cgroup: build list of all cgroups under a given cgroupfs_root
[deliverable/linux.git] / kernel / cgroup.c
1 /*
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29 #include <linux/cgroup.h>
30 #include <linux/cred.h>
31 #include <linux/ctype.h>
32 #include <linux/errno.h>
33 #include <linux/fs.h>
34 #include <linux/init_task.h>
35 #include <linux/kernel.h>
36 #include <linux/list.h>
37 #include <linux/mm.h>
38 #include <linux/mutex.h>
39 #include <linux/mount.h>
40 #include <linux/pagemap.h>
41 #include <linux/proc_fs.h>
42 #include <linux/rcupdate.h>
43 #include <linux/sched.h>
44 #include <linux/backing-dev.h>
45 #include <linux/seq_file.h>
46 #include <linux/slab.h>
47 #include <linux/magic.h>
48 #include <linux/spinlock.h>
49 #include <linux/string.h>
50 #include <linux/sort.h>
51 #include <linux/kmod.h>
52 #include <linux/module.h>
53 #include <linux/delayacct.h>
54 #include <linux/cgroupstats.h>
55 #include <linux/hash.h>
56 #include <linux/namei.h>
57 #include <linux/pid_namespace.h>
58 #include <linux/idr.h>
59 #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
60 #include <linux/eventfd.h>
61 #include <linux/poll.h>
62 #include <linux/flex_array.h> /* used in cgroup_attach_proc */
63
64 #include <linux/atomic.h>
65
66 /*
67 * cgroup_mutex is the master lock. Any modification to cgroup or its
68 * hierarchy must be performed while holding it.
69 *
70 * cgroup_root_mutex nests inside cgroup_mutex and should be held to modify
71 * cgroupfs_root of any cgroup hierarchy - subsys list, flags,
72 * release_agent_path and so on. Modifying requires both cgroup_mutex and
73 * cgroup_root_mutex. Readers can acquire either of the two. This is to
74 * break the following locking order cycle.
75 *
76 * A. cgroup_mutex -> cred_guard_mutex -> s_type->i_mutex_key -> namespace_sem
77 * B. namespace_sem -> cgroup_mutex
78 *
79 * B happens only through cgroup_show_options() and using cgroup_root_mutex
80 * breaks it.
81 */
82 static DEFINE_MUTEX(cgroup_mutex);
83 static DEFINE_MUTEX(cgroup_root_mutex);
84
85 /*
86 * Generate an array of cgroup subsystem pointers. At boot time, this is
87 * populated up to CGROUP_BUILTIN_SUBSYS_COUNT, and modular subsystems are
88 * registered after that. The mutable section of this array is protected by
89 * cgroup_mutex.
90 */
91 #define SUBSYS(_x) &_x ## _subsys,
92 static struct cgroup_subsys *subsys[CGROUP_SUBSYS_COUNT] = {
93 #include <linux/cgroup_subsys.h>
94 };
95
96 #define MAX_CGROUP_ROOT_NAMELEN 64
97
98 /*
99 * A cgroupfs_root represents the root of a cgroup hierarchy,
100 * and may be associated with a superblock to form an active
101 * hierarchy
102 */
103 struct cgroupfs_root {
104 struct super_block *sb;
105
106 /*
107 * The bitmask of subsystems intended to be attached to this
108 * hierarchy
109 */
110 unsigned long subsys_bits;
111
112 /* Unique id for this hierarchy. */
113 int hierarchy_id;
114
115 /* The bitmask of subsystems currently attached to this hierarchy */
116 unsigned long actual_subsys_bits;
117
118 /* A list running through the attached subsystems */
119 struct list_head subsys_list;
120
121 /* The root cgroup for this hierarchy */
122 struct cgroup top_cgroup;
123
124 /* Tracks how many cgroups are currently defined in hierarchy.*/
125 int number_of_cgroups;
126
127 /* A list running through the active hierarchies */
128 struct list_head root_list;
129
130 /* All cgroups on this root, cgroup_mutex protected */
131 struct list_head allcg_list;
132
133 /* Hierarchy-specific flags */
134 unsigned long flags;
135
136 /* The path to use for release notifications. */
137 char release_agent_path[PATH_MAX];
138
139 /* The name for this hierarchy - may be empty */
140 char name[MAX_CGROUP_ROOT_NAMELEN];
141 };
142
143 /*
144 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
145 * subsystems that are otherwise unattached - it never has more than a
146 * single cgroup, and all tasks are part of that cgroup.
147 */
148 static struct cgroupfs_root rootnode;
149
150 /*
151 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
152 * cgroup_subsys->use_id != 0.
153 */
154 #define CSS_ID_MAX (65535)
155 struct css_id {
156 /*
157 * The css to which this ID points. This pointer is set to valid value
158 * after cgroup is populated. If cgroup is removed, this will be NULL.
159 * This pointer is expected to be RCU-safe because destroy()
160 * is called after synchronize_rcu(). But for safe use, css_is_removed()
161 * css_tryget() should be used for avoiding race.
162 */
163 struct cgroup_subsys_state __rcu *css;
164 /*
165 * ID of this css.
166 */
167 unsigned short id;
168 /*
169 * Depth in hierarchy which this ID belongs to.
170 */
171 unsigned short depth;
172 /*
173 * ID is freed by RCU. (and lookup routine is RCU safe.)
174 */
175 struct rcu_head rcu_head;
176 /*
177 * Hierarchy of CSS ID belongs to.
178 */
179 unsigned short stack[0]; /* Array of Length (depth+1) */
180 };
181
182 /*
183 * cgroup_event represents events which userspace want to receive.
184 */
185 struct cgroup_event {
186 /*
187 * Cgroup which the event belongs to.
188 */
189 struct cgroup *cgrp;
190 /*
191 * Control file which the event associated.
192 */
193 struct cftype *cft;
194 /*
195 * eventfd to signal userspace about the event.
196 */
197 struct eventfd_ctx *eventfd;
198 /*
199 * Each of these stored in a list by the cgroup.
200 */
201 struct list_head list;
202 /*
203 * All fields below needed to unregister event when
204 * userspace closes eventfd.
205 */
206 poll_table pt;
207 wait_queue_head_t *wqh;
208 wait_queue_t wait;
209 struct work_struct remove;
210 };
211
212 /* The list of hierarchy roots */
213
214 static LIST_HEAD(roots);
215 static int root_count;
216
217 static DEFINE_IDA(hierarchy_ida);
218 static int next_hierarchy_id;
219 static DEFINE_SPINLOCK(hierarchy_id_lock);
220
221 /* dummytop is a shorthand for the dummy hierarchy's top cgroup */
222 #define dummytop (&rootnode.top_cgroup)
223
224 /* This flag indicates whether tasks in the fork and exit paths should
225 * check for fork/exit handlers to call. This avoids us having to do
226 * extra work in the fork/exit path if none of the subsystems need to
227 * be called.
228 */
229 static int need_forkexit_callback __read_mostly;
230
231 #ifdef CONFIG_PROVE_LOCKING
232 int cgroup_lock_is_held(void)
233 {
234 return lockdep_is_held(&cgroup_mutex);
235 }
236 #else /* #ifdef CONFIG_PROVE_LOCKING */
237 int cgroup_lock_is_held(void)
238 {
239 return mutex_is_locked(&cgroup_mutex);
240 }
241 #endif /* #else #ifdef CONFIG_PROVE_LOCKING */
242
243 EXPORT_SYMBOL_GPL(cgroup_lock_is_held);
244
245 /* convenient tests for these bits */
246 inline int cgroup_is_removed(const struct cgroup *cgrp)
247 {
248 return test_bit(CGRP_REMOVED, &cgrp->flags);
249 }
250
251 /* bits in struct cgroupfs_root flags field */
252 enum {
253 ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
254 };
255
256 static int cgroup_is_releasable(const struct cgroup *cgrp)
257 {
258 const int bits =
259 (1 << CGRP_RELEASABLE) |
260 (1 << CGRP_NOTIFY_ON_RELEASE);
261 return (cgrp->flags & bits) == bits;
262 }
263
264 static int notify_on_release(const struct cgroup *cgrp)
265 {
266 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
267 }
268
269 static int clone_children(const struct cgroup *cgrp)
270 {
271 return test_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
272 }
273
274 /*
275 * for_each_subsys() allows you to iterate on each subsystem attached to
276 * an active hierarchy
277 */
278 #define for_each_subsys(_root, _ss) \
279 list_for_each_entry(_ss, &_root->subsys_list, sibling)
280
281 /* for_each_active_root() allows you to iterate across the active hierarchies */
282 #define for_each_active_root(_root) \
283 list_for_each_entry(_root, &roots, root_list)
284
285 /* the list of cgroups eligible for automatic release. Protected by
286 * release_list_lock */
287 static LIST_HEAD(release_list);
288 static DEFINE_RAW_SPINLOCK(release_list_lock);
289 static void cgroup_release_agent(struct work_struct *work);
290 static DECLARE_WORK(release_agent_work, cgroup_release_agent);
291 static void check_for_release(struct cgroup *cgrp);
292
293 /* Link structure for associating css_set objects with cgroups */
294 struct cg_cgroup_link {
295 /*
296 * List running through cg_cgroup_links associated with a
297 * cgroup, anchored on cgroup->css_sets
298 */
299 struct list_head cgrp_link_list;
300 struct cgroup *cgrp;
301 /*
302 * List running through cg_cgroup_links pointing at a
303 * single css_set object, anchored on css_set->cg_links
304 */
305 struct list_head cg_link_list;
306 struct css_set *cg;
307 };
308
309 /* The default css_set - used by init and its children prior to any
310 * hierarchies being mounted. It contains a pointer to the root state
311 * for each subsystem. Also used to anchor the list of css_sets. Not
312 * reference-counted, to improve performance when child cgroups
313 * haven't been created.
314 */
315
316 static struct css_set init_css_set;
317 static struct cg_cgroup_link init_css_set_link;
318
319 static int cgroup_init_idr(struct cgroup_subsys *ss,
320 struct cgroup_subsys_state *css);
321
322 /* css_set_lock protects the list of css_set objects, and the
323 * chain of tasks off each css_set. Nests outside task->alloc_lock
324 * due to cgroup_iter_start() */
325 static DEFINE_RWLOCK(css_set_lock);
326 static int css_set_count;
327
328 /*
329 * hash table for cgroup groups. This improves the performance to find
330 * an existing css_set. This hash doesn't (currently) take into
331 * account cgroups in empty hierarchies.
332 */
333 #define CSS_SET_HASH_BITS 7
334 #define CSS_SET_TABLE_SIZE (1 << CSS_SET_HASH_BITS)
335 static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE];
336
337 static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[])
338 {
339 int i;
340 int index;
341 unsigned long tmp = 0UL;
342
343 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
344 tmp += (unsigned long)css[i];
345 tmp = (tmp >> 16) ^ tmp;
346
347 index = hash_long(tmp, CSS_SET_HASH_BITS);
348
349 return &css_set_table[index];
350 }
351
352 /* We don't maintain the lists running through each css_set to its
353 * task until after the first call to cgroup_iter_start(). This
354 * reduces the fork()/exit() overhead for people who have cgroups
355 * compiled into their kernel but not actually in use */
356 static int use_task_css_set_links __read_mostly;
357
358 static void __put_css_set(struct css_set *cg, int taskexit)
359 {
360 struct cg_cgroup_link *link;
361 struct cg_cgroup_link *saved_link;
362 /*
363 * Ensure that the refcount doesn't hit zero while any readers
364 * can see it. Similar to atomic_dec_and_lock(), but for an
365 * rwlock
366 */
367 if (atomic_add_unless(&cg->refcount, -1, 1))
368 return;
369 write_lock(&css_set_lock);
370 if (!atomic_dec_and_test(&cg->refcount)) {
371 write_unlock(&css_set_lock);
372 return;
373 }
374
375 /* This css_set is dead. unlink it and release cgroup refcounts */
376 hlist_del(&cg->hlist);
377 css_set_count--;
378
379 list_for_each_entry_safe(link, saved_link, &cg->cg_links,
380 cg_link_list) {
381 struct cgroup *cgrp = link->cgrp;
382 list_del(&link->cg_link_list);
383 list_del(&link->cgrp_link_list);
384 if (atomic_dec_and_test(&cgrp->count) &&
385 notify_on_release(cgrp)) {
386 if (taskexit)
387 set_bit(CGRP_RELEASABLE, &cgrp->flags);
388 check_for_release(cgrp);
389 }
390
391 kfree(link);
392 }
393
394 write_unlock(&css_set_lock);
395 kfree_rcu(cg, rcu_head);
396 }
397
398 /*
399 * refcounted get/put for css_set objects
400 */
401 static inline void get_css_set(struct css_set *cg)
402 {
403 atomic_inc(&cg->refcount);
404 }
405
406 static inline void put_css_set(struct css_set *cg)
407 {
408 __put_css_set(cg, 0);
409 }
410
411 static inline void put_css_set_taskexit(struct css_set *cg)
412 {
413 __put_css_set(cg, 1);
414 }
415
416 /*
417 * compare_css_sets - helper function for find_existing_css_set().
418 * @cg: candidate css_set being tested
419 * @old_cg: existing css_set for a task
420 * @new_cgrp: cgroup that's being entered by the task
421 * @template: desired set of css pointers in css_set (pre-calculated)
422 *
423 * Returns true if "cg" matches "old_cg" except for the hierarchy
424 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
425 */
426 static bool compare_css_sets(struct css_set *cg,
427 struct css_set *old_cg,
428 struct cgroup *new_cgrp,
429 struct cgroup_subsys_state *template[])
430 {
431 struct list_head *l1, *l2;
432
433 if (memcmp(template, cg->subsys, sizeof(cg->subsys))) {
434 /* Not all subsystems matched */
435 return false;
436 }
437
438 /*
439 * Compare cgroup pointers in order to distinguish between
440 * different cgroups in heirarchies with no subsystems. We
441 * could get by with just this check alone (and skip the
442 * memcmp above) but on most setups the memcmp check will
443 * avoid the need for this more expensive check on almost all
444 * candidates.
445 */
446
447 l1 = &cg->cg_links;
448 l2 = &old_cg->cg_links;
449 while (1) {
450 struct cg_cgroup_link *cgl1, *cgl2;
451 struct cgroup *cg1, *cg2;
452
453 l1 = l1->next;
454 l2 = l2->next;
455 /* See if we reached the end - both lists are equal length. */
456 if (l1 == &cg->cg_links) {
457 BUG_ON(l2 != &old_cg->cg_links);
458 break;
459 } else {
460 BUG_ON(l2 == &old_cg->cg_links);
461 }
462 /* Locate the cgroups associated with these links. */
463 cgl1 = list_entry(l1, struct cg_cgroup_link, cg_link_list);
464 cgl2 = list_entry(l2, struct cg_cgroup_link, cg_link_list);
465 cg1 = cgl1->cgrp;
466 cg2 = cgl2->cgrp;
467 /* Hierarchies should be linked in the same order. */
468 BUG_ON(cg1->root != cg2->root);
469
470 /*
471 * If this hierarchy is the hierarchy of the cgroup
472 * that's changing, then we need to check that this
473 * css_set points to the new cgroup; if it's any other
474 * hierarchy, then this css_set should point to the
475 * same cgroup as the old css_set.
476 */
477 if (cg1->root == new_cgrp->root) {
478 if (cg1 != new_cgrp)
479 return false;
480 } else {
481 if (cg1 != cg2)
482 return false;
483 }
484 }
485 return true;
486 }
487
488 /*
489 * find_existing_css_set() is a helper for
490 * find_css_set(), and checks to see whether an existing
491 * css_set is suitable.
492 *
493 * oldcg: the cgroup group that we're using before the cgroup
494 * transition
495 *
496 * cgrp: the cgroup that we're moving into
497 *
498 * template: location in which to build the desired set of subsystem
499 * state objects for the new cgroup group
500 */
501 static struct css_set *find_existing_css_set(
502 struct css_set *oldcg,
503 struct cgroup *cgrp,
504 struct cgroup_subsys_state *template[])
505 {
506 int i;
507 struct cgroupfs_root *root = cgrp->root;
508 struct hlist_head *hhead;
509 struct hlist_node *node;
510 struct css_set *cg;
511
512 /*
513 * Build the set of subsystem state objects that we want to see in the
514 * new css_set. while subsystems can change globally, the entries here
515 * won't change, so no need for locking.
516 */
517 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
518 if (root->subsys_bits & (1UL << i)) {
519 /* Subsystem is in this hierarchy. So we want
520 * the subsystem state from the new
521 * cgroup */
522 template[i] = cgrp->subsys[i];
523 } else {
524 /* Subsystem is not in this hierarchy, so we
525 * don't want to change the subsystem state */
526 template[i] = oldcg->subsys[i];
527 }
528 }
529
530 hhead = css_set_hash(template);
531 hlist_for_each_entry(cg, node, hhead, hlist) {
532 if (!compare_css_sets(cg, oldcg, cgrp, template))
533 continue;
534
535 /* This css_set matches what we need */
536 return cg;
537 }
538
539 /* No existing cgroup group matched */
540 return NULL;
541 }
542
543 static void free_cg_links(struct list_head *tmp)
544 {
545 struct cg_cgroup_link *link;
546 struct cg_cgroup_link *saved_link;
547
548 list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
549 list_del(&link->cgrp_link_list);
550 kfree(link);
551 }
552 }
553
554 /*
555 * allocate_cg_links() allocates "count" cg_cgroup_link structures
556 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
557 * success or a negative error
558 */
559 static int allocate_cg_links(int count, struct list_head *tmp)
560 {
561 struct cg_cgroup_link *link;
562 int i;
563 INIT_LIST_HEAD(tmp);
564 for (i = 0; i < count; i++) {
565 link = kmalloc(sizeof(*link), GFP_KERNEL);
566 if (!link) {
567 free_cg_links(tmp);
568 return -ENOMEM;
569 }
570 list_add(&link->cgrp_link_list, tmp);
571 }
572 return 0;
573 }
574
575 /**
576 * link_css_set - a helper function to link a css_set to a cgroup
577 * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
578 * @cg: the css_set to be linked
579 * @cgrp: the destination cgroup
580 */
581 static void link_css_set(struct list_head *tmp_cg_links,
582 struct css_set *cg, struct cgroup *cgrp)
583 {
584 struct cg_cgroup_link *link;
585
586 BUG_ON(list_empty(tmp_cg_links));
587 link = list_first_entry(tmp_cg_links, struct cg_cgroup_link,
588 cgrp_link_list);
589 link->cg = cg;
590 link->cgrp = cgrp;
591 atomic_inc(&cgrp->count);
592 list_move(&link->cgrp_link_list, &cgrp->css_sets);
593 /*
594 * Always add links to the tail of the list so that the list
595 * is sorted by order of hierarchy creation
596 */
597 list_add_tail(&link->cg_link_list, &cg->cg_links);
598 }
599
600 /*
601 * find_css_set() takes an existing cgroup group and a
602 * cgroup object, and returns a css_set object that's
603 * equivalent to the old group, but with the given cgroup
604 * substituted into the appropriate hierarchy. Must be called with
605 * cgroup_mutex held
606 */
607 static struct css_set *find_css_set(
608 struct css_set *oldcg, struct cgroup *cgrp)
609 {
610 struct css_set *res;
611 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
612
613 struct list_head tmp_cg_links;
614
615 struct hlist_head *hhead;
616 struct cg_cgroup_link *link;
617
618 /* First see if we already have a cgroup group that matches
619 * the desired set */
620 read_lock(&css_set_lock);
621 res = find_existing_css_set(oldcg, cgrp, template);
622 if (res)
623 get_css_set(res);
624 read_unlock(&css_set_lock);
625
626 if (res)
627 return res;
628
629 res = kmalloc(sizeof(*res), GFP_KERNEL);
630 if (!res)
631 return NULL;
632
633 /* Allocate all the cg_cgroup_link objects that we'll need */
634 if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
635 kfree(res);
636 return NULL;
637 }
638
639 atomic_set(&res->refcount, 1);
640 INIT_LIST_HEAD(&res->cg_links);
641 INIT_LIST_HEAD(&res->tasks);
642 INIT_HLIST_NODE(&res->hlist);
643
644 /* Copy the set of subsystem state objects generated in
645 * find_existing_css_set() */
646 memcpy(res->subsys, template, sizeof(res->subsys));
647
648 write_lock(&css_set_lock);
649 /* Add reference counts and links from the new css_set. */
650 list_for_each_entry(link, &oldcg->cg_links, cg_link_list) {
651 struct cgroup *c = link->cgrp;
652 if (c->root == cgrp->root)
653 c = cgrp;
654 link_css_set(&tmp_cg_links, res, c);
655 }
656
657 BUG_ON(!list_empty(&tmp_cg_links));
658
659 css_set_count++;
660
661 /* Add this cgroup group to the hash table */
662 hhead = css_set_hash(res->subsys);
663 hlist_add_head(&res->hlist, hhead);
664
665 write_unlock(&css_set_lock);
666
667 return res;
668 }
669
670 /*
671 * Return the cgroup for "task" from the given hierarchy. Must be
672 * called with cgroup_mutex held.
673 */
674 static struct cgroup *task_cgroup_from_root(struct task_struct *task,
675 struct cgroupfs_root *root)
676 {
677 struct css_set *css;
678 struct cgroup *res = NULL;
679
680 BUG_ON(!mutex_is_locked(&cgroup_mutex));
681 read_lock(&css_set_lock);
682 /*
683 * No need to lock the task - since we hold cgroup_mutex the
684 * task can't change groups, so the only thing that can happen
685 * is that it exits and its css is set back to init_css_set.
686 */
687 css = task->cgroups;
688 if (css == &init_css_set) {
689 res = &root->top_cgroup;
690 } else {
691 struct cg_cgroup_link *link;
692 list_for_each_entry(link, &css->cg_links, cg_link_list) {
693 struct cgroup *c = link->cgrp;
694 if (c->root == root) {
695 res = c;
696 break;
697 }
698 }
699 }
700 read_unlock(&css_set_lock);
701 BUG_ON(!res);
702 return res;
703 }
704
705 /*
706 * There is one global cgroup mutex. We also require taking
707 * task_lock() when dereferencing a task's cgroup subsys pointers.
