cgroup: make the mount options parsing more accurate
[deliverable/linux.git] / kernel / cgroup.c
1 /*
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29 #include <linux/cgroup.h>
30 #include <linux/ctype.h>
31 #include <linux/errno.h>
32 #include <linux/fs.h>
33 #include <linux/kernel.h>
34 #include <linux/list.h>
35 #include <linux/mm.h>
36 #include <linux/mutex.h>
37 #include <linux/mount.h>
38 #include <linux/pagemap.h>
39 #include <linux/proc_fs.h>
40 #include <linux/rcupdate.h>
41 #include <linux/sched.h>
42 #include <linux/backing-dev.h>
43 #include <linux/seq_file.h>
44 #include <linux/slab.h>
45 #include <linux/magic.h>
46 #include <linux/spinlock.h>
47 #include <linux/string.h>
48 #include <linux/sort.h>
49 #include <linux/kmod.h>
50 #include <linux/module.h>
51 #include <linux/delayacct.h>
52 #include <linux/cgroupstats.h>
53 #include <linux/hash.h>
54 #include <linux/namei.h>
55 #include <linux/pid_namespace.h>
56 #include <linux/idr.h>
57 #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
58 #include <linux/eventfd.h>
59 #include <linux/poll.h>
60
61 #include <asm/atomic.h>
62
63 static DEFINE_MUTEX(cgroup_mutex);
64
65 /*
66 * Generate an array of cgroup subsystem pointers. At boot time, this is
67 * populated up to CGROUP_BUILTIN_SUBSYS_COUNT, and modular subsystems are
68 * registered after that. The mutable section of this array is protected by
69 * cgroup_mutex.
70 */
71 #define SUBSYS(_x) &_x ## _subsys,
72 static struct cgroup_subsys *subsys[CGROUP_SUBSYS_COUNT] = {
73 #include <linux/cgroup_subsys.h>
74 };
75
76 #define MAX_CGROUP_ROOT_NAMELEN 64
77
78 /*
79 * A cgroupfs_root represents the root of a cgroup hierarchy,
80 * and may be associated with a superblock to form an active
81 * hierarchy
82 */
83 struct cgroupfs_root {
84 struct super_block *sb;
85
86 /*
87 * The bitmask of subsystems intended to be attached to this
88 * hierarchy
89 */
90 unsigned long subsys_bits;
91
92 /* Unique id for this hierarchy. */
93 int hierarchy_id;
94
95 /* The bitmask of subsystems currently attached to this hierarchy */
96 unsigned long actual_subsys_bits;
97
98 /* A list running through the attached subsystems */
99 struct list_head subsys_list;
100
101 /* The root cgroup for this hierarchy */
102 struct cgroup top_cgroup;
103
104 /* Tracks how many cgroups are currently defined in hierarchy.*/
105 int number_of_cgroups;
106
107 /* A list running through the active hierarchies */
108 struct list_head root_list;
109
110 /* Hierarchy-specific flags */
111 unsigned long flags;
112
113 /* The path to use for release notifications. */
114 char release_agent_path[PATH_MAX];
115
116 /* The name for this hierarchy - may be empty */
117 char name[MAX_CGROUP_ROOT_NAMELEN];
118 };
119
120 /*
121 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
122 * subsystems that are otherwise unattached - it never has more than a
123 * single cgroup, and all tasks are part of that cgroup.
124 */
125 static struct cgroupfs_root rootnode;
126
127 /*
128 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
129 * cgroup_subsys->use_id != 0.
130 */
131 #define CSS_ID_MAX (65535)
132 struct css_id {
133 /*
134 * The css to which this ID points. This pointer is set to valid value
135 * after cgroup is populated. If cgroup is removed, this will be NULL.
136 * This pointer is expected to be RCU-safe because destroy()
137 * is called after synchronize_rcu(). But for safe use, css_is_removed()
138 * css_tryget() should be used for avoiding race.
139 */
140 struct cgroup_subsys_state __rcu *css;
141 /*
142 * ID of this css.
143 */
144 unsigned short id;
145 /*
146 * Depth in hierarchy which this ID belongs to.
147 */
148 unsigned short depth;
149 /*
150 * ID is freed by RCU. (and lookup routine is RCU safe.)
151 */
152 struct rcu_head rcu_head;
153 /*
154 * Hierarchy of CSS ID belongs to.
155 */
156 unsigned short stack[0]; /* Array of Length (depth+1) */
157 };
158
159 /*
160 * cgroup_event represents events which userspace want to recieve.
161 */
162 struct cgroup_event {
163 /*
164 * Cgroup which the event belongs to.
165 */
166 struct cgroup *cgrp;
167 /*
168 * Control file which the event associated.
169 */
170 struct cftype *cft;
171 /*
172 * eventfd to signal userspace about the event.
173 */
174 struct eventfd_ctx *eventfd;
175 /*
176 * Each of these stored in a list by the cgroup.
177 */
178 struct list_head list;
179 /*
180 * All fields below needed to unregister event when
181 * userspace closes eventfd.
182 */
183 poll_table pt;
184 wait_queue_head_t *wqh;
185 wait_queue_t wait;
186 struct work_struct remove;
187 };
188
189 /* The list of hierarchy roots */
190
191 static LIST_HEAD(roots);
192 static int root_count;
193
194 static DEFINE_IDA(hierarchy_ida);
195 static int next_hierarchy_id;
196 static DEFINE_SPINLOCK(hierarchy_id_lock);
197
198 /* dummytop is a shorthand for the dummy hierarchy's top cgroup */
199 #define dummytop (&rootnode.top_cgroup)
200
201 /* This flag indicates whether tasks in the fork and exit paths should
202 * check for fork/exit handlers to call. This avoids us having to do
203 * extra work in the fork/exit path if none of the subsystems need to
204 * be called.
205 */
206 static int need_forkexit_callback __read_mostly;
207
208 #ifdef CONFIG_PROVE_LOCKING
209 int cgroup_lock_is_held(void)
210 {
211 return lockdep_is_held(&cgroup_mutex);
212 }
213 #else /* #ifdef CONFIG_PROVE_LOCKING */
214 int cgroup_lock_is_held(void)
215 {
216 return mutex_is_locked(&cgroup_mutex);
217 }
218 #endif /* #else #ifdef CONFIG_PROVE_LOCKING */
219
220 EXPORT_SYMBOL_GPL(cgroup_lock_is_held);
221
222 /* convenient tests for these bits */
223 inline int cgroup_is_removed(const struct cgroup *cgrp)
224 {
225 return test_bit(CGRP_REMOVED, &cgrp->flags);
226 }
227
228 /* bits in struct cgroupfs_root flags field */
229 enum {
230 ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
231 };
232
233 static int cgroup_is_releasable(const struct cgroup *cgrp)
234 {
235 const int bits =
236 (1 << CGRP_RELEASABLE) |
237 (1 << CGRP_NOTIFY_ON_RELEASE);
238 return (cgrp->flags & bits) == bits;
239 }
240
241 static int notify_on_release(const struct cgroup *cgrp)
242 {
243 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
244 }
245
246 static int clone_children(const struct cgroup *cgrp)
247 {
248 return test_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
249 }
250
251 /*
252 * for_each_subsys() allows you to iterate on each subsystem attached to
253 * an active hierarchy
254 */
255 #define for_each_subsys(_root, _ss) \
256 list_for_each_entry(_ss, &_root->subsys_list, sibling)
257
258 /* for_each_active_root() allows you to iterate across the active hierarchies */
259 #define for_each_active_root(_root) \
260 list_for_each_entry(_root, &roots, root_list)
261
262 /* the list of cgroups eligible for automatic release. Protected by
263 * release_list_lock */
264 static LIST_HEAD(release_list);
265 static DEFINE_SPINLOCK(release_list_lock);
266 static void cgroup_release_agent(struct work_struct *work);
267 static DECLARE_WORK(release_agent_work, cgroup_release_agent);
268 static void check_for_release(struct cgroup *cgrp);
269
270 /* Link structure for associating css_set objects with cgroups */
271 struct cg_cgroup_link {
272 /*
273 * List running through cg_cgroup_links associated with a
274 * cgroup, anchored on cgroup->css_sets
275 */
276 struct list_head cgrp_link_list;
277 struct cgroup *cgrp;
278 /*
279 * List running through cg_cgroup_links pointing at a
280 * single css_set object, anchored on css_set->cg_links
281 */
282 struct list_head cg_link_list;
283 struct css_set *cg;
284 };
285
286 /* The default css_set - used by init and its children prior to any
287 * hierarchies being mounted. It contains a pointer to the root state
288 * for each subsystem. Also used to anchor the list of css_sets. Not
289 * reference-counted, to improve performance when child cgroups
290 * haven't been created.
291 */
292
293 static struct css_set init_css_set;
294 static struct cg_cgroup_link init_css_set_link;
295
296 static int cgroup_init_idr(struct cgroup_subsys *ss,
297 struct cgroup_subsys_state *css);
298
299 /* css_set_lock protects the list of css_set objects, and the
300 * chain of tasks off each css_set. Nests outside task->alloc_lock
301 * due to cgroup_iter_start() */
302 static DEFINE_RWLOCK(css_set_lock);
303 static int css_set_count;
304
305 /*
306 * hash table for cgroup groups. This improves the performance to find
307 * an existing css_set. This hash doesn't (currently) take into
308 * account cgroups in empty hierarchies.
309 */
310 #define CSS_SET_HASH_BITS 7
311 #define CSS_SET_TABLE_SIZE (1 << CSS_SET_HASH_BITS)
312 static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE];
313
314 static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[])
315 {
316 int i;
317 int index;
318 unsigned long tmp = 0UL;
319
320 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
321 tmp += (unsigned long)css[i];
322 tmp = (tmp >> 16) ^ tmp;
323
324 index = hash_long(tmp, CSS_SET_HASH_BITS);
325
326 return &css_set_table[index];
327 }
328
329 static void free_css_set_rcu(struct rcu_head *obj)
330 {
331 struct css_set *cg = container_of(obj, struct css_set, rcu_head);
332 kfree(cg);
333 }
334
335 /* We don't maintain the lists running through each css_set to its
336 * task until after the first call to cgroup_iter_start(). This
337 * reduces the fork()/exit() overhead for people who have cgroups
338 * compiled into their kernel but not actually in use */
339 static int use_task_css_set_links __read_mostly;
340
341 static void __put_css_set(struct css_set *cg, int taskexit)
342 {
343 struct cg_cgroup_link *link;
344 struct cg_cgroup_link *saved_link;
345 /*
346 * Ensure that the refcount doesn't hit zero while any readers
347 * can see it. Similar to atomic_dec_and_lock(), but for an
348 * rwlock
349 */
350 if (atomic_add_unless(&cg->refcount, -1, 1))
351 return;
352 write_lock(&css_set_lock);
353 if (!atomic_dec_and_test(&cg->refcount)) {
354 write_unlock(&css_set_lock);
355 return;
356 }
357
358 /* This css_set is dead. unlink it and release cgroup refcounts */
359 hlist_del(&cg->hlist);
360 css_set_count--;
361
362 list_for_each_entry_safe(link, saved_link, &cg->cg_links,
363 cg_link_list) {
364 struct cgroup *cgrp = link->cgrp;
365 list_del(&link->cg_link_list);
366 list_del(&link->cgrp_link_list);
367 if (atomic_dec_and_test(&cgrp->count) &&
368 notify_on_release(cgrp)) {
369 if (taskexit)
370 set_bit(CGRP_RELEASABLE, &cgrp->flags);
371 check_for_release(cgrp);
372 }
373
374 kfree(link);
375 }
376
377 write_unlock(&css_set_lock);
378 call_rcu(&cg->rcu_head, free_css_set_rcu);
379 }
380
381 /*
382 * refcounted get/put for css_set objects
383 */
384 static inline void get_css_set(struct css_set *cg)
385 {
386 atomic_inc(&cg->refcount);
387 }
388
389 static inline void put_css_set(struct css_set *cg)
390 {
391 __put_css_set(cg, 0);
392 }
393
394 static inline void put_css_set_taskexit(struct css_set *cg)
395 {
396 __put_css_set(cg, 1);
397 }
398
399 /*
400 * compare_css_sets - helper function for find_existing_css_set().
401 * @cg: candidate css_set being tested
402 * @old_cg: existing css_set for a task
403 * @new_cgrp: cgroup that's being entered by the task
404 * @template: desired set of css pointers in css_set (pre-calculated)
405 *
406 * Returns true if "cg" matches "old_cg" except for the hierarchy
407 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
408 */
409 static bool compare_css_sets(struct css_set *cg,
410 struct css_set *old_cg,
411 struct cgroup *new_cgrp,
412 struct cgroup_subsys_state *template[])
413 {
414 struct list_head *l1, *l2;
415
416 if (memcmp(template, cg->subsys, sizeof(cg->subsys))) {
417 /* Not all subsystems matched */
418 return false;
419 }
420
421 /*
422 * Compare cgroup pointers in order to distinguish between
423 * different cgroups in heirarchies with no subsystems. We
424 * could get by with just this check alone (and skip the
425 * memcmp above) but on most setups the memcmp check will
426 * avoid the need for this more expensive check on almost all
427 * candidates.
428 */
429
430 l1 = &cg->cg_links;
431 l2 = &old_cg->cg_links;
432 while (1) {
433 struct cg_cgroup_link *cgl1, *cgl2;
434 struct cgroup *cg1, *cg2;
435
436 l1 = l1->next;
437 l2 = l2->next;
438 /* See if we reached the end - both lists are equal length. */
439 if (l1 == &cg->cg_links) {
440 BUG_ON(l2 != &old_cg->cg_links);
441 break;
442 } else {
443 BUG_ON(l2 == &old_cg->cg_links);
444 }
445 /* Locate the cgroups associated with these links. */
446 cgl1 = list_entry(l1, struct cg_cgroup_link, cg_link_list);
447 cgl2 = list_entry(l2, struct cg_cgroup_link, cg_link_list);
448 cg1 = cgl1->cgrp;
449 cg2 = cgl2->cgrp;
450 /* Hierarchies should be linked in the same order. */
451 BUG_ON(cg1->root != cg2->root);
452
453 /*
454 * If this hierarchy is the hierarchy of the cgroup
455 * that's changing, then we need to check that this
456 * css_set points to the new cgroup; if it's any other
457 * hierarchy, then this css_set should point to the
458 * same cgroup as the old css_set.
459 */
460 if (cg1->root == new_cgrp->root) {
461 if (cg1 != new_cgrp)
462 return false;
463 } else {
464 if (cg1 != cg2)
465 return false;
466 }
467 }
468 return true;
469 }
470
471 /*
472 * find_existing_css_set() is a helper for
473 * find_css_set(), and checks to see whether an existing
474 * css_set is suitable.
475 *
476 * oldcg: the cgroup group that we're using before the cgroup
477 * transition
478 *
479 * cgrp: the cgroup that we're moving into
480 *
481 * template: location in which to build the desired set of subsystem
482 * state objects for the new cgroup group
483 */
484 static struct css_set *find_existing_css_set(
485 struct css_set *oldcg,
486 struct cgroup *cgrp,
487 struct cgroup_subsys_state *template[])
488 {
489 int i;
490 struct cgroupfs_root *root = cgrp->root;
491 struct hlist_head *hhead;
492 struct hlist_node *node;
493 struct css_set *cg;
494
495 /*
496 * Build the set of subsystem state objects that we want to see in the
497 * new css_set. while subsystems can change globally, the entries here
498 * won't change, so no need for locking.
499 */
500 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
501 if (root->subsys_bits & (1UL << i)) {
502 /* Subsystem is in this hierarchy. So we want
503 * the subsystem state from the new
504 * cgroup */
505 template[i] = cgrp->subsys[i];
506 } else {
507 /* Subsystem is not in this hierarchy, so we
508 * don't want to change the subsystem state */
509 template[i] = oldcg->subsys[i];
510 }
511 }
512
513 hhead = css_set_hash(template);
514 hlist_for_each_entry(cg, node, hhead, hlist) {
515 if (!compare_css_sets(cg, oldcg, cgrp, template))
516 continue;
517
518 /* This css_set matches what we need */
519 return cg;
520 }
521
522 /* No existing cgroup group matched */
523 return NULL;
524 }
525
526 static void free_cg_links(struct list_head *tmp)
527 {
528 struct cg_cgroup_link *link;
529 struct cg_cgroup_link *saved_link;
530
531 list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
532 list_del(&link->cgrp_link_list);
533 kfree(link);
534 }
535 }
536
537 /*
538 * allocate_cg_links() allocates "count" cg_cgroup_link structures
539 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
540 * success or a negative error
541 */
542 static int allocate_cg_links(int count, struct list_head *tmp)
543 {
544 struct cg_cgroup_link *link;
545 int i;
546 INIT_LIST_HEAD(tmp);
547 for (i = 0; i < count; i++) {
548 link = kmalloc(sizeof(*link), GFP_KERNEL);
549 if (!link) {
550 free_cg_links(tmp);
551 return -ENOMEM;
552 }
553 list_add(&link->cgrp_link_list, tmp);
554 }
555 return 0;
556 }
557
558 /**
559 * link_css_set - a helper function to link a css_set to a cgroup
560 * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
561 * @cg: the css_set to be linked
562 * @cgrp: the destination cgroup
563 */
564 static void link_css_set(struct list_head *tmp_cg_links,
565 struct css_set *cg, struct cgroup *cgrp)
566 {
567 struct cg_cgroup_link *link;
568
569 BUG_ON(list_empty(tmp_cg_links));
570 link = list_first_entry(tmp_cg_links, struct cg_cgroup_link,
571 cgrp_link_list);
572 link->cg = cg;
573 link->cgrp = cgrp;
574 atomic_inc(&cgrp->count);
575 list_move(&link->cgrp_link_list, &cgrp->css_sets);
576 /*
577 * Always add links to the tail of the list so that the list
578 * is sorted by order of hierarchy creation
579 */
580 list_add_tail(&link->cg_link_list, &cg->cg_links);
581 }
582
583 /*
584 * find_css_set() takes an existing cgroup group and a
585 * cgroup object, and returns a css_set object that's
586 * equivalent to the old group, but with the given cgroup
587 * substituted into the appropriate hierarchy. Must be called with
588 * cgroup_mutex held
589 */
590 static struct css_set *find_css_set(
591 struct css_set *oldcg, struct cgroup *cgrp)
592 {
593 struct css_set *res;
594 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
595
596 struct list_head tmp_cg_links;
597
598 struct hlist_head *hhead;
599 struct cg_cgroup_link *link;
600
601 /* First see if we already have a cgroup group that matches
602 * the desired set */
603 read_lock(&css_set_lock);
604 res = find_existing_css_set(oldcg, cgrp, template);
605 if (res)
606 get_css_set(res);
607 read_unlock(&css_set_lock);
608
609 if (res)
610 return res;
611
612 res = kmalloc(sizeof(*res), GFP_KERNEL);
613 if (!res)
614 return NULL;
615
616 /* Allocate all the cg_cgroup_link objects that we'll need */
617 if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
618 kfree(res);
619 return NULL;
620 }
621
622 atomic_set(&res->refcount, 1);
623 INIT_LIST_HEAD(&res->cg_links);
624 INIT_LIST_HEAD(&res->tasks);
625 INIT_HLIST_NODE(&res->hlist);
626
627 /* Copy the set of subsystem state objects generated in
628 * find_existing_css_set() */
629 memcpy(res->subsys, template, sizeof(res->subsys));
630
631 write_lock(&css_set_lock);
632 /* Add reference counts and links from the new css_set. */
633 list_for_each_entry(link, &oldcg->cg_links, cg_link_list) {
634 struct cgroup *c = link->cgrp;
635 if (c->root == cgrp->root)
636 c = cgrp;
637 link_css_set(&tmp_cg_links, res, c);
638 }
639
640 BUG_ON(!list_empty(&tmp_cg_links));
641
642 css_set_count++;
643
644 /* Add this cgroup group to the hash table */
645 hhead = css_set_hash(res->subsys);
646 hlist_add_head(&res->hlist, hhead);
647
648 write_unlock(&css_set_lock);
649
650 return res;
651 }
652
653 /*
654 * Return the cgroup for "task" from the given hierarchy. Must be
655 * called with cgroup_mutex held.
656 */
657 static struct cgroup *task_cgroup_from_root(struct task_struct *task,
658 struct cgroupfs_root *root)
659 {
660 struct css_set *css;
661 struct cgroup *res = NULL;
662
663 BUG_ON(!mutex_is_locked(&cgroup_mutex));
664 read_lock(&css_set_lock);
665 /*
666 * No need to lock the task - since we hold cgroup_mutex the
667 * task can't change groups, so the only thing that can happen
668 * is that it exits and its css is set back to init_css_set.
