cgroup: make cgroup_addrm_files() clean up after itself on failures
[deliverable/linux.git] / kernel / cgroup.c
1 /*
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/cgroup.h>
32 #include <linux/cred.h>
33 #include <linux/ctype.h>
34 #include <linux/errno.h>
35 #include <linux/init_task.h>
36 #include <linux/kernel.h>
37 #include <linux/list.h>
38 #include <linux/magic.h>
39 #include <linux/mm.h>
40 #include <linux/mutex.h>
41 #include <linux/mount.h>
42 #include <linux/pagemap.h>
43 #include <linux/proc_fs.h>
44 #include <linux/rcupdate.h>
45 #include <linux/sched.h>
46 #include <linux/slab.h>
47 #include <linux/spinlock.h>
48 #include <linux/rwsem.h>
49 #include <linux/percpu-rwsem.h>
50 #include <linux/string.h>
51 #include <linux/sort.h>
52 #include <linux/kmod.h>
53 #include <linux/delayacct.h>
54 #include <linux/cgroupstats.h>
55 #include <linux/hashtable.h>
56 #include <linux/pid_namespace.h>
57 #include <linux/idr.h>
58 #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
59 #include <linux/kthread.h>
60 #include <linux/delay.h>
61
62 #include <linux/atomic.h>
63
64 /*
65 * pidlists linger the following amount before being destroyed. The goal
66 * is avoiding frequent destruction in the middle of consecutive read calls
67 * Expiring in the middle is a performance problem not a correctness one.
68 * 1 sec should be enough.
69 */
70 #define CGROUP_PIDLIST_DESTROY_DELAY HZ
71
72 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
73 MAX_CFTYPE_NAME + 2)
74
75 /*
76 * cgroup_mutex is the master lock. Any modification to cgroup or its
77 * hierarchy must be performed while holding it.
78 *
79 * css_set_rwsem protects task->cgroups pointer, the list of css_set
80 * objects, and the chain of tasks off each css_set.
81 *
82 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
83 * cgroup.h can use them for lockdep annotations.
84 */
85 #ifdef CONFIG_PROVE_RCU
86 DEFINE_MUTEX(cgroup_mutex);
87 DECLARE_RWSEM(css_set_rwsem);
88 EXPORT_SYMBOL_GPL(cgroup_mutex);
89 EXPORT_SYMBOL_GPL(css_set_rwsem);
90 #else
91 static DEFINE_MUTEX(cgroup_mutex);
92 static DECLARE_RWSEM(css_set_rwsem);
93 #endif
94
95 /*
96 * Protects cgroup_idr and css_idr so that IDs can be released without
97 * grabbing cgroup_mutex.
98 */
99 static DEFINE_SPINLOCK(cgroup_idr_lock);
100
101 /*
102 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
103 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
104 */
105 static DEFINE_SPINLOCK(release_agent_path_lock);
106
107 struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
108
109 #define cgroup_assert_mutex_or_rcu_locked() \
110 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
111 !lockdep_is_held(&cgroup_mutex), \
112 "cgroup_mutex or RCU read lock required");
113
114 /*
115 * cgroup destruction makes heavy use of work items and there can be a lot
116 * of concurrent destructions. Use a separate workqueue so that cgroup
117 * destruction work items don't end up filling up max_active of system_wq
118 * which may lead to deadlock.
119 */
120 static struct workqueue_struct *cgroup_destroy_wq;
121
122 /*
123 * pidlist destructions need to be flushed on cgroup destruction. Use a
124 * separate workqueue as flush domain.
125 */
126 static struct workqueue_struct *cgroup_pidlist_destroy_wq;
127
128 /* generate an array of cgroup subsystem pointers */
129 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
130 static struct cgroup_subsys *cgroup_subsys[] = {
131 #include <linux/cgroup_subsys.h>
132 };
133 #undef SUBSYS
134
135 /* array of cgroup subsystem names */
136 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
137 static const char *cgroup_subsys_name[] = {
138 #include <linux/cgroup_subsys.h>
139 };
140 #undef SUBSYS
141
142 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
143 #define SUBSYS(_x) \
144 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \
145 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \
146 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \
147 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
148 #include <linux/cgroup_subsys.h>
149 #undef SUBSYS
150
151 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
152 static struct static_key_true *cgroup_subsys_enabled_key[] = {
153 #include <linux/cgroup_subsys.h>
154 };
155 #undef SUBSYS
156
157 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
158 static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
159 #include <linux/cgroup_subsys.h>
160 };
161 #undef SUBSYS
162
163 /*
164 * The default hierarchy, reserved for the subsystems that are otherwise
165 * unattached - it never has more than a single cgroup, and all tasks are
166 * part of that cgroup.
167 */
168 struct cgroup_root cgrp_dfl_root;
169 EXPORT_SYMBOL_GPL(cgrp_dfl_root);
170
171 /*
172 * The default hierarchy always exists but is hidden until mounted for the
173 * first time. This is for backward compatibility.
174 */
175 static bool cgrp_dfl_root_visible;
176
177 /*
178 * Set by the boot param of the same name and makes subsystems with NULL
179 * ->dfl_files to use ->legacy_files on the default hierarchy.
180 */
181 static bool cgroup_legacy_files_on_dfl;
182
183 /* some controllers are not supported in the default hierarchy */
184 static unsigned long cgrp_dfl_root_inhibit_ss_mask;
185
186 /* The list of hierarchy roots */
187
188 static LIST_HEAD(cgroup_roots);
189 static int cgroup_root_count;
190
191 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
192 static DEFINE_IDR(cgroup_hierarchy_idr);
193
194 /*
195 * Assign a monotonically increasing serial number to csses. It guarantees
196 * cgroups with bigger numbers are newer than those with smaller numbers.
197 * Also, as csses are always appended to the parent's ->children list, it
198 * guarantees that sibling csses are always sorted in the ascending serial
199 * number order on the list. Protected by cgroup_mutex.
200 */
201 static u64 css_serial_nr_next = 1;
202
203 /*
204 * These bitmask flags indicate whether tasks in the fork and exit paths have
205 * fork/exit handlers to call. This avoids us having to do extra work in the
206 * fork/exit path to check which subsystems have fork/exit callbacks.
207 */
208 static unsigned long have_fork_callback __read_mostly;
209 static unsigned long have_exit_callback __read_mostly;
210
211 /* Ditto for the can_fork callback. */
212 static unsigned long have_canfork_callback __read_mostly;
213
214 static struct cftype cgroup_dfl_base_files[];
215 static struct cftype cgroup_legacy_base_files[];
216
217 static int rebind_subsystems(struct cgroup_root *dst_root,
218 unsigned long ss_mask);
219 static int cgroup_destroy_locked(struct cgroup *cgrp);
220 static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
221 bool visible);
222 static void css_release(struct percpu_ref *ref);
223 static void kill_css(struct cgroup_subsys_state *css);
224 static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
225 bool is_add);
226
227 /**
228 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
229 * @ssid: subsys ID of interest
230 *
231 * cgroup_subsys_enabled() can only be used with literal subsys names which
232 * is fine for individual subsystems but unsuitable for cgroup core. This
233 * is slower static_key_enabled() based test indexed by @ssid.
234 */
235 static bool cgroup_ssid_enabled(int ssid)
236 {
237 return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
238 }
239
240 /**
241 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
242 * @cgrp: the cgroup of interest
243 *
244 * The default hierarchy is the v2 interface of cgroup and this function
245 * can be used to test whether a cgroup is on the default hierarchy for
246 * cases where a subsystem should behave differnetly depending on the
247 * interface version.
248 *
249 * The set of behaviors which change on the default hierarchy are still
250 * being determined and the mount option is prefixed with __DEVEL__.
251 *
252 * List of changed behaviors:
253 *
254 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
255 * and "name" are disallowed.
256 *
257 * - When mounting an existing superblock, mount options should match.
258 *
259 * - Remount is disallowed.
260 *
261 * - rename(2) is disallowed.
262 *
263 * - "tasks" is removed. Everything should be at process granularity. Use
264 * "cgroup.procs" instead.
265 *
266 * - "cgroup.procs" is not sorted. pids will be unique unless they got
267 * recycled inbetween reads.
268 *
269 * - "release_agent" and "notify_on_release" are removed. Replacement
270 * notification mechanism will be implemented.
271 *
272 * - "cgroup.clone_children" is removed.
273 *
274 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup
275 * and its descendants contain no task; otherwise, 1. The file also
276 * generates kernfs notification which can be monitored through poll and
277 * [di]notify when the value of the file changes.
278 *
279 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
280 * take masks of ancestors with non-empty cpus/mems, instead of being
281 * moved to an ancestor.
282 *
283 * - cpuset: a task can be moved into an empty cpuset, and again it takes
284 * masks of ancestors.
285 *
286 * - memcg: use_hierarchy is on by default and the cgroup file for the flag
287 * is not created.
288 *
289 * - blkcg: blk-throttle becomes properly hierarchical.
290 *
291 * - debug: disallowed on the default hierarchy.
292 */
293 static bool cgroup_on_dfl(const struct cgroup *cgrp)
294 {
295 return cgrp->root == &cgrp_dfl_root;
296 }
297
298 /* IDR wrappers which synchronize using cgroup_idr_lock */
299 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
300 gfp_t gfp_mask)
301 {
302 int ret;
303
304 idr_preload(gfp_mask);
305 spin_lock_bh(&cgroup_idr_lock);
306 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_WAIT);
307 spin_unlock_bh(&cgroup_idr_lock);
308 idr_preload_end();
309 return ret;
310 }
311
312 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
313 {
314 void *ret;
315
316 spin_lock_bh(&cgroup_idr_lock);
317 ret = idr_replace(idr, ptr, id);
318 spin_unlock_bh(&cgroup_idr_lock);
319 return ret;
320 }
321
322 static void cgroup_idr_remove(struct idr *idr, int id)
323 {
324 spin_lock_bh(&cgroup_idr_lock);
325 idr_remove(idr, id);
326 spin_unlock_bh(&cgroup_idr_lock);
327 }
328
329 static struct cgroup *cgroup_parent(struct cgroup *cgrp)
330 {
331 struct cgroup_subsys_state *parent_css = cgrp->self.parent;
332
333 if (parent_css)
334 return container_of(parent_css, struct cgroup, self);
335 return NULL;
336 }
337
338 /**
339 * cgroup_css - obtain a cgroup's css for the specified subsystem
340 * @cgrp: the cgroup of interest
341 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
342 *
343 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
344 * function must be called either under cgroup_mutex or rcu_read_lock() and
345 * the caller is responsible for pinning the returned css if it wants to
346 * keep accessing it outside the said locks. This function may return
347 * %NULL if @cgrp doesn't have @subsys_id enabled.
348 */
349 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
350 struct cgroup_subsys *ss)
351 {
352 if (ss)
353 return rcu_dereference_check(cgrp->subsys[ss->id],
354 lockdep_is_held(&cgroup_mutex));
355 else
356 return &cgrp->self;
357 }
358
359 /**
360 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
361 * @cgrp: the cgroup of interest
362 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
363 *
364 * Similar to cgroup_css() but returns the effective css, which is defined
365 * as the matching css of the nearest ancestor including self which has @ss
366 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
367 * function is guaranteed to return non-NULL css.
368 */
369 static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
370 struct cgroup_subsys *ss)
371 {
372 lockdep_assert_held(&cgroup_mutex);
373
374 if (!ss)
375 return &cgrp->self;
376
377 if (!(cgrp->root->subsys_mask & (1 << ss->id)))
378 return NULL;
379
380 /*
381 * This function is used while updating css associations and thus
382 * can't test the csses directly. Use ->child_subsys_mask.
383 */
384 while (cgroup_parent(cgrp) &&
385 !(cgroup_parent(cgrp)->child_subsys_mask & (1 << ss->id)))
386 cgrp = cgroup_parent(cgrp);
387
388 return cgroup_css(cgrp, ss);
389 }
390
391 /**
392 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
393 * @cgrp: the cgroup of interest
394 * @ss: the subsystem of interest
395 *
396 * Find and get the effective css of @cgrp for @ss. The effective css is
397 * defined as the matching css of the nearest ancestor including self which
398 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
399 * the root css is returned, so this function always returns a valid css.
400 * The returned css must be put using css_put().
401 */
402 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
403 struct cgroup_subsys *ss)
404 {
405 struct cgroup_subsys_state *css;
406
407 rcu_read_lock();
408
409 do {
410 css = cgroup_css(cgrp, ss);
411
412 if (css && css_tryget_online(css))
413 goto out_unlock;
414 cgrp = cgroup_parent(cgrp);
415 } while (cgrp);
416
417 css = init_css_set.subsys[ss->id];
418 css_get(css);
419 out_unlock:
420 rcu_read_unlock();
421 return css;
422 }
423
424 /* convenient tests for these bits */
425 static inline bool cgroup_is_dead(const struct cgroup *cgrp)
426 {
427 return !(cgrp->self.flags & CSS_ONLINE);
428 }
429
430 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
431 {
432 struct cgroup *cgrp = of->kn->parent->priv;
433 struct cftype *cft = of_cft(of);
434
435 /*
436 * This is open and unprotected implementation of cgroup_css().
437 * seq_css() is only called from a kernfs file operation which has
438 * an active reference on the file. Because all the subsystem
439 * files are drained before a css is disassociated with a cgroup,
440 * the matching css from the cgroup's subsys table is guaranteed to
441 * be and stay valid until the enclosing operation is complete.
442 */
443 if (cft->ss)
444 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
445 else
446 return &cgrp->self;
447 }
448 EXPORT_SYMBOL_GPL(of_css);
449
450 /**
451 * cgroup_is_descendant - test ancestry
452 * @cgrp: the cgroup to be tested
453 * @ancestor: possible ancestor of @cgrp
454 *
455 * Test whether @cgrp is a descendant of @ancestor. It also returns %true
456 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
457 * and @ancestor are accessible.
458 */
459 bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
460 {
461 while (cgrp) {
462 if (cgrp == ancestor)
463 return true;
464 cgrp = cgroup_parent(cgrp);
465 }
466 return false;
467 }
468
469 static int notify_on_release(const struct cgroup *cgrp)
470 {
471 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
472 }
473
474 /**
475 * for_each_css - iterate all css's of a cgroup
476 * @css: the iteration cursor
477 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
478 * @cgrp: the target cgroup to iterate css's of
479 *
480 * Should be called under cgroup_[tree_]mutex.
481 */
482 #define for_each_css(css, ssid, cgrp) \
483 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
484 if (!((css) = rcu_dereference_check( \
485 (cgrp)->subsys[(ssid)], \
486 lockdep_is_held(&cgroup_mutex)))) { } \
487 else
488
489 /**
490 * for_each_e_css - iterate all effective css's of a cgroup
491 * @css: the iteration cursor
492 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
493 * @cgrp: the target cgroup to iterate css's of
494 *
495 * Should be called under cgroup_[tree_]mutex.
496 */
497 #define for_each_e_css(css, ssid, cgrp) \
498 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
499 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
500 ; \
501 else
502
503 /**
504 * for_each_subsys - iterate all enabled cgroup subsystems
505 * @ss: the iteration cursor
506 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
507 */
508 #define for_each_subsys(ss, ssid) \
509 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
510 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
511
512 /**
513 * for_each_subsys_which - filter for_each_subsys with a bitmask
514 * @ss: the iteration cursor
515 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
516 * @ss_maskp: a pointer to the bitmask
517 *
518 * The block will only run for cases where the ssid-th bit (1 << ssid) of
519 * mask is set to 1.
520 */
521 #define for_each_subsys_which(ss, ssid, ss_maskp) \
522 if (!CGROUP_SUBSYS_COUNT) /* to avoid spurious gcc warning */ \
523 (ssid) = 0; \
524 else \
525 for_each_set_bit(ssid, ss_maskp, CGROUP_SUBSYS_COUNT) \
526 if (((ss) = cgroup_subsys[ssid]) && false) \
527 break; \
528 else
529
530 /* iterate across the hierarchies */
531 #define for_each_root(root) \
532 list_for_each_entry((root), &cgroup_roots, root_list)
533
534 /* iterate over child cgrps, lock should be held throughout iteration */
535 #define cgroup_for_each_live_child(child, cgrp) \
536 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
537 if (({ lockdep_assert_held(&cgroup_mutex); \
538 cgroup_is_dead(child); })) \
539 ; \
540 else
541
542 static void cgroup_release_agent(struct work_struct *work);
543 static void check_for_release(struct cgroup *cgrp);
544
545 /*
546 * A cgroup can be associated with multiple css_sets as different tasks may
547 * belong to different cgroups on different hierarchies. In the other
548 * direction, a css_set is naturally associated with multiple cgroups.
549 * This M:N relationship is represented by the following link structure
550 * which exists for each association and allows traversing the associations
551 * from both sides.
552 */
553 struct cgrp_cset_link {
554 /* the cgroup and css_set this link associates */
555 struct cgroup *cgrp;
556 struct css_set *cset;
557
558 /* list of cgrp_cset_links anchored at cgrp->cset_links */
559 struct list_head cset_link;
560
561 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
562 struct list_head cgrp_link;
563 };
564
565 /*
566 * The default css_set - used by init and its children prior to any
567 * hierarchies being mounted. It contains a pointer to the root state
568 * for each subsystem. Also used to anchor the list of css_sets. Not
569 * reference-counted, to improve performance when child cgroups
570 * haven't been created.
571 */
572 struct css_set init_css_set = {
573 .refcount = ATOMIC_INIT(1),
574 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
575 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
576 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
577 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
578 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
579 };
580
581 static int css_set_count = 1; /* 1 for init_css_set */
582
583 /**
584 * cgroup_update_populated - updated populated count of a cgroup
585 * @cgrp: the target cgroup
586 * @populated: inc or dec populated count
587 *
588 * @cgrp is either getting the first task (css_set) or losing the last.
589 * Update @cgrp->populated_cnt accordingly. The count is propagated
590 * towards root so that a given cgroup's populated_cnt is zero iff the
591 * cgroup and all its descendants are empty.
592 *
593 * @cgrp's interface file "cgroup.populated" is zero if
594 * @cgrp->populated_cnt is zero and 1 otherwise. When @cgrp->populated_cnt
595 * changes from or to zero, userland is notified that the content of the
596 * interface file has changed. This can be used to detect when @cgrp and
597 * its descendants become populated or empty.
598 */
599 static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
600 {
601 lockdep_assert_held(&css_set_rwsem);
602
603 do {
604 bool trigger;
605
606 if (populated)
607 trigger = !cgrp->populated_cnt++;
608 else
609 trigger = !--cgrp->populated_cnt;
610
611 if (!trigger)
612 break;
613
614 if (cgrp->events_kn)
615 kernfs_notify(cgrp->events_kn);
616 cgrp = cgroup_parent(cgrp);
617 } while (cgrp);
618 }
619
620 /*
621 * hash table for cgroup groups. This improves the performance to find
622 * an existing css_set. This hash doesn't (currently) take into
623 * account cgroups in empty hierarchies.
624 */
625 #define CSS_SET_HASH_BITS 7
626 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
627
628 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
629 {
630 unsigned long key = 0UL;
631 struct cgroup_subsys *ss;
632 int i;
633
634 for_each_subsys(ss, i)
635 key += (unsigned long)css[i];
636 key = (key >> 16) ^ key;
637
638 return key;
639 }
640
641 static void put_css_set_locked(struct css_set *cset)
642 {
643 struct cgrp_cset_link *link, *tmp_link;
644 struct cgroup_subsys *ss;
645 int ssid;
646
647 lockdep_assert_held(&css_set_rwsem);
648
649 if (!atomic_dec_and_test(&cset->refcount))
650 return;
651
652 /* This css_set is dead. unlink it and release cgroup refcounts */
653 for_each_subsys(ss, ssid)
654 list_del(&cset->e_cset_node[ssid]);
655 hash_del(&cset->hlist);
656 css_set_count--;
657
658 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
659 struct cgroup *cgrp = link->cgrp;
660
661 list_del(&link->cset_link);
662 list_del(&link->cgrp_link);
663
664 /* @cgrp can't go away while we're holding css_set_rwsem */
665 if (list_empty(&cgrp->cset_links)) {
666 cgroup_update_populated(cgrp, false);
667 check_for_release(cgrp);
668 }
669
670 kfree(link);
671 }
672
673 kfree_rcu(cset, rcu_head);
674 }
675
676 static void put_css_set(struct css_set *cset)
677 {
678 /*
679 * Ensure that the refcount doesn't hit zero while any readers
680 * can see it. Similar to atomic_dec_and_lock(), but for an
681 * rwlock
682 */
683 if (atomic_add_unless(&cset->refcount, -1, 1))
684 return;
685
686 down_write(&css_set_rwsem);
687 put_css_set_locked(cset);
688 up_write(&css_set_rwsem);
689 }
690
691 /*
692 * refcounted get/put for css_set objects
693 */
694 static inline void get_css_set(struct css_set *cset)
695 {
696 atomic_inc(&cset->refcount);
697 }
698
699 /**
700 * compare_css_sets - helper function for find_existing_css_set().
701 * @cset: candidate css_set being tested
702 * @old_cset: existing css_set for a task
703 * @new_cgrp: cgroup that's being entered by the task
704 * @template: desired set of css pointers in css_set (pre-calculated)
705 *
706 * Returns true if "cset" matches "old_cset" except for the hierarchy
707 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
708 */
709 static bool compare_css_sets(struct css_set *cset,
710 struct css_set *old_cset,
711 struct cgroup *new_cgrp,
712 struct cgroup_subsys_state *template[])
713 {
714 struct list_head *l1, *l2;
715
716 /*
717 * On the default hierarchy, there can be csets which are
718 * associated with the same set of cgroups but different csses.
719 * Let's first ensure that csses match.
720 */
721 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
722 return false;
723
724 /*
725 * Compare cgroup pointers in order to distinguish between
726 * different cgroups in hierarchies. As different cgroups may
727 * share the same effective css, this comparison is always
728 * necessary.
729 */
730 l1 = &cset->cgrp_links;
731 l2 = &old_cset->cgrp_links;
732 while (1) {
733 struct cgrp_cset_link *link1, *link2;
734 struct cgroup *cgrp1, *cgrp2;
735
736 l1 = l1->next;
737 l2 = l2->next;
738 /* See if we reached the end - both lists are equal length. */
739 if (l1 == &cset->cgrp_links) {
740 BUG_ON(l2 != &old_cset->cgrp_links);
741 break;
742 } else {
743 BUG_ON(l2 == &old_cset->cgrp_links);
744 }
745 /* Locate the cgroups associated with these links. */
746 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
747 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
748 cgrp1 = link1->cgrp;
749 cgrp2 = link2->cgrp;
750 /* Hierarchies should be linked in the same order. */
751 BUG_ON(cgrp1->root != cgrp2->root);
752
753 /*
754 * If this hierarchy is the hierarchy of the cgroup
755 * that's changing, then we need to check that this
756 * css_set points to the new cgroup; if it's any other
757 * hierarchy, then this css_set should point to the
758 * same cgroup as the old css_set.
759 */
760 if (cgrp1->root == new_cgrp->root) {
761 if (cgrp1 != new_cgrp)
762 return false;
763 } else {
764 if (cgrp1 != cgrp2)
765 return false;
766 }
767 }
768 return true;
769 }
770
771 /**
772 * find_existing_css_set - init css array and find the matching css_set
773 * @old_cset: the css_set that we're using before the cgroup transition
774 * @cgrp: the cgroup that we're moving into
775 * @template: out param for the new set of csses, should be clear on entry
776 */
777 static struct css_set *find_existing_css_set(struct css_set *old_cset,
778 struct cgroup *cgrp,
779 struct cgroup_subsys_state *template[])
780 {
781 struct cgroup_root *root = cgrp->root;
782 struct cgroup_subsys *ss;
783 struct css_set *cset;
784 unsigned long key;
785 int i;
786
787 /*
788 * Build the set of subsystem state objects that we want to see in the
789 * new css_set. while subsystems can change globally, the entries here
790 * won't change, so no need for locking.