708 * See "The task_lock() exception", at the end of this comment.
709 *
710 * A task must hold cgroup_mutex to modify cgroups.
711 *
712 * Any task can increment and decrement the count field without lock.
713 * So in general, code holding cgroup_mutex can't rely on the count
714 * field not changing. However, if the count goes to zero, then only
715 * cgroup_attach_task() can increment it again. Because a count of zero
716 * means that no tasks are currently attached, therefore there is no
717 * way a task attached to that cgroup can fork (the other way to
718 * increment the count). So code holding cgroup_mutex can safely
719 * assume that if the count is zero, it will stay zero. Similarly, if
720 * a task holds cgroup_mutex on a cgroup with zero count, it
721 * knows that the cgroup won't be removed, as cgroup_rmdir()
722 * needs that mutex.
723 *
724 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
725 * (usually) take cgroup_mutex. These are the two most performance
726 * critical pieces of code here. The exception occurs on cgroup_exit(),
727 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
728 * is taken, and if the cgroup count is zero, a usermode call made
729 * to the release agent with the name of the cgroup (path relative to
730 * the root of cgroup file system) as the argument.
731 *
732 * A cgroup can only be deleted if both its 'count' of using tasks
733 * is zero, and its list of 'children' cgroups is empty. Since all
734 * tasks in the system use _some_ cgroup, and since there is always at
735 * least one task in the system (init, pid == 1), therefore, top_cgroup
736 * always has either children cgroups and/or using tasks. So we don't
737 * need a special hack to ensure that top_cgroup cannot be deleted.
738 *
739 * The task_lock() exception
740 *
741 * The need for this exception arises from the action of
742 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
743 * another. It does so using cgroup_mutex, however there are
744 * several performance critical places that need to reference
745 * task->cgroup without the expense of grabbing a system global
746 * mutex. Therefore except as noted below, when dereferencing or, as
747 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
748 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
749 * the task_struct routinely used for such matters.
750 *
751 * P.S. One more locking exception. RCU is used to guard the
752 * update of a tasks cgroup pointer by cgroup_attach_task()
753 */
754
755 /**
756 * cgroup_lock - lock out any changes to cgroup structures
757 *
758 */
759 void cgroup_lock(void)
760 {
761 mutex_lock(&cgroup_mutex);
762 }
763 EXPORT_SYMBOL_GPL(cgroup_lock);
764
765 /**
766 * cgroup_unlock - release lock on cgroup changes
767 *
768 * Undo the lock taken in a previous cgroup_lock() call.
769 */
770 void cgroup_unlock(void)
771 {
772 mutex_unlock(&cgroup_mutex);
773 }
774 EXPORT_SYMBOL_GPL(cgroup_unlock);
775
776 /*
777 * A couple of forward declarations required, due to cyclic reference loop:
778 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
779 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
780 * -> cgroup_mkdir.
781 */
782
783 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode);
784 static struct dentry *cgroup_lookup(struct inode *, struct dentry *, struct nameidata *);
785 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
786 static int cgroup_populate_dir(struct cgroup *cgrp);
787 static const struct inode_operations cgroup_dir_inode_operations;
788 static const struct file_operations proc_cgroupstats_operations;
789
790 static struct backing_dev_info cgroup_backing_dev_info = {
791 .name = "cgroup",
792 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
793 };
794
795 static int alloc_css_id(struct cgroup_subsys *ss,
796 struct cgroup *parent, struct cgroup *child);
797
798 static struct inode *cgroup_new_inode(umode_t mode, struct super_block *sb)
799 {
800 struct inode *inode = new_inode(sb);
801
802 if (inode) {
803 inode->i_ino = get_next_ino();
804 inode->i_mode = mode;
805 inode->i_uid = current_fsuid();
806 inode->i_gid = current_fsgid();
807 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
808 inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
809 }
810 return inode;
811 }
812
813 /*
814 * Call subsys's pre_destroy handler.
815 * This is called before css refcnt check.
816 */
817 static int cgroup_call_pre_destroy(struct cgroup *cgrp)
818 {
819 struct cgroup_subsys *ss;
820 int ret = 0;
821
822 for_each_subsys(cgrp->root, ss)
823 if (ss->pre_destroy) {
824 ret = ss->pre_destroy(cgrp);
825 if (ret)
826 break;
827 }
828
829 return ret;
830 }
831
832 static void cgroup_diput(struct dentry *dentry, struct inode *inode)
833 {
834 /* is dentry a directory ? if so, kfree() associated cgroup */
835 if (S_ISDIR(inode->i_mode)) {
836 struct cgroup *cgrp = dentry->d_fsdata;
837 struct cgroup_subsys *ss;
838 BUG_ON(!(cgroup_is_removed(cgrp)));
839 /* It's possible for external users to be holding css
840 * reference counts on a cgroup; css_put() needs to
841 * be able to access the cgroup after decrementing
842 * the reference count in order to know if it needs to
843 * queue the cgroup to be handled by the release
844 * agent */
845 synchronize_rcu();
846
847 mutex_lock(&cgroup_mutex);
848 /*
849 * Release the subsystem state objects.
850 */
851 for_each_subsys(cgrp->root, ss)
852 ss->destroy(cgrp);
853
854 cgrp->root->number_of_cgroups--;
855 mutex_unlock(&cgroup_mutex);
856
857 /*
858 * Drop the active superblock reference that we took when we
859 * created the cgroup
860 */
861 deactivate_super(cgrp->root->sb);
862
863 /*
864 * if we're getting rid of the cgroup, refcount should ensure
865 * that there are no pidlists left.
866 */
867 BUG_ON(!list_empty(&cgrp->pidlists));
868
869 kfree_rcu(cgrp, rcu_head);
870 }
871 iput(inode);
872 }
873
874 static int cgroup_delete(const struct dentry *d)
875 {
876 return 1;
877 }
878
879 static void remove_dir(struct dentry *d)
880 {
881 struct dentry *parent = dget(d->d_parent);
882
883 d_delete(d);
884 simple_rmdir(parent->d_inode, d);
885 dput(parent);
886 }
887
888 static void cgroup_clear_directory(struct dentry *dentry)
889 {
890 struct list_head *node;
891
892 BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
893 spin_lock(&dentry->d_lock);
894 node = dentry->d_subdirs.next;
895 while (node != &dentry->d_subdirs) {
896 struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
897
898 spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
899 list_del_init(node);
900 if (d->d_inode) {
901 /* This should never be called on a cgroup
902 * directory with child cgroups */
903 BUG_ON(d->d_inode->i_mode & S_IFDIR);
904 dget_dlock(d);
905 spin_unlock(&d->d_lock);
906 spin_unlock(&dentry->d_lock);
907 d_delete(d);
908 simple_unlink(dentry->d_inode, d);
909 dput(d);
910 spin_lock(&dentry->d_lock);
911 } else
912 spin_unlock(&d->d_lock);
913 node = dentry->d_subdirs.next;
914 }
915 spin_unlock(&dentry->d_lock);
916 }
917
918 /*
919 * NOTE : the dentry must have been dget()'ed
920 */
921 static void cgroup_d_remove_dir(struct dentry *dentry)
922 {
923 struct dentry *parent;
924
925 cgroup_clear_directory(dentry);
926
927 parent = dentry->d_parent;
928 spin_lock(&parent->d_lock);
929 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
930 list_del_init(&dentry->d_u.d_child);
931 spin_unlock(&dentry->d_lock);
932 spin_unlock(&parent->d_lock);
933 remove_dir(dentry);
934 }
935
936 /*
937 * A queue for waiters to do rmdir() cgroup. A tasks will sleep when
938 * cgroup->count == 0 && list_empty(&cgroup->children) && subsys has some
939 * reference to css->refcnt. In general, this refcnt is expected to goes down
940 * to zero, soon.
941 *
942 * CGRP_WAIT_ON_RMDIR flag is set under cgroup's inode->i_mutex;
943 */
944 static DECLARE_WAIT_QUEUE_HEAD(cgroup_rmdir_waitq);
945
946 static void cgroup_wakeup_rmdir_waiter(struct cgroup *cgrp)
947 {
948 if (unlikely(test_and_clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags)))
949 wake_up_all(&cgroup_rmdir_waitq);
950 }
951
952 void cgroup_exclude_rmdir(struct cgroup_subsys_state *css)
953 {
954 css_get(css);
955 }
956
957 void cgroup_release_and_wakeup_rmdir(struct cgroup_subsys_state *css)
958 {
959 cgroup_wakeup_rmdir_waiter(css->cgroup);
960 css_put(css);
961 }
962
963 /*
964 * Call with cgroup_mutex held. Drops reference counts on modules, including
965 * any duplicate ones that parse_cgroupfs_options took. If this function
966 * returns an error, no reference counts are touched.
967 */
968 static int rebind_subsystems(struct cgroupfs_root *root,
969 unsigned long final_bits)
970 {
971 unsigned long added_bits, removed_bits;
972 struct cgroup *cgrp = &root->top_cgroup;
973 int i;
974
975 BUG_ON(!mutex_is_locked(&cgroup_mutex));
976 BUG_ON(!mutex_is_locked(&cgroup_root_mutex));
977
978 removed_bits = root->actual_subsys_bits & ~final_bits;
979 added_bits = final_bits & ~root->actual_subsys_bits;
980 /* Check that any added subsystems are currently free */
981 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
982 unsigned long bit = 1UL << i;
983 struct cgroup_subsys *ss = subsys[i];
984 if (!(bit & added_bits))
985 continue;
986 /*
987 * Nobody should tell us to do a subsys that doesn't exist:
988 * parse_cgroupfs_options should catch that case and refcounts
989 * ensure that subsystems won't disappear once selected.
990 */
991 BUG_ON(ss == NULL);
992 if (ss->root != &rootnode) {
993 /* Subsystem isn't free */
994 return -EBUSY;
995 }
996 }
997
998 /* Currently we don't handle adding/removing subsystems when
999 * any child cgroups exist. This is theoretically supportable
1000 * but involves complex error handling, so it's being left until
1001 * later */
1002 if (root->number_of_cgroups > 1)
1003 return -EBUSY;
1004
1005 /* Process each subsystem */
1006 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1007 struct cgroup_subsys *ss = subsys[i];
1008 unsigned long bit = 1UL << i;
1009 if (bit & added_bits) {
1010 /* We're binding this subsystem to this hierarchy */
1011 BUG_ON(ss == NULL);
1012 BUG_ON(cgrp->subsys[i]);
1013 BUG_ON(!dummytop->subsys[i]);
1014 BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
1015 mutex_lock(&ss->hierarchy_mutex);
1016 cgrp->subsys[i] = dummytop->subsys[i];
1017 cgrp->subsys[i]->cgroup = cgrp;
1018 list_move(&ss->sibling, &root->subsys_list);
1019 ss->root = root;
1020 if (ss->bind)
1021 ss->bind(cgrp);
1022 mutex_unlock(&ss->hierarchy_mutex);
1023 /* refcount was already taken, and we're keeping it */
1024 } else if (bit & removed_bits) {
1025 /* We're removing this subsystem */
1026 BUG_ON(ss == NULL);
1027 BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
1028 BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
1029 mutex_lock(&ss->hierarchy_mutex);
1030 if (ss->bind)
1031 ss->bind(dummytop);
1032 dummytop->subsys[i]->cgroup = dummytop;
1033 cgrp->subsys[i] = NULL;
1034 subsys[i]->root = &rootnode;
1035 list_move(&ss->sibling, &rootnode.subsys_list);
1036 mutex_unlock(&ss->hierarchy_mutex);
1037 /* subsystem is now free - drop reference on module */
1038 module_put(ss->module);
1039 } else if (bit & final_bits) {
1040 /* Subsystem state should already exist */
1041 BUG_ON(ss == NULL);
1042 BUG_ON(!cgrp->subsys[i]);
1043 /*
1044 * a refcount was taken, but we already had one, so
1045 * drop the extra reference.
1046 */
1047 module_put(ss->module);
1048 #ifdef CONFIG_MODULE_UNLOAD
1049 BUG_ON(ss->module && !module_refcount(ss->module));
1050 #endif
1051 } else {
1052 /* Subsystem state shouldn't exist */
1053 BUG_ON(cgrp->subsys[i]);
1054 }
1055 }
1056 root->subsys_bits = root->actual_subsys_bits = final_bits;
1057 synchronize_rcu();
1058
1059 return 0;
1060 }
1061
1062 static int cgroup_show_options(struct seq_file *seq, struct dentry *dentry)
1063 {
1064 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
1065 struct cgroup_subsys *ss;
1066
1067 mutex_lock(&cgroup_root_mutex);
1068 for_each_subsys(root, ss)
1069 seq_printf(seq, ",%s", ss->name);
1070 if (test_bit(ROOT_NOPREFIX, &root->flags))
1071 seq_puts(seq, ",noprefix");
1072 if (strlen(root->release_agent_path))
1073 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
1074 if (clone_children(&root->top_cgroup))
1075 seq_puts(seq, ",clone_children");
1076 if (strlen(root->name))
1077 seq_printf(seq, ",name=%s", root->name);
1078 mutex_unlock(&cgroup_root_mutex);
1079 return 0;
1080 }
1081
1082 struct cgroup_sb_opts {
1083 unsigned long subsys_bits;
1084 unsigned long flags;
1085 char *release_agent;
1086 bool clone_children;
1087 char *name;
1088 /* User explicitly requested empty subsystem */
1089 bool none;
1090
1091 struct cgroupfs_root *new_root;
1092
1093 };
1094
1095 /*
1096 * Convert a hierarchy specifier into a bitmask of subsystems and flags. Call
1097 * with cgroup_mutex held to protect the subsys[] array. This function takes
1098 * refcounts on subsystems to be used, unless it returns error, in which case
1099 * no refcounts are taken.
1100 */
1101 static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
1102 {
1103 char *token, *o = data;
1104 bool all_ss = false, one_ss = false;
1105 unsigned long mask = (unsigned long)-1;
1106 int i;
1107 bool module_pin_failed = false;
1108
1109 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1110
1111 #ifdef CONFIG_CPUSETS
1112 mask = ~(1UL << cpuset_subsys_id);
1113 #endif
1114
1115 memset(opts, 0, sizeof(*opts));
1116
1117 while ((token = strsep(&o, ",")) != NULL) {
1118 if (!*token)
1119 return -EINVAL;
1120 if (!strcmp(token, "none")) {
1121 /* Explicitly have no subsystems */
1122 opts->none = true;
1123 continue;
1124 }
1125 if (!strcmp(token, "all")) {
1126 /* Mutually exclusive option 'all' + subsystem name */
1127 if (one_ss)
1128 return -EINVAL;
1129 all_ss = true;
1130 continue;
1131 }
1132 if (!strcmp(token, "noprefix")) {
1133 set_bit(ROOT_NOPREFIX, &opts->flags);
1134 continue;
1135 }
1136 if (!strcmp(token, "clone_children")) {
1137 opts->clone_children = true;
1138 continue;
1139 }
1140 if (!strncmp(token, "release_agent=", 14)) {
1141 /* Specifying two release agents is forbidden */
1142 if (opts->release_agent)
1143 return -EINVAL;
1144 opts->release_agent =
1145 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
1146 if (!opts->release_agent)
1147 return -ENOMEM;
1148 continue;
1149 }
1150 if (!strncmp(token, "name=", 5)) {
1151 const char *name = token + 5;
1152 /* Can't specify an empty name */
1153 if (!strlen(name))
1154 return -EINVAL;
1155 /* Must match [\w.-]+ */
1156 for (i = 0; i < strlen(name); i++) {
1157 char c = name[i];
1158 if (isalnum(c))
1159 continue;
1160 if ((c == '.') || (c == '-') || (c == '_'))
1161 continue;
1162 return -EINVAL;
1163 }
1164 /* Specifying two names is forbidden */
1165 if (opts->name)
1166 return -EINVAL;
1167 opts->name = kstrndup(name,
1168 MAX_CGROUP_ROOT_NAMELEN - 1,
1169 GFP_KERNEL);
1170 if (!opts->name)
1171 return -ENOMEM;
1172
1173 continue;
1174 }
1175
1176 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1177 struct cgroup_subsys *ss = subsys[i];
1178 if (ss == NULL)
1179 continue;
1180 if (strcmp(token, ss->name))
1181 continue;
1182 if (ss->disabled)
1183 continue;
1184
1185 /* Mutually exclusive option 'all' + subsystem name */
1186 if (all_ss)
1187 return -EINVAL;
1188 set_bit(i, &opts->subsys_bits);
1189 one_ss = true;
1190
1191 break;
1192 }
1193 if (i == CGROUP_SUBSYS_COUNT)
1194 return -ENOENT;
1195 }
1196
1197 /*
1198 * If the 'all' option was specified select all the subsystems,
1199 * otherwise if 'none', 'name=' and a subsystem name options
1200 * were not specified, let's default to 'all'
1201 */
1202 if (all_ss || (!one_ss && !opts->none && !opts->name)) {
1203 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1204 struct cgroup_subsys *ss = subsys[i];
1205 if (ss == NULL)
1206 continue;
1207 if (ss->disabled)
1208 continue;
1209 set_bit(i, &opts->subsys_bits);
1210 }
1211 }
1212
1213 /* Consistency checks */
1214
1215 /*
1216 * Option noprefix was introduced just for backward compatibility
1217 * with the old cpuset, so we allow noprefix only if mounting just
1218 * the cpuset subsystem.
1219 */
1220 if (test_bit(ROOT_NOPREFIX, &opts->flags) &&
1221 (opts->subsys_bits & mask))
1222 return -EINVAL;
1223
1224
1225 /* Can't specify "none" and some subsystems */
1226 if (opts->subsys_bits && opts->none)
1227 return -EINVAL;
1228
1229 /*
1230 * We either have to specify by name or by subsystems. (So all
1231 * empty hierarchies must have a name).
1232 */
1233 if (!opts->subsys_bits && !opts->name)
1234 return -EINVAL;
1235
1236 /*
1237 * Grab references on all the modules we'll need, so the subsystems
1238 * don't dance around before rebind_subsystems attaches them. This may
1239 * take duplicate reference counts on a subsystem that's already used,
1240 * but rebind_subsystems handles this case.
1241 */
1242 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
1243 unsigned long bit = 1UL << i;
1244
1245 if (!(bit & opts->subsys_bits))
1246 continue;
1247 if (!try_module_get(subsys[i]->module)) {
1248 module_pin_failed = true;
1249 break;
1250 }
1251 }
1252 if (module_pin_failed) {
1253 /*
1254 * oops, one of the modules was going away. this means that we
1255 * raced with a module_delete call, and to the user this is
1256 * essentially a "subsystem doesn't exist" case.