669 */
670 css = task->cgroups;
671 if (css == &init_css_set) {
672 res = &root->top_cgroup;
673 } else {
674 struct cg_cgroup_link *link;
675 list_for_each_entry(link, &css->cg_links, cg_link_list) {
676 struct cgroup *c = link->cgrp;
677 if (c->root == root) {
678 res = c;
679 break;
680 }
681 }
682 }
683 read_unlock(&css_set_lock);
684 BUG_ON(!res);
685 return res;
686 }
687
688 /*
689 * There is one global cgroup mutex. We also require taking
690 * task_lock() when dereferencing a task's cgroup subsys pointers.
691 * See "The task_lock() exception", at the end of this comment.
692 *
693 * A task must hold cgroup_mutex to modify cgroups.
694 *
695 * Any task can increment and decrement the count field without lock.
696 * So in general, code holding cgroup_mutex can't rely on the count
697 * field not changing. However, if the count goes to zero, then only
698 * cgroup_attach_task() can increment it again. Because a count of zero
699 * means that no tasks are currently attached, therefore there is no
700 * way a task attached to that cgroup can fork (the other way to
701 * increment the count). So code holding cgroup_mutex can safely
702 * assume that if the count is zero, it will stay zero. Similarly, if
703 * a task holds cgroup_mutex on a cgroup with zero count, it
704 * knows that the cgroup won't be removed, as cgroup_rmdir()
705 * needs that mutex.
706 *
707 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
708 * (usually) take cgroup_mutex. These are the two most performance
709 * critical pieces of code here. The exception occurs on cgroup_exit(),
710 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
711 * is taken, and if the cgroup count is zero, a usermode call made
712 * to the release agent with the name of the cgroup (path relative to
713 * the root of cgroup file system) as the argument.
714 *
715 * A cgroup can only be deleted if both its 'count' of using tasks
716 * is zero, and its list of 'children' cgroups is empty. Since all
717 * tasks in the system use _some_ cgroup, and since there is always at
718 * least one task in the system (init, pid == 1), therefore, top_cgroup
719 * always has either children cgroups and/or using tasks. So we don't
720 * need a special hack to ensure that top_cgroup cannot be deleted.
721 *
722 * The task_lock() exception
723 *
724 * The need for this exception arises from the action of
725 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
726 * another. It does so using cgroup_mutex, however there are
727 * several performance critical places that need to reference
728 * task->cgroup without the expense of grabbing a system global
729 * mutex. Therefore except as noted below, when dereferencing or, as
730 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
731 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
732 * the task_struct routinely used for such matters.
733 *
734 * P.S. One more locking exception. RCU is used to guard the
735 * update of a tasks cgroup pointer by cgroup_attach_task()
736 */
737
738 /**
739 * cgroup_lock - lock out any changes to cgroup structures
740 *
741 */
742 void cgroup_lock(void)
743 {
744 mutex_lock(&cgroup_mutex);
745 }
746 EXPORT_SYMBOL_GPL(cgroup_lock);
747
748 /**
749 * cgroup_unlock - release lock on cgroup changes
750 *
751 * Undo the lock taken in a previous cgroup_lock() call.
752 */
753 void cgroup_unlock(void)
754 {
755 mutex_unlock(&cgroup_mutex);
756 }
757 EXPORT_SYMBOL_GPL(cgroup_unlock);
758
759 /*
760 * A couple of forward declarations required, due to cyclic reference loop:
761 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
762 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
763 * -> cgroup_mkdir.
764 */
765
766 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode);
767 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
768 static int cgroup_populate_dir(struct cgroup *cgrp);
769 static const struct inode_operations cgroup_dir_inode_operations;
770 static const struct file_operations proc_cgroupstats_operations;
771
772 static struct backing_dev_info cgroup_backing_dev_info = {
773 .name = "cgroup",
774 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
775 };
776
777 static int alloc_css_id(struct cgroup_subsys *ss,
778 struct cgroup *parent, struct cgroup *child);
779
780 static struct inode *cgroup_new_inode(mode_t mode, struct super_block *sb)
781 {
782 struct inode *inode = new_inode(sb);
783
784 if (inode) {
785 inode->i_ino = get_next_ino();
786 inode->i_mode = mode;
787 inode->i_uid = current_fsuid();
788 inode->i_gid = current_fsgid();
789 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
790 inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
791 }
792 return inode;
793 }
794
795 /*
796 * Call subsys's pre_destroy handler.
797 * This is called before css refcnt check.
798 */
799 static int cgroup_call_pre_destroy(struct cgroup *cgrp)
800 {
801 struct cgroup_subsys *ss;
802 int ret = 0;
803
804 for_each_subsys(cgrp->root, ss)
805 if (ss->pre_destroy) {
806 ret = ss->pre_destroy(ss, cgrp);
807 if (ret)
808 break;
809 }
810
811 return ret;
812 }
813
814 static void free_cgroup_rcu(struct rcu_head *obj)
815 {
816 struct cgroup *cgrp = container_of(obj, struct cgroup, rcu_head);
817
818 kfree(cgrp);
819 }
820
821 static void cgroup_diput(struct dentry *dentry, struct inode *inode)
822 {
823 /* is dentry a directory ? if so, kfree() associated cgroup */
824 if (S_ISDIR(inode->i_mode)) {
825 struct cgroup *cgrp = dentry->d_fsdata;
826 struct cgroup_subsys *ss;
827 BUG_ON(!(cgroup_is_removed(cgrp)));
828 /* It's possible for external users to be holding css
829 * reference counts on a cgroup; css_put() needs to
830 * be able to access the cgroup after decrementing
831 * the reference count in order to know if it needs to
832 * queue the cgroup to be handled by the release
833 * agent */
834 synchronize_rcu();
835
836 mutex_lock(&cgroup_mutex);
837 /*
838 * Release the subsystem state objects.
839 */
840 for_each_subsys(cgrp->root, ss)
841 ss->destroy(ss, cgrp);
842
843 cgrp->root->number_of_cgroups--;
844 mutex_unlock(&cgroup_mutex);
845
846 /*
847 * Drop the active superblock reference that we took when we
848 * created the cgroup
849 */
850 deactivate_super(cgrp->root->sb);
851
852 /*
853 * if we're getting rid of the cgroup, refcount should ensure
854 * that there are no pidlists left.
855 */
856 BUG_ON(!list_empty(&cgrp->pidlists));
857
858 call_rcu(&cgrp->rcu_head, free_cgroup_rcu);
859 }
860 iput(inode);
861 }
862
863 static void remove_dir(struct dentry *d)
864 {
865 struct dentry *parent = dget(d->d_parent);
866
867 d_delete(d);
868 simple_rmdir(parent->d_inode, d);
869 dput(parent);
870 }
871
872 static void cgroup_clear_directory(struct dentry *dentry)
873 {
874 struct list_head *node;
875
876 BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
877 spin_lock(&dcache_lock);
878 node = dentry->d_subdirs.next;
879 while (node != &dentry->d_subdirs) {
880 struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
881 list_del_init(node);
882 if (d->d_inode) {
883 /* This should never be called on a cgroup
884 * directory with child cgroups */
885 BUG_ON(d->d_inode->i_mode & S_IFDIR);
886 d = dget_locked(d);
887 spin_unlock(&dcache_lock);
888 d_delete(d);
889 simple_unlink(dentry->d_inode, d);
890 dput(d);
891 spin_lock(&dcache_lock);
892 }
893 node = dentry->d_subdirs.next;
894 }
895 spin_unlock(&dcache_lock);
896 }
897
898 /*
899 * NOTE : the dentry must have been dget()'ed
900 */
901 static void cgroup_d_remove_dir(struct dentry *dentry)
902 {
903 cgroup_clear_directory(dentry);
904
905 spin_lock(&dcache_lock);
906 list_del_init(&dentry->d_u.d_child);
907 spin_unlock(&dcache_lock);
908 remove_dir(dentry);
909 }
910
911 /*
912 * A queue for waiters to do rmdir() cgroup. A tasks will sleep when
913 * cgroup->count == 0 && list_empty(&cgroup->children) && subsys has some
914 * reference to css->refcnt. In general, this refcnt is expected to goes down
915 * to zero, soon.
916 *
917 * CGRP_WAIT_ON_RMDIR flag is set under cgroup's inode->i_mutex;
918 */
919 DECLARE_WAIT_QUEUE_HEAD(cgroup_rmdir_waitq);
920
921 static void cgroup_wakeup_rmdir_waiter(struct cgroup *cgrp)
922 {
923 if (unlikely(test_and_clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags)))
924 wake_up_all(&cgroup_rmdir_waitq);
925 }
926
927 void cgroup_exclude_rmdir(struct cgroup_subsys_state *css)
928 {
929 css_get(css);
930 }
931
932 void cgroup_release_and_wakeup_rmdir(struct cgroup_subsys_state *css)
933 {
934 cgroup_wakeup_rmdir_waiter(css->cgroup);
935 css_put(css);
936 }
937
938 /*
939 * Call with cgroup_mutex held. Drops reference counts on modules, including
940 * any duplicate ones that parse_cgroupfs_options took. If this function
941 * returns an error, no reference counts are touched.
942 */
943 static int rebind_subsystems(struct cgroupfs_root *root,
944 unsigned long final_bits)
945 {
946 unsigned long added_bits, removed_bits;
947 struct cgroup *cgrp = &root->top_cgroup;
948 int i;
949
950 BUG_ON(!mutex_is_locked(&cgroup_mutex));
951
952 removed_bits = root->actual_subsys_bits & ~final_bits;
953 added_bits = final_bits & ~root->actual_subsys_bits;
954 /* Check that any added subsystems are currently free */
955 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
956 unsigned long bit = 1UL << i;
957 struct cgroup_subsys *ss = subsys[i];
958 if (!(bit & added_bits))
959 continue;
960 /*
961 * Nobody should tell us to do a subsys that doesn't exist:
962 * parse_cgroupfs_options should catch that case and refcounts
963 * ensure that subsystems won't disappear once selected.
964 */
965 BUG_ON(ss == NULL);
966 if (ss->root != &rootnode) {
967 /* Subsystem isn't free */
968 return -EBUSY;
969 }
970 }
971
972 /* Currently we don't handle adding/removing subsystems when
973 * any child cgroups exist. This is theoretically supportable
974 * but involves complex error handling, so it's being left until
975 * later */
976 if (root->number_of_cgroups > 1)
977 return -EBUSY;
978
979 /* Process each subsystem */
980 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
981 struct cgroup_subsys *ss = subsys[i];
982 unsigned long bit = 1UL << i;
983 if (bit & added_bits) {
984 /* We're binding this subsystem to this hierarchy */
985 BUG_ON(ss == NULL);
986 BUG_ON(cgrp->subsys[i]);
987 BUG_ON(!dummytop->subsys[i]);
988 BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
989 mutex_lock(&ss->hierarchy_mutex);
990 cgrp->subsys[i] = dummytop->subsys[i];
991 cgrp->subsys[i]->cgroup = cgrp;
992 list_move(&ss->sibling, &root->subsys_list);
993 ss->root = root;
994 if (ss->bind)
995 ss->bind(ss, cgrp);
996 mutex_unlock(&ss->hierarchy_mutex);
997 /* refcount was already taken, and we're keeping it */
998 } else if (bit & removed_bits) {
999 /* We're removing this subsystem */
1000 BUG_ON(ss == NULL);
1001 BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
1002 BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
1003 mutex_lock(&ss->hierarchy_mutex);
1004 if (ss->bind)
1005 ss->bind(ss, dummytop);
1006 dummytop->subsys[i]->cgroup = dummytop;
1007 cgrp->subsys[i] = NULL;
1008 subsys[i]->root = &rootnode;
1009 list_move(&ss->sibling, &rootnode.subsys_list);
1010 mutex_unlock(&ss->hierarchy_mutex);
1011 /* subsystem is now free - drop reference on module */
1012 module_put(ss->module);
1013 } else if (bit & final_bits) {
1014 /* Subsystem state should already exist */
1015 BUG_ON(ss == NULL);
1016 BUG_ON(!cgrp->subsys[i]);
1017 /*
1018 * a refcount was taken, but we already had one, so
1019 * drop the extra reference.
1020 */
1021 module_put(ss->module);
1022 #ifdef CONFIG_MODULE_UNLOAD
1023 BUG_ON(ss->module && !module_refcount(ss->module));
1024 #endif
1025 } else {
1026 /* Subsystem state shouldn't exist */
1027 BUG_ON(cgrp->subsys[i]);
1028 }
1029 }
1030 root->subsys_bits = root->actual_subsys_bits = final_bits;
1031 synchronize_rcu();
1032
1033 return 0;
1034 }
1035
1036 static int cgroup_show_options(struct seq_file *seq, struct vfsmount *vfs)
1037 {
1038 struct cgroupfs_root *root = vfs->mnt_sb->s_fs_info;
1039 struct cgroup_subsys *ss;
1040
1041 mutex_lock(&cgroup_mutex);
1042 for_each_subsys(root, ss)
1043 seq_printf(seq, ",%s", ss->name);
1044 if (test_bit(ROOT_NOPREFIX, &root->flags))
1045 seq_puts(seq, ",noprefix");
1046 if (strlen(root->release_agent_path))
1047 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
1048 if (clone_children(&root->top_cgroup))
1049 seq_puts(seq, ",clone_children");
1050 if (strlen(root->name))
1051 seq_printf(seq, ",name=%s", root->name);
1052 mutex_unlock(&cgroup_mutex);
1053 return 0;
1054 }
1055
1056 struct cgroup_sb_opts {
1057 unsigned long subsys_bits;
1058 unsigned long flags;
1059 char *release_agent;
1060 bool clone_children;
1061 char *name;
1062 /* User explicitly requested empty subsystem */
1063 bool none;
1064
1065 struct cgroupfs_root *new_root;
1066
1067 };
1068
1069 /*
1070 * Convert a hierarchy specifier into a bitmask of subsystems and flags. Call
1071 * with cgroup_mutex held to protect the subsys[] array. This function takes
1072 * refcounts on subsystems to be used, unless it returns error, in which case
1073 * no refcounts are taken.
1074 */
1075 static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
1076 {
1077 char *token, *o = data;
1078 bool all_ss = false, one_ss = false;
1079 unsigned long mask = (unsigned long)-1;
1080 int i;
1081 bool module_pin_failed = false;
1082
1083 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1084
1085 #ifdef CONFIG_CPUSETS
1086 mask = ~(1UL << cpuset_subsys_id);
1087 #endif
1088
1089 memset(opts, 0, sizeof(*opts));
1090
1091 while ((token = strsep(&o, ",")) != NULL) {
1092 if (!*token)
1093 return -EINVAL;
1094 if (!strcmp(token, "none")) {
1095 /* Explicitly have no subsystems */
1096 opts->none = true;
1097 continue;
1098 }
1099 if (!strcmp(token, "all")) {
1100 /* Mutually exclusive option 'all' + subsystem name */
1101 if (one_ss)
1102 return -EINVAL;
1103 all_ss = true;
1104 continue;
1105 }
1106 if (!strcmp(token, "noprefix")) {
1107 set_bit(ROOT_NOPREFIX, &opts->flags);
1108 continue;
1109 }
1110 if (!strcmp(token, "clone_children")) {
1111 opts->clone_children = true;
1112 continue;
1113 }
1114 if (!strncmp(token, "release_agent=", 14)) {
1115 /* Specifying two release agents is forbidden */
1116 if (opts->release_agent)
1117 return -EINVAL;
1118 opts->release_agent =
1119 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
1120 if (!opts->release_agent)
1121 return -ENOMEM;
1122 continue;
1123 }
1124 if (!strncmp(token, "name=", 5)) {
1125 const char *name = token + 5;
1126 /* Can't specify an empty name */
1127 if (!strlen(name))
1128 return -EINVAL;
1129 /* Must match [\w.-]+ */
1130 for (i = 0; i < strlen(name); i++) {
1131 char c = name[i];
1132 if (isalnum(c))
1133 continue;
1134 if ((c == '.') || (c == '-') || (c == '_'))
1135 continue;
1136 return -EINVAL;
1137 }
1138 /* Specifying two names is forbidden */
1139 if (opts->name)
1140 return -EINVAL;
1141 opts->name = kstrndup(name,
1142 MAX_CGROUP_ROOT_NAMELEN - 1,
1143 GFP_KERNEL);
1144 if (!opts->name)
1145 return -ENOMEM;
1146
1147 continue;
1148 }
1149
1150 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1151 struct cgroup_subsys *ss = subsys[i];
1152 if (ss == NULL)
1153 continue;
1154 if (strcmp(token, ss->name))
1155 continue;
1156 if (ss->disabled)
1157 continue;
1158
1159 /* Mutually exclusive option 'all' + subsystem name */
1160 if (all_ss)
1161 return -EINVAL;
1162 set_bit(i, &opts->subsys_bits);
1163 one_ss = true;
1164
1165 break;
1166 }
1167 if (i == CGROUP_SUBSYS_COUNT)
1168 return -ENOENT;
1169 }
1170
1171 /*
1172 * If the 'all' option was specified select all the subsystems,
1173 * otherwise 'all, 'none' and a subsystem name options were not
1174 * specified, let's default to 'all'
1175 */
1176 if (all_ss || (!all_ss && !one_ss && !opts->none)) {
1177 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1178 struct cgroup_subsys *ss = subsys[i];
1179 if (ss == NULL)
1180 continue;
1181 if (ss->disabled)
1182 continue;
1183 set_bit(i, &opts->subsys_bits);
1184 }
1185 }
1186
1187 /* Consistency checks */
1188
1189 /*
1190 * Option noprefix was introduced just for backward compatibility
1191 * with the old cpuset, so we allow noprefix only if mounting just
1192 * the cpuset subsystem.
1193 */
1194 if (test_bit(ROOT_NOPREFIX, &opts->flags) &&
1195 (opts->subsys_bits & mask))
1196 return -EINVAL;
1197
1198
1199 /* Can't specify "none" and some subsystems */
1200 if (opts->subsys_bits && opts->none)
1201 return -EINVAL;
1202
1203 /*
1204 * We either have to specify by name or by subsystems. (So all
1205 * empty hierarchies must have a name).
1206 */
1207 if (!opts->subsys_bits && !opts->name)
1208 return -EINVAL;
1209
1210 /*
1211 * Grab references on all the modules we'll need, so the subsystems
1212 * don't dance around before rebind_subsystems attaches them. This may
1213 * take duplicate reference counts on a subsystem that's already used,
1214 * but rebind_subsystems handles this case.
1215 */
1216 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
1217 unsigned long bit = 1UL << i;
1218
1219 if (!(bit & opts->subsys_bits))
1220 continue;
1221 if (!try_module_get(subsys[i]->module)) {
1222 module_pin_failed = true;
1223 break;
1224 }
1225 }
1226 if (module_pin_failed) {
1227 /*
1228 * oops, one of the modules was going away. this means that we
1229 * raced with a module_delete call, and to the user this is
1230 * essentially a "subsystem doesn't exist" case.