791 */
792 for_each_subsys(ss, i) {
793 if (root->subsys_mask & (1UL << i)) {
794 /*
795 * @ss is in this hierarchy, so we want the
796 * effective css from @cgrp.
797 */
798 template[i] = cgroup_e_css(cgrp, ss);
799 } else {
800 /*
801 * @ss is not in this hierarchy, so we don't want
802 * to change the css.
803 */
804 template[i] = old_cset->subsys[i];
805 }
806 }
807
808 key = css_set_hash(template);
809 hash_for_each_possible(css_set_table, cset, hlist, key) {
810 if (!compare_css_sets(cset, old_cset, cgrp, template))
811 continue;
812
813 /* This css_set matches what we need */
814 return cset;
815 }
816
817 /* No existing cgroup group matched */
818 return NULL;
819 }
820
821 static void free_cgrp_cset_links(struct list_head *links_to_free)
822 {
823 struct cgrp_cset_link *link, *tmp_link;
824
825 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
826 list_del(&link->cset_link);
827 kfree(link);
828 }
829 }
830
831 /**
832 * allocate_cgrp_cset_links - allocate cgrp_cset_links
833 * @count: the number of links to allocate
834 * @tmp_links: list_head the allocated links are put on
835 *
836 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
837 * through ->cset_link. Returns 0 on success or -errno.
838 */
839 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
840 {
841 struct cgrp_cset_link *link;
842 int i;
843
844 INIT_LIST_HEAD(tmp_links);
845
846 for (i = 0; i < count; i++) {
847 link = kzalloc(sizeof(*link), GFP_KERNEL);
848 if (!link) {
849 free_cgrp_cset_links(tmp_links);
850 return -ENOMEM;
851 }
852 list_add(&link->cset_link, tmp_links);
853 }
854 return 0;
855 }
856
857 /**
858 * link_css_set - a helper function to link a css_set to a cgroup
859 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
860 * @cset: the css_set to be linked
861 * @cgrp: the destination cgroup
862 */
863 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
864 struct cgroup *cgrp)
865 {
866 struct cgrp_cset_link *link;
867
868 BUG_ON(list_empty(tmp_links));
869
870 if (cgroup_on_dfl(cgrp))
871 cset->dfl_cgrp = cgrp;
872
873 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
874 link->cset = cset;
875 link->cgrp = cgrp;
876
877 if (list_empty(&cgrp->cset_links))
878 cgroup_update_populated(cgrp, true);
879 list_move(&link->cset_link, &cgrp->cset_links);
880
881 /*
882 * Always add links to the tail of the list so that the list
883 * is sorted by order of hierarchy creation
884 */
885 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
886 }
887
888 /**
889 * find_css_set - return a new css_set with one cgroup updated
890 * @old_cset: the baseline css_set
891 * @cgrp: the cgroup to be updated
892 *
893 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
894 * substituted into the appropriate hierarchy.
895 */
896 static struct css_set *find_css_set(struct css_set *old_cset,
897 struct cgroup *cgrp)
898 {
899 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
900 struct css_set *cset;
901 struct list_head tmp_links;
902 struct cgrp_cset_link *link;
903 struct cgroup_subsys *ss;
904 unsigned long key;
905 int ssid;
906
907 lockdep_assert_held(&cgroup_mutex);
908
909 /* First see if we already have a cgroup group that matches
910 * the desired set */
911 down_read(&css_set_rwsem);
912 cset = find_existing_css_set(old_cset, cgrp, template);
913 if (cset)
914 get_css_set(cset);
915 up_read(&css_set_rwsem);
916
917 if (cset)
918 return cset;
919
920 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
921 if (!cset)
922 return NULL;
923
924 /* Allocate all the cgrp_cset_link objects that we'll need */
925 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
926 kfree(cset);
927 return NULL;
928 }
929
930 atomic_set(&cset->refcount, 1);
931 INIT_LIST_HEAD(&cset->cgrp_links);
932 INIT_LIST_HEAD(&cset->tasks);
933 INIT_LIST_HEAD(&cset->mg_tasks);
934 INIT_LIST_HEAD(&cset->mg_preload_node);
935 INIT_LIST_HEAD(&cset->mg_node);
936 INIT_HLIST_NODE(&cset->hlist);
937
938 /* Copy the set of subsystem state objects generated in
939 * find_existing_css_set() */
940 memcpy(cset->subsys, template, sizeof(cset->subsys));
941
942 down_write(&css_set_rwsem);
943 /* Add reference counts and links from the new css_set. */
944 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
945 struct cgroup *c = link->cgrp;
946
947 if (c->root == cgrp->root)
948 c = cgrp;
949 link_css_set(&tmp_links, cset, c);
950 }
951
952 BUG_ON(!list_empty(&tmp_links));
953
954 css_set_count++;
955
956 /* Add @cset to the hash table */
957 key = css_set_hash(cset->subsys);
958 hash_add(css_set_table, &cset->hlist, key);
959
960 for_each_subsys(ss, ssid)
961 list_add_tail(&cset->e_cset_node[ssid],
962 &cset->subsys[ssid]->cgroup->e_csets[ssid]);
963
964 up_write(&css_set_rwsem);
965
966 return cset;
967 }
968
969 static struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
970 {
971 struct cgroup *root_cgrp = kf_root->kn->priv;
972
973 return root_cgrp->root;
974 }
975
976 static int cgroup_init_root_id(struct cgroup_root *root)
977 {
978 int id;
979
980 lockdep_assert_held(&cgroup_mutex);
981
982 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
983 if (id < 0)
984 return id;
985
986 root->hierarchy_id = id;
987 return 0;
988 }
989
990 static void cgroup_exit_root_id(struct cgroup_root *root)
991 {
992 lockdep_assert_held(&cgroup_mutex);
993
994 if (root->hierarchy_id) {
995 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
996 root->hierarchy_id = 0;
997 }
998 }
999
1000 static void cgroup_free_root(struct cgroup_root *root)
1001 {
1002 if (root) {
1003 /* hierarchy ID should already have been released */
1004 WARN_ON_ONCE(root->hierarchy_id);
1005
1006 idr_destroy(&root->cgroup_idr);
1007 kfree(root);
1008 }
1009 }
1010
1011 static void cgroup_destroy_root(struct cgroup_root *root)
1012 {
1013 struct cgroup *cgrp = &root->cgrp;
1014 struct cgrp_cset_link *link, *tmp_link;
1015
1016 mutex_lock(&cgroup_mutex);
1017
1018 BUG_ON(atomic_read(&root->nr_cgrps));
1019 BUG_ON(!list_empty(&cgrp->self.children));
1020
1021 /* Rebind all subsystems back to the default hierarchy */
1022 rebind_subsystems(&cgrp_dfl_root, root->subsys_mask);
1023
1024 /*
1025 * Release all the links from cset_links to this hierarchy's
1026 * root cgroup
1027 */
1028 down_write(&css_set_rwsem);
1029
1030 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1031 list_del(&link->cset_link);
1032 list_del(&link->cgrp_link);
1033 kfree(link);
1034 }
1035 up_write(&css_set_rwsem);
1036
1037 if (!list_empty(&root->root_list)) {
1038 list_del(&root->root_list);
1039 cgroup_root_count--;
1040 }
1041
1042 cgroup_exit_root_id(root);
1043
1044 mutex_unlock(&cgroup_mutex);
1045
1046 kernfs_destroy_root(root->kf_root);
1047 cgroup_free_root(root);
1048 }
1049
1050 /* look up cgroup associated with given css_set on the specified hierarchy */
1051 static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1052 struct cgroup_root *root)
1053 {
1054 struct cgroup *res = NULL;
1055
1056 lockdep_assert_held(&cgroup_mutex);
1057 lockdep_assert_held(&css_set_rwsem);
1058
1059 if (cset == &init_css_set) {
1060 res = &root->cgrp;
1061 } else {
1062 struct cgrp_cset_link *link;
1063
1064 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1065 struct cgroup *c = link->cgrp;
1066
1067 if (c->root == root) {
1068 res = c;
1069 break;
1070 }
1071 }
1072 }
1073
1074 BUG_ON(!res);
1075 return res;
1076 }
1077
1078 /*
1079 * Return the cgroup for "task" from the given hierarchy. Must be
1080 * called with cgroup_mutex and css_set_rwsem held.
1081 */
1082 static struct cgroup *task_cgroup_from_root(struct task_struct *task,
1083 struct cgroup_root *root)
1084 {
1085 /*
1086 * No need to lock the task - since we hold cgroup_mutex the
1087 * task can't change groups, so the only thing that can happen
1088 * is that it exits and its css is set back to init_css_set.
1089 */
1090 return cset_cgroup_from_root(task_css_set(task), root);
1091 }
1092
1093 /*
1094 * A task must hold cgroup_mutex to modify cgroups.
1095 *
1096 * Any task can increment and decrement the count field without lock.
1097 * So in general, code holding cgroup_mutex can't rely on the count
1098 * field not changing. However, if the count goes to zero, then only
1099 * cgroup_attach_task() can increment it again. Because a count of zero
1100 * means that no tasks are currently attached, therefore there is no
1101 * way a task attached to that cgroup can fork (the other way to
1102 * increment the count). So code holding cgroup_mutex can safely
1103 * assume that if the count is zero, it will stay zero. Similarly, if
1104 * a task holds cgroup_mutex on a cgroup with zero count, it
1105 * knows that the cgroup won't be removed, as cgroup_rmdir()
1106 * needs that mutex.
1107 *
1108 * A cgroup can only be deleted if both its 'count' of using tasks
1109 * is zero, and its list of 'children' cgroups is empty. Since all
1110 * tasks in the system use _some_ cgroup, and since there is always at
1111 * least one task in the system (init, pid == 1), therefore, root cgroup
1112 * always has either children cgroups and/or using tasks. So we don't
1113 * need a special hack to ensure that root cgroup cannot be deleted.
1114 *
1115 * P.S. One more locking exception. RCU is used to guard the
1116 * update of a tasks cgroup pointer by cgroup_attach_task()
1117 */
1118
1119 static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1120 static const struct file_operations proc_cgroupstats_operations;
1121
1122 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1123 char *buf)
1124 {
1125 struct cgroup_subsys *ss = cft->ss;
1126
1127 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1128 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
1129 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
1130 cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1131 cft->name);
1132 else
1133 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1134 return buf;
1135 }
1136
1137 /**
1138 * cgroup_file_mode - deduce file mode of a control file
1139 * @cft: the control file in question
1140 *
1141 * S_IRUGO for read, S_IWUSR for write.
1142 */
1143 static umode_t cgroup_file_mode(const struct cftype *cft)
1144 {
1145 umode_t mode = 0;
1146
1147 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1148 mode |= S_IRUGO;
1149
1150 if (cft->write_u64 || cft->write_s64 || cft->write) {
1151 if (cft->flags & CFTYPE_WORLD_WRITABLE)
1152 mode |= S_IWUGO;
1153 else
1154 mode |= S_IWUSR;
1155 }
1156
1157 return mode;
1158 }
1159
1160 static void cgroup_get(struct cgroup *cgrp)
1161 {
1162 WARN_ON_ONCE(cgroup_is_dead(cgrp));
1163 css_get(&cgrp->self);
1164 }
1165
1166 static bool cgroup_tryget(struct cgroup *cgrp)
1167 {
1168 return css_tryget(&cgrp->self);
1169 }
1170
1171 static void cgroup_put(struct cgroup *cgrp)
1172 {
1173 css_put(&cgrp->self);
1174 }
1175
1176 /**
1177 * cgroup_calc_child_subsys_mask - calculate child_subsys_mask
1178 * @cgrp: the target cgroup
1179 * @subtree_control: the new subtree_control mask to consider
1180 *
1181 * On the default hierarchy, a subsystem may request other subsystems to be
1182 * enabled together through its ->depends_on mask. In such cases, more
1183 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1184 *
1185 * This function calculates which subsystems need to be enabled if
1186 * @subtree_control is to be applied to @cgrp. The returned mask is always
1187 * a superset of @subtree_control and follows the usual hierarchy rules.
1188 */
1189 static unsigned long cgroup_calc_child_subsys_mask(struct cgroup *cgrp,
1190 unsigned long subtree_control)
1191 {
1192 struct cgroup *parent = cgroup_parent(cgrp);
1193 unsigned long cur_ss_mask = subtree_control;
1194 struct cgroup_subsys *ss;
1195 int ssid;
1196
1197 lockdep_assert_held(&cgroup_mutex);
1198
1199 if (!cgroup_on_dfl(cgrp))
1200 return cur_ss_mask;
1201
1202 while (true) {
1203 unsigned long new_ss_mask = cur_ss_mask;
1204
1205 for_each_subsys_which(ss, ssid, &cur_ss_mask)
1206 new_ss_mask |= ss->depends_on;
1207
1208 /*
1209 * Mask out subsystems which aren't available. This can
1210 * happen only if some depended-upon subsystems were bound
1211 * to non-default hierarchies.
1212 */
1213 if (parent)
1214 new_ss_mask &= parent->child_subsys_mask;
1215 else
1216 new_ss_mask &= cgrp->root->subsys_mask;
1217
1218 if (new_ss_mask == cur_ss_mask)
1219 break;
1220 cur_ss_mask = new_ss_mask;
1221 }
1222
1223 return cur_ss_mask;
1224 }
1225
1226 /**
1227 * cgroup_refresh_child_subsys_mask - update child_subsys_mask
1228 * @cgrp: the target cgroup
1229 *
1230 * Update @cgrp->child_subsys_mask according to the current
1231 * @cgrp->subtree_control using cgroup_calc_child_subsys_mask().
1232 */
1233 static void cgroup_refresh_child_subsys_mask(struct cgroup *cgrp)
1234 {
1235 cgrp->child_subsys_mask =
1236 cgroup_calc_child_subsys_mask(cgrp, cgrp->subtree_control);
1237 }
1238
1239 /**
1240 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1241 * @kn: the kernfs_node being serviced
1242 *
1243 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1244 * the method finishes if locking succeeded. Note that once this function
1245 * returns the cgroup returned by cgroup_kn_lock_live() may become
1246 * inaccessible any time. If the caller intends to continue to access the
1247 * cgroup, it should pin it before invoking this function.
1248 */
1249 static void cgroup_kn_unlock(struct kernfs_node *kn)
1250 {
1251 struct cgroup *cgrp;
1252
1253 if (kernfs_type(kn) == KERNFS_DIR)
1254 cgrp = kn->priv;
1255 else
1256 cgrp = kn->parent->priv;
1257
1258 mutex_unlock(&cgroup_mutex);
1259
1260 kernfs_unbreak_active_protection(kn);
1261 cgroup_put(cgrp);
1262 }
1263
1264 /**
1265 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1266 * @kn: the kernfs_node being serviced
1267 *
1268 * This helper is to be used by a cgroup kernfs method currently servicing
1269 * @kn. It breaks the active protection, performs cgroup locking and
1270 * verifies that the associated cgroup is alive. Returns the cgroup if
1271 * alive; otherwise, %NULL. A successful return should be undone by a
1272 * matching cgroup_kn_unlock() invocation.
1273 *
1274 * Any cgroup kernfs method implementation which requires locking the
1275 * associated cgroup should use this helper. It avoids nesting cgroup
1276 * locking under kernfs active protection and allows all kernfs operations
1277 * including self-removal.
1278 */
1279 static struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn)
1280 {
1281 struct cgroup *cgrp;
1282
1283 if (kernfs_type(kn) == KERNFS_DIR)
1284 cgrp = kn->priv;
1285 else
1286 cgrp = kn->parent->priv;
1287
1288 /*
1289 * We're gonna grab cgroup_mutex which nests outside kernfs
1290 * active_ref. cgroup liveliness check alone provides enough
1291 * protection against removal. Ensure @cgrp stays accessible and
1292 * break the active_ref protection.
1293 */
1294 if (!cgroup_tryget(cgrp))
1295 return NULL;
1296 kernfs_break_active_protection(kn);
1297
1298 mutex_lock(&cgroup_mutex);
1299
1300 if (!cgroup_is_dead(cgrp))
1301 return cgrp;
1302
1303 cgroup_kn_unlock(kn);
1304 return NULL;
1305 }
1306
1307 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1308 {
1309 char name[CGROUP_FILE_NAME_MAX];
1310
1311 lockdep_assert_held(&cgroup_mutex);
1312 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1313 }
1314
1315 /**
1316 * cgroup_clear_dir - remove subsys files in a cgroup directory
1317 * @cgrp: target cgroup
1318 * @subsys_mask: mask of the subsystem ids whose files should be removed
1319 */
1320 static void cgroup_clear_dir(struct cgroup *cgrp, unsigned long subsys_mask)
1321 {
1322 struct cgroup_subsys *ss;
1323 int i;
1324
1325 for_each_subsys(ss, i) {
1326 struct cftype *cfts;
1327
1328 if (!(subsys_mask & (1 << i)))
1329 continue;
1330 list_for_each_entry(cfts, &ss->cfts, node)
1331 cgroup_addrm_files(cgrp, cfts, false);
1332 }
1333 }
1334
1335 /**
1336 * cgroup_populate_dir - create subsys files in a cgroup directory
1337 * @cgrp: target cgroup
1338 * @subsys_mask: mask of the subsystem ids whose files should be added
1339 *
1340 * On failure, no file is added.
1341 */
1342 static int cgroup_populate_dir(struct cgroup *cgrp, unsigned long subsys_mask)
1343 {
1344 struct cgroup_subsys *ss;
1345 int i, ret = 0;
1346
1347 /* process cftsets of each subsystem */
1348 for_each_subsys(ss, i) {
1349 struct cftype *cfts;
1350
1351 if (!(subsys_mask & (1 << i)))
1352 continue;
1353
1354 list_for_each_entry(cfts, &ss->cfts, node) {
1355 ret = cgroup_addrm_files(cgrp, cfts, true);
1356 if (ret < 0)
1357 goto err;
1358 }
1359 }
1360 return 0;
1361 err:
1362 cgroup_clear_dir(cgrp, subsys_mask);
1363 return ret;
1364 }
1365
1366 static int rebind_subsystems(struct cgroup_root *dst_root,
1367 unsigned long ss_mask)
1368 {
1369 struct cgroup_subsys *ss;
1370 unsigned long tmp_ss_mask;
1371 int ssid, i, ret;
1372
1373 lockdep_assert_held(&cgroup_mutex);
1374
1375 for_each_subsys_which(ss, ssid, &ss_mask) {
1376 /* if @ss has non-root csses attached to it, can't move */
1377 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)))
1378 return -EBUSY;
1379
1380 /* can't move between two non-dummy roots either */
1381 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1382 return -EBUSY;
1383 }
1384
1385 /* skip creating root files on dfl_root for inhibited subsystems */
1386 tmp_ss_mask = ss_mask;
1387 if (dst_root == &cgrp_dfl_root)
1388 tmp_ss_mask &= ~cgrp_dfl_root_inhibit_ss_mask;
1389
1390 ret = cgroup_populate_dir(&dst_root->cgrp, tmp_ss_mask);
1391 if (ret) {
1392 if (dst_root != &cgrp_dfl_root)
1393 return ret;
1394
1395 /*
1396 * Rebinding back to the default root is not allowed to
1397 * fail. Using both default and non-default roots should
1398 * be rare. Moving subsystems back and forth even more so.
1399 * Just warn about it and continue.
1400 */
1401 if (cgrp_dfl_root_visible) {
1402 pr_warn("failed to create files (%d) while rebinding 0x%lx to default root\n",
1403 ret, ss_mask);
1404 pr_warn("you may retry by moving them to a different hierarchy and unbinding\n");
1405 }
1406 }
1407
1408 /*
1409 * Nothing can fail from this point on. Remove files for the
1410 * removed subsystems and rebind each subsystem.
