cgroup: fix an off-by-one bug which may trigger BUG_ON()
[deliverable/linux.git] / kernel / cgroup.c
1 /*
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29 #include <linux/cgroup.h>
30 #include <linux/cred.h>
31 #include <linux/ctype.h>
32 #include <linux/errno.h>
33 #include <linux/fs.h>
34 #include <linux/init_task.h>
35 #include <linux/kernel.h>
36 #include <linux/list.h>
37 #include <linux/mm.h>
38 #include <linux/mutex.h>
39 #include <linux/mount.h>
40 #include <linux/pagemap.h>
41 #include <linux/proc_fs.h>
42 #include <linux/rcupdate.h>
43 #include <linux/sched.h>
44 #include <linux/backing-dev.h>
45 #include <linux/seq_file.h>
46 #include <linux/slab.h>
47 #include <linux/magic.h>
48 #include <linux/spinlock.h>
49 #include <linux/string.h>
50 #include <linux/sort.h>
51 #include <linux/kmod.h>
52 #include <linux/module.h>
53 #include <linux/delayacct.h>
54 #include <linux/cgroupstats.h>
55 #include <linux/hashtable.h>
56 #include <linux/namei.h>
57 #include <linux/pid_namespace.h>
58 #include <linux/idr.h>
59 #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
60 #include <linux/eventfd.h>
61 #include <linux/poll.h>
62 #include <linux/flex_array.h> /* used in cgroup_attach_proc */
63 #include <linux/kthread.h>
64
65 #include <linux/atomic.h>
66
67 /* css deactivation bias, makes css->refcnt negative to deny new trygets */
68 #define CSS_DEACT_BIAS INT_MIN
69
70 /*
71 * cgroup_mutex is the master lock. Any modification to cgroup or its
72 * hierarchy must be performed while holding it.
73 *
74 * cgroup_root_mutex nests inside cgroup_mutex and should be held to modify
75 * cgroupfs_root of any cgroup hierarchy - subsys list, flags,
76 * release_agent_path and so on. Modifying requires both cgroup_mutex and
77 * cgroup_root_mutex. Readers can acquire either of the two. This is to
78 * break the following locking order cycle.
79 *
80 * A. cgroup_mutex -> cred_guard_mutex -> s_type->i_mutex_key -> namespace_sem
81 * B. namespace_sem -> cgroup_mutex
82 *
83 * B happens only through cgroup_show_options() and using cgroup_root_mutex
84 * breaks it.
85 */
86 static DEFINE_MUTEX(cgroup_mutex);
87 static DEFINE_MUTEX(cgroup_root_mutex);
88
89 /*
90 * Generate an array of cgroup subsystem pointers. At boot time, this is
91 * populated with the built in subsystems, and modular subsystems are
92 * registered after that. The mutable section of this array is protected by
93 * cgroup_mutex.
94 */
95 #define SUBSYS(_x) [_x ## _subsys_id] = &_x ## _subsys,
96 #define IS_SUBSYS_ENABLED(option) IS_BUILTIN(option)
97 static struct cgroup_subsys *subsys[CGROUP_SUBSYS_COUNT] = {
98 #include <linux/cgroup_subsys.h>
99 };
100
101 #define MAX_CGROUP_ROOT_NAMELEN 64
102
103 /*
104 * A cgroupfs_root represents the root of a cgroup hierarchy,
105 * and may be associated with a superblock to form an active
106 * hierarchy
107 */
108 struct cgroupfs_root {
109 struct super_block *sb;
110
111 /*
112 * The bitmask of subsystems intended to be attached to this
113 * hierarchy
114 */
115 unsigned long subsys_mask;
116
117 /* Unique id for this hierarchy. */
118 int hierarchy_id;
119
120 /* The bitmask of subsystems currently attached to this hierarchy */
121 unsigned long actual_subsys_mask;
122
123 /* A list running through the attached subsystems */
124 struct list_head subsys_list;
125
126 /* The root cgroup for this hierarchy */
127 struct cgroup top_cgroup;
128
129 /* Tracks how many cgroups are currently defined in hierarchy.*/
130 int number_of_cgroups;
131
132 /* A list running through the active hierarchies */
133 struct list_head root_list;
134
135 /* All cgroups on this root, cgroup_mutex protected */
136 struct list_head allcg_list;
137
138 /* Hierarchy-specific flags */
139 unsigned long flags;
140
141 /* IDs for cgroups in this hierarchy */
142 struct ida cgroup_ida;
143
144 /* The path to use for release notifications. */
145 char release_agent_path[PATH_MAX];
146
147 /* The name for this hierarchy - may be empty */
148 char name[MAX_CGROUP_ROOT_NAMELEN];
149 };
150
151 /*
152 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
153 * subsystems that are otherwise unattached - it never has more than a
154 * single cgroup, and all tasks are part of that cgroup.
155 */
156 static struct cgroupfs_root rootnode;
157
158 /*
159 * cgroupfs file entry, pointed to from leaf dentry->d_fsdata.
160 */
161 struct cfent {
162 struct list_head node;
163 struct dentry *dentry;
164 struct cftype *type;
165 };
166
167 /*
168 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
169 * cgroup_subsys->use_id != 0.
170 */
171 #define CSS_ID_MAX (65535)
172 struct css_id {
173 /*
174 * The css to which this ID points. This pointer is set to valid value
175 * after cgroup is populated. If cgroup is removed, this will be NULL.
176 * This pointer is expected to be RCU-safe because destroy()
177 * is called after synchronize_rcu(). But for safe use, css_tryget()
178 * should be used for avoiding race.
179 */
180 struct cgroup_subsys_state __rcu *css;
181 /*
182 * ID of this css.
183 */
184 unsigned short id;
185 /*
186 * Depth in hierarchy which this ID belongs to.
187 */
188 unsigned short depth;
189 /*
190 * ID is freed by RCU. (and lookup routine is RCU safe.)
191 */
192 struct rcu_head rcu_head;
193 /*
194 * Hierarchy of CSS ID belongs to.
195 */
196 unsigned short stack[0]; /* Array of Length (depth+1) */
197 };
198
199 /*
200 * cgroup_event represents events which userspace want to receive.
201 */
202 struct cgroup_event {
203 /*
204 * Cgroup which the event belongs to.
205 */
206 struct cgroup *cgrp;
207 /*
208 * Control file which the event associated.
209 */
210 struct cftype *cft;
211 /*
212 * eventfd to signal userspace about the event.
213 */
214 struct eventfd_ctx *eventfd;
215 /*
216 * Each of these stored in a list by the cgroup.
217 */
218 struct list_head list;
219 /*
220 * All fields below needed to unregister event when
221 * userspace closes eventfd.
222 */
223 poll_table pt;
224 wait_queue_head_t *wqh;
225 wait_queue_t wait;
226 struct work_struct remove;
227 };
228
229 /* The list of hierarchy roots */
230
231 static LIST_HEAD(roots);
232 static int root_count;
233
234 static DEFINE_IDA(hierarchy_ida);
235 static int next_hierarchy_id;
236 static DEFINE_SPINLOCK(hierarchy_id_lock);
237
238 /* dummytop is a shorthand for the dummy hierarchy's top cgroup */
239 #define dummytop (&rootnode.top_cgroup)
240
241 static struct cgroup_name root_cgroup_name = { .name = "/" };
242
243 /* This flag indicates whether tasks in the fork and exit paths should
244 * check for fork/exit handlers to call. This avoids us having to do
245 * extra work in the fork/exit path if none of the subsystems need to
246 * be called.