1231 */
1232 for (i--; i >= CGROUP_BUILTIN_SUBSYS_COUNT; i--) {
1233 /* drop refcounts only on the ones we took */
1234 unsigned long bit = 1UL << i;
1235
1236 if (!(bit & opts->subsys_bits))
1237 continue;
1238 module_put(subsys[i]->module);
1239 }
1240 return -ENOENT;
1241 }
1242
1243 return 0;
1244 }
1245
1246 static void drop_parsed_module_refcounts(unsigned long subsys_bits)
1247 {
1248 int i;
1249 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
1250 unsigned long bit = 1UL << i;
1251
1252 if (!(bit & subsys_bits))
1253 continue;
1254 module_put(subsys[i]->module);
1255 }
1256 }
1257
1258 static int cgroup_remount(struct super_block *sb, int *flags, char *data)
1259 {
1260 int ret = 0;
1261 struct cgroupfs_root *root = sb->s_fs_info;
1262 struct cgroup *cgrp = &root->top_cgroup;
1263 struct cgroup_sb_opts opts;
1264
1265 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
1266 mutex_lock(&cgroup_mutex);
1267
1268 /* See what subsystems are wanted */
1269 ret = parse_cgroupfs_options(data, &opts);
1270 if (ret)
1271 goto out_unlock;
1272
1273 /* Don't allow flags or name to change at remount */
1274 if (opts.flags != root->flags ||
1275 (opts.name && strcmp(opts.name, root->name))) {
1276 ret = -EINVAL;
1277 drop_parsed_module_refcounts(opts.subsys_bits);
1278 goto out_unlock;
1279 }
1280
1281 ret = rebind_subsystems(root, opts.subsys_bits);
1282 if (ret) {
1283 drop_parsed_module_refcounts(opts.subsys_bits);
1284 goto out_unlock;
1285 }
1286
1287 /* (re)populate subsystem files */
1288 cgroup_populate_dir(cgrp);
1289
1290 if (opts.release_agent)
1291 strcpy(root->release_agent_path, opts.release_agent);
1292 out_unlock:
1293 kfree(opts.release_agent);
1294 kfree(opts.name);
1295 mutex_unlock(&cgroup_mutex);
1296 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
1297 return ret;
1298 }
1299
1300 static const struct super_operations cgroup_ops = {
1301 .statfs = simple_statfs,
1302 .drop_inode = generic_delete_inode,
1303 .show_options = cgroup_show_options,
1304 .remount_fs = cgroup_remount,
1305 };
1306
1307 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1308 {
1309 INIT_LIST_HEAD(&cgrp->sibling);
1310 INIT_LIST_HEAD(&cgrp->children);
1311 INIT_LIST_HEAD(&cgrp->css_sets);
1312 INIT_LIST_HEAD(&cgrp->release_list);
1313 INIT_LIST_HEAD(&cgrp->pidlists);
1314 mutex_init(&cgrp->pidlist_mutex);
1315 INIT_LIST_HEAD(&cgrp->event_list);
1316 spin_lock_init(&cgrp->event_list_lock);
1317 }
1318
1319 static void init_cgroup_root(struct cgroupfs_root *root)
1320 {
1321 struct cgroup *cgrp = &root->top_cgroup;
1322 INIT_LIST_HEAD(&root->subsys_list);
1323 INIT_LIST_HEAD(&root->root_list);
1324 root->number_of_cgroups = 1;
1325 cgrp->root = root;
1326 cgrp->top_cgroup = cgrp;
1327 init_cgroup_housekeeping(cgrp);
1328 }
1329
1330 static bool init_root_id(struct cgroupfs_root *root)
1331 {
1332 int ret = 0;
1333
1334 do {
1335 if (!ida_pre_get(&hierarchy_ida, GFP_KERNEL))
1336 return false;
1337 spin_lock(&hierarchy_id_lock);
1338 /* Try to allocate the next unused ID */
1339 ret = ida_get_new_above(&hierarchy_ida, next_hierarchy_id,
1340 &root->hierarchy_id);
1341 if (ret == -ENOSPC)
1342 /* Try again starting from 0 */
1343 ret = ida_get_new(&hierarchy_ida, &root->hierarchy_id);
1344 if (!ret) {
1345 next_hierarchy_id = root->hierarchy_id + 1;
1346 } else if (ret != -EAGAIN) {
1347 /* Can only get here if the 31-bit IDR is full ... */
1348 BUG_ON(ret);
1349 }
1350 spin_unlock(&hierarchy_id_lock);
1351 } while (ret);
1352 return true;
1353 }
1354
1355 static int cgroup_test_super(struct super_block *sb, void *data)
1356 {
1357 struct cgroup_sb_opts *opts = data;
1358 struct cgroupfs_root *root = sb->s_fs_info;
1359
1360 /* If we asked for a name then it must match */
1361 if (opts->name && strcmp(opts->name, root->name))
1362 return 0;
1363
1364 /*
1365 * If we asked for subsystems (or explicitly for no
1366 * subsystems) then they must match
1367 */
1368 if ((opts->subsys_bits || opts->none)
1369 && (opts->subsys_bits != root->subsys_bits))
1370 return 0;
1371
1372 return 1;
1373 }
1374
1375 static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
1376 {
1377 struct cgroupfs_root *root;
1378
1379 if (!opts->subsys_bits && !opts->none)
1380 return NULL;
1381
1382 root = kzalloc(sizeof(*root), GFP_KERNEL);
1383 if (!root)
1384 return ERR_PTR(-ENOMEM);
1385
1386 if (!init_root_id(root)) {
1387 kfree(root);
1388 return ERR_PTR(-ENOMEM);
1389 }
1390 init_cgroup_root(root);
1391
1392 root->subsys_bits = opts->subsys_bits;
1393 root->flags = opts->flags;
1394 if (opts->release_agent)
1395 strcpy(root->release_agent_path, opts->release_agent);
1396 if (opts->name)
1397 strcpy(root->name, opts->name);
1398 if (opts->clone_children)
1399 set_bit(CGRP_CLONE_CHILDREN, &root->top_cgroup.flags);
1400 return root;
1401 }
1402
1403 static void cgroup_drop_root(struct cgroupfs_root *root)
1404 {
1405 if (!root)
1406 return;
1407
1408 BUG_ON(!root->hierarchy_id);
1409 spin_lock(&hierarchy_id_lock);
1410 ida_remove(&hierarchy_ida, root->hierarchy_id);
1411 spin_unlock(&hierarchy_id_lock);
1412 kfree(root);
1413 }
1414
1415 static int cgroup_set_super(struct super_block *sb, void *data)
1416 {
1417 int ret;
1418 struct cgroup_sb_opts *opts = data;
1419
1420 /* If we don't have a new root, we can't set up a new sb */
1421 if (!opts->new_root)
1422 return -EINVAL;
1423
1424 BUG_ON(!opts->subsys_bits && !opts->none);
1425
1426 ret = set_anon_super(sb, NULL);
1427 if (ret)
1428 return ret;
1429
1430 sb->s_fs_info = opts->new_root;
1431 opts->new_root->sb = sb;
1432
1433 sb->s_blocksize = PAGE_CACHE_SIZE;
1434 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
1435 sb->s_magic = CGROUP_SUPER_MAGIC;
1436 sb->s_op = &cgroup_ops;
1437
1438 return 0;
1439 }
1440
1441 static int cgroup_get_rootdir(struct super_block *sb)
1442 {
1443 struct inode *inode =
1444 cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
1445 struct dentry *dentry;
1446
1447 if (!inode)
1448 return -ENOMEM;
1449
1450 inode->i_fop = &simple_dir_operations;
1451 inode->i_op = &cgroup_dir_inode_operations;
1452 /* directories start off with i_nlink == 2 (for "." entry) */
1453 inc_nlink(inode);
1454 dentry = d_alloc_root(inode);
1455 if (!dentry) {
1456 iput(inode);
1457 return -ENOMEM;
1458 }
1459 sb->s_root = dentry;
1460 return 0;
1461 }
1462
1463 static int cgroup_get_sb(struct file_system_type *fs_type,
1464 int flags, const char *unused_dev_name,
1465 void *data, struct vfsmount *mnt)
1466 {
1467 struct cgroup_sb_opts opts;
1468 struct cgroupfs_root *root;
1469 int ret = 0;
1470 struct super_block *sb;
1471 struct cgroupfs_root *new_root;
1472
1473 /* First find the desired set of subsystems */
1474 mutex_lock(&cgroup_mutex);
1475 ret = parse_cgroupfs_options(data, &opts);
1476 mutex_unlock(&cgroup_mutex);
1477 if (ret)
1478 goto out_err;
1479
1480 /*
1481 * Allocate a new cgroup root. We may not need it if we're
1482 * reusing an existing hierarchy.
1483 */
1484 new_root = cgroup_root_from_opts(&opts);
1485 if (IS_ERR(new_root)) {
1486 ret = PTR_ERR(new_root);
1487 goto drop_modules;
1488 }
1489 opts.new_root = new_root;
1490
1491 /* Locate an existing or new sb for this hierarchy */
1492 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, &opts);
1493 if (IS_ERR(sb)) {
1494 ret = PTR_ERR(sb);
1495 cgroup_drop_root(opts.new_root);
1496 goto drop_modules;
1497 }
1498
1499 root = sb->s_fs_info;
1500 BUG_ON(!root);
1501 if (root == opts.new_root) {
1502 /* We used the new root structure, so this is a new hierarchy */
1503 struct list_head tmp_cg_links;
1504 struct cgroup *root_cgrp = &root->top_cgroup;
1505 struct inode *inode;
1506 struct cgroupfs_root *existing_root;
1507 int i;
1508
1509 BUG_ON(sb->s_root != NULL);
1510
1511 ret = cgroup_get_rootdir(sb);
1512 if (ret)
1513 goto drop_new_super;
1514 inode = sb->s_root->d_inode;
1515
1516 mutex_lock(&inode->i_mutex);
1517 mutex_lock(&cgroup_mutex);
1518
1519 if (strlen(root->name)) {
1520 /* Check for name clashes with existing mounts */
1521 for_each_active_root(existing_root) {
1522 if (!strcmp(existing_root->name, root->name)) {
1523 ret = -EBUSY;
1524 mutex_unlock(&cgroup_mutex);
1525 mutex_unlock(&inode->i_mutex);
1526 goto drop_new_super;
1527 }
1528 }
1529 }
1530
1531 /*
1532 * We're accessing css_set_count without locking
1533 * css_set_lock here, but that's OK - it can only be
1534 * increased by someone holding cgroup_lock, and
1535 * that's us. The worst that can happen is that we
1536 * have some link structures left over
1537 */
1538 ret = allocate_cg_links(css_set_count, &tmp_cg_links);
1539 if (ret) {
1540 mutex_unlock(&cgroup_mutex);
1541 mutex_unlock(&inode->i_mutex);
1542 goto drop_new_super;
1543 }
1544
1545 ret = rebind_subsystems(root, root->subsys_bits);
1546 if (ret == -EBUSY) {
1547 mutex_unlock(&cgroup_mutex);
1548 mutex_unlock(&inode->i_mutex);
1549 free_cg_links(&tmp_cg_links);
1550 goto drop_new_super;
1551 }
1552 /*
1553 * There must be no failure case after here, since rebinding
1554 * takes care of subsystems' refcounts, which are explicitly
1555 * dropped in the failure exit path.
1556 */
1557
1558 /* EBUSY should be the only error here */
1559 BUG_ON(ret);
1560
1561 list_add(&root->root_list, &roots);
1562 root_count++;
1563
1564 sb->s_root->d_fsdata = root_cgrp;
1565 root->top_cgroup.dentry = sb->s_root;
1566
1567 /* Link the top cgroup in this hierarchy into all
1568 * the css_set objects */
1569 write_lock(&css_set_lock);
1570 for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
1571 struct hlist_head *hhead = &css_set_table[i];
1572 struct hlist_node *node;
1573 struct css_set *cg;
1574
1575 hlist_for_each_entry(cg, node, hhead, hlist)
1576 link_css_set(&tmp_cg_links, cg, root_cgrp);
1577 }
1578 write_unlock(&css_set_lock);
1579
1580 free_cg_links(&tmp_cg_links);
1581
1582 BUG_ON(!list_empty(&root_cgrp->sibling));
1583 BUG_ON(!list_empty(&root_cgrp->children));
1584 BUG_ON(root->number_of_cgroups != 1);
1585
1586 cgroup_populate_dir(root_cgrp);
1587 mutex_unlock(&cgroup_mutex);
1588 mutex_unlock(&inode->i_mutex);
1589 } else {
1590 /*
1591 * We re-used an existing hierarchy - the new root (if
1592 * any) is not needed
1593 */
1594 cgroup_drop_root(opts.new_root);
1595 /* no subsys rebinding, so refcounts don't change */
1596 drop_parsed_module_refcounts(opts.subsys_bits);
1597 }
1598
1599 simple_set_mnt(mnt, sb);
1600 kfree(opts.release_agent);
1601 kfree(opts.name);
1602 return 0;
1603
1604 drop_new_super:
1605 deactivate_locked_super(sb);
1606 drop_modules:
1607 drop_parsed_module_refcounts(opts.subsys_bits);
1608 out_err:
1609 kfree(opts.release_agent);
1610 kfree(opts.name);
1611 return ret;
1612 }
1613
1614 static void cgroup_kill_sb(struct super_block *sb) {
1615 struct cgroupfs_root *root = sb->s_fs_info;
1616 struct cgroup *cgrp = &root->top_cgroup;
1617 int ret;
1618 struct cg_cgroup_link *link;
1619 struct cg_cgroup_link *saved_link;
1620
1621 BUG_ON(!root);
1622
1623 BUG_ON(root->number_of_cgroups != 1);
1624 BUG_ON(!list_empty(&cgrp->children));
1625 BUG_ON(!list_empty(&cgrp->sibling));
1626
1627 mutex_lock(&cgroup_mutex);
1628
1629 /* Rebind all subsystems back to the default hierarchy */
1630 ret = rebind_subsystems(root, 0);
1631 /* Shouldn't be able to fail ... */
1632 BUG_ON(ret);
1633
1634 /*
1635 * Release all the links from css_sets to this hierarchy's
1636 * root cgroup
1637 */
1638 write_lock(&css_set_lock);
1639
1640 list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
1641 cgrp_link_list) {
1642 list_del(&link->cg_link_list);
1643 list_del(&link->cgrp_link_list);
1644 kfree(link);
1645 }
1646 write_unlock(&css_set_lock);
1647
1648 if (!list_empty(&root->root_list)) {
1649 list_del(&root->root_list);
1650 root_count--;
1651 }
1652
1653 mutex_unlock(&cgroup_mutex);
1654
1655 kill_litter_super(sb);
1656 cgroup_drop_root(root);
1657 }
1658
1659 static struct file_system_type cgroup_fs_type = {
1660 .name = "cgroup",
1661 .get_sb = cgroup_get_sb,
1662 .kill_sb = cgroup_kill_sb,
1663 };
1664
1665 static struct kobject *cgroup_kobj;
1666
1667 static inline struct cgroup *__d_cgrp(struct dentry *dentry)
1668 {
1669 return dentry->d_fsdata;
1670 }
1671
1672 static inline struct cftype *__d_cft(struct dentry *dentry)
1673 {
1674 return dentry->d_fsdata;
1675 }
1676
1677 /**
1678 * cgroup_path - generate the path of a cgroup
1679 * @cgrp: the cgroup in question
1680 * @buf: the buffer to write the path into
1681 * @buflen: the length of the buffer
1682 *
1683 * Called with cgroup_mutex held or else with an RCU-protected cgroup
1684 * reference. Writes path of cgroup into buf. Returns 0 on success,
1685 * -errno on error.
1686 */
1687 int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1688 {
1689 char *start;
1690 struct dentry *dentry = rcu_dereference_check(cgrp->dentry,
1691 rcu_read_lock_held() ||
1692 cgroup_lock_is_held());
1693
1694 if (!dentry || cgrp == dummytop) {
1695 /*
1696 * Inactive subsystems have no dentry for their root
1697 * cgroup
1698 */
1699 strcpy(buf, "/");
1700 return 0;
1701 }
1702
1703 start = buf + buflen;
1704
1705 *--start = '\0';
1706 for (;;) {
1707 int len = dentry->d_name.len;
1708
1709 if ((start -= len) < buf)
1710 return -ENAMETOOLONG;
1711 memcpy(start, dentry->d_name.name, len);
1712 cgrp = cgrp->parent;
1713 if (!cgrp)
1714 break;
1715
1716 dentry = rcu_dereference_check(cgrp->dentry,
1717 rcu_read_lock_held() ||
1718 cgroup_lock_is_held());
1719 if (!cgrp->parent)
1720 continue;
1721 if (--start < buf)
1722 return -ENAMETOOLONG;
1723 *start = '/';
1724 }
1725 memmove(buf, start, buf + buflen - start);
1726 return 0;
1727 }
1728 EXPORT_SYMBOL_GPL(cgroup_path);
1729
1730 /**
1731 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
1732 * @cgrp: the cgroup the task is attaching to
1733 * @tsk: the task to be attached
1734 *
1735 * Call holding cgroup_mutex. May take task_lock of
1736 * the task 'tsk' during call.
1737 */
1738 int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
1739 {
1740 int retval = 0;
1741 struct cgroup_subsys *ss, *failed_ss = NULL;
1742 struct cgroup *oldcgrp;
1743 struct css_set *cg;
1744 struct css_set *newcg;
1745 struct cgroupfs_root *root = cgrp->root;
1746
1747 /* Nothing to do if the task is already in that cgroup */
1748 oldcgrp = task_cgroup_from_root(tsk, root);
1749 if (cgrp == oldcgrp)
1750 return 0;
1751
1752 for_each_subsys(root, ss) {
1753 if (ss->can_attach) {
1754 retval = ss->can_attach(ss, cgrp, tsk, false);
1755 if (retval) {
1756 /*
1757 * Remember on which subsystem the can_attach()
1758 * failed, so that we only call cancel_attach()
1759 * against the subsystems whose can_attach()
1760 * succeeded. (See below)
1761 */
1762 failed_ss = ss;
1763 goto out;
1764 }
1765 }
1766 }
1767
1768 task_lock(tsk);
1769 cg = tsk->cgroups;
1770 get_css_set(cg);
1771 task_unlock(tsk);
1772 /*
1773 * Locate or allocate a new css_set for this task,
1774 * based on its final set of cgroups
1775 */
1776 newcg = find_css_set(cg, cgrp);
1777 put_css_set(cg);
1778 if (!newcg) {
1779 retval = -ENOMEM;
1780 goto out;
1781 }
1782
1783 task_lock(tsk);
1784 if (tsk->flags & PF_EXITING) {
1785 task_unlock(tsk);
1786 put_css_set(newcg);
1787 retval = -ESRCH;
1788 goto out;
1789 }
1790 rcu_assign_pointer(tsk->cgroups, newcg);
1791 task_unlock(tsk);
1792
1793 /* Update the css_set linked lists if we're using them */
1794 write_lock(&css_set_lock);
1795 if (!list_empty(&tsk->cg_list)) {
1796 list_del(&tsk->cg_list);
1797 list_add(&tsk->cg_list, &newcg->tasks);
1798 }
1799 write_unlock(&css_set_lock);
1800
1801 for_each_subsys(root, ss) {
1802 if (ss->attach)
1803 ss->attach(ss, cgrp, oldcgrp, tsk, false);
1804 }
1805 set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
1806 synchronize_rcu();
1807 put_css_set(cg);
1808
1809 /*
1810 * wake up rmdir() waiter. the rmdir should fail since the cgroup
1811 * is no longer empty.
1812 */
1813 cgroup_wakeup_rmdir_waiter(cgrp);
1814 out:
1815 if (retval) {
1816 for_each_subsys(root, ss) {
1817 if (ss == failed_ss)
1818 /*
1819 * This subsystem was the one that failed the
1820 * can_attach() check earlier, so we don't need
1821 * to call cancel_attach() against it or any
1822 * remaining subsystems.
1823 */
1824 break;
1825 if (ss->cancel_attach)
1826 ss->cancel_attach(ss, cgrp, tsk, false);
1827 }
1828 }
1829 return retval;
1830 }
1831
1832 /**
1833 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
1834 * @from: attach to all cgroups of a given task
1835 * @tsk: the task to be attached
1836 */
1837 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
1838 {
1839 struct cgroupfs_root *root;
1840 int retval = 0;
1841
1842 cgroup_lock();
1843 for_each_active_root(root) {
1844 struct cgroup *from_cg = task_cgroup_from_root(from, root);
1845
1846 retval = cgroup_attach_task(from_cg, tsk);
1847 if (retval)
1848 break;
1849 }
1850 cgroup_unlock();
1851
1852 return retval;
1853 }
1854 EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
1855
1856 /*
1857 * Attach task with pid 'pid' to cgroup 'cgrp'. Call with cgroup_mutex
1858 * held. May take task_lock of task
1859 */
1860 static int attach_task_by_pid(struct cgroup *cgrp, u64 pid)
1861 {
1862 struct task_struct *tsk;
1863 const struct cred *cred = current_cred(), *tcred;
1864 int ret;
1865
1866 if (pid) {
1867 rcu_read_lock();
1868 tsk = find_task_by_vpid(pid);
1869 if (!tsk || tsk->flags & PF_EXITING) {
1870 rcu_read_unlock();
1871 return -ESRCH;
1872 }
1873
1874 tcred = __task_cred(tsk);
1875 if (cred->euid &&
1876 cred->euid != tcred->uid &&
1877 cred->euid != tcred->suid) {
1878 rcu_read_unlock();
1879 return -EACCES;
1880 }
1881 get_task_struct(tsk);
1882 rcu_read_unlock();
1883 } else {
1884 tsk = current;
1885 get_task_struct(tsk);
1886 }
1887
1888 ret = cgroup_attach_task(cgrp, tsk);
1889 put_task_struct(tsk);
1890 return ret;
1891 }
1892
1893 static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
1894 {
1895 int ret;
1896 if (!cgroup_lock_live_group(cgrp))
1897 return -ENODEV;
1898 ret = attach_task_by_pid(cgrp, pid);
1899 cgroup_unlock();
1900 return ret;
1901 }
1902
1903 /**
1904 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
1905 * @cgrp: the cgroup to be checked for liveness
1906 *
1907 * On success, returns true; the lock should be later released with
1908 * cgroup_unlock(). On failure returns false with no lock held.