1411 */
1412 for_each_subsys_which(ss, ssid, &ss_mask)
1413 cgroup_clear_dir(&ss->root->cgrp, 1 << ssid);
1414
1415 for_each_subsys_which(ss, ssid, &ss_mask) {
1416 struct cgroup_root *src_root;
1417 struct cgroup_subsys_state *css;
1418 struct css_set *cset;
1419
1420 src_root = ss->root;
1421 css = cgroup_css(&src_root->cgrp, ss);
1422
1423 WARN_ON(!css || cgroup_css(&dst_root->cgrp, ss));
1424
1425 RCU_INIT_POINTER(src_root->cgrp.subsys[ssid], NULL);
1426 rcu_assign_pointer(dst_root->cgrp.subsys[ssid], css);
1427 ss->root = dst_root;
1428 css->cgroup = &dst_root->cgrp;
1429
1430 down_write(&css_set_rwsem);
1431 hash_for_each(css_set_table, i, cset, hlist)
1432 list_move_tail(&cset->e_cset_node[ss->id],
1433 &dst_root->cgrp.e_csets[ss->id]);
1434 up_write(&css_set_rwsem);
1435
1436 src_root->subsys_mask &= ~(1 << ssid);
1437 src_root->cgrp.subtree_control &= ~(1 << ssid);
1438 cgroup_refresh_child_subsys_mask(&src_root->cgrp);
1439
1440 /* default hierarchy doesn't enable controllers by default */
1441 dst_root->subsys_mask |= 1 << ssid;
1442 if (dst_root == &cgrp_dfl_root) {
1443 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1444 } else {
1445 dst_root->cgrp.subtree_control |= 1 << ssid;
1446 cgroup_refresh_child_subsys_mask(&dst_root->cgrp);
1447 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1448 }
1449
1450 if (ss->bind)
1451 ss->bind(css);
1452 }
1453
1454 kernfs_activate(dst_root->cgrp.kn);
1455 return 0;
1456 }
1457
1458 static int cgroup_show_options(struct seq_file *seq,
1459 struct kernfs_root *kf_root)
1460 {
1461 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1462 struct cgroup_subsys *ss;
1463 int ssid;
1464
1465 if (root != &cgrp_dfl_root)
1466 for_each_subsys(ss, ssid)
1467 if (root->subsys_mask & (1 << ssid))
1468 seq_show_option(seq, ss->legacy_name, NULL);
1469 if (root->flags & CGRP_ROOT_NOPREFIX)
1470 seq_puts(seq, ",noprefix");
1471 if (root->flags & CGRP_ROOT_XATTR)
1472 seq_puts(seq, ",xattr");
1473
1474 spin_lock(&release_agent_path_lock);
1475 if (strlen(root->release_agent_path))
1476 seq_show_option(seq, "release_agent",
1477 root->release_agent_path);
1478 spin_unlock(&release_agent_path_lock);
1479
1480 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
1481 seq_puts(seq, ",clone_children");
1482 if (strlen(root->name))
1483 seq_show_option(seq, "name", root->name);
1484 return 0;
1485 }
1486
1487 struct cgroup_sb_opts {
1488 unsigned long subsys_mask;
1489 unsigned int flags;
1490 char *release_agent;
1491 bool cpuset_clone_children;
1492 char *name;
1493 /* User explicitly requested empty subsystem */
1494 bool none;
1495 };
1496
1497 static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
1498 {
1499 char *token, *o = data;
1500 bool all_ss = false, one_ss = false;
1501 unsigned long mask = -1UL;
1502 struct cgroup_subsys *ss;
1503 int nr_opts = 0;
1504 int i;
1505
1506 #ifdef CONFIG_CPUSETS
1507 mask = ~(1U << cpuset_cgrp_id);
1508 #endif
1509
1510 memset(opts, 0, sizeof(*opts));
1511
1512 while ((token = strsep(&o, ",")) != NULL) {
1513 nr_opts++;
1514
1515 if (!*token)
1516 return -EINVAL;
1517 if (!strcmp(token, "none")) {
1518 /* Explicitly have no subsystems */
1519 opts->none = true;
1520 continue;
1521 }
1522 if (!strcmp(token, "all")) {
1523 /* Mutually exclusive option 'all' + subsystem name */
1524 if (one_ss)
1525 return -EINVAL;
1526 all_ss = true;
1527 continue;
1528 }
1529 if (!strcmp(token, "__DEVEL__sane_behavior")) {
1530 opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
1531 continue;
1532 }
1533 if (!strcmp(token, "noprefix")) {
1534 opts->flags |= CGRP_ROOT_NOPREFIX;
1535 continue;
1536 }
1537 if (!strcmp(token, "clone_children")) {
1538 opts->cpuset_clone_children = true;
1539 continue;
1540 }
1541 if (!strcmp(token, "xattr")) {
1542 opts->flags |= CGRP_ROOT_XATTR;
1543 continue;
1544 }
1545 if (!strncmp(token, "release_agent=", 14)) {
1546 /* Specifying two release agents is forbidden */
1547 if (opts->release_agent)
1548 return -EINVAL;
1549 opts->release_agent =
1550 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
1551 if (!opts->release_agent)
1552 return -ENOMEM;
1553 continue;
1554 }
1555 if (!strncmp(token, "name=", 5)) {
1556 const char *name = token + 5;
1557 /* Can't specify an empty name */
1558 if (!strlen(name))
1559 return -EINVAL;
1560 /* Must match [\w.-]+ */
1561 for (i = 0; i < strlen(name); i++) {
1562 char c = name[i];
1563 if (isalnum(c))
1564 continue;
1565 if ((c == '.') || (c == '-') || (c == '_'))
1566 continue;
1567 return -EINVAL;
1568 }
1569 /* Specifying two names is forbidden */
1570 if (opts->name)
1571 return -EINVAL;
1572 opts->name = kstrndup(name,
1573 MAX_CGROUP_ROOT_NAMELEN - 1,
1574 GFP_KERNEL);
1575 if (!opts->name)
1576 return -ENOMEM;
1577
1578 continue;
1579 }
1580
1581 for_each_subsys(ss, i) {
1582 if (strcmp(token, ss->legacy_name))
1583 continue;
1584 if (!cgroup_ssid_enabled(i))
1585 continue;
1586
1587 /* Mutually exclusive option 'all' + subsystem name */
1588 if (all_ss)
1589 return -EINVAL;
1590 opts->subsys_mask |= (1 << i);
1591 one_ss = true;
1592
1593 break;
1594 }
1595 if (i == CGROUP_SUBSYS_COUNT)
1596 return -ENOENT;
1597 }
1598
1599 if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1600 pr_warn("sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
1601 if (nr_opts != 1) {
1602 pr_err("sane_behavior: no other mount options allowed\n");
1603 return -EINVAL;
1604 }
1605 return 0;
1606 }
1607
1608 /*
1609 * If the 'all' option was specified select all the subsystems,
1610 * otherwise if 'none', 'name=' and a subsystem name options were
1611 * not specified, let's default to 'all'
1612 */
1613 if (all_ss || (!one_ss && !opts->none && !opts->name))
1614 for_each_subsys(ss, i)
1615 if (cgroup_ssid_enabled(i))
1616 opts->subsys_mask |= (1 << i);
1617
1618 /*
1619 * We either have to specify by name or by subsystems. (So all
1620 * empty hierarchies must have a name).
1621 */
1622 if (!opts->subsys_mask && !opts->name)
1623 return -EINVAL;
1624
1625 /*
1626 * Option noprefix was introduced just for backward compatibility
1627 * with the old cpuset, so we allow noprefix only if mounting just
1628 * the cpuset subsystem.
1629 */
1630 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
1631 return -EINVAL;
1632
1633 /* Can't specify "none" and some subsystems */
1634 if (opts->subsys_mask && opts->none)
1635 return -EINVAL;
1636
1637 return 0;
1638 }
1639
1640 static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
1641 {
1642 int ret = 0;
1643 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1644 struct cgroup_sb_opts opts;
1645 unsigned long added_mask, removed_mask;
1646
1647 if (root == &cgrp_dfl_root) {
1648 pr_err("remount is not allowed\n");
1649 return -EINVAL;
1650 }
1651
1652 mutex_lock(&cgroup_mutex);
1653
1654 /* See what subsystems are wanted */
1655 ret = parse_cgroupfs_options(data, &opts);
1656 if (ret)
1657 goto out_unlock;
1658
1659 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
1660 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
1661 task_tgid_nr(current), current->comm);
1662
1663 added_mask = opts.subsys_mask & ~root->subsys_mask;
1664 removed_mask = root->subsys_mask & ~opts.subsys_mask;
1665
1666 /* Don't allow flags or name to change at remount */
1667 if ((opts.flags ^ root->flags) ||
1668 (opts.name && strcmp(opts.name, root->name))) {
1669 pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n",
1670 opts.flags, opts.name ?: "", root->flags, root->name);
1671 ret = -EINVAL;
1672 goto out_unlock;
1673 }
1674
1675 /* remounting is not allowed for populated hierarchies */
1676 if (!list_empty(&root->cgrp.self.children)) {
1677 ret = -EBUSY;
1678 goto out_unlock;
1679 }
1680
1681 ret = rebind_subsystems(root, added_mask);
1682 if (ret)
1683 goto out_unlock;
1684
1685 rebind_subsystems(&cgrp_dfl_root, removed_mask);
1686
1687 if (opts.release_agent) {
1688 spin_lock(&release_agent_path_lock);
1689 strcpy(root->release_agent_path, opts.release_agent);
1690 spin_unlock(&release_agent_path_lock);
1691 }
1692 out_unlock:
1693 kfree(opts.release_agent);
1694 kfree(opts.name);
1695 mutex_unlock(&cgroup_mutex);
1696 return ret;
1697 }
1698
1699 /*
1700 * To reduce the fork() overhead for systems that are not actually using
1701 * their cgroups capability, we don't maintain the lists running through
1702 * each css_set to its tasks until we see the list actually used - in other
1703 * words after the first mount.
1704 */
1705 static bool use_task_css_set_links __read_mostly;
1706
1707 static void cgroup_enable_task_cg_lists(void)
1708 {
1709 struct task_struct *p, *g;
1710
1711 down_write(&css_set_rwsem);
1712
1713 if (use_task_css_set_links)
1714 goto out_unlock;
1715
1716 use_task_css_set_links = true;
1717
1718 /*
1719 * We need tasklist_lock because RCU is not safe against
1720 * while_each_thread(). Besides, a forking task that has passed
1721 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1722 * is not guaranteed to have its child immediately visible in the
1723 * tasklist if we walk through it with RCU.
1724 */
1725 read_lock(&tasklist_lock);
1726 do_each_thread(g, p) {
1727 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1728 task_css_set(p) != &init_css_set);
1729
1730 /*
1731 * We should check if the process is exiting, otherwise
1732 * it will race with cgroup_exit() in that the list
1733 * entry won't be deleted though the process has exited.
1734 * Do it while holding siglock so that we don't end up
1735 * racing against cgroup_exit().
1736 */
1737 spin_lock_irq(&p->sighand->siglock);
1738 if (!(p->flags & PF_EXITING)) {
1739 struct css_set *cset = task_css_set(p);
1740
1741 list_add(&p->cg_list, &cset->tasks);
1742 get_css_set(cset);
1743 }
1744 spin_unlock_irq(&p->sighand->siglock);
1745 } while_each_thread(g, p);
1746 read_unlock(&tasklist_lock);
1747 out_unlock:
1748 up_write(&css_set_rwsem);
1749 }
1750
1751 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1752 {
1753 struct cgroup_subsys *ss;
1754 int ssid;
1755
1756 INIT_LIST_HEAD(&cgrp->self.sibling);
1757 INIT_LIST_HEAD(&cgrp->self.children);
1758 INIT_LIST_HEAD(&cgrp->cset_links);
1759 INIT_LIST_HEAD(&cgrp->pidlists);
1760 mutex_init(&cgrp->pidlist_mutex);
1761 cgrp->self.cgroup = cgrp;
1762 cgrp->self.flags |= CSS_ONLINE;
1763
1764 for_each_subsys(ss, ssid)
1765 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
1766
1767 init_waitqueue_head(&cgrp->offline_waitq);
1768 INIT_WORK(&cgrp->release_agent_work, cgroup_release_agent);
1769 }
1770
1771 static void init_cgroup_root(struct cgroup_root *root,
1772 struct cgroup_sb_opts *opts)
1773 {
1774 struct cgroup *cgrp = &root->cgrp;
1775
1776 INIT_LIST_HEAD(&root->root_list);
1777 atomic_set(&root->nr_cgrps, 1);
1778 cgrp->root = root;
1779 init_cgroup_housekeeping(cgrp);
1780 idr_init(&root->cgroup_idr);
1781
1782 root->flags = opts->flags;
1783 if (opts->release_agent)
1784 strcpy(root->release_agent_path, opts->release_agent);
1785 if (opts->name)
1786 strcpy(root->name, opts->name);
1787 if (opts->cpuset_clone_children)
1788 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
1789 }
1790
1791 static int cgroup_setup_root(struct cgroup_root *root, unsigned long ss_mask)
1792 {
1793 LIST_HEAD(tmp_links);
1794 struct cgroup *root_cgrp = &root->cgrp;
1795 struct cftype *base_files;
1796 struct css_set *cset;
1797 int i, ret;
1798
1799 lockdep_assert_held(&cgroup_mutex);
1800
1801 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL);
1802 if (ret < 0)
1803 goto out;
1804 root_cgrp->id = ret;
1805
1806 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 0,
1807 GFP_KERNEL);
1808 if (ret)
1809 goto out;
1810
1811 /*
1812 * We're accessing css_set_count without locking css_set_rwsem here,
1813 * but that's OK - it can only be increased by someone holding
1814 * cgroup_lock, and that's us. The worst that can happen is that we
1815 * have some link structures left over
1816 */
1817 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
1818 if (ret)
1819 goto cancel_ref;
1820
1821 ret = cgroup_init_root_id(root);
1822 if (ret)
1823 goto cancel_ref;
1824
1825 root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops,
1826 KERNFS_ROOT_CREATE_DEACTIVATED,
1827 root_cgrp);
1828 if (IS_ERR(root->kf_root)) {
1829 ret = PTR_ERR(root->kf_root);
1830 goto exit_root_id;
1831 }
1832 root_cgrp->kn = root->kf_root->kn;
1833
1834 if (root == &cgrp_dfl_root)
1835 base_files = cgroup_dfl_base_files;
1836 else
1837 base_files = cgroup_legacy_base_files;
1838
1839 ret = cgroup_addrm_files(root_cgrp, base_files, true);
1840 if (ret)
1841 goto destroy_root;
1842
1843 ret = rebind_subsystems(root, ss_mask);
1844 if (ret)
1845 goto destroy_root;
1846
1847 /*
1848 * There must be no failure case after here, since rebinding takes
1849 * care of subsystems' refcounts, which are explicitly dropped in
1850 * the failure exit path.
1851 */
1852 list_add(&root->root_list, &cgroup_roots);
1853 cgroup_root_count++;
1854
1855 /*
1856 * Link the root cgroup in this hierarchy into all the css_set
1857 * objects.
1858 */
1859 down_write(&css_set_rwsem);
1860 hash_for_each(css_set_table, i, cset, hlist)
1861 link_css_set(&tmp_links, cset, root_cgrp);
1862 up_write(&css_set_rwsem);
1863
1864 BUG_ON(!list_empty(&root_cgrp->self.children));
1865 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
1866
1867 kernfs_activate(root_cgrp->kn);
1868 ret = 0;
1869 goto out;
1870
1871 destroy_root:
1872 kernfs_destroy_root(root->kf_root);
1873 root->kf_root = NULL;
1874 exit_root_id:
1875 cgroup_exit_root_id(root);
1876 cancel_ref:
1877 percpu_ref_exit(&root_cgrp->self.refcnt);
1878 out:
1879 free_cgrp_cset_links(&tmp_links);
1880 return ret;
1881 }
1882
1883 static struct dentry *cgroup_mount(struct file_system_type *fs_type,
1884 int flags, const char *unused_dev_name,
1885 void *data)
1886 {
1887 struct super_block *pinned_sb = NULL;
1888 struct cgroup_subsys *ss;
1889 struct cgroup_root *root;
1890 struct cgroup_sb_opts opts;
1891 struct dentry *dentry;
1892 int ret;
1893 int i;
1894 bool new_sb;
1895
1896 /*
1897 * The first time anyone tries to mount a cgroup, enable the list
1898 * linking each css_set to its tasks and fix up all existing tasks.
1899 */
1900 if (!use_task_css_set_links)
1901 cgroup_enable_task_cg_lists();
1902
1903 mutex_lock(&cgroup_mutex);
1904
1905 /* First find the desired set of subsystems */
1906 ret = parse_cgroupfs_options(data, &opts);
1907 if (ret)
1908 goto out_unlock;
1909
1910 /* look for a matching existing root */
1911 if (opts.flags & CGRP_ROOT_SANE_BEHAVIOR) {
1912 cgrp_dfl_root_visible = true;
1913 root = &cgrp_dfl_root;
1914 cgroup_get(&root->cgrp);
1915 ret = 0;
1916 goto out_unlock;
1917 }
1918
1919 /*
1920 * Destruction of cgroup root is asynchronous, so subsystems may
1921 * still be dying after the previous unmount. Let's drain the
1922 * dying subsystems. We just need to ensure that the ones
1923 * unmounted previously finish dying and don't care about new ones
1924 * starting. Testing ref liveliness is good enough.
1925 */
1926 for_each_subsys(ss, i) {
1927 if (!(opts.subsys_mask & (1 << i)) ||
1928 ss->root == &cgrp_dfl_root)
1929 continue;
1930
1931 if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) {
1932 mutex_unlock(&cgroup_mutex);
1933 msleep(10);
1934 ret = restart_syscall();
1935 goto out_free;
1936 }
1937 cgroup_put(&ss->root->cgrp);
1938 }
1939
1940 for_each_root(root) {
1941 bool name_match = false;
1942
1943 if (root == &cgrp_dfl_root)
1944 continue;
1945
1946 /*
1947 * If we asked for a name then it must match. Also, if
1948 * name matches but sybsys_mask doesn't, we should fail.
1949 * Remember whether name matched.
1950 */
1951 if (opts.name) {
1952 if (strcmp(opts.name, root->name))
1953 continue;
1954 name_match = true;
1955 }
1956
1957 /*
1958 * If we asked for subsystems (or explicitly for no
1959 * subsystems) then they must match.
1960 */
1961 if ((opts.subsys_mask || opts.none) &&
1962 (opts.subsys_mask != root->subsys_mask)) {
1963 if (!name_match)
1964 continue;
1965 ret = -EBUSY;
1966 goto out_unlock;
1967 }
1968
1969 if (root->flags ^ opts.flags)
1970 pr_warn("new mount options do not match the existing superblock, will be ignored\n");
1971
1972 /*
1973 * We want to reuse @root whose lifetime is governed by its
1974 * ->cgrp. Let's check whether @root is alive and keep it
1975 * that way. As cgroup_kill_sb() can happen anytime, we
1976 * want to block it by pinning the sb so that @root doesn't
1977 * get killed before mount is complete.
1978 *
1979 * With the sb pinned, tryget_live can reliably indicate
1980 * whether @root can be reused. If it's being killed,
1981 * drain it. We can use wait_queue for the wait but this
1982 * path is super cold. Let's just sleep a bit and retry.
1983 */
1984 pinned_sb = kernfs_pin_sb(root->kf_root, NULL);
1985 if (IS_ERR(pinned_sb) ||
1986 !percpu_ref_tryget_live(&root->cgrp.self.refcnt)) {
1987 mutex_unlock(&cgroup_mutex);
1988 if (!IS_ERR_OR_NULL(pinned_sb))
1989 deactivate_super(pinned_sb);
1990 msleep(10);
1991 ret = restart_syscall();
1992 goto out_free;
1993 }
1994
1995 ret = 0;
1996 goto out_unlock;
1997 }
1998
1999 /*
2000 * No such thing, create a new one. name= matching without subsys
2001 * specification is allowed for already existing hierarchies but we
2002 * can't create new one without subsys specification.
2003 */
2004 if (!opts.subsys_mask && !opts.none) {
2005 ret = -EINVAL;
2006 goto out_unlock;
2007 }
2008
2009 root = kzalloc(sizeof(*root), GFP_KERNEL);
2010 if (!root) {
2011 ret = -ENOMEM;
2012 goto out_unlock;
2013 }
2014
2015 init_cgroup_root(root, &opts);
2016
2017 ret = cgroup_setup_root(root, opts.subsys_mask);
2018 if (ret)
2019 cgroup_free_root(root);
2020
2021 out_unlock:
2022 mutex_unlock(&cgroup_mutex);
2023 out_free:
2024 kfree(opts.release_agent);
2025 kfree(opts.name);
2026
2027 if (ret)
2028 return ERR_PTR(ret);
2029
2030 dentry = kernfs_mount(fs_type, flags, root->kf_root,
2031 CGROUP_SUPER_MAGIC, &new_sb);
2032 if (IS_ERR(dentry) || !new_sb)
2033 cgroup_put(&root->cgrp);
2034
2035 /*
2036 * If @pinned_sb, we're reusing an existing root and holding an
2037 * extra ref on its sb. Mount is complete. Put the extra ref.
2038 */
2039 if (pinned_sb) {
2040 WARN_ON(new_sb);
2041 deactivate_super(pinned_sb);
2042 }
2043
2044 return dentry;
2045 }
2046
2047 static void cgroup_kill_sb(struct super_block *sb)
2048 {
2049 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2050 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2051
2052 /*
2053 * If @root doesn't have any mounts or children, start killing it.
2054 * This prevents new mounts by disabling percpu_ref_tryget_live().
2055 * cgroup_mount() may wait for @root's release.
2056 *
2057 * And don't kill the default root.
2058 */
2059 if (!list_empty(&root->cgrp.self.children) ||
2060 root == &cgrp_dfl_root)
2061 cgroup_put(&root->cgrp);
2062 else
2063 percpu_ref_kill(&root->cgrp.self.refcnt);
2064
2065 kernfs_kill_sb(sb);
2066 }
2067
2068 static struct file_system_type cgroup_fs_type = {
2069 .name = "cgroup",
2070 .mount = cgroup_mount,
2071 .kill_sb = cgroup_kill_sb,
2072 };
2073
2074 /**
2075 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
2076 * @task: target task
2077 * @buf: the buffer to write the path into
2078 * @buflen: the length of the buffer
2079 *
2080 * Determine @task's cgroup on the first (the one with the lowest non-zero
2081 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
2082 * function grabs cgroup_mutex and shouldn't be used inside locks used by
2083 * cgroup controller callbacks.
2084 *
2085 * Return value is the same as kernfs_path().
2086 */
2087 char *task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
2088 {
2089 struct cgroup_root *root;
2090 struct cgroup *cgrp;
2091 int hierarchy_id = 1;
2092 char *path = NULL;
2093
2094 mutex_lock(&cgroup_mutex);
2095 down_read(&css_set_rwsem);
2096
2097 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2098
2099 if (root) {
2100 cgrp = task_cgroup_from_root(task, root);
2101 path = cgroup_path(cgrp, buf, buflen);
2102 } else {
2103 /* if no hierarchy exists, everyone is in "/" */
2104 if (strlcpy(buf, "/", buflen) < buflen)
2105 path = buf;
2106 }
2107
2108 up_read(&css_set_rwsem);
2109 mutex_unlock(&cgroup_mutex);
2110 return path;
2111 }
2112 EXPORT_SYMBOL_GPL(task_cgroup_path);
2113
2114 /* used to track tasks and other necessary states during migration */
2115 struct cgroup_taskset {
2116 /* the src and dst cset list running through cset->mg_node */
2117 struct list_head src_csets;
2118 struct list_head dst_csets;
2119
2120 /*
2121 * Fields for cgroup_taskset_*() iteration.
2122 *
2123 * Before migration is committed, the target migration tasks are on
2124 * ->mg_tasks of the csets on ->src_csets. After, on ->mg_tasks of
2125 * the csets on ->dst_csets. ->csets point to either ->src_csets
2126 * or ->dst_csets depending on whether migration is committed.
2127 *
2128 * ->cur_csets and ->cur_task point to the current task position
2129 * during iteration.
2130 */
2131 struct list_head *csets;
2132 struct css_set *cur_cset;
2133 struct task_struct *cur_task;
2134 };
2135
2136 /**
2137 * cgroup_taskset_first - reset taskset and return the first task
2138 * @tset: taskset of interest
2139 *
2140 * @tset iteration is initialized and the first task is returned.
2141 */
2142 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
2143 {
2144 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2145 tset->cur_task = NULL;
2146
2147 return cgroup_taskset_next(tset);
2148 }
2149
2150 /**
2151 * cgroup_taskset_next - iterate to the next task in taskset
2152 * @tset: taskset of interest
2153 *
2154 * Return the next task in @tset. Iteration must have been initialized
2155 * with cgroup_taskset_first().
2156 */
2157 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
2158 {
2159 struct css_set *cset = tset->cur_cset;
2160 struct task_struct *task = tset->cur_task;
2161
2162 while (&cset->mg_node != tset->csets) {
2163 if (!task)
2164 task = list_first_entry(&cset->mg_tasks,
2165 struct task_struct, cg_list);
2166 else
2167 task = list_next_entry(task, cg_list);
2168
2169 if (&task->cg_list != &cset->mg_tasks) {
2170 tset->cur_cset = cset;
2171 tset->cur_task = task;
2172 return task;
2173 }
2174
2175 cset = list_next_entry(cset, mg_node);
2176 task = NULL;
2177 }
2178
2179 return NULL;
2180 }
2181
2182 /**
2183 * cgroup_task_migrate - move a task from one cgroup to another.
2184 * @old_cgrp: the cgroup @tsk is being migrated from
2185 * @tsk: the task being migrated
2186 * @new_cset: the new css_set @tsk is being attached to
2187 *
2188 * Must be called with cgroup_mutex, threadgroup and css_set_rwsem locked.
2189 */
2190 static void cgroup_task_migrate(struct cgroup *old_cgrp,
2191 struct task_struct *tsk,
2192 struct css_set *new_cset)
2193 {
2194 struct css_set *old_cset;
2195
2196 lockdep_assert_held(&cgroup_mutex);
2197 lockdep_assert_held(&css_set_rwsem);
2198
2199 /*
2200 * We are synchronized through cgroup_threadgroup_rwsem against
2201 * PF_EXITING setting such that we can't race against cgroup_exit()
2202 * changing the css_set to init_css_set and dropping the old one.
2203 */
2204 WARN_ON_ONCE(tsk->flags & PF_EXITING);
2205 old_cset = task_css_set(tsk);
2206
2207 get_css_set(new_cset);
2208 rcu_assign_pointer(tsk->cgroups, new_cset);
2209
2210 /*
2211 * Use move_tail so that cgroup_taskset_first() still returns the
2212 * leader after migration. This works because cgroup_migrate()
2213 * ensures that the dst_cset of the leader is the first on the
2214 * tset's dst_csets list.