247 */
248 static int need_forkexit_callback __read_mostly;
249
250 static int cgroup_destroy_locked(struct cgroup *cgrp);
251 static int cgroup_addrm_files(struct cgroup *cgrp, struct cgroup_subsys *subsys,
252 struct cftype cfts[], bool is_add);
253
254 #ifdef CONFIG_PROVE_LOCKING
255 int cgroup_lock_is_held(void)
256 {
257 return lockdep_is_held(&cgroup_mutex);
258 }
259 #else /* #ifdef CONFIG_PROVE_LOCKING */
260 int cgroup_lock_is_held(void)
261 {
262 return mutex_is_locked(&cgroup_mutex);
263 }
264 #endif /* #else #ifdef CONFIG_PROVE_LOCKING */
265
266 EXPORT_SYMBOL_GPL(cgroup_lock_is_held);
267
268 static int css_unbias_refcnt(int refcnt)
269 {
270 return refcnt >= 0 ? refcnt : refcnt - CSS_DEACT_BIAS;
271 }
272
273 /* the current nr of refs, always >= 0 whether @css is deactivated or not */
274 static int css_refcnt(struct cgroup_subsys_state *css)
275 {
276 int v = atomic_read(&css->refcnt);
277
278 return css_unbias_refcnt(v);
279 }
280
281 /* convenient tests for these bits */
282 inline int cgroup_is_removed(const struct cgroup *cgrp)
283 {
284 return test_bit(CGRP_REMOVED, &cgrp->flags);
285 }
286
287 /* bits in struct cgroupfs_root flags field */
288 enum {
289 ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
290 ROOT_XATTR, /* supports extended attributes */
291 };
292
293 static int cgroup_is_releasable(const struct cgroup *cgrp)
294 {
295 const int bits =
296 (1 << CGRP_RELEASABLE) |
297 (1 << CGRP_NOTIFY_ON_RELEASE);
298 return (cgrp->flags & bits) == bits;
299 }
300
301 static int notify_on_release(const struct cgroup *cgrp)
302 {
303 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
304 }
305
306 /*
307 * for_each_subsys() allows you to iterate on each subsystem attached to
308 * an active hierarchy
309 */
310 #define for_each_subsys(_root, _ss) \
311 list_for_each_entry(_ss, &_root->subsys_list, sibling)
312
313 /* for_each_active_root() allows you to iterate across the active hierarchies */
314 #define for_each_active_root(_root) \
315 list_for_each_entry(_root, &roots, root_list)
316
317 static inline struct cgroup *__d_cgrp(struct dentry *dentry)
318 {
319 return dentry->d_fsdata;
320 }
321
322 static inline struct cfent *__d_cfe(struct dentry *dentry)
323 {
324 return dentry->d_fsdata;
325 }
326
327 static inline struct cftype *__d_cft(struct dentry *dentry)
328 {
329 return __d_cfe(dentry)->type;
330 }
331
332 /* the list of cgroups eligible for automatic release. Protected by
333 * release_list_lock */
334 static LIST_HEAD(release_list);
335 static DEFINE_RAW_SPINLOCK(release_list_lock);
336 static void cgroup_release_agent(struct work_struct *work);
337 static DECLARE_WORK(release_agent_work, cgroup_release_agent);
338 static void check_for_release(struct cgroup *cgrp);
339
340 /* Link structure for associating css_set objects with cgroups */
341 struct cg_cgroup_link {
342 /*
343 * List running through cg_cgroup_links associated with a
344 * cgroup, anchored on cgroup->css_sets
345 */
346 struct list_head cgrp_link_list;
347 struct cgroup *cgrp;
348 /*
349 * List running through cg_cgroup_links pointing at a
350 * single css_set object, anchored on css_set->cg_links
351 */
352 struct list_head cg_link_list;
353 struct css_set *cg;
354 };
355
356 /* The default css_set - used by init and its children prior to any
357 * hierarchies being mounted. It contains a pointer to the root state
358 * for each subsystem. Also used to anchor the list of css_sets. Not
359 * reference-counted, to improve performance when child cgroups
360 * haven't been created.
361 */
362
363 static struct css_set init_css_set;
364 static struct cg_cgroup_link init_css_set_link;
365
366 static int cgroup_init_idr(struct cgroup_subsys *ss,
367 struct cgroup_subsys_state *css);
368
369 /* css_set_lock protects the list of css_set objects, and the
370 * chain of tasks off each css_set. Nests outside task->alloc_lock
371 * due to cgroup_iter_start() */
372 static DEFINE_RWLOCK(css_set_lock);
373 static int css_set_count;
374
375 /*
376 * hash table for cgroup groups. This improves the performance to find
377 * an existing css_set. This hash doesn't (currently) take into
378 * account cgroups in empty hierarchies.
379 */
380 #define CSS_SET_HASH_BITS 7
381 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
382
383 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
384 {
385 int i;
386 unsigned long key = 0UL;
387
388 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
389 key += (unsigned long)css[i];
390 key = (key >> 16) ^ key;
391
392 return key;
393 }
394
395 /* We don't maintain the lists running through each css_set to its
396 * task until after the first call to cgroup_iter_start(). This
397 * reduces the fork()/exit() overhead for people who have cgroups
398 * compiled into their kernel but not actually in use */
399 static int use_task_css_set_links __read_mostly;
400
401 static void __put_css_set(struct css_set *cg, int taskexit)
402 {
403 struct cg_cgroup_link *link;
404 struct cg_cgroup_link *saved_link;
405 /*
406 * Ensure that the refcount doesn't hit zero while any readers
407 * can see it. Similar to atomic_dec_and_lock(), but for an
408 * rwlock
409 */
410 if (atomic_add_unless(&cg->refcount, -1, 1))
411 return;
412 write_lock(&css_set_lock);
413 if (!atomic_dec_and_test(&cg->refcount)) {
414 write_unlock(&css_set_lock);
415 return;
416 }
417
418 /* This css_set is dead. unlink it and release cgroup refcounts */
419 hash_del(&cg->hlist);
420 css_set_count--;
421
422 list_for_each_entry_safe(link, saved_link, &cg->cg_links,
423 cg_link_list) {
424 struct cgroup *cgrp = link->cgrp;
425 list_del(&link->cg_link_list);
426 list_del(&link->cgrp_link_list);
427
428 /*
429 * We may not be holding cgroup_mutex, and if cgrp->count is
430 * dropped to 0 the cgroup can be destroyed at any time, hence
431 * rcu_read_lock is used to keep it alive.
432 */
433 rcu_read_lock();
434 if (atomic_dec_and_test(&cgrp->count) &&
435 notify_on_release(cgrp)) {
436 if (taskexit)
437 set_bit(CGRP_RELEASABLE, &cgrp->flags);
438 check_for_release(cgrp);
439 }
440 rcu_read_unlock();
441
442 kfree(link);
443 }
444
445 write_unlock(&css_set_lock);
446 kfree_rcu(cg, rcu_head);
447 }
448
449 /*
450 * refcounted get/put for css_set objects
451 */
452 static inline void get_css_set(struct css_set *cg)
453 {
454 atomic_inc(&cg->refcount);
455 }
456
457 static inline void put_css_set(struct css_set *cg)
458 {
459 __put_css_set(cg, 0);
460 }
461
462 static inline void put_css_set_taskexit(struct css_set *cg)
463 {
464 __put_css_set(cg, 1);
465 }
466
467 /*
468 * compare_css_sets - helper function for find_existing_css_set().
