cgroups: fix lock inconsistency in cgroup_clone()
[deliverable/linux.git] / kernel / cgroup.c
1 /*
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
7 * Copyright notices from the original cpuset code:
8 * --------------------------------------------------
9 * Copyright (C) 2003 BULL SA.
10 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
11 *
12 * Portions derived from Patrick Mochel's sysfs code.
13 * sysfs is Copyright (c) 2001-3 Patrick Mochel
14 *
15 * 2003-10-10 Written by Simon Derr.
16 * 2003-10-22 Updates by Stephen Hemminger.
17 * 2004 May-July Rework by Paul Jackson.
18 * ---------------------------------------------------
19 *
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
23 */
24
25 #include <linux/cgroup.h>
26 #include <linux/errno.h>
27 #include <linux/fs.h>
28 #include <linux/kernel.h>
29 #include <linux/list.h>
30 #include <linux/mm.h>
31 #include <linux/mutex.h>
32 #include <linux/mount.h>
33 #include <linux/pagemap.h>
34 #include <linux/proc_fs.h>
35 #include <linux/rcupdate.h>
36 #include <linux/sched.h>
37 #include <linux/backing-dev.h>
38 #include <linux/seq_file.h>
39 #include <linux/slab.h>
40 #include <linux/magic.h>
41 #include <linux/spinlock.h>
42 #include <linux/string.h>
43 #include <linux/sort.h>
44 #include <linux/kmod.h>
45 #include <linux/delayacct.h>
46 #include <linux/cgroupstats.h>
47 #include <linux/hash.h>
48 #include <linux/namei.h>
49
50 #include <asm/atomic.h>
51
52 static DEFINE_MUTEX(cgroup_mutex);
53
54 /* Generate an array of cgroup subsystem pointers */
55 #define SUBSYS(_x) &_x ## _subsys,
56
57 static struct cgroup_subsys *subsys[] = {
58 #include <linux/cgroup_subsys.h>
59 };
60
61 /*
62 * A cgroupfs_root represents the root of a cgroup hierarchy,
63 * and may be associated with a superblock to form an active
64 * hierarchy
65 */
66 struct cgroupfs_root {
67 struct super_block *sb;
68
69 /*
70 * The bitmask of subsystems intended to be attached to this
71 * hierarchy
72 */
73 unsigned long subsys_bits;
74
75 /* The bitmask of subsystems currently attached to this hierarchy */
76 unsigned long actual_subsys_bits;
77
78 /* A list running through the attached subsystems */
79 struct list_head subsys_list;
80
81 /* The root cgroup for this hierarchy */
82 struct cgroup top_cgroup;
83
84 /* Tracks how many cgroups are currently defined in hierarchy.*/
85 int number_of_cgroups;
86
87 /* A list running through the active hierarchies */
88 struct list_head root_list;
89
90 /* Hierarchy-specific flags */
91 unsigned long flags;
92
93 /* The path to use for release notifications. */
94 char release_agent_path[PATH_MAX];
95 };
96
97
98 /*
99 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
100 * subsystems that are otherwise unattached - it never has more than a
101 * single cgroup, and all tasks are part of that cgroup.
102 */
103 static struct cgroupfs_root rootnode;
104
105 /* The list of hierarchy roots */
106
107 static LIST_HEAD(roots);
108 static int root_count;
109
110 /* dummytop is a shorthand for the dummy hierarchy's top cgroup */
111 #define dummytop (&rootnode.top_cgroup)
112
113 /* This flag indicates whether tasks in the fork and exit paths should
114 * check for fork/exit handlers to call. This avoids us having to do
115 * extra work in the fork/exit path if none of the subsystems need to
116 * be called.
117 */
118 static int need_forkexit_callback __read_mostly;
119
120 /* convenient tests for these bits */
121 inline int cgroup_is_removed(const struct cgroup *cgrp)
122 {
123 return test_bit(CGRP_REMOVED, &cgrp->flags);
124 }
125
126 /* bits in struct cgroupfs_root flags field */
127 enum {
128 ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
129 };
130
131 static int cgroup_is_releasable(const struct cgroup *cgrp)
132 {
133 const int bits =
134 (1 << CGRP_RELEASABLE) |
135 (1 << CGRP_NOTIFY_ON_RELEASE);
136 return (cgrp->flags & bits) == bits;
137 }
138
139 static int notify_on_release(const struct cgroup *cgrp)
140 {
141 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
142 }
143
144 /*
145 * for_each_subsys() allows you to iterate on each subsystem attached to
146 * an active hierarchy
147 */
148 #define for_each_subsys(_root, _ss) \
149 list_for_each_entry(_ss, &_root->subsys_list, sibling)
150
151 /* for_each_active_root() allows you to iterate across the active hierarchies */
152 #define for_each_active_root(_root) \
153 list_for_each_entry(_root, &roots, root_list)
154
155 /* the list of cgroups eligible for automatic release. Protected by
156 * release_list_lock */
157 static LIST_HEAD(release_list);
158 static DEFINE_SPINLOCK(release_list_lock);
159 static void cgroup_release_agent(struct work_struct *work);
160 static DECLARE_WORK(release_agent_work, cgroup_release_agent);
161 static void check_for_release(struct cgroup *cgrp);
162
163 /* Link structure for associating css_set objects with cgroups */
164 struct cg_cgroup_link {
165 /*
166 * List running through cg_cgroup_links associated with a
167 * cgroup, anchored on cgroup->css_sets
168 */
169 struct list_head cgrp_link_list;
170 /*
171 * List running through cg_cgroup_links pointing at a
172 * single css_set object, anchored on css_set->cg_links
173 */
174 struct list_head cg_link_list;
175 struct css_set *cg;
176 };
177
178 /* The default css_set - used by init and its children prior to any
179 * hierarchies being mounted. It contains a pointer to the root state
180 * for each subsystem. Also used to anchor the list of css_sets. Not
181 * reference-counted, to improve performance when child cgroups
182 * haven't been created.
183 */
184
185 static struct css_set init_css_set;
186 static struct cg_cgroup_link init_css_set_link;
187
188 /* css_set_lock protects the list of css_set objects, and the
189 * chain of tasks off each css_set. Nests outside task->alloc_lock
190 * due to cgroup_iter_start() */
191 static DEFINE_RWLOCK(css_set_lock);
192 static int css_set_count;
193
194 /* hash table for cgroup groups. This improves the performance to
195 * find an existing css_set */
196 #define CSS_SET_HASH_BITS 7
197 #define CSS_SET_TABLE_SIZE (1 << CSS_SET_HASH_BITS)
198 static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE];
199
200 static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[])
201 {
202 int i;
203 int index;
204 unsigned long tmp = 0UL;
205
206 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
207 tmp += (unsigned long)css[i];
208 tmp = (tmp >> 16) ^ tmp;
209
210 index = hash_long(tmp, CSS_SET_HASH_BITS);
211
212 return &css_set_table[index];
213 }
214
215 /* We don't maintain the lists running through each css_set to its
216 * task until after the first call to cgroup_iter_start(). This
217 * reduces the fork()/exit() overhead for people who have cgroups
218 * compiled into their kernel but not actually in use */
219 static int use_task_css_set_links __read_mostly;
220
221 /* When we create or destroy a css_set, the operation simply
222 * takes/releases a reference count on all the cgroups referenced
223 * by subsystems in this css_set. This can end up multiple-counting
224 * some cgroups, but that's OK - the ref-count is just a
225 * busy/not-busy indicator; ensuring that we only count each cgroup
226 * once would require taking a global lock to ensure that no
227 * subsystems moved between hierarchies while we were doing so.
228 *
229 * Possible TODO: decide at boot time based on the number of
230 * registered subsystems and the number of CPUs or NUMA nodes whether
231 * it's better for performance to ref-count every subsystem, or to
232 * take a global lock and only add one ref count to each hierarchy.
233 */
234
235 /*
236 * unlink a css_set from the list and free it
237 */
238 static void unlink_css_set(struct css_set *cg)
239 {
240 struct cg_cgroup_link *link;
241 struct cg_cgroup_link *saved_link;
242
243 hlist_del(&cg->hlist);
244 css_set_count--;
245
246 list_for_each_entry_safe(link, saved_link, &cg->cg_links,
247 cg_link_list) {
248 list_del(&link->cg_link_list);
249 list_del(&link->cgrp_link_list);
250 kfree(link);
251 }
252 }
253
254 static void __put_css_set(struct css_set *cg, int taskexit)
255 {
256 int i;
257 /*
258 * Ensure that the refcount doesn't hit zero while any readers
259 * can see it. Similar to atomic_dec_and_lock(), but for an
260 * rwlock
261 */
262 if (atomic_add_unless(&cg->refcount, -1, 1))
263 return;
264 write_lock(&css_set_lock);
265 if (!atomic_dec_and_test(&cg->refcount)) {
266 write_unlock(&css_set_lock);
267 return;
268 }
269 unlink_css_set(cg);
270 write_unlock(&css_set_lock);
271
272 rcu_read_lock();
273 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
274 struct cgroup *cgrp = rcu_dereference(cg->subsys[i]->cgroup);
275 if (atomic_dec_and_test(&cgrp->count) &&
276 notify_on_release(cgrp)) {
277 if (taskexit)
278 set_bit(CGRP_RELEASABLE, &cgrp->flags);
279 check_for_release(cgrp);
280 }
281 }
282 rcu_read_unlock();
283 kfree(cg);
284 }
285
286 /*
287 * refcounted get/put for css_set objects
288 */
289 static inline void get_css_set(struct css_set *cg)
290 {
291 atomic_inc(&cg->refcount);
292 }
293
294 static inline void put_css_set(struct css_set *cg)
295 {
296 __put_css_set(cg, 0);
297 }
298
299 static inline void put_css_set_taskexit(struct css_set *cg)
300 {
301 __put_css_set(cg, 1);
302 }
303
304 /*
305 * find_existing_css_set() is a helper for
306 * find_css_set(), and checks to see whether an existing
307 * css_set is suitable.
308 *
309 * oldcg: the cgroup group that we're using before the cgroup
310 * transition
311 *
312 * cgrp: the cgroup that we're moving into
313 *
314 * template: location in which to build the desired set of subsystem
315 * state objects for the new cgroup group
316 */
317 static struct css_set *find_existing_css_set(
318 struct css_set *oldcg,
319 struct cgroup *cgrp,
320 struct cgroup_subsys_state *template[])
321 {
322 int i;
323 struct cgroupfs_root *root = cgrp->root;
324 struct hlist_head *hhead;
325 struct hlist_node *node;
326 struct css_set *cg;
327
328 /* Built the set of subsystem state objects that we want to
329 * see in the new css_set */
330 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
331 if (root->subsys_bits & (1UL << i)) {
332 /* Subsystem is in this hierarchy. So we want
333 * the subsystem state from the new
334 * cgroup */
335 template[i] = cgrp->subsys[i];
336 } else {
337 /* Subsystem is not in this hierarchy, so we
338 * don't want to change the subsystem state */
339 template[i] = oldcg->subsys[i];
340 }
341 }
342
343 hhead = css_set_hash(template);
344 hlist_for_each_entry(cg, node, hhead, hlist) {
345 if (!memcmp(template, cg->subsys, sizeof(cg->subsys))) {
346 /* All subsystems matched */
347 return cg;
348 }
349 }
350
351 /* No existing cgroup group matched */
352 return NULL;
353 }
354
355 static void free_cg_links(struct list_head *tmp)
356 {
357 struct cg_cgroup_link *link;
358 struct cg_cgroup_link *saved_link;
359
360 list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
361 list_del(&link->cgrp_link_list);
362 kfree(link);
363 }
364 }
365
366 /*
367 * allocate_cg_links() allocates "count" cg_cgroup_link structures
368 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
369 * success or a negative error
370 */
371 static int allocate_cg_links(int count, struct list_head *tmp)
372 {
373 struct cg_cgroup_link *link;
374 int i;
375 INIT_LIST_HEAD(tmp);
376 for (i = 0; i < count; i++) {
377 link = kmalloc(sizeof(*link), GFP_KERNEL);
378 if (!link) {
379 free_cg_links(tmp);
380 return -ENOMEM;
381 }
382 list_add(&link->cgrp_link_list, tmp);
383 }
384 return 0;
385 }
386
387 /**
388 * link_css_set - a helper function to link a css_set to a cgroup
389 * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
390 * @cg: the css_set to be linked
391 * @cgrp: the destination cgroup
392 */
393 static void link_css_set(struct list_head *tmp_cg_links,
394 struct css_set *cg, struct cgroup *cgrp)
395 {
396 struct cg_cgroup_link *link;
397
398 BUG_ON(list_empty(tmp_cg_links));
399 link = list_first_entry(tmp_cg_links, struct cg_cgroup_link,
400 cgrp_link_list);
401 link->cg = cg;
402 list_move(&link->cgrp_link_list, &cgrp->css_sets);
403 list_add(&link->cg_link_list, &cg->cg_links);
404 }
405
406 /*
407 * find_css_set() takes an existing cgroup group and a
408 * cgroup object, and returns a css_set object that's
409 * equivalent to the old group, but with the given cgroup
410 * substituted into the appropriate hierarchy. Must be called with
411 * cgroup_mutex held
412 */
413 static struct css_set *find_css_set(
414 struct css_set *oldcg, struct cgroup *cgrp)
415 {
416 struct css_set *res;
417 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
418 int i;
419
420 struct list_head tmp_cg_links;
421
422 struct hlist_head *hhead;
423
424 /* First see if we already have a cgroup group that matches
425 * the desired set */
426 read_lock(&css_set_lock);
427 res = find_existing_css_set(oldcg, cgrp, template);
428 if (res)
429 get_css_set(res);
430 read_unlock(&css_set_lock);
431
432 if (res)
433 return res;
434
435 res = kmalloc(sizeof(*res), GFP_KERNEL);
436 if (!res)
437 return NULL;
438
439 /* Allocate all the cg_cgroup_link objects that we'll need */
440 if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
441 kfree(res);
442 return NULL;
443 }
444
445 atomic_set(&res->refcount, 1);
446 INIT_LIST_HEAD(&res->cg_links);
447 INIT_LIST_HEAD(&res->tasks);
448 INIT_HLIST_NODE(&res->hlist);
449
450 /* Copy the set of subsystem state objects generated in
451 * find_existing_css_set() */
452 memcpy(res->subsys, template, sizeof(res->subsys));
453
454 write_lock(&css_set_lock);
455 /* Add reference counts and links from the new css_set. */
456 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
457 struct cgroup *cgrp = res->subsys[i]->cgroup;
458 struct cgroup_subsys *ss = subsys[i];
459 atomic_inc(&cgrp->count);
460 /*
461 * We want to add a link once per cgroup, so we
462 * only do it for the first subsystem in each
463 * hierarchy
464 */
465 if (ss->root->subsys_list.next == &ss->sibling)
466 link_css_set(&tmp_cg_links, res, cgrp);
467 }
468 if (list_empty(&rootnode.subsys_list))
469 link_css_set(&tmp_cg_links, res, dummytop);
470
471 BUG_ON(!list_empty(&tmp_cg_links));
472
473 css_set_count++;
474
475 /* Add this cgroup group to the hash table */
476 hhead = css_set_hash(res->subsys);
477 hlist_add_head(&res->hlist, hhead);
478
479 write_unlock(&css_set_lock);
480
481 return res;
482 }
483
484 /*
485 * There is one global cgroup mutex. We also require taking
486 * task_lock() when dereferencing a task's cgroup subsys pointers.