1909 */
1910 bool cgroup_lock_live_group(struct cgroup *cgrp)
1911 {
1912 mutex_lock(&cgroup_mutex);
1913 if (cgroup_is_removed(cgrp)) {
1914 mutex_unlock(&cgroup_mutex);
1915 return false;
1916 }
1917 return true;
1918 }
1919 EXPORT_SYMBOL_GPL(cgroup_lock_live_group);
1920
1921 static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
1922 const char *buffer)
1923 {
1924 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
1925 if (!cgroup_lock_live_group(cgrp))
1926 return -ENODEV;
1927 strcpy(cgrp->root->release_agent_path, buffer);
1928 cgroup_unlock();
1929 return 0;
1930 }
1931
1932 static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
1933 struct seq_file *seq)
1934 {
1935 if (!cgroup_lock_live_group(cgrp))
1936 return -ENODEV;
1937 seq_puts(seq, cgrp->root->release_agent_path);
1938 seq_putc(seq, '\n');
1939 cgroup_unlock();
1940 return 0;
1941 }
1942
1943 /* A buffer size big enough for numbers or short strings */
1944 #define CGROUP_LOCAL_BUFFER_SIZE 64
1945
1946 static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
1947 struct file *file,
1948 const char __user *userbuf,
1949 size_t nbytes, loff_t *unused_ppos)
1950 {
1951 char buffer[CGROUP_LOCAL_BUFFER_SIZE];
1952 int retval = 0;
1953 char *end;
1954
1955 if (!nbytes)
1956 return -EINVAL;
1957 if (nbytes >= sizeof(buffer))
1958 return -E2BIG;
1959 if (copy_from_user(buffer, userbuf, nbytes))
1960 return -EFAULT;
1961
1962 buffer[nbytes] = 0; /* nul-terminate */
1963 if (cft->write_u64) {
1964 u64 val = simple_strtoull(strstrip(buffer), &end, 0);
1965 if (*end)
1966 return -EINVAL;
1967 retval = cft->write_u64(cgrp, cft, val);
1968 } else {
1969 s64 val = simple_strtoll(strstrip(buffer), &end, 0);
1970 if (*end)
1971 return -EINVAL;
1972 retval = cft->write_s64(cgrp, cft, val);
1973 }
1974 if (!retval)
1975 retval = nbytes;
1976 return retval;
1977 }
1978
1979 static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
1980 struct file *file,
1981 const char __user *userbuf,
1982 size_t nbytes, loff_t *unused_ppos)
1983 {
1984 char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
1985 int retval = 0;
1986 size_t max_bytes = cft->max_write_len;
1987 char *buffer = local_buffer;
1988
1989 if (!max_bytes)
1990 max_bytes = sizeof(local_buffer) - 1;
1991 if (nbytes >= max_bytes)
1992 return -E2BIG;
1993 /* Allocate a dynamic buffer if we need one */
1994 if (nbytes >= sizeof(local_buffer)) {
1995 buffer = kmalloc(nbytes + 1, GFP_KERNEL);
1996 if (buffer == NULL)
1997 return -ENOMEM;
1998 }
1999 if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
2000 retval = -EFAULT;
2001 goto out;
2002 }
2003
2004 buffer[nbytes] = 0; /* nul-terminate */
2005 retval = cft->write_string(cgrp, cft, strstrip(buffer));
2006 if (!retval)
2007 retval = nbytes;
2008 out:
2009 if (buffer != local_buffer)
2010 kfree(buffer);
2011 return retval;
2012 }
2013
2014 static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
2015 size_t nbytes, loff_t *ppos)
2016 {
2017 struct cftype *cft = __d_cft(file->f_dentry);
2018 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2019
2020 if (cgroup_is_removed(cgrp))
2021 return -ENODEV;
2022 if (cft->write)
2023 return cft->write(cgrp, cft, file, buf, nbytes, ppos);
2024 if (cft->write_u64 || cft->write_s64)
2025 return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
2026 if (cft->write_string)
2027 return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
2028 if (cft->trigger) {
2029 int ret = cft->trigger(cgrp, (unsigned int)cft->private);
2030 return ret ? ret : nbytes;
2031 }
2032 return -EINVAL;
2033 }
2034
2035 static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
2036 struct file *file,
2037 char __user *buf, size_t nbytes,
2038 loff_t *ppos)
2039 {
2040 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2041 u64 val = cft->read_u64(cgrp, cft);
2042 int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
2043
2044 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2045 }
2046
2047 static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
2048 struct file *file,
2049 char __user *buf, size_t nbytes,
2050 loff_t *ppos)
2051 {
2052 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2053 s64 val = cft->read_s64(cgrp, cft);
2054 int len = sprintf(tmp, "%lld\n", (long long) val);
2055
2056 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2057 }
2058
2059 static ssize_t cgroup_file_read(struct file *file, char __user *buf,
2060 size_t nbytes, loff_t *ppos)
2061 {
2062 struct cftype *cft = __d_cft(file->f_dentry);
2063 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2064
2065 if (cgroup_is_removed(cgrp))
2066 return -ENODEV;
2067
2068 if (cft->read)
2069 return cft->read(cgrp, cft, file, buf, nbytes, ppos);
2070 if (cft->read_u64)
2071 return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
2072 if (cft->read_s64)
2073 return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
2074 return -EINVAL;
2075 }
2076
2077 /*
2078 * seqfile ops/methods for returning structured data. Currently just
2079 * supports string->u64 maps, but can be extended in future.
2080 */
2081
2082 struct cgroup_seqfile_state {
2083 struct cftype *cft;
2084 struct cgroup *cgroup;
2085 };
2086
2087 static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
2088 {
2089 struct seq_file *sf = cb->state;
2090 return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
2091 }
2092
2093 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
2094 {
2095 struct cgroup_seqfile_state *state = m->private;
2096 struct cftype *cft = state->cft;
2097 if (cft->read_map) {
2098 struct cgroup_map_cb cb = {
2099 .fill = cgroup_map_add,
2100 .state = m,
2101 };
2102 return cft->read_map(state->cgroup, cft, &cb);
2103 }
2104 return cft->read_seq_string(state->cgroup, cft, m);
2105 }
2106
2107 static int cgroup_seqfile_release(struct inode *inode, struct file *file)
2108 {
2109 struct seq_file *seq = file->private_data;
2110 kfree(seq->private);
2111 return single_release(inode, file);
2112 }
2113
2114 static const struct file_operations cgroup_seqfile_operations = {
2115 .read = seq_read,
2116 .write = cgroup_file_write,
2117 .llseek = seq_lseek,
2118 .release = cgroup_seqfile_release,
2119 };
2120
2121 static int cgroup_file_open(struct inode *inode, struct file *file)
2122 {
2123 int err;
2124 struct cftype *cft;
2125
2126 err = generic_file_open(inode, file);
2127 if (err)
2128 return err;
2129 cft = __d_cft(file->f_dentry);
2130
2131 if (cft->read_map || cft->read_seq_string) {
2132 struct cgroup_seqfile_state *state =
2133 kzalloc(sizeof(*state), GFP_USER);
2134 if (!state)
2135 return -ENOMEM;
2136 state->cft = cft;
2137 state->cgroup = __d_cgrp(file->f_dentry->d_parent);
2138 file->f_op = &cgroup_seqfile_operations;
2139 err = single_open(file, cgroup_seqfile_show, state);
2140 if (err < 0)
2141 kfree(state);
2142 } else if (cft->open)
2143 err = cft->open(inode, file);
2144 else
2145 err = 0;
2146
2147 return err;
2148 }
2149
2150 static int cgroup_file_release(struct inode *inode, struct file *file)
2151 {
2152 struct cftype *cft = __d_cft(file->f_dentry);
2153 if (cft->release)
2154 return cft->release(inode, file);
2155 return 0;
2156 }
2157
2158 /*
2159 * cgroup_rename - Only allow simple rename of directories in place.
2160 */
2161 static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
2162 struct inode *new_dir, struct dentry *new_dentry)
2163 {
2164 if (!S_ISDIR(old_dentry->d_inode->i_mode))
2165 return -ENOTDIR;
2166 if (new_dentry->d_inode)
2167 return -EEXIST;
2168 if (old_dir != new_dir)
2169 return -EIO;
2170 return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
2171 }
2172
2173 static const struct file_operations cgroup_file_operations = {
2174 .read = cgroup_file_read,
2175 .write = cgroup_file_write,
2176 .llseek = generic_file_llseek,
2177 .open = cgroup_file_open,
2178 .release = cgroup_file_release,
2179 };
2180
2181 static const struct inode_operations cgroup_dir_inode_operations = {
2182 .lookup = simple_lookup,
2183 .mkdir = cgroup_mkdir,
2184 .rmdir = cgroup_rmdir,
2185 .rename = cgroup_rename,
2186 };
2187
2188 /*
2189 * Check if a file is a control file
2190 */
2191 static inline struct cftype *__file_cft(struct file *file)
2192 {
2193 if (file->f_dentry->d_inode->i_fop != &cgroup_file_operations)
2194 return ERR_PTR(-EINVAL);
2195 return __d_cft(file->f_dentry);
2196 }
2197
2198 static int cgroup_create_file(struct dentry *dentry, mode_t mode,
2199 struct super_block *sb)
2200 {
2201 static const struct dentry_operations cgroup_dops = {
2202 .d_iput = cgroup_diput,
2203 };
2204
2205 struct inode *inode;
2206
2207 if (!dentry)
2208 return -ENOENT;
2209 if (dentry->d_inode)
2210 return -EEXIST;
2211
2212 inode = cgroup_new_inode(mode, sb);
2213 if (!inode)
2214 return -ENOMEM;
2215
2216 if (S_ISDIR(mode)) {
2217 inode->i_op = &cgroup_dir_inode_operations;
2218 inode->i_fop = &simple_dir_operations;
2219
2220 /* start off with i_nlink == 2 (for "." entry) */
2221 inc_nlink(inode);
2222
2223 /* start with the directory inode held, so that we can
2224 * populate it without racing with another mkdir */
2225 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
2226 } else if (S_ISREG(mode)) {
2227 inode->i_size = 0;
2228 inode->i_fop = &cgroup_file_operations;
2229 }
2230 dentry->d_op = &cgroup_dops;
2231 d_instantiate(dentry, inode);
2232 dget(dentry); /* Extra count - pin the dentry in core */
2233 return 0;
2234 }
2235
2236 /*
2237 * cgroup_create_dir - create a directory for an object.
2238 * @cgrp: the cgroup we create the directory for. It must have a valid
2239 * ->parent field. And we are going to fill its ->dentry field.
2240 * @dentry: dentry of the new cgroup
2241 * @mode: mode to set on new directory.
2242 */
2243 static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
2244 mode_t mode)
2245 {
2246 struct dentry *parent;
2247 int error = 0;
2248
2249 parent = cgrp->parent->dentry;
2250 error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
2251 if (!error) {
2252 dentry->d_fsdata = cgrp;
2253 inc_nlink(parent->d_inode);
2254 rcu_assign_pointer(cgrp->dentry, dentry);
2255 dget(dentry);
2256 }
2257 dput(dentry);
2258
2259 return error;
2260 }
2261
2262 /**
2263 * cgroup_file_mode - deduce file mode of a control file
2264 * @cft: the control file in question
2265 *
2266 * returns cft->mode if ->mode is not 0
2267 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
2268 * returns S_IRUGO if it has only a read handler
2269 * returns S_IWUSR if it has only a write hander
2270 */
2271 static mode_t cgroup_file_mode(const struct cftype *cft)
2272 {
2273 mode_t mode = 0;
2274
2275 if (cft->mode)
2276 return cft->mode;
2277
2278 if (cft->read || cft->read_u64 || cft->read_s64 ||
2279 cft->read_map || cft->read_seq_string)
2280 mode |= S_IRUGO;
2281
2282 if (cft->write || cft->write_u64 || cft->write_s64 ||
2283 cft->write_string || cft->trigger)
2284 mode |= S_IWUSR;
2285
2286 return mode;
2287 }
2288
2289 int cgroup_add_file(struct cgroup *cgrp,
2290 struct cgroup_subsys *subsys,
2291 const struct cftype *cft)
2292 {
2293 struct dentry *dir = cgrp->dentry;
2294 struct dentry *dentry;
2295 int error;
2296 mode_t mode;
2297
2298 char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
2299 if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
2300 strcpy(name, subsys->name);
2301 strcat(name, ".");
2302 }
2303 strcat(name, cft->name);
2304 BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
2305 dentry = lookup_one_len(name, dir, strlen(name));
2306 if (!IS_ERR(dentry)) {
2307 mode = cgroup_file_mode(cft);
2308 error = cgroup_create_file(dentry, mode | S_IFREG,
2309 cgrp->root->sb);
2310 if (!error)
2311 dentry->d_fsdata = (void *)cft;
2312 dput(dentry);
2313 } else
2314 error = PTR_ERR(dentry);
2315 return error;
2316 }
2317 EXPORT_SYMBOL_GPL(cgroup_add_file);
2318
2319 int cgroup_add_files(struct cgroup *cgrp,
2320 struct cgroup_subsys *subsys,
2321 const struct cftype cft[],
2322 int count)
2323 {
2324 int i, err;
2325 for (i = 0; i < count; i++) {
2326 err = cgroup_add_file(cgrp, subsys, &cft[i]);
2327 if (err)
2328 return err;
2329 }
2330 return 0;
2331 }
2332 EXPORT_SYMBOL_GPL(cgroup_add_files);
2333
2334 /**
2335 * cgroup_task_count - count the number of tasks in a cgroup.
2336 * @cgrp: the cgroup in question
2337 *
2338 * Return the number of tasks in the cgroup.
2339 */
2340 int cgroup_task_count(const struct cgroup *cgrp)
2341 {
2342 int count = 0;
2343 struct cg_cgroup_link *link;
2344
2345 read_lock(&css_set_lock);
2346 list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
2347 count += atomic_read(&link->cg->refcount);
2348 }
2349 read_unlock(&css_set_lock);
2350 return count;
2351 }
2352
2353 /*
2354 * Advance a list_head iterator. The iterator should be positioned at
2355 * the start of a css_set
2356 */
2357 static void cgroup_advance_iter(struct cgroup *cgrp,
2358 struct cgroup_iter *it)
2359 {
2360 struct list_head *l = it->cg_link;
2361 struct cg_cgroup_link *link;
2362 struct css_set *cg;
2363
2364 /* Advance to the next non-empty css_set */
2365 do {
2366 l = l->next;
2367 if (l == &cgrp->css_sets) {
2368 it->cg_link = NULL;
2369 return;
2370 }
2371 link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
2372 cg = link->cg;
2373 } while (list_empty(&cg->tasks));
2374 it->cg_link = l;
2375 it->task = cg->tasks.next;
2376 }
2377
2378 /*
2379 * To reduce the fork() overhead for systems that are not actually
2380 * using their cgroups capability, we don't maintain the lists running
2381 * through each css_set to its tasks until we see the list actually
2382 * used - in other words after the first call to cgroup_iter_start().
2383 *
2384 * The tasklist_lock is not held here, as do_each_thread() and
2385 * while_each_thread() are protected by RCU.
2386 */
2387 static void cgroup_enable_task_cg_lists(void)
2388 {
2389 struct task_struct *p, *g;
2390 write_lock(&css_set_lock);
2391 use_task_css_set_links = 1;
2392 do_each_thread(g, p) {
2393 task_lock(p);
2394 /*
2395 * We should check if the process is exiting, otherwise
2396 * it will race with cgroup_exit() in that the list
2397 * entry won't be deleted though the process has exited.
2398 */
2399 if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
2400 list_add(&p->cg_list, &p->cgroups->tasks);
2401 task_unlock(p);
2402 } while_each_thread(g, p);
2403 write_unlock(&css_set_lock);
2404 }
2405
2406 void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
2407 {
2408 /*
2409 * The first time anyone tries to iterate across a cgroup,
2410 * we need to enable the list linking each css_set to its
2411 * tasks, and fix up all existing tasks.
2412 */
2413 if (!use_task_css_set_links)
2414 cgroup_enable_task_cg_lists();
2415
2416 read_lock(&css_set_lock);
2417 it->cg_link = &cgrp->css_sets;
2418 cgroup_advance_iter(cgrp, it);
2419 }
2420
2421 struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
2422 struct cgroup_iter *it)
2423 {
2424 struct task_struct *res;
2425 struct list_head *l = it->task;
2426 struct cg_cgroup_link *link;
2427
2428 /* If the iterator cg is NULL, we have no tasks */
2429 if (!it->cg_link)
2430 return NULL;
2431 res = list_entry(l, struct task_struct, cg_list);
2432 /* Advance iterator to find next entry */
2433 l = l->next;
2434 link = list_entry(it->cg_link, struct cg_cgroup_link, cgrp_link_list);
2435 if (l == &link->cg->tasks) {
2436 /* We reached the end of this task list - move on to
2437 * the next cg_cgroup_link */
2438 cgroup_advance_iter(cgrp, it);
2439 } else {
2440 it->task = l;
2441 }
2442 return res;
2443 }
2444
2445 void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
2446 {
2447 read_unlock(&css_set_lock);
2448 }
2449
2450 static inline int started_after_time(struct task_struct *t1,
2451 struct timespec *time,
2452 struct task_struct *t2)
2453 {
2454 int start_diff = timespec_compare(&t1->start_time, time);
2455 if (start_diff > 0) {
2456 return 1;
2457 } else if (start_diff < 0) {
2458 return 0;
2459 } else {
2460 /*
2461 * Arbitrarily, if two processes started at the same
2462 * time, we'll say that the lower pointer value
2463 * started first. Note that t2 may have exited by now
2464 * so this may not be a valid pointer any longer, but
2465 * that's fine - it still serves to distinguish
2466 * between two tasks started (effectively) simultaneously.
2467 */
2468 return t1 > t2;
2469 }
2470 }
2471
2472 /*
2473 * This function is a callback from heap_insert() and is used to order
2474 * the heap.
2475 * In this case we order the heap in descending task start time.
2476 */
2477 static inline int started_after(void *p1, void *p2)
2478 {
2479 struct task_struct *t1 = p1;
2480 struct task_struct *t2 = p2;
2481 return started_after_time(t1, &t2->start_time, t2);
2482 }
2483
2484 /**
2485 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
2486 * @scan: struct cgroup_scanner containing arguments for the scan
2487 *
2488 * Arguments include pointers to callback functions test_task() and
2489 * process_task().
2490 * Iterate through all the tasks in a cgroup, calling test_task() for each,
2491 * and if it returns true, call process_task() for it also.
2492 * The test_task pointer may be NULL, meaning always true (select all tasks).
2493 * Effectively duplicates cgroup_iter_{start,next,end}()
2494 * but does not lock css_set_lock for the call to process_task().
2495 * The struct cgroup_scanner may be embedded in any structure of the caller's
2496 * creation.
2497 * It is guaranteed that process_task() will act on every task that
2498 * is a member of the cgroup for the duration of this call. This
2499 * function may or may not call process_task() for tasks that exit
2500 * or move to a different cgroup during the call, or are forked or
2501 * move into the cgroup during the call.
2502 *
2503 * Note that test_task() may be called with locks held, and may in some
2504 * situations be called multiple times for the same task, so it should
2505 * be cheap.
2506 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
2507 * pre-allocated and will be used for heap operations (and its "gt" member will
2508 * be overwritten), else a temporary heap will be used (allocation of which
2509 * may cause this function to fail).
2510 */
2511 int cgroup_scan_tasks(struct cgroup_scanner *scan)
2512 {
2513 int retval, i;
2514 struct cgroup_iter it;
2515 struct task_struct *p, *dropped;
2516 /* Never dereference latest_task, since it's not refcounted */
2517 struct task_struct *latest_task = NULL;
2518 struct ptr_heap tmp_heap;
2519 struct ptr_heap *heap;
2520 struct timespec latest_time = { 0, 0 };
2521
2522 if (scan->heap) {
2523 /* The caller supplied our heap and pre-allocated its memory */
2524 heap = scan->heap;
2525 heap->gt = &started_after;
2526 } else {
2527 /* We need to allocate our own heap memory */
2528 heap = &tmp_heap;
2529 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
2530 if (retval)
2531 /* cannot allocate the heap */
2532 return retval;
2533 }
2534
2535 again:
2536 /*
2537 * Scan tasks in the cgroup, using the scanner's "test_task" callback
2538 * to determine which are of interest, and using the scanner's
2539 * "process_task" callback to process any of them that need an update.