469 * @cg: candidate css_set being tested
470 * @old_cg: existing css_set for a task
471 * @new_cgrp: cgroup that's being entered by the task
472 * @template: desired set of css pointers in css_set (pre-calculated)
473 *
474 * Returns true if "cg" matches "old_cg" except for the hierarchy
475 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
476 */
477 static bool compare_css_sets(struct css_set *cg,
478 struct css_set *old_cg,
479 struct cgroup *new_cgrp,
480 struct cgroup_subsys_state *template[])
481 {
482 struct list_head *l1, *l2;
483
484 if (memcmp(template, cg->subsys, sizeof(cg->subsys))) {
485 /* Not all subsystems matched */
486 return false;
487 }
488
489 /*
490 * Compare cgroup pointers in order to distinguish between
491 * different cgroups in heirarchies with no subsystems. We
492 * could get by with just this check alone (and skip the
493 * memcmp above) but on most setups the memcmp check will
494 * avoid the need for this more expensive check on almost all
495 * candidates.
496 */
497
498 l1 = &cg->cg_links;
499 l2 = &old_cg->cg_links;
500 while (1) {
501 struct cg_cgroup_link *cgl1, *cgl2;
502 struct cgroup *cg1, *cg2;
503
504 l1 = l1->next;
505 l2 = l2->next;
506 /* See if we reached the end - both lists are equal length. */
507 if (l1 == &cg->cg_links) {
508 BUG_ON(l2 != &old_cg->cg_links);
509 break;
510 } else {
511 BUG_ON(l2 == &old_cg->cg_links);
512 }
513 /* Locate the cgroups associated with these links. */
514 cgl1 = list_entry(l1, struct cg_cgroup_link, cg_link_list);
515 cgl2 = list_entry(l2, struct cg_cgroup_link, cg_link_list);
516 cg1 = cgl1->cgrp;
517 cg2 = cgl2->cgrp;
518 /* Hierarchies should be linked in the same order. */
519 BUG_ON(cg1->root != cg2->root);
520
521 /*
522 * If this hierarchy is the hierarchy of the cgroup
523 * that's changing, then we need to check that this
524 * css_set points to the new cgroup; if it's any other
525 * hierarchy, then this css_set should point to the
526 * same cgroup as the old css_set.
527 */
528 if (cg1->root == new_cgrp->root) {
529 if (cg1 != new_cgrp)
530 return false;
531 } else {
532 if (cg1 != cg2)
533 return false;
534 }
535 }
536 return true;
537 }
538
539 /*
540 * find_existing_css_set() is a helper for
541 * find_css_set(), and checks to see whether an existing
542 * css_set is suitable.
543 *
544 * oldcg: the cgroup group that we're using before the cgroup
545 * transition
546 *
547 * cgrp: the cgroup that we're moving into
548 *
549 * template: location in which to build the desired set of subsystem
550 * state objects for the new cgroup group
551 */
552 static struct css_set *find_existing_css_set(
553 struct css_set *oldcg,
554 struct cgroup *cgrp,
555 struct cgroup_subsys_state *template[])
556 {
557 int i;
558 struct cgroupfs_root *root = cgrp->root;
559 struct css_set *cg;
560 unsigned long key;
561
562 /*
563 * Build the set of subsystem state objects that we want to see in the
564 * new css_set. while subsystems can change globally, the entries here
565 * won't change, so no need for locking.
566 */
567 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
568 if (root->subsys_mask & (1UL << i)) {
569 /* Subsystem is in this hierarchy. So we want
570 * the subsystem state from the new
571 * cgroup */
572 template[i] = cgrp->subsys[i];
573 } else {
574 /* Subsystem is not in this hierarchy, so we
575 * don't want to change the subsystem state */
576 template[i] = oldcg->subsys[i];
577 }
578 }
579
580 key = css_set_hash(template);
581 hash_for_each_possible(css_set_table, cg, hlist, key) {
582 if (!compare_css_sets(cg, oldcg, cgrp, template))
583 continue;
584
585 /* This css_set matches what we need */
586 return cg;
587 }
588
589 /* No existing cgroup group matched */
590 return NULL;
591 }
592
593 static void free_cg_links(struct list_head *tmp)
594 {
595 struct cg_cgroup_link *link;
596 struct cg_cgroup_link *saved_link;
597
598 list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
599 list_del(&link->cgrp_link_list);
600 kfree(link);
601 }
602 }
603
604 /*
605 * allocate_cg_links() allocates "count" cg_cgroup_link structures
606 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
607 * success or a negative error
608 */
609 static int allocate_cg_links(int count, struct list_head *tmp)
610 {
611 struct cg_cgroup_link *link;
612 int i;
613 INIT_LIST_HEAD(tmp);
614 for (i = 0; i < count; i++) {
615 link = kmalloc(sizeof(*link), GFP_KERNEL);
616 if (!link) {
617 free_cg_links(tmp);
618 return -ENOMEM;
619 }
620 list_add(&link->cgrp_link_list, tmp);
621 }
622 return 0;
623 }
624
625 /**
626 * link_css_set - a helper function to link a css_set to a cgroup
627 * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
628 * @cg: the css_set to be linked
629 * @cgrp: the destination cgroup
630 */
631 static void link_css_set(struct list_head *tmp_cg_links,
632 struct css_set *cg, struct cgroup *cgrp)
633 {
634 struct cg_cgroup_link *link;
635
636 BUG_ON(list_empty(tmp_cg_links));
637 link = list_first_entry(tmp_cg_links, struct cg_cgroup_link,
638 cgrp_link_list);
639 link->cg = cg;
640 link->cgrp = cgrp;
641 atomic_inc(&cgrp->count);
642 list_move(&link->cgrp_link_list, &cgrp->css_sets);
643 /*
644 * Always add links to the tail of the list so that the list
645 * is sorted by order of hierarchy creation
646 */
647 list_add_tail(&link->cg_link_list, &cg->cg_links);
648 }
649
650 /*
651 * find_css_set() takes an existing cgroup group and a
652 * cgroup object, and returns a css_set object that's
653 * equivalent to the old group, but with the given cgroup
654 * substituted into the appropriate hierarchy. Must be called with
655 * cgroup_mutex held
656 */
657 static struct css_set *find_css_set(
658 struct css_set *oldcg, struct cgroup *cgrp)
659 {
660 struct css_set *res;
661 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
662
663 struct list_head tmp_cg_links;
664
665 struct cg_cgroup_link *link;
666 unsigned long key;
667
668 /* First see if we already have a cgroup group that matches
669 * the desired set */
670 read_lock(&css_set_lock);
671 res = find_existing_css_set(oldcg, cgrp, template);
672 if (res)
673 get_css_set(res);
674 read_unlock(&css_set_lock);
675
676 if (res)
677 return res;
678
679 res = kmalloc(sizeof(*res), GFP_KERNEL);
680 if (!res)
681 return NULL;
682
683 /* Allocate all the cg_cgroup_link objects that we'll need */
684 if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
685 kfree(res);
686 return NULL;
687 }
688
689 atomic_set(&res->refcount, 1);
690 INIT_LIST_HEAD(&res->cg_links);
691 INIT_LIST_HEAD(&res->tasks);
692 INIT_HLIST_NODE(&res->hlist);
693
694 /* Copy the set of subsystem state objects generated in
695 * find_existing_css_set() */
696 memcpy(res->subsys, template, sizeof(res->subsys));
697
698 write_lock(&css_set_lock);
699 /* Add reference counts and links from the new css_set. */
700 list_for_each_entry(link, &oldcg->cg_links, cg_link_list) {
701 struct cgroup *c = link->cgrp;
702 if (c->root == cgrp->root)
703 c = cgrp;
704 link_css_set(&tmp_cg_links, res, c);
705 }
706
707 BUG_ON(!list_empty(&tmp_cg_links));
708
709 css_set_count++;
710
711 /* Add this cgroup group to the hash table */
712 key = css_set_hash(res->subsys);
713 hash_add(css_set_table, &res->hlist, key);
714
715 write_unlock(&css_set_lock);
716
717 return res;
718 }
719
720 /*
721 * Return the cgroup for "task" from the given hierarchy. Must be
722 * called with cgroup_mutex held.