487 * See "The task_lock() exception", at the end of this comment.
488 *
489 * A task must hold cgroup_mutex to modify cgroups.
490 *
491 * Any task can increment and decrement the count field without lock.
492 * So in general, code holding cgroup_mutex can't rely on the count
493 * field not changing. However, if the count goes to zero, then only
494 * cgroup_attach_task() can increment it again. Because a count of zero
495 * means that no tasks are currently attached, therefore there is no
496 * way a task attached to that cgroup can fork (the other way to
497 * increment the count). So code holding cgroup_mutex can safely
498 * assume that if the count is zero, it will stay zero. Similarly, if
499 * a task holds cgroup_mutex on a cgroup with zero count, it
500 * knows that the cgroup won't be removed, as cgroup_rmdir()
501 * needs that mutex.
502 *
503 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
504 * (usually) take cgroup_mutex. These are the two most performance
505 * critical pieces of code here. The exception occurs on cgroup_exit(),
506 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
507 * is taken, and if the cgroup count is zero, a usermode call made
508 * to the release agent with the name of the cgroup (path relative to
509 * the root of cgroup file system) as the argument.
510 *
511 * A cgroup can only be deleted if both its 'count' of using tasks
512 * is zero, and its list of 'children' cgroups is empty. Since all
513 * tasks in the system use _some_ cgroup, and since there is always at
514 * least one task in the system (init, pid == 1), therefore, top_cgroup
515 * always has either children cgroups and/or using tasks. So we don't
516 * need a special hack to ensure that top_cgroup cannot be deleted.
517 *
518 * The task_lock() exception
519 *
520 * The need for this exception arises from the action of
521 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
522 * another. It does so using cgroup_mutex, however there are
523 * several performance critical places that need to reference
524 * task->cgroup without the expense of grabbing a system global
525 * mutex. Therefore except as noted below, when dereferencing or, as
526 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
527 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
528 * the task_struct routinely used for such matters.
529 *
530 * P.S. One more locking exception. RCU is used to guard the
531 * update of a tasks cgroup pointer by cgroup_attach_task()
532 */
533
534 /**
535 * cgroup_lock - lock out any changes to cgroup structures
536 *
537 */
538 void cgroup_lock(void)
539 {
540 mutex_lock(&cgroup_mutex);
541 }
542
543 /**
544 * cgroup_unlock - release lock on cgroup changes
545 *
546 * Undo the lock taken in a previous cgroup_lock() call.
547 */
548 void cgroup_unlock(void)
549 {
550 mutex_unlock(&cgroup_mutex);
551 }
552
553 /*
554 * A couple of forward declarations required, due to cyclic reference loop:
555 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
556 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
557 * -> cgroup_mkdir.
558 */
559
560 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode);
561 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
562 static int cgroup_populate_dir(struct cgroup *cgrp);
563 static struct inode_operations cgroup_dir_inode_operations;
564 static struct file_operations proc_cgroupstats_operations;
565
566 static struct backing_dev_info cgroup_backing_dev_info = {
567 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
568 };
569
570 static struct inode *cgroup_new_inode(mode_t mode, struct super_block *sb)
571 {
572 struct inode *inode = new_inode(sb);
573
574 if (inode) {
575 inode->i_mode = mode;
576 inode->i_uid = current_fsuid();
577 inode->i_gid = current_fsgid();
578 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
579 inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
580 }
581 return inode;
582 }
583
584 /*
585 * Call subsys's pre_destroy handler.
586 * This is called before css refcnt check.
587 */
588 static void cgroup_call_pre_destroy(struct cgroup *cgrp)
589 {
590 struct cgroup_subsys *ss;
591 for_each_subsys(cgrp->root, ss)
592 if (ss->pre_destroy)
593 ss->pre_destroy(ss, cgrp);
594 return;
595 }
596
597 static void free_cgroup_rcu(struct rcu_head *obj)
598 {
599 struct cgroup *cgrp = container_of(obj, struct cgroup, rcu_head);
600
601 kfree(cgrp);
602 }
603
604 static void cgroup_diput(struct dentry *dentry, struct inode *inode)
605 {
606 /* is dentry a directory ? if so, kfree() associated cgroup */
607 if (S_ISDIR(inode->i_mode)) {
608 struct cgroup *cgrp = dentry->d_fsdata;
609 struct cgroup_subsys *ss;
610 BUG_ON(!(cgroup_is_removed(cgrp)));
611 /* It's possible for external users to be holding css
612 * reference counts on a cgroup; css_put() needs to
613 * be able to access the cgroup after decrementing
614 * the reference count in order to know if it needs to
615 * queue the cgroup to be handled by the release
616 * agent */
617 synchronize_rcu();
618
619 mutex_lock(&cgroup_mutex);
620 /*
621 * Release the subsystem state objects.
622 */
623 for_each_subsys(cgrp->root, ss)
624 ss->destroy(ss, cgrp);
625
626 cgrp->root->number_of_cgroups--;
627 mutex_unlock(&cgroup_mutex);
628
629 /*
630 * Drop the active superblock reference that we took when we
631 * created the cgroup
632 */
633 deactivate_super(cgrp->root->sb);
634
635 call_rcu(&cgrp->rcu_head, free_cgroup_rcu);
636 }
637 iput(inode);
638 }
639
640 static void remove_dir(struct dentry *d)
641 {
642 struct dentry *parent = dget(d->d_parent);
643
644 d_delete(d);
645 simple_rmdir(parent->d_inode, d);
646 dput(parent);
647 }
648
649 static void cgroup_clear_directory(struct dentry *dentry)
650 {
651 struct list_head *node;
652
653 BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
654 spin_lock(&dcache_lock);
655 node = dentry->d_subdirs.next;
656 while (node != &dentry->d_subdirs) {
657 struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
658 list_del_init(node);
659 if (d->d_inode) {
660 /* This should never be called on a cgroup
661 * directory with child cgroups */
662 BUG_ON(d->d_inode->i_mode & S_IFDIR);
663 d = dget_locked(d);
664 spin_unlock(&dcache_lock);
665 d_delete(d);
666 simple_unlink(dentry->d_inode, d);
667 dput(d);
668 spin_lock(&dcache_lock);
669 }
670 node = dentry->d_subdirs.next;
671 }
672 spin_unlock(&dcache_lock);
673 }
674
675 /*
676 * NOTE : the dentry must have been dget()'ed
677 */
678 static void cgroup_d_remove_dir(struct dentry *dentry)
679 {
680 cgroup_clear_directory(dentry);
681
682 spin_lock(&dcache_lock);
683 list_del_init(&dentry->d_u.d_child);
684 spin_unlock(&dcache_lock);
685 remove_dir(dentry);
686 }
687
688 static int rebind_subsystems(struct cgroupfs_root *root,
689 unsigned long final_bits)
690 {
691 unsigned long added_bits, removed_bits;
692 struct cgroup *cgrp = &root->top_cgroup;
693 int i;
694
695 removed_bits = root->actual_subsys_bits & ~final_bits;
696 added_bits = final_bits & ~root->actual_subsys_bits;
697 /* Check that any added subsystems are currently free */
698 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
699 unsigned long bit = 1UL << i;
700 struct cgroup_subsys *ss = subsys[i];
701 if (!(bit & added_bits))
702 continue;
703 if (ss->root != &rootnode) {
704 /* Subsystem isn't free */
705 return -EBUSY;
706 }
707 }
708
709 /* Currently we don't handle adding/removing subsystems when
710 * any child cgroups exist. This is theoretically supportable
711 * but involves complex error handling, so it's being left until
712 * later */
713 if (root->number_of_cgroups > 1)
714 return -EBUSY;
715
716 /* Process each subsystem */
717 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
718 struct cgroup_subsys *ss = subsys[i];
719 unsigned long bit = 1UL << i;
720 if (bit & added_bits) {
721 /* We're binding this subsystem to this hierarchy */
722 BUG_ON(cgrp->subsys[i]);
723 BUG_ON(!dummytop->subsys[i]);
724 BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
725 mutex_lock(&ss->hierarchy_mutex);
726 cgrp->subsys[i] = dummytop->subsys[i];
727 cgrp->subsys[i]->cgroup = cgrp;
728 list_move(&ss->sibling, &root->subsys_list);
729 ss->root = root;
730 if (ss->bind)
731 ss->bind(ss, cgrp);
732 mutex_unlock(&ss->hierarchy_mutex);
733 } else if (bit & removed_bits) {
734 /* We're removing this subsystem */
735 BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
736 BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
737 mutex_lock(&ss->hierarchy_mutex);
738 if (ss->bind)
739 ss->bind(ss, dummytop);
740 dummytop->subsys[i]->cgroup = dummytop;
741 cgrp->subsys[i] = NULL;
742 subsys[i]->root = &rootnode;
743 list_move(&ss->sibling, &rootnode.subsys_list);
744 mutex_unlock(&ss->hierarchy_mutex);
745 } else if (bit & final_bits) {
746 /* Subsystem state should already exist */
747 BUG_ON(!cgrp->subsys[i]);
748 } else {
749 /* Subsystem state shouldn't exist */
750 BUG_ON(cgrp->subsys[i]);
751 }
752 }
753 root->subsys_bits = root->actual_subsys_bits = final_bits;
754 synchronize_rcu();
755
756 return 0;
757 }
758
759 static int cgroup_show_options(struct seq_file *seq, struct vfsmount *vfs)
760 {
761 struct cgroupfs_root *root = vfs->mnt_sb->s_fs_info;
762 struct cgroup_subsys *ss;
763
764 mutex_lock(&cgroup_mutex);
765 for_each_subsys(root, ss)
766 seq_printf(seq, ",%s", ss->name);
767 if (test_bit(ROOT_NOPREFIX, &root->flags))
768 seq_puts(seq, ",noprefix");
769 if (strlen(root->release_agent_path))
770 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
771 mutex_unlock(&cgroup_mutex);
772 return 0;
773 }
774
775 struct cgroup_sb_opts {
776 unsigned long subsys_bits;
777 unsigned long flags;
778 char *release_agent;
779 };
780
781 /* Convert a hierarchy specifier into a bitmask of subsystems and
782 * flags. */
783 static int parse_cgroupfs_options(char *data,
784 struct cgroup_sb_opts *opts)
785 {
786 char *token, *o = data ?: "all";
787
788 opts->subsys_bits = 0;
789 opts->flags = 0;
790 opts->release_agent = NULL;
791
792 while ((token = strsep(&o, ",")) != NULL) {
793 if (!*token)
794 return -EINVAL;
795 if (!strcmp(token, "all")) {
796 /* Add all non-disabled subsystems */
797 int i;
798 opts->subsys_bits = 0;
799 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
800 struct cgroup_subsys *ss = subsys[i];
801 if (!ss->disabled)
802 opts->subsys_bits |= 1ul << i;
803 }
804 } else if (!strcmp(token, "noprefix")) {
805 set_bit(ROOT_NOPREFIX, &opts->flags);
806 } else if (!strncmp(token, "release_agent=", 14)) {
807 /* Specifying two release agents is forbidden */
808 if (opts->release_agent)
809 return -EINVAL;
810 opts->release_agent = kzalloc(PATH_MAX, GFP_KERNEL);