1257 */
1258 for (i--; i >= CGROUP_BUILTIN_SUBSYS_COUNT; i--) {
1259 /* drop refcounts only on the ones we took */
1260 unsigned long bit = 1UL << i;
1261
1262 if (!(bit & opts->subsys_bits))
1263 continue;
1264 module_put(subsys[i]->module);
1265 }
1266 return -ENOENT;
1267 }
1268
1269 return 0;
1270 }
1271
1272 static void drop_parsed_module_refcounts(unsigned long subsys_bits)
1273 {
1274 int i;
1275 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
1276 unsigned long bit = 1UL << i;
1277
1278 if (!(bit & subsys_bits))
1279 continue;
1280 module_put(subsys[i]->module);
1281 }
1282 }
1283
1284 static int cgroup_remount(struct super_block *sb, int *flags, char *data)
1285 {
1286 int ret = 0;
1287 struct cgroupfs_root *root = sb->s_fs_info;
1288 struct cgroup *cgrp = &root->top_cgroup;
1289 struct cgroup_sb_opts opts;
1290
1291 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
1292 mutex_lock(&cgroup_mutex);
1293 mutex_lock(&cgroup_root_mutex);
1294
1295 /* See what subsystems are wanted */
1296 ret = parse_cgroupfs_options(data, &opts);
1297 if (ret)
1298 goto out_unlock;
1299
1300 /* See feature-removal-schedule.txt */
1301 if (opts.subsys_bits != root->actual_subsys_bits || opts.release_agent)
1302 pr_warning("cgroup: option changes via remount are deprecated (pid=%d comm=%s)\n",
1303 task_tgid_nr(current), current->comm);
1304
1305 /* Don't allow flags or name to change at remount */
1306 if (opts.flags != root->flags ||
1307 (opts.name && strcmp(opts.name, root->name))) {
1308 ret = -EINVAL;
1309 drop_parsed_module_refcounts(opts.subsys_bits);
1310 goto out_unlock;
1311 }
1312
1313 ret = rebind_subsystems(root, opts.subsys_bits);
1314 if (ret) {
1315 drop_parsed_module_refcounts(opts.subsys_bits);
1316 goto out_unlock;
1317 }
1318
1319 /* clear out any existing files and repopulate subsystem files */
1320 cgroup_clear_directory(cgrp->dentry);
1321 cgroup_populate_dir(cgrp);
1322
1323 if (opts.release_agent)
1324 strcpy(root->release_agent_path, opts.release_agent);
1325 out_unlock:
1326 kfree(opts.release_agent);
1327 kfree(opts.name);
1328 mutex_unlock(&cgroup_root_mutex);
1329 mutex_unlock(&cgroup_mutex);
1330 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
1331 return ret;
1332 }
1333
1334 static const struct super_operations cgroup_ops = {
1335 .statfs = simple_statfs,
1336 .drop_inode = generic_delete_inode,
1337 .show_options = cgroup_show_options,
1338 .remount_fs = cgroup_remount,
1339 };
1340
1341 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1342 {
1343 INIT_LIST_HEAD(&cgrp->sibling);
1344 INIT_LIST_HEAD(&cgrp->children);
1345 INIT_LIST_HEAD(&cgrp->css_sets);
1346 INIT_LIST_HEAD(&cgrp->release_list);
1347 INIT_LIST_HEAD(&cgrp->pidlists);
1348 mutex_init(&cgrp->pidlist_mutex);
1349 INIT_LIST_HEAD(&cgrp->event_list);
1350 spin_lock_init(&cgrp->event_list_lock);
1351 }
1352
1353 static void init_cgroup_root(struct cgroupfs_root *root)
1354 {
1355 struct cgroup *cgrp = &root->top_cgroup;
1356
1357 INIT_LIST_HEAD(&root->subsys_list);
1358 INIT_LIST_HEAD(&root->root_list);
1359 INIT_LIST_HEAD(&root->allcg_list);
1360 root->number_of_cgroups = 1;
1361 cgrp->root = root;
1362 cgrp->top_cgroup = cgrp;
1363 list_add_tail(&cgrp->allcg_node, &root->allcg_list);
1364 init_cgroup_housekeeping(cgrp);
1365 }
1366
1367 static bool init_root_id(struct cgroupfs_root *root)
1368 {
1369 int ret = 0;
1370
1371 do {
1372 if (!ida_pre_get(&hierarchy_ida, GFP_KERNEL))
1373 return false;
1374 spin_lock(&hierarchy_id_lock);
1375 /* Try to allocate the next unused ID */
1376 ret = ida_get_new_above(&hierarchy_ida, next_hierarchy_id,
1377 &root->hierarchy_id);
1378 if (ret == -ENOSPC)
1379 /* Try again starting from 0 */
1380 ret = ida_get_new(&hierarchy_ida, &root->hierarchy_id);
1381 if (!ret) {
1382 next_hierarchy_id = root->hierarchy_id + 1;
1383 } else if (ret != -EAGAIN) {
1384 /* Can only get here if the 31-bit IDR is full ... */
1385 BUG_ON(ret);
1386 }
1387 spin_unlock(&hierarchy_id_lock);
1388 } while (ret);
1389 return true;
1390 }
1391
1392 static int cgroup_test_super(struct super_block *sb, void *data)
1393 {
1394 struct cgroup_sb_opts *opts = data;
1395 struct cgroupfs_root *root = sb->s_fs_info;
1396
1397 /* If we asked for a name then it must match */
1398 if (opts->name && strcmp(opts->name, root->name))
1399 return 0;
1400
1401 /*
1402 * If we asked for subsystems (or explicitly for no
1403 * subsystems) then they must match
1404 */
1405 if ((opts->subsys_bits || opts->none)
1406 && (opts->subsys_bits != root->subsys_bits))
1407 return 0;
1408
1409 return 1;
1410 }
1411
1412 static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
1413 {
1414 struct cgroupfs_root *root;
1415
1416 if (!opts->subsys_bits && !opts->none)
1417 return NULL;
1418
1419 root = kzalloc(sizeof(*root), GFP_KERNEL);
1420 if (!root)
1421 return ERR_PTR(-ENOMEM);
1422
1423 if (!init_root_id(root)) {
1424 kfree(root);
1425 return ERR_PTR(-ENOMEM);
1426 }
1427 init_cgroup_root(root);
1428
1429 root->subsys_bits = opts->subsys_bits;
1430 root->flags = opts->flags;
1431 if (opts->release_agent)
1432 strcpy(root->release_agent_path, opts->release_agent);
1433 if (opts->name)
1434 strcpy(root->name, opts->name);
1435 if (opts->clone_children)
1436 set_bit(CGRP_CLONE_CHILDREN, &root->top_cgroup.flags);
1437 return root;
1438 }
1439
1440 static void cgroup_drop_root(struct cgroupfs_root *root)
1441 {
1442 if (!root)
1443 return;
1444
1445 BUG_ON(!root->hierarchy_id);
1446 spin_lock(&hierarchy_id_lock);
1447 ida_remove(&hierarchy_ida, root->hierarchy_id);
1448 spin_unlock(&hierarchy_id_lock);
1449 kfree(root);
1450 }
1451
1452 static int cgroup_set_super(struct super_block *sb, void *data)
1453 {
1454 int ret;
1455 struct cgroup_sb_opts *opts = data;
1456
1457 /* If we don't have a new root, we can't set up a new sb */
1458 if (!opts->new_root)
1459 return -EINVAL;
1460
1461 BUG_ON(!opts->subsys_bits && !opts->none);
1462
1463 ret = set_anon_super(sb, NULL);
1464 if (ret)
1465 return ret;
1466
1467 sb->s_fs_info = opts->new_root;
1468 opts->new_root->sb = sb;
1469
1470 sb->s_blocksize = PAGE_CACHE_SIZE;
1471 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
1472 sb->s_magic = CGROUP_SUPER_MAGIC;
1473 sb->s_op = &cgroup_ops;
1474
1475 return 0;
1476 }
1477
1478 static int cgroup_get_rootdir(struct super_block *sb)
1479 {
1480 static const struct dentry_operations cgroup_dops = {
1481 .d_iput = cgroup_diput,
1482 .d_delete = cgroup_delete,
1483 };
1484
1485 struct inode *inode =
1486 cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
1487
1488 if (!inode)
1489 return -ENOMEM;
1490
1491 inode->i_fop = &simple_dir_operations;
1492 inode->i_op = &cgroup_dir_inode_operations;
1493 /* directories start off with i_nlink == 2 (for "." entry) */
1494 inc_nlink(inode);
1495 sb->s_root = d_make_root(inode);
1496 if (!sb->s_root)
1497 return -ENOMEM;
1498 /* for everything else we want ->d_op set */
1499 sb->s_d_op = &cgroup_dops;
1500 return 0;
1501 }
1502
1503 static struct dentry *cgroup_mount(struct file_system_type *fs_type,
1504 int flags, const char *unused_dev_name,
1505 void *data)
1506 {
1507 struct cgroup_sb_opts opts;
1508 struct cgroupfs_root *root;
1509 int ret = 0;
1510 struct super_block *sb;
1511 struct cgroupfs_root *new_root;
1512 struct inode *inode;
1513
1514 /* First find the desired set of subsystems */
1515 mutex_lock(&cgroup_mutex);
1516 ret = parse_cgroupfs_options(data, &opts);
1517 mutex_unlock(&cgroup_mutex);
1518 if (ret)
1519 goto out_err;
1520
1521 /*
1522 * Allocate a new cgroup root. We may not need it if we're
1523 * reusing an existing hierarchy.
1524 */
1525 new_root = cgroup_root_from_opts(&opts);
1526 if (IS_ERR(new_root)) {
1527 ret = PTR_ERR(new_root);
1528 goto drop_modules;
1529 }
1530 opts.new_root = new_root;
1531
1532 /* Locate an existing or new sb for this hierarchy */
1533 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, &opts);
1534 if (IS_ERR(sb)) {
1535 ret = PTR_ERR(sb);
1536 cgroup_drop_root(opts.new_root);
1537 goto drop_modules;
1538 }
1539
1540 root = sb->s_fs_info;
1541 BUG_ON(!root);
1542 if (root == opts.new_root) {
1543 /* We used the new root structure, so this is a new hierarchy */
1544 struct list_head tmp_cg_links;
1545 struct cgroup *root_cgrp = &root->top_cgroup;
1546 struct cgroupfs_root *existing_root;
1547 const struct cred *cred;
1548 int i;
1549
1550 BUG_ON(sb->s_root != NULL);
1551
1552 ret = cgroup_get_rootdir(sb);
1553 if (ret)
1554 goto drop_new_super;
1555 inode = sb->s_root->d_inode;
1556
1557 mutex_lock(&inode->i_mutex);
1558 mutex_lock(&cgroup_mutex);
1559 mutex_lock(&cgroup_root_mutex);
1560
1561 /* Check for name clashes with existing mounts */
1562 ret = -EBUSY;
1563 if (strlen(root->name))
1564 for_each_active_root(existing_root)
1565 if (!strcmp(existing_root->name, root->name))
1566 goto unlock_drop;
1567
1568 /*
1569 * We're accessing css_set_count without locking
1570 * css_set_lock here, but that's OK - it can only be
1571 * increased by someone holding cgroup_lock, and
1572 * that's us. The worst that can happen is that we
1573 * have some link structures left over
1574 */
1575 ret = allocate_cg_links(css_set_count, &tmp_cg_links);
1576 if (ret)
1577 goto unlock_drop;
1578
1579 ret = rebind_subsystems(root, root->subsys_bits);
1580 if (ret == -EBUSY) {
1581 free_cg_links(&tmp_cg_links);
1582 goto unlock_drop;
1583 }
1584 /*
1585 * There must be no failure case after here, since rebinding
1586 * takes care of subsystems' refcounts, which are explicitly
1587 * dropped in the failure exit path.
1588 */
1589
1590 /* EBUSY should be the only error here */
1591 BUG_ON(ret);
1592
1593 list_add(&root->root_list, &roots);
1594 root_count++;
1595
1596 sb->s_root->d_fsdata = root_cgrp;
1597 root->top_cgroup.dentry = sb->s_root;
1598
1599 /* Link the top cgroup in this hierarchy into all
1600 * the css_set objects */
1601 write_lock(&css_set_lock);
1602 for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
1603 struct hlist_head *hhead = &css_set_table[i];
1604 struct hlist_node *node;
1605 struct css_set *cg;
1606
1607 hlist_for_each_entry(cg, node, hhead, hlist)
1608 link_css_set(&tmp_cg_links, cg, root_cgrp);
1609 }
1610 write_unlock(&css_set_lock);
1611
1612 free_cg_links(&tmp_cg_links);
1613
1614 BUG_ON(!list_empty(&root_cgrp->sibling));
1615 BUG_ON(!list_empty(&root_cgrp->children));
1616 BUG_ON(root->number_of_cgroups != 1);
1617
1618 cred = override_creds(&init_cred);
1619 cgroup_populate_dir(root_cgrp);
1620 revert_creds(cred);
1621 mutex_unlock(&cgroup_root_mutex);
1622 mutex_unlock(&cgroup_mutex);
1623 mutex_unlock(&inode->i_mutex);
1624 } else {
1625 /*
1626 * We re-used an existing hierarchy - the new root (if
1627 * any) is not needed
1628 */
1629 cgroup_drop_root(opts.new_root);
1630 /* no subsys rebinding, so refcounts don't change */
1631 drop_parsed_module_refcounts(opts.subsys_bits);
1632 }
1633
1634 kfree(opts.release_agent);
1635 kfree(opts.name);
1636 return dget(sb->s_root);
1637
1638 unlock_drop:
1639 mutex_unlock(&cgroup_root_mutex);
1640 mutex_unlock(&cgroup_mutex);
1641 mutex_unlock(&inode->i_mutex);
1642 drop_new_super:
1643 deactivate_locked_super(sb);
1644 drop_modules:
1645 drop_parsed_module_refcounts(opts.subsys_bits);
1646 out_err:
1647 kfree(opts.release_agent);
1648 kfree(opts.name);
1649 return ERR_PTR(ret);
1650 }
1651
1652 static void cgroup_kill_sb(struct super_block *sb) {
1653 struct cgroupfs_root *root = sb->s_fs_info;
1654 struct cgroup *cgrp = &root->top_cgroup;
1655 int ret;
1656 struct cg_cgroup_link *link;
1657 struct cg_cgroup_link *saved_link;
1658
1659 BUG_ON(!root);
1660
1661 BUG_ON(root->number_of_cgroups != 1);
1662 BUG_ON(!list_empty(&cgrp->children));
1663 BUG_ON(!list_empty(&cgrp->sibling));
1664
1665 mutex_lock(&cgroup_mutex);
1666 mutex_lock(&cgroup_root_mutex);
1667
1668 /* Rebind all subsystems back to the default hierarchy */
1669 ret = rebind_subsystems(root, 0);
1670 /* Shouldn't be able to fail ... */
1671 BUG_ON(ret);
1672
1673 /*
1674 * Release all the links from css_sets to this hierarchy's
1675 * root cgroup
1676 */
1677 write_lock(&css_set_lock);
1678
1679 list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
1680 cgrp_link_list) {
1681 list_del(&link->cg_link_list);
1682 list_del(&link->cgrp_link_list);
1683 kfree(link);
1684 }
1685 write_unlock(&css_set_lock);
1686
1687 if (!list_empty(&root->root_list)) {
1688 list_del(&root->root_list);
1689 root_count--;
1690 }
1691
1692 mutex_unlock(&cgroup_root_mutex);
1693 mutex_unlock(&cgroup_mutex);
1694
1695 kill_litter_super(sb);
1696 cgroup_drop_root(root);
1697 }
1698
1699 static struct file_system_type cgroup_fs_type = {
1700 .name = "cgroup",
1701 .mount = cgroup_mount,
1702 .kill_sb = cgroup_kill_sb,
1703 };
1704
1705 static struct kobject *cgroup_kobj;
1706
1707 static inline struct cgroup *__d_cgrp(struct dentry *dentry)
1708 {
1709 return dentry->d_fsdata;
1710 }
1711
1712 static inline struct cftype *__d_cft(struct dentry *dentry)
1713 {
1714 return dentry->d_fsdata;
1715 }
1716
1717 /**
1718 * cgroup_path - generate the path of a cgroup
1719 * @cgrp: the cgroup in question
1720 * @buf: the buffer to write the path into
1721 * @buflen: the length of the buffer
1722 *
1723 * Called with cgroup_mutex held or else with an RCU-protected cgroup
1724 * reference. Writes path of cgroup into buf. Returns 0 on success,
1725 * -errno on error.
1726 */
1727 int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1728 {
1729 char *start;
1730 struct dentry *dentry = rcu_dereference_check(cgrp->dentry,
1731 cgroup_lock_is_held());
1732
1733 if (!dentry || cgrp == dummytop) {
1734 /*
1735 * Inactive subsystems have no dentry for their root
1736 * cgroup
1737 */
1738 strcpy(buf, "/");
1739 return 0;
1740 }
1741
1742 start = buf + buflen;
1743
1744 *--start = '\0';
1745 for (;;) {
1746 int len = dentry->d_name.len;
1747
1748 if ((start -= len) < buf)
1749 return -ENAMETOOLONG;
1750 memcpy(start, dentry->d_name.name, len);
1751 cgrp = cgrp->parent;
1752 if (!cgrp)
1753 break;
1754
1755 dentry = rcu_dereference_check(cgrp->dentry,
1756 cgroup_lock_is_held());
1757 if (!cgrp->parent)
1758 continue;
1759 if (--start < buf)
1760 return -ENAMETOOLONG;
1761 *start = '/';
1762 }
1763 memmove(buf, start, buf + buflen - start);
1764 return 0;
1765 }
1766 EXPORT_SYMBOL_GPL(cgroup_path);
1767
1768 /*
1769 * Control Group taskset
1770 */
1771 struct task_and_cgroup {
1772 struct task_struct *task;
1773 struct cgroup *cgrp;
1774 struct css_set *cg;
1775 };
1776
1777 struct cgroup_taskset {
1778 struct task_and_cgroup single;
1779 struct flex_array *tc_array;
1780 int tc_array_len;
1781 int idx;
1782 struct cgroup *cur_cgrp;
1783 };
1784
1785 /**
1786 * cgroup_taskset_first - reset taskset and return the first task
1787 * @tset: taskset of interest
1788 *
1789 * @tset iteration is initialized and the first task is returned.
1790 */
1791 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
1792 {
1793 if (tset->tc_array) {
1794 tset->idx = 0;
1795 return cgroup_taskset_next(tset);
1796 } else {
1797 tset->cur_cgrp = tset->single.cgrp;
1798 return tset->single.task;
1799 }
1800 }
1801 EXPORT_SYMBOL_GPL(cgroup_taskset_first);
1802
1803 /**
1804 * cgroup_taskset_next - iterate to the next task in taskset
1805 * @tset: taskset of interest
1806 *
1807 * Return the next task in @tset. Iteration must have been initialized
1808 * with cgroup_taskset_first().
1809 */
1810 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
1811 {
1812 struct task_and_cgroup *tc;
1813
1814 if (!tset->tc_array || tset->idx >= tset->tc_array_len)
1815 return NULL;
1816
1817 tc = flex_array_get(tset->tc_array, tset->idx++);
1818 tset->cur_cgrp = tc->cgrp;
1819 return tc->task;
1820 }
1821 EXPORT_SYMBOL_GPL(cgroup_taskset_next);
1822
1823 /**
1824 * cgroup_taskset_cur_cgroup - return the matching cgroup for the current task
1825 * @tset: taskset of interest
1826 *
1827 * Return the cgroup for the current (last returned) task of @tset. This
1828 * function must be preceded by either cgroup_taskset_first() or
1829 * cgroup_taskset_next().
1830 */
1831 struct cgroup *cgroup_taskset_cur_cgroup(struct cgroup_taskset *tset)
1832 {
1833 return tset->cur_cgrp;
1834 }
1835 EXPORT_SYMBOL_GPL(cgroup_taskset_cur_cgroup);
1836
1837 /**
1838 * cgroup_taskset_size - return the number of tasks in taskset
1839 * @tset: taskset of interest
1840 */
1841 int cgroup_taskset_size(struct cgroup_taskset *tset)
1842 {
1843 return tset->tc_array ? tset->tc_array_len : 1;
1844 }
1845 EXPORT_SYMBOL_GPL(cgroup_taskset_size);
1846
1847
1848 /*
1849 * cgroup_task_migrate - move a task from one cgroup to another.
1850 *
1851 * 'guarantee' is set if the caller promises that a new css_set for the task
1852 * will already exist. If not set, this function might sleep, and can fail with
1853 * -ENOMEM. Must be called with cgroup_mutex and threadgroup locked.
1854 */
1855 static void cgroup_task_migrate(struct cgroup *cgrp, struct cgroup *oldcgrp,
1856 struct task_struct *tsk, struct css_set *newcg)
1857 {
1858 struct css_set *oldcg;
1859
1860 /*
1861 * We are synchronized through threadgroup_lock() against PF_EXITING
1862 * setting such that we can't race against cgroup_exit() changing the
1863 * css_set to init_css_set and dropping the old one.
1864 */
1865 WARN_ON_ONCE(tsk->flags & PF_EXITING);
1866 oldcg = tsk->cgroups;
1867
1868 task_lock(tsk);
1869 rcu_assign_pointer(tsk->cgroups, newcg);
1870 task_unlock(tsk);
1871
1872 /* Update the css_set linked lists if we're using them */
1873 write_lock(&css_set_lock);
1874 if (!list_empty(&tsk->cg_list))
1875 list_move(&tsk->cg_list, &newcg->tasks);
1876 write_unlock(&css_set_lock);
1877
1878 /*
1879 * We just gained a reference on oldcg by taking it from the task. As
1880 * trading it for newcg is protected by cgroup_mutex, we're safe to drop
1881 * it here; it will be freed under RCU.
1882 */
1883 put_css_set(oldcg);
1884
1885 set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
1886 }
1887
1888 /**
1889 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
1890 * @cgrp: the cgroup the task is attaching to
1891 * @tsk: the task to be attached
1892 *
1893 * Call with cgroup_mutex and threadgroup locked. May take task_lock of
1894 * @tsk during call.
1895 */
1896 int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
1897 {
1898 int retval = 0;
1899 struct cgroup_subsys *ss, *failed_ss = NULL;
1900 struct cgroup *oldcgrp;
1901 struct cgroupfs_root *root = cgrp->root;
1902 struct cgroup_taskset tset = { };
1903 struct css_set *newcg;
1904
1905 /* @tsk either already exited or can't exit until the end */
1906 if (tsk->flags & PF_EXITING)
1907 return -ESRCH;
1908
1909 /* Nothing to do if the task is already in that cgroup */
1910 oldcgrp = task_cgroup_from_root(tsk, root);
1911 if (cgrp == oldcgrp)
1912 return 0;
1913
1914 tset.single.task = tsk;
1915 tset.single.cgrp = oldcgrp;
1916
1917 for_each_subsys(root, ss) {
1918 if (ss->can_attach) {
1919 retval = ss->can_attach(cgrp, &tset);
1920 if (retval) {
1921 /*
1922 * Remember on which subsystem the can_attach()
1923 * failed, so that we only call cancel_attach()
1924 * against the subsystems whose can_attach()
1925 * succeeded. (See below)
1926 */
1927 failed_ss = ss;
1928 goto out;
1929 }
1930 }
1931 }
1932
1933 newcg = find_css_set(tsk->cgroups, cgrp);
1934 if (!newcg) {
1935 retval = -ENOMEM;
1936 goto out;
1937 }
1938
1939 cgroup_task_migrate(cgrp, oldcgrp, tsk, newcg);
1940
1941 for_each_subsys(root, ss) {
1942 if (ss->attach)
1943 ss->attach(cgrp, &tset);
1944 }
1945
1946 synchronize_rcu();
1947
1948 /*
1949 * wake up rmdir() waiter. the rmdir should fail since the cgroup
1950 * is no longer empty.
1951 */
1952 cgroup_wakeup_rmdir_waiter(cgrp);
1953 out:
1954 if (retval) {
1955 for_each_subsys(root, ss) {
1956 if (ss == failed_ss)
1957 /*
1958 * This subsystem was the one that failed the
1959 * can_attach() check earlier, so we don't need
1960 * to call cancel_attach() against it or any
1961 * remaining subsystems.
1962 */
1963 break;
1964 if (ss->cancel_attach)
1965 ss->cancel_attach(cgrp, &tset);
1966 }
1967 }
1968 return retval;
1969 }
1970
1971 /**
1972 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
1973 * @from: attach to all cgroups of a given task
1974 * @tsk: the task to be attached
1975 */
1976 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
1977 {
1978 struct cgroupfs_root *root;
1979 int retval = 0;
1980
1981 cgroup_lock();
1982 for_each_active_root(root) {
1983 struct cgroup *from_cg = task_cgroup_from_root(from, root);
1984
1985 retval = cgroup_attach_task(from_cg, tsk);
1986 if (retval)
1987 break;
1988 }
1989 cgroup_unlock();
1990
1991 return retval;
1992 }
1993 EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
1994
1995 /**
1996 * cgroup_attach_proc - attach all threads in a threadgroup to a cgroup
1997 * @cgrp: the cgroup to attach to
1998 * @leader: the threadgroup leader task_struct of the group to be attached
1999 *
2000 * Call holding cgroup_mutex and the group_rwsem of the leader. Will take
2001 * task_lock of each thread in leader's threadgroup individually in turn.