723 */
724 static struct cgroup *task_cgroup_from_root(struct task_struct *task,
725 struct cgroupfs_root *root)
726 {
727 struct css_set *css;
728 struct cgroup *res = NULL;
729
730 BUG_ON(!mutex_is_locked(&cgroup_mutex));
731 read_lock(&css_set_lock);
732 /*
733 * No need to lock the task - since we hold cgroup_mutex the
734 * task can't change groups, so the only thing that can happen
735 * is that it exits and its css is set back to init_css_set.
736 */
737 css = task->cgroups;
738 if (css == &init_css_set) {
739 res = &root->top_cgroup;
740 } else {
741 struct cg_cgroup_link *link;
742 list_for_each_entry(link, &css->cg_links, cg_link_list) {
743 struct cgroup *c = link->cgrp;
744 if (c->root == root) {
745 res = c;
746 break;
747 }
748 }
749 }
750 read_unlock(&css_set_lock);
751 BUG_ON(!res);
752 return res;
753 }
754
755 /*
756 * There is one global cgroup mutex. We also require taking
757 * task_lock() when dereferencing a task's cgroup subsys pointers.
758 * See "The task_lock() exception", at the end of this comment.
759 *
760 * A task must hold cgroup_mutex to modify cgroups.
761 *
762 * Any task can increment and decrement the count field without lock.
763 * So in general, code holding cgroup_mutex can't rely on the count
764 * field not changing. However, if the count goes to zero, then only
765 * cgroup_attach_task() can increment it again. Because a count of zero
766 * means that no tasks are currently attached, therefore there is no
767 * way a task attached to that cgroup can fork (the other way to
768 * increment the count). So code holding cgroup_mutex can safely
769 * assume that if the count is zero, it will stay zero. Similarly, if
770 * a task holds cgroup_mutex on a cgroup with zero count, it
771 * knows that the cgroup won't be removed, as cgroup_rmdir()
772 * needs that mutex.
773 *
774 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
775 * (usually) take cgroup_mutex. These are the two most performance
776 * critical pieces of code here. The exception occurs on cgroup_exit(),
777 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
778 * is taken, and if the cgroup count is zero, a usermode call made
779 * to the release agent with the name of the cgroup (path relative to
780 * the root of cgroup file system) as the argument.
781 *
782 * A cgroup can only be deleted if both its 'count' of using tasks
783 * is zero, and its list of 'children' cgroups is empty. Since all
784 * tasks in the system use _some_ cgroup, and since there is always at
785 * least one task in the system (init, pid == 1), therefore, top_cgroup
786 * always has either children cgroups and/or using tasks. So we don't
787 * need a special hack to ensure that top_cgroup cannot be deleted.
788 *
789 * The task_lock() exception
790 *
791 * The need for this exception arises from the action of
792 * cgroup_attach_task(), which overwrites one task's cgroup pointer with
793 * another. It does so using cgroup_mutex, however there are
794 * several performance critical places that need to reference
795 * task->cgroup without the expense of grabbing a system global
796 * mutex. Therefore except as noted below, when dereferencing or, as
797 * in cgroup_attach_task(), modifying a task's cgroup pointer we use
798 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
799 * the task_struct routinely used for such matters.
800 *
801 * P.S. One more locking exception. RCU is used to guard the
802 * update of a tasks cgroup pointer by cgroup_attach_task()
803 */
804
805 /**
806 * cgroup_lock - lock out any changes to cgroup structures
807 *
808 */
809 void cgroup_lock(void)
810 {
811 mutex_lock(&cgroup_mutex);
812 }
813 EXPORT_SYMBOL_GPL(cgroup_lock);
814
815 /**
816 * cgroup_unlock - release lock on cgroup changes
817 *
818 * Undo the lock taken in a previous cgroup_lock() call.
819 */
820 void cgroup_unlock(void)
821 {
822 mutex_unlock(&cgroup_mutex);
823 }
824 EXPORT_SYMBOL_GPL(cgroup_unlock);
825
826 /*
827 * A couple of forward declarations required, due to cyclic reference loop:
828 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
829 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
830 * -> cgroup_mkdir.
831 */
832
833 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode);
834 static struct dentry *cgroup_lookup(struct inode *, struct dentry *, unsigned int);
835 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
836 static int cgroup_populate_dir(struct cgroup *cgrp, bool base_files,
837 unsigned long subsys_mask);
838 static const struct inode_operations cgroup_dir_inode_operations;
839 static const struct file_operations proc_cgroupstats_operations;
840
841 static struct backing_dev_info cgroup_backing_dev_info = {
842 .name = "cgroup",
843 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
844 };
845
846 static int alloc_css_id(struct cgroup_subsys *ss,
847 struct cgroup *parent, struct cgroup *child);
848
849 static struct inode *cgroup_new_inode(umode_t mode, struct super_block *sb)
850 {
851 struct inode *inode = new_inode(sb);
852
853 if (inode) {
854 inode->i_ino = get_next_ino();
855 inode->i_mode = mode;
856 inode->i_uid = current_fsuid();
857 inode->i_gid = current_fsgid();
858 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
859 inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
860 }
861 return inode;
862 }
863
864 static struct cgroup_name *cgroup_alloc_name(struct dentry *dentry)
865 {
866 struct cgroup_name *name;
867
868 name = kmalloc(sizeof(*name) + dentry->d_name.len + 1, GFP_KERNEL);
869 if (!name)
870 return NULL;
871 strcpy(name->name, dentry->d_name.name);
872 return name;
873 }
874
875 static void cgroup_free_fn(struct work_struct *work)
876 {
877 struct cgroup *cgrp = container_of(work, struct cgroup, free_work);
878 struct cgroup_subsys *ss;
879
880 mutex_lock(&cgroup_mutex);
881 /*
882 * Release the subsystem state objects.
883 */
884 for_each_subsys(cgrp->root, ss)
885 ss->css_free(cgrp);
886
887 cgrp->root->number_of_cgroups--;
888 mutex_unlock(&cgroup_mutex);
889
890 /*
891 * Drop the active superblock reference that we took when we
892 * created the cgroup
893 */
894 deactivate_super(cgrp->root->sb);
895
896 /*
897 * if we're getting rid of the cgroup, refcount should ensure
898 * that there are no pidlists left.
899 */
900 BUG_ON(!list_empty(&cgrp->pidlists));
901
902 simple_xattrs_free(&cgrp->xattrs);
903
904 ida_simple_remove(&cgrp->root->cgroup_ida, cgrp->id);
905 kfree(rcu_dereference_raw(cgrp->name));
906 kfree(cgrp);
907 }
908
909 static void cgroup_free_rcu(struct rcu_head *head)
910 {
911 struct cgroup *cgrp = container_of(head, struct cgroup, rcu_head);
912
913 schedule_work(&cgrp->free_work);
914 }
915
916 static void cgroup_diput(struct dentry *dentry, struct inode *inode)
917 {
918 /* is dentry a directory ? if so, kfree() associated cgroup */
919 if (S_ISDIR(inode->i_mode)) {
920 struct cgroup *cgrp = dentry->d_fsdata;
921
922 BUG_ON(!(cgroup_is_removed(cgrp)));
923 call_rcu(&cgrp->rcu_head, cgroup_free_rcu);
924 } else {
925 struct cfent *cfe = __d_cfe(dentry);
926 struct cgroup *cgrp = dentry->d_parent->d_fsdata;
927 struct cftype *cft = cfe->type;
928
929 WARN_ONCE(!list_empty(&cfe->node) &&
930 cgrp != &cgrp->root->top_cgroup,
931 "cfe still linked for %s\n", cfe->type->name);
932 kfree(cfe);
933 simple_xattrs_free(&cft->xattrs);
934 }
935 iput(inode);
936 }
937
938 static int cgroup_delete(const struct dentry *d)
939 {
940 return 1;
941 }
942
943 static void remove_dir(struct dentry *d)
944 {
945 struct dentry *parent = dget(d->d_parent);
946
947 d_delete(d);
948 simple_rmdir(parent->d_inode, d);
949 dput(parent);
950 }
951
952 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
953 {
954 struct cfent *cfe;
955
956 lockdep_assert_held(&cgrp->dentry->d_inode->i_mutex);
957 lockdep_assert_held(&cgroup_mutex);
958
959 /*
960 * If we're doing cleanup due to failure of cgroup_create(),
961 * the corresponding @cfe may not exist.