2540 * Since we don't want to hold any locks during the task updates,
2541 * gather tasks to be processed in a heap structure.
2542 * The heap is sorted by descending task start time.
2543 * If the statically-sized heap fills up, we overflow tasks that
2544 * started later, and in future iterations only consider tasks that
2545 * started after the latest task in the previous pass. This
2546 * guarantees forward progress and that we don't miss any tasks.
2547 */
2548 heap->size = 0;
2549 cgroup_iter_start(scan->cg, &it);
2550 while ((p = cgroup_iter_next(scan->cg, &it))) {
2551 /*
2552 * Only affect tasks that qualify per the caller's callback,
2553 * if he provided one
2554 */
2555 if (scan->test_task && !scan->test_task(p, scan))
2556 continue;
2557 /*
2558 * Only process tasks that started after the last task
2559 * we processed
2560 */
2561 if (!started_after_time(p, &latest_time, latest_task))
2562 continue;
2563 dropped = heap_insert(heap, p);
2564 if (dropped == NULL) {
2565 /*
2566 * The new task was inserted; the heap wasn't
2567 * previously full
2568 */
2569 get_task_struct(p);
2570 } else if (dropped != p) {
2571 /*
2572 * The new task was inserted, and pushed out a
2573 * different task
2574 */
2575 get_task_struct(p);
2576 put_task_struct(dropped);
2577 }
2578 /*
2579 * Else the new task was newer than anything already in
2580 * the heap and wasn't inserted
2581 */
2582 }
2583 cgroup_iter_end(scan->cg, &it);
2584
2585 if (heap->size) {
2586 for (i = 0; i < heap->size; i++) {
2587 struct task_struct *q = heap->ptrs[i];
2588 if (i == 0) {
2589 latest_time = q->start_time;
2590 latest_task = q;
2591 }
2592 /* Process the task per the caller's callback */
2593 scan->process_task(q, scan);
2594 put_task_struct(q);
2595 }
2596 /*
2597 * If we had to process any tasks at all, scan again
2598 * in case some of them were in the middle of forking
2599 * children that didn't get processed.
2600 * Not the most efficient way to do it, but it avoids
2601 * having to take callback_mutex in the fork path
2602 */
2603 goto again;
2604 }
2605 if (heap == &tmp_heap)
2606 heap_free(&tmp_heap);
2607 return 0;
2608 }
2609
2610 /*
2611 * Stuff for reading the 'tasks'/'procs' files.
2612 *
2613 * Reading this file can return large amounts of data if a cgroup has
2614 * *lots* of attached tasks. So it may need several calls to read(),
2615 * but we cannot guarantee that the information we produce is correct
2616 * unless we produce it entirely atomically.
2617 *
2618 */
2619
2620 /*
2621 * The following two functions "fix" the issue where there are more pids
2622 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
2623 * TODO: replace with a kernel-wide solution to this problem
2624 */
2625 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
2626 static void *pidlist_allocate(int count)
2627 {
2628 if (PIDLIST_TOO_LARGE(count))
2629 return vmalloc(count * sizeof(pid_t));
2630 else
2631 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
2632 }
2633 static void pidlist_free(void *p)
2634 {
2635 if (is_vmalloc_addr(p))
2636 vfree(p);
2637 else
2638 kfree(p);
2639 }
2640 static void *pidlist_resize(void *p, int newcount)
2641 {
2642 void *newlist;
2643 /* note: if new alloc fails, old p will still be valid either way */
2644 if (is_vmalloc_addr(p)) {
2645 newlist = vmalloc(newcount * sizeof(pid_t));
2646 if (!newlist)
2647 return NULL;
2648 memcpy(newlist, p, newcount * sizeof(pid_t));
2649 vfree(p);
2650 } else {
2651 newlist = krealloc(p, newcount * sizeof(pid_t), GFP_KERNEL);
2652 }
2653 return newlist;
2654 }
2655
2656 /*
2657 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
2658 * If the new stripped list is sufficiently smaller and there's enough memory
2659 * to allocate a new buffer, will let go of the unneeded memory. Returns the
2660 * number of unique elements.
2661 */
2662 /* is the size difference enough that we should re-allocate the array? */
2663 #define PIDLIST_REALLOC_DIFFERENCE(old, new) ((old) - PAGE_SIZE >= (new))
2664 static int pidlist_uniq(pid_t **p, int length)
2665 {
2666 int src, dest = 1;
2667 pid_t *list = *p;
2668 pid_t *newlist;
2669
2670 /*
2671 * we presume the 0th element is unique, so i starts at 1. trivial
2672 * edge cases first; no work needs to be done for either
2673 */
2674 if (length == 0 || length == 1)
2675 return length;
2676 /* src and dest walk down the list; dest counts unique elements */
2677 for (src = 1; src < length; src++) {
2678 /* find next unique element */
2679 while (list[src] == list[src-1]) {
2680 src++;
2681 if (src == length)
2682 goto after;
2683 }
2684 /* dest always points to where the next unique element goes */
2685 list[dest] = list[src];
2686 dest++;
2687 }
2688 after:
2689 /*
2690 * if the length difference is large enough, we want to allocate a
2691 * smaller buffer to save memory. if this fails due to out of memory,
2692 * we'll just stay with what we've got.
2693 */
2694 if (PIDLIST_REALLOC_DIFFERENCE(length, dest)) {
2695 newlist = pidlist_resize(list, dest);
2696 if (newlist)
2697 *p = newlist;
2698 }
2699 return dest;
2700 }
2701
2702 static int cmppid(const void *a, const void *b)
2703 {
2704 return *(pid_t *)a - *(pid_t *)b;
2705 }
2706
2707 /*
2708 * find the appropriate pidlist for our purpose (given procs vs tasks)
2709 * returns with the lock on that pidlist already held, and takes care
2710 * of the use count, or returns NULL with no locks held if we're out of
2711 * memory.
2712 */
2713 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
2714 enum cgroup_filetype type)
2715 {
2716 struct cgroup_pidlist *l;
2717 /* don't need task_nsproxy() if we're looking at ourself */
2718 struct pid_namespace *ns = current->nsproxy->pid_ns;
2719
2720 /*
2721 * We can't drop the pidlist_mutex before taking the l->mutex in case
2722 * the last ref-holder is trying to remove l from the list at the same
2723 * time. Holding the pidlist_mutex precludes somebody taking whichever
2724 * list we find out from under us - compare release_pid_array().
2725 */
2726 mutex_lock(&cgrp->pidlist_mutex);
2727 list_for_each_entry(l, &cgrp->pidlists, links) {
2728 if (l->key.type == type && l->key.ns == ns) {
2729 /* make sure l doesn't vanish out from under us */
2730 down_write(&l->mutex);
2731 mutex_unlock(&cgrp->pidlist_mutex);
2732 return l;
2733 }
2734 }
2735 /* entry not found; create a new one */
2736 l = kmalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
2737 if (!l) {
2738 mutex_unlock(&cgrp->pidlist_mutex);
2739 return l;
2740 }
2741 init_rwsem(&l->mutex);
2742 down_write(&l->mutex);
2743 l->key.type = type;
2744 l->key.ns = get_pid_ns(ns);
2745 l->use_count = 0; /* don't increment here */
2746 l->list = NULL;
2747 l->owner = cgrp;
2748 list_add(&l->links, &cgrp->pidlists);
2749 mutex_unlock(&cgrp->pidlist_mutex);
2750 return l;
2751 }
2752
2753 /*
2754 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
2755 */
2756 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
2757 struct cgroup_pidlist **lp)
2758 {
2759 pid_t *array;
2760 int length;
2761 int pid, n = 0; /* used for populating the array */
2762 struct cgroup_iter it;
2763 struct task_struct *tsk;
2764 struct cgroup_pidlist *l;
2765
2766 /*
2767 * If cgroup gets more users after we read count, we won't have
2768 * enough space - tough. This race is indistinguishable to the
2769 * caller from the case that the additional cgroup users didn't
2770 * show up until sometime later on.
2771 */
2772 length = cgroup_task_count(cgrp);
2773 array = pidlist_allocate(length);
2774 if (!array)
2775 return -ENOMEM;
2776 /* now, populate the array */
2777 cgroup_iter_start(cgrp, &it);
2778 while ((tsk = cgroup_iter_next(cgrp, &it))) {
2779 if (unlikely(n == length))
2780 break;
2781 /* get tgid or pid for procs or tasks file respectively */
2782 if (type == CGROUP_FILE_PROCS)
2783 pid = task_tgid_vnr(tsk);
2784 else
2785 pid = task_pid_vnr(tsk);
2786 if (pid > 0) /* make sure to only use valid results */
2787 array[n++] = pid;
2788 }
2789 cgroup_iter_end(cgrp, &it);
2790 length = n;
2791 /* now sort & (if procs) strip out duplicates */
2792 sort(array, length, sizeof(pid_t), cmppid, NULL);
2793 if (type == CGROUP_FILE_PROCS)
2794 length = pidlist_uniq(&array, length);
2795 l = cgroup_pidlist_find(cgrp, type);
2796 if (!l) {
2797 pidlist_free(array);
2798 return -ENOMEM;
2799 }
2800 /* store array, freeing old if necessary - lock already held */
2801 pidlist_free(l->list);
2802 l->list = array;
2803 l->length = length;
2804 l->use_count++;
2805 up_write(&l->mutex);
2806 *lp = l;
2807 return 0;
2808 }
2809
2810 /**
2811 * cgroupstats_build - build and fill cgroupstats
2812 * @stats: cgroupstats to fill information into
2813 * @dentry: A dentry entry belonging to the cgroup for which stats have
2814 * been requested.
2815 *
2816 * Build and fill cgroupstats so that taskstats can export it to user
2817 * space.
2818 */
2819 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
2820 {
2821 int ret = -EINVAL;
2822 struct cgroup *cgrp;
2823 struct cgroup_iter it;
2824 struct task_struct *tsk;
2825
2826 /*
2827 * Validate dentry by checking the superblock operations,
2828 * and make sure it's a directory.
2829 */
2830 if (dentry->d_sb->s_op != &cgroup_ops ||
2831 !S_ISDIR(dentry->d_inode->i_mode))
2832 goto err;
2833
2834 ret = 0;
2835 cgrp = dentry->d_fsdata;
2836
2837 cgroup_iter_start(cgrp, &it);
2838 while ((tsk = cgroup_iter_next(cgrp, &it))) {
2839 switch (tsk->state) {
2840 case TASK_RUNNING:
2841 stats->nr_running++;
2842 break;
2843 case TASK_INTERRUPTIBLE:
2844 stats->nr_sleeping++;
2845 break;
2846 case TASK_UNINTERRUPTIBLE:
2847 stats->nr_uninterruptible++;
2848 break;
2849 case TASK_STOPPED:
2850 stats->nr_stopped++;
2851 break;
2852 default:
2853 if (delayacct_is_task_waiting_on_io(tsk))
2854 stats->nr_io_wait++;
2855 break;
2856 }
2857 }
2858 cgroup_iter_end(cgrp, &it);
2859
2860 err:
2861 return ret;
2862 }
2863
2864
2865 /*
2866 * seq_file methods for the tasks/procs files. The seq_file position is the
2867 * next pid to display; the seq_file iterator is a pointer to the pid
2868 * in the cgroup->l->list array.
2869 */
2870
2871 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
2872 {
2873 /*
2874 * Initially we receive a position value that corresponds to
2875 * one more than the last pid shown (or 0 on the first call or
2876 * after a seek to the start). Use a binary-search to find the
2877 * next pid to display, if any
2878 */
2879 struct cgroup_pidlist *l = s->private;
2880 int index = 0, pid = *pos;
2881 int *iter;
2882
2883 down_read(&l->mutex);
2884 if (pid) {
2885 int end = l->length;
2886
2887 while (index < end) {
2888 int mid = (index + end) / 2;
2889 if (l->list[mid] == pid) {
2890 index = mid;
2891 break;
2892 } else if (l->list[mid] <= pid)
2893 index = mid + 1;
2894 else
2895 end = mid;
2896 }
2897 }
2898 /* If we're off the end of the array, we're done */
2899 if (index >= l->length)
2900 return NULL;
2901 /* Update the abstract position to be the actual pid that we found */
2902 iter = l->list + index;
2903 *pos = *iter;
2904 return iter;
2905 }
2906
2907 static void cgroup_pidlist_stop(struct seq_file *s, void *v)
2908 {
2909 struct cgroup_pidlist *l = s->private;
2910 up_read(&l->mutex);
2911 }
2912
2913 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
2914 {
2915 struct cgroup_pidlist *l = s->private;
2916 pid_t *p = v;
2917 pid_t *end = l->list + l->length;
2918 /*
2919 * Advance to the next pid in the array. If this goes off the
2920 * end, we're done
2921 */
2922 p++;
2923 if (p >= end) {
2924 return NULL;
2925 } else {
2926 *pos = *p;
2927 return p;
2928 }
2929 }
2930
2931 static int cgroup_pidlist_show(struct seq_file *s, void *v)
2932 {
2933 return seq_printf(s, "%d\n", *(int *)v);
2934 }
2935
2936 /*
2937 * seq_operations functions for iterating on pidlists through seq_file -
2938 * independent of whether it's tasks or procs
2939 */
2940 static const struct seq_operations cgroup_pidlist_seq_operations = {
2941 .start = cgroup_pidlist_start,
2942 .stop = cgroup_pidlist_stop,
2943 .next = cgroup_pidlist_next,
2944 .show = cgroup_pidlist_show,
2945 };
2946
2947 static void cgroup_release_pid_array(struct cgroup_pidlist *l)
2948 {
2949 /*
2950 * the case where we're the last user of this particular pidlist will
2951 * have us remove it from the cgroup's list, which entails taking the
2952 * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
2953 * pidlist_mutex, we have to take pidlist_mutex first.
2954 */
2955 mutex_lock(&l->owner->pidlist_mutex);
2956 down_write(&l->mutex);
2957 BUG_ON(!l->use_count);
2958 if (!--l->use_count) {
2959 /* we're the last user if refcount is 0; remove and free */
2960 list_del(&l->links);
2961 mutex_unlock(&l->owner->pidlist_mutex);
2962 pidlist_free(l->list);
2963 put_pid_ns(l->key.ns);
2964 up_write(&l->mutex);
2965 kfree(l);
2966 return;
2967 }
2968 mutex_unlock(&l->owner->pidlist_mutex);
2969 up_write(&l->mutex);
2970 }
2971
2972 static int cgroup_pidlist_release(struct inode *inode, struct file *file)
2973 {
2974 struct cgroup_pidlist *l;
2975 if (!(file->f_mode & FMODE_READ))
2976 return 0;
2977 /*
2978 * the seq_file will only be initialized if the file was opened for
2979 * reading; hence we check if it's not null only in that case.
2980 */
2981 l = ((struct seq_file *)file->private_data)->private;
2982 cgroup_release_pid_array(l);
2983 return seq_release(inode, file);
2984 }
2985
2986 static const struct file_operations cgroup_pidlist_operations = {
2987 .read = seq_read,
2988 .llseek = seq_lseek,
2989 .write = cgroup_file_write,
2990 .release = cgroup_pidlist_release,
2991 };
2992
2993 /*
2994 * The following functions handle opens on a file that displays a pidlist
2995 * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
2996 * in the cgroup.
2997 */
2998 /* helper function for the two below it */
2999 static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type)
3000 {
3001 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
3002 struct cgroup_pidlist *l;
3003 int retval;
3004
3005 /* Nothing to do for write-only files */
3006 if (!(file->f_mode & FMODE_READ))
3007 return 0;
3008
3009 /* have the array populated */
3010 retval = pidlist_array_load(cgrp, type, &l);
3011 if (retval)
3012 return retval;
3013 /* configure file information */
3014 file->f_op = &cgroup_pidlist_operations;
3015
3016 retval = seq_open(file, &cgroup_pidlist_seq_operations);
3017 if (retval) {
3018 cgroup_release_pid_array(l);
3019 return retval;
3020 }
3021 ((struct seq_file *)file->private_data)->private = l;
3022 return 0;
3023 }
3024 static int cgroup_tasks_open(struct inode *unused, struct file *file)
3025 {
3026 return cgroup_pidlist_open(file, CGROUP_FILE_TASKS);
3027 }
3028 static int cgroup_procs_open(struct inode *unused, struct file *file)
3029 {
3030 return cgroup_pidlist_open(file, CGROUP_FILE_PROCS);
3031 }
3032
3033 static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
3034 struct cftype *cft)
3035 {
3036 return notify_on_release(cgrp);
3037 }
3038
3039 static int cgroup_write_notify_on_release(struct cgroup *cgrp,
3040 struct cftype *cft,
3041 u64 val)
3042 {
3043 clear_bit(CGRP_RELEASABLE, &cgrp->flags);
3044 if (val)
3045 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3046 else
3047 clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3048 return 0;
3049 }
3050
3051 /*
3052 * Unregister event and free resources.
3053 *
3054 * Gets called from workqueue.
3055 */
3056 static void cgroup_event_remove(struct work_struct *work)
3057 {
3058 struct cgroup_event *event = container_of(work, struct cgroup_event,
3059 remove);
3060 struct cgroup *cgrp = event->cgrp;
3061
3062 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3063
3064 eventfd_ctx_put(event->eventfd);
3065 kfree(event);
3066 dput(cgrp->dentry);
3067 }
3068
3069 /*
3070 * Gets called on POLLHUP on eventfd when user closes it.
3071 *
3072 * Called with wqh->lock held and interrupts disabled.
3073 */
3074 static int cgroup_event_wake(wait_queue_t *wait, unsigned mode,
3075 int sync, void *key)
3076 {
3077 struct cgroup_event *event = container_of(wait,
3078 struct cgroup_event, wait);
3079 struct cgroup *cgrp = event->cgrp;
3080 unsigned long flags = (unsigned long)key;
3081
3082 if (flags & POLLHUP) {
3083 __remove_wait_queue(event->wqh, &event->wait);
3084 spin_lock(&cgrp->event_list_lock);
3085 list_del(&event->list);
3086 spin_unlock(&cgrp->event_list_lock);
3087 /*
3088 * We are in atomic context, but cgroup_event_remove() may
3089 * sleep, so we have to call it in workqueue.
3090 */
3091 schedule_work(&event->remove);
3092 }
3093
3094 return 0;
3095 }
3096
3097 static void cgroup_event_ptable_queue_proc(struct file *file,
3098 wait_queue_head_t *wqh, poll_table *pt)
3099 {
3100 struct cgroup_event *event = container_of(pt,
3101 struct cgroup_event, pt);
3102
3103 event->wqh = wqh;
3104 add_wait_queue(wqh, &event->wait);
3105 }
3106
3107 /*
3108 * Parse input and register new cgroup event handler.
3109 *
3110 * Input must be in format '<event_fd> <control_fd> <args>'.
3111 * Interpretation of args is defined by control file implementation.