811 if (!opts->release_agent)
812 return -ENOMEM;
813 strncpy(opts->release_agent, token + 14, PATH_MAX - 1);
814 opts->release_agent[PATH_MAX - 1] = 0;
815 } else {
816 struct cgroup_subsys *ss;
817 int i;
818 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
819 ss = subsys[i];
820 if (!strcmp(token, ss->name)) {
821 if (!ss->disabled)
822 set_bit(i, &opts->subsys_bits);
823 break;
824 }
825 }
826 if (i == CGROUP_SUBSYS_COUNT)
827 return -ENOENT;
828 }
829 }
830
831 /* We can't have an empty hierarchy */
832 if (!opts->subsys_bits)
833 return -EINVAL;
834
835 return 0;
836 }
837
838 static int cgroup_remount(struct super_block *sb, int *flags, char *data)
839 {
840 int ret = 0;
841 struct cgroupfs_root *root = sb->s_fs_info;
842 struct cgroup *cgrp = &root->top_cgroup;
843 struct cgroup_sb_opts opts;
844
845 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
846 mutex_lock(&cgroup_mutex);
847
848 /* See what subsystems are wanted */
849 ret = parse_cgroupfs_options(data, &opts);
850 if (ret)
851 goto out_unlock;
852
853 /* Don't allow flags to change at remount */
854 if (opts.flags != root->flags) {
855 ret = -EINVAL;
856 goto out_unlock;
857 }
858
859 ret = rebind_subsystems(root, opts.subsys_bits);
860
861 /* (re)populate subsystem files */
862 if (!ret)
863 cgroup_populate_dir(cgrp);
864
865 if (opts.release_agent)
866 strcpy(root->release_agent_path, opts.release_agent);
867 out_unlock:
868 if (opts.release_agent)
869 kfree(opts.release_agent);
870 mutex_unlock(&cgroup_mutex);
871 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
872 return ret;
873 }
874
875 static struct super_operations cgroup_ops = {
876 .statfs = simple_statfs,
877 .drop_inode = generic_delete_inode,
878 .show_options = cgroup_show_options,
879 .remount_fs = cgroup_remount,
880 };
881
882 static void init_cgroup_housekeeping(struct cgroup *cgrp)
883 {
884 INIT_LIST_HEAD(&cgrp->sibling);
885 INIT_LIST_HEAD(&cgrp->children);
886 INIT_LIST_HEAD(&cgrp->css_sets);
887 INIT_LIST_HEAD(&cgrp->release_list);
888 init_rwsem(&cgrp->pids_mutex);
889 }
890 static void init_cgroup_root(struct cgroupfs_root *root)
891 {
892 struct cgroup *cgrp = &root->top_cgroup;
893 INIT_LIST_HEAD(&root->subsys_list);
894 INIT_LIST_HEAD(&root->root_list);
895 root->number_of_cgroups = 1;
896 cgrp->root = root;
897 cgrp->top_cgroup = cgrp;
898 init_cgroup_housekeeping(cgrp);
899 }
900
901 static int cgroup_test_super(struct super_block *sb, void *data)
902 {
903 struct cgroupfs_root *new = data;
904 struct cgroupfs_root *root = sb->s_fs_info;
905
906 /* First check subsystems */
907 if (new->subsys_bits != root->subsys_bits)
908 return 0;
909
910 /* Next check flags */
911 if (new->flags != root->flags)
912 return 0;
913
914 return 1;
915 }
916
917 static int cgroup_set_super(struct super_block *sb, void *data)
918 {
919 int ret;
920 struct cgroupfs_root *root = data;
921
922 ret = set_anon_super(sb, NULL);
923 if (ret)
924 return ret;
925
926 sb->s_fs_info = root;
927 root->sb = sb;
928
929 sb->s_blocksize = PAGE_CACHE_SIZE;
930 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
931 sb->s_magic = CGROUP_SUPER_MAGIC;
932 sb->s_op = &cgroup_ops;
933
934 return 0;
935 }
936
937 static int cgroup_get_rootdir(struct super_block *sb)
938 {
939 struct inode *inode =
940 cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
941 struct dentry *dentry;
942
943 if (!inode)
944 return -ENOMEM;
945
946 inode->i_fop = &simple_dir_operations;
947 inode->i_op = &cgroup_dir_inode_operations;
948 /* directories start off with i_nlink == 2 (for "." entry) */
949 inc_nlink(inode);
950 dentry = d_alloc_root(inode);
951 if (!dentry) {
952 iput(inode);
953 return -ENOMEM;
954 }
955 sb->s_root = dentry;
956 return 0;
957 }
958
959 static int cgroup_get_sb(struct file_system_type *fs_type,
960 int flags, const char *unused_dev_name,
961 void *data, struct vfsmount *mnt)
962 {
963 struct cgroup_sb_opts opts;
964 int ret = 0;
965 struct super_block *sb;
966 struct cgroupfs_root *root;
967 struct list_head tmp_cg_links;
968
969 /* First find the desired set of subsystems */
970 ret = parse_cgroupfs_options(data, &opts);
971 if (ret) {
972 if (opts.release_agent)
973 kfree(opts.release_agent);
974 return ret;
975 }
976
977 root = kzalloc(sizeof(*root), GFP_KERNEL);
978 if (!root) {
979 if (opts.release_agent)
980 kfree(opts.release_agent);
981 return -ENOMEM;
982 }
983
984 init_cgroup_root(root);
985 root->subsys_bits = opts.subsys_bits;
986 root->flags = opts.flags;
987 if (opts.release_agent) {
988 strcpy(root->release_agent_path, opts.release_agent);
989 kfree(opts.release_agent);
990 }
991
992 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, root);
993
994 if (IS_ERR(sb)) {
995 kfree(root);
996 return PTR_ERR(sb);
997 }
998
999 if (sb->s_fs_info != root) {
1000 /* Reusing an existing superblock */
1001 BUG_ON(sb->s_root == NULL);
1002 kfree(root);
1003 root = NULL;
1004 } else {
1005 /* New superblock */
1006 struct cgroup *root_cgrp = &root->top_cgroup;
1007 struct inode *inode;
1008 int i;
1009
1010 BUG_ON(sb->s_root != NULL);
1011
1012 ret = cgroup_get_rootdir(sb);
1013 if (ret)
1014 goto drop_new_super;
1015 inode = sb->s_root->d_inode;
1016
1017 mutex_lock(&inode->i_mutex);
1018 mutex_lock(&cgroup_mutex);
1019
1020 /*
1021 * We're accessing css_set_count without locking
1022 * css_set_lock here, but that's OK - it can only be
1023 * increased by someone holding cgroup_lock, and
1024 * that's us. The worst that can happen is that we
1025 * have some link structures left over
1026 */
1027 ret = allocate_cg_links(css_set_count, &tmp_cg_links);
1028 if (ret) {
1029 mutex_unlock(&cgroup_mutex);
1030 mutex_unlock(&inode->i_mutex);
1031 goto drop_new_super;
1032 }
1033
1034 ret = rebind_subsystems(root, root->subsys_bits);
1035 if (ret == -EBUSY) {
1036 mutex_unlock(&cgroup_mutex);
1037 mutex_unlock(&inode->i_mutex);
1038 goto free_cg_links;
1039 }
1040
1041 /* EBUSY should be the only error here */
1042 BUG_ON(ret);
1043
1044 list_add(&root->root_list, &roots);
1045 root_count++;
1046
1047 sb->s_root->d_fsdata = root_cgrp;
1048 root->top_cgroup.dentry = sb->s_root;
1049
1050 /* Link the top cgroup in this hierarchy into all
1051 * the css_set objects */
1052 write_lock(&css_set_lock);
1053 for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
1054 struct hlist_head *hhead = &css_set_table[i];
1055 struct hlist_node *node;
1056 struct css_set *cg;
1057
1058 hlist_for_each_entry(cg, node, hhead, hlist)
1059 link_css_set(&tmp_cg_links, cg, root_cgrp);
1060 }
1061 write_unlock(&css_set_lock);
1062
1063 free_cg_links(&tmp_cg_links);
1064
1065 BUG_ON(!list_empty(&root_cgrp->sibling));
1066 BUG_ON(!list_empty(&root_cgrp->children));
1067 BUG_ON(root->number_of_cgroups != 1);
1068
1069 cgroup_populate_dir(root_cgrp);
1070 mutex_unlock(&inode->i_mutex);
1071 mutex_unlock(&cgroup_mutex);
1072 }
1073
1074 return simple_set_mnt(mnt, sb);
1075
1076 free_cg_links:
1077 free_cg_links(&tmp_cg_links);
1078 drop_new_super:
1079 up_write(&sb->s_umount);
1080 deactivate_super(sb);
1081 return ret;
1082 }
1083
1084 static void cgroup_kill_sb(struct super_block *sb) {
1085 struct cgroupfs_root *root = sb->s_fs_info;
1086 struct cgroup *cgrp = &root->top_cgroup;
1087 int ret;
1088 struct cg_cgroup_link *link;
1089 struct cg_cgroup_link *saved_link;
1090
1091 BUG_ON(!root);
1092
1093 BUG_ON(root->number_of_cgroups != 1);
1094 BUG_ON(!list_empty(&cgrp->children));
1095 BUG_ON(!list_empty(&cgrp->sibling));
1096
1097 mutex_lock(&cgroup_mutex);
1098
1099 /* Rebind all subsystems back to the default hierarchy */
1100 ret = rebind_subsystems(root, 0);
1101 /* Shouldn't be able to fail ... */
1102 BUG_ON(ret);
1103
1104 /*
1105 * Release all the links from css_sets to this hierarchy's
1106 * root cgroup
1107 */
1108 write_lock(&css_set_lock);
1109
1110 list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
1111 cgrp_link_list) {
1112 list_del(&link->cg_link_list);
1113 list_del(&link->cgrp_link_list);
1114 kfree(link);
1115 }
1116 write_unlock(&css_set_lock);
1117
1118 list_del(&root->root_list);
1119 root_count--;
1120
1121 mutex_unlock(&cgroup_mutex);
1122
1123 kfree(root);
1124 kill_litter_super(sb);
1125 }
1126
1127 static struct file_system_type cgroup_fs_type = {
1128 .name = "cgroup",
1129 .get_sb = cgroup_get_sb,
1130 .kill_sb = cgroup_kill_sb,
1131 };
1132
1133 static inline struct cgroup *__d_cgrp(struct dentry *dentry)
1134 {
1135 return dentry->d_fsdata;
1136 }
1137
1138 static inline struct cftype *__d_cft(struct dentry *dentry)
1139 {
1140 return dentry->d_fsdata;
1141 }
1142
1143 /**
1144 * cgroup_path - generate the path of a cgroup
1145 * @cgrp: the cgroup in question
1146 * @buf: the buffer to write the path into
1147 * @buflen: the length of the buffer
1148 *
1149 * Called with cgroup_mutex held or else with an RCU-protected cgroup
1150 * reference. Writes path of cgroup into buf. Returns 0 on success,
1151 * -errno on error.
1152 */
1153 int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1154 {
1155 char *start;
1156 struct dentry *dentry = rcu_dereference(cgrp->dentry);
1157
1158 if (!dentry || cgrp == dummytop) {
1159 /*
1160 * Inactive subsystems have no dentry for their root
1161 * cgroup
1162 */
1163 strcpy(buf, "/");
1164 return 0;
1165 }
1166
1167 start = buf + buflen;
1168
1169 *--start = '\0';
1170 for (;;) {
1171 int len = dentry->d_name.len;
1172 if ((start -= len) < buf)
1173 return -ENAMETOOLONG;
1174 memcpy(start, cgrp->dentry->d_name.name, len);
1175 cgrp = cgrp->parent;
1176 if (!cgrp)
1177 break;
1178 dentry = rcu_dereference(cgrp->dentry);
1179 if (!cgrp->parent)
1180 continue;
1181 if (--start < buf)
1182 return -ENAMETOOLONG;
1183 *start = '/';
1184 }
1185 memmove(buf, start, buf + buflen - start);
1186 return 0;
1187 }
1188
1189 /*
1190 * Return the first subsystem attached to a cgroup's hierarchy, and
1191 * its subsystem id.
1192 */
1193
1194 static void get_first_subsys(const struct cgroup *cgrp,
1195 struct cgroup_subsys_state **css, int *subsys_id)
1196 {
1197 const struct cgroupfs_root *root = cgrp->root;
1198 const struct cgroup_subsys *test_ss;
1199 BUG_ON(list_empty(&root->subsys_list));
1200 test_ss = list_entry(root->subsys_list.next,
1201 struct cgroup_subsys, sibling);
1202 if (css) {
1203 *css = cgrp->subsys[test_ss->subsys_id];
1204 BUG_ON(!*css);
1205 }
1206 if (subsys_id)
1207 *subsys_id = test_ss->subsys_id;
1208 }
1209
1210 /**
1211 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
1212 * @cgrp: the cgroup the task is attaching to
1213 * @tsk: the task to be attached
1214 *
1215 * Call holding cgroup_mutex. May take task_lock of
1216 * the task 'tsk' during call.