962 */
963 list_for_each_entry(cfe, &cgrp->files, node) {
964 struct dentry *d = cfe->dentry;
965
966 if (cft && cfe->type != cft)
967 continue;
968
969 dget(d);
970 d_delete(d);
971 simple_unlink(cgrp->dentry->d_inode, d);
972 list_del_init(&cfe->node);
973 dput(d);
974
975 break;
976 }
977 }
978
979 /**
980 * cgroup_clear_directory - selective removal of base and subsystem files
981 * @dir: directory containing the files
982 * @base_files: true if the base files should be removed
983 * @subsys_mask: mask of the subsystem ids whose files should be removed
984 */
985 static void cgroup_clear_directory(struct dentry *dir, bool base_files,
986 unsigned long subsys_mask)
987 {
988 struct cgroup *cgrp = __d_cgrp(dir);
989 struct cgroup_subsys *ss;
990
991 for_each_subsys(cgrp->root, ss) {
992 struct cftype_set *set;
993 if (!test_bit(ss->subsys_id, &subsys_mask))
994 continue;
995 list_for_each_entry(set, &ss->cftsets, node)
996 cgroup_addrm_files(cgrp, NULL, set->cfts, false);
997 }
998 if (base_files) {
999 while (!list_empty(&cgrp->files))
1000 cgroup_rm_file(cgrp, NULL);
1001 }
1002 }
1003
1004 /*
1005 * NOTE : the dentry must have been dget()'ed
1006 */
1007 static void cgroup_d_remove_dir(struct dentry *dentry)
1008 {
1009 struct dentry *parent;
1010 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
1011
1012 cgroup_clear_directory(dentry, true, root->subsys_mask);
1013
1014 parent = dentry->d_parent;
1015 spin_lock(&parent->d_lock);
1016 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1017 list_del_init(&dentry->d_u.d_child);
1018 spin_unlock(&dentry->d_lock);
1019 spin_unlock(&parent->d_lock);
1020 remove_dir(dentry);
1021 }
1022
1023 /*
1024 * Call with cgroup_mutex held. Drops reference counts on modules, including
1025 * any duplicate ones that parse_cgroupfs_options took. If this function
1026 * returns an error, no reference counts are touched.
1027 */
1028 static int rebind_subsystems(struct cgroupfs_root *root,
1029 unsigned long final_subsys_mask)
1030 {
1031 unsigned long added_mask, removed_mask;
1032 struct cgroup *cgrp = &root->top_cgroup;
1033 int i;
1034
1035 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1036 BUG_ON(!mutex_is_locked(&cgroup_root_mutex));
1037
1038 removed_mask = root->actual_subsys_mask & ~final_subsys_mask;
1039 added_mask = final_subsys_mask & ~root->actual_subsys_mask;
1040 /* Check that any added subsystems are currently free */
1041 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1042 unsigned long bit = 1UL << i;
1043 struct cgroup_subsys *ss = subsys[i];
1044 if (!(bit & added_mask))
1045 continue;
1046 /*
1047 * Nobody should tell us to do a subsys that doesn't exist:
1048 * parse_cgroupfs_options should catch that case and refcounts
1049 * ensure that subsystems won't disappear once selected.
1050 */
1051 BUG_ON(ss == NULL);
1052 if (ss->root != &rootnode) {
1053 /* Subsystem isn't free */
1054 return -EBUSY;
1055 }
1056 }
1057
1058 /* Currently we don't handle adding/removing subsystems when
1059 * any child cgroups exist. This is theoretically supportable
1060 * but involves complex error handling, so it's being left until
1061 * later */
1062 if (root->number_of_cgroups > 1)
1063 return -EBUSY;
1064
1065 /* Process each subsystem */
1066 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1067 struct cgroup_subsys *ss = subsys[i];
1068 unsigned long bit = 1UL << i;
1069 if (bit & added_mask) {
1070 /* We're binding this subsystem to this hierarchy */
1071 BUG_ON(ss == NULL);
1072 BUG_ON(cgrp->subsys[i]);
1073 BUG_ON(!dummytop->subsys[i]);
1074 BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
1075 cgrp->subsys[i] = dummytop->subsys[i];
1076 cgrp->subsys[i]->cgroup = cgrp;
1077 list_move(&ss->sibling, &root->subsys_list);
1078 ss->root = root;
1079 if (ss->bind)
1080 ss->bind(cgrp);
1081 /* refcount was already taken, and we're keeping it */
1082 } else if (bit & removed_mask) {
1083 /* We're removing this subsystem */
1084 BUG_ON(ss == NULL);
1085 BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
1086 BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
1087 if (ss->bind)
1088 ss->bind(dummytop);
1089 dummytop->subsys[i]->cgroup = dummytop;
1090 cgrp->subsys[i] = NULL;
1091 subsys[i]->root = &rootnode;
1092 list_move(&ss->sibling, &rootnode.subsys_list);
1093 /* subsystem is now free - drop reference on module */
1094 module_put(ss->module);
1095 } else if (bit & final_subsys_mask) {
1096 /* Subsystem state should already exist */
1097 BUG_ON(ss == NULL);
1098 BUG_ON(!cgrp->subsys[i]);
1099 /*
1100 * a refcount was taken, but we already had one, so
1101 * drop the extra reference.
1102 */
1103 module_put(ss->module);
1104 #ifdef CONFIG_MODULE_UNLOAD
1105 BUG_ON(ss->module && !module_refcount(ss->module));
1106 #endif
1107 } else {
1108 /* Subsystem state shouldn't exist */
1109 BUG_ON(cgrp->subsys[i]);
1110 }
1111 }
1112 root->subsys_mask = root->actual_subsys_mask = final_subsys_mask;
1113
1114 return 0;
1115 }
1116
1117 static int cgroup_show_options(struct seq_file *seq, struct dentry *dentry)
1118 {
1119 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
1120 struct cgroup_subsys *ss;
1121
1122 mutex_lock(&cgroup_root_mutex);
1123 for_each_subsys(root, ss)
1124 seq_printf(seq, ",%s", ss->name);
1125 if (test_bit(ROOT_NOPREFIX, &root->flags))
1126 seq_puts(seq, ",noprefix");
1127 if (test_bit(ROOT_XATTR, &root->flags))
1128 seq_puts(seq, ",xattr");
1129 if (strlen(root->release_agent_path))
1130 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
1131 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags))
1132 seq_puts(seq, ",clone_children");
1133 if (strlen(root->name))
1134 seq_printf(seq, ",name=%s", root->name);
1135 mutex_unlock(&cgroup_root_mutex);
1136 return 0;
1137 }
1138
1139 struct cgroup_sb_opts {
1140 unsigned long subsys_mask;
1141 unsigned long flags;
1142 char *release_agent;
1143 bool cpuset_clone_children;
1144 char *name;
1145 /* User explicitly requested empty subsystem */
1146 bool none;
1147
1148 struct cgroupfs_root *new_root;
1149
1150 };
1151
1152 /*
1153 * Convert a hierarchy specifier into a bitmask of subsystems and flags. Call
1154 * with cgroup_mutex held to protect the subsys[] array. This function takes
1155 * refcounts on subsystems to be used, unless it returns error, in which case
1156 * no refcounts are taken.