2002 */
2003 static int cgroup_attach_proc(struct cgroup *cgrp, struct task_struct *leader)
2004 {
2005 int retval, i, group_size;
2006 struct cgroup_subsys *ss, *failed_ss = NULL;
2007 /* guaranteed to be initialized later, but the compiler needs this */
2008 struct cgroupfs_root *root = cgrp->root;
2009 /* threadgroup list cursor and array */
2010 struct task_struct *tsk;
2011 struct task_and_cgroup *tc;
2012 struct flex_array *group;
2013 struct cgroup_taskset tset = { };
2014
2015 /*
2016 * step 0: in order to do expensive, possibly blocking operations for
2017 * every thread, we cannot iterate the thread group list, since it needs
2018 * rcu or tasklist locked. instead, build an array of all threads in the
2019 * group - group_rwsem prevents new threads from appearing, and if
2020 * threads exit, this will just be an over-estimate.
2021 */
2022 group_size = get_nr_threads(leader);
2023 /* flex_array supports very large thread-groups better than kmalloc. */
2024 group = flex_array_alloc(sizeof(*tc), group_size, GFP_KERNEL);
2025 if (!group)
2026 return -ENOMEM;
2027 /* pre-allocate to guarantee space while iterating in rcu read-side. */
2028 retval = flex_array_prealloc(group, 0, group_size - 1, GFP_KERNEL);
2029 if (retval)
2030 goto out_free_group_list;
2031
2032 tsk = leader;
2033 i = 0;
2034 /*
2035 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2036 * already PF_EXITING could be freed from underneath us unless we
2037 * take an rcu_read_lock.
2038 */
2039 rcu_read_lock();
2040 do {
2041 struct task_and_cgroup ent;
2042
2043 /* @tsk either already exited or can't exit until the end */
2044 if (tsk->flags & PF_EXITING)
2045 continue;
2046
2047 /* as per above, nr_threads may decrease, but not increase. */
2048 BUG_ON(i >= group_size);
2049 ent.task = tsk;
2050 ent.cgrp = task_cgroup_from_root(tsk, root);
2051 /* nothing to do if this task is already in the cgroup */
2052 if (ent.cgrp == cgrp)
2053 continue;
2054 /*
2055 * saying GFP_ATOMIC has no effect here because we did prealloc
2056 * earlier, but it's good form to communicate our expectations.
2057 */
2058 retval = flex_array_put(group, i, &ent, GFP_ATOMIC);
2059 BUG_ON(retval != 0);
2060 i++;
2061 } while_each_thread(leader, tsk);
2062 rcu_read_unlock();
2063 /* remember the number of threads in the array for later. */
2064 group_size = i;
2065 tset.tc_array = group;
2066 tset.tc_array_len = group_size;
2067
2068 /* methods shouldn't be called if no task is actually migrating */
2069 retval = 0;
2070 if (!group_size)
2071 goto out_free_group_list;
2072
2073 /*
2074 * step 1: check that we can legitimately attach to the cgroup.
2075 */
2076 for_each_subsys(root, ss) {
2077 if (ss->can_attach) {
2078 retval = ss->can_attach(cgrp, &tset);
2079 if (retval) {
2080 failed_ss = ss;
2081 goto out_cancel_attach;
2082 }
2083 }
2084 }
2085
2086 /*
2087 * step 2: make sure css_sets exist for all threads to be migrated.
2088 * we use find_css_set, which allocates a new one if necessary.
2089 */
2090 for (i = 0; i < group_size; i++) {
2091 tc = flex_array_get(group, i);
2092 tc->cg = find_css_set(tc->task->cgroups, cgrp);
2093 if (!tc->cg) {
2094 retval = -ENOMEM;
2095 goto out_put_css_set_refs;
2096 }
2097 }
2098
2099 /*
2100 * step 3: now that we're guaranteed success wrt the css_sets,
2101 * proceed to move all tasks to the new cgroup. There are no
2102 * failure cases after here, so this is the commit point.
2103 */
2104 for (i = 0; i < group_size; i++) {
2105 tc = flex_array_get(group, i);
2106 cgroup_task_migrate(cgrp, tc->cgrp, tc->task, tc->cg);
2107 }
2108 /* nothing is sensitive to fork() after this point. */
2109
2110 /*
2111 * step 4: do subsystem attach callbacks.
2112 */
2113 for_each_subsys(root, ss) {
2114 if (ss->attach)
2115 ss->attach(cgrp, &tset);
2116 }
2117
2118 /*
2119 * step 5: success! and cleanup
2120 */
2121 synchronize_rcu();
2122 cgroup_wakeup_rmdir_waiter(cgrp);
2123 retval = 0;
2124 out_put_css_set_refs:
2125 if (retval) {
2126 for (i = 0; i < group_size; i++) {
2127 tc = flex_array_get(group, i);
2128 if (!tc->cg)
2129 break;
2130 put_css_set(tc->cg);
2131 }
2132 }
2133 out_cancel_attach:
2134 if (retval) {
2135 for_each_subsys(root, ss) {
2136 if (ss == failed_ss)
2137 break;
2138 if (ss->cancel_attach)
2139 ss->cancel_attach(cgrp, &tset);
2140 }
2141 }
2142 out_free_group_list:
2143 flex_array_free(group);
2144 return retval;
2145 }
2146
2147 /*
2148 * Find the task_struct of the task to attach by vpid and pass it along to the
2149 * function to attach either it or all tasks in its threadgroup. Will lock
2150 * cgroup_mutex and threadgroup; may take task_lock of task.
2151 */
2152 static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
2153 {
2154 struct task_struct *tsk;
2155 const struct cred *cred = current_cred(), *tcred;
2156 int ret;
2157
2158 if (!cgroup_lock_live_group(cgrp))
2159 return -ENODEV;
2160
2161 retry_find_task:
2162 rcu_read_lock();
2163 if (pid) {
2164 tsk = find_task_by_vpid(pid);
2165 if (!tsk) {
2166 rcu_read_unlock();
2167 ret= -ESRCH;
2168 goto out_unlock_cgroup;
2169 }
2170 /*
2171 * even if we're attaching all tasks in the thread group, we
2172 * only need to check permissions on one of them.
2173 */
2174 tcred = __task_cred(tsk);
2175 if (cred->euid &&
2176 cred->euid != tcred->uid &&
2177 cred->euid != tcred->suid) {
2178 rcu_read_unlock();
2179 ret = -EACCES;
2180 goto out_unlock_cgroup;
2181 }
2182 } else
2183 tsk = current;
2184
2185 if (threadgroup)
2186 tsk = tsk->group_leader;
2187 get_task_struct(tsk);
2188 rcu_read_unlock();
2189
2190 threadgroup_lock(tsk);
2191 if (threadgroup) {
2192 if (!thread_group_leader(tsk)) {
2193 /*
2194 * a race with de_thread from another thread's exec()
2195 * may strip us of our leadership, if this happens,
2196 * there is no choice but to throw this task away and
2197 * try again; this is
2198 * "double-double-toil-and-trouble-check locking".
2199 */
2200 threadgroup_unlock(tsk);
2201 put_task_struct(tsk);
2202 goto retry_find_task;
2203 }
2204 ret = cgroup_attach_proc(cgrp, tsk);
2205 } else
2206 ret = cgroup_attach_task(cgrp, tsk);
2207 threadgroup_unlock(tsk);
2208
2209 put_task_struct(tsk);
2210 out_unlock_cgroup:
2211 cgroup_unlock();
2212 return ret;
2213 }
2214
2215 static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
2216 {
2217 return attach_task_by_pid(cgrp, pid, false);
2218 }
2219
2220 static int cgroup_procs_write(struct cgroup *cgrp, struct cftype *cft, u64 tgid)
2221 {
2222 return attach_task_by_pid(cgrp, tgid, true);
2223 }
2224
2225 /**
2226 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
2227 * @cgrp: the cgroup to be checked for liveness
2228 *
2229 * On success, returns true; the lock should be later released with
2230 * cgroup_unlock(). On failure returns false with no lock held.
2231 */
2232 bool cgroup_lock_live_group(struct cgroup *cgrp)
2233 {
2234 mutex_lock(&cgroup_mutex);
2235 if (cgroup_is_removed(cgrp)) {
2236 mutex_unlock(&cgroup_mutex);
2237 return false;
2238 }
2239 return true;
2240 }
2241 EXPORT_SYMBOL_GPL(cgroup_lock_live_group);
2242
2243 static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
2244 const char *buffer)
2245 {
2246 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
2247 if (strlen(buffer) >= PATH_MAX)
2248 return -EINVAL;
2249 if (!cgroup_lock_live_group(cgrp))
2250 return -ENODEV;
2251 mutex_lock(&cgroup_root_mutex);
2252 strcpy(cgrp->root->release_agent_path, buffer);
2253 mutex_unlock(&cgroup_root_mutex);
2254 cgroup_unlock();
2255 return 0;
2256 }
2257
2258 static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
2259 struct seq_file *seq)
2260 {
2261 if (!cgroup_lock_live_group(cgrp))
2262 return -ENODEV;
2263 seq_puts(seq, cgrp->root->release_agent_path);
2264 seq_putc(seq, '\n');
2265 cgroup_unlock();
2266 return 0;
2267 }
2268
2269 /* A buffer size big enough for numbers or short strings */
2270 #define CGROUP_LOCAL_BUFFER_SIZE 64
2271
2272 static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
2273 struct file *file,
2274 const char __user *userbuf,
2275 size_t nbytes, loff_t *unused_ppos)
2276 {
2277 char buffer[CGROUP_LOCAL_BUFFER_SIZE];
2278 int retval = 0;
2279 char *end;
2280
2281 if (!nbytes)
2282 return -EINVAL;
2283 if (nbytes >= sizeof(buffer))
2284 return -E2BIG;
2285 if (copy_from_user(buffer, userbuf, nbytes))
2286 return -EFAULT;
2287
2288 buffer[nbytes] = 0; /* nul-terminate */
2289 if (cft->write_u64) {
2290 u64 val = simple_strtoull(strstrip(buffer), &end, 0);
2291 if (*end)
2292 return -EINVAL;
2293 retval = cft->write_u64(cgrp, cft, val);
2294 } else {
2295 s64 val = simple_strtoll(strstrip(buffer), &end, 0);
2296 if (*end)
2297 return -EINVAL;
2298 retval = cft->write_s64(cgrp, cft, val);
2299 }
2300 if (!retval)
2301 retval = nbytes;
2302 return retval;
2303 }
2304
2305 static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
2306 struct file *file,
2307 const char __user *userbuf,
2308 size_t nbytes, loff_t *unused_ppos)
2309 {
2310 char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
2311 int retval = 0;
2312 size_t max_bytes = cft->max_write_len;
2313 char *buffer = local_buffer;
2314
2315 if (!max_bytes)
2316 max_bytes = sizeof(local_buffer) - 1;
2317 if (nbytes >= max_bytes)
2318 return -E2BIG;
2319 /* Allocate a dynamic buffer if we need one */
2320 if (nbytes >= sizeof(local_buffer)) {
2321 buffer = kmalloc(nbytes + 1, GFP_KERNEL);
2322 if (buffer == NULL)
2323 return -ENOMEM;
2324 }
2325 if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
2326 retval = -EFAULT;
2327 goto out;
2328 }
2329
2330 buffer[nbytes] = 0; /* nul-terminate */
2331 retval = cft->write_string(cgrp, cft, strstrip(buffer));
2332 if (!retval)
2333 retval = nbytes;
2334 out:
2335 if (buffer != local_buffer)
2336 kfree(buffer);
2337 return retval;
2338 }
2339
2340 static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
2341 size_t nbytes, loff_t *ppos)
2342 {
2343 struct cftype *cft = __d_cft(file->f_dentry);
2344 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2345
2346 if (cgroup_is_removed(cgrp))
2347 return -ENODEV;
2348 if (cft->write)
2349 return cft->write(cgrp, cft, file, buf, nbytes, ppos);
2350 if (cft->write_u64 || cft->write_s64)
2351 return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
2352 if (cft->write_string)
2353 return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
2354 if (cft->trigger) {
2355 int ret = cft->trigger(cgrp, (unsigned int)cft->private);
2356 return ret ? ret : nbytes;
2357 }
2358 return -EINVAL;
2359 }
2360
2361 static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
2362 struct file *file,
2363 char __user *buf, size_t nbytes,
2364 loff_t *ppos)
2365 {
2366 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2367 u64 val = cft->read_u64(cgrp, cft);
2368 int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
2369
2370 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2371 }
2372
2373 static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
2374 struct file *file,
2375 char __user *buf, size_t nbytes,
2376 loff_t *ppos)
2377 {
2378 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2379 s64 val = cft->read_s64(cgrp, cft);
2380 int len = sprintf(tmp, "%lld\n", (long long) val);
2381
2382 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2383 }
2384
2385 static ssize_t cgroup_file_read(struct file *file, char __user *buf,
2386 size_t nbytes, loff_t *ppos)
2387 {
2388 struct cftype *cft = __d_cft(file->f_dentry);
2389 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2390
2391 if (cgroup_is_removed(cgrp))
2392 return -ENODEV;
2393
2394 if (cft->read)
2395 return cft->read(cgrp, cft, file, buf, nbytes, ppos);
2396 if (cft->read_u64)
2397 return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
2398 if (cft->read_s64)
2399 return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
2400 return -EINVAL;
2401 }
2402
2403 /*
2404 * seqfile ops/methods for returning structured data. Currently just
2405 * supports string->u64 maps, but can be extended in future.
2406 */
2407
2408 struct cgroup_seqfile_state {
2409 struct cftype *cft;
2410 struct cgroup *cgroup;
2411 };
2412
2413 static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
2414 {
2415 struct seq_file *sf = cb->state;
2416 return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
2417 }
2418
2419 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
2420 {
2421 struct cgroup_seqfile_state *state = m->private;
2422 struct cftype *cft = state->cft;
2423 if (cft->read_map) {
2424 struct cgroup_map_cb cb = {
2425 .fill = cgroup_map_add,
2426 .state = m,
2427 };
2428 return cft->read_map(state->cgroup, cft, &cb);
2429 }
2430 return cft->read_seq_string(state->cgroup, cft, m);
2431 }
2432
2433 static int cgroup_seqfile_release(struct inode *inode, struct file *file)
2434 {
2435 struct seq_file *seq = file->private_data;
2436 kfree(seq->private);
2437 return single_release(inode, file);
2438 }
2439
2440 static const struct file_operations cgroup_seqfile_operations = {
2441 .read = seq_read,
2442 .write = cgroup_file_write,
2443 .llseek = seq_lseek,
2444 .release = cgroup_seqfile_release,
2445 };
2446
2447 static int cgroup_file_open(struct inode *inode, struct file *file)
2448 {
2449 int err;
2450 struct cftype *cft;
2451
2452 err = generic_file_open(inode, file);
2453 if (err)
2454 return err;
2455 cft = __d_cft(file->f_dentry);
2456
2457 if (cft->read_map || cft->read_seq_string) {
2458 struct cgroup_seqfile_state *state =
2459 kzalloc(sizeof(*state), GFP_USER);
2460 if (!state)
2461 return -ENOMEM;
2462 state->cft = cft;
2463 state->cgroup = __d_cgrp(file->f_dentry->d_parent);
2464 file->f_op = &cgroup_seqfile_operations;
2465 err = single_open(file, cgroup_seqfile_show, state);
2466 if (err < 0)
2467 kfree(state);
2468 } else if (cft->open)
2469 err = cft->open(inode, file);
2470 else
2471 err = 0;
2472
2473 return err;
2474 }
2475
2476 static int cgroup_file_release(struct inode *inode, struct file *file)
2477 {
2478 struct cftype *cft = __d_cft(file->f_dentry);
2479 if (cft->release)
2480 return cft->release(inode, file);
2481 return 0;
2482 }
2483
2484 /*
2485 * cgroup_rename - Only allow simple rename of directories in place.
2486 */
2487 static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
2488 struct inode *new_dir, struct dentry *new_dentry)
2489 {
2490 if (!S_ISDIR(old_dentry->d_inode->i_mode))
2491 return -ENOTDIR;
2492 if (new_dentry->d_inode)
2493 return -EEXIST;
2494 if (old_dir != new_dir)
2495 return -EIO;
2496 return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
2497 }
2498
2499 static const struct file_operations cgroup_file_operations = {
2500 .read = cgroup_file_read,
2501 .write = cgroup_file_write,
2502 .llseek = generic_file_llseek,
2503 .open = cgroup_file_open,
2504 .release = cgroup_file_release,
2505 };
2506
2507 static const struct inode_operations cgroup_dir_inode_operations = {
2508 .lookup = cgroup_lookup,
2509 .mkdir = cgroup_mkdir,
2510 .rmdir = cgroup_rmdir,
2511 .rename = cgroup_rename,
2512 };
2513
2514 static struct dentry *cgroup_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
2515 {
2516 if (dentry->d_name.len > NAME_MAX)
2517 return ERR_PTR(-ENAMETOOLONG);
2518 d_add(dentry, NULL);
2519 return NULL;
2520 }
2521
2522 /*
2523 * Check if a file is a control file
2524 */
2525 static inline struct cftype *__file_cft(struct file *file)
2526 {
2527 if (file->f_dentry->d_inode->i_fop != &cgroup_file_operations)
2528 return ERR_PTR(-EINVAL);
2529 return __d_cft(file->f_dentry);
2530 }
2531
2532 static int cgroup_create_file(struct dentry *dentry, umode_t mode,
2533 struct super_block *sb)
2534 {
2535 struct inode *inode;
2536
2537 if (!dentry)
2538 return -ENOENT;
2539 if (dentry->d_inode)
2540 return -EEXIST;
2541
2542 inode = cgroup_new_inode(mode, sb);
2543 if (!inode)
2544 return -ENOMEM;
2545
2546 if (S_ISDIR(mode)) {
2547 inode->i_op = &cgroup_dir_inode_operations;
2548 inode->i_fop = &simple_dir_operations;
2549
2550 /* start off with i_nlink == 2 (for "." entry) */
2551 inc_nlink(inode);
2552
2553 /* start with the directory inode held, so that we can
2554 * populate it without racing with another mkdir */
2555 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
2556 } else if (S_ISREG(mode)) {
2557 inode->i_size = 0;
2558 inode->i_fop = &cgroup_file_operations;
2559 }
2560 d_instantiate(dentry, inode);
2561 dget(dentry); /* Extra count - pin the dentry in core */
2562 return 0;
2563 }
2564
2565 /*
2566 * cgroup_create_dir - create a directory for an object.
2567 * @cgrp: the cgroup we create the directory for. It must have a valid
2568 * ->parent field. And we are going to fill its ->dentry field.
2569 * @dentry: dentry of the new cgroup
2570 * @mode: mode to set on new directory.
2571 */
2572 static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
2573 umode_t mode)
2574 {
2575 struct dentry *parent;
2576 int error = 0;
2577
2578 parent = cgrp->parent->dentry;
2579 error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
2580 if (!error) {
2581 dentry->d_fsdata = cgrp;
2582 inc_nlink(parent->d_inode);
2583 rcu_assign_pointer(cgrp->dentry, dentry);
2584 dget(dentry);
2585 }
2586 dput(dentry);
2587
2588 return error;
2589 }
2590
2591 /**
2592 * cgroup_file_mode - deduce file mode of a control file
2593 * @cft: the control file in question
2594 *
2595 * returns cft->mode if ->mode is not 0
2596 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
2597 * returns S_IRUGO if it has only a read handler
2598 * returns S_IWUSR if it has only a write hander
2599 */
2600 static umode_t cgroup_file_mode(const struct cftype *cft)
2601 {
2602 umode_t mode = 0;
2603
2604 if (cft->mode)
2605 return cft->mode;
2606
2607 if (cft->read || cft->read_u64 || cft->read_s64 ||
2608 cft->read_map || cft->read_seq_string)
2609 mode |= S_IRUGO;
2610
2611 if (cft->write || cft->write_u64 || cft->write_s64 ||
2612 cft->write_string || cft->trigger)
2613 mode |= S_IWUSR;
2614
2615 return mode;
2616 }
2617
2618 int cgroup_add_file(struct cgroup *cgrp,
2619 struct cgroup_subsys *subsys,
2620 const struct cftype *cft)
2621 {
2622 struct dentry *dir = cgrp->dentry;
2623 struct dentry *dentry;
2624 int error;
2625 umode_t mode;
2626
2627 char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
2628 if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
2629 strcpy(name, subsys->name);
2630 strcat(name, ".");
2631 }
2632 strcat(name, cft->name);
2633 BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
2634 dentry = lookup_one_len(name, dir, strlen(name));
2635 if (!IS_ERR(dentry)) {
2636 mode = cgroup_file_mode(cft);
2637 error = cgroup_create_file(dentry, mode | S_IFREG,
2638 cgrp->root->sb);
2639 if (!error)
2640 dentry->d_fsdata = (void *)cft;
2641 dput(dentry);
2642 } else
2643 error = PTR_ERR(dentry);
2644 return error;
2645 }
2646 EXPORT_SYMBOL_GPL(cgroup_add_file);
2647
2648 int cgroup_add_files(struct cgroup *cgrp,
2649 struct cgroup_subsys *subsys,
2650 const struct cftype cft[],
2651 int count)
2652 {
2653 int i, err;
2654 for (i = 0; i < count; i++) {
2655 err = cgroup_add_file(cgrp, subsys, &cft[i]);
2656 if (err)
2657 return err;
2658 }
2659 return 0;
2660 }
2661 EXPORT_SYMBOL_GPL(cgroup_add_files);
2662
2663 /**
2664 * cgroup_task_count - count the number of tasks in a cgroup.