2215 */
2216 list_move_tail(&tsk->cg_list, &new_cset->mg_tasks);
2217
2218 /*
2219 * We just gained a reference on old_cset by taking it from the
2220 * task. As trading it for new_cset is protected by cgroup_mutex,
2221 * we're safe to drop it here; it will be freed under RCU.
2222 */
2223 put_css_set_locked(old_cset);
2224 }
2225
2226 /**
2227 * cgroup_migrate_finish - cleanup after attach
2228 * @preloaded_csets: list of preloaded css_sets
2229 *
2230 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2231 * those functions for details.
2232 */
2233 static void cgroup_migrate_finish(struct list_head *preloaded_csets)
2234 {
2235 struct css_set *cset, *tmp_cset;
2236
2237 lockdep_assert_held(&cgroup_mutex);
2238
2239 down_write(&css_set_rwsem);
2240 list_for_each_entry_safe(cset, tmp_cset, preloaded_csets, mg_preload_node) {
2241 cset->mg_src_cgrp = NULL;
2242 cset->mg_dst_cset = NULL;
2243 list_del_init(&cset->mg_preload_node);
2244 put_css_set_locked(cset);
2245 }
2246 up_write(&css_set_rwsem);
2247 }
2248
2249 /**
2250 * cgroup_migrate_add_src - add a migration source css_set
2251 * @src_cset: the source css_set to add
2252 * @dst_cgrp: the destination cgroup
2253 * @preloaded_csets: list of preloaded css_sets
2254 *
2255 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2256 * @src_cset and add it to @preloaded_csets, which should later be cleaned
2257 * up by cgroup_migrate_finish().
2258 *
2259 * This function may be called without holding cgroup_threadgroup_rwsem
2260 * even if the target is a process. Threads may be created and destroyed
2261 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2262 * into play and the preloaded css_sets are guaranteed to cover all
2263 * migrations.
2264 */
2265 static void cgroup_migrate_add_src(struct css_set *src_cset,
2266 struct cgroup *dst_cgrp,
2267 struct list_head *preloaded_csets)
2268 {
2269 struct cgroup *src_cgrp;
2270
2271 lockdep_assert_held(&cgroup_mutex);
2272 lockdep_assert_held(&css_set_rwsem);
2273
2274 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2275
2276 if (!list_empty(&src_cset->mg_preload_node))
2277 return;
2278
2279 WARN_ON(src_cset->mg_src_cgrp);
2280 WARN_ON(!list_empty(&src_cset->mg_tasks));
2281 WARN_ON(!list_empty(&src_cset->mg_node));
2282
2283 src_cset->mg_src_cgrp = src_cgrp;
2284 get_css_set(src_cset);
2285 list_add(&src_cset->mg_preload_node, preloaded_csets);
2286 }
2287
2288 /**
2289 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2290 * @dst_cgrp: the destination cgroup (may be %NULL)
2291 * @preloaded_csets: list of preloaded source css_sets
2292 *
2293 * Tasks are about to be moved to @dst_cgrp and all the source css_sets
2294 * have been preloaded to @preloaded_csets. This function looks up and
2295 * pins all destination css_sets, links each to its source, and append them
2296 * to @preloaded_csets. If @dst_cgrp is %NULL, the destination of each
2297 * source css_set is assumed to be its cgroup on the default hierarchy.
2298 *
2299 * This function must be called after cgroup_migrate_add_src() has been
2300 * called on each migration source css_set. After migration is performed
2301 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2302 * @preloaded_csets.
2303 */
2304 static int cgroup_migrate_prepare_dst(struct cgroup *dst_cgrp,
2305 struct list_head *preloaded_csets)
2306 {
2307 LIST_HEAD(csets);
2308 struct css_set *src_cset, *tmp_cset;
2309
2310 lockdep_assert_held(&cgroup_mutex);
2311
2312 /*
2313 * Except for the root, child_subsys_mask must be zero for a cgroup
2314 * with tasks so that child cgroups don't compete against tasks.
2315 */
2316 if (dst_cgrp && cgroup_on_dfl(dst_cgrp) && cgroup_parent(dst_cgrp) &&
2317 dst_cgrp->child_subsys_mask)
2318 return -EBUSY;
2319
2320 /* look up the dst cset for each src cset and link it to src */
2321 list_for_each_entry_safe(src_cset, tmp_cset, preloaded_csets, mg_preload_node) {
2322 struct css_set *dst_cset;
2323
2324 dst_cset = find_css_set(src_cset,
2325 dst_cgrp ?: src_cset->dfl_cgrp);
2326 if (!dst_cset)
2327 goto err;
2328
2329 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2330
2331 /*
2332 * If src cset equals dst, it's noop. Drop the src.
2333 * cgroup_migrate() will skip the cset too. Note that we
2334 * can't handle src == dst as some nodes are used by both.
2335 */
2336 if (src_cset == dst_cset) {
2337 src_cset->mg_src_cgrp = NULL;
2338 list_del_init(&src_cset->mg_preload_node);
2339 put_css_set(src_cset);
2340 put_css_set(dst_cset);
2341 continue;
2342 }
2343
2344 src_cset->mg_dst_cset = dst_cset;
2345
2346 if (list_empty(&dst_cset->mg_preload_node))
2347 list_add(&dst_cset->mg_preload_node, &csets);
2348 else
2349 put_css_set(dst_cset);
2350 }
2351
2352 list_splice_tail(&csets, preloaded_csets);
2353 return 0;
2354 err:
2355 cgroup_migrate_finish(&csets);
2356 return -ENOMEM;
2357 }
2358
2359 /**
2360 * cgroup_migrate - migrate a process or task to a cgroup
2361 * @cgrp: the destination cgroup
2362 * @leader: the leader of the process or the task to migrate
2363 * @threadgroup: whether @leader points to the whole process or a single task
2364 *
2365 * Migrate a process or task denoted by @leader to @cgrp. If migrating a
2366 * process, the caller must be holding cgroup_threadgroup_rwsem. The
2367 * caller is also responsible for invoking cgroup_migrate_add_src() and
2368 * cgroup_migrate_prepare_dst() on the targets before invoking this
2369 * function and following up with cgroup_migrate_finish().
2370 *
2371 * As long as a controller's ->can_attach() doesn't fail, this function is
2372 * guaranteed to succeed. This means that, excluding ->can_attach()
2373 * failure, when migrating multiple targets, the success or failure can be
2374 * decided for all targets by invoking group_migrate_prepare_dst() before
2375 * actually starting migrating.
2376 */
2377 static int cgroup_migrate(struct cgroup *cgrp, struct task_struct *leader,
2378 bool threadgroup)
2379 {
2380 struct cgroup_taskset tset = {
2381 .src_csets = LIST_HEAD_INIT(tset.src_csets),
2382 .dst_csets = LIST_HEAD_INIT(tset.dst_csets),
2383 .csets = &tset.src_csets,
2384 };
2385 struct cgroup_subsys_state *css, *failed_css = NULL;
2386 struct css_set *cset, *tmp_cset;
2387 struct task_struct *task, *tmp_task;
2388 int i, ret;
2389
2390 /*
2391 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2392 * already PF_EXITING could be freed from underneath us unless we
2393 * take an rcu_read_lock.
2394 */
2395 down_write(&css_set_rwsem);
2396 rcu_read_lock();
2397 task = leader;
2398 do {
2399 /* @task either already exited or can't exit until the end */
2400 if (task->flags & PF_EXITING)
2401 goto next;
2402
2403 /* leave @task alone if post_fork() hasn't linked it yet */
2404 if (list_empty(&task->cg_list))
2405 goto next;
2406
2407 cset = task_css_set(task);
2408 if (!cset->mg_src_cgrp)
2409 goto next;
2410
2411 /*
2412 * cgroup_taskset_first() must always return the leader.
2413 * Take care to avoid disturbing the ordering.
2414 */
2415 list_move_tail(&task->cg_list, &cset->mg_tasks);
2416 if (list_empty(&cset->mg_node))
2417 list_add_tail(&cset->mg_node, &tset.src_csets);
2418 if (list_empty(&cset->mg_dst_cset->mg_node))
2419 list_move_tail(&cset->mg_dst_cset->mg_node,
2420 &tset.dst_csets);
2421 next:
2422 if (!threadgroup)
2423 break;
2424 } while_each_thread(leader, task);
2425 rcu_read_unlock();
2426 up_write(&css_set_rwsem);
2427
2428 /* methods shouldn't be called if no task is actually migrating */
2429 if (list_empty(&tset.src_csets))
2430 return 0;
2431
2432 /* check that we can legitimately attach to the cgroup */
2433 for_each_e_css(css, i, cgrp) {
2434 if (css->ss->can_attach) {
2435 ret = css->ss->can_attach(css, &tset);
2436 if (ret) {
2437 failed_css = css;
2438 goto out_cancel_attach;
2439 }
2440 }
2441 }
2442
2443 /*
2444 * Now that we're guaranteed success, proceed to move all tasks to
2445 * the new cgroup. There are no failure cases after here, so this
2446 * is the commit point.
2447 */
2448 down_write(&css_set_rwsem);
2449 list_for_each_entry(cset, &tset.src_csets, mg_node) {
2450 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list)
2451 cgroup_task_migrate(cset->mg_src_cgrp, task,
2452 cset->mg_dst_cset);
2453 }
2454 up_write(&css_set_rwsem);
2455
2456 /*
2457 * Migration is committed, all target tasks are now on dst_csets.
2458 * Nothing is sensitive to fork() after this point. Notify
2459 * controllers that migration is complete.
2460 */
2461 tset.csets = &tset.dst_csets;
2462
2463 for_each_e_css(css, i, cgrp)
2464 if (css->ss->attach)
2465 css->ss->attach(css, &tset);
2466
2467 ret = 0;
2468 goto out_release_tset;
2469
2470 out_cancel_attach:
2471 for_each_e_css(css, i, cgrp) {
2472 if (css == failed_css)
2473 break;
2474 if (css->ss->cancel_attach)
2475 css->ss->cancel_attach(css, &tset);
2476 }
2477 out_release_tset:
2478 down_write(&css_set_rwsem);
2479 list_splice_init(&tset.dst_csets, &tset.src_csets);
2480 list_for_each_entry_safe(cset, tmp_cset, &tset.src_csets, mg_node) {
2481 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2482 list_del_init(&cset->mg_node);
2483 }
2484 up_write(&css_set_rwsem);
2485 return ret;
2486 }
2487
2488 /**
2489 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2490 * @dst_cgrp: the cgroup to attach to
2491 * @leader: the task or the leader of the threadgroup to be attached
2492 * @threadgroup: attach the whole threadgroup?
2493 *
2494 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2495 */
2496 static int cgroup_attach_task(struct cgroup *dst_cgrp,
2497 struct task_struct *leader, bool threadgroup)
2498 {
2499 LIST_HEAD(preloaded_csets);
2500 struct task_struct *task;
2501 int ret;
2502
2503 /* look up all src csets */
2504 down_read(&css_set_rwsem);
2505 rcu_read_lock();
2506 task = leader;
2507 do {
2508 cgroup_migrate_add_src(task_css_set(task), dst_cgrp,
2509 &preloaded_csets);
2510 if (!threadgroup)
2511 break;
2512 } while_each_thread(leader, task);
2513 rcu_read_unlock();
2514 up_read(&css_set_rwsem);
2515
2516 /* prepare dst csets and commit */
2517 ret = cgroup_migrate_prepare_dst(dst_cgrp, &preloaded_csets);
2518 if (!ret)
2519 ret = cgroup_migrate(dst_cgrp, leader, threadgroup);
2520
2521 cgroup_migrate_finish(&preloaded_csets);
2522 return ret;
2523 }
2524
2525 static int cgroup_procs_write_permission(struct task_struct *task,
2526 struct cgroup *dst_cgrp,
2527 struct kernfs_open_file *of)
2528 {
2529 const struct cred *cred = current_cred();
2530 const struct cred *tcred = get_task_cred(task);
2531 int ret = 0;
2532
2533 /*
2534 * even if we're attaching all tasks in the thread group, we only
2535 * need to check permissions on one of them.
2536 */
2537 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2538 !uid_eq(cred->euid, tcred->uid) &&
2539 !uid_eq(cred->euid, tcred->suid))
2540 ret = -EACCES;
2541
2542 if (!ret && cgroup_on_dfl(dst_cgrp)) {
2543 struct super_block *sb = of->file->f_path.dentry->d_sb;
2544 struct cgroup *cgrp;
2545 struct inode *inode;
2546
2547 down_read(&css_set_rwsem);
2548 cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
2549 up_read(&css_set_rwsem);
2550
2551 while (!cgroup_is_descendant(dst_cgrp, cgrp))
2552 cgrp = cgroup_parent(cgrp);
2553
2554 ret = -ENOMEM;
2555 inode = kernfs_get_inode(sb, cgrp->procs_kn);
2556 if (inode) {
2557 ret = inode_permission(inode, MAY_WRITE);
2558 iput(inode);
2559 }
2560 }
2561
2562 put_cred(tcred);
2563 return ret;
2564 }
2565
2566 /*
2567 * Find the task_struct of the task to attach by vpid and pass it along to the
2568 * function to attach either it or all tasks in its threadgroup. Will lock
2569 * cgroup_mutex and threadgroup.
2570 */
2571 static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
2572 size_t nbytes, loff_t off, bool threadgroup)
2573 {
2574 struct task_struct *tsk;
2575 struct cgroup *cgrp;
2576 pid_t pid;
2577 int ret;
2578
2579 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2580 return -EINVAL;
2581
2582 cgrp = cgroup_kn_lock_live(of->kn);
2583 if (!cgrp)
2584 return -ENODEV;
2585
2586 percpu_down_write(&cgroup_threadgroup_rwsem);
2587 rcu_read_lock();
2588 if (pid) {
2589 tsk = find_task_by_vpid(pid);
2590 if (!tsk) {
2591 ret = -ESRCH;
2592 goto out_unlock_rcu;
2593 }
2594 } else {
2595 tsk = current;
2596 }
2597
2598 if (threadgroup)
2599 tsk = tsk->group_leader;
2600
2601 /*
2602 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
2603 * trapped in a cpuset, or RT worker may be born in a cgroup
2604 * with no rt_runtime allocated. Just say no.
2605 */
2606 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
2607 ret = -EINVAL;
2608 goto out_unlock_rcu;
2609 }
2610
2611 get_task_struct(tsk);
2612 rcu_read_unlock();
2613
2614 ret = cgroup_procs_write_permission(tsk, cgrp, of);
2615 if (!ret)
2616 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
2617
2618 put_task_struct(tsk);
2619 goto out_unlock_threadgroup;
2620
2621 out_unlock_rcu:
2622 rcu_read_unlock();
2623 out_unlock_threadgroup:
2624 percpu_up_write(&cgroup_threadgroup_rwsem);
2625 cgroup_kn_unlock(of->kn);
2626 return ret ?: nbytes;
2627 }
2628
2629 /**
2630 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2631 * @from: attach to all cgroups of a given task
2632 * @tsk: the task to be attached
2633 */
2634 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2635 {
2636 struct cgroup_root *root;
2637 int retval = 0;
2638
2639 mutex_lock(&cgroup_mutex);
2640 for_each_root(root) {
2641 struct cgroup *from_cgrp;
2642
2643 if (root == &cgrp_dfl_root)
2644 continue;
2645
2646 down_read(&css_set_rwsem);
2647 from_cgrp = task_cgroup_from_root(from, root);
2648 up_read(&css_set_rwsem);
2649
2650 retval = cgroup_attach_task(from_cgrp, tsk, false);
2651 if (retval)
2652 break;
2653 }
2654 mutex_unlock(&cgroup_mutex);
2655
2656 return retval;
2657 }
2658 EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2659
2660 static ssize_t cgroup_tasks_write(struct kernfs_open_file *of,
2661 char *buf, size_t nbytes, loff_t off)
2662 {
2663 return __cgroup_procs_write(of, buf, nbytes, off, false);
2664 }
2665
2666 static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
2667 char *buf, size_t nbytes, loff_t off)
2668 {
2669 return __cgroup_procs_write(of, buf, nbytes, off, true);
2670 }
2671
2672 static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
2673 char *buf, size_t nbytes, loff_t off)
2674 {
2675 struct cgroup *cgrp;
2676
2677 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
2678
2679 cgrp = cgroup_kn_lock_live(of->kn);
2680 if (!cgrp)
2681 return -ENODEV;
2682 spin_lock(&release_agent_path_lock);
2683 strlcpy(cgrp->root->release_agent_path, strstrip(buf),
2684 sizeof(cgrp->root->release_agent_path));
2685 spin_unlock(&release_agent_path_lock);
2686 cgroup_kn_unlock(of->kn);
2687 return nbytes;
2688 }
2689
2690 static int cgroup_release_agent_show(struct seq_file *seq, void *v)
2691 {
2692 struct cgroup *cgrp = seq_css(seq)->cgroup;
2693
2694 spin_lock(&release_agent_path_lock);
2695 seq_puts(seq, cgrp->root->release_agent_path);
2696 spin_unlock(&release_agent_path_lock);
2697 seq_putc(seq, '\n');
2698 return 0;
2699 }
2700
2701 static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
2702 {
2703 seq_puts(seq, "0\n");
2704 return 0;
2705 }
2706
2707 static void cgroup_print_ss_mask(struct seq_file *seq, unsigned long ss_mask)
2708 {
2709 struct cgroup_subsys *ss;
2710 bool printed = false;
2711 int ssid;
2712
2713 for_each_subsys_which(ss, ssid, &ss_mask) {
2714 if (printed)
2715 seq_putc(seq, ' ');
2716 seq_printf(seq, "%s", ss->name);
2717 printed = true;
2718 }
2719 if (printed)
2720 seq_putc(seq, '\n');
2721 }
2722
2723 /* show controllers which are currently attached to the default hierarchy */
2724 static int cgroup_root_controllers_show(struct seq_file *seq, void *v)
2725 {
2726 struct cgroup *cgrp = seq_css(seq)->cgroup;
2727
2728 cgroup_print_ss_mask(seq, cgrp->root->subsys_mask &
2729 ~cgrp_dfl_root_inhibit_ss_mask);
2730 return 0;
2731 }
2732
2733 /* show controllers which are enabled from the parent */
2734 static int cgroup_controllers_show(struct seq_file *seq, void *v)
2735 {
2736 struct cgroup *cgrp = seq_css(seq)->cgroup;
2737
2738 cgroup_print_ss_mask(seq, cgroup_parent(cgrp)->subtree_control);
2739 return 0;
2740 }
2741
2742 /* show controllers which are enabled for a given cgroup's children */
2743 static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
2744 {
2745 struct cgroup *cgrp = seq_css(seq)->cgroup;
2746
2747 cgroup_print_ss_mask(seq, cgrp->subtree_control);
2748 return 0;
2749 }
2750
2751 /**
2752 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2753 * @cgrp: root of the subtree to update csses for
2754 *
2755 * @cgrp's child_subsys_mask has changed and its subtree's (self excluded)
2756 * css associations need to be updated accordingly. This function looks up
2757 * all css_sets which are attached to the subtree, creates the matching
2758 * updated css_sets and migrates the tasks to the new ones.
2759 */
2760 static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2761 {
2762 LIST_HEAD(preloaded_csets);
2763 struct cgroup_subsys_state *css;
2764 struct css_set *src_cset;
2765 int ret;
2766
2767 lockdep_assert_held(&cgroup_mutex);
2768
2769 percpu_down_write(&cgroup_threadgroup_rwsem);
2770
2771 /* look up all csses currently attached to @cgrp's subtree */
2772 down_read(&css_set_rwsem);
2773 css_for_each_descendant_pre(css, cgroup_css(cgrp, NULL)) {
2774 struct cgrp_cset_link *link;
2775
2776 /* self is not affected by child_subsys_mask change */
2777 if (css->cgroup == cgrp)
2778 continue;
2779
2780 list_for_each_entry(link, &css->cgroup->cset_links, cset_link)
2781 cgroup_migrate_add_src(link->cset, cgrp,
2782 &preloaded_csets);
2783 }
2784 up_read(&css_set_rwsem);
2785
2786 /* NULL dst indicates self on default hierarchy */
2787 ret = cgroup_migrate_prepare_dst(NULL, &preloaded_csets);
2788 if (ret)
2789 goto out_finish;
2790
2791 list_for_each_entry(src_cset, &preloaded_csets, mg_preload_node) {
2792 struct task_struct *last_task = NULL, *task;
2793
2794 /* src_csets precede dst_csets, break on the first dst_cset */
2795 if (!src_cset->mg_src_cgrp)
2796 break;
2797
2798 /*
2799 * All tasks in src_cset need to be migrated to the
2800 * matching dst_cset. Empty it process by process. We
2801 * walk tasks but migrate processes. The leader might even
2802 * belong to a different cset but such src_cset would also
2803 * be among the target src_csets because the default
2804 * hierarchy enforces per-process membership.
2805 */
2806 while (true) {
2807 down_read(&css_set_rwsem);
2808 task = list_first_entry_or_null(&src_cset->tasks,
2809 struct task_struct, cg_list);
2810 if (task) {
2811 task = task->group_leader;
2812 WARN_ON_ONCE(!task_css_set(task)->mg_src_cgrp);
2813 get_task_struct(task);
2814 }
2815 up_read(&css_set_rwsem);
2816
2817 if (!task)
2818 break;
2819
2820 /* guard against possible infinite loop */
2821 if (WARN(last_task == task,
2822 "cgroup: update_dfl_csses failed to make progress, aborting in inconsistent state\n"))
2823 goto out_finish;
2824 last_task = task;
2825
2826 ret = cgroup_migrate(src_cset->dfl_cgrp, task, true);
2827
2828 put_task_struct(task);
2829
2830 if (WARN(ret, "cgroup: failed to update controllers for the default hierarchy (%d), further operations may crash or hang\n", ret))
2831 goto out_finish;
2832 }
2833 }
2834
2835 out_finish:
2836 cgroup_migrate_finish(&preloaded_csets);
2837 percpu_up_write(&cgroup_threadgroup_rwsem);
2838 return ret;
2839 }
2840
2841 /* change the enabled child controllers for a cgroup in the default hierarchy */
2842 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
2843 char *buf, size_t nbytes,
2844 loff_t off)
2845 {
2846 unsigned long enable = 0, disable = 0;
2847 unsigned long css_enable, css_disable, old_sc, new_sc, old_ss, new_ss;
2848 struct cgroup *cgrp, *child;
2849 struct cgroup_subsys *ss;
2850 char *tok;
2851 int ssid, ret;
2852
2853 /*
2854 * Parse input - space separated list of subsystem names prefixed
2855 * with either + or -.