3112 */
3113 static int cgroup_write_event_control(struct cgroup *cgrp, struct cftype *cft,
3114 const char *buffer)
3115 {
3116 struct cgroup_event *event = NULL;
3117 unsigned int efd, cfd;
3118 struct file *efile = NULL;
3119 struct file *cfile = NULL;
3120 char *endp;
3121 int ret;
3122
3123 efd = simple_strtoul(buffer, &endp, 10);
3124 if (*endp != ' ')
3125 return -EINVAL;
3126 buffer = endp + 1;
3127
3128 cfd = simple_strtoul(buffer, &endp, 10);
3129 if ((*endp != ' ') && (*endp != '\0'))
3130 return -EINVAL;
3131 buffer = endp + 1;
3132
3133 event = kzalloc(sizeof(*event), GFP_KERNEL);
3134 if (!event)
3135 return -ENOMEM;
3136 event->cgrp = cgrp;
3137 INIT_LIST_HEAD(&event->list);
3138 init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc);
3139 init_waitqueue_func_entry(&event->wait, cgroup_event_wake);
3140 INIT_WORK(&event->remove, cgroup_event_remove);
3141
3142 efile = eventfd_fget(efd);
3143 if (IS_ERR(efile)) {
3144 ret = PTR_ERR(efile);
3145 goto fail;
3146 }
3147
3148 event->eventfd = eventfd_ctx_fileget(efile);
3149 if (IS_ERR(event->eventfd)) {
3150 ret = PTR_ERR(event->eventfd);
3151 goto fail;
3152 }
3153
3154 cfile = fget(cfd);
3155 if (!cfile) {
3156 ret = -EBADF;
3157 goto fail;
3158 }
3159
3160 /* the process need read permission on control file */
3161 ret = file_permission(cfile, MAY_READ);
3162 if (ret < 0)
3163 goto fail;
3164
3165 event->cft = __file_cft(cfile);
3166 if (IS_ERR(event->cft)) {
3167 ret = PTR_ERR(event->cft);
3168 goto fail;
3169 }
3170
3171 if (!event->cft->register_event || !event->cft->unregister_event) {
3172 ret = -EINVAL;
3173 goto fail;
3174 }
3175
3176 ret = event->cft->register_event(cgrp, event->cft,
3177 event->eventfd, buffer);
3178 if (ret)
3179 goto fail;
3180
3181 if (efile->f_op->poll(efile, &event->pt) & POLLHUP) {
3182 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3183 ret = 0;
3184 goto fail;
3185 }
3186
3187 /*
3188 * Events should be removed after rmdir of cgroup directory, but before
3189 * destroying subsystem state objects. Let's take reference to cgroup
3190 * directory dentry to do that.
3191 */
3192 dget(cgrp->dentry);
3193
3194 spin_lock(&cgrp->event_list_lock);
3195 list_add(&event->list, &cgrp->event_list);
3196 spin_unlock(&cgrp->event_list_lock);
3197
3198 fput(cfile);
3199 fput(efile);
3200
3201 return 0;
3202
3203 fail:
3204 if (cfile)
3205 fput(cfile);
3206
3207 if (event && event->eventfd && !IS_ERR(event->eventfd))
3208 eventfd_ctx_put(event->eventfd);
3209
3210 if (!IS_ERR_OR_NULL(efile))
3211 fput(efile);
3212
3213 kfree(event);
3214
3215 return ret;
3216 }
3217
3218 static u64 cgroup_clone_children_read(struct cgroup *cgrp,
3219 struct cftype *cft)
3220 {
3221 return clone_children(cgrp);
3222 }
3223
3224 static int cgroup_clone_children_write(struct cgroup *cgrp,
3225 struct cftype *cft,
3226 u64 val)
3227 {
3228 if (val)
3229 set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3230 else
3231 clear_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3232 return 0;
3233 }
3234
3235 /*
3236 * for the common functions, 'private' gives the type of file
3237 */
3238 /* for hysterical raisins, we can't put this on the older files */
3239 #define CGROUP_FILE_GENERIC_PREFIX "cgroup."
3240 static struct cftype files[] = {
3241 {
3242 .name = "tasks",
3243 .open = cgroup_tasks_open,
3244 .write_u64 = cgroup_tasks_write,
3245 .release = cgroup_pidlist_release,
3246 .mode = S_IRUGO | S_IWUSR,
3247 },
3248 {
3249 .name = CGROUP_FILE_GENERIC_PREFIX "procs",
3250 .open = cgroup_procs_open,
3251 /* .write_u64 = cgroup_procs_write, TODO */
3252 .release = cgroup_pidlist_release,
3253 .mode = S_IRUGO,
3254 },
3255 {
3256 .name = "notify_on_release",
3257 .read_u64 = cgroup_read_notify_on_release,
3258 .write_u64 = cgroup_write_notify_on_release,
3259 },
3260 {
3261 .name = CGROUP_FILE_GENERIC_PREFIX "event_control",
3262 .write_string = cgroup_write_event_control,
3263 .mode = S_IWUGO,
3264 },
3265 {
3266 .name = "cgroup.clone_children",
3267 .read_u64 = cgroup_clone_children_read,
3268 .write_u64 = cgroup_clone_children_write,
3269 },
3270 };
3271
3272 static struct cftype cft_release_agent = {
3273 .name = "release_agent",
3274 .read_seq_string = cgroup_release_agent_show,
3275 .write_string = cgroup_release_agent_write,
3276 .max_write_len = PATH_MAX,
3277 };
3278
3279 static int cgroup_populate_dir(struct cgroup *cgrp)
3280 {
3281 int err;
3282 struct cgroup_subsys *ss;
3283
3284 /* First clear out any existing files */
3285 cgroup_clear_directory(cgrp->dentry);
3286
3287 err = cgroup_add_files(cgrp, NULL, files, ARRAY_SIZE(files));
3288 if (err < 0)
3289 return err;
3290
3291 if (cgrp == cgrp->top_cgroup) {
3292 if ((err = cgroup_add_file(cgrp, NULL, &cft_release_agent)) < 0)
3293 return err;
3294 }
3295
3296 for_each_subsys(cgrp->root, ss) {
3297 if (ss->populate && (err = ss->populate(ss, cgrp)) < 0)
3298 return err;
3299 }
3300 /* This cgroup is ready now */
3301 for_each_subsys(cgrp->root, ss) {
3302 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3303 /*
3304 * Update id->css pointer and make this css visible from
3305 * CSS ID functions. This pointer will be dereferened
3306 * from RCU-read-side without locks.
3307 */
3308 if (css->id)
3309 rcu_assign_pointer(css->id->css, css);
3310 }
3311
3312 return 0;
3313 }
3314
3315 static void init_cgroup_css(struct cgroup_subsys_state *css,
3316 struct cgroup_subsys *ss,
3317 struct cgroup *cgrp)
3318 {
3319 css->cgroup = cgrp;
3320 atomic_set(&css->refcnt, 1);
3321 css->flags = 0;
3322 css->id = NULL;
3323 if (cgrp == dummytop)
3324 set_bit(CSS_ROOT, &css->flags);
3325 BUG_ON(cgrp->subsys[ss->subsys_id]);
3326 cgrp->subsys[ss->subsys_id] = css;
3327 }
3328
3329 static void cgroup_lock_hierarchy(struct cgroupfs_root *root)
3330 {
3331 /* We need to take each hierarchy_mutex in a consistent order */
3332 int i;
3333
3334 /*
3335 * No worry about a race with rebind_subsystems that might mess up the
3336 * locking order, since both parties are under cgroup_mutex.
3337 */
3338 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3339 struct cgroup_subsys *ss = subsys[i];
3340 if (ss == NULL)
3341 continue;
3342 if (ss->root == root)
3343 mutex_lock(&ss->hierarchy_mutex);
3344 }
3345 }
3346
3347 static void cgroup_unlock_hierarchy(struct cgroupfs_root *root)
3348 {
3349 int i;
3350
3351 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3352 struct cgroup_subsys *ss = subsys[i];
3353 if (ss == NULL)
3354 continue;
3355 if (ss->root == root)
3356 mutex_unlock(&ss->hierarchy_mutex);
3357 }
3358 }
3359
3360 /*
3361 * cgroup_create - create a cgroup
3362 * @parent: cgroup that will be parent of the new cgroup
3363 * @dentry: dentry of the new cgroup
3364 * @mode: mode to set on new inode
3365 *
3366 * Must be called with the mutex on the parent inode held
3367 */
3368 static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
3369 mode_t mode)
3370 {
3371 struct cgroup *cgrp;
3372 struct cgroupfs_root *root = parent->root;
3373 int err = 0;
3374 struct cgroup_subsys *ss;
3375 struct super_block *sb = root->sb;
3376
3377 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
3378 if (!cgrp)
3379 return -ENOMEM;
3380
3381 /* Grab a reference on the superblock so the hierarchy doesn't
3382 * get deleted on unmount if there are child cgroups. This
3383 * can be done outside cgroup_mutex, since the sb can't
3384 * disappear while someone has an open control file on the
3385 * fs */
3386 atomic_inc(&sb->s_active);
3387
3388 mutex_lock(&cgroup_mutex);
3389
3390 init_cgroup_housekeeping(cgrp);
3391
3392 cgrp->parent = parent;
3393 cgrp->root = parent->root;
3394 cgrp->top_cgroup = parent->top_cgroup;
3395
3396 if (notify_on_release(parent))
3397 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3398
3399 if (clone_children(parent))
3400 set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3401
3402 for_each_subsys(root, ss) {
3403 struct cgroup_subsys_state *css = ss->create(ss, cgrp);
3404
3405 if (IS_ERR(css)) {
3406 err = PTR_ERR(css);
3407 goto err_destroy;
3408 }
3409 init_cgroup_css(css, ss, cgrp);
3410 if (ss->use_id) {
3411 err = alloc_css_id(ss, parent, cgrp);
3412 if (err)
3413 goto err_destroy;
3414 }
3415 /* At error, ->destroy() callback has to free assigned ID. */
3416 if (clone_children(parent) && ss->post_clone)
3417 ss->post_clone(ss, cgrp);
3418 }
3419
3420 cgroup_lock_hierarchy(root);
3421 list_add(&cgrp->sibling, &cgrp->parent->children);
3422 cgroup_unlock_hierarchy(root);
3423 root->number_of_cgroups++;
3424
3425 err = cgroup_create_dir(cgrp, dentry, mode);
3426 if (err < 0)
3427 goto err_remove;
3428
3429 /* The cgroup directory was pre-locked for us */
3430 BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
3431
3432 err = cgroup_populate_dir(cgrp);
3433 /* If err < 0, we have a half-filled directory - oh well ;) */
3434
3435 mutex_unlock(&cgroup_mutex);
3436 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
3437
3438 return 0;
3439
3440 err_remove:
3441
3442 cgroup_lock_hierarchy(root);
3443 list_del(&cgrp->sibling);
3444 cgroup_unlock_hierarchy(root);
3445 root->number_of_cgroups--;
3446
3447 err_destroy:
3448
3449 for_each_subsys(root, ss) {
3450 if (cgrp->subsys[ss->subsys_id])
3451 ss->destroy(ss, cgrp);
3452 }
3453
3454 mutex_unlock(&cgroup_mutex);
3455
3456 /* Release the reference count that we took on the superblock */
3457 deactivate_super(sb);
3458
3459 kfree(cgrp);
3460 return err;
3461 }
3462
3463 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode)
3464 {
3465 struct cgroup *c_parent = dentry->d_parent->d_fsdata;
3466
3467 /* the vfs holds inode->i_mutex already */
3468 return cgroup_create(c_parent, dentry, mode | S_IFDIR);
3469 }
3470
3471 static int cgroup_has_css_refs(struct cgroup *cgrp)
3472 {
3473 /* Check the reference count on each subsystem. Since we
3474 * already established that there are no tasks in the
3475 * cgroup, if the css refcount is also 1, then there should
3476 * be no outstanding references, so the subsystem is safe to
3477 * destroy. We scan across all subsystems rather than using
3478 * the per-hierarchy linked list of mounted subsystems since
3479 * we can be called via check_for_release() with no
3480 * synchronization other than RCU, and the subsystem linked
3481 * list isn't RCU-safe */
3482 int i;
3483 /*
3484 * We won't need to lock the subsys array, because the subsystems
3485 * we're concerned about aren't going anywhere since our cgroup root
3486 * has a reference on them.
3487 */
3488 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3489 struct cgroup_subsys *ss = subsys[i];
3490 struct cgroup_subsys_state *css;
3491 /* Skip subsystems not present or not in this hierarchy */
3492 if (ss == NULL || ss->root != cgrp->root)
3493 continue;
3494 css = cgrp->subsys[ss->subsys_id];
3495 /* When called from check_for_release() it's possible
3496 * that by this point the cgroup has been removed
3497 * and the css deleted. But a false-positive doesn't
3498 * matter, since it can only happen if the cgroup
3499 * has been deleted and hence no longer needs the
3500 * release agent to be called anyway. */
3501 if (css && (atomic_read(&css->refcnt) > 1))
3502 return 1;
3503 }
3504 return 0;
3505 }
3506
3507 /*
3508 * Atomically mark all (or else none) of the cgroup's CSS objects as
3509 * CSS_REMOVED. Return true on success, or false if the cgroup has
3510 * busy subsystems. Call with cgroup_mutex held
3511 */
3512
3513 static int cgroup_clear_css_refs(struct cgroup *cgrp)
3514 {
3515 struct cgroup_subsys *ss;
3516 unsigned long flags;
3517 bool failed = false;
3518 local_irq_save(flags);
3519 for_each_subsys(cgrp->root, ss) {
3520 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3521 int refcnt;
3522 while (1) {
3523 /* We can only remove a CSS with a refcnt==1 */
3524 refcnt = atomic_read(&css->refcnt);
3525 if (refcnt > 1) {
3526 failed = true;
3527 goto done;
3528 }
3529 BUG_ON(!refcnt);
3530 /*
3531 * Drop the refcnt to 0 while we check other
3532 * subsystems. This will cause any racing
3533 * css_tryget() to spin until we set the
3534 * CSS_REMOVED bits or abort
3535 */
3536 if (atomic_cmpxchg(&css->refcnt, refcnt, 0) == refcnt)
3537 break;
3538 cpu_relax();
3539 }
3540 }
3541 done:
3542 for_each_subsys(cgrp->root, ss) {
3543 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3544 if (failed) {
3545 /*
3546 * Restore old refcnt if we previously managed
3547 * to clear it from 1 to 0
3548 */
3549 if (!atomic_read(&css->refcnt))
3550 atomic_set(&css->refcnt, 1);
3551 } else {
3552 /* Commit the fact that the CSS is removed */
3553 set_bit(CSS_REMOVED, &css->flags);
3554 }
3555 }
3556 local_irq_restore(flags);
3557 return !failed;
3558 }
3559
3560 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
3561 {
3562 struct cgroup *cgrp = dentry->d_fsdata;
3563 struct dentry *d;
3564 struct cgroup *parent;
3565 DEFINE_WAIT(wait);
3566 struct cgroup_event *event, *tmp;
3567 int ret;
3568
3569 /* the vfs holds both inode->i_mutex already */
3570 again:
3571 mutex_lock(&cgroup_mutex);
3572 if (atomic_read(&cgrp->count) != 0) {
3573 mutex_unlock(&cgroup_mutex);
3574 return -EBUSY;
3575 }
3576 if (!list_empty(&cgrp->children)) {
3577 mutex_unlock(&cgroup_mutex);
3578 return -EBUSY;
3579 }
3580 mutex_unlock(&cgroup_mutex);
3581
3582 /*
3583 * In general, subsystem has no css->refcnt after pre_destroy(). But
3584 * in racy cases, subsystem may have to get css->refcnt after
3585 * pre_destroy() and it makes rmdir return with -EBUSY. This sometimes
3586 * make rmdir return -EBUSY too often. To avoid that, we use waitqueue
3587 * for cgroup's rmdir. CGRP_WAIT_ON_RMDIR is for synchronizing rmdir
3588 * and subsystem's reference count handling. Please see css_get/put
3589 * and css_tryget() and cgroup_wakeup_rmdir_waiter() implementation.
3590 */
3591 set_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3592
3593 /*
3594 * Call pre_destroy handlers of subsys. Notify subsystems
3595 * that rmdir() request comes.
3596 */
3597 ret = cgroup_call_pre_destroy(cgrp);
3598 if (ret) {
3599 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3600 return ret;
3601 }
3602
3603 mutex_lock(&cgroup_mutex);
3604 parent = cgrp->parent;
3605 if (atomic_read(&cgrp->count) || !list_empty(&cgrp->children)) {
3606 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3607 mutex_unlock(&cgroup_mutex);
3608 return -EBUSY;
3609 }
3610 prepare_to_wait(&cgroup_rmdir_waitq, &wait, TASK_INTERRUPTIBLE);
3611 if (!cgroup_clear_css_refs(cgrp)) {
3612 mutex_unlock(&cgroup_mutex);
3613 /*
3614 * Because someone may call cgroup_wakeup_rmdir_waiter() before
3615 * prepare_to_wait(), we need to check this flag.
3616 */
3617 if (test_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags))
3618 schedule();
3619 finish_wait(&cgroup_rmdir_waitq, &wait);
3620 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3621 if (signal_pending(current))
3622 return -EINTR;
3623 goto again;
3624 }
3625 /* NO css_tryget() can success after here. */
3626 finish_wait(&cgroup_rmdir_waitq, &wait);
3627 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3628
3629 spin_lock(&release_list_lock);
3630 set_bit(CGRP_REMOVED, &cgrp->flags);
3631 if (!list_empty(&cgrp->release_list))
3632 list_del(&cgrp->release_list);
3633 spin_unlock(&release_list_lock);
3634
3635 cgroup_lock_hierarchy(cgrp->root);
3636 /* delete this cgroup from parent->children */
3637 list_del(&cgrp->sibling);
3638 cgroup_unlock_hierarchy(cgrp->root);
3639
3640 spin_lock(&cgrp->dentry->d_lock);
3641 d = dget(cgrp->dentry);
3642 spin_unlock(&d->d_lock);
3643
3644 cgroup_d_remove_dir(d);
3645 dput(d);
3646
3647 set_bit(CGRP_RELEASABLE, &parent->flags);
3648 check_for_release(parent);
3649
3650 /*
3651 * Unregister events and notify userspace.
3652 * Notify userspace about cgroup removing only after rmdir of cgroup
3653 * directory to avoid race between userspace and kernelspace
3654 */
3655 spin_lock(&cgrp->event_list_lock);
3656 list_for_each_entry_safe(event, tmp, &cgrp->event_list, list) {
3657 list_del(&event->list);
3658 remove_wait_queue(event->wqh, &event->wait);
3659 eventfd_signal(event->eventfd, 1);
3660 schedule_work(&event->remove);
3661 }
3662 spin_unlock(&cgrp->event_list_lock);
3663
3664 mutex_unlock(&cgroup_mutex);
3665 return 0;
3666 }
3667
3668 static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
3669 {
3670 struct cgroup_subsys_state *css;
3671
3672 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
3673
3674 /* Create the top cgroup state for this subsystem */
3675 list_add(&ss->sibling, &rootnode.subsys_list);
3676 ss->root = &rootnode;
3677 css = ss->create(ss, dummytop);
3678 /* We don't handle early failures gracefully */
3679 BUG_ON(IS_ERR(css));
3680 init_cgroup_css(css, ss, dummytop);
3681
3682 /* Update the init_css_set to contain a subsys
3683 * pointer to this state - since the subsystem is
3684 * newly registered, all tasks and hence the
3685 * init_css_set is in the subsystem's top cgroup. */
3686 init_css_set.subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
3687
3688 need_forkexit_callback |= ss->fork || ss->exit;
3689
3690 /* At system boot, before all subsystems have been
3691 * registered, no tasks have been forked, so we don't
3692 * need to invoke fork callbacks here. */
3693 BUG_ON(!list_empty(&init_task.tasks));
3694
3695 mutex_init(&ss->hierarchy_mutex);
3696 lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
3697 ss->active = 1;
3698
3699 /* this function shouldn't be used with modular subsystems, since they
3700 * need to register a subsys_id, among other things */
3701 BUG_ON(ss->module);
3702 }
3703
3704 /**
3705 * cgroup_load_subsys: load and register a modular subsystem at runtime
3706 * @ss: the subsystem to load
3707 *
3708 * This function should be called in a modular subsystem's initcall. If the
3709 * subsystem is built as a module, it will be assigned a new subsys_id and set
3710 * up for use. If the subsystem is built-in anyway, work is delegated to the
3711 * simpler cgroup_init_subsys.
3712 */
3713 int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss)
3714 {
3715 int i;
3716 struct cgroup_subsys_state *css;
3717
3718 /* check name and function validity */
3719 if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN ||
3720 ss->create == NULL || ss->destroy == NULL)
3721 return -EINVAL;
3722
3723 /*
3724 * we don't support callbacks in modular subsystems. this check is
3725 * before the ss->module check for consistency; a subsystem that could
3726 * be a module should still have no callbacks even if the user isn't
3727 * compiling it as one.
3728 */
3729 if (ss->fork || ss->exit)
3730 return -EINVAL;
3731
3732 /*
3733 * an optionally modular subsystem is built-in: we want to do nothing,
3734 * since cgroup_init_subsys will have already taken care of it.
3735 */
3736 if (ss->module == NULL) {
3737 /* a few sanity checks */
3738 BUG_ON(ss->subsys_id >= CGROUP_BUILTIN_SUBSYS_COUNT);
3739 BUG_ON(subsys[ss->subsys_id] != ss);
3740 return 0;
3741 }
3742
3743 /*
3744 * need to register a subsys id before anything else - for example,
3745 * init_cgroup_css needs it.