2665 * @cgrp: the cgroup in question
2666 *
2667 * Return the number of tasks in the cgroup.
2668 */
2669 int cgroup_task_count(const struct cgroup *cgrp)
2670 {
2671 int count = 0;
2672 struct cg_cgroup_link *link;
2673
2674 read_lock(&css_set_lock);
2675 list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
2676 count += atomic_read(&link->cg->refcount);
2677 }
2678 read_unlock(&css_set_lock);
2679 return count;
2680 }
2681
2682 /*
2683 * Advance a list_head iterator. The iterator should be positioned at
2684 * the start of a css_set
2685 */
2686 static void cgroup_advance_iter(struct cgroup *cgrp,
2687 struct cgroup_iter *it)
2688 {
2689 struct list_head *l = it->cg_link;
2690 struct cg_cgroup_link *link;
2691 struct css_set *cg;
2692
2693 /* Advance to the next non-empty css_set */
2694 do {
2695 l = l->next;
2696 if (l == &cgrp->css_sets) {
2697 it->cg_link = NULL;
2698 return;
2699 }
2700 link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
2701 cg = link->cg;
2702 } while (list_empty(&cg->tasks));
2703 it->cg_link = l;
2704 it->task = cg->tasks.next;
2705 }
2706
2707 /*
2708 * To reduce the fork() overhead for systems that are not actually
2709 * using their cgroups capability, we don't maintain the lists running
2710 * through each css_set to its tasks until we see the list actually
2711 * used - in other words after the first call to cgroup_iter_start().
2712 */
2713 static void cgroup_enable_task_cg_lists(void)
2714 {
2715 struct task_struct *p, *g;
2716 write_lock(&css_set_lock);
2717 use_task_css_set_links = 1;
2718 /*
2719 * We need tasklist_lock because RCU is not safe against
2720 * while_each_thread(). Besides, a forking task that has passed
2721 * cgroup_post_fork() without seeing use_task_css_set_links = 1
2722 * is not guaranteed to have its child immediately visible in the
2723 * tasklist if we walk through it with RCU.
2724 */
2725 read_lock(&tasklist_lock);
2726 do_each_thread(g, p) {
2727 task_lock(p);
2728 /*
2729 * We should check if the process is exiting, otherwise
2730 * it will race with cgroup_exit() in that the list
2731 * entry won't be deleted though the process has exited.
2732 */
2733 if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
2734 list_add(&p->cg_list, &p->cgroups->tasks);
2735 task_unlock(p);
2736 } while_each_thread(g, p);
2737 read_unlock(&tasklist_lock);
2738 write_unlock(&css_set_lock);
2739 }
2740
2741 void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
2742 __acquires(css_set_lock)
2743 {
2744 /*
2745 * The first time anyone tries to iterate across a cgroup,
2746 * we need to enable the list linking each css_set to its
2747 * tasks, and fix up all existing tasks.
2748 */
2749 if (!use_task_css_set_links)
2750 cgroup_enable_task_cg_lists();
2751
2752 read_lock(&css_set_lock);
2753 it->cg_link = &cgrp->css_sets;
2754 cgroup_advance_iter(cgrp, it);
2755 }
2756
2757 struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
2758 struct cgroup_iter *it)
2759 {
2760 struct task_struct *res;
2761 struct list_head *l = it->task;
2762 struct cg_cgroup_link *link;
2763
2764 /* If the iterator cg is NULL, we have no tasks */
2765 if (!it->cg_link)
2766 return NULL;
2767 res = list_entry(l, struct task_struct, cg_list);
2768 /* Advance iterator to find next entry */
2769 l = l->next;
2770 link = list_entry(it->cg_link, struct cg_cgroup_link, cgrp_link_list);
2771 if (l == &link->cg->tasks) {
2772 /* We reached the end of this task list - move on to
2773 * the next cg_cgroup_link */
2774 cgroup_advance_iter(cgrp, it);
2775 } else {
2776 it->task = l;
2777 }
2778 return res;
2779 }
2780
2781 void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
2782 __releases(css_set_lock)
2783 {
2784 read_unlock(&css_set_lock);
2785 }
2786
2787 static inline int started_after_time(struct task_struct *t1,
2788 struct timespec *time,
2789 struct task_struct *t2)
2790 {
2791 int start_diff = timespec_compare(&t1->start_time, time);
2792 if (start_diff > 0) {
2793 return 1;
2794 } else if (start_diff < 0) {
2795 return 0;
2796 } else {
2797 /*
2798 * Arbitrarily, if two processes started at the same
2799 * time, we'll say that the lower pointer value
2800 * started first. Note that t2 may have exited by now
2801 * so this may not be a valid pointer any longer, but
2802 * that's fine - it still serves to distinguish
2803 * between two tasks started (effectively) simultaneously.
2804 */
2805 return t1 > t2;
2806 }
2807 }
2808
2809 /*
2810 * This function is a callback from heap_insert() and is used to order
2811 * the heap.
2812 * In this case we order the heap in descending task start time.
2813 */
2814 static inline int started_after(void *p1, void *p2)
2815 {
2816 struct task_struct *t1 = p1;
2817 struct task_struct *t2 = p2;
2818 return started_after_time(t1, &t2->start_time, t2);
2819 }
2820
2821 /**
2822 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
2823 * @scan: struct cgroup_scanner containing arguments for the scan
2824 *
2825 * Arguments include pointers to callback functions test_task() and
2826 * process_task().
2827 * Iterate through all the tasks in a cgroup, calling test_task() for each,
2828 * and if it returns true, call process_task() for it also.
2829 * The test_task pointer may be NULL, meaning always true (select all tasks).
2830 * Effectively duplicates cgroup_iter_{start,next,end}()
2831 * but does not lock css_set_lock for the call to process_task().
2832 * The struct cgroup_scanner may be embedded in any structure of the caller's
2833 * creation.
2834 * It is guaranteed that process_task() will act on every task that
2835 * is a member of the cgroup for the duration of this call. This
2836 * function may or may not call process_task() for tasks that exit
2837 * or move to a different cgroup during the call, or are forked or
2838 * move into the cgroup during the call.
2839 *
2840 * Note that test_task() may be called with locks held, and may in some
2841 * situations be called multiple times for the same task, so it should
2842 * be cheap.
2843 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
2844 * pre-allocated and will be used for heap operations (and its "gt" member will
2845 * be overwritten), else a temporary heap will be used (allocation of which
2846 * may cause this function to fail).
2847 */
2848 int cgroup_scan_tasks(struct cgroup_scanner *scan)
2849 {
2850 int retval, i;
2851 struct cgroup_iter it;
2852 struct task_struct *p, *dropped;
2853 /* Never dereference latest_task, since it's not refcounted */
2854 struct task_struct *latest_task = NULL;
2855 struct ptr_heap tmp_heap;
2856 struct ptr_heap *heap;
2857 struct timespec latest_time = { 0, 0 };
2858
2859 if (scan->heap) {
2860 /* The caller supplied our heap and pre-allocated its memory */
2861 heap = scan->heap;
2862 heap->gt = &started_after;
2863 } else {
2864 /* We need to allocate our own heap memory */
2865 heap = &tmp_heap;
2866 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
2867 if (retval)
2868 /* cannot allocate the heap */
2869 return retval;
2870 }
2871
2872 again:
2873 /*
2874 * Scan tasks in the cgroup, using the scanner's "test_task" callback
2875 * to determine which are of interest, and using the scanner's
2876 * "process_task" callback to process any of them that need an update.
2877 * Since we don't want to hold any locks during the task updates,
2878 * gather tasks to be processed in a heap structure.
2879 * The heap is sorted by descending task start time.
2880 * If the statically-sized heap fills up, we overflow tasks that
2881 * started later, and in future iterations only consider tasks that
2882 * started after the latest task in the previous pass. This
2883 * guarantees forward progress and that we don't miss any tasks.
2884 */
2885 heap->size = 0;
2886 cgroup_iter_start(scan->cg, &it);
2887 while ((p = cgroup_iter_next(scan->cg, &it))) {
2888 /*
2889 * Only affect tasks that qualify per the caller's callback,
2890 * if he provided one
2891 */
2892 if (scan->test_task && !scan->test_task(p, scan))
2893 continue;
2894 /*
2895 * Only process tasks that started after the last task
2896 * we processed
2897 */
2898 if (!started_after_time(p, &latest_time, latest_task))
2899 continue;
2900 dropped = heap_insert(heap, p);
2901 if (dropped == NULL) {
2902 /*
2903 * The new task was inserted; the heap wasn't
2904 * previously full
2905 */
2906 get_task_struct(p);
2907 } else if (dropped != p) {
2908 /*
2909 * The new task was inserted, and pushed out a
2910 * different task
2911 */
2912 get_task_struct(p);
2913 put_task_struct(dropped);
2914 }
2915 /*
2916 * Else the new task was newer than anything already in
2917 * the heap and wasn't inserted
2918 */
2919 }
2920 cgroup_iter_end(scan->cg, &it);
2921
2922 if (heap->size) {
2923 for (i = 0; i < heap->size; i++) {
2924 struct task_struct *q = heap->ptrs[i];
2925 if (i == 0) {
2926 latest_time = q->start_time;
2927 latest_task = q;
2928 }
2929 /* Process the task per the caller's callback */
2930 scan->process_task(q, scan);
2931 put_task_struct(q);
2932 }
2933 /*
2934 * If we had to process any tasks at all, scan again
2935 * in case some of them were in the middle of forking
2936 * children that didn't get processed.
2937 * Not the most efficient way to do it, but it avoids
2938 * having to take callback_mutex in the fork path
2939 */
2940 goto again;
2941 }
2942 if (heap == &tmp_heap)
2943 heap_free(&tmp_heap);
2944 return 0;
2945 }
2946
2947 /*
2948 * Stuff for reading the 'tasks'/'procs' files.
2949 *
2950 * Reading this file can return large amounts of data if a cgroup has
2951 * *lots* of attached tasks. So it may need several calls to read(),
2952 * but we cannot guarantee that the information we produce is correct
2953 * unless we produce it entirely atomically.
2954 *
2955 */
2956
2957 /* which pidlist file are we talking about? */
2958 enum cgroup_filetype {
2959 CGROUP_FILE_PROCS,
2960 CGROUP_FILE_TASKS,
2961 };
2962
2963 /*
2964 * A pidlist is a list of pids that virtually represents the contents of one
2965 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
2966 * a pair (one each for procs, tasks) for each pid namespace that's relevant
2967 * to the cgroup.
2968 */
2969 struct cgroup_pidlist {
2970 /*
2971 * used to find which pidlist is wanted. doesn't change as long as
2972 * this particular list stays in the list.
2973 */
2974 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
2975 /* array of xids */
2976 pid_t *list;
2977 /* how many elements the above list has */
2978 int length;
2979 /* how many files are using the current array */
2980 int use_count;
2981 /* each of these stored in a list by its cgroup */
2982 struct list_head links;
2983 /* pointer to the cgroup we belong to, for list removal purposes */
2984 struct cgroup *owner;
2985 /* protects the other fields */
2986 struct rw_semaphore mutex;
2987 };
2988
2989 /*
2990 * The following two functions "fix" the issue where there are more pids
2991 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
2992 * TODO: replace with a kernel-wide solution to this problem
2993 */
2994 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
2995 static void *pidlist_allocate(int count)
2996 {
2997 if (PIDLIST_TOO_LARGE(count))
2998 return vmalloc(count * sizeof(pid_t));
2999 else
3000 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
3001 }
3002 static void pidlist_free(void *p)
3003 {
3004 if (is_vmalloc_addr(p))
3005 vfree(p);
3006 else
3007 kfree(p);
3008 }
3009 static void *pidlist_resize(void *p, int newcount)
3010 {
3011 void *newlist;
3012 /* note: if new alloc fails, old p will still be valid either way */
3013 if (is_vmalloc_addr(p)) {
3014 newlist = vmalloc(newcount * sizeof(pid_t));
3015 if (!newlist)
3016 return NULL;
3017 memcpy(newlist, p, newcount * sizeof(pid_t));
3018 vfree(p);
3019 } else {
3020 newlist = krealloc(p, newcount * sizeof(pid_t), GFP_KERNEL);
3021 }
3022 return newlist;
3023 }
3024
3025 /*
3026 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
3027 * If the new stripped list is sufficiently smaller and there's enough memory
3028 * to allocate a new buffer, will let go of the unneeded memory. Returns the
3029 * number of unique elements.
3030 */
3031 /* is the size difference enough that we should re-allocate the array? */
3032 #define PIDLIST_REALLOC_DIFFERENCE(old, new) ((old) - PAGE_SIZE >= (new))
3033 static int pidlist_uniq(pid_t **p, int length)
3034 {
3035 int src, dest = 1;
3036 pid_t *list = *p;
3037 pid_t *newlist;
3038
3039 /*
3040 * we presume the 0th element is unique, so i starts at 1. trivial
3041 * edge cases first; no work needs to be done for either
3042 */
3043 if (length == 0 || length == 1)
3044 return length;
3045 /* src and dest walk down the list; dest counts unique elements */
3046 for (src = 1; src < length; src++) {
3047 /* find next unique element */
3048 while (list[src] == list[src-1]) {
3049 src++;
3050 if (src == length)
3051 goto after;
3052 }
3053 /* dest always points to where the next unique element goes */
3054 list[dest] = list[src];
3055 dest++;
3056 }
3057 after:
3058 /*
3059 * if the length difference is large enough, we want to allocate a
3060 * smaller buffer to save memory. if this fails due to out of memory,
3061 * we'll just stay with what we've got.
3062 */
3063 if (PIDLIST_REALLOC_DIFFERENCE(length, dest)) {
3064 newlist = pidlist_resize(list, dest);
3065 if (newlist)
3066 *p = newlist;
3067 }
3068 return dest;
3069 }
3070
3071 static int cmppid(const void *a, const void *b)
3072 {
3073 return *(pid_t *)a - *(pid_t *)b;
3074 }
3075
3076 /*
3077 * find the appropriate pidlist for our purpose (given procs vs tasks)
3078 * returns with the lock on that pidlist already held, and takes care
3079 * of the use count, or returns NULL with no locks held if we're out of
3080 * memory.
3081 */
3082 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3083 enum cgroup_filetype type)
3084 {
3085 struct cgroup_pidlist *l;
3086 /* don't need task_nsproxy() if we're looking at ourself */
3087 struct pid_namespace *ns = current->nsproxy->pid_ns;
3088
3089 /*
3090 * We can't drop the pidlist_mutex before taking the l->mutex in case
3091 * the last ref-holder is trying to remove l from the list at the same
3092 * time. Holding the pidlist_mutex precludes somebody taking whichever
3093 * list we find out from under us - compare release_pid_array().
3094 */
3095 mutex_lock(&cgrp->pidlist_mutex);
3096 list_for_each_entry(l, &cgrp->pidlists, links) {
3097 if (l->key.type == type && l->key.ns == ns) {
3098 /* make sure l doesn't vanish out from under us */
3099 down_write(&l->mutex);
3100 mutex_unlock(&cgrp->pidlist_mutex);
3101 return l;
3102 }
3103 }
3104 /* entry not found; create a new one */
3105 l = kmalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
3106 if (!l) {
3107 mutex_unlock(&cgrp->pidlist_mutex);
3108 return l;
3109 }
3110 init_rwsem(&l->mutex);
3111 down_write(&l->mutex);
3112 l->key.type = type;
3113 l->key.ns = get_pid_ns(ns);
3114 l->use_count = 0; /* don't increment here */
3115 l->list = NULL;
3116 l->owner = cgrp;
3117 list_add(&l->links, &cgrp->pidlists);
3118 mutex_unlock(&cgrp->pidlist_mutex);
3119 return l;
3120 }
3121
3122 /*
3123 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3124 */
3125 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3126 struct cgroup_pidlist **lp)
3127 {
3128 pid_t *array;
3129 int length;
3130 int pid, n = 0; /* used for populating the array */
3131 struct cgroup_iter it;
3132 struct task_struct *tsk;
3133 struct cgroup_pidlist *l;
3134
3135 /*
3136 * If cgroup gets more users after we read count, we won't have
3137 * enough space - tough. This race is indistinguishable to the
3138 * caller from the case that the additional cgroup users didn't
3139 * show up until sometime later on.
3140 */
3141 length = cgroup_task_count(cgrp);
3142 array = pidlist_allocate(length);
3143 if (!array)
3144 return -ENOMEM;
3145 /* now, populate the array */
3146 cgroup_iter_start(cgrp, &it);
3147 while ((tsk = cgroup_iter_next(cgrp, &it))) {
3148 if (unlikely(n == length))
3149 break;
3150 /* get tgid or pid for procs or tasks file respectively */
3151 if (type == CGROUP_FILE_PROCS)
3152 pid = task_tgid_vnr(tsk);
3153 else
3154 pid = task_pid_vnr(tsk);
3155 if (pid > 0) /* make sure to only use valid results */
3156 array[n++] = pid;
3157 }
3158 cgroup_iter_end(cgrp, &it);
3159 length = n;
3160 /* now sort & (if procs) strip out duplicates */
3161 sort(array, length, sizeof(pid_t), cmppid, NULL);
3162 if (type == CGROUP_FILE_PROCS)
3163 length = pidlist_uniq(&array, length);
3164 l = cgroup_pidlist_find(cgrp, type);
3165 if (!l) {
3166 pidlist_free(array);
3167 return -ENOMEM;
3168 }
3169 /* store array, freeing old if necessary - lock already held */
3170 pidlist_free(l->list);
3171 l->list = array;
3172 l->length = length;
3173 l->use_count++;
3174 up_write(&l->mutex);
3175 *lp = l;
3176 return 0;
3177 }
3178
3179 /**
3180 * cgroupstats_build - build and fill cgroupstats
3181 * @stats: cgroupstats to fill information into
3182 * @dentry: A dentry entry belonging to the cgroup for which stats have
3183 * been requested.
3184 *
3185 * Build and fill cgroupstats so that taskstats can export it to user
3186 * space.
3187 */
3188 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
3189 {
3190 int ret = -EINVAL;
3191 struct cgroup *cgrp;
3192 struct cgroup_iter it;
3193 struct task_struct *tsk;
3194
3195 /*
3196 * Validate dentry by checking the superblock operations,
3197 * and make sure it's a directory.
3198 */
3199 if (dentry->d_sb->s_op != &cgroup_ops ||
3200 !S_ISDIR(dentry->d_inode->i_mode))
3201 goto err;
3202
3203 ret = 0;
3204 cgrp = dentry->d_fsdata;
3205
3206 cgroup_iter_start(cgrp, &it);
3207 while ((tsk = cgroup_iter_next(cgrp, &it))) {
3208 switch (tsk->state) {
3209 case TASK_RUNNING:
3210 stats->nr_running++;
3211 break;
3212 case TASK_INTERRUPTIBLE:
3213 stats->nr_sleeping++;
3214 break;
3215 case TASK_UNINTERRUPTIBLE:
3216 stats->nr_uninterruptible++;
3217 break;
3218 case TASK_STOPPED:
3219 stats->nr_stopped++;
3220 break;
3221 default:
3222 if (delayacct_is_task_waiting_on_io(tsk))
3223 stats->nr_io_wait++;
3224 break;
3225 }
3226 }
3227 cgroup_iter_end(cgrp, &it);
3228
3229 err:
3230 return ret;
3231 }
3232
3233
3234 /*
3235 * seq_file methods for the tasks/procs files. The seq_file position is the
3236 * next pid to display; the seq_file iterator is a pointer to the pid
3237 * in the cgroup->l->list array.
3238 */
3239
3240 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
3241 {
3242 /*
3243 * Initially we receive a position value that corresponds to
3244 * one more than the last pid shown (or 0 on the first call or
3245 * after a seek to the start). Use a binary-search to find the
3246 * next pid to display, if any
3247 */
3248 struct cgroup_pidlist *l = s->private;
3249 int index = 0, pid = *pos;
3250 int *iter;
3251
3252 down_read(&l->mutex);
3253 if (pid) {
3254 int end = l->length;
3255
3256 while (index < end) {
3257 int mid = (index + end) / 2;
3258 if (l->list[mid] == pid) {
3259 index = mid;
3260 break;
3261 } else if (l->list[mid] <= pid)
3262 index = mid + 1;
3263 else
3264 end = mid;
3265 }
3266 }
3267 /* If we're off the end of the array, we're done */
3268 if (index >= l->length)
3269 return NULL;
3270 /* Update the abstract position to be the actual pid that we found */
3271 iter = l->list + index;
3272 *pos = *iter;
3273 return iter;
3274 }
3275
3276 static void cgroup_pidlist_stop(struct seq_file *s, void *v)
3277 {
3278 struct cgroup_pidlist *l = s->private;
3279 up_read(&l->mutex);
3280 }
3281
3282 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
3283 {
3284 struct cgroup_pidlist *l = s->private;
3285 pid_t *p = v;
3286 pid_t *end = l->list + l->length;
3287 /*
3288 * Advance to the next pid in the array. If this goes off the
3289 * end, we're done
3290 */
3291 p++;
3292 if (p >= end) {
3293 return NULL;
3294 } else {
3295 *pos = *p;
3296 return p;
3297 }
3298 }
3299
3300 static int cgroup_pidlist_show(struct seq_file *s, void *v)
3301 {
3302 return seq_printf(s, "%d\n", *(int *)v);
3303 }
3304
3305 /*
3306 * seq_operations functions for iterating on pidlists through seq_file -
3307 * independent of whether it's tasks or procs
3308 */
3309 static const struct seq_operations cgroup_pidlist_seq_operations = {
3310 .start = cgroup_pidlist_start,
3311 .stop = cgroup_pidlist_stop,
3312 .next = cgroup_pidlist_next,
3313 .show = cgroup_pidlist_show,
3314 };
3315
3316 static void cgroup_release_pid_array(struct cgroup_pidlist *l)
3317 {
3318 /*
3319 * the case where we're the last user of this particular pidlist will
3320 * have us remove it from the cgroup's list, which entails taking the
3321 * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
3322 * pidlist_mutex, we have to take pidlist_mutex first.