2856 */
2857 buf = strstrip(buf);
2858 while ((tok = strsep(&buf, " "))) {
2859 unsigned long tmp_ss_mask = ~cgrp_dfl_root_inhibit_ss_mask;
2860
2861 if (tok[0] == '\0')
2862 continue;
2863 for_each_subsys_which(ss, ssid, &tmp_ss_mask) {
2864 if (!cgroup_ssid_enabled(ssid) ||
2865 strcmp(tok + 1, ss->name))
2866 continue;
2867
2868 if (*tok == '+') {
2869 enable |= 1 << ssid;
2870 disable &= ~(1 << ssid);
2871 } else if (*tok == '-') {
2872 disable |= 1 << ssid;
2873 enable &= ~(1 << ssid);
2874 } else {
2875 return -EINVAL;
2876 }
2877 break;
2878 }
2879 if (ssid == CGROUP_SUBSYS_COUNT)
2880 return -EINVAL;
2881 }
2882
2883 cgrp = cgroup_kn_lock_live(of->kn);
2884 if (!cgrp)
2885 return -ENODEV;
2886
2887 for_each_subsys(ss, ssid) {
2888 if (enable & (1 << ssid)) {
2889 if (cgrp->subtree_control & (1 << ssid)) {
2890 enable &= ~(1 << ssid);
2891 continue;
2892 }
2893
2894 /* unavailable or not enabled on the parent? */
2895 if (!(cgrp_dfl_root.subsys_mask & (1 << ssid)) ||
2896 (cgroup_parent(cgrp) &&
2897 !(cgroup_parent(cgrp)->subtree_control & (1 << ssid)))) {
2898 ret = -ENOENT;
2899 goto out_unlock;
2900 }
2901 } else if (disable & (1 << ssid)) {
2902 if (!(cgrp->subtree_control & (1 << ssid))) {
2903 disable &= ~(1 << ssid);
2904 continue;
2905 }
2906
2907 /* a child has it enabled? */
2908 cgroup_for_each_live_child(child, cgrp) {
2909 if (child->subtree_control & (1 << ssid)) {
2910 ret = -EBUSY;
2911 goto out_unlock;
2912 }
2913 }
2914 }
2915 }
2916
2917 if (!enable && !disable) {
2918 ret = 0;
2919 goto out_unlock;
2920 }
2921
2922 /*
2923 * Except for the root, subtree_control must be zero for a cgroup
2924 * with tasks so that child cgroups don't compete against tasks.
2925 */
2926 if (enable && cgroup_parent(cgrp) && !list_empty(&cgrp->cset_links)) {
2927 ret = -EBUSY;
2928 goto out_unlock;
2929 }
2930
2931 /*
2932 * Update subsys masks and calculate what needs to be done. More
2933 * subsystems than specified may need to be enabled or disabled
2934 * depending on subsystem dependencies.
2935 */
2936 old_sc = cgrp->subtree_control;
2937 old_ss = cgrp->child_subsys_mask;
2938 new_sc = (old_sc | enable) & ~disable;
2939 new_ss = cgroup_calc_child_subsys_mask(cgrp, new_sc);
2940
2941 css_enable = ~old_ss & new_ss;
2942 css_disable = old_ss & ~new_ss;
2943 enable |= css_enable;
2944 disable |= css_disable;
2945
2946 /*
2947 * Because css offlining is asynchronous, userland might try to
2948 * re-enable the same controller while the previous instance is
2949 * still around. In such cases, wait till it's gone using
2950 * offline_waitq.
2951 */
2952 for_each_subsys_which(ss, ssid, &css_enable) {
2953 cgroup_for_each_live_child(child, cgrp) {
2954 DEFINE_WAIT(wait);
2955
2956 if (!cgroup_css(child, ss))
2957 continue;
2958
2959 cgroup_get(child);
2960 prepare_to_wait(&child->offline_waitq, &wait,
2961 TASK_UNINTERRUPTIBLE);
2962 cgroup_kn_unlock(of->kn);
2963 schedule();
2964 finish_wait(&child->offline_waitq, &wait);
2965 cgroup_put(child);
2966
2967 return restart_syscall();
2968 }
2969 }
2970
2971 cgrp->subtree_control = new_sc;
2972 cgrp->child_subsys_mask = new_ss;
2973
2974 /*
2975 * Create new csses or make the existing ones visible. A css is
2976 * created invisible if it's being implicitly enabled through
2977 * dependency. An invisible css is made visible when the userland
2978 * explicitly enables it.
2979 */
2980 for_each_subsys(ss, ssid) {
2981 if (!(enable & (1 << ssid)))
2982 continue;
2983
2984 cgroup_for_each_live_child(child, cgrp) {
2985 if (css_enable & (1 << ssid))
2986 ret = create_css(child, ss,
2987 cgrp->subtree_control & (1 << ssid));
2988 else
2989 ret = cgroup_populate_dir(child, 1 << ssid);
2990 if (ret)
2991 goto err_undo_css;
2992 }
2993 }
2994
2995 /*
2996 * At this point, cgroup_e_css() results reflect the new csses
2997 * making the following cgroup_update_dfl_csses() properly update
2998 * css associations of all tasks in the subtree.
2999 */
3000 ret = cgroup_update_dfl_csses(cgrp);
3001 if (ret)
3002 goto err_undo_css;
3003
3004 /*
3005 * All tasks are migrated out of disabled csses. Kill or hide
3006 * them. A css is hidden when the userland requests it to be
3007 * disabled while other subsystems are still depending on it. The
3008 * css must not actively control resources and be in the vanilla
3009 * state if it's made visible again later. Controllers which may
3010 * be depended upon should provide ->css_reset() for this purpose.
3011 */
3012 for_each_subsys(ss, ssid) {
3013 if (!(disable & (1 << ssid)))
3014 continue;
3015
3016 cgroup_for_each_live_child(child, cgrp) {
3017 struct cgroup_subsys_state *css = cgroup_css(child, ss);
3018
3019 if (css_disable & (1 << ssid)) {
3020 kill_css(css);
3021 } else {
3022 cgroup_clear_dir(child, 1 << ssid);
3023 if (ss->css_reset)
3024 ss->css_reset(css);
3025 }
3026 }
3027 }
3028
3029 /*
3030 * The effective csses of all the descendants (excluding @cgrp) may
3031 * have changed. Subsystems can optionally subscribe to this event
3032 * by implementing ->css_e_css_changed() which is invoked if any of
3033 * the effective csses seen from the css's cgroup may have changed.
3034 */
3035 for_each_subsys(ss, ssid) {
3036 struct cgroup_subsys_state *this_css = cgroup_css(cgrp, ss);
3037 struct cgroup_subsys_state *css;
3038
3039 if (!ss->css_e_css_changed || !this_css)
3040 continue;
3041
3042 css_for_each_descendant_pre(css, this_css)
3043 if (css != this_css)
3044 ss->css_e_css_changed(css);
3045 }
3046
3047 kernfs_activate(cgrp->kn);
3048 ret = 0;
3049 out_unlock:
3050 cgroup_kn_unlock(of->kn);
3051 return ret ?: nbytes;
3052
3053 err_undo_css:
3054 cgrp->subtree_control = old_sc;
3055 cgrp->child_subsys_mask = old_ss;
3056
3057 for_each_subsys(ss, ssid) {
3058 if (!(enable & (1 << ssid)))
3059 continue;
3060
3061 cgroup_for_each_live_child(child, cgrp) {
3062 struct cgroup_subsys_state *css = cgroup_css(child, ss);
3063
3064 if (!css)
3065 continue;
3066
3067 if (css_enable & (1 << ssid))
3068 kill_css(css);
3069 else
3070 cgroup_clear_dir(child, 1 << ssid);
3071 }
3072 }
3073 goto out_unlock;
3074 }
3075
3076 static int cgroup_events_show(struct seq_file *seq, void *v)
3077 {
3078 seq_printf(seq, "populated %d\n",
3079 (bool)seq_css(seq)->cgroup->populated_cnt);
3080 return 0;
3081 }
3082
3083 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3084 size_t nbytes, loff_t off)
3085 {
3086 struct cgroup *cgrp = of->kn->parent->priv;
3087 struct cftype *cft = of->kn->priv;
3088 struct cgroup_subsys_state *css;
3089 int ret;
3090
3091 if (cft->write)
3092 return cft->write(of, buf, nbytes, off);
3093
3094 /*
3095 * kernfs guarantees that a file isn't deleted with operations in
3096 * flight, which means that the matching css is and stays alive and
3097 * doesn't need to be pinned. The RCU locking is not necessary
3098 * either. It's just for the convenience of using cgroup_css().
3099 */
3100 rcu_read_lock();
3101 css = cgroup_css(cgrp, cft->ss);
3102 rcu_read_unlock();
3103
3104 if (cft->write_u64) {
3105 unsigned long long v;
3106 ret = kstrtoull(buf, 0, &v);
3107 if (!ret)
3108 ret = cft->write_u64(css, cft, v);
3109 } else if (cft->write_s64) {
3110 long long v;
3111 ret = kstrtoll(buf, 0, &v);
3112 if (!ret)
3113 ret = cft->write_s64(css, cft, v);
3114 } else {
3115 ret = -EINVAL;
3116 }
3117
3118 return ret ?: nbytes;
3119 }
3120
3121 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
3122 {
3123 return seq_cft(seq)->seq_start(seq, ppos);
3124 }
3125
3126 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
3127 {
3128 return seq_cft(seq)->seq_next(seq, v, ppos);
3129 }
3130
3131 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
3132 {
3133 seq_cft(seq)->seq_stop(seq, v);
3134 }
3135
3136 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
3137 {
3138 struct cftype *cft = seq_cft(m);
3139 struct cgroup_subsys_state *css = seq_css(m);
3140
3141 if (cft->seq_show)
3142 return cft->seq_show(m, arg);
3143
3144 if (cft->read_u64)
3145 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3146 else if (cft->read_s64)
3147 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3148 else
3149 return -EINVAL;
3150 return 0;
3151 }
3152
3153 static struct kernfs_ops cgroup_kf_single_ops = {
3154 .atomic_write_len = PAGE_SIZE,
3155 .write = cgroup_file_write,
3156 .seq_show = cgroup_seqfile_show,
3157 };
3158
3159 static struct kernfs_ops cgroup_kf_ops = {
3160 .atomic_write_len = PAGE_SIZE,
3161 .write = cgroup_file_write,
3162 .seq_start = cgroup_seqfile_start,
3163 .seq_next = cgroup_seqfile_next,
3164 .seq_stop = cgroup_seqfile_stop,
3165 .seq_show = cgroup_seqfile_show,
3166 };
3167
3168 /*
3169 * cgroup_rename - Only allow simple rename of directories in place.
3170 */
3171 static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
3172 const char *new_name_str)
3173 {
3174 struct cgroup *cgrp = kn->priv;
3175 int ret;
3176
3177 if (kernfs_type(kn) != KERNFS_DIR)
3178 return -ENOTDIR;
3179 if (kn->parent != new_parent)
3180 return -EIO;
3181
3182 /*
3183 * This isn't a proper migration and its usefulness is very
3184 * limited. Disallow on the default hierarchy.
3185 */
3186 if (cgroup_on_dfl(cgrp))
3187 return -EPERM;
3188
3189 /*
3190 * We're gonna grab cgroup_mutex which nests outside kernfs
3191 * active_ref. kernfs_rename() doesn't require active_ref
3192 * protection. Break them before grabbing cgroup_mutex.
3193 */
3194 kernfs_break_active_protection(new_parent);
3195 kernfs_break_active_protection(kn);
3196
3197 mutex_lock(&cgroup_mutex);
3198
3199 ret = kernfs_rename(kn, new_parent, new_name_str);
3200
3201 mutex_unlock(&cgroup_mutex);
3202
3203 kernfs_unbreak_active_protection(kn);
3204 kernfs_unbreak_active_protection(new_parent);
3205 return ret;
3206 }
3207
3208 /* set uid and gid of cgroup dirs and files to that of the creator */
3209 static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3210 {
3211 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3212 .ia_uid = current_fsuid(),
3213 .ia_gid = current_fsgid(), };
3214
3215 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3216 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3217 return 0;
3218
3219 return kernfs_setattr(kn, &iattr);
3220 }
3221
3222 static int cgroup_add_file(struct cgroup *cgrp, struct cftype *cft)
3223 {
3224 char name[CGROUP_FILE_NAME_MAX];
3225 struct kernfs_node *kn;
3226 struct lock_class_key *key = NULL;
3227 int ret;
3228
3229 #ifdef CONFIG_DEBUG_LOCK_ALLOC
3230 key = &cft->lockdep_key;
3231 #endif
3232 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3233 cgroup_file_mode(cft), 0, cft->kf_ops, cft,
3234 NULL, key);
3235 if (IS_ERR(kn))
3236 return PTR_ERR(kn);
3237
3238 ret = cgroup_kn_set_ugid(kn);
3239 if (ret) {
3240 kernfs_remove(kn);
3241 return ret;
3242 }
3243
3244 if (cft->write == cgroup_procs_write)
3245 cgrp->procs_kn = kn;
3246 else if (cft->seq_show == cgroup_events_show)
3247 cgrp->events_kn = kn;
3248 return 0;
3249 }
3250
3251 /**
3252 * cgroup_addrm_files - add or remove files to a cgroup directory
3253 * @cgrp: the target cgroup
3254 * @cfts: array of cftypes to be added
3255 * @is_add: whether to add or remove
3256 *
3257 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
3258 * For removals, this function never fails.
3259 */
3260 static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
3261 bool is_add)
3262 {
3263 struct cftype *cft, *cft_end = NULL;
3264 int ret;
3265
3266 lockdep_assert_held(&cgroup_mutex);
3267
3268 restart:
3269 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
3270 /* does cft->flags tell us to skip this file on @cgrp? */
3271 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
3272 continue;
3273 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
3274 continue;
3275 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
3276 continue;
3277 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
3278 continue;
3279
3280 if (is_add) {
3281 ret = cgroup_add_file(cgrp, cft);
3282 if (ret) {
3283 pr_warn("%s: failed to add %s, err=%d\n",
3284 __func__, cft->name, ret);
3285 cft_end = cft;
3286 is_add = false;
3287 goto restart;
3288 }
3289 } else {
3290 cgroup_rm_file(cgrp, cft);
3291 }
3292 }
3293 return 0;
3294 }
3295
3296 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
3297 {
3298 LIST_HEAD(pending);
3299 struct cgroup_subsys *ss = cfts[0].ss;
3300 struct cgroup *root = &ss->root->cgrp;
3301 struct cgroup_subsys_state *css;
3302 int ret = 0;
3303
3304 lockdep_assert_held(&cgroup_mutex);
3305
3306 /* add/rm files for all cgroups created before */
3307 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
3308 struct cgroup *cgrp = css->cgroup;
3309
3310 if (cgroup_is_dead(cgrp))
3311 continue;
3312
3313 ret = cgroup_addrm_files(cgrp, cfts, is_add);
3314 if (ret)
3315 break;
3316 }
3317
3318 if (is_add && !ret)
3319 kernfs_activate(root->kn);
3320 return ret;
3321 }
3322
3323 static void cgroup_exit_cftypes(struct cftype *cfts)
3324 {
3325 struct cftype *cft;
3326
3327 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3328 /* free copy for custom atomic_write_len, see init_cftypes() */
3329 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3330 kfree(cft->kf_ops);
3331 cft->kf_ops = NULL;
3332 cft->ss = NULL;
3333
3334 /* revert flags set by cgroup core while adding @cfts */
3335 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
3336 }
3337 }
3338
3339 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3340 {
3341 struct cftype *cft;
3342
3343 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3344 struct kernfs_ops *kf_ops;
3345
3346 WARN_ON(cft->ss || cft->kf_ops);
3347
3348 if (cft->seq_start)
3349 kf_ops = &cgroup_kf_ops;
3350 else
3351 kf_ops = &cgroup_kf_single_ops;
3352
3353 /*
3354 * Ugh... if @cft wants a custom max_write_len, we need to
3355 * make a copy of kf_ops to set its atomic_write_len.
3356 */
3357 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3358 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3359 if (!kf_ops) {
3360 cgroup_exit_cftypes(cfts);
3361 return -ENOMEM;
3362 }
3363 kf_ops->atomic_write_len = cft->max_write_len;
3364 }
3365
3366 cft->kf_ops = kf_ops;
3367 cft->ss = ss;
3368 }
3369
3370 return 0;
3371 }
3372
3373 static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3374 {
3375 lockdep_assert_held(&cgroup_mutex);
3376
3377 if (!cfts || !cfts[0].ss)
3378 return -ENOENT;
3379
3380 list_del(&cfts->node);
3381 cgroup_apply_cftypes(cfts, false);
3382 cgroup_exit_cftypes(cfts);
3383 return 0;
3384 }
3385
3386 /**
3387 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
3388 * @cfts: zero-length name terminated array of cftypes
3389 *
3390 * Unregister @cfts. Files described by @cfts are removed from all
3391 * existing cgroups and all future cgroups won't have them either. This
3392 * function can be called anytime whether @cfts' subsys is attached or not.
3393 *
3394 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
3395 * registered.
3396 */
3397 int cgroup_rm_cftypes(struct cftype *cfts)
3398 {
3399 int ret;
3400
3401 mutex_lock(&cgroup_mutex);
3402 ret = cgroup_rm_cftypes_locked(cfts);
3403 mutex_unlock(&cgroup_mutex);
3404 return ret;
3405 }
3406
3407 /**
3408 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3409 * @ss: target cgroup subsystem
3410 * @cfts: zero-length name terminated array of cftypes
3411 *
3412 * Register @cfts to @ss. Files described by @cfts are created for all
3413 * existing cgroups to which @ss is attached and all future cgroups will
3414 * have them too. This function can be called anytime whether @ss is
3415 * attached or not.
3416 *
3417 * Returns 0 on successful registration, -errno on failure. Note that this
3418 * function currently returns 0 as long as @cfts registration is successful
3419 * even if some file creation attempts on existing cgroups fail.
3420 */
3421 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3422 {
3423 int ret;
3424
3425 if (!cgroup_ssid_enabled(ss->id))
3426 return 0;
3427
3428 if (!cfts || cfts[0].name[0] == '\0')
3429 return 0;
3430
3431 ret = cgroup_init_cftypes(ss, cfts);
3432 if (ret)
3433 return ret;
3434
3435 mutex_lock(&cgroup_mutex);
3436
3437 list_add_tail(&cfts->node, &ss->cfts);
3438 ret = cgroup_apply_cftypes(cfts, true);
3439 if (ret)
3440 cgroup_rm_cftypes_locked(cfts);
3441
3442 mutex_unlock(&cgroup_mutex);
3443 return ret;
3444 }
3445
3446 /**
3447 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3448 * @ss: target cgroup subsystem
3449 * @cfts: zero-length name terminated array of cftypes
3450 *
3451 * Similar to cgroup_add_cftypes() but the added files are only used for
3452 * the default hierarchy.
3453 */
3454 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3455 {
3456 struct cftype *cft;
3457
3458 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3459 cft->flags |= __CFTYPE_ONLY_ON_DFL;
3460 return cgroup_add_cftypes(ss, cfts);
3461 }
3462
3463 /**
3464 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3465 * @ss: target cgroup subsystem
3466 * @cfts: zero-length name terminated array of cftypes
3467 *
3468 * Similar to cgroup_add_cftypes() but the added files are only used for
3469 * the legacy hierarchies.
3470 */
3471 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3472 {
3473 struct cftype *cft;
3474
3475 /*
3476 * If legacy_flies_on_dfl, we want to show the legacy files on the
3477 * dfl hierarchy but iff the target subsystem hasn't been updated
3478 * for the dfl hierarchy yet.
3479 */
3480 if (!cgroup_legacy_files_on_dfl ||
3481 ss->dfl_cftypes != ss->legacy_cftypes) {
3482 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3483 cft->flags |= __CFTYPE_NOT_ON_DFL;
3484 }
3485
3486 return cgroup_add_cftypes(ss, cfts);
3487 }
3488
3489 /**
3490 * cgroup_task_count - count the number of tasks in a cgroup.
3491 * @cgrp: the cgroup in question
3492 *
3493 * Return the number of tasks in the cgroup.
3494 */
3495 static int cgroup_task_count(const struct cgroup *cgrp)
3496 {
3497 int count = 0;
3498 struct cgrp_cset_link *link;
3499
3500 down_read(&css_set_rwsem);
3501 list_for_each_entry(link, &cgrp->cset_links, cset_link)
3502 count += atomic_read(&link->cset->refcount);
3503 up_read(&css_set_rwsem);
3504 return count;
3505 }
3506
3507 /**
3508 * css_next_child - find the next child of a given css
3509 * @pos: the current position (%NULL to initiate traversal)
3510 * @parent: css whose children to walk
3511 *
3512 * This function returns the next child of @parent and should be called
3513 * under either cgroup_mutex or RCU read lock. The only requirement is
3514 * that @parent and @pos are accessible. The next sibling is guaranteed to
3515 * be returned regardless of their states.
3516 *
3517 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3518 * css which finished ->css_online() is guaranteed to be visible in the
3519 * future iterations and will stay visible until the last reference is put.
3520 * A css which hasn't finished ->css_online() or already finished
3521 * ->css_offline() may show up during traversal. It's each subsystem's
3522 * responsibility to synchronize against on/offlining.
3523 */
3524 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
3525 struct cgroup_subsys_state *parent)
3526 {
3527 struct cgroup_subsys_state *next;
3528
3529 cgroup_assert_mutex_or_rcu_locked();
3530
3531 /*
3532 * @pos could already have been unlinked from the sibling list.
3533 * Once a cgroup is removed, its ->sibling.next is no longer
3534 * updated when its next sibling changes. CSS_RELEASED is set when
3535 * @pos is taken off list, at which time its next pointer is valid,
3536 * and, as releases are serialized, the one pointed to by the next
3537 * pointer is guaranteed to not have started release yet. This
3538 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3539 * critical section, the one pointed to by its next pointer is
3540 * guaranteed to not have finished its RCU grace period even if we
3541 * have dropped rcu_read_lock() inbetween iterations.
3542 *
3543 * If @pos has CSS_RELEASED set, its next pointer can't be
3544 * dereferenced; however, as each css is given a monotonically
3545 * increasing unique serial number and always appended to the
3546 * sibling list, the next one can be found by walking the parent's
3547 * children until the first css with higher serial number than
3548 * @pos's. While this path can be slower, it happens iff iteration
3549 * races against release and the race window is very small.
3550 */
3551 if (!pos) {
3552 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
3553 } else if (likely(!(pos->flags & CSS_RELEASED))) {
3554 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
3555 } else {
3556 list_for_each_entry_rcu(next, &parent->children, sibling)
3557 if (next->serial_nr > pos->serial_nr)
3558 break;
3559 }
3560
3561 /*
3562 * @next, if not pointing to the head, can be dereferenced and is
3563 * the next sibling.
3564 */
3565 if (&next->sibling != &parent->children)
3566 return next;
3567 return NULL;
3568 }
3569
3570 /**
3571 * css_next_descendant_pre - find the next descendant for pre-order walk
3572 * @pos: the current position (%NULL to initiate traversal)
3573 * @root: css whose descendants to walk
3574 *
3575 * To be used by css_for_each_descendant_pre(). Find the next descendant
3576 * to visit for pre-order traversal of @root's descendants. @root is
3577 * included in the iteration and the first node to be visited.
3578 *
3579 * While this function requires cgroup_mutex or RCU read locking, it
3580 * doesn't require the whole traversal to be contained in a single critical
3581 * section. This function will return the correct next descendant as long
3582 * as both @pos and @root are accessible and @pos is a descendant of @root.
3583 *
3584 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3585 * css which finished ->css_online() is guaranteed to be visible in the
3586 * future iterations and will stay visible until the last reference is put.
3587 * A css which hasn't finished ->css_online() or already finished
3588 * ->css_offline() may show up during traversal. It's each subsystem's
3589 * responsibility to synchronize against on/offlining.
3590 */
3591 struct cgroup_subsys_state *
3592 css_next_descendant_pre(struct cgroup_subsys_state *pos,
3593 struct cgroup_subsys_state *root)
3594 {
3595 struct cgroup_subsys_state *next;
3596
3597 cgroup_assert_mutex_or_rcu_locked();
3598
3599 /* if first iteration, visit @root */
3600 if (!pos)
3601 return root;
3602
3603 /* visit the first child if exists */
3604 next = css_next_child(NULL, pos);
3605 if (next)
3606 return next;
3607
3608 /* no child, visit my or the closest ancestor's next sibling */
3609 while (pos != root) {
3610 next = css_next_child(pos, pos->parent);
3611 if (next)
3612 return next;
3613 pos = pos->parent;
3614 }
3615
3616 return NULL;
3617 }
3618
3619 /**
3620 * css_rightmost_descendant - return the rightmost descendant of a css
3621 * @pos: css of interest
3622 *
3623 * Return the rightmost descendant of @pos. If there's no descendant, @pos
3624 * is returned. This can be used during pre-order traversal to skip
3625 * subtree of @pos.