3746 */
3747 mutex_lock(&cgroup_mutex);
3748 /* find the first empty slot in the array */
3749 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
3750 if (subsys[i] == NULL)
3751 break;
3752 }
3753 if (i == CGROUP_SUBSYS_COUNT) {
3754 /* maximum number of subsystems already registered! */
3755 mutex_unlock(&cgroup_mutex);
3756 return -EBUSY;
3757 }
3758 /* assign ourselves the subsys_id */
3759 ss->subsys_id = i;
3760 subsys[i] = ss;
3761
3762 /*
3763 * no ss->create seems to need anything important in the ss struct, so
3764 * this can happen first (i.e. before the rootnode attachment).
3765 */
3766 css = ss->create(ss, dummytop);
3767 if (IS_ERR(css)) {
3768 /* failure case - need to deassign the subsys[] slot. */
3769 subsys[i] = NULL;
3770 mutex_unlock(&cgroup_mutex);
3771 return PTR_ERR(css);
3772 }
3773
3774 list_add(&ss->sibling, &rootnode.subsys_list);
3775 ss->root = &rootnode;
3776
3777 /* our new subsystem will be attached to the dummy hierarchy. */
3778 init_cgroup_css(css, ss, dummytop);
3779 /* init_idr must be after init_cgroup_css because it sets css->id. */
3780 if (ss->use_id) {
3781 int ret = cgroup_init_idr(ss, css);
3782 if (ret) {
3783 dummytop->subsys[ss->subsys_id] = NULL;
3784 ss->destroy(ss, dummytop);
3785 subsys[i] = NULL;
3786 mutex_unlock(&cgroup_mutex);
3787 return ret;
3788 }
3789 }
3790
3791 /*
3792 * Now we need to entangle the css into the existing css_sets. unlike
3793 * in cgroup_init_subsys, there are now multiple css_sets, so each one
3794 * will need a new pointer to it; done by iterating the css_set_table.
3795 * furthermore, modifying the existing css_sets will corrupt the hash
3796 * table state, so each changed css_set will need its hash recomputed.
3797 * this is all done under the css_set_lock.
3798 */
3799 write_lock(&css_set_lock);
3800 for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
3801 struct css_set *cg;
3802 struct hlist_node *node, *tmp;
3803 struct hlist_head *bucket = &css_set_table[i], *new_bucket;
3804
3805 hlist_for_each_entry_safe(cg, node, tmp, bucket, hlist) {
3806 /* skip entries that we already rehashed */
3807 if (cg->subsys[ss->subsys_id])
3808 continue;
3809 /* remove existing entry */
3810 hlist_del(&cg->hlist);
3811 /* set new value */
3812 cg->subsys[ss->subsys_id] = css;
3813 /* recompute hash and restore entry */
3814 new_bucket = css_set_hash(cg->subsys);
3815 hlist_add_head(&cg->hlist, new_bucket);
3816 }
3817 }
3818 write_unlock(&css_set_lock);
3819
3820 mutex_init(&ss->hierarchy_mutex);
3821 lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
3822 ss->active = 1;
3823
3824 /* success! */
3825 mutex_unlock(&cgroup_mutex);
3826 return 0;
3827 }
3828 EXPORT_SYMBOL_GPL(cgroup_load_subsys);
3829
3830 /**
3831 * cgroup_unload_subsys: unload a modular subsystem
3832 * @ss: the subsystem to unload
3833 *
3834 * This function should be called in a modular subsystem's exitcall. When this
3835 * function is invoked, the refcount on the subsystem's module will be 0, so
3836 * the subsystem will not be attached to any hierarchy.
3837 */
3838 void cgroup_unload_subsys(struct cgroup_subsys *ss)
3839 {
3840 struct cg_cgroup_link *link;
3841 struct hlist_head *hhead;
3842
3843 BUG_ON(ss->module == NULL);
3844
3845 /*
3846 * we shouldn't be called if the subsystem is in use, and the use of
3847 * try_module_get in parse_cgroupfs_options should ensure that it
3848 * doesn't start being used while we're killing it off.
3849 */
3850 BUG_ON(ss->root != &rootnode);
3851
3852 mutex_lock(&cgroup_mutex);
3853 /* deassign the subsys_id */
3854 BUG_ON(ss->subsys_id < CGROUP_BUILTIN_SUBSYS_COUNT);
3855 subsys[ss->subsys_id] = NULL;
3856
3857 /* remove subsystem from rootnode's list of subsystems */
3858 list_del(&ss->sibling);
3859
3860 /*
3861 * disentangle the css from all css_sets attached to the dummytop. as
3862 * in loading, we need to pay our respects to the hashtable gods.
3863 */
3864 write_lock(&css_set_lock);
3865 list_for_each_entry(link, &dummytop->css_sets, cgrp_link_list) {
3866 struct css_set *cg = link->cg;
3867
3868 hlist_del(&cg->hlist);
3869 BUG_ON(!cg->subsys[ss->subsys_id]);
3870 cg->subsys[ss->subsys_id] = NULL;
3871 hhead = css_set_hash(cg->subsys);
3872 hlist_add_head(&cg->hlist, hhead);
3873 }
3874 write_unlock(&css_set_lock);
3875
3876 /*
3877 * remove subsystem's css from the dummytop and free it - need to free
3878 * before marking as null because ss->destroy needs the cgrp->subsys
3879 * pointer to find their state. note that this also takes care of
3880 * freeing the css_id.
3881 */
3882 ss->destroy(ss, dummytop);
3883 dummytop->subsys[ss->subsys_id] = NULL;
3884
3885 mutex_unlock(&cgroup_mutex);
3886 }
3887 EXPORT_SYMBOL_GPL(cgroup_unload_subsys);
3888
3889 /**
3890 * cgroup_init_early - cgroup initialization at system boot
3891 *
3892 * Initialize cgroups at system boot, and initialize any
3893 * subsystems that request early init.
3894 */
3895 int __init cgroup_init_early(void)
3896 {
3897 int i;
3898 atomic_set(&init_css_set.refcount, 1);
3899 INIT_LIST_HEAD(&init_css_set.cg_links);
3900 INIT_LIST_HEAD(&init_css_set.tasks);
3901 INIT_HLIST_NODE(&init_css_set.hlist);
3902 css_set_count = 1;
3903 init_cgroup_root(&rootnode);
3904 root_count = 1;
3905 init_task.cgroups = &init_css_set;
3906
3907 init_css_set_link.cg = &init_css_set;
3908 init_css_set_link.cgrp = dummytop;
3909 list_add(&init_css_set_link.cgrp_link_list,
3910 &rootnode.top_cgroup.css_sets);
3911 list_add(&init_css_set_link.cg_link_list,
3912 &init_css_set.cg_links);
3913
3914 for (i = 0; i < CSS_SET_TABLE_SIZE; i++)
3915 INIT_HLIST_HEAD(&css_set_table[i]);
3916
3917 /* at bootup time, we don't worry about modular subsystems */
3918 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
3919 struct cgroup_subsys *ss = subsys[i];
3920
3921 BUG_ON(!ss->name);
3922 BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
3923 BUG_ON(!ss->create);
3924 BUG_ON(!ss->destroy);
3925 if (ss->subsys_id != i) {
3926 printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
3927 ss->name, ss->subsys_id);
3928 BUG();
3929 }
3930
3931 if (ss->early_init)
3932 cgroup_init_subsys(ss);
3933 }
3934 return 0;
3935 }
3936
3937 /**
3938 * cgroup_init - cgroup initialization
3939 *
3940 * Register cgroup filesystem and /proc file, and initialize
3941 * any subsystems that didn't request early init.
3942 */
3943 int __init cgroup_init(void)
3944 {
3945 int err;
3946 int i;
3947 struct hlist_head *hhead;
3948
3949 err = bdi_init(&cgroup_backing_dev_info);
3950 if (err)
3951 return err;
3952
3953 /* at bootup time, we don't worry about modular subsystems */
3954 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
3955 struct cgroup_subsys *ss = subsys[i];
3956 if (!ss->early_init)
3957 cgroup_init_subsys(ss);
3958 if (ss->use_id)
3959 cgroup_init_idr(ss, init_css_set.subsys[ss->subsys_id]);
3960 }
3961
3962 /* Add init_css_set to the hash table */
3963 hhead = css_set_hash(init_css_set.subsys);
3964 hlist_add_head(&init_css_set.hlist, hhead);
3965 BUG_ON(!init_root_id(&rootnode));
3966
3967 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
3968 if (!cgroup_kobj) {
3969 err = -ENOMEM;
3970 goto out;
3971 }
3972
3973 err = register_filesystem(&cgroup_fs_type);
3974 if (err < 0) {
3975 kobject_put(cgroup_kobj);
3976 goto out;
3977 }
3978
3979 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
3980
3981 out:
3982 if (err)
3983 bdi_destroy(&cgroup_backing_dev_info);
3984
3985 return err;
3986 }
3987
3988 /*
3989 * proc_cgroup_show()
3990 * - Print task's cgroup paths into seq_file, one line for each hierarchy
3991 * - Used for /proc/<pid>/cgroup.
3992 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
3993 * doesn't really matter if tsk->cgroup changes after we read it,
3994 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
3995 * anyway. No need to check that tsk->cgroup != NULL, thanks to
3996 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
3997 * cgroup to top_cgroup.
3998 */
3999
4000 /* TODO: Use a proper seq_file iterator */
4001 static int proc_cgroup_show(struct seq_file *m, void *v)
4002 {
4003 struct pid *pid;
4004 struct task_struct *tsk;
4005 char *buf;
4006 int retval;
4007 struct cgroupfs_root *root;
4008
4009 retval = -ENOMEM;
4010 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4011 if (!buf)
4012 goto out;
4013
4014 retval = -ESRCH;
4015 pid = m->private;
4016 tsk = get_pid_task(pid, PIDTYPE_PID);
4017 if (!tsk)
4018 goto out_free;
4019
4020 retval = 0;
4021
4022 mutex_lock(&cgroup_mutex);
4023
4024 for_each_active_root(root) {
4025 struct cgroup_subsys *ss;
4026 struct cgroup *cgrp;
4027 int count = 0;
4028
4029 seq_printf(m, "%d:", root->hierarchy_id);
4030 for_each_subsys(root, ss)
4031 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
4032 if (strlen(root->name))
4033 seq_printf(m, "%sname=%s", count ? "," : "",
4034 root->name);
4035 seq_putc(m, ':');
4036 cgrp = task_cgroup_from_root(tsk, root);
4037 retval = cgroup_path(cgrp, buf, PAGE_SIZE);
4038 if (retval < 0)
4039 goto out_unlock;
4040 seq_puts(m, buf);
4041 seq_putc(m, '\n');
4042 }
4043
4044 out_unlock:
4045 mutex_unlock(&cgroup_mutex);
4046 put_task_struct(tsk);
4047 out_free:
4048 kfree(buf);
4049 out:
4050 return retval;
4051 }
4052
4053 static int cgroup_open(struct inode *inode, struct file *file)
4054 {
4055 struct pid *pid = PROC_I(inode)->pid;
4056 return single_open(file, proc_cgroup_show, pid);
4057 }
4058
4059 const struct file_operations proc_cgroup_operations = {
4060 .open = cgroup_open,
4061 .read = seq_read,
4062 .llseek = seq_lseek,
4063 .release = single_release,
4064 };
4065
4066 /* Display information about each subsystem and each hierarchy */
4067 static int proc_cgroupstats_show(struct seq_file *m, void *v)
4068 {
4069 int i;
4070
4071 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
4072 /*
4073 * ideally we don't want subsystems moving around while we do this.
4074 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
4075 * subsys/hierarchy state.
4076 */
4077 mutex_lock(&cgroup_mutex);
4078 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4079 struct cgroup_subsys *ss = subsys[i];
4080 if (ss == NULL)
4081 continue;
4082 seq_printf(m, "%s\t%d\t%d\t%d\n",
4083 ss->name, ss->root->hierarchy_id,
4084 ss->root->number_of_cgroups, !ss->disabled);
4085 }
4086 mutex_unlock(&cgroup_mutex);
4087 return 0;
4088 }
4089
4090 static int cgroupstats_open(struct inode *inode, struct file *file)
4091 {
4092 return single_open(file, proc_cgroupstats_show, NULL);
4093 }
4094
4095 static const struct file_operations proc_cgroupstats_operations = {
4096 .open = cgroupstats_open,
4097 .read = seq_read,
4098 .llseek = seq_lseek,
4099 .release = single_release,
4100 };
4101
4102 /**
4103 * cgroup_fork - attach newly forked task to its parents cgroup.
4104 * @child: pointer to task_struct of forking parent process.
4105 *
4106 * Description: A task inherits its parent's cgroup at fork().
4107 *
4108 * A pointer to the shared css_set was automatically copied in
4109 * fork.c by dup_task_struct(). However, we ignore that copy, since
4110 * it was not made under the protection of RCU or cgroup_mutex, so
4111 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
4112 * have already changed current->cgroups, allowing the previously
4113 * referenced cgroup group to be removed and freed.
4114 *
4115 * At the point that cgroup_fork() is called, 'current' is the parent
4116 * task, and the passed argument 'child' points to the child task.
4117 */
4118 void cgroup_fork(struct task_struct *child)
4119 {
4120 task_lock(current);
4121 child->cgroups = current->cgroups;
4122 get_css_set(child->cgroups);
4123 task_unlock(current);
4124 INIT_LIST_HEAD(&child->cg_list);
4125 }
4126
4127 /**
4128 * cgroup_fork_callbacks - run fork callbacks
4129 * @child: the new task
4130 *
4131 * Called on a new task very soon before adding it to the
4132 * tasklist. No need to take any locks since no-one can
4133 * be operating on this task.
4134 */
4135 void cgroup_fork_callbacks(struct task_struct *child)
4136 {
4137 if (need_forkexit_callback) {
4138 int i;
4139 /*
4140 * forkexit callbacks are only supported for builtin
4141 * subsystems, and the builtin section of the subsys array is
4142 * immutable, so we don't need to lock the subsys array here.
4143 */
4144 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4145 struct cgroup_subsys *ss = subsys[i];
4146 if (ss->fork)
4147 ss->fork(ss, child);
4148 }
4149 }
4150 }
4151
4152 /**
4153 * cgroup_post_fork - called on a new task after adding it to the task list
4154 * @child: the task in question
4155 *
4156 * Adds the task to the list running through its css_set if necessary.
4157 * Has to be after the task is visible on the task list in case we race
4158 * with the first call to cgroup_iter_start() - to guarantee that the
4159 * new task ends up on its list.
4160 */
4161 void cgroup_post_fork(struct task_struct *child)
4162 {
4163 if (use_task_css_set_links) {
4164 write_lock(&css_set_lock);
4165 task_lock(child);
4166 if (list_empty(&child->cg_list))
4167 list_add(&child->cg_list, &child->cgroups->tasks);
4168 task_unlock(child);
4169 write_unlock(&css_set_lock);
4170 }
4171 }
4172 /**
4173 * cgroup_exit - detach cgroup from exiting task
4174 * @tsk: pointer to task_struct of exiting process
4175 * @run_callback: run exit callbacks?
4176 *
4177 * Description: Detach cgroup from @tsk and release it.
4178 *
4179 * Note that cgroups marked notify_on_release force every task in
4180 * them to take the global cgroup_mutex mutex when exiting.
4181 * This could impact scaling on very large systems. Be reluctant to
4182 * use notify_on_release cgroups where very high task exit scaling
4183 * is required on large systems.
4184 *
4185 * the_top_cgroup_hack:
4186 *
4187 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
4188 *
4189 * We call cgroup_exit() while the task is still competent to
4190 * handle notify_on_release(), then leave the task attached to the
4191 * root cgroup in each hierarchy for the remainder of its exit.
4192 *
4193 * To do this properly, we would increment the reference count on
4194 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
4195 * code we would add a second cgroup function call, to drop that
4196 * reference. This would just create an unnecessary hot spot on
4197 * the top_cgroup reference count, to no avail.
4198 *
4199 * Normally, holding a reference to a cgroup without bumping its
4200 * count is unsafe. The cgroup could go away, or someone could
4201 * attach us to a different cgroup, decrementing the count on
4202 * the first cgroup that we never incremented. But in this case,
4203 * top_cgroup isn't going away, and either task has PF_EXITING set,
4204 * which wards off any cgroup_attach_task() attempts, or task is a failed
4205 * fork, never visible to cgroup_attach_task.
4206 */
4207 void cgroup_exit(struct task_struct *tsk, int run_callbacks)
4208 {
4209 int i;
4210 struct css_set *cg;
4211
4212 if (run_callbacks && need_forkexit_callback) {
4213 /*
4214 * modular subsystems can't use callbacks, so no need to lock
4215 * the subsys array
4216 */
4217 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4218 struct cgroup_subsys *ss = subsys[i];
4219 if (ss->exit)
4220 ss->exit(ss, tsk);
4221 }
4222 }
4223
4224 /*
4225 * Unlink from the css_set task list if necessary.
4226 * Optimistically check cg_list before taking
4227 * css_set_lock
4228 */
4229 if (!list_empty(&tsk->cg_list)) {
4230 write_lock(&css_set_lock);
4231 if (!list_empty(&tsk->cg_list))
4232 list_del(&tsk->cg_list);
4233 write_unlock(&css_set_lock);
4234 }
4235
4236 /* Reassign the task to the init_css_set. */
4237 task_lock(tsk);
4238 cg = tsk->cgroups;
4239 tsk->cgroups = &init_css_set;
4240 task_unlock(tsk);
4241 if (cg)
4242 put_css_set_taskexit(cg);
4243 }
4244
4245 /**
4246 * cgroup_clone - clone the cgroup the given subsystem is attached to
4247 * @tsk: the task to be moved
4248 * @subsys: the given subsystem
4249 * @nodename: the name for the new cgroup
4250 *
4251 * Duplicate the current cgroup in the hierarchy that the given
4252 * subsystem is attached to, and move this task into the new
4253 * child.
4254 */
4255 int cgroup_clone(struct task_struct *tsk, struct cgroup_subsys *subsys,
4256 char *nodename)
4257 {
4258 struct dentry *dentry;
4259 int ret = 0;
4260 struct cgroup *parent, *child;
4261 struct inode *inode;
4262 struct css_set *cg;
4263 struct cgroupfs_root *root;
4264 struct cgroup_subsys *ss;
4265
4266 /* We shouldn't be called by an unregistered subsystem */
4267 BUG_ON(!subsys->active);
4268
4269 /* First figure out what hierarchy and cgroup we're dealing
4270 * with, and pin them so we can drop cgroup_mutex */
4271 mutex_lock(&cgroup_mutex);
4272 again:
4273 root = subsys->root;
4274 if (root == &rootnode) {
4275 mutex_unlock(&cgroup_mutex);
4276 return 0;
4277 }
4278
4279 /* Pin the hierarchy */
4280 if (!atomic_inc_not_zero(&root->sb->s_active)) {
4281 /* We race with the final deactivate_super() */
4282 mutex_unlock(&cgroup_mutex);
4283 return 0;
4284 }
4285
4286 /* Keep the cgroup alive */
4287 task_lock(tsk);
4288 parent = task_cgroup(tsk, subsys->subsys_id);
4289 cg = tsk->cgroups;
4290 get_css_set(cg);
4291 task_unlock(tsk);
4292
4293 mutex_unlock(&cgroup_mutex);
4294
4295 /* Now do the VFS work to create a cgroup */
4296 inode = parent->dentry->d_inode;
4297
4298 /* Hold the parent directory mutex across this operation to
4299 * stop anyone else deleting the new cgroup */
4300 mutex_lock(&inode->i_mutex);
4301 dentry = lookup_one_len(nodename, parent->dentry, strlen(nodename));
4302 if (IS_ERR(dentry)) {
4303 printk(KERN_INFO
4304 "cgroup: Couldn't allocate dentry for %s: %ld\n", nodename,
4305 PTR_ERR(dentry));
4306 ret = PTR_ERR(dentry);
4307 goto out_release;
4308 }
4309
4310 /* Create the cgroup directory, which also creates the cgroup */
4311 ret = vfs_mkdir(inode, dentry, 0755);
4312 child = __d_cgrp(dentry);
4313 dput(dentry);
4314 if (ret) {
4315 printk(KERN_INFO
4316 "Failed to create cgroup %s: %d\n", nodename,
4317 ret);
4318 goto out_release;
4319 }
4320
4321 /* The cgroup now exists. Retake cgroup_mutex and check
4322 * that we're still in the same state that we thought we
4323 * were. */
4324 mutex_lock(&cgroup_mutex);
4325 if ((root != subsys->root) ||
4326 (parent != task_cgroup(tsk, subsys->subsys_id))) {
4327 /* Aargh, we raced ... */
4328 mutex_unlock(&inode->i_mutex);
4329 put_css_set(cg);
4330
4331 deactivate_super(root->sb);
4332 /* The cgroup is still accessible in the VFS, but
4333 * we're not going to try to rmdir() it at this
4334 * point. */
4335 printk(KERN_INFO
4336 "Race in cgroup_clone() - leaking cgroup %s\n",
4337 nodename);
4338 goto again;
4339 }
4340
4341 /* do any required auto-setup */
4342 for_each_subsys(root, ss) {
4343 if (ss->post_clone)
4344 ss->post_clone(ss, child);
4345 }
4346
4347 /* All seems fine. Finish by moving the task into the new cgroup */
4348 ret = cgroup_attach_task(child, tsk);
4349 mutex_unlock(&cgroup_mutex);
4350
4351 out_release:
4352 mutex_unlock(&inode->i_mutex);
4353
4354 mutex_lock(&cgroup_mutex);
4355 put_css_set(cg);
4356 mutex_unlock(&cgroup_mutex);
4357 deactivate_super(root->sb);
4358 return ret;
4359 }
4360
4361 /**
4362 * cgroup_is_descendant - see if @cgrp is a descendant of @task's cgrp
4363 * @cgrp: the cgroup in question
4364 * @task: the task in question
4365 *
4366 * See if @cgrp is a descendant of @task's cgroup in the appropriate
4367 * hierarchy.