3323 */
3324 mutex_lock(&l->owner->pidlist_mutex);
3325 down_write(&l->mutex);
3326 BUG_ON(!l->use_count);
3327 if (!--l->use_count) {
3328 /* we're the last user if refcount is 0; remove and free */
3329 list_del(&l->links);
3330 mutex_unlock(&l->owner->pidlist_mutex);
3331 pidlist_free(l->list);
3332 put_pid_ns(l->key.ns);
3333 up_write(&l->mutex);
3334 kfree(l);
3335 return;
3336 }
3337 mutex_unlock(&l->owner->pidlist_mutex);
3338 up_write(&l->mutex);
3339 }
3340
3341 static int cgroup_pidlist_release(struct inode *inode, struct file *file)
3342 {
3343 struct cgroup_pidlist *l;
3344 if (!(file->f_mode & FMODE_READ))
3345 return 0;
3346 /*
3347 * the seq_file will only be initialized if the file was opened for
3348 * reading; hence we check if it's not null only in that case.
3349 */
3350 l = ((struct seq_file *)file->private_data)->private;
3351 cgroup_release_pid_array(l);
3352 return seq_release(inode, file);
3353 }
3354
3355 static const struct file_operations cgroup_pidlist_operations = {
3356 .read = seq_read,
3357 .llseek = seq_lseek,
3358 .write = cgroup_file_write,
3359 .release = cgroup_pidlist_release,
3360 };
3361
3362 /*
3363 * The following functions handle opens on a file that displays a pidlist
3364 * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
3365 * in the cgroup.
3366 */
3367 /* helper function for the two below it */
3368 static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type)
3369 {
3370 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
3371 struct cgroup_pidlist *l;
3372 int retval;
3373
3374 /* Nothing to do for write-only files */
3375 if (!(file->f_mode & FMODE_READ))
3376 return 0;
3377
3378 /* have the array populated */
3379 retval = pidlist_array_load(cgrp, type, &l);
3380 if (retval)
3381 return retval;
3382 /* configure file information */
3383 file->f_op = &cgroup_pidlist_operations;
3384
3385 retval = seq_open(file, &cgroup_pidlist_seq_operations);
3386 if (retval) {
3387 cgroup_release_pid_array(l);
3388 return retval;
3389 }
3390 ((struct seq_file *)file->private_data)->private = l;
3391 return 0;
3392 }
3393 static int cgroup_tasks_open(struct inode *unused, struct file *file)
3394 {
3395 return cgroup_pidlist_open(file, CGROUP_FILE_TASKS);
3396 }
3397 static int cgroup_procs_open(struct inode *unused, struct file *file)
3398 {
3399 return cgroup_pidlist_open(file, CGROUP_FILE_PROCS);
3400 }
3401
3402 static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
3403 struct cftype *cft)
3404 {
3405 return notify_on_release(cgrp);
3406 }
3407
3408 static int cgroup_write_notify_on_release(struct cgroup *cgrp,
3409 struct cftype *cft,
3410 u64 val)
3411 {
3412 clear_bit(CGRP_RELEASABLE, &cgrp->flags);
3413 if (val)
3414 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3415 else
3416 clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3417 return 0;
3418 }
3419
3420 /*
3421 * Unregister event and free resources.
3422 *
3423 * Gets called from workqueue.
3424 */
3425 static void cgroup_event_remove(struct work_struct *work)
3426 {
3427 struct cgroup_event *event = container_of(work, struct cgroup_event,
3428 remove);
3429 struct cgroup *cgrp = event->cgrp;
3430
3431 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3432
3433 eventfd_ctx_put(event->eventfd);
3434 kfree(event);
3435 dput(cgrp->dentry);
3436 }
3437
3438 /*
3439 * Gets called on POLLHUP on eventfd when user closes it.
3440 *
3441 * Called with wqh->lock held and interrupts disabled.
3442 */
3443 static int cgroup_event_wake(wait_queue_t *wait, unsigned mode,
3444 int sync, void *key)
3445 {
3446 struct cgroup_event *event = container_of(wait,
3447 struct cgroup_event, wait);
3448 struct cgroup *cgrp = event->cgrp;
3449 unsigned long flags = (unsigned long)key;
3450
3451 if (flags & POLLHUP) {
3452 __remove_wait_queue(event->wqh, &event->wait);
3453 spin_lock(&cgrp->event_list_lock);
3454 list_del(&event->list);
3455 spin_unlock(&cgrp->event_list_lock);
3456 /*
3457 * We are in atomic context, but cgroup_event_remove() may
3458 * sleep, so we have to call it in workqueue.
3459 */
3460 schedule_work(&event->remove);
3461 }
3462
3463 return 0;
3464 }
3465
3466 static void cgroup_event_ptable_queue_proc(struct file *file,
3467 wait_queue_head_t *wqh, poll_table *pt)
3468 {
3469 struct cgroup_event *event = container_of(pt,
3470 struct cgroup_event, pt);
3471
3472 event->wqh = wqh;
3473 add_wait_queue(wqh, &event->wait);
3474 }
3475
3476 /*
3477 * Parse input and register new cgroup event handler.
3478 *
3479 * Input must be in format '<event_fd> <control_fd> <args>'.
3480 * Interpretation of args is defined by control file implementation.
3481 */
3482 static int cgroup_write_event_control(struct cgroup *cgrp, struct cftype *cft,
3483 const char *buffer)
3484 {
3485 struct cgroup_event *event = NULL;
3486 unsigned int efd, cfd;
3487 struct file *efile = NULL;
3488 struct file *cfile = NULL;
3489 char *endp;
3490 int ret;
3491
3492 efd = simple_strtoul(buffer, &endp, 10);
3493 if (*endp != ' ')
3494 return -EINVAL;
3495 buffer = endp + 1;
3496
3497 cfd = simple_strtoul(buffer, &endp, 10);
3498 if ((*endp != ' ') && (*endp != '\0'))
3499 return -EINVAL;
3500 buffer = endp + 1;
3501
3502 event = kzalloc(sizeof(*event), GFP_KERNEL);
3503 if (!event)
3504 return -ENOMEM;
3505 event->cgrp = cgrp;
3506 INIT_LIST_HEAD(&event->list);
3507 init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc);
3508 init_waitqueue_func_entry(&event->wait, cgroup_event_wake);
3509 INIT_WORK(&event->remove, cgroup_event_remove);
3510
3511 efile = eventfd_fget(efd);
3512 if (IS_ERR(efile)) {
3513 ret = PTR_ERR(efile);
3514 goto fail;
3515 }
3516
3517 event->eventfd = eventfd_ctx_fileget(efile);
3518 if (IS_ERR(event->eventfd)) {
3519 ret = PTR_ERR(event->eventfd);
3520 goto fail;
3521 }
3522
3523 cfile = fget(cfd);
3524 if (!cfile) {
3525 ret = -EBADF;
3526 goto fail;
3527 }
3528
3529 /* the process need read permission on control file */
3530 /* AV: shouldn't we check that it's been opened for read instead? */
3531 ret = inode_permission(cfile->f_path.dentry->d_inode, MAY_READ);
3532 if (ret < 0)
3533 goto fail;
3534
3535 event->cft = __file_cft(cfile);
3536 if (IS_ERR(event->cft)) {
3537 ret = PTR_ERR(event->cft);
3538 goto fail;
3539 }
3540
3541 if (!event->cft->register_event || !event->cft->unregister_event) {
3542 ret = -EINVAL;
3543 goto fail;
3544 }
3545
3546 ret = event->cft->register_event(cgrp, event->cft,
3547 event->eventfd, buffer);
3548 if (ret)
3549 goto fail;
3550
3551 if (efile->f_op->poll(efile, &event->pt) & POLLHUP) {
3552 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3553 ret = 0;
3554 goto fail;
3555 }
3556
3557 /*
3558 * Events should be removed after rmdir of cgroup directory, but before
3559 * destroying subsystem state objects. Let's take reference to cgroup
3560 * directory dentry to do that.
3561 */
3562 dget(cgrp->dentry);
3563
3564 spin_lock(&cgrp->event_list_lock);
3565 list_add(&event->list, &cgrp->event_list);
3566 spin_unlock(&cgrp->event_list_lock);
3567
3568 fput(cfile);
3569 fput(efile);
3570
3571 return 0;
3572
3573 fail:
3574 if (cfile)
3575 fput(cfile);
3576
3577 if (event && event->eventfd && !IS_ERR(event->eventfd))
3578 eventfd_ctx_put(event->eventfd);
3579
3580 if (!IS_ERR_OR_NULL(efile))
3581 fput(efile);
3582
3583 kfree(event);
3584
3585 return ret;
3586 }
3587
3588 static u64 cgroup_clone_children_read(struct cgroup *cgrp,
3589 struct cftype *cft)
3590 {
3591 return clone_children(cgrp);
3592 }
3593
3594 static int cgroup_clone_children_write(struct cgroup *cgrp,
3595 struct cftype *cft,
3596 u64 val)
3597 {
3598 if (val)
3599 set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3600 else
3601 clear_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3602 return 0;
3603 }
3604
3605 /*
3606 * for the common functions, 'private' gives the type of file
3607 */
3608 /* for hysterical raisins, we can't put this on the older files */
3609 #define CGROUP_FILE_GENERIC_PREFIX "cgroup."
3610 static struct cftype files[] = {
3611 {
3612 .name = "tasks",
3613 .open = cgroup_tasks_open,
3614 .write_u64 = cgroup_tasks_write,
3615 .release = cgroup_pidlist_release,
3616 .mode = S_IRUGO | S_IWUSR,
3617 },
3618 {
3619 .name = CGROUP_FILE_GENERIC_PREFIX "procs",
3620 .open = cgroup_procs_open,
3621 .write_u64 = cgroup_procs_write,
3622 .release = cgroup_pidlist_release,
3623 .mode = S_IRUGO | S_IWUSR,
3624 },
3625 {
3626 .name = "notify_on_release",
3627 .read_u64 = cgroup_read_notify_on_release,
3628 .write_u64 = cgroup_write_notify_on_release,
3629 },
3630 {
3631 .name = CGROUP_FILE_GENERIC_PREFIX "event_control",
3632 .write_string = cgroup_write_event_control,
3633 .mode = S_IWUGO,
3634 },
3635 {
3636 .name = "cgroup.clone_children",
3637 .read_u64 = cgroup_clone_children_read,
3638 .write_u64 = cgroup_clone_children_write,
3639 },
3640 };
3641
3642 static struct cftype cft_release_agent = {
3643 .name = "release_agent",
3644 .read_seq_string = cgroup_release_agent_show,
3645 .write_string = cgroup_release_agent_write,
3646 .max_write_len = PATH_MAX,
3647 };
3648
3649 static int cgroup_populate_dir(struct cgroup *cgrp)
3650 {
3651 int err;
3652 struct cgroup_subsys *ss;
3653
3654 err = cgroup_add_files(cgrp, NULL, files, ARRAY_SIZE(files));
3655 if (err < 0)
3656 return err;
3657
3658 if (cgrp == cgrp->top_cgroup) {
3659 if ((err = cgroup_add_file(cgrp, NULL, &cft_release_agent)) < 0)
3660 return err;
3661 }
3662
3663 for_each_subsys(cgrp->root, ss) {
3664 if (ss->populate && (err = ss->populate(ss, cgrp)) < 0)
3665 return err;
3666 }
3667 /* This cgroup is ready now */
3668 for_each_subsys(cgrp->root, ss) {
3669 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3670 /*
3671 * Update id->css pointer and make this css visible from
3672 * CSS ID functions. This pointer will be dereferened
3673 * from RCU-read-side without locks.
3674 */
3675 if (css->id)
3676 rcu_assign_pointer(css->id->css, css);
3677 }
3678
3679 return 0;
3680 }
3681
3682 static void init_cgroup_css(struct cgroup_subsys_state *css,
3683 struct cgroup_subsys *ss,
3684 struct cgroup *cgrp)
3685 {
3686 css->cgroup = cgrp;
3687 atomic_set(&css->refcnt, 1);
3688 css->flags = 0;
3689 css->id = NULL;
3690 if (cgrp == dummytop)
3691 set_bit(CSS_ROOT, &css->flags);
3692 BUG_ON(cgrp->subsys[ss->subsys_id]);
3693 cgrp->subsys[ss->subsys_id] = css;
3694 }
3695
3696 static void cgroup_lock_hierarchy(struct cgroupfs_root *root)
3697 {
3698 /* We need to take each hierarchy_mutex in a consistent order */
3699 int i;
3700
3701 /*
3702 * No worry about a race with rebind_subsystems that might mess up the
3703 * locking order, since both parties are under cgroup_mutex.
3704 */
3705 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3706 struct cgroup_subsys *ss = subsys[i];
3707 if (ss == NULL)
3708 continue;
3709 if (ss->root == root)
3710 mutex_lock(&ss->hierarchy_mutex);
3711 }
3712 }
3713
3714 static void cgroup_unlock_hierarchy(struct cgroupfs_root *root)
3715 {
3716 int i;
3717
3718 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3719 struct cgroup_subsys *ss = subsys[i];
3720 if (ss == NULL)
3721 continue;
3722 if (ss->root == root)
3723 mutex_unlock(&ss->hierarchy_mutex);
3724 }
3725 }
3726
3727 /*
3728 * cgroup_create - create a cgroup
3729 * @parent: cgroup that will be parent of the new cgroup
3730 * @dentry: dentry of the new cgroup
3731 * @mode: mode to set on new inode
3732 *
3733 * Must be called with the mutex on the parent inode held
3734 */
3735 static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
3736 umode_t mode)
3737 {
3738 struct cgroup *cgrp;
3739 struct cgroupfs_root *root = parent->root;
3740 int err = 0;
3741 struct cgroup_subsys *ss;
3742 struct super_block *sb = root->sb;
3743
3744 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
3745 if (!cgrp)
3746 return -ENOMEM;
3747
3748 /* Grab a reference on the superblock so the hierarchy doesn't
3749 * get deleted on unmount if there are child cgroups. This
3750 * can be done outside cgroup_mutex, since the sb can't
3751 * disappear while someone has an open control file on the
3752 * fs */
3753 atomic_inc(&sb->s_active);
3754
3755 mutex_lock(&cgroup_mutex);
3756
3757 init_cgroup_housekeeping(cgrp);
3758
3759 cgrp->parent = parent;
3760 cgrp->root = parent->root;
3761 cgrp->top_cgroup = parent->top_cgroup;
3762
3763 if (notify_on_release(parent))
3764 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3765
3766 if (clone_children(parent))
3767 set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3768
3769 for_each_subsys(root, ss) {
3770 struct cgroup_subsys_state *css = ss->create(cgrp);
3771
3772 if (IS_ERR(css)) {
3773 err = PTR_ERR(css);
3774 goto err_destroy;
3775 }
3776 init_cgroup_css(css, ss, cgrp);
3777 if (ss->use_id) {
3778 err = alloc_css_id(ss, parent, cgrp);
3779 if (err)
3780 goto err_destroy;
3781 }
3782 /* At error, ->destroy() callback has to free assigned ID. */
3783 if (clone_children(parent) && ss->post_clone)
3784 ss->post_clone(cgrp);
3785 }
3786
3787 cgroup_lock_hierarchy(root);
3788 list_add(&cgrp->sibling, &cgrp->parent->children);
3789 cgroup_unlock_hierarchy(root);
3790 root->number_of_cgroups++;
3791
3792 err = cgroup_create_dir(cgrp, dentry, mode);
3793 if (err < 0)
3794 goto err_remove;
3795
3796 /* The cgroup directory was pre-locked for us */
3797 BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
3798
3799 list_add_tail(&cgrp->allcg_node, &root->allcg_list);
3800
3801 err = cgroup_populate_dir(cgrp);
3802 /* If err < 0, we have a half-filled directory - oh well ;) */
3803
3804 mutex_unlock(&cgroup_mutex);
3805 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
3806
3807 return 0;
3808
3809 err_remove:
3810
3811 cgroup_lock_hierarchy(root);
3812 list_del(&cgrp->sibling);
3813 cgroup_unlock_hierarchy(root);
3814 root->number_of_cgroups--;
3815
3816 err_destroy:
3817
3818 for_each_subsys(root, ss) {
3819 if (cgrp->subsys[ss->subsys_id])
3820 ss->destroy(cgrp);
3821 }
3822
3823 mutex_unlock(&cgroup_mutex);
3824
3825 /* Release the reference count that we took on the superblock */
3826 deactivate_super(sb);
3827
3828 kfree(cgrp);
3829 return err;
3830 }
3831
3832 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3833 {
3834 struct cgroup *c_parent = dentry->d_parent->d_fsdata;
3835
3836 /* the vfs holds inode->i_mutex already */
3837 return cgroup_create(c_parent, dentry, mode | S_IFDIR);
3838 }
3839
3840 static int cgroup_has_css_refs(struct cgroup *cgrp)
3841 {
3842 /* Check the reference count on each subsystem. Since we
3843 * already established that there are no tasks in the
3844 * cgroup, if the css refcount is also 1, then there should
3845 * be no outstanding references, so the subsystem is safe to
3846 * destroy. We scan across all subsystems rather than using
3847 * the per-hierarchy linked list of mounted subsystems since
3848 * we can be called via check_for_release() with no
3849 * synchronization other than RCU, and the subsystem linked
3850 * list isn't RCU-safe */
3851 int i;
3852 /*
3853 * We won't need to lock the subsys array, because the subsystems
3854 * we're concerned about aren't going anywhere since our cgroup root
3855 * has a reference on them.
3856 */
3857 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3858 struct cgroup_subsys *ss = subsys[i];
3859 struct cgroup_subsys_state *css;
3860 /* Skip subsystems not present or not in this hierarchy */
3861 if (ss == NULL || ss->root != cgrp->root)
3862 continue;
3863 css = cgrp->subsys[ss->subsys_id];
3864 /* When called from check_for_release() it's possible
3865 * that by this point the cgroup has been removed
3866 * and the css deleted. But a false-positive doesn't
3867 * matter, since it can only happen if the cgroup
3868 * has been deleted and hence no longer needs the
3869 * release agent to be called anyway. */
3870 if (css && (atomic_read(&css->refcnt) > 1))
3871 return 1;
3872 }
3873 return 0;
3874 }
3875
3876 /*
3877 * Atomically mark all (or else none) of the cgroup's CSS objects as
3878 * CSS_REMOVED. Return true on success, or false if the cgroup has
3879 * busy subsystems. Call with cgroup_mutex held
3880 */
3881
3882 static int cgroup_clear_css_refs(struct cgroup *cgrp)
3883 {
3884 struct cgroup_subsys *ss;
3885 unsigned long flags;
3886 bool failed = false;
3887 local_irq_save(flags);
3888 for_each_subsys(cgrp->root, ss) {
3889 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3890 int refcnt;
3891 while (1) {
3892 /* We can only remove a CSS with a refcnt==1 */
3893 refcnt = atomic_read(&css->refcnt);
3894 if (refcnt > 1) {
3895 failed = true;
3896 goto done;
3897 }
3898 BUG_ON(!refcnt);
3899 /*
3900 * Drop the refcnt to 0 while we check other
3901 * subsystems. This will cause any racing
3902 * css_tryget() to spin until we set the
3903 * CSS_REMOVED bits or abort
3904 */
3905 if (atomic_cmpxchg(&css->refcnt, refcnt, 0) == refcnt)
3906 break;
3907 cpu_relax();
3908 }
3909 }
3910 done:
3911 for_each_subsys(cgrp->root, ss) {
3912 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3913 if (failed) {
3914 /*
3915 * Restore old refcnt if we previously managed
3916 * to clear it from 1 to 0
3917 */
3918 if (!atomic_read(&css->refcnt))
3919 atomic_set(&css->refcnt, 1);
3920 } else {
3921 /* Commit the fact that the CSS is removed */
3922 set_bit(CSS_REMOVED, &css->flags);
3923 }
3924 }
3925 local_irq_restore(flags);
3926 return !failed;
3927 }
3928
3929 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
3930 {
3931 struct cgroup *cgrp = dentry->d_fsdata;
3932 struct dentry *d;
3933 struct cgroup *parent;
3934 DEFINE_WAIT(wait);
3935 struct cgroup_event *event, *tmp;
3936 int ret;
3937
3938 /* the vfs holds both inode->i_mutex already */
3939 again:
3940 mutex_lock(&cgroup_mutex);
3941 if (atomic_read(&cgrp->count) != 0) {
3942 mutex_unlock(&cgroup_mutex);
3943 return -EBUSY;
3944 }
3945 if (!list_empty(&cgrp->children)) {
3946 mutex_unlock(&cgroup_mutex);
3947 return -EBUSY;
3948 }
3949 mutex_unlock(&cgroup_mutex);
3950
3951 /*
3952 * In general, subsystem has no css->refcnt after pre_destroy(). But
3953 * in racy cases, subsystem may have to get css->refcnt after
3954 * pre_destroy() and it makes rmdir return with -EBUSY. This sometimes
3955 * make rmdir return -EBUSY too often. To avoid that, we use waitqueue
3956 * for cgroup's rmdir. CGRP_WAIT_ON_RMDIR is for synchronizing rmdir
3957 * and subsystem's reference count handling. Please see css_get/put
3958 * and css_tryget() and cgroup_wakeup_rmdir_waiter() implementation.
3959 */
3960 set_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3961
3962 /*
3963 * Call pre_destroy handlers of subsys. Notify subsystems
3964 * that rmdir() request comes.
3965 */
3966 ret = cgroup_call_pre_destroy(cgrp);
3967 if (ret) {
3968 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3969 return ret;
3970 }
3971
3972 mutex_lock(&cgroup_mutex);
3973 parent = cgrp->parent;
3974 if (atomic_read(&cgrp->count) || !list_empty(&cgrp->children)) {
3975 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3976 mutex_unlock(&cgroup_mutex);
3977 return -EBUSY;
3978 }
3979 prepare_to_wait(&cgroup_rmdir_waitq, &wait, TASK_INTERRUPTIBLE);
3980 if (!cgroup_clear_css_refs(cgrp)) {
3981 mutex_unlock(&cgroup_mutex);
3982 /*
3983 * Because someone may call cgroup_wakeup_rmdir_waiter() before
3984 * prepare_to_wait(), we need to check this flag.