3626 *
3627 * While this function requires cgroup_mutex or RCU read locking, it
3628 * doesn't require the whole traversal to be contained in a single critical
3629 * section. This function will return the correct rightmost descendant as
3630 * long as @pos is accessible.
3631 */
3632 struct cgroup_subsys_state *
3633 css_rightmost_descendant(struct cgroup_subsys_state *pos)
3634 {
3635 struct cgroup_subsys_state *last, *tmp;
3636
3637 cgroup_assert_mutex_or_rcu_locked();
3638
3639 do {
3640 last = pos;
3641 /* ->prev isn't RCU safe, walk ->next till the end */
3642 pos = NULL;
3643 css_for_each_child(tmp, last)
3644 pos = tmp;
3645 } while (pos);
3646
3647 return last;
3648 }
3649
3650 static struct cgroup_subsys_state *
3651 css_leftmost_descendant(struct cgroup_subsys_state *pos)
3652 {
3653 struct cgroup_subsys_state *last;
3654
3655 do {
3656 last = pos;
3657 pos = css_next_child(NULL, pos);
3658 } while (pos);
3659
3660 return last;
3661 }
3662
3663 /**
3664 * css_next_descendant_post - find the next descendant for post-order walk
3665 * @pos: the current position (%NULL to initiate traversal)
3666 * @root: css whose descendants to walk
3667 *
3668 * To be used by css_for_each_descendant_post(). Find the next descendant
3669 * to visit for post-order traversal of @root's descendants. @root is
3670 * included in the iteration and the last node to be visited.
3671 *
3672 * While this function requires cgroup_mutex or RCU read locking, it
3673 * doesn't require the whole traversal to be contained in a single critical
3674 * section. This function will return the correct next descendant as long
3675 * as both @pos and @cgroup are accessible and @pos is a descendant of
3676 * @cgroup.
3677 *
3678 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3679 * css which finished ->css_online() is guaranteed to be visible in the
3680 * future iterations and will stay visible until the last reference is put.
3681 * A css which hasn't finished ->css_online() or already finished
3682 * ->css_offline() may show up during traversal. It's each subsystem's
3683 * responsibility to synchronize against on/offlining.
3684 */
3685 struct cgroup_subsys_state *
3686 css_next_descendant_post(struct cgroup_subsys_state *pos,
3687 struct cgroup_subsys_state *root)
3688 {
3689 struct cgroup_subsys_state *next;
3690
3691 cgroup_assert_mutex_or_rcu_locked();
3692
3693 /* if first iteration, visit leftmost descendant which may be @root */
3694 if (!pos)
3695 return css_leftmost_descendant(root);
3696
3697 /* if we visited @root, we're done */
3698 if (pos == root)
3699 return NULL;
3700
3701 /* if there's an unvisited sibling, visit its leftmost descendant */
3702 next = css_next_child(pos, pos->parent);
3703 if (next)
3704 return css_leftmost_descendant(next);
3705
3706 /* no sibling left, visit parent */
3707 return pos->parent;
3708 }
3709
3710 /**
3711 * css_has_online_children - does a css have online children
3712 * @css: the target css
3713 *
3714 * Returns %true if @css has any online children; otherwise, %false. This
3715 * function can be called from any context but the caller is responsible
3716 * for synchronizing against on/offlining as necessary.
3717 */
3718 bool css_has_online_children(struct cgroup_subsys_state *css)
3719 {
3720 struct cgroup_subsys_state *child;
3721 bool ret = false;
3722
3723 rcu_read_lock();
3724 css_for_each_child(child, css) {
3725 if (child->flags & CSS_ONLINE) {
3726 ret = true;
3727 break;
3728 }
3729 }
3730 rcu_read_unlock();
3731 return ret;
3732 }
3733
3734 /**
3735 * css_advance_task_iter - advance a task itererator to the next css_set
3736 * @it: the iterator to advance
3737 *
3738 * Advance @it to the next css_set to walk.
3739 */
3740 static void css_advance_task_iter(struct css_task_iter *it)
3741 {
3742 struct list_head *l = it->cset_pos;
3743 struct cgrp_cset_link *link;
3744 struct css_set *cset;
3745
3746 /* Advance to the next non-empty css_set */
3747 do {
3748 l = l->next;
3749 if (l == it->cset_head) {
3750 it->cset_pos = NULL;
3751 return;
3752 }
3753
3754 if (it->ss) {
3755 cset = container_of(l, struct css_set,
3756 e_cset_node[it->ss->id]);
3757 } else {
3758 link = list_entry(l, struct cgrp_cset_link, cset_link);
3759 cset = link->cset;
3760 }
3761 } while (list_empty(&cset->tasks) && list_empty(&cset->mg_tasks));
3762
3763 it->cset_pos = l;
3764
3765 if (!list_empty(&cset->tasks))
3766 it->task_pos = cset->tasks.next;
3767 else
3768 it->task_pos = cset->mg_tasks.next;
3769
3770 it->tasks_head = &cset->tasks;
3771 it->mg_tasks_head = &cset->mg_tasks;
3772 }
3773
3774 /**
3775 * css_task_iter_start - initiate task iteration
3776 * @css: the css to walk tasks of
3777 * @it: the task iterator to use
3778 *
3779 * Initiate iteration through the tasks of @css. The caller can call
3780 * css_task_iter_next() to walk through the tasks until the function
3781 * returns NULL. On completion of iteration, css_task_iter_end() must be
3782 * called.
3783 *
3784 * Note that this function acquires a lock which is released when the
3785 * iteration finishes. The caller can't sleep while iteration is in
3786 * progress.
3787 */
3788 void css_task_iter_start(struct cgroup_subsys_state *css,
3789 struct css_task_iter *it)
3790 __acquires(css_set_rwsem)
3791 {
3792 /* no one should try to iterate before mounting cgroups */
3793 WARN_ON_ONCE(!use_task_css_set_links);
3794
3795 down_read(&css_set_rwsem);
3796
3797 it->ss = css->ss;
3798
3799 if (it->ss)
3800 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
3801 else
3802 it->cset_pos = &css->cgroup->cset_links;
3803
3804 it->cset_head = it->cset_pos;
3805
3806 css_advance_task_iter(it);
3807 }
3808
3809 /**
3810 * css_task_iter_next - return the next task for the iterator
3811 * @it: the task iterator being iterated
3812 *
3813 * The "next" function for task iteration. @it should have been
3814 * initialized via css_task_iter_start(). Returns NULL when the iteration
3815 * reaches the end.
3816 */
3817 struct task_struct *css_task_iter_next(struct css_task_iter *it)
3818 {
3819 struct task_struct *res;
3820 struct list_head *l = it->task_pos;
3821
3822 /* If the iterator cg is NULL, we have no tasks */
3823 if (!it->cset_pos)
3824 return NULL;
3825 res = list_entry(l, struct task_struct, cg_list);
3826
3827 /*
3828 * Advance iterator to find next entry. cset->tasks is consumed
3829 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
3830 * next cset.
3831 */
3832 l = l->next;
3833
3834 if (l == it->tasks_head)
3835 l = it->mg_tasks_head->next;
3836
3837 if (l == it->mg_tasks_head)
3838 css_advance_task_iter(it);
3839 else
3840 it->task_pos = l;
3841
3842 return res;
3843 }
3844
3845 /**
3846 * css_task_iter_end - finish task iteration
3847 * @it: the task iterator to finish
3848 *
3849 * Finish task iteration started by css_task_iter_start().
3850 */
3851 void css_task_iter_end(struct css_task_iter *it)
3852 __releases(css_set_rwsem)
3853 {
3854 up_read(&css_set_rwsem);
3855 }
3856
3857 /**
3858 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
3859 * @to: cgroup to which the tasks will be moved
3860 * @from: cgroup in which the tasks currently reside
3861 *
3862 * Locking rules between cgroup_post_fork() and the migration path
3863 * guarantee that, if a task is forking while being migrated, the new child
3864 * is guaranteed to be either visible in the source cgroup after the
3865 * parent's migration is complete or put into the target cgroup. No task
3866 * can slip out of migration through forking.
3867 */
3868 int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
3869 {
3870 LIST_HEAD(preloaded_csets);
3871 struct cgrp_cset_link *link;
3872 struct css_task_iter it;
3873 struct task_struct *task;
3874 int ret;
3875
3876 mutex_lock(&cgroup_mutex);
3877
3878 /* all tasks in @from are being moved, all csets are source */
3879 down_read(&css_set_rwsem);
3880 list_for_each_entry(link, &from->cset_links, cset_link)
3881 cgroup_migrate_add_src(link->cset, to, &preloaded_csets);
3882 up_read(&css_set_rwsem);
3883
3884 ret = cgroup_migrate_prepare_dst(to, &preloaded_csets);
3885 if (ret)
3886 goto out_err;
3887
3888 /*
3889 * Migrate tasks one-by-one until @form is empty. This fails iff
3890 * ->can_attach() fails.
3891 */
3892 do {
3893 css_task_iter_start(&from->self, &it);
3894 task = css_task_iter_next(&it);
3895 if (task)
3896 get_task_struct(task);
3897 css_task_iter_end(&it);
3898
3899 if (task) {
3900 ret = cgroup_migrate(to, task, false);
3901 put_task_struct(task);
3902 }
3903 } while (task && !ret);
3904 out_err:
3905 cgroup_migrate_finish(&preloaded_csets);
3906 mutex_unlock(&cgroup_mutex);
3907 return ret;
3908 }
3909
3910 /*
3911 * Stuff for reading the 'tasks'/'procs' files.
3912 *
3913 * Reading this file can return large amounts of data if a cgroup has
3914 * *lots* of attached tasks. So it may need several calls to read(),
3915 * but we cannot guarantee that the information we produce is correct
3916 * unless we produce it entirely atomically.
3917 *
3918 */
3919
3920 /* which pidlist file are we talking about? */
3921 enum cgroup_filetype {
3922 CGROUP_FILE_PROCS,
3923 CGROUP_FILE_TASKS,
3924 };
3925
3926 /*
3927 * A pidlist is a list of pids that virtually represents the contents of one
3928 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
3929 * a pair (one each for procs, tasks) for each pid namespace that's relevant
3930 * to the cgroup.
3931 */
3932 struct cgroup_pidlist {
3933 /*
3934 * used to find which pidlist is wanted. doesn't change as long as
3935 * this particular list stays in the list.
3936 */
3937 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
3938 /* array of xids */
3939 pid_t *list;
3940 /* how many elements the above list has */
3941 int length;
3942 /* each of these stored in a list by its cgroup */
3943 struct list_head links;
3944 /* pointer to the cgroup we belong to, for list removal purposes */
3945 struct cgroup *owner;
3946 /* for delayed destruction */
3947 struct delayed_work destroy_dwork;
3948 };
3949
3950 /*
3951 * The following two functions "fix" the issue where there are more pids
3952 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3953 * TODO: replace with a kernel-wide solution to this problem
3954 */
3955 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
3956 static void *pidlist_allocate(int count)
3957 {
3958 if (PIDLIST_TOO_LARGE(count))
3959 return vmalloc(count * sizeof(pid_t));
3960 else
3961 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
3962 }
3963
3964 static void pidlist_free(void *p)
3965 {
3966 kvfree(p);
3967 }
3968
3969 /*
3970 * Used to destroy all pidlists lingering waiting for destroy timer. None
3971 * should be left afterwards.
3972 */
3973 static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
3974 {
3975 struct cgroup_pidlist *l, *tmp_l;
3976
3977 mutex_lock(&cgrp->pidlist_mutex);
3978 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
3979 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
3980 mutex_unlock(&cgrp->pidlist_mutex);
3981
3982 flush_workqueue(cgroup_pidlist_destroy_wq);
3983 BUG_ON(!list_empty(&cgrp->pidlists));
3984 }
3985
3986 static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
3987 {
3988 struct delayed_work *dwork = to_delayed_work(work);
3989 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
3990 destroy_dwork);
3991 struct cgroup_pidlist *tofree = NULL;
3992
3993 mutex_lock(&l->owner->pidlist_mutex);
3994
3995 /*
3996 * Destroy iff we didn't get queued again. The state won't change
3997 * as destroy_dwork can only be queued while locked.
3998 */
3999 if (!delayed_work_pending(dwork)) {
4000 list_del(&l->links);
4001 pidlist_free(l->list);
4002 put_pid_ns(l->key.ns);
4003 tofree = l;
4004 }
4005
4006 mutex_unlock(&l->owner->pidlist_mutex);
4007 kfree(tofree);
4008 }
4009
4010 /*
4011 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
4012 * Returns the number of unique elements.
4013 */
4014 static int pidlist_uniq(pid_t *list, int length)
4015 {
4016 int src, dest = 1;
4017
4018 /*
4019 * we presume the 0th element is unique, so i starts at 1. trivial
4020 * edge cases first; no work needs to be done for either
4021 */
4022 if (length == 0 || length == 1)
4023 return length;
4024 /* src and dest walk down the list; dest counts unique elements */
4025 for (src = 1; src < length; src++) {
4026 /* find next unique element */
4027 while (list[src] == list[src-1]) {
4028 src++;
4029 if (src == length)
4030 goto after;
4031 }
4032 /* dest always points to where the next unique element goes */
4033 list[dest] = list[src];
4034 dest++;
4035 }
4036 after:
4037 return dest;
4038 }
4039
4040 /*
4041 * The two pid files - task and cgroup.procs - guaranteed that the result
4042 * is sorted, which forced this whole pidlist fiasco. As pid order is
4043 * different per namespace, each namespace needs differently sorted list,
4044 * making it impossible to use, for example, single rbtree of member tasks
4045 * sorted by task pointer. As pidlists can be fairly large, allocating one
4046 * per open file is dangerous, so cgroup had to implement shared pool of
4047 * pidlists keyed by cgroup and namespace.
4048 *
4049 * All this extra complexity was caused by the original implementation
4050 * committing to an entirely unnecessary property. In the long term, we
4051 * want to do away with it. Explicitly scramble sort order if on the
4052 * default hierarchy so that no such expectation exists in the new
4053 * interface.
4054 *
4055 * Scrambling is done by swapping every two consecutive bits, which is
4056 * non-identity one-to-one mapping which disturbs sort order sufficiently.
4057 */
4058 static pid_t pid_fry(pid_t pid)
4059 {
4060 unsigned a = pid & 0x55555555;
4061 unsigned b = pid & 0xAAAAAAAA;
4062
4063 return (a << 1) | (b >> 1);
4064 }
4065
4066 static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
4067 {
4068 if (cgroup_on_dfl(cgrp))
4069 return pid_fry(pid);
4070 else
4071 return pid;
4072 }
4073
4074 static int cmppid(const void *a, const void *b)
4075 {
4076 return *(pid_t *)a - *(pid_t *)b;
4077 }
4078
4079 static int fried_cmppid(const void *a, const void *b)
4080 {
4081 return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
4082 }
4083
4084 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
4085 enum cgroup_filetype type)
4086 {
4087 struct cgroup_pidlist *l;
4088 /* don't need task_nsproxy() if we're looking at ourself */
4089 struct pid_namespace *ns = task_active_pid_ns(current);
4090
4091 lockdep_assert_held(&cgrp->pidlist_mutex);
4092
4093 list_for_each_entry(l, &cgrp->pidlists, links)
4094 if (l->key.type == type && l->key.ns == ns)
4095 return l;
4096 return NULL;
4097 }
4098
4099 /*
4100 * find the appropriate pidlist for our purpose (given procs vs tasks)
4101 * returns with the lock on that pidlist already held, and takes care
4102 * of the use count, or returns NULL with no locks held if we're out of
4103 * memory.
4104 */
4105 static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
4106 enum cgroup_filetype type)
4107 {
4108 struct cgroup_pidlist *l;
4109
4110 lockdep_assert_held(&cgrp->pidlist_mutex);
4111
4112 l = cgroup_pidlist_find(cgrp, type);
4113 if (l)
4114 return l;
4115
4116 /* entry not found; create a new one */
4117 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
4118 if (!l)
4119 return l;
4120
4121 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
4122 l->key.type = type;
4123 /* don't need task_nsproxy() if we're looking at ourself */
4124 l->key.ns = get_pid_ns(task_active_pid_ns(current));
4125 l->owner = cgrp;
4126 list_add(&l->links, &cgrp->pidlists);
4127 return l;
4128 }
4129
4130 /*
4131 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
4132 */
4133 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
4134 struct cgroup_pidlist **lp)
4135 {
4136 pid_t *array;
4137 int length;
4138 int pid, n = 0; /* used for populating the array */
4139 struct css_task_iter it;
4140 struct task_struct *tsk;
4141 struct cgroup_pidlist *l;
4142
4143 lockdep_assert_held(&cgrp->pidlist_mutex);
4144
4145 /*
4146 * If cgroup gets more users after we read count, we won't have
4147 * enough space - tough. This race is indistinguishable to the
4148 * caller from the case that the additional cgroup users didn't
4149 * show up until sometime later on.
4150 */
4151 length = cgroup_task_count(cgrp);
4152 array = pidlist_allocate(length);
4153 if (!array)
4154 return -ENOMEM;
4155 /* now, populate the array */
4156 css_task_iter_start(&cgrp->self, &it);
4157 while ((tsk = css_task_iter_next(&it))) {
4158 if (unlikely(n == length))
4159 break;
4160 /* get tgid or pid for procs or tasks file respectively */
4161 if (type == CGROUP_FILE_PROCS)
4162 pid = task_tgid_vnr(tsk);
4163 else
4164 pid = task_pid_vnr(tsk);
4165 if (pid > 0) /* make sure to only use valid results */
4166 array[n++] = pid;
4167 }
4168 css_task_iter_end(&it);
4169 length = n;
4170 /* now sort & (if procs) strip out duplicates */
4171 if (cgroup_on_dfl(cgrp))
4172 sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
4173 else
4174 sort(array, length, sizeof(pid_t), cmppid, NULL);
4175 if (type == CGROUP_FILE_PROCS)
4176 length = pidlist_uniq(array, length);
4177
4178 l = cgroup_pidlist_find_create(cgrp, type);
4179 if (!l) {
4180 pidlist_free(array);
4181 return -ENOMEM;
4182 }
4183
4184 /* store array, freeing old if necessary */
4185 pidlist_free(l->list);
4186 l->list = array;
4187 l->length = length;
4188 *lp = l;
4189 return 0;
4190 }
4191
4192 /**
4193 * cgroupstats_build - build and fill cgroupstats
4194 * @stats: cgroupstats to fill information into
4195 * @dentry: A dentry entry belonging to the cgroup for which stats have
4196 * been requested.
4197 *
4198 * Build and fill cgroupstats so that taskstats can export it to user
4199 * space.
4200 */
4201 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
4202 {
4203 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
4204 struct cgroup *cgrp;
4205 struct css_task_iter it;
4206 struct task_struct *tsk;
4207
4208 /* it should be kernfs_node belonging to cgroupfs and is a directory */
4209 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
4210 kernfs_type(kn) != KERNFS_DIR)
4211 return -EINVAL;
4212
4213 mutex_lock(&cgroup_mutex);
4214
4215 /*
4216 * We aren't being called from kernfs and there's no guarantee on
4217 * @kn->priv's validity. For this and css_tryget_online_from_dir(),
4218 * @kn->priv is RCU safe. Let's do the RCU dancing.
4219 */
4220 rcu_read_lock();
4221 cgrp = rcu_dereference(kn->priv);
4222 if (!cgrp || cgroup_is_dead(cgrp)) {
4223 rcu_read_unlock();
4224 mutex_unlock(&cgroup_mutex);
4225 return -ENOENT;
4226 }
4227 rcu_read_unlock();
4228
4229 css_task_iter_start(&cgrp->self, &it);
4230 while ((tsk = css_task_iter_next(&it))) {
4231 switch (tsk->state) {
4232 case TASK_RUNNING:
4233 stats->nr_running++;
4234 break;
4235 case TASK_INTERRUPTIBLE:
4236 stats->nr_sleeping++;
4237 break;
4238 case TASK_UNINTERRUPTIBLE:
4239 stats->nr_uninterruptible++;
4240 break;
4241 case TASK_STOPPED:
4242 stats->nr_stopped++;
4243 break;
4244 default:
4245 if (delayacct_is_task_waiting_on_io(tsk))
4246 stats->nr_io_wait++;
4247 break;
4248 }
4249 }
4250 css_task_iter_end(&it);
4251
4252 mutex_unlock(&cgroup_mutex);
4253 return 0;
4254 }
4255
4256
4257 /*
4258 * seq_file methods for the tasks/procs files. The seq_file position is the
4259 * next pid to display; the seq_file iterator is a pointer to the pid
4260 * in the cgroup->l->list array.
4261 */
4262
4263 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
4264 {
4265 /*
4266 * Initially we receive a position value that corresponds to
4267 * one more than the last pid shown (or 0 on the first call or
4268 * after a seek to the start). Use a binary-search to find the
4269 * next pid to display, if any
4270 */
4271 struct kernfs_open_file *of = s->private;
4272 struct cgroup *cgrp = seq_css(s)->cgroup;
4273 struct cgroup_pidlist *l;
4274 enum cgroup_filetype type = seq_cft(s)->private;
4275 int index = 0, pid = *pos;
4276 int *iter, ret;
4277
4278 mutex_lock(&cgrp->pidlist_mutex);
4279
4280 /*
4281 * !NULL @of->priv indicates that this isn't the first start()
4282 * after open. If the matching pidlist is around, we can use that.
4283 * Look for it. Note that @of->priv can't be used directly. It
4284 * could already have been destroyed.
4285 */
4286 if (of->priv)
4287 of->priv = cgroup_pidlist_find(cgrp, type);
4288
4289 /*
4290 * Either this is the first start() after open or the matching
4291 * pidlist has been destroyed inbetween. Create a new one.