1217 */
1218 int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
1219 {
1220 int retval = 0;
1221 struct cgroup_subsys *ss;
1222 struct cgroup *oldcgrp;
1223 struct css_set *cg;
1224 struct css_set *newcg;
1225 struct cgroupfs_root *root = cgrp->root;
1226 int subsys_id;
1227
1228 get_first_subsys(cgrp, NULL, &subsys_id);
1229
1230 /* Nothing to do if the task is already in that cgroup */
1231 oldcgrp = task_cgroup(tsk, subsys_id);
1232 if (cgrp == oldcgrp)
1233 return 0;
1234
1235 for_each_subsys(root, ss) {
1236 if (ss->can_attach) {
1237 retval = ss->can_attach(ss, cgrp, tsk);
1238 if (retval)
1239 return retval;
1240 }
1241 }
1242
1243 task_lock(tsk);
1244 cg = tsk->cgroups;
1245 get_css_set(cg);
1246 task_unlock(tsk);
1247 /*
1248 * Locate or allocate a new css_set for this task,
1249 * based on its final set of cgroups
1250 */
1251 newcg = find_css_set(cg, cgrp);
1252 put_css_set(cg);
1253 if (!newcg)
1254 return -ENOMEM;
1255
1256 task_lock(tsk);
1257 if (tsk->flags & PF_EXITING) {
1258 task_unlock(tsk);
1259 put_css_set(newcg);
1260 return -ESRCH;
1261 }
1262 rcu_assign_pointer(tsk->cgroups, newcg);
1263 task_unlock(tsk);
1264
1265 /* Update the css_set linked lists if we're using them */
1266 write_lock(&css_set_lock);
1267 if (!list_empty(&tsk->cg_list)) {
1268 list_del(&tsk->cg_list);
1269 list_add(&tsk->cg_list, &newcg->tasks);
1270 }
1271 write_unlock(&css_set_lock);
1272
1273 for_each_subsys(root, ss) {
1274 if (ss->attach)
1275 ss->attach(ss, cgrp, oldcgrp, tsk);
1276 }
1277 set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
1278 synchronize_rcu();
1279 put_css_set(cg);
1280 return 0;
1281 }
1282
1283 /*
1284 * Attach task with pid 'pid' to cgroup 'cgrp'. Call with cgroup_mutex
1285 * held. May take task_lock of task
1286 */
1287 static int attach_task_by_pid(struct cgroup *cgrp, u64 pid)
1288 {
1289 struct task_struct *tsk;
1290 const struct cred *cred = current_cred(), *tcred;
1291 int ret;
1292
1293 if (pid) {
1294 rcu_read_lock();
1295 tsk = find_task_by_vpid(pid);
1296 if (!tsk || tsk->flags & PF_EXITING) {
1297 rcu_read_unlock();
1298 return -ESRCH;
1299 }
1300
1301 tcred = __task_cred(tsk);
1302 if (cred->euid &&
1303 cred->euid != tcred->uid &&
1304 cred->euid != tcred->suid) {
1305 rcu_read_unlock();
1306 return -EACCES;
1307 }
1308 get_task_struct(tsk);
1309 rcu_read_unlock();
1310 } else {
1311 tsk = current;
1312 get_task_struct(tsk);
1313 }
1314
1315 ret = cgroup_attach_task(cgrp, tsk);
1316 put_task_struct(tsk);
1317 return ret;
1318 }
1319
1320 static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
1321 {
1322 int ret;
1323 if (!cgroup_lock_live_group(cgrp))
1324 return -ENODEV;
1325 ret = attach_task_by_pid(cgrp, pid);
1326 cgroup_unlock();
1327 return ret;
1328 }
1329
1330 /* The various types of files and directories in a cgroup file system */
1331 enum cgroup_filetype {
1332 FILE_ROOT,
1333 FILE_DIR,
1334 FILE_TASKLIST,
1335 FILE_NOTIFY_ON_RELEASE,
1336 FILE_RELEASE_AGENT,
1337 };
1338
1339 /**
1340 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
1341 * @cgrp: the cgroup to be checked for liveness
1342 *
1343 * On success, returns true; the lock should be later released with
1344 * cgroup_unlock(). On failure returns false with no lock held.
1345 */
1346 bool cgroup_lock_live_group(struct cgroup *cgrp)
1347 {
1348 mutex_lock(&cgroup_mutex);
1349 if (cgroup_is_removed(cgrp)) {
1350 mutex_unlock(&cgroup_mutex);
1351 return false;
1352 }
1353 return true;
1354 }
1355
1356 static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
1357 const char *buffer)
1358 {
1359 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
1360 if (!cgroup_lock_live_group(cgrp))
1361 return -ENODEV;
1362 strcpy(cgrp->root->release_agent_path, buffer);
1363 cgroup_unlock();
1364 return 0;
1365 }
1366
1367 static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
1368 struct seq_file *seq)
1369 {
1370 if (!cgroup_lock_live_group(cgrp))
1371 return -ENODEV;
1372 seq_puts(seq, cgrp->root->release_agent_path);
1373 seq_putc(seq, '\n');
1374 cgroup_unlock();
1375 return 0;
1376 }
1377
1378 /* A buffer size big enough for numbers or short strings */
1379 #define CGROUP_LOCAL_BUFFER_SIZE 64
1380
1381 static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
1382 struct file *file,
1383 const char __user *userbuf,
1384 size_t nbytes, loff_t *unused_ppos)
1385 {
1386 char buffer[CGROUP_LOCAL_BUFFER_SIZE];
1387 int retval = 0;
1388 char *end;
1389
1390 if (!nbytes)
1391 return -EINVAL;
1392 if (nbytes >= sizeof(buffer))
1393 return -E2BIG;
1394 if (copy_from_user(buffer, userbuf, nbytes))
1395 return -EFAULT;
1396
1397 buffer[nbytes] = 0; /* nul-terminate */
1398 strstrip(buffer);
1399 if (cft->write_u64) {
1400 u64 val = simple_strtoull(buffer, &end, 0);
1401 if (*end)
1402 return -EINVAL;
1403 retval = cft->write_u64(cgrp, cft, val);
1404 } else {
1405 s64 val = simple_strtoll(buffer, &end, 0);
1406 if (*end)
1407 return -EINVAL;
1408 retval = cft->write_s64(cgrp, cft, val);
1409 }
1410 if (!retval)
1411 retval = nbytes;
1412 return retval;
1413 }
1414
1415 static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
1416 struct file *file,
1417 const char __user *userbuf,
1418 size_t nbytes, loff_t *unused_ppos)
1419 {
1420 char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
1421 int retval = 0;
1422 size_t max_bytes = cft->max_write_len;
1423 char *buffer = local_buffer;
1424
1425 if (!max_bytes)
1426 max_bytes = sizeof(local_buffer) - 1;
1427 if (nbytes >= max_bytes)
1428 return -E2BIG;
1429 /* Allocate a dynamic buffer if we need one */
1430 if (nbytes >= sizeof(local_buffer)) {
1431 buffer = kmalloc(nbytes + 1, GFP_KERNEL);
1432 if (buffer == NULL)
1433 return -ENOMEM;
1434 }
1435 if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
1436 retval = -EFAULT;
1437 goto out;
1438 }
1439
1440 buffer[nbytes] = 0; /* nul-terminate */
1441 strstrip(buffer);
1442 retval = cft->write_string(cgrp, cft, buffer);
1443 if (!retval)
1444 retval = nbytes;
1445 out:
1446 if (buffer != local_buffer)
1447 kfree(buffer);
1448 return retval;
1449 }
1450
1451 static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
1452 size_t nbytes, loff_t *ppos)
1453 {
1454 struct cftype *cft = __d_cft(file->f_dentry);
1455 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
1456
1457 if (cgroup_is_removed(cgrp))
1458 return -ENODEV;
1459 if (cft->write)
1460 return cft->write(cgrp, cft, file, buf, nbytes, ppos);
1461 if (cft->write_u64 || cft->write_s64)
1462 return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
1463 if (cft->write_string)
1464 return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
1465 if (cft->trigger) {
1466 int ret = cft->trigger(cgrp, (unsigned int)cft->private);
1467 return ret ? ret : nbytes;
1468 }
1469 return -EINVAL;
1470 }
1471
1472 static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
1473 struct file *file,
1474 char __user *buf, size_t nbytes,
1475 loff_t *ppos)
1476 {
1477 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
1478 u64 val = cft->read_u64(cgrp, cft);
1479 int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
1480
1481 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
1482 }
1483
1484 static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
1485 struct file *file,
1486 char __user *buf, size_t nbytes,
1487 loff_t *ppos)
1488 {
1489 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
1490 s64 val = cft->read_s64(cgrp, cft);
1491 int len = sprintf(tmp, "%lld\n", (long long) val);
1492
1493 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
1494 }
1495
1496 static ssize_t cgroup_file_read(struct file *file, char __user *buf,
1497 size_t nbytes, loff_t *ppos)
1498 {
1499 struct cftype *cft = __d_cft(file->f_dentry);
1500 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
1501
1502 if (cgroup_is_removed(cgrp))
1503 return -ENODEV;
1504
1505 if (cft->read)
1506 return cft->read(cgrp, cft, file, buf, nbytes, ppos);
1507 if (cft->read_u64)
1508 return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
1509 if (cft->read_s64)
1510 return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
1511 return -EINVAL;
1512 }
1513
1514 /*
1515 * seqfile ops/methods for returning structured data. Currently just
1516 * supports string->u64 maps, but can be extended in future.
1517 */
1518
1519 struct cgroup_seqfile_state {
1520 struct cftype *cft;
1521 struct cgroup *cgroup;
1522 };
1523
1524 static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
1525 {
1526 struct seq_file *sf = cb->state;
1527 return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
1528 }
1529
1530 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
1531 {
1532 struct cgroup_seqfile_state *state = m->private;
1533 struct cftype *cft = state->cft;
1534 if (cft->read_map) {
1535 struct cgroup_map_cb cb = {
1536 .fill = cgroup_map_add,
1537 .state = m,
1538 };
1539 return cft->read_map(state->cgroup, cft, &cb);
1540 }
1541 return cft->read_seq_string(state->cgroup, cft, m);
1542 }
1543
1544 static int cgroup_seqfile_release(struct inode *inode, struct file *file)
1545 {
1546 struct seq_file *seq = file->private_data;
1547 kfree(seq->private);
1548 return single_release(inode, file);
1549 }
1550
1551 static struct file_operations cgroup_seqfile_operations = {
1552 .read = seq_read,
1553 .write = cgroup_file_write,
1554 .llseek = seq_lseek,
1555 .release = cgroup_seqfile_release,
1556 };
1557
1558 static int cgroup_file_open(struct inode *inode, struct file *file)
1559 {
1560 int err;
1561 struct cftype *cft;
1562
1563 err = generic_file_open(inode, file);
1564 if (err)
1565 return err;
1566 cft = __d_cft(file->f_dentry);
1567
1568 if (cft->read_map || cft->read_seq_string) {
1569 struct cgroup_seqfile_state *state =
1570 kzalloc(sizeof(*state), GFP_USER);
1571 if (!state)
1572 return -ENOMEM;
1573 state->cft = cft;
1574 state->cgroup = __d_cgrp(file->f_dentry->d_parent);
1575 file->f_op = &cgroup_seqfile_operations;
1576 err = single_open(file, cgroup_seqfile_show, state);
1577 if (err < 0)
1578 kfree(state);
1579 } else if (cft->open)
1580 err = cft->open(inode, file);
1581 else
1582 err = 0;
1583
1584 return err;
1585 }
1586
1587 static int cgroup_file_release(struct inode *inode, struct file *file)
1588 {
1589 struct cftype *cft = __d_cft(file->f_dentry);
1590 if (cft->release)
1591 return cft->release(inode, file);
1592 return 0;
1593 }
1594
1595 /*
1596 * cgroup_rename - Only allow simple rename of directories in place.
1597 */
1598 static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
1599 struct inode *new_dir, struct dentry *new_dentry)
1600 {
1601 if (!S_ISDIR(old_dentry->d_inode->i_mode))
1602 return -ENOTDIR;
1603 if (new_dentry->d_inode)
1604 return -EEXIST;
1605 if (old_dir != new_dir)
1606 return -EIO;
1607 return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
1608 }
1609
1610 static struct file_operations cgroup_file_operations = {
1611 .read = cgroup_file_read,
1612 .write = cgroup_file_write,
1613 .llseek = generic_file_llseek,
1614 .open = cgroup_file_open,
1615 .release = cgroup_file_release,
1616 };
1617
1618 static struct inode_operations cgroup_dir_inode_operations = {
1619 .lookup = simple_lookup,
1620 .mkdir = cgroup_mkdir,
1621 .rmdir = cgroup_rmdir,
1622 .rename = cgroup_rename,
1623 };
1624
1625 static int cgroup_create_file(struct dentry *dentry, int mode,
1626 struct super_block *sb)
1627 {
1628 static struct dentry_operations cgroup_dops = {
1629 .d_iput = cgroup_diput,
1630 };
1631
1632 struct inode *inode;
1633
1634 if (!dentry)
1635 return -ENOENT;
1636 if (dentry->d_inode)
1637 return -EEXIST;
1638
1639 inode = cgroup_new_inode(mode, sb);
1640 if (!inode)
1641 return -ENOMEM;
1642
1643 if (S_ISDIR(mode)) {
1644 inode->i_op = &cgroup_dir_inode_operations;
1645 inode->i_fop = &simple_dir_operations;
1646
1647 /* start off with i_nlink == 2 (for "." entry) */
1648 inc_nlink(inode);
1649
1650 /* start with the directory inode held, so that we can
1651 * populate it without racing with another mkdir */
1652 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
1653 } else if (S_ISREG(mode)) {
1654 inode->i_size = 0;
1655 inode->i_fop = &cgroup_file_operations;
1656 }
1657 dentry->d_op = &cgroup_dops;
1658 d_instantiate(dentry, inode);
1659 dget(dentry); /* Extra count - pin the dentry in core */
1660 return 0;
1661 }
1662
1663 /*
1664 * cgroup_create_dir - create a directory for an object.