3985 */
3986 if (test_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags))
3987 schedule();
3988 finish_wait(&cgroup_rmdir_waitq, &wait);
3989 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3990 if (signal_pending(current))
3991 return -EINTR;
3992 goto again;
3993 }
3994 /* NO css_tryget() can success after here. */
3995 finish_wait(&cgroup_rmdir_waitq, &wait);
3996 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3997
3998 raw_spin_lock(&release_list_lock);
3999 set_bit(CGRP_REMOVED, &cgrp->flags);
4000 if (!list_empty(&cgrp->release_list))
4001 list_del_init(&cgrp->release_list);
4002 raw_spin_unlock(&release_list_lock);
4003
4004 cgroup_lock_hierarchy(cgrp->root);
4005 /* delete this cgroup from parent->children */
4006 list_del_init(&cgrp->sibling);
4007 cgroup_unlock_hierarchy(cgrp->root);
4008
4009 list_del_init(&cgrp->allcg_node);
4010
4011 d = dget(cgrp->dentry);
4012
4013 cgroup_d_remove_dir(d);
4014 dput(d);
4015
4016 set_bit(CGRP_RELEASABLE, &parent->flags);
4017 check_for_release(parent);
4018
4019 /*
4020 * Unregister events and notify userspace.
4021 * Notify userspace about cgroup removing only after rmdir of cgroup
4022 * directory to avoid race between userspace and kernelspace
4023 */
4024 spin_lock(&cgrp->event_list_lock);
4025 list_for_each_entry_safe(event, tmp, &cgrp->event_list, list) {
4026 list_del(&event->list);
4027 remove_wait_queue(event->wqh, &event->wait);
4028 eventfd_signal(event->eventfd, 1);
4029 schedule_work(&event->remove);
4030 }
4031 spin_unlock(&cgrp->event_list_lock);
4032
4033 mutex_unlock(&cgroup_mutex);
4034 return 0;
4035 }
4036
4037 static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
4038 {
4039 struct cgroup_subsys_state *css;
4040
4041 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
4042
4043 /* Create the top cgroup state for this subsystem */
4044 list_add(&ss->sibling, &rootnode.subsys_list);
4045 ss->root = &rootnode;
4046 css = ss->create(dummytop);
4047 /* We don't handle early failures gracefully */
4048 BUG_ON(IS_ERR(css));
4049 init_cgroup_css(css, ss, dummytop);
4050
4051 /* Update the init_css_set to contain a subsys
4052 * pointer to this state - since the subsystem is
4053 * newly registered, all tasks and hence the
4054 * init_css_set is in the subsystem's top cgroup. */
4055 init_css_set.subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
4056
4057 need_forkexit_callback |= ss->fork || ss->exit;
4058
4059 /* At system boot, before all subsystems have been
4060 * registered, no tasks have been forked, so we don't
4061 * need to invoke fork callbacks here. */
4062 BUG_ON(!list_empty(&init_task.tasks));
4063
4064 mutex_init(&ss->hierarchy_mutex);
4065 lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
4066 ss->active = 1;
4067
4068 /* this function shouldn't be used with modular subsystems, since they
4069 * need to register a subsys_id, among other things */
4070 BUG_ON(ss->module);
4071 }
4072
4073 /**
4074 * cgroup_load_subsys: load and register a modular subsystem at runtime
4075 * @ss: the subsystem to load
4076 *
4077 * This function should be called in a modular subsystem's initcall. If the
4078 * subsystem is built as a module, it will be assigned a new subsys_id and set
4079 * up for use. If the subsystem is built-in anyway, work is delegated to the
4080 * simpler cgroup_init_subsys.
4081 */
4082 int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss)
4083 {
4084 int i;
4085 struct cgroup_subsys_state *css;
4086
4087 /* check name and function validity */
4088 if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN ||
4089 ss->create == NULL || ss->destroy == NULL)
4090 return -EINVAL;
4091
4092 /*
4093 * we don't support callbacks in modular subsystems. this check is
4094 * before the ss->module check for consistency; a subsystem that could
4095 * be a module should still have no callbacks even if the user isn't
4096 * compiling it as one.
4097 */
4098 if (ss->fork || ss->exit)
4099 return -EINVAL;
4100
4101 /*
4102 * an optionally modular subsystem is built-in: we want to do nothing,
4103 * since cgroup_init_subsys will have already taken care of it.
4104 */
4105 if (ss->module == NULL) {
4106 /* a few sanity checks */
4107 BUG_ON(ss->subsys_id >= CGROUP_BUILTIN_SUBSYS_COUNT);
4108 BUG_ON(subsys[ss->subsys_id] != ss);
4109 return 0;
4110 }
4111
4112 /*
4113 * need to register a subsys id before anything else - for example,
4114 * init_cgroup_css needs it.
4115 */
4116 mutex_lock(&cgroup_mutex);
4117 /* find the first empty slot in the array */
4118 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
4119 if (subsys[i] == NULL)
4120 break;
4121 }
4122 if (i == CGROUP_SUBSYS_COUNT) {
4123 /* maximum number of subsystems already registered! */
4124 mutex_unlock(&cgroup_mutex);
4125 return -EBUSY;
4126 }
4127 /* assign ourselves the subsys_id */
4128 ss->subsys_id = i;
4129 subsys[i] = ss;
4130
4131 /*
4132 * no ss->create seems to need anything important in the ss struct, so
4133 * this can happen first (i.e. before the rootnode attachment).
4134 */
4135 css = ss->create(dummytop);
4136 if (IS_ERR(css)) {
4137 /* failure case - need to deassign the subsys[] slot. */
4138 subsys[i] = NULL;
4139 mutex_unlock(&cgroup_mutex);
4140 return PTR_ERR(css);
4141 }
4142
4143 list_add(&ss->sibling, &rootnode.subsys_list);
4144 ss->root = &rootnode;
4145
4146 /* our new subsystem will be attached to the dummy hierarchy. */
4147 init_cgroup_css(css, ss, dummytop);
4148 /* init_idr must be after init_cgroup_css because it sets css->id. */
4149 if (ss->use_id) {
4150 int ret = cgroup_init_idr(ss, css);
4151 if (ret) {
4152 dummytop->subsys[ss->subsys_id] = NULL;
4153 ss->destroy(dummytop);
4154 subsys[i] = NULL;
4155 mutex_unlock(&cgroup_mutex);
4156 return ret;
4157 }
4158 }
4159
4160 /*
4161 * Now we need to entangle the css into the existing css_sets. unlike
4162 * in cgroup_init_subsys, there are now multiple css_sets, so each one
4163 * will need a new pointer to it; done by iterating the css_set_table.
4164 * furthermore, modifying the existing css_sets will corrupt the hash
4165 * table state, so each changed css_set will need its hash recomputed.
4166 * this is all done under the css_set_lock.
4167 */
4168 write_lock(&css_set_lock);
4169 for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
4170 struct css_set *cg;
4171 struct hlist_node *node, *tmp;
4172 struct hlist_head *bucket = &css_set_table[i], *new_bucket;
4173
4174 hlist_for_each_entry_safe(cg, node, tmp, bucket, hlist) {
4175 /* skip entries that we already rehashed */
4176 if (cg->subsys[ss->subsys_id])
4177 continue;
4178 /* remove existing entry */
4179 hlist_del(&cg->hlist);
4180 /* set new value */
4181 cg->subsys[ss->subsys_id] = css;
4182 /* recompute hash and restore entry */
4183 new_bucket = css_set_hash(cg->subsys);
4184 hlist_add_head(&cg->hlist, new_bucket);
4185 }
4186 }
4187 write_unlock(&css_set_lock);
4188
4189 mutex_init(&ss->hierarchy_mutex);
4190 lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
4191 ss->active = 1;
4192
4193 /* success! */
4194 mutex_unlock(&cgroup_mutex);
4195 return 0;
4196 }
4197 EXPORT_SYMBOL_GPL(cgroup_load_subsys);
4198
4199 /**
4200 * cgroup_unload_subsys: unload a modular subsystem
4201 * @ss: the subsystem to unload
4202 *
4203 * This function should be called in a modular subsystem's exitcall. When this
4204 * function is invoked, the refcount on the subsystem's module will be 0, so
4205 * the subsystem will not be attached to any hierarchy.
4206 */
4207 void cgroup_unload_subsys(struct cgroup_subsys *ss)
4208 {
4209 struct cg_cgroup_link *link;
4210 struct hlist_head *hhead;
4211
4212 BUG_ON(ss->module == NULL);
4213
4214 /*
4215 * we shouldn't be called if the subsystem is in use, and the use of
4216 * try_module_get in parse_cgroupfs_options should ensure that it
4217 * doesn't start being used while we're killing it off.
4218 */
4219 BUG_ON(ss->root != &rootnode);
4220
4221 mutex_lock(&cgroup_mutex);
4222 /* deassign the subsys_id */
4223 BUG_ON(ss->subsys_id < CGROUP_BUILTIN_SUBSYS_COUNT);
4224 subsys[ss->subsys_id] = NULL;
4225
4226 /* remove subsystem from rootnode's list of subsystems */
4227 list_del_init(&ss->sibling);
4228
4229 /*
4230 * disentangle the css from all css_sets attached to the dummytop. as
4231 * in loading, we need to pay our respects to the hashtable gods.
4232 */
4233 write_lock(&css_set_lock);
4234 list_for_each_entry(link, &dummytop->css_sets, cgrp_link_list) {
4235 struct css_set *cg = link->cg;
4236
4237 hlist_del(&cg->hlist);
4238 BUG_ON(!cg->subsys[ss->subsys_id]);
4239 cg->subsys[ss->subsys_id] = NULL;
4240 hhead = css_set_hash(cg->subsys);
4241 hlist_add_head(&cg->hlist, hhead);
4242 }
4243 write_unlock(&css_set_lock);
4244
4245 /*
4246 * remove subsystem's css from the dummytop and free it - need to free
4247 * before marking as null because ss->destroy needs the cgrp->subsys
4248 * pointer to find their state. note that this also takes care of
4249 * freeing the css_id.
4250 */
4251 ss->destroy(dummytop);
4252 dummytop->subsys[ss->subsys_id] = NULL;
4253
4254 mutex_unlock(&cgroup_mutex);
4255 }
4256 EXPORT_SYMBOL_GPL(cgroup_unload_subsys);
4257
4258 /**
4259 * cgroup_init_early - cgroup initialization at system boot
4260 *
4261 * Initialize cgroups at system boot, and initialize any
4262 * subsystems that request early init.
4263 */
4264 int __init cgroup_init_early(void)
4265 {
4266 int i;
4267 atomic_set(&init_css_set.refcount, 1);
4268 INIT_LIST_HEAD(&init_css_set.cg_links);
4269 INIT_LIST_HEAD(&init_css_set.tasks);
4270 INIT_HLIST_NODE(&init_css_set.hlist);
4271 css_set_count = 1;
4272 init_cgroup_root(&rootnode);
4273 root_count = 1;
4274 init_task.cgroups = &init_css_set;
4275
4276 init_css_set_link.cg = &init_css_set;
4277 init_css_set_link.cgrp = dummytop;
4278 list_add(&init_css_set_link.cgrp_link_list,
4279 &rootnode.top_cgroup.css_sets);
4280 list_add(&init_css_set_link.cg_link_list,
4281 &init_css_set.cg_links);
4282
4283 for (i = 0; i < CSS_SET_TABLE_SIZE; i++)
4284 INIT_HLIST_HEAD(&css_set_table[i]);
4285
4286 /* at bootup time, we don't worry about modular subsystems */
4287 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4288 struct cgroup_subsys *ss = subsys[i];
4289
4290 BUG_ON(!ss->name);
4291 BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
4292 BUG_ON(!ss->create);
4293 BUG_ON(!ss->destroy);
4294 if (ss->subsys_id != i) {
4295 printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
4296 ss->name, ss->subsys_id);
4297 BUG();
4298 }
4299
4300 if (ss->early_init)
4301 cgroup_init_subsys(ss);
4302 }
4303 return 0;
4304 }
4305
4306 /**
4307 * cgroup_init - cgroup initialization
4308 *
4309 * Register cgroup filesystem and /proc file, and initialize
4310 * any subsystems that didn't request early init.
4311 */
4312 int __init cgroup_init(void)
4313 {
4314 int err;
4315 int i;
4316 struct hlist_head *hhead;
4317
4318 err = bdi_init(&cgroup_backing_dev_info);
4319 if (err)
4320 return err;
4321
4322 /* at bootup time, we don't worry about modular subsystems */
4323 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4324 struct cgroup_subsys *ss = subsys[i];
4325 if (!ss->early_init)
4326 cgroup_init_subsys(ss);
4327 if (ss->use_id)
4328 cgroup_init_idr(ss, init_css_set.subsys[ss->subsys_id]);
4329 }
4330
4331 /* Add init_css_set to the hash table */
4332 hhead = css_set_hash(init_css_set.subsys);
4333 hlist_add_head(&init_css_set.hlist, hhead);
4334 BUG_ON(!init_root_id(&rootnode));
4335
4336 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
4337 if (!cgroup_kobj) {
4338 err = -ENOMEM;
4339 goto out;
4340 }
4341
4342 err = register_filesystem(&cgroup_fs_type);
4343 if (err < 0) {
4344 kobject_put(cgroup_kobj);
4345 goto out;
4346 }
4347
4348 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
4349
4350 out:
4351 if (err)
4352 bdi_destroy(&cgroup_backing_dev_info);
4353
4354 return err;
4355 }
4356
4357 /*
4358 * proc_cgroup_show()
4359 * - Print task's cgroup paths into seq_file, one line for each hierarchy
4360 * - Used for /proc/<pid>/cgroup.
4361 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
4362 * doesn't really matter if tsk->cgroup changes after we read it,
4363 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
4364 * anyway. No need to check that tsk->cgroup != NULL, thanks to
4365 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
4366 * cgroup to top_cgroup.
4367 */
4368
4369 /* TODO: Use a proper seq_file iterator */
4370 static int proc_cgroup_show(struct seq_file *m, void *v)
4371 {
4372 struct pid *pid;
4373 struct task_struct *tsk;
4374 char *buf;
4375 int retval;
4376 struct cgroupfs_root *root;
4377
4378 retval = -ENOMEM;
4379 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4380 if (!buf)
4381 goto out;
4382
4383 retval = -ESRCH;
4384 pid = m->private;
4385 tsk = get_pid_task(pid, PIDTYPE_PID);
4386 if (!tsk)
4387 goto out_free;
4388
4389 retval = 0;
4390
4391 mutex_lock(&cgroup_mutex);
4392
4393 for_each_active_root(root) {
4394 struct cgroup_subsys *ss;
4395 struct cgroup *cgrp;
4396 int count = 0;
4397
4398 seq_printf(m, "%d:", root->hierarchy_id);
4399 for_each_subsys(root, ss)
4400 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
4401 if (strlen(root->name))
4402 seq_printf(m, "%sname=%s", count ? "," : "",
4403 root->name);
4404 seq_putc(m, ':');
4405 cgrp = task_cgroup_from_root(tsk, root);
4406 retval = cgroup_path(cgrp, buf, PAGE_SIZE);
4407 if (retval < 0)
4408 goto out_unlock;
4409 seq_puts(m, buf);
4410 seq_putc(m, '\n');
4411 }
4412
4413 out_unlock:
4414 mutex_unlock(&cgroup_mutex);
4415 put_task_struct(tsk);
4416 out_free:
4417 kfree(buf);
4418 out:
4419 return retval;
4420 }
4421
4422 static int cgroup_open(struct inode *inode, struct file *file)
4423 {
4424 struct pid *pid = PROC_I(inode)->pid;
4425 return single_open(file, proc_cgroup_show, pid);
4426 }
4427
4428 const struct file_operations proc_cgroup_operations = {
4429 .open = cgroup_open,
4430 .read = seq_read,
4431 .llseek = seq_lseek,
4432 .release = single_release,
4433 };
4434
4435 /* Display information about each subsystem and each hierarchy */
4436 static int proc_cgroupstats_show(struct seq_file *m, void *v)
4437 {
4438 int i;
4439
4440 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
4441 /*
4442 * ideally we don't want subsystems moving around while we do this.
4443 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
4444 * subsys/hierarchy state.
4445 */
4446 mutex_lock(&cgroup_mutex);
4447 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4448 struct cgroup_subsys *ss = subsys[i];
4449 if (ss == NULL)
4450 continue;
4451 seq_printf(m, "%s\t%d\t%d\t%d\n",
4452 ss->name, ss->root->hierarchy_id,
4453 ss->root->number_of_cgroups, !ss->disabled);
4454 }
4455 mutex_unlock(&cgroup_mutex);
4456 return 0;
4457 }
4458
4459 static int cgroupstats_open(struct inode *inode, struct file *file)
4460 {
4461 return single_open(file, proc_cgroupstats_show, NULL);
4462 }
4463
4464 static const struct file_operations proc_cgroupstats_operations = {
4465 .open = cgroupstats_open,
4466 .read = seq_read,
4467 .llseek = seq_lseek,
4468 .release = single_release,
4469 };
4470
4471 /**
4472 * cgroup_fork - attach newly forked task to its parents cgroup.
4473 * @child: pointer to task_struct of forking parent process.
4474 *
4475 * Description: A task inherits its parent's cgroup at fork().
4476 *
4477 * A pointer to the shared css_set was automatically copied in
4478 * fork.c by dup_task_struct(). However, we ignore that copy, since
4479 * it was not made under the protection of RCU, cgroup_mutex or
4480 * threadgroup_change_begin(), so it might no longer be a valid
4481 * cgroup pointer. cgroup_attach_task() might have already changed
4482 * current->cgroups, allowing the previously referenced cgroup
4483 * group to be removed and freed.
4484 *
4485 * Outside the pointer validity we also need to process the css_set
4486 * inheritance between threadgoup_change_begin() and
4487 * threadgoup_change_end(), this way there is no leak in any process
4488 * wide migration performed by cgroup_attach_proc() that could otherwise
4489 * miss a thread because it is too early or too late in the fork stage.
4490 *
4491 * At the point that cgroup_fork() is called, 'current' is the parent
4492 * task, and the passed argument 'child' points to the child task.
4493 */
4494 void cgroup_fork(struct task_struct *child)
4495 {
4496 /*
4497 * We don't need to task_lock() current because current->cgroups
4498 * can't be changed concurrently here. The parent obviously hasn't
4499 * exited and called cgroup_exit(), and we are synchronized against
4500 * cgroup migration through threadgroup_change_begin().
4501 */
4502 child->cgroups = current->cgroups;
4503 get_css_set(child->cgroups);
4504 INIT_LIST_HEAD(&child->cg_list);
4505 }
4506
4507 /**
4508 * cgroup_fork_callbacks - run fork callbacks
4509 * @child: the new task
4510 *
4511 * Called on a new task very soon before adding it to the
4512 * tasklist. No need to take any locks since no-one can
4513 * be operating on this task.
4514 */
4515 void cgroup_fork_callbacks(struct task_struct *child)
4516 {
4517 if (need_forkexit_callback) {
4518 int i;
4519 /*
4520 * forkexit callbacks are only supported for builtin
4521 * subsystems, and the builtin section of the subsys array is
4522 * immutable, so we don't need to lock the subsys array here.
4523 */
4524 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4525 struct cgroup_subsys *ss = subsys[i];
4526 if (ss->fork)
4527 ss->fork(child);
4528 }
4529 }
4530 }
4531
4532 /**
4533 * cgroup_post_fork - called on a new task after adding it to the task list
4534 * @child: the task in question
4535 *
4536 * Adds the task to the list running through its css_set if necessary.
4537 * Has to be after the task is visible on the task list in case we race
4538 * with the first call to cgroup_iter_start() - to guarantee that the
4539 * new task ends up on its list.
4540 */
4541 void cgroup_post_fork(struct task_struct *child)
4542 {
4543 /*
4544 * use_task_css_set_links is set to 1 before we walk the tasklist
4545 * under the tasklist_lock and we read it here after we added the child
4546 * to the tasklist under the tasklist_lock as well. If the child wasn't
4547 * yet in the tasklist when we walked through it from
4548 * cgroup_enable_task_cg_lists(), then use_task_css_set_links value
4549 * should be visible now due to the paired locking and barriers implied
4550 * by LOCK/UNLOCK: it is written before the tasklist_lock unlock
4551 * in cgroup_enable_task_cg_lists() and read here after the tasklist_lock
4552 * lock on fork.
4553 */
4554 if (use_task_css_set_links) {
4555 write_lock(&css_set_lock);
4556 if (list_empty(&child->cg_list)) {
4557 /*
4558 * It's safe to use child->cgroups without task_lock()
4559 * here because we are protected through
4560 * threadgroup_change_begin() against concurrent
4561 * css_set change in cgroup_task_migrate(). Also
4562 * the task can't exit at that point until
4563 * wake_up_new_task() is called, so we are protected
4564 * against cgroup_exit() setting child->cgroup to
4565 * init_css_set.
4566 */
4567 list_add(&child->cg_list, &child->cgroups->tasks);
4568 }
4569 write_unlock(&css_set_lock);
4570 }
4571 }
4572 /**
4573 * cgroup_exit - detach cgroup from exiting task
4574 * @tsk: pointer to task_struct of exiting process
4575 * @run_callback: run exit callbacks?
4576 *
4577 * Description: Detach cgroup from @tsk and release it.
4578 *
4579 * Note that cgroups marked notify_on_release force every task in
4580 * them to take the global cgroup_mutex mutex when exiting.
4581 * This could impact scaling on very large systems. Be reluctant to
4582 * use notify_on_release cgroups where very high task exit scaling
4583 * is required on large systems.