4292 */
4293 if (!of->priv) {
4294 ret = pidlist_array_load(cgrp, type,
4295 (struct cgroup_pidlist **)&of->priv);
4296 if (ret)
4297 return ERR_PTR(ret);
4298 }
4299 l = of->priv;
4300
4301 if (pid) {
4302 int end = l->length;
4303
4304 while (index < end) {
4305 int mid = (index + end) / 2;
4306 if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
4307 index = mid;
4308 break;
4309 } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
4310 index = mid + 1;
4311 else
4312 end = mid;
4313 }
4314 }
4315 /* If we're off the end of the array, we're done */
4316 if (index >= l->length)
4317 return NULL;
4318 /* Update the abstract position to be the actual pid that we found */
4319 iter = l->list + index;
4320 *pos = cgroup_pid_fry(cgrp, *iter);
4321 return iter;
4322 }
4323
4324 static void cgroup_pidlist_stop(struct seq_file *s, void *v)
4325 {
4326 struct kernfs_open_file *of = s->private;
4327 struct cgroup_pidlist *l = of->priv;
4328
4329 if (l)
4330 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
4331 CGROUP_PIDLIST_DESTROY_DELAY);
4332 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
4333 }
4334
4335 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
4336 {
4337 struct kernfs_open_file *of = s->private;
4338 struct cgroup_pidlist *l = of->priv;
4339 pid_t *p = v;
4340 pid_t *end = l->list + l->length;
4341 /*
4342 * Advance to the next pid in the array. If this goes off the
4343 * end, we're done
4344 */
4345 p++;
4346 if (p >= end) {
4347 return NULL;
4348 } else {
4349 *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
4350 return p;
4351 }
4352 }
4353
4354 static int cgroup_pidlist_show(struct seq_file *s, void *v)
4355 {
4356 seq_printf(s, "%d\n", *(int *)v);
4357
4358 return 0;
4359 }
4360
4361 static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
4362 struct cftype *cft)
4363 {
4364 return notify_on_release(css->cgroup);
4365 }
4366
4367 static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
4368 struct cftype *cft, u64 val)
4369 {
4370 if (val)
4371 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
4372 else
4373 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
4374 return 0;
4375 }
4376
4377 static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
4378 struct cftype *cft)
4379 {
4380 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4381 }
4382
4383 static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
4384 struct cftype *cft, u64 val)
4385 {
4386 if (val)
4387 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4388 else
4389 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4390 return 0;
4391 }
4392
4393 /* cgroup core interface files for the default hierarchy */
4394 static struct cftype cgroup_dfl_base_files[] = {
4395 {
4396 .name = "cgroup.procs",
4397 .seq_start = cgroup_pidlist_start,
4398 .seq_next = cgroup_pidlist_next,
4399 .seq_stop = cgroup_pidlist_stop,
4400 .seq_show = cgroup_pidlist_show,
4401 .private = CGROUP_FILE_PROCS,
4402 .write = cgroup_procs_write,
4403 },
4404 {
4405 .name = "cgroup.controllers",
4406 .flags = CFTYPE_ONLY_ON_ROOT,
4407 .seq_show = cgroup_root_controllers_show,
4408 },
4409 {
4410 .name = "cgroup.controllers",
4411 .flags = CFTYPE_NOT_ON_ROOT,
4412 .seq_show = cgroup_controllers_show,
4413 },
4414 {
4415 .name = "cgroup.subtree_control",
4416 .seq_show = cgroup_subtree_control_show,
4417 .write = cgroup_subtree_control_write,
4418 },
4419 {
4420 .name = "cgroup.events",
4421 .flags = CFTYPE_NOT_ON_ROOT,
4422 .seq_show = cgroup_events_show,
4423 },
4424 { } /* terminate */
4425 };
4426
4427 /* cgroup core interface files for the legacy hierarchies */
4428 static struct cftype cgroup_legacy_base_files[] = {
4429 {
4430 .name = "cgroup.procs",
4431 .seq_start = cgroup_pidlist_start,
4432 .seq_next = cgroup_pidlist_next,
4433 .seq_stop = cgroup_pidlist_stop,
4434 .seq_show = cgroup_pidlist_show,
4435 .private = CGROUP_FILE_PROCS,
4436 .write = cgroup_procs_write,
4437 },
4438 {
4439 .name = "cgroup.clone_children",
4440 .read_u64 = cgroup_clone_children_read,
4441 .write_u64 = cgroup_clone_children_write,
4442 },
4443 {
4444 .name = "cgroup.sane_behavior",
4445 .flags = CFTYPE_ONLY_ON_ROOT,
4446 .seq_show = cgroup_sane_behavior_show,
4447 },
4448 {
4449 .name = "tasks",
4450 .seq_start = cgroup_pidlist_start,
4451 .seq_next = cgroup_pidlist_next,
4452 .seq_stop = cgroup_pidlist_stop,
4453 .seq_show = cgroup_pidlist_show,
4454 .private = CGROUP_FILE_TASKS,
4455 .write = cgroup_tasks_write,
4456 },
4457 {
4458 .name = "notify_on_release",
4459 .read_u64 = cgroup_read_notify_on_release,
4460 .write_u64 = cgroup_write_notify_on_release,
4461 },
4462 {
4463 .name = "release_agent",
4464 .flags = CFTYPE_ONLY_ON_ROOT,
4465 .seq_show = cgroup_release_agent_show,
4466 .write = cgroup_release_agent_write,
4467 .max_write_len = PATH_MAX - 1,
4468 },
4469 { } /* terminate */
4470 };
4471
4472 /*
4473 * css destruction is four-stage process.
4474 *
4475 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4476 * Implemented in kill_css().
4477 *
4478 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
4479 * and thus css_tryget_online() is guaranteed to fail, the css can be
4480 * offlined by invoking offline_css(). After offlining, the base ref is
4481 * put. Implemented in css_killed_work_fn().
4482 *
4483 * 3. When the percpu_ref reaches zero, the only possible remaining
4484 * accessors are inside RCU read sections. css_release() schedules the
4485 * RCU callback.
4486 *
4487 * 4. After the grace period, the css can be freed. Implemented in
4488 * css_free_work_fn().
4489 *
4490 * It is actually hairier because both step 2 and 4 require process context
4491 * and thus involve punting to css->destroy_work adding two additional
4492 * steps to the already complex sequence.
4493 */
4494 static void css_free_work_fn(struct work_struct *work)
4495 {
4496 struct cgroup_subsys_state *css =
4497 container_of(work, struct cgroup_subsys_state, destroy_work);
4498 struct cgroup_subsys *ss = css->ss;
4499 struct cgroup *cgrp = css->cgroup;
4500
4501 percpu_ref_exit(&css->refcnt);
4502
4503 if (ss) {
4504 /* css free path */
4505 int id = css->id;
4506
4507 if (css->parent)
4508 css_put(css->parent);
4509
4510 ss->css_free(css);
4511 cgroup_idr_remove(&ss->css_idr, id);
4512 cgroup_put(cgrp);
4513 } else {
4514 /* cgroup free path */
4515 atomic_dec(&cgrp->root->nr_cgrps);
4516 cgroup_pidlist_destroy_all(cgrp);
4517 cancel_work_sync(&cgrp->release_agent_work);
4518
4519 if (cgroup_parent(cgrp)) {
4520 /*
4521 * We get a ref to the parent, and put the ref when
4522 * this cgroup is being freed, so it's guaranteed
4523 * that the parent won't be destroyed before its
4524 * children.
4525 */
4526 cgroup_put(cgroup_parent(cgrp));
4527 kernfs_put(cgrp->kn);
4528 kfree(cgrp);
4529 } else {
4530 /*
4531 * This is root cgroup's refcnt reaching zero,
4532 * which indicates that the root should be
4533 * released.
4534 */
4535 cgroup_destroy_root(cgrp->root);
4536 }
4537 }
4538 }
4539
4540 static void css_free_rcu_fn(struct rcu_head *rcu_head)
4541 {
4542 struct cgroup_subsys_state *css =
4543 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
4544
4545 INIT_WORK(&css->destroy_work, css_free_work_fn);
4546 queue_work(cgroup_destroy_wq, &css->destroy_work);
4547 }
4548
4549 static void css_release_work_fn(struct work_struct *work)
4550 {
4551 struct cgroup_subsys_state *css =
4552 container_of(work, struct cgroup_subsys_state, destroy_work);
4553 struct cgroup_subsys *ss = css->ss;
4554 struct cgroup *cgrp = css->cgroup;
4555
4556 mutex_lock(&cgroup_mutex);
4557
4558 css->flags |= CSS_RELEASED;
4559 list_del_rcu(&css->sibling);
4560
4561 if (ss) {
4562 /* css release path */
4563 cgroup_idr_replace(&ss->css_idr, NULL, css->id);
4564 if (ss->css_released)
4565 ss->css_released(css);
4566 } else {
4567 /* cgroup release path */
4568 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4569 cgrp->id = -1;
4570
4571 /*
4572 * There are two control paths which try to determine
4573 * cgroup from dentry without going through kernfs -
4574 * cgroupstats_build() and css_tryget_online_from_dir().
4575 * Those are supported by RCU protecting clearing of
4576 * cgrp->kn->priv backpointer.
4577 */
4578 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, NULL);
4579 }
4580
4581 mutex_unlock(&cgroup_mutex);
4582
4583 call_rcu(&css->rcu_head, css_free_rcu_fn);
4584 }
4585
4586 static void css_release(struct percpu_ref *ref)
4587 {
4588 struct cgroup_subsys_state *css =
4589 container_of(ref, struct cgroup_subsys_state, refcnt);
4590
4591 INIT_WORK(&css->destroy_work, css_release_work_fn);
4592 queue_work(cgroup_destroy_wq, &css->destroy_work);
4593 }
4594
4595 static void init_and_link_css(struct cgroup_subsys_state *css,
4596 struct cgroup_subsys *ss, struct cgroup *cgrp)
4597 {
4598 lockdep_assert_held(&cgroup_mutex);
4599
4600 cgroup_get(cgrp);
4601
4602 memset(css, 0, sizeof(*css));
4603 css->cgroup = cgrp;
4604 css->ss = ss;
4605 INIT_LIST_HEAD(&css->sibling);
4606 INIT_LIST_HEAD(&css->children);
4607 css->serial_nr = css_serial_nr_next++;
4608
4609 if (cgroup_parent(cgrp)) {
4610 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
4611 css_get(css->parent);
4612 }
4613
4614 BUG_ON(cgroup_css(cgrp, ss));
4615 }
4616
4617 /* invoke ->css_online() on a new CSS and mark it online if successful */
4618 static int online_css(struct cgroup_subsys_state *css)
4619 {
4620 struct cgroup_subsys *ss = css->ss;
4621 int ret = 0;
4622
4623 lockdep_assert_held(&cgroup_mutex);
4624
4625 if (ss->css_online)
4626 ret = ss->css_online(css);
4627 if (!ret) {
4628 css->flags |= CSS_ONLINE;
4629 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
4630 }
4631 return ret;
4632 }
4633
4634 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
4635 static void offline_css(struct cgroup_subsys_state *css)
4636 {
4637 struct cgroup_subsys *ss = css->ss;
4638
4639 lockdep_assert_held(&cgroup_mutex);
4640
4641 if (!(css->flags & CSS_ONLINE))
4642 return;
4643
4644 if (ss->css_offline)
4645 ss->css_offline(css);
4646
4647 css->flags &= ~CSS_ONLINE;
4648 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
4649
4650 wake_up_all(&css->cgroup->offline_waitq);
4651 }
4652
4653 /**
4654 * create_css - create a cgroup_subsys_state
4655 * @cgrp: the cgroup new css will be associated with
4656 * @ss: the subsys of new css
4657 * @visible: whether to create control knobs for the new css or not
4658 *
4659 * Create a new css associated with @cgrp - @ss pair. On success, the new
4660 * css is online and installed in @cgrp with all interface files created if
4661 * @visible. Returns 0 on success, -errno on failure.
4662 */
4663 static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
4664 bool visible)
4665 {
4666 struct cgroup *parent = cgroup_parent(cgrp);
4667 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
4668 struct cgroup_subsys_state *css;
4669 int err;
4670
4671 lockdep_assert_held(&cgroup_mutex);
4672
4673 css = ss->css_alloc(parent_css);
4674 if (IS_ERR(css))
4675 return PTR_ERR(css);
4676
4677 init_and_link_css(css, ss, cgrp);
4678
4679 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
4680 if (err)
4681 goto err_free_css;
4682
4683 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
4684 if (err < 0)
4685 goto err_free_percpu_ref;
4686 css->id = err;
4687
4688 if (visible) {
4689 err = cgroup_populate_dir(cgrp, 1 << ss->id);
4690 if (err)
4691 goto err_free_id;
4692 }
4693
4694 /* @css is ready to be brought online now, make it visible */
4695 list_add_tail_rcu(&css->sibling, &parent_css->children);
4696 cgroup_idr_replace(&ss->css_idr, css, css->id);
4697
4698 err = online_css(css);
4699 if (err)
4700 goto err_list_del;
4701
4702 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
4703 cgroup_parent(parent)) {
4704 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4705 current->comm, current->pid, ss->name);
4706 if (!strcmp(ss->name, "memory"))
4707 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
4708 ss->warned_broken_hierarchy = true;
4709 }
4710
4711 return 0;
4712
4713 err_list_del:
4714 list_del_rcu(&css->sibling);
4715 cgroup_clear_dir(css->cgroup, 1 << css->ss->id);
4716 err_free_id:
4717 cgroup_idr_remove(&ss->css_idr, css->id);
4718 err_free_percpu_ref:
4719 percpu_ref_exit(&css->refcnt);
4720 err_free_css:
4721 call_rcu(&css->rcu_head, css_free_rcu_fn);
4722 return err;
4723 }
4724
4725 static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
4726 umode_t mode)
4727 {
4728 struct cgroup *parent, *cgrp;
4729 struct cgroup_root *root;
4730 struct cgroup_subsys *ss;
4731 struct kernfs_node *kn;
4732 struct cftype *base_files;
4733 int ssid, ret;
4734
4735 /* Do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable.
4736 */
4737 if (strchr(name, '\n'))
4738 return -EINVAL;
4739
4740 parent = cgroup_kn_lock_live(parent_kn);
4741 if (!parent)
4742 return -ENODEV;
4743 root = parent->root;
4744
4745 /* allocate the cgroup and its ID, 0 is reserved for the root */
4746 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
4747 if (!cgrp) {
4748 ret = -ENOMEM;
4749 goto out_unlock;
4750 }
4751
4752 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
4753 if (ret)
4754 goto out_free_cgrp;
4755
4756 /*
4757 * Temporarily set the pointer to NULL, so idr_find() won't return
4758 * a half-baked cgroup.
4759 */
4760 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL);
4761 if (cgrp->id < 0) {
4762 ret = -ENOMEM;
4763 goto out_cancel_ref;
4764 }
4765
4766 init_cgroup_housekeeping(cgrp);
4767
4768 cgrp->self.parent = &parent->self;
4769 cgrp->root = root;
4770
4771 if (notify_on_release(parent))
4772 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4773
4774 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4775 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
4776
4777 /* create the directory */
4778 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
4779 if (IS_ERR(kn)) {
4780 ret = PTR_ERR(kn);
4781 goto out_free_id;
4782 }
4783 cgrp->kn = kn;
4784
4785 /*
4786 * This extra ref will be put in cgroup_free_fn() and guarantees
4787 * that @cgrp->kn is always accessible.
4788 */
4789 kernfs_get(kn);
4790
4791 cgrp->self.serial_nr = css_serial_nr_next++;
4792
4793 /* allocation complete, commit to creation */
4794 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
4795 atomic_inc(&root->nr_cgrps);
4796 cgroup_get(parent);
4797
4798 /*
4799 * @cgrp is now fully operational. If something fails after this
4800 * point, it'll be released via the normal destruction path.
4801 */
4802 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
4803
4804 ret = cgroup_kn_set_ugid(kn);
4805 if (ret)
4806 goto out_destroy;
4807
4808 if (cgroup_on_dfl(cgrp))
4809 base_files = cgroup_dfl_base_files;
4810 else
4811 base_files = cgroup_legacy_base_files;
4812
4813 ret = cgroup_addrm_files(cgrp, base_files, true);
4814 if (ret)
4815 goto out_destroy;
4816
4817 /* let's create and online css's */
4818 for_each_subsys(ss, ssid) {
4819 if (parent->child_subsys_mask & (1 << ssid)) {
4820 ret = create_css(cgrp, ss,
4821 parent->subtree_control & (1 << ssid));
4822 if (ret)
4823 goto out_destroy;
4824 }
4825 }
4826
4827 /*
4828 * On the default hierarchy, a child doesn't automatically inherit
4829 * subtree_control from the parent. Each is configured manually.
4830 */
4831 if (!cgroup_on_dfl(cgrp)) {
4832 cgrp->subtree_control = parent->subtree_control;
4833 cgroup_refresh_child_subsys_mask(cgrp);
4834 }
4835
4836 kernfs_activate(kn);
4837
4838 ret = 0;
4839 goto out_unlock;
4840
4841 out_free_id:
4842 cgroup_idr_remove(&root->cgroup_idr, cgrp->id);
4843 out_cancel_ref:
4844 percpu_ref_exit(&cgrp->self.refcnt);
4845 out_free_cgrp:
4846 kfree(cgrp);
4847 out_unlock:
4848 cgroup_kn_unlock(parent_kn);
4849 return ret;
4850
4851 out_destroy:
4852 cgroup_destroy_locked(cgrp);
4853 goto out_unlock;
4854 }
4855
4856 /*
4857 * This is called when the refcnt of a css is confirmed to be killed.
4858 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
4859 * initate destruction and put the css ref from kill_css().
4860 */
4861 static void css_killed_work_fn(struct work_struct *work)
4862 {
4863 struct cgroup_subsys_state *css =
4864 container_of(work, struct cgroup_subsys_state, destroy_work);
4865
4866 mutex_lock(&cgroup_mutex);
4867 offline_css(css);
4868 mutex_unlock(&cgroup_mutex);
4869
4870 css_put(css);
4871 }
4872
4873 /* css kill confirmation processing requires process context, bounce */
4874 static void css_killed_ref_fn(struct percpu_ref *ref)
4875 {
4876 struct cgroup_subsys_state *css =
4877 container_of(ref, struct cgroup_subsys_state, refcnt);
4878
4879 INIT_WORK(&css->destroy_work, css_killed_work_fn);
4880 queue_work(cgroup_destroy_wq, &css->destroy_work);
4881 }
4882
4883 /**
4884 * kill_css - destroy a css
4885 * @css: css to destroy
4886 *
4887 * This function initiates destruction of @css by removing cgroup interface
4888 * files and putting its base reference. ->css_offline() will be invoked
4889 * asynchronously once css_tryget_online() is guaranteed to fail and when
4890 * the reference count reaches zero, @css will be released.
4891 */
4892 static void kill_css(struct cgroup_subsys_state *css)
4893 {
4894 lockdep_assert_held(&cgroup_mutex);
4895
4896 /*
4897 * This must happen before css is disassociated with its cgroup.
4898 * See seq_css() for details.
4899 */
4900 cgroup_clear_dir(css->cgroup, 1 << css->ss->id);
4901
4902 /*
4903 * Killing would put the base ref, but we need to keep it alive
4904 * until after ->css_offline().
4905 */
4906 css_get(css);
4907
4908 /*
4909 * cgroup core guarantees that, by the time ->css_offline() is
4910 * invoked, no new css reference will be given out via
4911 * css_tryget_online(). We can't simply call percpu_ref_kill() and
4912 * proceed to offlining css's because percpu_ref_kill() doesn't
4913 * guarantee that the ref is seen as killed on all CPUs on return.
4914 *
4915 * Use percpu_ref_kill_and_confirm() to get notifications as each
4916 * css is confirmed to be seen as killed on all CPUs.
4917 */
4918 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
4919 }
4920
4921 /**
4922 * cgroup_destroy_locked - the first stage of cgroup destruction
4923 * @cgrp: cgroup to be destroyed
4924 *
4925 * css's make use of percpu refcnts whose killing latency shouldn't be
4926 * exposed to userland and are RCU protected. Also, cgroup core needs to
4927 * guarantee that css_tryget_online() won't succeed by the time
4928 * ->css_offline() is invoked. To satisfy all the requirements,
4929 * destruction is implemented in the following two steps.
4930 *
4931 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
4932 * userland visible parts and start killing the percpu refcnts of
4933 * css's. Set up so that the next stage will be kicked off once all
4934 * the percpu refcnts are confirmed to be killed.
4935 *
4936 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
4937 * rest of destruction. Once all cgroup references are gone, the
4938 * cgroup is RCU-freed.
4939 *
4940 * This function implements s1. After this step, @cgrp is gone as far as
4941 * the userland is concerned and a new cgroup with the same name may be
4942 * created. As cgroup doesn't care about the names internally, this
4943 * doesn't cause any problem.
4944 */
4945 static int cgroup_destroy_locked(struct cgroup *cgrp)
4946 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
4947 {
4948 struct cgroup_subsys_state *css;
4949 bool empty;
4950 int ssid;
4951
4952 lockdep_assert_held(&cgroup_mutex);
4953
4954 /*
4955 * css_set_rwsem synchronizes access to ->cset_links and prevents
4956 * @cgrp from being removed while put_css_set() is in progress.
4957 */
4958 down_read(&css_set_rwsem);
4959 empty = list_empty(&cgrp->cset_links);
4960 up_read(&css_set_rwsem);
4961 if (!empty)
4962 return -EBUSY;
4963
4964 /*
4965 * Make sure there's no live children. We can't test emptiness of
4966 * ->self.children as dead children linger on it while being
4967 * drained; otherwise, "rmdir parent/child parent" may fail.
4968 */
4969 if (css_has_online_children(&cgrp->self))
4970 return -EBUSY;
4971
4972 /*
4973 * Mark @cgrp dead. This prevents further task migration and child
4974 * creation by disabling cgroup_lock_live_group().
4975 */
4976 cgrp->self.flags &= ~CSS_ONLINE;
4977
4978 /* initiate massacre of all css's */
4979 for_each_css(css, ssid, cgrp)
4980 kill_css(css);
4981
4982 /*
4983 * Remove @cgrp directory along with the base files. @cgrp has an
4984 * extra ref on its kn.
4985 */
4986 kernfs_remove(cgrp->kn);
4987
4988 check_for_release(cgroup_parent(cgrp));
4989
4990 /* put the base reference */
4991 percpu_ref_kill(&cgrp->self.refcnt);
4992
4993 return 0;
4994 };
4995
4996 static int cgroup_rmdir(struct kernfs_node *kn)
4997 {
4998 struct cgroup *cgrp;
4999 int ret = 0;
5000
5001 cgrp = cgroup_kn_lock_live(kn);
5002 if (!cgrp)
5003 return 0;
5004
5005 ret = cgroup_destroy_locked(cgrp);
5006
5007 cgroup_kn_unlock(kn);
5008 return ret;
5009 }
5010
5011 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5012 .remount_fs = cgroup_remount,
5013 .show_options = cgroup_show_options,
5014 .mkdir = cgroup_mkdir,
5015 .rmdir = cgroup_rmdir,
5016 .rename = cgroup_rename,
5017 };
5018
5019 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
5020 {
5021 struct cgroup_subsys_state *css;
5022
5023 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
5024
5025 mutex_lock(&cgroup_mutex);
5026
5027 idr_init(&ss->css_idr);
5028 INIT_LIST_HEAD(&ss->cfts);
5029
5030 /* Create the root cgroup state for this subsystem */
5031 ss->root = &cgrp_dfl_root;
5032 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
5033 /* We don't handle early failures gracefully */
5034 BUG_ON(IS_ERR(css));
5035 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
5036
5037 /*
5038 * Root csses are never destroyed and we can't initialize
5039 * percpu_ref during early init. Disable refcnting.
5040 */
5041 css->flags |= CSS_NO_REF;
5042
5043 if (early) {
5044 /* allocation can't be done safely during early init */
5045 css->id = 1;
5046 } else {
5047 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5048 BUG_ON(css->id < 0);
5049 }
5050
5051 /* Update the init_css_set to contain a subsys
5052 * pointer to this state - since the subsystem is
5053 * newly registered, all tasks and hence the
5054 * init_css_set is in the subsystem's root cgroup. */
5055 init_css_set.subsys[ss->id] = css;
5056
5057 have_fork_callback |= (bool)ss->fork << ss->id;
5058 have_exit_callback |= (bool)ss->exit << ss->id;
5059 have_canfork_callback |= (bool)ss->can_fork << ss->id;
5060
5061 /* At system boot, before all subsystems have been
5062 * registered, no tasks have been forked, so we don't
5063 * need to invoke fork callbacks here. */
5064 BUG_ON(!list_empty(&init_task.tasks));
5065
5066 BUG_ON(online_css(css));
5067
5068 mutex_unlock(&cgroup_mutex);
5069 }
5070
5071 /**
5072 * cgroup_init_early - cgroup initialization at system boot
5073 *
5074 * Initialize cgroups at system boot, and initialize any
5075 * subsystems that request early init.