1665 * @cgrp: the cgroup we create the directory for. It must have a valid
1666 * ->parent field. And we are going to fill its ->dentry field.
1667 * @dentry: dentry of the new cgroup
1668 * @mode: mode to set on new directory.
1669 */
1670 static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
1671 int mode)
1672 {
1673 struct dentry *parent;
1674 int error = 0;
1675
1676 parent = cgrp->parent->dentry;
1677 error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
1678 if (!error) {
1679 dentry->d_fsdata = cgrp;
1680 inc_nlink(parent->d_inode);
1681 rcu_assign_pointer(cgrp->dentry, dentry);
1682 dget(dentry);
1683 }
1684 dput(dentry);
1685
1686 return error;
1687 }
1688
1689 int cgroup_add_file(struct cgroup *cgrp,
1690 struct cgroup_subsys *subsys,
1691 const struct cftype *cft)
1692 {
1693 struct dentry *dir = cgrp->dentry;
1694 struct dentry *dentry;
1695 int error;
1696
1697 char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
1698 if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
1699 strcpy(name, subsys->name);
1700 strcat(name, ".");
1701 }
1702 strcat(name, cft->name);
1703 BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
1704 dentry = lookup_one_len(name, dir, strlen(name));
1705 if (!IS_ERR(dentry)) {
1706 error = cgroup_create_file(dentry, 0644 | S_IFREG,
1707 cgrp->root->sb);
1708 if (!error)
1709 dentry->d_fsdata = (void *)cft;
1710 dput(dentry);
1711 } else
1712 error = PTR_ERR(dentry);
1713 return error;
1714 }
1715
1716 int cgroup_add_files(struct cgroup *cgrp,
1717 struct cgroup_subsys *subsys,
1718 const struct cftype cft[],
1719 int count)
1720 {
1721 int i, err;
1722 for (i = 0; i < count; i++) {
1723 err = cgroup_add_file(cgrp, subsys, &cft[i]);
1724 if (err)
1725 return err;
1726 }
1727 return 0;
1728 }
1729
1730 /**
1731 * cgroup_task_count - count the number of tasks in a cgroup.
1732 * @cgrp: the cgroup in question
1733 *
1734 * Return the number of tasks in the cgroup.
1735 */
1736 int cgroup_task_count(const struct cgroup *cgrp)
1737 {
1738 int count = 0;
1739 struct cg_cgroup_link *link;
1740
1741 read_lock(&css_set_lock);
1742 list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
1743 count += atomic_read(&link->cg->refcount);
1744 }
1745 read_unlock(&css_set_lock);
1746 return count;
1747 }
1748
1749 /*
1750 * Advance a list_head iterator. The iterator should be positioned at
1751 * the start of a css_set
1752 */
1753 static void cgroup_advance_iter(struct cgroup *cgrp,
1754 struct cgroup_iter *it)
1755 {
1756 struct list_head *l = it->cg_link;
1757 struct cg_cgroup_link *link;
1758 struct css_set *cg;
1759
1760 /* Advance to the next non-empty css_set */
1761 do {
1762 l = l->next;
1763 if (l == &cgrp->css_sets) {
1764 it->cg_link = NULL;
1765 return;
1766 }
1767 link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
1768 cg = link->cg;
1769 } while (list_empty(&cg->tasks));
1770 it->cg_link = l;
1771 it->task = cg->tasks.next;
1772 }
1773
1774 /*
1775 * To reduce the fork() overhead for systems that are not actually
1776 * using their cgroups capability, we don't maintain the lists running
1777 * through each css_set to its tasks until we see the list actually
1778 * used - in other words after the first call to cgroup_iter_start().
1779 *
1780 * The tasklist_lock is not held here, as do_each_thread() and
1781 * while_each_thread() are protected by RCU.
1782 */
1783 static void cgroup_enable_task_cg_lists(void)
1784 {
1785 struct task_struct *p, *g;
1786 write_lock(&css_set_lock);
1787 use_task_css_set_links = 1;
1788 do_each_thread(g, p) {
1789 task_lock(p);
1790 /*
1791 * We should check if the process is exiting, otherwise
1792 * it will race with cgroup_exit() in that the list
1793 * entry won't be deleted though the process has exited.
1794 */
1795 if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
1796 list_add(&p->cg_list, &p->cgroups->tasks);
1797 task_unlock(p);
1798 } while_each_thread(g, p);
1799 write_unlock(&css_set_lock);
1800 }
1801
1802 void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
1803 {
1804 /*
1805 * The first time anyone tries to iterate across a cgroup,
1806 * we need to enable the list linking each css_set to its
1807 * tasks, and fix up all existing tasks.
1808 */
1809 if (!use_task_css_set_links)
1810 cgroup_enable_task_cg_lists();
1811
1812 read_lock(&css_set_lock);
1813 it->cg_link = &cgrp->css_sets;
1814 cgroup_advance_iter(cgrp, it);
1815 }
1816
1817 struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
1818 struct cgroup_iter *it)
1819 {
1820 struct task_struct *res;
1821 struct list_head *l = it->task;
1822 struct cg_cgroup_link *link;
1823
1824 /* If the iterator cg is NULL, we have no tasks */
1825 if (!it->cg_link)
1826 return NULL;
1827 res = list_entry(l, struct task_struct, cg_list);
1828 /* Advance iterator to find next entry */
1829 l = l->next;
1830 link = list_entry(it->cg_link, struct cg_cgroup_link, cgrp_link_list);
1831 if (l == &link->cg->tasks) {
1832 /* We reached the end of this task list - move on to
1833 * the next cg_cgroup_link */
1834 cgroup_advance_iter(cgrp, it);
1835 } else {
1836 it->task = l;
1837 }
1838 return res;
1839 }
1840
1841 void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
1842 {
1843 read_unlock(&css_set_lock);
1844 }
1845
1846 static inline int started_after_time(struct task_struct *t1,
1847 struct timespec *time,
1848 struct task_struct *t2)
1849 {
1850 int start_diff = timespec_compare(&t1->start_time, time);
1851 if (start_diff > 0) {
1852 return 1;
1853 } else if (start_diff < 0) {
1854 return 0;
1855 } else {
1856 /*
1857 * Arbitrarily, if two processes started at the same
1858 * time, we'll say that the lower pointer value
1859 * started first. Note that t2 may have exited by now
1860 * so this may not be a valid pointer any longer, but
1861 * that's fine - it still serves to distinguish
1862 * between two tasks started (effectively) simultaneously.
1863 */
1864 return t1 > t2;
1865 }
1866 }
1867
1868 /*
1869 * This function is a callback from heap_insert() and is used to order
1870 * the heap.
1871 * In this case we order the heap in descending task start time.
1872 */
1873 static inline int started_after(void *p1, void *p2)
1874 {
1875 struct task_struct *t1 = p1;
1876 struct task_struct *t2 = p2;
1877 return started_after_time(t1, &t2->start_time, t2);
1878 }
1879
1880 /**
1881 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
1882 * @scan: struct cgroup_scanner containing arguments for the scan
1883 *
1884 * Arguments include pointers to callback functions test_task() and
1885 * process_task().
1886 * Iterate through all the tasks in a cgroup, calling test_task() for each,
1887 * and if it returns true, call process_task() for it also.
1888 * The test_task pointer may be NULL, meaning always true (select all tasks).
1889 * Effectively duplicates cgroup_iter_{start,next,end}()
1890 * but does not lock css_set_lock for the call to process_task().
1891 * The struct cgroup_scanner may be embedded in any structure of the caller's
1892 * creation.
1893 * It is guaranteed that process_task() will act on every task that
1894 * is a member of the cgroup for the duration of this call. This
1895 * function may or may not call process_task() for tasks that exit
1896 * or move to a different cgroup during the call, or are forked or
1897 * move into the cgroup during the call.
1898 *
1899 * Note that test_task() may be called with locks held, and may in some
1900 * situations be called multiple times for the same task, so it should
1901 * be cheap.
1902 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
1903 * pre-allocated and will be used for heap operations (and its "gt" member will
1904 * be overwritten), else a temporary heap will be used (allocation of which
1905 * may cause this function to fail).
1906 */
1907 int cgroup_scan_tasks(struct cgroup_scanner *scan)
1908 {
1909 int retval, i;
1910 struct cgroup_iter it;
1911 struct task_struct *p, *dropped;
1912 /* Never dereference latest_task, since it's not refcounted */
1913 struct task_struct *latest_task = NULL;
1914 struct ptr_heap tmp_heap;
1915 struct ptr_heap *heap;
1916 struct timespec latest_time = { 0, 0 };
1917
1918 if (scan->heap) {
1919 /* The caller supplied our heap and pre-allocated its memory */
1920 heap = scan->heap;
1921 heap->gt = &started_after;
1922 } else {
1923 /* We need to allocate our own heap memory */
1924 heap = &tmp_heap;
1925 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
1926 if (retval)
1927 /* cannot allocate the heap */
1928 return retval;
1929 }
1930
1931 again:
1932 /*
1933 * Scan tasks in the cgroup, using the scanner's "test_task" callback
1934 * to determine which are of interest, and using the scanner's
1935 * "process_task" callback to process any of them that need an update.
1936 * Since we don't want to hold any locks during the task updates,
1937 * gather tasks to be processed in a heap structure.
1938 * The heap is sorted by descending task start time.
1939 * If the statically-sized heap fills up, we overflow tasks that
1940 * started later, and in future iterations only consider tasks that
1941 * started after the latest task in the previous pass. This
1942 * guarantees forward progress and that we don't miss any tasks.
1943 */
1944 heap->size = 0;
1945 cgroup_iter_start(scan->cg, &it);
1946 while ((p = cgroup_iter_next(scan->cg, &it))) {
1947 /*
1948 * Only affect tasks that qualify per the caller's callback,
1949 * if he provided one
1950 */
1951 if (scan->test_task && !scan->test_task(p, scan))
1952 continue;
1953 /*
1954 * Only process tasks that started after the last task
1955 * we processed
1956 */
1957 if (!started_after_time(p, &latest_time, latest_task))
1958 continue;
1959 dropped = heap_insert(heap, p);
1960 if (dropped == NULL) {
1961 /*
1962 * The new task was inserted; the heap wasn't
1963 * previously full
1964 */
1965 get_task_struct(p);
1966 } else if (dropped != p) {
1967 /*
1968 * The new task was inserted, and pushed out a
1969 * different task
1970 */
1971 get_task_struct(p);
1972 put_task_struct(dropped);
1973 }
1974 /*
1975 * Else the new task was newer than anything already in
1976 * the heap and wasn't inserted
1977 */
1978 }
1979 cgroup_iter_end(scan->cg, &it);
1980
1981 if (heap->size) {
1982 for (i = 0; i < heap->size; i++) {
1983 struct task_struct *q = heap->ptrs[i];
1984 if (i == 0) {
1985 latest_time = q->start_time;
1986 latest_task = q;
1987 }
1988 /* Process the task per the caller's callback */
1989 scan->process_task(q, scan);
1990 put_task_struct(q);
1991 }
1992 /*
1993 * If we had to process any tasks at all, scan again
1994 * in case some of them were in the middle of forking
1995 * children that didn't get processed.
1996 * Not the most efficient way to do it, but it avoids
1997 * having to take callback_mutex in the fork path
1998 */
1999 goto again;
2000 }
2001 if (heap == &tmp_heap)
2002 heap_free(&tmp_heap);
2003 return 0;
2004 }
2005
2006 /*
2007 * Stuff for reading the 'tasks' file.
2008 *
2009 * Reading this file can return large amounts of data if a cgroup has
2010 * *lots* of attached tasks. So it may need several calls to read(),
2011 * but we cannot guarantee that the information we produce is correct
2012 * unless we produce it entirely atomically.
2013 *
2014 */
2015
2016 /*
2017 * Load into 'pidarray' up to 'npids' of the tasks using cgroup
2018 * 'cgrp'. Return actual number of pids loaded. No need to
2019 * task_lock(p) when reading out p->cgroup, since we're in an RCU
2020 * read section, so the css_set can't go away, and is
2021 * immutable after creation.
2022 */
2023 static int pid_array_load(pid_t *pidarray, int npids, struct cgroup *cgrp)
2024 {
2025 int n = 0, pid;
2026 struct cgroup_iter it;
2027 struct task_struct *tsk;
2028 cgroup_iter_start(cgrp, &it);
2029 while ((tsk = cgroup_iter_next(cgrp, &it))) {
2030 if (unlikely(n == npids))
2031 break;
2032 pid = task_pid_vnr(tsk);
2033 if (pid > 0)
2034 pidarray[n++] = pid;
2035 }
2036 cgroup_iter_end(cgrp, &it);
2037 return n;
2038 }
2039
2040 /**
2041 * cgroupstats_build - build and fill cgroupstats
2042 * @stats: cgroupstats to fill information into
2043 * @dentry: A dentry entry belonging to the cgroup for which stats have
2044 * been requested.
2045 *
2046 * Build and fill cgroupstats so that taskstats can export it to user
2047 * space.
2048 */
2049 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
2050 {
2051 int ret = -EINVAL;
2052 struct cgroup *cgrp;
2053 struct cgroup_iter it;
2054 struct task_struct *tsk;
2055
2056 /*
2057 * Validate dentry by checking the superblock operations,
2058 * and make sure it's a directory.