1157 */
1158 static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
1159 {
1160 char *token, *o = data;
1161 bool all_ss = false, one_ss = false;
1162 unsigned long mask = (unsigned long)-1;
1163 int i;
1164 bool module_pin_failed = false;
1165
1166 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1167
1168 #ifdef CONFIG_CPUSETS
1169 mask = ~(1UL << cpuset_subsys_id);
1170 #endif
1171
1172 memset(opts, 0, sizeof(*opts));
1173
1174 while ((token = strsep(&o, ",")) != NULL) {
1175 if (!*token)
1176 return -EINVAL;
1177 if (!strcmp(token, "none")) {
1178 /* Explicitly have no subsystems */
1179 opts->none = true;
1180 continue;
1181 }
1182 if (!strcmp(token, "all")) {
1183 /* Mutually exclusive option 'all' + subsystem name */
1184 if (one_ss)
1185 return -EINVAL;
1186 all_ss = true;
1187 continue;
1188 }
1189 if (!strcmp(token, "noprefix")) {
1190 set_bit(ROOT_NOPREFIX, &opts->flags);
1191 continue;
1192 }
1193 if (!strcmp(token, "clone_children")) {
1194 opts->cpuset_clone_children = true;
1195 continue;
1196 }
1197 if (!strcmp(token, "xattr")) {
1198 set_bit(ROOT_XATTR, &opts->flags);
1199 continue;
1200 }
1201 if (!strncmp(token, "release_agent=", 14)) {
1202 /* Specifying two release agents is forbidden */
1203 if (opts->release_agent)
1204 return -EINVAL;
1205 opts->release_agent =
1206 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
1207 if (!opts->release_agent)
1208 return -ENOMEM;
1209 continue;
1210 }
1211 if (!strncmp(token, "name=", 5)) {
1212 const char *name = token + 5;
1213 /* Can't specify an empty name */
1214 if (!strlen(name))
1215 return -EINVAL;
1216 /* Must match [\w.-]+ */
1217 for (i = 0; i < strlen(name); i++) {
1218 char c = name[i];
1219 if (isalnum(c))
1220 continue;
1221 if ((c == '.') || (c == '-') || (c == '_'))
1222 continue;
1223 return -EINVAL;
1224 }
1225 /* Specifying two names is forbidden */
1226 if (opts->name)
1227 return -EINVAL;
1228 opts->name = kstrndup(name,
1229 MAX_CGROUP_ROOT_NAMELEN - 1,
1230 GFP_KERNEL);
1231 if (!opts->name)
1232 return -ENOMEM;
1233
1234 continue;
1235 }
1236
1237 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1238 struct cgroup_subsys *ss = subsys[i];
1239 if (ss == NULL)
1240 continue;
1241 if (strcmp(token, ss->name))
1242 continue;
1243 if (ss->disabled)
1244 continue;
1245
1246 /* Mutually exclusive option 'all' + subsystem name */
1247 if (all_ss)
1248 return -EINVAL;
1249 set_bit(i, &opts->subsys_mask);
1250 one_ss = true;
1251
1252 break;
1253 }
1254 if (i == CGROUP_SUBSYS_COUNT)
1255 return -ENOENT;
1256 }
1257
1258 /*
1259 * If the 'all' option was specified select all the subsystems,
1260 * otherwise if 'none', 'name=' and a subsystem name options
1261 * were not specified, let's default to 'all'
1262 */
1263 if (all_ss || (!one_ss && !opts->none && !opts->name)) {
1264 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1265 struct cgroup_subsys *ss = subsys[i];
1266 if (ss == NULL)
1267 continue;
1268 if (ss->disabled)
1269 continue;
1270 set_bit(i, &opts->subsys_mask);
1271 }
1272 }
1273
1274 /* Consistency checks */
1275
1276 /*
1277 * Option noprefix was introduced just for backward compatibility
1278 * with the old cpuset, so we allow noprefix only if mounting just
1279 * the cpuset subsystem.
1280 */
1281 if (test_bit(ROOT_NOPREFIX, &opts->flags) &&
1282 (opts->subsys_mask & mask))
1283 return -EINVAL;
1284
1285
1286 /* Can't specify "none" and some subsystems */
1287 if (opts->subsys_mask && opts->none)
1288 return -EINVAL;
1289
1290 /*
1291 * We either have to specify by name or by subsystems. (So all
1292 * empty hierarchies must have a name).
1293 */
1294 if (!opts->subsys_mask && !opts->name)
1295 return -EINVAL;
1296
1297 /*
1298 * Grab references on all the modules we'll need, so the subsystems
1299 * don't dance around before rebind_subsystems attaches them. This may
1300 * take duplicate reference counts on a subsystem that's already used,
1301 * but rebind_subsystems handles this case.
1302 */
1303 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1304 unsigned long bit = 1UL << i;
1305
1306 if (!(bit & opts->subsys_mask))
1307 continue;
1308 if (!try_module_get(subsys[i]->module)) {
1309 module_pin_failed = true;
1310 break;
1311 }
1312 }
1313 if (module_pin_failed) {
1314 /*
1315 * oops, one of the modules was going away. this means that we
1316 * raced with a module_delete call, and to the user this is
1317 * essentially a "subsystem doesn't exist" case.
1318 */
1319 for (i--; i >= 0; i--) {
1320 /* drop refcounts only on the ones we took */
1321 unsigned long bit = 1UL << i;
1322
1323 if (!(bit & opts->subsys_mask))
1324 continue;
1325 module_put(subsys[i]->module);
1326 }
1327 return -ENOENT;
1328 }
1329
1330 return 0;
1331 }
1332
1333 static void drop_parsed_module_refcounts(unsigned long subsys_mask)
1334 {
1335 int i;
1336 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1337 unsigned long bit = 1UL << i;
1338
1339 if (!(bit & subsys_mask))
1340 continue;
1341 module_put(subsys[i]->module);
1342 }
1343 }
1344
1345 static int cgroup_remount(struct super_block *sb, int *flags, char *data)
1346 {
1347 int ret = 0;
1348 struct cgroupfs_root *root = sb->s_fs_info;
1349 struct cgroup *cgrp = &root->top_cgroup;
1350 struct cgroup_sb_opts opts;
1351 unsigned long added_mask, removed_mask;
1352
1353 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
1354 mutex_lock(&cgroup_mutex);
1355 mutex_lock(&cgroup_root_mutex);
1356
1357 /* See what subsystems are wanted */
1358 ret = parse_cgroupfs_options(data, &opts);
1359 if (ret)
1360 goto out_unlock;
1361
1362 if (opts.subsys_mask != root->actual_subsys_mask || opts.release_agent)
1363 pr_warning("cgroup: option changes via remount are deprecated (pid=%d comm=%s)\n",
1364 task_tgid_nr(current), current->comm);
1365
1366 added_mask = opts.subsys_mask & ~root->subsys_mask;
1367 removed_mask = root->subsys_mask & ~opts.subsys_mask;
1368
1369 /* Don't allow flags or name to change at remount */
1370 if (opts.flags != root->flags ||
1371 (opts.name && strcmp(opts.name, root->name))) {
1372 ret = -EINVAL;
1373 drop_parsed_module_refcounts(opts.subsys_mask);
1374 goto out_unlock;
1375 }
1376
1377 /*
1378 * Clear out the files of subsystems that should be removed, do
1379 * this before rebind_subsystems, since rebind_subsystems may
1380 * change this hierarchy's subsys_list.