5076 */
5077 int __init cgroup_init_early(void)
5078 {
5079 static struct cgroup_sb_opts __initdata opts;
5080 struct cgroup_subsys *ss;
5081 int i;
5082
5083 init_cgroup_root(&cgrp_dfl_root, &opts);
5084 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5085
5086 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
5087
5088 for_each_subsys(ss, i) {
5089 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
5090 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p name:id=%d:%s\n",
5091 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
5092 ss->id, ss->name);
5093 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5094 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5095
5096 ss->id = i;
5097 ss->name = cgroup_subsys_name[i];
5098 if (!ss->legacy_name)
5099 ss->legacy_name = cgroup_subsys_name[i];
5100
5101 if (ss->early_init)
5102 cgroup_init_subsys(ss, true);
5103 }
5104 return 0;
5105 }
5106
5107 /**
5108 * cgroup_init - cgroup initialization
5109 *
5110 * Register cgroup filesystem and /proc file, and initialize
5111 * any subsystems that didn't request early init.
5112 */
5113 int __init cgroup_init(void)
5114 {
5115 struct cgroup_subsys *ss;
5116 unsigned long key;
5117 int ssid, err;
5118
5119 BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem));
5120 BUG_ON(cgroup_init_cftypes(NULL, cgroup_dfl_base_files));
5121 BUG_ON(cgroup_init_cftypes(NULL, cgroup_legacy_base_files));
5122
5123 mutex_lock(&cgroup_mutex);
5124
5125 /* Add init_css_set to the hash table */
5126 key = css_set_hash(init_css_set.subsys);
5127 hash_add(css_set_table, &init_css_set.hlist, key);
5128
5129 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
5130
5131 mutex_unlock(&cgroup_mutex);
5132
5133 for_each_subsys(ss, ssid) {
5134 if (ss->early_init) {
5135 struct cgroup_subsys_state *css =
5136 init_css_set.subsys[ss->id];
5137
5138 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5139 GFP_KERNEL);
5140 BUG_ON(css->id < 0);
5141 } else {
5142 cgroup_init_subsys(ss, false);
5143 }
5144
5145 list_add_tail(&init_css_set.e_cset_node[ssid],
5146 &cgrp_dfl_root.cgrp.e_csets[ssid]);
5147
5148 /*
5149 * Setting dfl_root subsys_mask needs to consider the
5150 * disabled flag and cftype registration needs kmalloc,
5151 * both of which aren't available during early_init.
5152 */
5153 if (!cgroup_ssid_enabled(ssid))
5154 continue;
5155
5156 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5157
5158 if (cgroup_legacy_files_on_dfl && !ss->dfl_cftypes)
5159 ss->dfl_cftypes = ss->legacy_cftypes;
5160
5161 if (!ss->dfl_cftypes)
5162 cgrp_dfl_root_inhibit_ss_mask |= 1 << ss->id;
5163
5164 if (ss->dfl_cftypes == ss->legacy_cftypes) {
5165 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5166 } else {
5167 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5168 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
5169 }
5170
5171 if (ss->bind)
5172 ss->bind(init_css_set.subsys[ssid]);
5173 }
5174
5175 err = sysfs_create_mount_point(fs_kobj, "cgroup");
5176 if (err)
5177 return err;
5178
5179 err = register_filesystem(&cgroup_fs_type);
5180 if (err < 0) {
5181 sysfs_remove_mount_point(fs_kobj, "cgroup");
5182 return err;
5183 }
5184
5185 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
5186 return 0;
5187 }
5188
5189 static int __init cgroup_wq_init(void)
5190 {
5191 /*
5192 * There isn't much point in executing destruction path in
5193 * parallel. Good chunk is serialized with cgroup_mutex anyway.
5194 * Use 1 for @max_active.
5195 *
5196 * We would prefer to do this in cgroup_init() above, but that
5197 * is called before init_workqueues(): so leave this until after.
5198 */
5199 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
5200 BUG_ON(!cgroup_destroy_wq);
5201
5202 /*
5203 * Used to destroy pidlists and separate to serve as flush domain.
5204 * Cap @max_active to 1 too.
5205 */
5206 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
5207 0, 1);
5208 BUG_ON(!cgroup_pidlist_destroy_wq);
5209
5210 return 0;
5211 }
5212 core_initcall(cgroup_wq_init);
5213
5214 /*
5215 * proc_cgroup_show()
5216 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5217 * - Used for /proc/<pid>/cgroup.
5218 */
5219 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5220 struct pid *pid, struct task_struct *tsk)
5221 {
5222 char *buf, *path;
5223 int retval;
5224 struct cgroup_root *root;
5225
5226 retval = -ENOMEM;
5227 buf = kmalloc(PATH_MAX, GFP_KERNEL);
5228 if (!buf)
5229 goto out;
5230
5231 mutex_lock(&cgroup_mutex);
5232 down_read(&css_set_rwsem);
5233
5234 for_each_root(root) {
5235 struct cgroup_subsys *ss;
5236 struct cgroup *cgrp;
5237 int ssid, count = 0;
5238
5239 if (root == &cgrp_dfl_root && !cgrp_dfl_root_visible)
5240 continue;
5241
5242 seq_printf(m, "%d:", root->hierarchy_id);
5243 if (root != &cgrp_dfl_root)
5244 for_each_subsys(ss, ssid)
5245 if (root->subsys_mask & (1 << ssid))
5246 seq_printf(m, "%s%s", count++ ? "," : "",
5247 ss->legacy_name);
5248 if (strlen(root->name))
5249 seq_printf(m, "%sname=%s", count ? "," : "",
5250 root->name);
5251 seq_putc(m, ':');
5252 cgrp = task_cgroup_from_root(tsk, root);
5253 path = cgroup_path(cgrp, buf, PATH_MAX);
5254 if (!path) {
5255 retval = -ENAMETOOLONG;
5256 goto out_unlock;
5257 }
5258 seq_puts(m, path);
5259 seq_putc(m, '\n');
5260 }
5261
5262 retval = 0;
5263 out_unlock:
5264 up_read(&css_set_rwsem);
5265 mutex_unlock(&cgroup_mutex);
5266 kfree(buf);
5267 out:
5268 return retval;
5269 }
5270
5271 /* Display information about each subsystem and each hierarchy */
5272 static int proc_cgroupstats_show(struct seq_file *m, void *v)
5273 {
5274 struct cgroup_subsys *ss;
5275 int i;
5276
5277 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
5278 /*
5279 * ideally we don't want subsystems moving around while we do this.
5280 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
5281 * subsys/hierarchy state.
5282 */
5283 mutex_lock(&cgroup_mutex);
5284
5285 for_each_subsys(ss, i)
5286 seq_printf(m, "%s\t%d\t%d\t%d\n",
5287 ss->legacy_name, ss->root->hierarchy_id,
5288 atomic_read(&ss->root->nr_cgrps),
5289 cgroup_ssid_enabled(i));
5290
5291 mutex_unlock(&cgroup_mutex);
5292 return 0;
5293 }
5294
5295 static int cgroupstats_open(struct inode *inode, struct file *file)
5296 {
5297 return single_open(file, proc_cgroupstats_show, NULL);
5298 }
5299
5300 static const struct file_operations proc_cgroupstats_operations = {
5301 .open = cgroupstats_open,
5302 .read = seq_read,
5303 .llseek = seq_lseek,
5304 .release = single_release,
5305 };
5306
5307 static void **subsys_canfork_priv_p(void *ss_priv[CGROUP_CANFORK_COUNT], int i)
5308 {
5309 if (CGROUP_CANFORK_START <= i && i < CGROUP_CANFORK_END)
5310 return &ss_priv[i - CGROUP_CANFORK_START];
5311 return NULL;
5312 }
5313
5314 static void *subsys_canfork_priv(void *ss_priv[CGROUP_CANFORK_COUNT], int i)
5315 {
5316 void **private = subsys_canfork_priv_p(ss_priv, i);
5317 return private ? *private : NULL;
5318 }
5319
5320 /**
5321 * cgroup_fork - initialize cgroup related fields during copy_process()
5322 * @child: pointer to task_struct of forking parent process.
5323 *
5324 * A task is associated with the init_css_set until cgroup_post_fork()
5325 * attaches it to the parent's css_set. Empty cg_list indicates that
5326 * @child isn't holding reference to its css_set.
5327 */
5328 void cgroup_fork(struct task_struct *child)
5329 {
5330 RCU_INIT_POINTER(child->cgroups, &init_css_set);
5331 INIT_LIST_HEAD(&child->cg_list);
5332 }
5333
5334 /**
5335 * cgroup_can_fork - called on a new task before the process is exposed
5336 * @child: the task in question.
5337 *
5338 * This calls the subsystem can_fork() callbacks. If the can_fork() callback
5339 * returns an error, the fork aborts with that error code. This allows for
5340 * a cgroup subsystem to conditionally allow or deny new forks.
5341 */
5342 int cgroup_can_fork(struct task_struct *child,
5343 void *ss_priv[CGROUP_CANFORK_COUNT])
5344 {
5345 struct cgroup_subsys *ss;
5346 int i, j, ret;
5347
5348 for_each_subsys_which(ss, i, &have_canfork_callback) {
5349 ret = ss->can_fork(child, subsys_canfork_priv_p(ss_priv, i));
5350 if (ret)
5351 goto out_revert;
5352 }
5353
5354 return 0;
5355
5356 out_revert:
5357 for_each_subsys(ss, j) {
5358 if (j >= i)
5359 break;
5360 if (ss->cancel_fork)
5361 ss->cancel_fork(child, subsys_canfork_priv(ss_priv, j));
5362 }
5363
5364 return ret;
5365 }
5366
5367 /**
5368 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
5369 * @child: the task in question
5370 *
5371 * This calls the cancel_fork() callbacks if a fork failed *after*
5372 * cgroup_can_fork() succeded.
5373 */
5374 void cgroup_cancel_fork(struct task_struct *child,
5375 void *ss_priv[CGROUP_CANFORK_COUNT])
5376 {
5377 struct cgroup_subsys *ss;
5378 int i;
5379
5380 for_each_subsys(ss, i)
5381 if (ss->cancel_fork)
5382 ss->cancel_fork(child, subsys_canfork_priv(ss_priv, i));
5383 }
5384
5385 /**
5386 * cgroup_post_fork - called on a new task after adding it to the task list
5387 * @child: the task in question
5388 *
5389 * Adds the task to the list running through its css_set if necessary and
5390 * call the subsystem fork() callbacks. Has to be after the task is
5391 * visible on the task list in case we race with the first call to
5392 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5393 * list.
5394 */
5395 void cgroup_post_fork(struct task_struct *child,
5396 void *old_ss_priv[CGROUP_CANFORK_COUNT])
5397 {
5398 struct cgroup_subsys *ss;
5399 int i;
5400
5401 /*
5402 * This may race against cgroup_enable_task_cg_lists(). As that
5403 * function sets use_task_css_set_links before grabbing
5404 * tasklist_lock and we just went through tasklist_lock to add
5405 * @child, it's guaranteed that either we see the set
5406 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5407 * @child during its iteration.
5408 *
5409 * If we won the race, @child is associated with %current's
5410 * css_set. Grabbing css_set_rwsem guarantees both that the
5411 * association is stable, and, on completion of the parent's
5412 * migration, @child is visible in the source of migration or
5413 * already in the destination cgroup. This guarantee is necessary
5414 * when implementing operations which need to migrate all tasks of
5415 * a cgroup to another.
5416 *
5417 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
5418 * will remain in init_css_set. This is safe because all tasks are
5419 * in the init_css_set before cg_links is enabled and there's no
5420 * operation which transfers all tasks out of init_css_set.
5421 */
5422 if (use_task_css_set_links) {
5423 struct css_set *cset;
5424
5425 down_write(&css_set_rwsem);
5426 cset = task_css_set(current);
5427 if (list_empty(&child->cg_list)) {
5428 rcu_assign_pointer(child->cgroups, cset);
5429 list_add(&child->cg_list, &cset->tasks);
5430 get_css_set(cset);
5431 }
5432 up_write(&css_set_rwsem);
5433 }
5434
5435 /*
5436 * Call ss->fork(). This must happen after @child is linked on
5437 * css_set; otherwise, @child might change state between ->fork()
5438 * and addition to css_set.
5439 */
5440 for_each_subsys_which(ss, i, &have_fork_callback)
5441 ss->fork(child, subsys_canfork_priv(old_ss_priv, i));
5442 }
5443
5444 /**
5445 * cgroup_exit - detach cgroup from exiting task
5446 * @tsk: pointer to task_struct of exiting process
5447 *
5448 * Description: Detach cgroup from @tsk and release it.
5449 *
5450 * Note that cgroups marked notify_on_release force every task in
5451 * them to take the global cgroup_mutex mutex when exiting.
5452 * This could impact scaling on very large systems. Be reluctant to
5453 * use notify_on_release cgroups where very high task exit scaling
5454 * is required on large systems.
5455 *
5456 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
5457 * call cgroup_exit() while the task is still competent to handle
5458 * notify_on_release(), then leave the task attached to the root cgroup in
5459 * each hierarchy for the remainder of its exit. No need to bother with
5460 * init_css_set refcnting. init_css_set never goes away and we can't race
5461 * with migration path - PF_EXITING is visible to migration path.
5462 */
5463 void cgroup_exit(struct task_struct *tsk)
5464 {
5465 struct cgroup_subsys *ss;
5466 struct css_set *cset;
5467 bool put_cset = false;
5468 int i;
5469
5470 /*
5471 * Unlink from @tsk from its css_set. As migration path can't race
5472 * with us, we can check cg_list without grabbing css_set_rwsem.
5473 */
5474 if (!list_empty(&tsk->cg_list)) {
5475 down_write(&css_set_rwsem);
5476 list_del_init(&tsk->cg_list);
5477 up_write(&css_set_rwsem);
5478 put_cset = true;
5479 }
5480
5481 /* Reassign the task to the init_css_set. */
5482 cset = task_css_set(tsk);
5483 RCU_INIT_POINTER(tsk->cgroups, &init_css_set);
5484
5485 /* see cgroup_post_fork() for details */
5486 for_each_subsys_which(ss, i, &have_exit_callback) {
5487 struct cgroup_subsys_state *old_css = cset->subsys[i];
5488 struct cgroup_subsys_state *css = task_css(tsk, i);
5489
5490 ss->exit(css, old_css, tsk);
5491 }
5492
5493 if (put_cset)
5494 put_css_set(cset);
5495 }
5496
5497 static void check_for_release(struct cgroup *cgrp)
5498 {
5499 if (notify_on_release(cgrp) && !cgroup_has_tasks(cgrp) &&
5500 !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
5501 schedule_work(&cgrp->release_agent_work);
5502 }
5503
5504 /*
5505 * Notify userspace when a cgroup is released, by running the
5506 * configured release agent with the name of the cgroup (path
5507 * relative to the root of cgroup file system) as the argument.
5508 *
5509 * Most likely, this user command will try to rmdir this cgroup.
5510 *
5511 * This races with the possibility that some other task will be
5512 * attached to this cgroup before it is removed, or that some other
5513 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5514 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5515 * unused, and this cgroup will be reprieved from its death sentence,
5516 * to continue to serve a useful existence. Next time it's released,
5517 * we will get notified again, if it still has 'notify_on_release' set.
5518 *
5519 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5520 * means only wait until the task is successfully execve()'d. The
5521 * separate release agent task is forked by call_usermodehelper(),
5522 * then control in this thread returns here, without waiting for the
5523 * release agent task. We don't bother to wait because the caller of
5524 * this routine has no use for the exit status of the release agent
5525 * task, so no sense holding our caller up for that.
5526 */
5527 static void cgroup_release_agent(struct work_struct *work)
5528 {
5529 struct cgroup *cgrp =
5530 container_of(work, struct cgroup, release_agent_work);
5531 char *pathbuf = NULL, *agentbuf = NULL, *path;
5532 char *argv[3], *envp[3];
5533
5534 mutex_lock(&cgroup_mutex);
5535
5536 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
5537 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5538 if (!pathbuf || !agentbuf)
5539 goto out;
5540
5541 path = cgroup_path(cgrp, pathbuf, PATH_MAX);
5542 if (!path)
5543 goto out;
5544
5545 argv[0] = agentbuf;
5546 argv[1] = path;
5547 argv[2] = NULL;
5548
5549 /* minimal command environment */
5550 envp[0] = "HOME=/";
5551 envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5552 envp[2] = NULL;
5553
5554 mutex_unlock(&cgroup_mutex);
5555 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
5556 goto out_free;
5557 out:
5558 mutex_unlock(&cgroup_mutex);
5559 out_free:
5560 kfree(agentbuf);
5561 kfree(pathbuf);
5562 }
5563
5564 static int __init cgroup_disable(char *str)
5565 {
5566 struct cgroup_subsys *ss;
5567 char *token;
5568 int i;
5569
5570 while ((token = strsep(&str, ",")) != NULL) {
5571 if (!*token)
5572 continue;
5573
5574 for_each_subsys(ss, i) {
5575 if (strcmp(token, ss->name) &&
5576 strcmp(token, ss->legacy_name))
5577 continue;
5578
5579 static_branch_disable(cgroup_subsys_enabled_key[i]);
5580 printk(KERN_INFO "Disabling %s control group subsystem\n",
5581 ss->name);
5582 break;
5583 }
5584 }
5585 return 1;
5586 }
5587 __setup("cgroup_disable=", cgroup_disable);
5588
5589 static int __init cgroup_set_legacy_files_on_dfl(char *str)
5590 {
5591 printk("cgroup: using legacy files on the default hierarchy\n");
5592 cgroup_legacy_files_on_dfl = true;
5593 return 0;
5594 }
5595 __setup("cgroup__DEVEL__legacy_files_on_dfl", cgroup_set_legacy_files_on_dfl);
5596
5597 /**
5598 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
5599 * @dentry: directory dentry of interest
5600 * @ss: subsystem of interest
5601 *
5602 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
5603 * to get the corresponding css and return it. If such css doesn't exist
5604 * or can't be pinned, an ERR_PTR value is returned.
5605 */
5606 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
5607 struct cgroup_subsys *ss)
5608 {
5609 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
5610 struct cgroup_subsys_state *css = NULL;
5611 struct cgroup *cgrp;
5612
5613 /* is @dentry a cgroup dir? */
5614 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
5615 kernfs_type(kn) != KERNFS_DIR)
5616 return ERR_PTR(-EBADF);
5617
5618 rcu_read_lock();
5619
5620 /*
5621 * This path doesn't originate from kernfs and @kn could already
5622 * have been or be removed at any point. @kn->priv is RCU
5623 * protected for this access. See css_release_work_fn() for details.
5624 */
5625 cgrp = rcu_dereference(kn->priv);
5626 if (cgrp)
5627 css = cgroup_css(cgrp, ss);
5628
5629 if (!css || !css_tryget_online(css))
5630 css = ERR_PTR(-ENOENT);
5631
5632 rcu_read_unlock();
5633 return css;
5634 }
5635
5636 /**
5637 * css_from_id - lookup css by id
5638 * @id: the cgroup id
5639 * @ss: cgroup subsys to be looked into
5640 *
5641 * Returns the css if there's valid one with @id, otherwise returns NULL.
5642 * Should be called under rcu_read_lock().
5643 */
5644 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
5645 {
5646 WARN_ON_ONCE(!rcu_read_lock_held());
5647 return id > 0 ? idr_find(&ss->css_idr, id) : NULL;
5648 }
5649
5650 #ifdef CONFIG_CGROUP_DEBUG
5651 static struct cgroup_subsys_state *
5652 debug_css_alloc(struct cgroup_subsys_state *parent_css)
5653 {
5654 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5655
5656 if (!css)
5657 return ERR_PTR(-ENOMEM);
5658
5659 return css;
5660 }
5661
5662 static void debug_css_free(struct cgroup_subsys_state *css)
5663 {
5664 kfree(css);
5665 }
5666
5667 static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
5668 struct cftype *cft)
5669 {
5670 return cgroup_task_count(css->cgroup);
5671 }
5672
5673 static u64 current_css_set_read(struct cgroup_subsys_state *css,
5674 struct cftype *cft)
5675 {
5676 return (u64)(unsigned long)current->cgroups;
5677 }
5678
5679 static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
5680 struct cftype *cft)
5681 {
5682 u64 count;
5683
5684 rcu_read_lock();
5685 count = atomic_read(&task_css_set(current)->refcount);
5686 rcu_read_unlock();
5687 return count;
5688 }
5689
5690 static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
5691 {
5692 struct cgrp_cset_link *link;
5693 struct css_set *cset;
5694 char *name_buf;
5695
5696 name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
5697 if (!name_buf)
5698 return -ENOMEM;
5699
5700 down_read(&css_set_rwsem);
5701 rcu_read_lock();
5702 cset = rcu_dereference(current->cgroups);
5703 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
5704 struct cgroup *c = link->cgrp;
5705
5706 cgroup_name(c, name_buf, NAME_MAX + 1);
5707 seq_printf(seq, "Root %d group %s\n",
5708 c->root->hierarchy_id, name_buf);
5709 }
5710 rcu_read_unlock();
5711 up_read(&css_set_rwsem);
5712 kfree(name_buf);
5713 return 0;
5714 }
5715
5716 #define MAX_TASKS_SHOWN_PER_CSS 25
5717 static int cgroup_css_links_read(struct seq_file *seq, void *v)
5718 {
5719 struct cgroup_subsys_state *css = seq_css(seq);
5720 struct cgrp_cset_link *link;
5721
5722 down_read(&css_set_rwsem);
5723 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
5724 struct css_set *cset = link->cset;
5725 struct task_struct *task;
5726 int count = 0;
5727
5728 seq_printf(seq, "css_set %p\n", cset);
5729
5730 list_for_each_entry(task, &cset->tasks, cg_list) {
5731 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5732 goto overflow;
5733 seq_printf(seq, " task %d\n", task_pid_vnr(task));
5734 }
5735
5736 list_for_each_entry(task, &cset->mg_tasks, cg_list) {
5737 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5738 goto overflow;
5739 seq_printf(seq, " task %d\n", task_pid_vnr(task));
5740 }
5741 continue;
5742 overflow:
5743 seq_puts(seq, " ...\n");
5744 }
5745 up_read(&css_set_rwsem);
5746 return 0;
5747 }
5748
5749 static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
5750 {
5751 return (!cgroup_has_tasks(css->cgroup) &&
5752 !css_has_online_children(&css->cgroup->self));
5753 }
5754
5755 static struct cftype debug_files[] = {
5756 {
5757 .name = "taskcount",
5758 .read_u64 = debug_taskcount_read,
5759 },
5760
5761 {
5762 .name = "current_css_set",
5763 .read_u64 = current_css_set_read,
5764 },
5765
5766 {
5767 .name = "current_css_set_refcount",
5768 .read_u64 = current_css_set_refcount_read,
5769 },
5770
5771 {
5772 .name = "current_css_set_cg_links",
5773 .seq_show = current_css_set_cg_links_read,
5774 },
5775
5776 {
5777 .name = "cgroup_css_links",
5778 .seq_show = cgroup_css_links_read,
5779 },
5780
5781 {
5782 .name = "releasable",
5783 .read_u64 = releasable_read,
5784 },
5785
5786 { } /* terminate */
5787 };
5788
5789 struct cgroup_subsys debug_cgrp_subsys = {
5790 .css_alloc = debug_css_alloc,
5791 .css_free = debug_css_free,
5792 .legacy_cftypes = debug_files,
5793 };
5794 #endif /* CONFIG_CGROUP_DEBUG */
This page took 0.164021 seconds and 5 git commands to generate.