2059 */
2060 if (dentry->d_sb->s_op != &cgroup_ops ||
2061 !S_ISDIR(dentry->d_inode->i_mode))
2062 goto err;
2063
2064 ret = 0;
2065 cgrp = dentry->d_fsdata;
2066
2067 cgroup_iter_start(cgrp, &it);
2068 while ((tsk = cgroup_iter_next(cgrp, &it))) {
2069 switch (tsk->state) {
2070 case TASK_RUNNING:
2071 stats->nr_running++;
2072 break;
2073 case TASK_INTERRUPTIBLE:
2074 stats->nr_sleeping++;
2075 break;
2076 case TASK_UNINTERRUPTIBLE:
2077 stats->nr_uninterruptible++;
2078 break;
2079 case TASK_STOPPED:
2080 stats->nr_stopped++;
2081 break;
2082 default:
2083 if (delayacct_is_task_waiting_on_io(tsk))
2084 stats->nr_io_wait++;
2085 break;
2086 }
2087 }
2088 cgroup_iter_end(cgrp, &it);
2089
2090 err:
2091 return ret;
2092 }
2093
2094 static int cmppid(const void *a, const void *b)
2095 {
2096 return *(pid_t *)a - *(pid_t *)b;
2097 }
2098
2099
2100 /*
2101 * seq_file methods for the "tasks" file. The seq_file position is the
2102 * next pid to display; the seq_file iterator is a pointer to the pid
2103 * in the cgroup->tasks_pids array.
2104 */
2105
2106 static void *cgroup_tasks_start(struct seq_file *s, loff_t *pos)
2107 {
2108 /*
2109 * Initially we receive a position value that corresponds to
2110 * one more than the last pid shown (or 0 on the first call or
2111 * after a seek to the start). Use a binary-search to find the
2112 * next pid to display, if any
2113 */
2114 struct cgroup *cgrp = s->private;
2115 int index = 0, pid = *pos;
2116 int *iter;
2117
2118 down_read(&cgrp->pids_mutex);
2119 if (pid) {
2120 int end = cgrp->pids_length;
2121
2122 while (index < end) {
2123 int mid = (index + end) / 2;
2124 if (cgrp->tasks_pids[mid] == pid) {
2125 index = mid;
2126 break;
2127 } else if (cgrp->tasks_pids[mid] <= pid)
2128 index = mid + 1;
2129 else
2130 end = mid;
2131 }
2132 }
2133 /* If we're off the end of the array, we're done */
2134 if (index >= cgrp->pids_length)
2135 return NULL;
2136 /* Update the abstract position to be the actual pid that we found */
2137 iter = cgrp->tasks_pids + index;
2138 *pos = *iter;
2139 return iter;
2140 }
2141
2142 static void cgroup_tasks_stop(struct seq_file *s, void *v)
2143 {
2144 struct cgroup *cgrp = s->private;
2145 up_read(&cgrp->pids_mutex);
2146 }
2147
2148 static void *cgroup_tasks_next(struct seq_file *s, void *v, loff_t *pos)
2149 {
2150 struct cgroup *cgrp = s->private;
2151 int *p = v;
2152 int *end = cgrp->tasks_pids + cgrp->pids_length;
2153
2154 /*
2155 * Advance to the next pid in the array. If this goes off the
2156 * end, we're done
2157 */
2158 p++;
2159 if (p >= end) {
2160 return NULL;
2161 } else {
2162 *pos = *p;
2163 return p;
2164 }
2165 }
2166
2167 static int cgroup_tasks_show(struct seq_file *s, void *v)
2168 {
2169 return seq_printf(s, "%d\n", *(int *)v);
2170 }
2171
2172 static struct seq_operations cgroup_tasks_seq_operations = {
2173 .start = cgroup_tasks_start,
2174 .stop = cgroup_tasks_stop,
2175 .next = cgroup_tasks_next,
2176 .show = cgroup_tasks_show,
2177 };
2178
2179 static void release_cgroup_pid_array(struct cgroup *cgrp)
2180 {
2181 down_write(&cgrp->pids_mutex);
2182 BUG_ON(!cgrp->pids_use_count);
2183 if (!--cgrp->pids_use_count) {
2184 kfree(cgrp->tasks_pids);
2185 cgrp->tasks_pids = NULL;
2186 cgrp->pids_length = 0;
2187 }
2188 up_write(&cgrp->pids_mutex);
2189 }
2190
2191 static int cgroup_tasks_release(struct inode *inode, struct file *file)
2192 {
2193 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2194
2195 if (!(file->f_mode & FMODE_READ))
2196 return 0;
2197
2198 release_cgroup_pid_array(cgrp);
2199 return seq_release(inode, file);
2200 }
2201
2202 static struct file_operations cgroup_tasks_operations = {
2203 .read = seq_read,
2204 .llseek = seq_lseek,
2205 .write = cgroup_file_write,
2206 .release = cgroup_tasks_release,
2207 };
2208
2209 /*
2210 * Handle an open on 'tasks' file. Prepare an array containing the
2211 * process id's of tasks currently attached to the cgroup being opened.
2212 */
2213
2214 static int cgroup_tasks_open(struct inode *unused, struct file *file)
2215 {
2216 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2217 pid_t *pidarray;
2218 int npids;
2219 int retval;
2220
2221 /* Nothing to do for write-only files */
2222 if (!(file->f_mode & FMODE_READ))
2223 return 0;
2224
2225 /*
2226 * If cgroup gets more users after we read count, we won't have
2227 * enough space - tough. This race is indistinguishable to the
2228 * caller from the case that the additional cgroup users didn't
2229 * show up until sometime later on.
2230 */
2231 npids = cgroup_task_count(cgrp);
2232 pidarray = kmalloc(npids * sizeof(pid_t), GFP_KERNEL);
2233 if (!pidarray)
2234 return -ENOMEM;
2235 npids = pid_array_load(pidarray, npids, cgrp);
2236 sort(pidarray, npids, sizeof(pid_t), cmppid, NULL);
2237
2238 /*
2239 * Store the array in the cgroup, freeing the old
2240 * array if necessary
2241 */
2242 down_write(&cgrp->pids_mutex);
2243 kfree(cgrp->tasks_pids);
2244 cgrp->tasks_pids = pidarray;
2245 cgrp->pids_length = npids;
2246 cgrp->pids_use_count++;
2247 up_write(&cgrp->pids_mutex);
2248
2249 file->f_op = &cgroup_tasks_operations;
2250
2251 retval = seq_open(file, &cgroup_tasks_seq_operations);
2252 if (retval) {
2253 release_cgroup_pid_array(cgrp);
2254 return retval;
2255 }
2256 ((struct seq_file *)file->private_data)->private = cgrp;
2257 return 0;
2258 }
2259
2260 static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
2261 struct cftype *cft)
2262 {
2263 return notify_on_release(cgrp);
2264 }
2265
2266 static int cgroup_write_notify_on_release(struct cgroup *cgrp,
2267 struct cftype *cft,
2268 u64 val)
2269 {
2270 clear_bit(CGRP_RELEASABLE, &cgrp->flags);
2271 if (val)
2272 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
2273 else
2274 clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
2275 return 0;
2276 }
2277
2278 /*
2279 * for the common functions, 'private' gives the type of file
2280 */
2281 static struct cftype files[] = {
2282 {
2283 .name = "tasks",
2284 .open = cgroup_tasks_open,
2285 .write_u64 = cgroup_tasks_write,
2286 .release = cgroup_tasks_release,
2287 .private = FILE_TASKLIST,
2288 },
2289
2290 {
2291 .name = "notify_on_release",
2292 .read_u64 = cgroup_read_notify_on_release,
2293 .write_u64 = cgroup_write_notify_on_release,
2294 .private = FILE_NOTIFY_ON_RELEASE,
2295 },
2296 };
2297
2298 static struct cftype cft_release_agent = {
2299 .name = "release_agent",
2300 .read_seq_string = cgroup_release_agent_show,
2301 .write_string = cgroup_release_agent_write,
2302 .max_write_len = PATH_MAX,
2303 .private = FILE_RELEASE_AGENT,
2304 };
2305
2306 static int cgroup_populate_dir(struct cgroup *cgrp)
2307 {
2308 int err;
2309 struct cgroup_subsys *ss;
2310
2311 /* First clear out any existing files */
2312 cgroup_clear_directory(cgrp->dentry);
2313
2314 err = cgroup_add_files(cgrp, NULL, files, ARRAY_SIZE(files));
2315 if (err < 0)
2316 return err;
2317
2318 if (cgrp == cgrp->top_cgroup) {
2319 if ((err = cgroup_add_file(cgrp, NULL, &cft_release_agent)) < 0)
2320 return err;
2321 }
2322
2323 for_each_subsys(cgrp->root, ss) {
2324 if (ss->populate && (err = ss->populate(ss, cgrp)) < 0)
2325 return err;
2326 }
2327
2328 return 0;
2329 }
2330
2331 static void init_cgroup_css(struct cgroup_subsys_state *css,
2332 struct cgroup_subsys *ss,
2333 struct cgroup *cgrp)
2334 {
2335 css->cgroup = cgrp;
2336 atomic_set(&css->refcnt, 1);
2337 css->flags = 0;
2338 if (cgrp == dummytop)
2339 set_bit(CSS_ROOT, &css->flags);
2340 BUG_ON(cgrp->subsys[ss->subsys_id]);
2341 cgrp->subsys[ss->subsys_id] = css;
2342 }
2343
2344 static void cgroup_lock_hierarchy(struct cgroupfs_root *root)
2345 {
2346 /* We need to take each hierarchy_mutex in a consistent order */
2347 int i;
2348
2349 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2350 struct cgroup_subsys *ss = subsys[i];
2351 if (ss->root == root)
2352 mutex_lock_nested(&ss->hierarchy_mutex, i);
2353 }
2354 }
2355
2356 static void cgroup_unlock_hierarchy(struct cgroupfs_root *root)
2357 {
2358 int i;
2359
2360 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2361 struct cgroup_subsys *ss = subsys[i];
2362 if (ss->root == root)
2363 mutex_unlock(&ss->hierarchy_mutex);
2364 }
2365 }
2366
2367 /*
2368 * cgroup_create - create a cgroup
2369 * @parent: cgroup that will be parent of the new cgroup
2370 * @dentry: dentry of the new cgroup
2371 * @mode: mode to set on new inode
2372 *
2373 * Must be called with the mutex on the parent inode held
2374 */
2375 static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
2376 int mode)
2377 {
2378 struct cgroup *cgrp;
2379 struct cgroupfs_root *root = parent->root;
2380 int err = 0;
2381 struct cgroup_subsys *ss;
2382 struct super_block *sb = root->sb;
2383
2384 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
2385 if (!cgrp)
2386 return -ENOMEM;
2387
2388 /* Grab a reference on the superblock so the hierarchy doesn't
2389 * get deleted on unmount if there are child cgroups. This
2390 * can be done outside cgroup_mutex, since the sb can't
2391 * disappear while someone has an open control file on the
2392 * fs */
2393 atomic_inc(&sb->s_active);
2394
2395 mutex_lock(&cgroup_mutex);
2396
2397 init_cgroup_housekeeping(cgrp);
2398
2399 cgrp->parent = parent;
2400 cgrp->root = parent->root;
2401 cgrp->top_cgroup = parent->top_cgroup;
2402
2403 if (notify_on_release(parent))
2404 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
2405
2406 for_each_subsys(root, ss) {
2407 struct cgroup_subsys_state *css = ss->create(ss, cgrp);
2408 if (IS_ERR(css)) {
2409 err = PTR_ERR(css);
2410 goto err_destroy;
2411 }
2412 init_cgroup_css(css, ss, cgrp);
2413 }
2414
2415 cgroup_lock_hierarchy(root);
2416 list_add(&cgrp->sibling, &cgrp->parent->children);
2417 cgroup_unlock_hierarchy(root);
2418 root->number_of_cgroups++;
2419
2420 err = cgroup_create_dir(cgrp, dentry, mode);
2421 if (err < 0)
2422 goto err_remove;
2423
2424 /* The cgroup directory was pre-locked for us */
2425 BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
2426
2427 err = cgroup_populate_dir(cgrp);
2428 /* If err < 0, we have a half-filled directory - oh well ;) */
2429
2430 mutex_unlock(&cgroup_mutex);
2431 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
2432
2433 return 0;
2434
2435 err_remove:
2436
2437 cgroup_lock_hierarchy(root);
2438 list_del(&cgrp->sibling);
2439 cgroup_unlock_hierarchy(root);
2440 root->number_of_cgroups--;
2441
2442 err_destroy:
2443
2444 for_each_subsys(root, ss) {
2445 if (cgrp->subsys[ss->subsys_id])
2446 ss->destroy(ss, cgrp);
2447 }
2448
2449 mutex_unlock(&cgroup_mutex);
2450
2451 /* Release the reference count that we took on the superblock */
2452 deactivate_super(sb);
2453
2454 kfree(cgrp);
2455 return err;
2456 }
2457
2458 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2459 {
2460 struct cgroup *c_parent = dentry->d_parent->d_fsdata;
2461
2462 /* the vfs holds inode->i_mutex already */
2463 return cgroup_create(c_parent, dentry, mode | S_IFDIR);
2464 }
2465
2466 static int cgroup_has_css_refs(struct cgroup *cgrp)
2467 {
2468 /* Check the reference count on each subsystem. Since we
2469 * already established that there are no tasks in the
2470 * cgroup, if the css refcount is also 1, then there should
2471 * be no outstanding references, so the subsystem is safe to
2472 * destroy. We scan across all subsystems rather than using
2473 * the per-hierarchy linked list of mounted subsystems since
2474 * we can be called via check_for_release() with no
2475 * synchronization other than RCU, and the subsystem linked
2476 * list isn't RCU-safe */
2477 int i;
2478 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2479 struct cgroup_subsys *ss = subsys[i];
2480 struct cgroup_subsys_state *css;
2481 /* Skip subsystems not in this hierarchy */
2482 if (ss->root != cgrp->root)
2483 continue;
2484 css = cgrp->subsys[ss->subsys_id];
2485 /* When called from check_for_release() it's possible
2486 * that by this point the cgroup has been removed
2487 * and the css deleted. But a false-positive doesn't
2488 * matter, since it can only happen if the cgroup
2489 * has been deleted and hence no longer needs the
2490 * release agent to be called anyway. */
2491 if (css && (atomic_read(&css->refcnt) > 1))
2492 return 1;
2493 }
2494 return 0;
2495 }
2496
2497 /*
2498 * Atomically mark all (or else none) of the cgroup's CSS objects as
2499 * CSS_REMOVED. Return true on success, or false if the cgroup has
2500 * busy subsystems. Call with cgroup_mutex held
2501 */
2502
2503 static int cgroup_clear_css_refs(struct cgroup *cgrp)
2504 {
2505 struct cgroup_subsys *ss;
2506 unsigned long flags;
2507 bool failed = false;
2508 local_irq_save(flags);
2509 for_each_subsys(cgrp->root, ss) {
2510 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
2511 int refcnt;
2512 do {
2513 /* We can only remove a CSS with a refcnt==1 */
2514 refcnt = atomic_read(&css->refcnt);
2515 if (refcnt > 1) {
2516 failed = true;
2517 goto done;
2518 }
2519 BUG_ON(!refcnt);
2520 /*
2521 * Drop the refcnt to 0 while we check other
2522 * subsystems. This will cause any racing
2523 * css_tryget() to spin until we set the
2524 * CSS_REMOVED bits or abort
2525 */
2526 } while (atomic_cmpxchg(&css->refcnt, refcnt, 0) != refcnt);
2527 }
2528 done:
2529 for_each_subsys(cgrp->root, ss) {
2530 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
2531 if (failed) {
2532 /*
2533 * Restore old refcnt if we previously managed
2534 * to clear it from 1 to 0
2535 */
2536 if (!atomic_read(&css->refcnt))
2537 atomic_set(&css->refcnt, 1);
2538 } else {
2539 /* Commit the fact that the CSS is removed */
2540 set_bit(CSS_REMOVED, &css->flags);
2541 }
2542 }
2543 local_irq_restore(flags);
2544 return !failed;
2545 }
2546
2547 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
2548 {
2549 struct cgroup *cgrp = dentry->d_fsdata;
2550 struct dentry *d;
2551 struct cgroup *parent;
2552
2553 /* the vfs holds both inode->i_mutex already */
2554
2555 mutex_lock(&cgroup_mutex);
2556 if (atomic_read(&cgrp->count) != 0) {
2557 mutex_unlock(&cgroup_mutex);
2558 return -EBUSY;
2559 }
2560 if (!list_empty(&cgrp->children)) {
2561 mutex_unlock(&cgroup_mutex);
2562 return -EBUSY;
2563 }
2564 mutex_unlock(&cgroup_mutex);
2565
2566 /*
2567 * Call pre_destroy handlers of subsys. Notify subsystems
2568 * that rmdir() request comes.