4368 *
4369 * If we are sending in dummytop, then presumably we are creating
4370 * the top cgroup in the subsystem.
4371 *
4372 * Called only by the ns (nsproxy) cgroup.
4373 */
4374 int cgroup_is_descendant(const struct cgroup *cgrp, struct task_struct *task)
4375 {
4376 int ret;
4377 struct cgroup *target;
4378
4379 if (cgrp == dummytop)
4380 return 1;
4381
4382 target = task_cgroup_from_root(task, cgrp->root);
4383 while (cgrp != target && cgrp!= cgrp->top_cgroup)
4384 cgrp = cgrp->parent;
4385 ret = (cgrp == target);
4386 return ret;
4387 }
4388
4389 static void check_for_release(struct cgroup *cgrp)
4390 {
4391 /* All of these checks rely on RCU to keep the cgroup
4392 * structure alive */
4393 if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
4394 && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
4395 /* Control Group is currently removeable. If it's not
4396 * already queued for a userspace notification, queue
4397 * it now */
4398 int need_schedule_work = 0;
4399 spin_lock(&release_list_lock);
4400 if (!cgroup_is_removed(cgrp) &&
4401 list_empty(&cgrp->release_list)) {
4402 list_add(&cgrp->release_list, &release_list);
4403 need_schedule_work = 1;
4404 }
4405 spin_unlock(&release_list_lock);
4406 if (need_schedule_work)
4407 schedule_work(&release_agent_work);
4408 }
4409 }
4410
4411 /* Caller must verify that the css is not for root cgroup */
4412 void __css_put(struct cgroup_subsys_state *css, int count)
4413 {
4414 struct cgroup *cgrp = css->cgroup;
4415 int val;
4416 rcu_read_lock();
4417 val = atomic_sub_return(count, &css->refcnt);
4418 if (val == 1) {
4419 if (notify_on_release(cgrp)) {
4420 set_bit(CGRP_RELEASABLE, &cgrp->flags);
4421 check_for_release(cgrp);
4422 }
4423 cgroup_wakeup_rmdir_waiter(cgrp);
4424 }
4425 rcu_read_unlock();
4426 WARN_ON_ONCE(val < 1);
4427 }
4428 EXPORT_SYMBOL_GPL(__css_put);
4429
4430 /*
4431 * Notify userspace when a cgroup is released, by running the
4432 * configured release agent with the name of the cgroup (path
4433 * relative to the root of cgroup file system) as the argument.
4434 *
4435 * Most likely, this user command will try to rmdir this cgroup.
4436 *
4437 * This races with the possibility that some other task will be
4438 * attached to this cgroup before it is removed, or that some other
4439 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
4440 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
4441 * unused, and this cgroup will be reprieved from its death sentence,
4442 * to continue to serve a useful existence. Next time it's released,
4443 * we will get notified again, if it still has 'notify_on_release' set.
4444 *
4445 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
4446 * means only wait until the task is successfully execve()'d. The
4447 * separate release agent task is forked by call_usermodehelper(),
4448 * then control in this thread returns here, without waiting for the
4449 * release agent task. We don't bother to wait because the caller of
4450 * this routine has no use for the exit status of the release agent
4451 * task, so no sense holding our caller up for that.
4452 */
4453 static void cgroup_release_agent(struct work_struct *work)
4454 {
4455 BUG_ON(work != &release_agent_work);
4456 mutex_lock(&cgroup_mutex);
4457 spin_lock(&release_list_lock);
4458 while (!list_empty(&release_list)) {
4459 char *argv[3], *envp[3];
4460 int i;
4461 char *pathbuf = NULL, *agentbuf = NULL;
4462 struct cgroup *cgrp = list_entry(release_list.next,
4463 struct cgroup,
4464 release_list);
4465 list_del_init(&cgrp->release_list);
4466 spin_unlock(&release_list_lock);
4467 pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4468 if (!pathbuf)
4469 goto continue_free;
4470 if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
4471 goto continue_free;
4472 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
4473 if (!agentbuf)
4474 goto continue_free;
4475
4476 i = 0;
4477 argv[i++] = agentbuf;
4478 argv[i++] = pathbuf;
4479 argv[i] = NULL;
4480
4481 i = 0;
4482 /* minimal command environment */
4483 envp[i++] = "HOME=/";
4484 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
4485 envp[i] = NULL;
4486
4487 /* Drop the lock while we invoke the usermode helper,
4488 * since the exec could involve hitting disk and hence
4489 * be a slow process */
4490 mutex_unlock(&cgroup_mutex);
4491 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
4492 mutex_lock(&cgroup_mutex);
4493 continue_free:
4494 kfree(pathbuf);
4495 kfree(agentbuf);
4496 spin_lock(&release_list_lock);
4497 }
4498 spin_unlock(&release_list_lock);
4499 mutex_unlock(&cgroup_mutex);
4500 }
4501
4502 static int __init cgroup_disable(char *str)
4503 {
4504 int i;
4505 char *token;
4506
4507 while ((token = strsep(&str, ",")) != NULL) {
4508 if (!*token)
4509 continue;
4510 /*
4511 * cgroup_disable, being at boot time, can't know about module
4512 * subsystems, so we don't worry about them.
4513 */
4514 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4515 struct cgroup_subsys *ss = subsys[i];
4516
4517 if (!strcmp(token, ss->name)) {
4518 ss->disabled = 1;
4519 printk(KERN_INFO "Disabling %s control group"
4520 " subsystem\n", ss->name);
4521 break;
4522 }
4523 }
4524 }
4525 return 1;
4526 }
4527 __setup("cgroup_disable=", cgroup_disable);
4528
4529 /*
4530 * Functons for CSS ID.
4531 */
4532
4533 /*
4534 *To get ID other than 0, this should be called when !cgroup_is_removed().
4535 */
4536 unsigned short css_id(struct cgroup_subsys_state *css)
4537 {
4538 struct css_id *cssid;
4539
4540 /*
4541 * This css_id() can return correct value when somone has refcnt
4542 * on this or this is under rcu_read_lock(). Once css->id is allocated,
4543 * it's unchanged until freed.
4544 */
4545 cssid = rcu_dereference_check(css->id,
4546 rcu_read_lock_held() || atomic_read(&css->refcnt));
4547
4548 if (cssid)
4549 return cssid->id;
4550 return 0;
4551 }
4552 EXPORT_SYMBOL_GPL(css_id);
4553
4554 unsigned short css_depth(struct cgroup_subsys_state *css)
4555 {
4556 struct css_id *cssid;
4557
4558 cssid = rcu_dereference_check(css->id,
4559 rcu_read_lock_held() || atomic_read(&css->refcnt));
4560
4561 if (cssid)
4562 return cssid->depth;
4563 return 0;
4564 }
4565 EXPORT_SYMBOL_GPL(css_depth);
4566
4567 /**
4568 * css_is_ancestor - test "root" css is an ancestor of "child"
4569 * @child: the css to be tested.
4570 * @root: the css supporsed to be an ancestor of the child.
4571 *
4572 * Returns true if "root" is an ancestor of "child" in its hierarchy. Because
4573 * this function reads css->id, this use rcu_dereference() and rcu_read_lock().
4574 * But, considering usual usage, the csses should be valid objects after test.
4575 * Assuming that the caller will do some action to the child if this returns
4576 * returns true, the caller must take "child";s reference count.
4577 * If "child" is valid object and this returns true, "root" is valid, too.
4578 */
4579
4580 bool css_is_ancestor(struct cgroup_subsys_state *child,
4581 const struct cgroup_subsys_state *root)
4582 {
4583 struct css_id *child_id;
4584 struct css_id *root_id;
4585 bool ret = true;
4586
4587 rcu_read_lock();
4588 child_id = rcu_dereference(child->id);
4589 root_id = rcu_dereference(root->id);
4590 if (!child_id
4591 || !root_id
4592 || (child_id->depth < root_id->depth)
4593 || (child_id->stack[root_id->depth] != root_id->id))
4594 ret = false;
4595 rcu_read_unlock();
4596 return ret;
4597 }
4598
4599 static void __free_css_id_cb(struct rcu_head *head)
4600 {
4601 struct css_id *id;
4602
4603 id = container_of(head, struct css_id, rcu_head);
4604 kfree(id);
4605 }
4606
4607 void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
4608 {
4609 struct css_id *id = css->id;
4610 /* When this is called before css_id initialization, id can be NULL */
4611 if (!id)
4612 return;
4613
4614 BUG_ON(!ss->use_id);
4615
4616 rcu_assign_pointer(id->css, NULL);
4617 rcu_assign_pointer(css->id, NULL);
4618 spin_lock(&ss->id_lock);
4619 idr_remove(&ss->idr, id->id);
4620 spin_unlock(&ss->id_lock);
4621 call_rcu(&id->rcu_head, __free_css_id_cb);
4622 }
4623 EXPORT_SYMBOL_GPL(free_css_id);
4624
4625 /*
4626 * This is called by init or create(). Then, calls to this function are
4627 * always serialized (By cgroup_mutex() at create()).
4628 */
4629
4630 static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
4631 {
4632 struct css_id *newid;
4633 int myid, error, size;
4634
4635 BUG_ON(!ss->use_id);
4636
4637 size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
4638 newid = kzalloc(size, GFP_KERNEL);
4639 if (!newid)
4640 return ERR_PTR(-ENOMEM);
4641 /* get id */
4642 if (unlikely(!idr_pre_get(&ss->idr, GFP_KERNEL))) {
4643 error = -ENOMEM;
4644 goto err_out;
4645 }
4646 spin_lock(&ss->id_lock);
4647 /* Don't use 0. allocates an ID of 1-65535 */
4648 error = idr_get_new_above(&ss->idr, newid, 1, &myid);
4649 spin_unlock(&ss->id_lock);
4650
4651 /* Returns error when there are no free spaces for new ID.*/
4652 if (error) {
4653 error = -ENOSPC;
4654 goto err_out;
4655 }
4656 if (myid > CSS_ID_MAX)
4657 goto remove_idr;
4658
4659 newid->id = myid;
4660 newid->depth = depth;
4661 return newid;
4662 remove_idr:
4663 error = -ENOSPC;
4664 spin_lock(&ss->id_lock);
4665 idr_remove(&ss->idr, myid);
4666 spin_unlock(&ss->id_lock);
4667 err_out:
4668 kfree(newid);
4669 return ERR_PTR(error);
4670
4671 }
4672
4673 static int __init_or_module cgroup_init_idr(struct cgroup_subsys *ss,
4674 struct cgroup_subsys_state *rootcss)
4675 {
4676 struct css_id *newid;
4677
4678 spin_lock_init(&ss->id_lock);
4679 idr_init(&ss->idr);
4680
4681 newid = get_new_cssid(ss, 0);
4682 if (IS_ERR(newid))
4683 return PTR_ERR(newid);
4684
4685 newid->stack[0] = newid->id;
4686 newid->css = rootcss;
4687 rootcss->id = newid;
4688 return 0;
4689 }
4690
4691 static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
4692 struct cgroup *child)
4693 {
4694 int subsys_id, i, depth = 0;
4695 struct cgroup_subsys_state *parent_css, *child_css;
4696 struct css_id *child_id, *parent_id;
4697
4698 subsys_id = ss->subsys_id;
4699 parent_css = parent->subsys[subsys_id];
4700 child_css = child->subsys[subsys_id];
4701 parent_id = parent_css->id;
4702 depth = parent_id->depth + 1;
4703
4704 child_id = get_new_cssid(ss, depth);
4705 if (IS_ERR(child_id))
4706 return PTR_ERR(child_id);
4707
4708 for (i = 0; i < depth; i++)
4709 child_id->stack[i] = parent_id->stack[i];
4710 child_id->stack[depth] = child_id->id;
4711 /*
4712 * child_id->css pointer will be set after this cgroup is available
4713 * see cgroup_populate_dir()
4714 */
4715 rcu_assign_pointer(child_css->id, child_id);
4716
4717 return 0;
4718 }
4719
4720 /**
4721 * css_lookup - lookup css by id
4722 * @ss: cgroup subsys to be looked into.
4723 * @id: the id
4724 *
4725 * Returns pointer to cgroup_subsys_state if there is valid one with id.
4726 * NULL if not. Should be called under rcu_read_lock()
4727 */
4728 struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
4729 {
4730 struct css_id *cssid = NULL;
4731
4732 BUG_ON(!ss->use_id);
4733 cssid = idr_find(&ss->idr, id);
4734
4735 if (unlikely(!cssid))
4736 return NULL;
4737
4738 return rcu_dereference(cssid->css);
4739 }
4740 EXPORT_SYMBOL_GPL(css_lookup);
4741
4742 /**
4743 * css_get_next - lookup next cgroup under specified hierarchy.
4744 * @ss: pointer to subsystem
4745 * @id: current position of iteration.
4746 * @root: pointer to css. search tree under this.
4747 * @foundid: position of found object.
4748 *
4749 * Search next css under the specified hierarchy of rootid. Calling under
4750 * rcu_read_lock() is necessary. Returns NULL if it reaches the end.
4751 */
4752 struct cgroup_subsys_state *
4753 css_get_next(struct cgroup_subsys *ss, int id,
4754 struct cgroup_subsys_state *root, int *foundid)
4755 {
4756 struct cgroup_subsys_state *ret = NULL;
4757 struct css_id *tmp;
4758 int tmpid;
4759 int rootid = css_id(root);
4760 int depth = css_depth(root);
4761
4762 if (!rootid)
4763 return NULL;
4764
4765 BUG_ON(!ss->use_id);
4766 /* fill start point for scan */
4767 tmpid = id;
4768 while (1) {
4769 /*
4770 * scan next entry from bitmap(tree), tmpid is updated after
4771 * idr_get_next().
4772 */
4773 spin_lock(&ss->id_lock);
4774 tmp = idr_get_next(&ss->idr, &tmpid);
4775 spin_unlock(&ss->id_lock);
4776
4777 if (!tmp)
4778 break;
4779 if (tmp->depth >= depth && tmp->stack[depth] == rootid) {
4780 ret = rcu_dereference(tmp->css);
4781 if (ret) {
4782 *foundid = tmpid;
4783 break;
4784 }
4785 }
4786 /* continue to scan from next id */
4787 tmpid = tmpid + 1;
4788 }
4789 return ret;
4790 }
4791
4792 #ifdef CONFIG_CGROUP_DEBUG
4793 static struct cgroup_subsys_state *debug_create(struct cgroup_subsys *ss,
4794 struct cgroup *cont)
4795 {
4796 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
4797
4798 if (!css)
4799 return ERR_PTR(-ENOMEM);
4800
4801 return css;
4802 }
4803
4804 static void debug_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
4805 {
4806 kfree(cont->subsys[debug_subsys_id]);
4807 }
4808
4809 static u64 cgroup_refcount_read(struct cgroup *cont, struct cftype *cft)
4810 {
4811 return atomic_read(&cont->count);
4812 }
4813
4814 static u64 debug_taskcount_read(struct cgroup *cont, struct cftype *cft)
4815 {
4816 return cgroup_task_count(cont);
4817 }
4818
4819 static u64 current_css_set_read(struct cgroup *cont, struct cftype *cft)
4820 {
4821 return (u64)(unsigned long)current->cgroups;
4822 }
4823
4824 static u64 current_css_set_refcount_read(struct cgroup *cont,
4825 struct cftype *cft)
4826 {
4827 u64 count;
4828
4829 rcu_read_lock();
4830 count = atomic_read(&current->cgroups->refcount);
4831 rcu_read_unlock();
4832 return count;
4833 }
4834
4835 static int current_css_set_cg_links_read(struct cgroup *cont,
4836 struct cftype *cft,
4837 struct seq_file *seq)
4838 {
4839 struct cg_cgroup_link *link;
4840 struct css_set *cg;
4841
4842 read_lock(&css_set_lock);
4843 rcu_read_lock();
4844 cg = rcu_dereference(current->cgroups);
4845 list_for_each_entry(link, &cg->cg_links, cg_link_list) {
4846 struct cgroup *c = link->cgrp;
4847 const char *name;
4848
4849 if (c->dentry)
4850 name = c->dentry->d_name.name;
4851 else
4852 name = "?";
4853 seq_printf(seq, "Root %d group %s\n",
4854 c->root->hierarchy_id, name);
4855 }
4856 rcu_read_unlock();
4857 read_unlock(&css_set_lock);
4858 return 0;
4859 }
4860
4861 #define MAX_TASKS_SHOWN_PER_CSS 25
4862 static int cgroup_css_links_read(struct cgroup *cont,
4863 struct cftype *cft,
4864 struct seq_file *seq)
4865 {
4866 struct cg_cgroup_link *link;
4867
4868 read_lock(&css_set_lock);
4869 list_for_each_entry(link, &cont->css_sets, cgrp_link_list) {
4870 struct css_set *cg = link->cg;
4871 struct task_struct *task;
4872 int count = 0;
4873 seq_printf(seq, "css_set %p\n", cg);
4874 list_for_each_entry(task, &cg->tasks, cg_list) {
4875 if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
4876 seq_puts(seq, " ...\n");
4877 break;
4878 } else {
4879 seq_printf(seq, " task %d\n",
4880 task_pid_vnr(task));
4881 }
4882 }
4883 }
4884 read_unlock(&css_set_lock);
4885 return 0;
4886 }
4887
4888 static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft)
4889 {
4890 return test_bit(CGRP_RELEASABLE, &cgrp->flags);
4891 }
4892
4893 static struct cftype debug_files[] = {
4894 {
4895 .name = "cgroup_refcount",
4896 .read_u64 = cgroup_refcount_read,
4897 },
4898 {
4899 .name = "taskcount",
4900 .read_u64 = debug_taskcount_read,
4901 },
4902
4903 {
4904 .name = "current_css_set",
4905 .read_u64 = current_css_set_read,
4906 },
4907
4908 {
4909 .name = "current_css_set_refcount",
4910 .read_u64 = current_css_set_refcount_read,
4911 },
4912
4913 {
4914 .name = "current_css_set_cg_links",
4915 .read_seq_string = current_css_set_cg_links_read,
4916 },
4917
4918 {
4919 .name = "cgroup_css_links",
4920 .read_seq_string = cgroup_css_links_read,
4921 },
4922
4923 {
4924 .name = "releasable",
4925 .read_u64 = releasable_read,
4926 },
4927 };
4928
4929 static int debug_populate(struct cgroup_subsys *ss, struct cgroup *cont)
4930 {
4931 return cgroup_add_files(cont, ss, debug_files,
4932 ARRAY_SIZE(debug_files));
4933 }
4934
4935 struct cgroup_subsys debug_subsys = {
4936 .name = "debug",
4937 .create = debug_create,
4938 .destroy = debug_destroy,
4939 .populate = debug_populate,
4940 .subsys_id = debug_subsys_id,
4941 };
4942 #endif /* CONFIG_CGROUP_DEBUG */
This page took 0.128625 seconds and 6 git commands to generate.