unlock(&css_set_lock);
5438 return 0;
5439 }
5440
5441 #define MAX_TASKS_SHOWN_PER_CSS 25
5442 static int cgroup_css_links_read(struct cgroup *cont,
5443 struct cftype *cft,
5444 struct seq_file *seq)
5445 {
5446 struct cg_cgroup_link *link;
5447
5448 read_lock(&css_set_lock);
5449 list_for_each_entry(link, &cont->css_sets, cgrp_link_list) {
5450 struct css_set *cg = link->cg;
5451 struct task_struct *task;
5452 int count = 0;
5453 seq_printf(seq, "css_set %p\n", cg);
5454 list_for_each_entry(task, &cg->tasks, cg_list) {
5455 if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
5456 seq_puts(seq, " ...\n");
5457 break;
5458 } else {
5459 seq_printf(seq, " task %d\n",
5460 task_pid_vnr(task));
5461 }
5462 }
5463 }
5464 read_unlock(&css_set_lock);
5465 return 0;
5466 }
5467
5468 static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft)
5469 {
5470 return test_bit(CGRP_RELEASABLE, &cgrp->flags);
5471 }
5472
5473 static struct cftype debug_files[] = {
5474 {
5475 .name = "cgroup_refcount",
5476 .read_u64 = cgroup_refcount_read,
5477 },
5478 {
5479 .name = "taskcount",
5480 .read_u64 = debug_taskcount_read,
5481 },
5482
5483 {
5484 .name = "current_css_set",
5485 .read_u64 = current_css_set_read,
5486 },
5487
5488 {
5489 .name = "current_css_set_refcount",
5490 .read_u64 = current_css_set_refcount_read,
5491 },
5492
5493 {
5494 .name = "current_css_set_cg_links",
5495 .read_seq_string = current_css_set_cg_links_read,
5496 },
5497
5498 {
5499 .name = "cgroup_css_links",
5500 .read_seq_string = cgroup_css_links_read,
5501 },
5502
5503 {
5504 .name = "releasable",
5505 .read_u64 = releasable_read,
5506 },
5507
5508 { } /* terminate */
5509 };
5510
5511 struct cgroup_subsys debug_subsys = {
5512 .name = "debug",
5513 .create = debug_create,
5514 .destroy = debug_destroy,
5515 .subsys_id = debug_subsys_id,
5516 .base_cftypes = debug_files,
5517 };
5518 #endif /* CONFIG_CGROUP_DEBUG */
This page took 0.188775 seconds and 4 git commands to generate.