2569 */
2570 cgroup_call_pre_destroy(cgrp);
2571
2572 mutex_lock(&cgroup_mutex);
2573 parent = cgrp->parent;
2574
2575 if (atomic_read(&cgrp->count)
2576 || !list_empty(&cgrp->children)
2577 || !cgroup_clear_css_refs(cgrp)) {
2578 mutex_unlock(&cgroup_mutex);
2579 return -EBUSY;
2580 }
2581
2582 spin_lock(&release_list_lock);
2583 set_bit(CGRP_REMOVED, &cgrp->flags);
2584 if (!list_empty(&cgrp->release_list))
2585 list_del(&cgrp->release_list);
2586 spin_unlock(&release_list_lock);
2587
2588 cgroup_lock_hierarchy(cgrp->root);
2589 /* delete this cgroup from parent->children */
2590 list_del(&cgrp->sibling);
2591 cgroup_unlock_hierarchy(cgrp->root);
2592
2593 spin_lock(&cgrp->dentry->d_lock);
2594 d = dget(cgrp->dentry);
2595 spin_unlock(&d->d_lock);
2596
2597 cgroup_d_remove_dir(d);
2598 dput(d);
2599
2600 set_bit(CGRP_RELEASABLE, &parent->flags);
2601 check_for_release(parent);
2602
2603 mutex_unlock(&cgroup_mutex);
2604 return 0;
2605 }
2606
2607 static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
2608 {
2609 struct cgroup_subsys_state *css;
2610
2611 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
2612
2613 /* Create the top cgroup state for this subsystem */
2614 list_add(&ss->sibling, &rootnode.subsys_list);
2615 ss->root = &rootnode;
2616 css = ss->create(ss, dummytop);
2617 /* We don't handle early failures gracefully */
2618 BUG_ON(IS_ERR(css));
2619 init_cgroup_css(css, ss, dummytop);
2620
2621 /* Update the init_css_set to contain a subsys
2622 * pointer to this state - since the subsystem is
2623 * newly registered, all tasks and hence the
2624 * init_css_set is in the subsystem's top cgroup. */
2625 init_css_set.subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
2626
2627 need_forkexit_callback |= ss->fork || ss->exit;
2628
2629 /* At system boot, before all subsystems have been
2630 * registered, no tasks have been forked, so we don't
2631 * need to invoke fork callbacks here. */
2632 BUG_ON(!list_empty(&init_task.tasks));
2633
2634 mutex_init(&ss->hierarchy_mutex);
2635 ss->active = 1;
2636 }
2637
2638 /**
2639 * cgroup_init_early - cgroup initialization at system boot
2640 *
2641 * Initialize cgroups at system boot, and initialize any
2642 * subsystems that request early init.
2643 */
2644 int __init cgroup_init_early(void)
2645 {
2646 int i;
2647 atomic_set(&init_css_set.refcount, 1);
2648 INIT_LIST_HEAD(&init_css_set.cg_links);
2649 INIT_LIST_HEAD(&init_css_set.tasks);
2650 INIT_HLIST_NODE(&init_css_set.hlist);
2651 css_set_count = 1;
2652 init_cgroup_root(&rootnode);
2653 root_count = 1;
2654 init_task.cgroups = &init_css_set;
2655
2656 init_css_set_link.cg = &init_css_set;
2657 list_add(&init_css_set_link.cgrp_link_list,
2658 &rootnode.top_cgroup.css_sets);
2659 list_add(&init_css_set_link.cg_link_list,
2660 &init_css_set.cg_links);
2661
2662 for (i = 0; i < CSS_SET_TABLE_SIZE; i++)
2663 INIT_HLIST_HEAD(&css_set_table[i]);
2664
2665 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2666 struct cgroup_subsys *ss = subsys[i];
2667
2668 BUG_ON(!ss->name);
2669 BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
2670 BUG_ON(!ss->create);
2671 BUG_ON(!ss->destroy);
2672 if (ss->subsys_id != i) {
2673 printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
2674 ss->name, ss->subsys_id);
2675 BUG();
2676 }
2677
2678 if (ss->early_init)
2679 cgroup_init_subsys(ss);
2680 }
2681 return 0;
2682 }
2683
2684 /**
2685 * cgroup_init - cgroup initialization
2686 *
2687 * Register cgroup filesystem and /proc file, and initialize
2688 * any subsystems that didn't request early init.
2689 */
2690 int __init cgroup_init(void)
2691 {
2692 int err;
2693 int i;
2694 struct hlist_head *hhead;
2695
2696 err = bdi_init(&cgroup_backing_dev_info);
2697 if (err)
2698 return err;
2699
2700 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2701 struct cgroup_subsys *ss = subsys[i];
2702 if (!ss->early_init)
2703 cgroup_init_subsys(ss);
2704 }
2705
2706 /* Add init_css_set to the hash table */
2707 hhead = css_set_hash(init_css_set.subsys);
2708 hlist_add_head(&init_css_set.hlist, hhead);
2709
2710 err = register_filesystem(&cgroup_fs_type);
2711 if (err < 0)
2712 goto out;
2713
2714 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
2715
2716 out:
2717 if (err)
2718 bdi_destroy(&cgroup_backing_dev_info);
2719
2720 return err;
2721 }
2722
2723 /*
2724 * proc_cgroup_show()
2725 * - Print task's cgroup paths into seq_file, one line for each hierarchy
2726 * - Used for /proc/<pid>/cgroup.
2727 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
2728 * doesn't really matter if tsk->cgroup changes after we read it,
2729 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
2730 * anyway. No need to check that tsk->cgroup != NULL, thanks to
2731 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
2732 * cgroup to top_cgroup.
2733 */
2734
2735 /* TODO: Use a proper seq_file iterator */
2736 static int proc_cgroup_show(struct seq_file *m, void *v)
2737 {
2738 struct pid *pid;
2739 struct task_struct *tsk;
2740 char *buf;
2741 int retval;
2742 struct cgroupfs_root *root;
2743
2744 retval = -ENOMEM;
2745 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2746 if (!buf)
2747 goto out;
2748
2749 retval = -ESRCH;
2750 pid = m->private;
2751 tsk = get_pid_task(pid, PIDTYPE_PID);
2752 if (!tsk)
2753 goto out_free;
2754
2755 retval = 0;
2756
2757 mutex_lock(&cgroup_mutex);
2758
2759 for_each_active_root(root) {
2760 struct cgroup_subsys *ss;
2761 struct cgroup *cgrp;
2762 int subsys_id;
2763 int count = 0;
2764
2765 seq_printf(m, "%lu:", root->subsys_bits);
2766 for_each_subsys(root, ss)
2767 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
2768 seq_putc(m, ':');
2769 get_first_subsys(&root->top_cgroup, NULL, &subsys_id);
2770 cgrp = task_cgroup(tsk, subsys_id);
2771 retval = cgroup_path(cgrp, buf, PAGE_SIZE);
2772 if (retval < 0)
2773 goto out_unlock;
2774 seq_puts(m, buf);
2775 seq_putc(m, '\n');
2776 }
2777
2778 out_unlock:
2779 mutex_unlock(&cgroup_mutex);
2780 put_task_struct(tsk);
2781 out_free:
2782 kfree(buf);
2783 out:
2784 return retval;
2785 }
2786
2787 static int cgroup_open(struct inode *inode, struct file *file)
2788 {
2789 struct pid *pid = PROC_I(inode)->pid;
2790 return single_open(file, proc_cgroup_show, pid);
2791 }
2792
2793 struct file_operations proc_cgroup_operations = {
2794 .open = cgroup_open,
2795 .read = seq_read,
2796 .llseek = seq_lseek,
2797 .release = single_release,
2798 };
2799
2800 /* Display information about each subsystem and each hierarchy */
2801 static int proc_cgroupstats_show(struct seq_file *m, void *v)
2802 {
2803 int i;
2804
2805 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
2806 mutex_lock(&cgroup_mutex);
2807 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2808 struct cgroup_subsys *ss = subsys[i];
2809 seq_printf(m, "%s\t%lu\t%d\t%d\n",
2810 ss->name, ss->root->subsys_bits,
2811 ss->root->number_of_cgroups, !ss->disabled);
2812 }
2813 mutex_unlock(&cgroup_mutex);
2814 return 0;
2815 }
2816
2817 static int cgroupstats_open(struct inode *inode, struct file *file)
2818 {
2819 return single_open(file, proc_cgroupstats_show, NULL);
2820 }
2821
2822 static struct file_operations proc_cgroupstats_operations = {
2823 .open = cgroupstats_open,
2824 .read = seq_read,
2825 .llseek = seq_lseek,
2826 .release = single_release,
2827 };
2828
2829 /**
2830 * cgroup_fork - attach newly forked task to its parents cgroup.
2831 * @child: pointer to task_struct of forking parent process.
2832 *
2833 * Description: A task inherits its parent's cgroup at fork().
2834 *
2835 * A pointer to the shared css_set was automatically copied in
2836 * fork.c by dup_task_struct(). However, we ignore that copy, since
2837 * it was not made under the protection of RCU or cgroup_mutex, so
2838 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
2839 * have already changed current->cgroups, allowing the previously
2840 * referenced cgroup group to be removed and freed.
2841 *
2842 * At the point that cgroup_fork() is called, 'current' is the parent
2843 * task, and the passed argument 'child' points to the child task.
2844 */
2845 void cgroup_fork(struct task_struct *child)
2846 {
2847 task_lock(current);
2848 child->cgroups = current->cgroups;
2849 get_css_set(child->cgroups);
2850 task_unlock(current);
2851 INIT_LIST_HEAD(&child->cg_list);
2852 }
2853
2854 /**
2855 * cgroup_fork_callbacks - run fork callbacks
2856 * @child: the new task
2857 *
2858 * Called on a new task very soon before adding it to the
2859 * tasklist. No need to take any locks since no-one can
2860 * be operating on this task.