4584 *
4585 * the_top_cgroup_hack:
4586 *
4587 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
4588 *
4589 * We call cgroup_exit() while the task is still competent to
4590 * handle notify_on_release(), then leave the task attached to the
4591 * root cgroup in each hierarchy for the remainder of its exit.
4592 *
4593 * To do this properly, we would increment the reference count on
4594 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
4595 * code we would add a second cgroup function call, to drop that
4596 * reference. This would just create an unnecessary hot spot on
4597 * the top_cgroup reference count, to no avail.
4598 *
4599 * Normally, holding a reference to a cgroup without bumping its
4600 * count is unsafe. The cgroup could go away, or someone could
4601 * attach us to a different cgroup, decrementing the count on
4602 * the first cgroup that we never incremented. But in this case,
4603 * top_cgroup isn't going away, and either task has PF_EXITING set,
4604 * which wards off any cgroup_attach_task() attempts, or task is a failed
4605 * fork, never visible to cgroup_attach_task.
4606 */
4607 void cgroup_exit(struct task_struct *tsk, int run_callbacks)
4608 {
4609 struct css_set *cg;
4610 int i;
4611
4612 /*
4613 * Unlink from the css_set task list if necessary.
4614 * Optimistically check cg_list before taking
4615 * css_set_lock
4616 */
4617 if (!list_empty(&tsk->cg_list)) {
4618 write_lock(&css_set_lock);
4619 if (!list_empty(&tsk->cg_list))
4620 list_del_init(&tsk->cg_list);
4621 write_unlock(&css_set_lock);
4622 }
4623
4624 /* Reassign the task to the init_css_set. */
4625 task_lock(tsk);
4626 cg = tsk->cgroups;
4627 tsk->cgroups = &init_css_set;
4628
4629 if (run_callbacks && need_forkexit_callback) {
4630 /*
4631 * modular subsystems can't use callbacks, so no need to lock
4632 * the subsys array
4633 */
4634 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4635 struct cgroup_subsys *ss = subsys[i];
4636 if (ss->exit) {
4637 struct cgroup *old_cgrp =
4638 rcu_dereference_raw(cg->subsys[i])->cgroup;
4639 struct cgroup *cgrp = task_cgroup(tsk, i);
4640 ss->exit(cgrp, old_cgrp, tsk);
4641 }
4642 }
4643 }
4644 task_unlock(tsk);
4645
4646 if (cg)
4647 put_css_set_taskexit(cg);
4648 }
4649
4650 /**
4651 * cgroup_is_descendant - see if @cgrp is a descendant of @task's cgrp
4652 * @cgrp: the cgroup in question
4653 * @task: the task in question
4654 *
4655 * See if @cgrp is a descendant of @task's cgroup in the appropriate
4656 * hierarchy.
4657 *
4658 * If we are sending in dummytop, then presumably we are creating
4659 * the top cgroup in the subsystem.
4660 *
4661 * Called only by the ns (nsproxy) cgroup.
4662 */
4663 int cgroup_is_descendant(const struct cgroup *cgrp, struct task_struct *task)
4664 {
4665 int ret;
4666 struct cgroup *target;
4667
4668 if (cgrp == dummytop)
4669 return 1;
4670
4671 target = task_cgroup_from_root(task, cgrp->root);
4672 while (cgrp != target && cgrp!= cgrp->top_cgroup)
4673 cgrp = cgrp->parent;
4674 ret = (cgrp == target);
4675 return ret;
4676 }
4677
4678 static void check_for_release(struct cgroup *cgrp)
4679 {
4680 /* All of these checks rely on RCU to keep the cgroup
4681 * structure alive */
4682 if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
4683 && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
4684 /* Control Group is currently removeable. If it's not
4685 * already queued for a userspace notification, queue
4686 * it now */
4687 int need_schedule_work = 0;
4688 raw_spin_lock(&release_list_lock);
4689 if (!cgroup_is_removed(cgrp) &&
4690 list_empty(&cgrp->release_list)) {
4691 list_add(&cgrp->release_list, &release_list);
4692 need_schedule_work = 1;
4693 }
4694 raw_spin_unlock(&release_list_lock);
4695 if (need_schedule_work)
4696 schedule_work(&release_agent_work);
4697 }
4698 }
4699
4700 /* Caller must verify that the css is not for root cgroup */
4701 void __css_put(struct cgroup_subsys_state *css, int count)
4702 {
4703 struct cgroup *cgrp = css->cgroup;
4704 int val;
4705 rcu_read_lock();
4706 val = atomic_sub_return(count, &css->refcnt);
4707 if (val == 1) {
4708 if (notify_on_release(cgrp)) {
4709 set_bit(CGRP_RELEASABLE, &cgrp->flags);
4710 check_for_release(cgrp);
4711 }
4712 cgroup_wakeup_rmdir_waiter(cgrp);
4713 }
4714 rcu_read_unlock();
4715 WARN_ON_ONCE(val < 1);
4716 }
4717 EXPORT_SYMBOL_GPL(__css_put);
4718
4719 /*
4720 * Notify userspace when a cgroup is released, by running the
4721 * configured release agent with the name of the cgroup (path
4722 * relative to the root of cgroup file system) as the argument.
4723 *
4724 * Most likely, this user command will try to rmdir this cgroup.
4725 *
4726 * This races with the possibility that some other task will be
4727 * attached to this cgroup before it is removed, or that some other
4728 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
4729 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
4730 * unused, and this cgroup will be reprieved from its death sentence,
4731 * to continue to serve a useful existence. Next time it's released,
4732 * we will get notified again, if it still has 'notify_on_release' set.
4733 *
4734 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
4735 * means only wait until the task is successfully execve()'d. The
4736 * separate release agent task is forked by call_usermodehelper(),
4737 * then control in this thread returns here, without waiting for the
4738 * release agent task. We don't bother to wait because the caller of
4739 * this routine has no use for the exit status of the release agent
4740 * task, so no sense holding our caller up for that.
4741 */
4742 static void cgroup_release_agent(struct work_struct *work)
4743 {
4744 BUG_ON(work != &release_agent_work);
4745 mutex_lock(&cgroup_mutex);
4746 raw_spin_lock(&release_list_lock);
4747 while (!list_empty(&release_list)) {
4748 char *argv[3], *envp[3];
4749 int i;
4750 char *pathbuf = NULL, *agentbuf = NULL;
4751 struct cgroup *cgrp = list_entry(release_list.next,
4752 struct cgroup,
4753 release_list);
4754 list_del_init(&cgrp->release_list);
4755 raw_spin_unlock(&release_list_lock);
4756 pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4757 if (!pathbuf)
4758 goto continue_free;
4759 if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
4760 goto continue_free;
4761 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
4762 if (!agentbuf)
4763 goto continue_free;
4764
4765 i = 0;
4766 argv[i++] = agentbuf;
4767 argv[i++] = pathbuf;
4768 argv[i] = NULL;
4769
4770 i = 0;
4771 /* minimal command environment */
4772 envp[i++] = "HOME=/";
4773 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
4774 envp[i] = NULL;
4775
4776 /* Drop the lock while we invoke the usermode helper,
4777 * since the exec could involve hitting disk and hence
4778 * be a slow process */
4779 mutex_unlock(&cgroup_mutex);
4780 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
4781 mutex_lock(&cgroup_mutex);
4782 continue_free:
4783 kfree(pathbuf);
4784 kfree(agentbuf);
4785 raw_spin_lock(&release_list_lock);
4786 }
4787 raw_spin_unlock(&release_list_lock);
4788 mutex_unlock(&cgroup_mutex);
4789 }
4790
4791 static int __init cgroup_disable(char *str)
4792 {
4793 int i;
4794 char *token;
4795
4796 while ((token = strsep(&str, ",")) != NULL) {
4797 if (!*token)
4798 continue;
4799 /*
4800 * cgroup_disable, being at boot time, can't know about module
4801 * subsystems, so we don't worry about them.
4802 */
4803 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4804 struct cgroup_subsys *ss = subsys[i];
4805
4806 if (!strcmp(token, ss->name)) {
4807 ss->disabled = 1;
4808 printk(KERN_INFO "Disabling %s control group"
4809 " subsystem\n", ss->name);
4810 break;
4811 }
4812 }
4813 }
4814 return 1;
4815 }
4816 __setup("cgroup_disable=", cgroup_disable);
4817
4818 /*
4819 * Functons for CSS ID.
4820 */
4821
4822 /*
4823 *To get ID other than 0, this should be called when !cgroup_is_removed().
4824 */
4825 unsigned short css_id(struct cgroup_subsys_state *css)
4826 {
4827 struct css_id *cssid;
4828
4829 /*
4830 * This css_id() can return correct value when somone has refcnt
4831 * on this or this is under rcu_read_lock(). Once css->id is allocated,
4832 * it's unchanged until freed.
4833 */
4834 cssid = rcu_dereference_check(css->id, atomic_read(&css->refcnt));
4835
4836 if (cssid)
4837 return cssid->id;
4838 return 0;
4839 }
4840 EXPORT_SYMBOL_GPL(css_id);
4841
4842 unsigned short css_depth(struct cgroup_subsys_state *css)
4843 {
4844 struct css_id *cssid;
4845
4846 cssid = rcu_dereference_check(css->id, atomic_read(&css->refcnt));
4847
4848 if (cssid)
4849 return cssid->depth;
4850 return 0;
4851 }
4852 EXPORT_SYMBOL_GPL(css_depth);
4853
4854 /**
4855 * css_is_ancestor - test "root" css is an ancestor of "child"
4856 * @child: the css to be tested.
4857 * @root: the css supporsed to be an ancestor of the child.
4858 *
4859 * Returns true if "root" is an ancestor of "child" in its hierarchy. Because
4860 * this function reads css->id, this use rcu_dereference() and rcu_read_lock().
4861 * But, considering usual usage, the csses should be valid objects after test.
4862 * Assuming that the caller will do some action to the child if this returns
4863 * returns true, the caller must take "child";s reference count.
4864 * If "child" is valid object and this returns true, "root" is valid, too.
4865 */
4866
4867 bool css_is_ancestor(struct cgroup_subsys_state *child,
4868 const struct cgroup_subsys_state *root)
4869 {
4870 struct css_id *child_id;
4871 struct css_id *root_id;
4872 bool ret = true;
4873
4874 rcu_read_lock();
4875 child_id = rcu_dereference(child->id);
4876 root_id = rcu_dereference(root->id);
4877 if (!child_id
4878 || !root_id
4879 || (child_id->depth < root_id->depth)
4880 || (child_id->stack[root_id->depth] != root_id->id))
4881 ret = false;
4882 rcu_read_unlock();
4883 return ret;
4884 }
4885
4886 void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
4887 {
4888 struct css_id *id = css->id;
4889 /* When this is called before css_id initialization, id can be NULL */
4890 if (!id)
4891 return;
4892
4893 BUG_ON(!ss->use_id);
4894
4895 rcu_assign_pointer(id->css, NULL);
4896 rcu_assign_pointer(css->id, NULL);
4897 spin_lock(&ss->id_lock);
4898 idr_remove(&ss->idr, id->id);
4899 spin_unlock(&ss->id_lock);
4900 kfree_rcu(id, rcu_head);
4901 }
4902 EXPORT_SYMBOL_GPL(free_css_id);
4903
4904 /*
4905 * This is called by init or create(). Then, calls to this function are
4906 * always serialized (By cgroup_mutex() at create()).
4907 */
4908
4909 static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
4910 {
4911 struct css_id *newid;
4912 int myid, error, size;
4913
4914 BUG_ON(!ss->use_id);
4915
4916 size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
4917 newid = kzalloc(size, GFP_KERNEL);
4918 if (!newid)
4919 return ERR_PTR(-ENOMEM);
4920 /* get id */
4921 if (unlikely(!idr_pre_get(&ss->idr, GFP_KERNEL))) {
4922 error = -ENOMEM;
4923 goto err_out;
4924 }
4925 spin_lock(&ss->id_lock);
4926 /* Don't use 0. allocates an ID of 1-65535 */
4927 error = idr_get_new_above(&ss->idr, newid, 1, &myid);
4928 spin_unlock(&ss->id_lock);
4929
4930 /* Returns error when there are no free spaces for new ID.*/
4931 if (error) {
4932 error = -ENOSPC;
4933 goto err_out;
4934 }
4935 if (myid > CSS_ID_MAX)
4936 goto remove_idr;
4937
4938 newid->id = myid;
4939 newid->depth = depth;
4940 return newid;
4941 remove_idr:
4942 error = -ENOSPC;
4943 spin_lock(&ss->id_lock);
4944 idr_remove(&ss->idr, myid);
4945 spin_unlock(&ss->id_lock);
4946 err_out:
4947 kfree(newid);
4948 return ERR_PTR(error);
4949
4950 }
4951
4952 static int __init_or_module cgroup_init_idr(struct cgroup_subsys *ss,
4953 struct cgroup_subsys_state *rootcss)
4954 {
4955 struct css_id *newid;
4956
4957 spin_lock_init(&ss->id_lock);
4958 idr_init(&ss->idr);
4959
4960 newid = get_new_cssid(ss, 0);
4961 if (IS_ERR(newid))
4962 return PTR_ERR(newid);
4963
4964 newid->stack[0] = newid->id;
4965 newid->css = rootcss;
4966 rootcss->id = newid;
4967 return 0;
4968 }
4969
4970 static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
4971 struct cgroup *child)
4972 {
4973 int subsys_id, i, depth = 0;
4974 struct cgroup_subsys_state *parent_css, *child_css;
4975 struct css_id *child_id, *parent_id;
4976
4977 subsys_id = ss->subsys_id;
4978 parent_css = parent->subsys[subsys_id];
4979 child_css = child->subsys[subsys_id];
4980 parent_id = parent_css->id;
4981 depth = parent_id->depth + 1;
4982
4983 child_id = get_new_cssid(ss, depth);
4984 if (IS_ERR(child_id))
4985 return PTR_ERR(child_id);
4986
4987 for (i = 0; i < depth; i++)
4988 child_id->stack[i] = parent_id->stack[i];
4989 child_id->stack[depth] = child_id->id;
4990 /*
4991 * child_id->css pointer will be set after this cgroup is available
4992 * see cgroup_populate_dir()
4993 */
4994 rcu_assign_pointer(child_css->id, child_id);
4995
4996 return 0;
4997 }
4998
4999 /**
5000 * css_lookup - lookup css by id
5001 * @ss: cgroup subsys to be looked into.
5002 * @id: the id
5003 *
5004 * Returns pointer to cgroup_subsys_state if there is valid one with id.
5005 * NULL if not. Should be called under rcu_read_lock()
5006 */
5007 struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
5008 {
5009 struct css_id *cssid = NULL;
5010
5011 BUG_ON(!ss->use_id);
5012 cssid = idr_find(&ss->idr, id);
5013
5014 if (unlikely(!cssid))
5015 return NULL;
5016
5017 return rcu_dereference(cssid->css);
5018 }
5019 EXPORT_SYMBOL_GPL(css_lookup);
5020
5021 /**
5022 * css_get_next - lookup next cgroup under specified hierarchy.
5023 * @ss: pointer to subsystem
5024 * @id: current position of iteration.
5025 * @root: pointer to css. search tree under this.
5026 * @foundid: position of found object.
5027 *
5028 * Search next css under the specified hierarchy of rootid. Calling under
5029 * rcu_read_lock() is necessary. Returns NULL if it reaches the end.
5030 */
5031 struct cgroup_subsys_state *
5032 css_get_next(struct cgroup_subsys *ss, int id,
5033 struct cgroup_subsys_state *root, int *foundid)
5034 {
5035 struct cgroup_subsys_state *ret = NULL;
5036 struct css_id *tmp;
5037 int tmpid;
5038 int rootid = css_id(root);
5039 int depth = css_depth(root);
5040
5041 if (!rootid)
5042 return NULL;
5043
5044 BUG_ON(!ss->use_id);
5045 WARN_ON_ONCE(!rcu_read_lock_held());
5046
5047 /* fill start point for scan */
5048 tmpid = id;
5049 while (1) {
5050 /*
5051 * scan next entry from bitmap(tree), tmpid is updated after
5052 * idr_get_next().
5053 */
5054 tmp = idr_get_next(&ss->idr, &tmpid);
5055 if (!tmp)
5056 break;
5057 if (tmp->depth >= depth && tmp->stack[depth] == rootid) {
5058 ret = rcu_dereference(tmp->css);
5059 if (ret) {
5060 *foundid = tmpid;
5061 break;
5062 }
5063 }
5064 /* continue to scan from next id */
5065 tmpid = tmpid + 1;
5066 }
5067 return ret;
5068 }
5069
5070 /*
5071 * get corresponding css from file open on cgroupfs directory
5072 */
5073 struct cgroup_subsys_state *cgroup_css_from_dir(struct file *f, int id)
5074 {
5075 struct cgroup *cgrp;
5076 struct inode *inode;
5077 struct cgroup_subsys_state *css;
5078
5079 inode = f->f_dentry->d_inode;
5080 /* check in cgroup filesystem dir */
5081 if (inode->i_op != &cgroup_dir_inode_operations)
5082 return ERR_PTR(-EBADF);
5083
5084 if (id < 0 || id >= CGROUP_SUBSYS_COUNT)
5085 return ERR_PTR(-EINVAL);
5086
5087 /* get cgroup */
5088 cgrp = __d_cgrp(f->f_dentry);
5089 css = cgrp->subsys[id];
5090 return css ? css : ERR_PTR(-ENOENT);
5091 }
5092
5093 #ifdef CONFIG_CGROUP_DEBUG
5094 static struct cgroup_subsys_state *debug_create(struct cgroup *cont)
5095 {
5096 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5097
5098 if (!css)
5099 return ERR_PTR(-ENOMEM);
5100
5101 return css;
5102 }
5103
5104 static void debug_destroy(struct cgroup *cont)
5105 {
5106 kfree(cont->subsys[debug_subsys_id]);
5107 }
5108
5109 static u64 cgroup_refcount_read(struct cgroup *cont, struct cftype *cft)
5110 {
5111 return atomic_read(&cont->count);
5112 }
5113
5114 static u64 debug_taskcount_read(struct cgroup *cont, struct cftype *cft)
5115 {
5116 return cgroup_task_count(cont);
5117 }
5118
5119 static u64 current_css_set_read(struct cgroup *cont, struct cftype *cft)
5120 {
5121 return (u64)(unsigned long)current->cgroups;
5122 }
5123
5124 static u64 current_css_set_refcount_read(struct cgroup *cont,
5125 struct cftype *cft)
5126 {
5127 u64 count;
5128
5129 rcu_read_lock();
5130 count = atomic_read(&current->cgroups->refcount);
5131 rcu_read_unlock();
5132 return count;
5133 }
5134
5135 static int current_css_set_cg_links_read(struct cgroup *cont,
5136 struct cftype *cft,
5137 struct seq_file *seq)
5138 {
5139 struct cg_cgroup_link *link;
5140 struct css_set *cg;
5141
5142 read_lock(&css_set_lock);
5143 rcu_read_lock();
5144 cg = rcu_dereference(current->cgroups);
5145 list_for_each_entry(link, &cg->cg_links, cg_link_list) {
5146 struct cgroup *c = link->cgrp;
5147 const char *name;
5148
5149 if (c->dentry)
5150 name = c->dentry->d_name.name;
5151 else
5152 name = "?";
5153 seq_printf(seq, "Root %d group %s\n",
5154 c->root->hierarchy_id, name);
5155 }
5156 rcu_read_unlock();
5157 read_unlock(&css_set_lock);
5158 return 0;
5159 }
5160
5161 #define MAX_TASKS_SHOWN_PER_CSS 25
5162 static int cgroup_css_links_read(struct cgroup *cont,
5163 struct cftype *cft,
5164 struct seq_file *seq)
5165 {
5166 struct cg_cgroup_link *link;
5167
5168 read_lock(&css_set_lock);
5169 list_for_each_entry(link, &cont->css_sets, cgrp_link_list) {
5170 struct css_set *cg = link->cg;
5171 struct task_struct *task;
5172 int count = 0;
5173 seq_printf(seq, "css_set %p\n", cg);
5174 list_for_each_entry(task, &cg->tasks, cg_list) {
5175 if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
5176 seq_puts(seq, " ...\n");
5177 break;
5178 } else {
5179 seq_printf(seq, " task %d\n",
5180 task_pid_vnr(task));
5181 }
5182 }
5183 }
5184 read_unlock(&css_set_lock);
5185 return 0;
5186 }
5187
5188 static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft)
5189 {
5190 return test_bit(CGRP_RELEASABLE, &cgrp->flags);
5191 }
5192
5193 static struct cftype debug_files[] = {
5194 {
5195 .name = "cgroup_refcount",
5196 .read_u64 = cgroup_refcount_read,
5197 },
5198 {
5199 .name = "taskcount",
5200 .read_u64 = debug_taskcount_read,
5201 },
5202
5203 {
5204 .name = "current_css_set",
5205 .read_u64 = current_css_set_read,
5206 },
5207
5208 {
5209 .name = "current_css_set_refcount",
5210 .read_u64 = current_css_set_refcount_read,
5211 },
5212
5213 {
5214 .name = "current_css_set_cg_links",
5215 .read_seq_string = current_css_set_cg_links_read,
5216 },
5217
5218 {
5219 .name = "cgroup_css_links",
5220 .read_seq_string = cgroup_css_links_read,
5221 },
5222
5223 {
5224 .name = "releasable",
5225 .read_u64 = releasable_read,
5226 },
5227 };
5228
5229 static int debug_populate(struct cgroup_subsys *ss, struct cgroup *cont)
5230 {
5231 return cgroup_add_files(cont, ss, debug_files,
5232 ARRAY_SIZE(debug_files));
5233 }
5234
5235 struct cgroup_subsys debug_subsys = {
5236 .name = "debug",
5237 .create = debug_create,
5238 .destroy = debug_destroy,
5239 .populate = debug_populate,
5240 .subsys_id = debug_subsys_id,
5241 };
5242 #endif /* CONFIG_CGROUP_DEBUG */
This page took 0.341527 seconds and 5 git commands to generate.