1381 */
1382 cgroup_clear_directory(cgrp->dentry, false, removed_mask);
1383
1384 ret = rebind_subsystems(root, opts.subsys_mask);
1385 if (ret) {
1386 /* rebind_subsystems failed, re-populate the removed files */
1387 cgroup_populate_dir(cgrp, false, removed_mask);
1388 drop_parsed_module_refcounts(opts.subsys_mask);
1389 goto out_unlock;
1390 }
1391
1392 /* re-populate subsystem files */
1393 cgroup_populate_dir(cgrp, false, added_mask);
1394
1395 if (opts.release_agent)
1396 strcpy(root->release_agent_path, opts.release_agent);
1397 out_unlock:
1398 kfree(opts.release_agent);
1399 kfree(opts.name);
1400 mutex_unlock(&cgroup_root_mutex);
1401 mutex_unlock(&cgroup_mutex);
1402 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
1403 return ret;
1404 }
1405
1406 static const struct super_operations cgroup_ops = {
1407 .statfs = simple_statfs,
1408 .drop_inode = generic_delete_inode,
1409 .show_options = cgroup_show_options,
1410 .remount_fs = cgroup_remount,
1411 };
1412
1413 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1414 {
1415 INIT_LIST_HEAD(&cgrp->sibling);
1416 INIT_LIST_HEAD(&cgrp->children);
1417 INIT_LIST_HEAD(&cgrp->files);
1418 INIT_LIST_HEAD(&cgrp->css_sets);
1419 INIT_LIST_HEAD(&cgrp->allcg_node);
1420 INIT_LIST_HEAD(&cgrp->release_list);
1421 INIT_LIST_HEAD(&cgrp->pidlists);
1422 INIT_WORK(&cgrp->free_work, cgroup_free_fn);
1423 mutex_init(&cgrp->pidlist_mutex);
1424 INIT_LIST_HEAD(&cgrp->event_list);
1425 spin_lock_init(&cgrp->event_list_lock);
1426 simple_xattrs_init(&cgrp->xattrs);
1427 }
1428
1429 static void init_cgroup_root(struct cgroupfs_root *root)
1430 {
1431 struct cgroup *cgrp = &root->top_cgroup;
1432
1433 INIT_LIST_HEAD(&root->subsys_list);
1434 INIT_LIST_HEAD(&root->root_list);
1435 INIT_LIST_HEAD(&root->allcg_list);
1436 root->number_of_cgroups = 1;
1437 cgrp->root = root;
1438 cgrp->name = &root_cgroup_name;
1439 cgrp->top_cgroup = cgrp;
1440 init_cgroup_housekeeping(cgrp);
1441 list_add_tail(&cgrp->allcg_node, &root->allcg_list);
1442 }
1443
1444 static bool init_root_id(struct cgroupfs_root *root)
1445 {
1446 int ret = 0;
1447
1448 do {
1449 if (!ida_pre_get(&hierarchy_ida, GFP_KERNEL))
1450 return false;
1451 spin_lock(&hierarchy_id_lock);
1452 /* Try to allocate the next unused ID */
1453 ret = ida_get_new_above(&hierarchy_ida, next_hierarchy_id,
1454 &root->hierarchy_id);
1455 if (ret == -ENOSPC)
1456 /* Try again starting from 0 */
1457 ret = ida_get_new(&hierarchy_ida, &root->hierarchy_id);
1458 if (!ret) {
1459 next_hierarchy_id = root->hierarchy_id + 1;
1460 } else if (ret != -EAGAIN) {
1461 /* Can only get here if the 31-bit IDR is full ... */
1462 BUG_ON(ret);
1463 }
1464 spin_unlock(&hierarchy_id_lock);
1465 } while (ret);
1466 return true;
1467 }
1468
1469 static int cgroup_test_super(struct super_block *sb, void *data)
1470 {
1471 struct cgroup_sb_opts *opts = data;
1472 struct cgroupfs_root *root = sb->s_fs_info;
1473
1474 /* If we asked for a name then it must match */
1475 if (opts->name && strcmp(opts->name, root->name))
1476 return 0;
1477
1478 /*
1479 * If we asked for subsystems (or explicitly for no
1480 * subsystems) then they must match
1481 */
1482 if ((opts->subsys_mask || opts->none)
1483 && (opts->subsys_mask != root->subsys_mask))
1484 return 0;
1485
1486 return 1;
1487 }
1488
1489 static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
1490 {
1491 struct cgroupfs_root *root;
1492
1493 if (!opts->subsys_mask && !opts->none)
1494 return NULL;
1495
1496 root = kzalloc(sizeof(*root), GFP_KERNEL);
1497 if (!root)
1498 return ERR_PTR(-ENOMEM);
1499
1500 if (!init_root_id(root)) {
1501 kfree(root);
1502 return ERR_PTR(-ENOMEM);
1503 }
1504 init_cgroup_root(root);
1505
1506 root->subsys_mask = opts->subsys_mask;
1507 root->flags = opts->flags;
1508 ida_init(&root->cgroup_ida);
1509 if (opts->release_agent)
1510 strcpy(root->release_agent_path, opts->release_agent);
1511 if (opts->name)
1512 strcpy(root->name, opts->name);
1513 if (opts->cpuset_clone_children)
1514 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags);
1515 return root;
1516 }
1517
1518 static void cgroup_drop_root(struct cgroupfs_root *root)
1519 {
1520 if (!root)
1521 return;
1522
1523 BUG_ON(!root->hierarchy_id);
1524 spin_lock(&hierarchy_id_lock);
1525 ida_remove(&hierarchy_ida, root->hierarchy_id);
1526 spin_unlock(&hierarchy_id_lock);
1527 ida_destroy(&root->cgroup_ida);
1528 kfree(root);
1529 }
1530
1531 static int cgroup_set_super(struct super_block *sb, void *data)
1532 {
1533 int ret;
1534 struct cgroup_sb_opts *opts = data;
1535
1536 /* If we don't have a new root, we can't set up a new sb */
1537 if (!opts->new_root)
1538 return -EINVAL;
1539
1540 BUG_ON(!opts->subsys_mask && !opts->none);
1541
1542 ret = set_anon_super(sb, NULL);
1543 if (ret)
1544 return ret;
1545
1546 sb->s_fs_info = opts->new_root;
1547 opts->new_root->sb = sb;
1548
1549 sb->s_blocksize = PAGE_CACHE_SIZE;
1550 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
1551 sb->s_magic = CGROUP_SUPER_MAGIC;
1552 sb->s_op = &cgroup_ops;
1553
1554 return 0;
1555 }
1556
1557 static int cgroup_get_rootdir(struct super_block *sb)
1558 {
1559 static const struct dentry_operations cgroup_dops = {
1560 .d_iput = cgroup_diput,
1561 .d_delete = cgroup_delete,
1562 };
1563
1564 struct inode *inode =
1565 cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
1566
1567 if (!inode)
1568 return -ENOMEM;
1569
1570 inode->i_fop = &simple_dir_operations;
1571 inode->i_op = &cgroup_dir_inode_operations;
1572 /* directories start off with i_nlink == 2 (for "." entry) */
1573 inc_nlink(inode);
1574 sb->s_root = d_make_root(inode);
1575 if (!sb->s_root)
1576 return -ENOMEM;
1577 /* for everything else we want ->d_op set */
1578 sb->s_d_op = &cgroup_dops;
1579 return 0;
1580 }
1581
1582 static struct dentry *cgroup_mount(struct file_system_type *fs_type,
1583 int flags, const char *unused_dev_name,
1584 void *data)
1585 {
1586 struct cgroup_sb_opts opts;
1587 struct cgroupfs_root *root;
1588 int ret = 0;
1589 struct super_block *sb;
1590 struct cgroupfs_root *new_root;
1591 struct inode *inode;
1592
1593 /* First find the desired set of subsystems */
1594 mutex_lock(&cgroup_mutex);
1595 ret = parse_cgroupfs_options(data, &opts);
1596 mutex_unlock(&cgroup_mutex);
1597 if (ret)
1598 goto out_err;
1599
1600 /*
1601 * Allocate a new cgroup root. We may not need it if we're
1602 * reusing an existing hierarchy.