2861 */
2862 void cgroup_fork_callbacks(struct task_struct *child)
2863 {
2864 if (need_forkexit_callback) {
2865 int i;
2866 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2867 struct cgroup_subsys *ss = subsys[i];
2868 if (ss->fork)
2869 ss->fork(ss, child);
2870 }
2871 }
2872 }
2873
2874 /**
2875 * cgroup_post_fork - called on a new task after adding it to the task list
2876 * @child: the task in question
2877 *
2878 * Adds the task to the list running through its css_set if necessary.
2879 * Has to be after the task is visible on the task list in case we race
2880 * with the first call to cgroup_iter_start() - to guarantee that the
2881 * new task ends up on its list.
2882 */
2883 void cgroup_post_fork(struct task_struct *child)
2884 {
2885 if (use_task_css_set_links) {
2886 write_lock(&css_set_lock);
2887 task_lock(child);
2888 if (list_empty(&child->cg_list))
2889 list_add(&child->cg_list, &child->cgroups->tasks);
2890 task_unlock(child);
2891 write_unlock(&css_set_lock);
2892 }
2893 }
2894 /**
2895 * cgroup_exit - detach cgroup from exiting task
2896 * @tsk: pointer to task_struct of exiting process
2897 * @run_callback: run exit callbacks?
2898 *
2899 * Description: Detach cgroup from @tsk and release it.
2900 *
2901 * Note that cgroups marked notify_on_release force every task in
2902 * them to take the global cgroup_mutex mutex when exiting.
2903 * This could impact scaling on very large systems. Be reluctant to
2904 * use notify_on_release cgroups where very high task exit scaling
2905 * is required on large systems.
2906 *
2907 * the_top_cgroup_hack:
2908 *
2909 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
2910 *
2911 * We call cgroup_exit() while the task is still competent to
2912 * handle notify_on_release(), then leave the task attached to the
2913 * root cgroup in each hierarchy for the remainder of its exit.
2914 *
2915 * To do this properly, we would increment the reference count on
2916 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
2917 * code we would add a second cgroup function call, to drop that
2918 * reference. This would just create an unnecessary hot spot on
2919 * the top_cgroup reference count, to no avail.
2920 *
2921 * Normally, holding a reference to a cgroup without bumping its
2922 * count is unsafe. The cgroup could go away, or someone could
2923 * attach us to a different cgroup, decrementing the count on
2924 * the first cgroup that we never incremented. But in this case,
2925 * top_cgroup isn't going away, and either task has PF_EXITING set,
2926 * which wards off any cgroup_attach_task() attempts, or task is a failed
2927 * fork, never visible to cgroup_attach_task.
2928 */
2929 void cgroup_exit(struct task_struct *tsk, int run_callbacks)
2930 {
2931 int i;
2932 struct css_set *cg;
2933
2934 if (run_callbacks && need_forkexit_callback) {
2935 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2936 struct cgroup_subsys *ss = subsys[i];
2937 if (ss->exit)
2938 ss->exit(ss, tsk);
2939 }
2940 }
2941
2942 /*
2943 * Unlink from the css_set task list if necessary.
2944 * Optimistically check cg_list before taking
2945 * css_set_lock
2946 */
2947 if (!list_empty(&tsk->cg_list)) {
2948 write_lock(&css_set_lock);
2949 if (!list_empty(&tsk->cg_list))
2950 list_del(&tsk->cg_list);
2951 write_unlock(&css_set_lock);
2952 }
2953
2954 /* Reassign the task to the init_css_set. */
2955 task_lock(tsk);
2956 cg = tsk->cgroups;
2957 tsk->cgroups = &init_css_set;
2958 task_unlock(tsk);
2959 if (cg)
2960 put_css_set_taskexit(cg);
2961 }
2962
2963 /**
2964 * cgroup_clone - clone the cgroup the given subsystem is attached to
2965 * @tsk: the task to be moved
2966 * @subsys: the given subsystem
2967 * @nodename: the name for the new cgroup
2968 *
2969 * Duplicate the current cgroup in the hierarchy that the given
2970 * subsystem is attached to, and move this task into the new
2971 * child.
2972 */
2973 int cgroup_clone(struct task_struct *tsk, struct cgroup_subsys *subsys,
2974 char *nodename)
2975 {
2976 struct dentry *dentry;
2977 int ret = 0;
2978 struct cgroup *parent, *child;
2979 struct inode *inode;
2980 struct css_set *cg;
2981 struct cgroupfs_root *root;
2982 struct cgroup_subsys *ss;
2983
2984 /* We shouldn't be called by an unregistered subsystem */
2985 BUG_ON(!subsys->active);
2986
2987 /* First figure out what hierarchy and cgroup we're dealing
2988 * with, and pin them so we can drop cgroup_mutex */
2989 mutex_lock(&cgroup_mutex);
2990 again:
2991 root = subsys->root;
2992 if (root == &rootnode) {
2993 mutex_unlock(&cgroup_mutex);
2994 return 0;
2995 }
2996
2997 /* Pin the hierarchy */
2998 if (!atomic_inc_not_zero(&root->sb->s_active)) {
2999 /* We race with the final deactivate_super() */
3000 mutex_unlock(&cgroup_mutex);
3001 return 0;
3002 }
3003
3004 /* Keep the cgroup alive */
3005 task_lock(tsk);
3006 parent = task_cgroup(tsk, subsys->subsys_id);
3007 cg = tsk->cgroups;
3008 get_css_set(cg);
3009 task_unlock(tsk);
3010
3011 mutex_unlock(&cgroup_mutex);
3012
3013 /* Now do the VFS work to create a cgroup */
3014 inode = parent->dentry->d_inode;
3015
3016 /* Hold the parent directory mutex across this operation to
3017 * stop anyone else deleting the new cgroup */
3018 mutex_lock(&inode->i_mutex);
3019 dentry = lookup_one_len(nodename, parent->dentry, strlen(nodename));
3020 if (IS_ERR(dentry)) {
3021 printk(KERN_INFO
3022 "cgroup: Couldn't allocate dentry for %s: %ld\n", nodename,
3023 PTR_ERR(dentry));
3024 ret = PTR_ERR(dentry);
3025 goto out_release;
3026 }
3027
3028 /* Create the cgroup directory, which also creates the cgroup */
3029 ret = vfs_mkdir(inode, dentry, 0755);
3030 child = __d_cgrp(dentry);
3031 dput(dentry);
3032 if (ret) {
3033 printk(KERN_INFO
3034 "Failed to create cgroup %s: %d\n", nodename,
3035 ret);
3036 goto out_release;
3037 }
3038
3039 /* The cgroup now exists. Retake cgroup_mutex and check
3040 * that we're still in the same state that we thought we
3041 * were. */
3042 mutex_lock(&cgroup_mutex);
3043 if ((root != subsys->root) ||
3044 (parent != task_cgroup(tsk, subsys->subsys_id))) {
3045 /* Aargh, we raced ... */
3046 mutex_unlock(&inode->i_mutex);
3047 put_css_set(cg);
3048
3049 deactivate_super(root->sb);
3050 /* The cgroup is still accessible in the VFS, but
3051 * we're not going to try to rmdir() it at this
3052 * point. */
3053 printk(KERN_INFO
3054 "Race in cgroup_clone() - leaking cgroup %s\n",
3055 nodename);
3056 goto again;
3057 }
3058
3059 /* do any required auto-setup */
3060 for_each_subsys(root, ss) {
3061 if (ss->post_clone)
3062 ss->post_clone(ss, child);
3063 }
3064
3065 /* All seems fine. Finish by moving the task into the new cgroup */
3066 ret = cgroup_attach_task(child, tsk);
3067 mutex_unlock(&cgroup_mutex);
3068
3069 out_release:
3070 mutex_unlock(&inode->i_mutex);
3071
3072 mutex_lock(&cgroup_mutex);
3073 put_css_set(cg);
3074 mutex_unlock(&cgroup_mutex);
3075 deactivate_super(root->sb);
3076 return ret;
3077 }
3078
3079 /**
3080 * cgroup_is_descendant - see if @cgrp is a descendant of current task's cgrp
3081 * @cgrp: the cgroup in question
3082 *
3083 * See if @cgrp is a descendant of the current task's cgroup in
3084 * the appropriate hierarchy.
3085 *
3086 * If we are sending in dummytop, then presumably we are creating
3087 * the top cgroup in the subsystem.
3088 *
3089 * Called only by the ns (nsproxy) cgroup.
3090 */
3091 int cgroup_is_descendant(const struct cgroup *cgrp)
3092 {
3093 int ret;
3094 struct cgroup *target;
3095 int subsys_id;
3096
3097 if (cgrp == dummytop)
3098 return 1;
3099
3100 get_first_subsys(cgrp, NULL, &subsys_id);
3101 target = task_cgroup(current, subsys_id);
3102 while (cgrp != target && cgrp!= cgrp->top_cgroup)
3103 cgrp = cgrp->parent;
3104 ret = (cgrp == target);
3105 return ret;
3106 }
3107
3108 static void check_for_release(struct cgroup *cgrp)
3109 {
3110 /* All of these checks rely on RCU to keep the cgroup
3111 * structure alive */
3112 if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
3113 && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
3114 /* Control Group is currently removeable. If it's not
3115 * already queued for a userspace notification, queue
3116 * it now */
3117 int need_schedule_work = 0;
3118 spin_lock(&release_list_lock);
3119 if (!cgroup_is_removed(cgrp) &&
3120 list_empty(&cgrp->release_list)) {
3121 list_add(&cgrp->release_list, &release_list);
3122 need_schedule_work = 1;
3123 }
3124 spin_unlock(&release_list_lock);
3125 if (need_schedule_work)
3126 schedule_work(&release_agent_work);
3127 }
3128 }
3129
3130 void __css_put(struct cgroup_subsys_state *css)
3131 {
3132 struct cgroup *cgrp = css->cgroup;
3133 rcu_read_lock();
3134 if ((atomic_dec_return(&css->refcnt) == 1) &&
3135 notify_on_release(cgrp)) {
3136 set_bit(CGRP_RELEASABLE, &cgrp->flags);
3137 check_for_release(cgrp);
3138 }
3139 rcu_read_unlock();
3140 }
3141
3142 /*
3143 * Notify userspace when a cgroup is released, by running the
3144 * configured release agent with the name of the cgroup (path
3145 * relative to the root of cgroup file system) as the argument.
3146 *
3147 * Most likely, this user command will try to rmdir this cgroup.
3148 *
3149 * This races with the possibility that some other task will be
3150 * attached to this cgroup before it is removed, or that some other
3151 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
3152 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
3153 * unused, and this cgroup will be reprieved from its death sentence,
3154 * to continue to serve a useful existence. Next time it's released,
3155 * we will get notified again, if it still has 'notify_on_release' set.
3156 *
3157 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
3158 * means only wait until the task is successfully execve()'d. The
3159 * separate release agent task is forked by call_usermodehelper(),
3160 * then control in this thread returns here, without waiting for the
3161 * release agent task. We don't bother to wait because the caller of
3162 * this routine has no use for the exit status of the release agent
3163 * task, so no sense holding our caller up for that.
3164 */
3165 static void cgroup_release_agent(struct work_struct *work)
3166 {
3167 BUG_ON(work != &release_agent_work);
3168 mutex_lock(&cgroup_mutex);
3169 spin_lock(&release_list_lock);
3170 while (!list_empty(&release_list)) {
3171 char *argv[3], *envp[3];
3172 int i;
3173 char *pathbuf = NULL, *agentbuf = NULL;
3174 struct cgroup *cgrp = list_entry(release_list.next,
3175 struct cgroup,
3176 release_list);
3177 list_del_init(&cgrp->release_list);
3178 spin_unlock(&release_list_lock);
3179 pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3180 if (!pathbuf)
3181 goto continue_free;
3182 if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
3183 goto continue_free;
3184 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
3185 if (!agentbuf)
3186 goto continue_free;
3187
3188 i = 0;
3189 argv[i++] = agentbuf;
3190 argv[i++] = pathbuf;
3191 argv[i] = NULL;
3192
3193 i = 0;
3194 /* minimal command environment */
3195 envp[i++] = "HOME=/";
3196 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
3197 envp[i] = NULL;
3198
3199 /* Drop the lock while we invoke the usermode helper,
3200 * since the exec could involve hitting disk and hence
3201 * be a slow process */
3202 mutex_unlock(&cgroup_mutex);
3203 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
3204 mutex_lock(&cgroup_mutex);
3205 continue_free:
3206 kfree(pathbuf);
3207 kfree(agentbuf);
3208 spin_lock(&release_list_lock);
3209 }
3210 spin_unlock(&release_list_lock);
3211 mutex_unlock(&cgroup_mutex);
3212 }
3213
3214 static int __init cgroup_disable(char *str)
3215 {
3216 int i;
3217 char *token;
3218
3219 while ((token = strsep(&str, ",")) != NULL) {
3220 if (!*token)
3221 continue;
3222
3223 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3224 struct cgroup_subsys *ss = subsys[i];
3225
3226 if (!strcmp(token, ss->name)) {
3227 ss->disabled = 1;
3228 printk(KERN_INFO "Disabling %s control group"
3229 " subsystem\n", ss->name);
3230 break;
3231 }
3232 }
3233 }
3234 return 1;
3235 }
3236 __setup("cgroup_disable=", cgroup_disable);
This page took 0.091864 seconds and 6 git commands to generate.