1603 */
1604 new_root = cgroup_root_from_opts(&opts);
1605 if (IS_ERR(new_root)) {
1606 ret = PTR_ERR(new_root);
1607 goto drop_modules;
1608 }
1609 opts.new_root = new_root;
1610
1611 /* Locate an existing or new sb for this hierarchy */
1612 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, 0, &opts);
1613 if (IS_ERR(sb)) {
1614 ret = PTR_ERR(sb);
1615 cgroup_drop_root(opts.new_root);
1616 goto drop_modules;
1617 }
1618
1619 root = sb->s_fs_info;
1620 BUG_ON(!root);
1621 if (root == opts.new_root) {
1622 /* We used the new root structure, so this is a new hierarchy */
1623 struct list_head tmp_cg_links;
1624 struct cgroup *root_cgrp = &root->top_cgroup;
1625 struct cgroupfs_root *existing_root;
1626 const struct cred *cred;
1627 int i;
1628 struct css_set *cg;
1629
1630 BUG_ON(sb->s_root != NULL);
1631
1632 ret = cgroup_get_rootdir(sb);
1633 if (ret)
1634 goto drop_new_super;
1635 inode = sb->s_root->d_inode;
1636
1637 mutex_lock(&inode->i_mutex);
1638 mutex_lock(&cgroup_mutex);
1639 mutex_lock(&cgroup_root_mutex);
1640
1641 /* Check for name clashes with existing mounts */
1642 ret = -EBUSY;
1643 if (strlen(root->name))
1644 for_each_active_root(existing_root)
1645 if (!strcmp(existing_root->name, root->name))
1646 goto unlock_drop;
1647
1648 /*
1649 * We're accessing css_set_count without locking
1650 * css_set_lock here, but that's OK - it can only be
1651 * increased by someone holding cgroup_lock, and
1652 * that's us. The worst that can happen is that we
1653 * have some link structures left over
1654 */
1655 ret = allocate_cg_links(css_set_count, &tmp_cg_links);
1656 if (ret)
1657 goto unlock_drop;
1658
1659 ret = rebind_subsystems(root, root->subsys_mask);
1660 if (ret == -EBUSY) {
1661 free_cg_links(&tmp_cg_links);
1662 goto unlock_drop;
1663 }
1664 /*
1665 * There must be no failure case after here, since rebinding
1666 * takes care of subsystems' refcounts, which are explicitly
1667 * dropped in the failure exit path.
1668 */
1669
1670 /* EBUSY should be the only error here */
1671 BUG_ON(ret);
1672
1673 list_add(&root->root_list, &roots);
1674 root_count++;
1675
1676 sb->s_root->d_fsdata = root_cgrp;
1677 root->top_cgroup.dentry = sb->s_root;
1678
1679 /* Link the top cgroup in this hierarchy into all
1680 * the css_set objects */
1681 write_lock(&css_set_lock);
1682 hash_for_each(css_set_table, i, cg, hlist)
1683 link_css_set(&tmp_cg_links, cg, root_cgrp);
1684 write_unlock(&css_set_lock);
1685
1686 free_cg_links(&tmp_cg_links);
1687
1688 BUG_ON(!list_empty(&root_cgrp->children));
1689 BUG_ON(root->number_of_cgroups != 1);
1690
1691 cred = override_creds(&init_cred);
1692 cgroup_populate_dir(root_cgrp, true, root->subsys_mask);
1693 revert_creds(cred);
1694 mutex_unlock(&cgroup_root_mutex);
1695 mutex_unlock(&cgroup_mutex);
1696 mutex_unlock(&inode->i_mutex);
1697 } else {
1698 /*
1699 * We re-used an existing hierarchy - the new root (if
1700 * any) is not needed
1701 */
1702 cgroup_drop_root(opts.new_root);
1703 /* no subsys rebinding, so refcounts don't change */
1704 drop_parsed_module_refcounts(opts.subsys_mask);
1705 }
1706
1707 kfree(opts.release_agent);
1708 kfree(opts.name);
1709 return dget(sb->s_root);
1710
1711 unlock_drop:
1712 mutex_unlock(&cgroup_root_mutex);
1713 mutex_unlock(&cgroup_mutex);
1714 mutex_unlock(&inode->i_mutex);
1715 drop_new_super:
1716 deactivate_locked_super(sb);
1717 drop_modules:
1718 drop_parsed_module_refcounts(opts.subsys_mask);
1719 out_err:
1720 kfree(opts.release_agent);
1721 kfree(opts.name);
1722 return ERR_PTR(ret);
1723 }
1724
1725 static void cgroup_kill_sb(struct super_block *sb) {
1726 struct cgroupfs_root *root = sb->s_fs_info;
1727 struct cgroup *cgrp = &root->top_cgroup;
1728 int ret;
1729 struct cg_cgroup_link *link;
1730 struct cg_cgroup_link *saved_link;
1731
1732 BUG_ON(!root);
1733
1734 BUG_ON(root->number_of_cgroups != 1);
1735 BUG_ON(!list_empty(&cgrp->children));
1736
1737 mutex_lock(&cgroup_mutex);
1738 mutex_lock(&cgroup_root_mutex);
1739
1740 /* Rebind all subsystems back to the default hierarchy */
1741 ret = rebind_subsystems(root, 0);
1742 /* Shouldn't be able to fail ... */
1743 BUG_ON(ret);
1744
1745 /*
1746 * Release all the links from css_sets to this hierarchy's
1747 * root cgroup
1748 */
1749 write_lock(&css_set_lock);
1750
1751 list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
1752 cgrp_link_list) {
1753 list_del(&link->cg_link_list);
1754 list_del(&link->cgrp_link_list);
1755 kfree(link);
1756 }
1757 write_unlock(&css_set_lock);
1758
1759 if (!list_empty(&root->root_list)) {
1760 list_del(&root->root_list);
1761 root_count--;
1762 }
1763
1764 mutex_unlock(&cgroup_root_mutex);
1765 mutex_unlock(&cgroup_mutex);
1766
1767 simple_xattrs_free(&cgrp->xattrs);
1768
1769 kill_litter_super(sb);
1770 cgroup_drop_root(root);
1771 }
1772
1773 static struct file_system_type cgroup_fs_type = {
1774 .name = "cgroup",
1775 .mount = cgroup_mount,
1776 .kill_sb = cgroup_kill_sb,
1777 };
1778
1779 static struct kobject *cgroup_kobj;
1780
1781 /**
1782 * cgroup_path - generate the path of a cgroup
1783 * @cgrp: the cgroup in question
1784 * @buf: the buffer to write the path into
1785 * @buflen: the length of the buffer
1786 *
1787 * Writes path of cgroup into buf. Returns 0 on success, -errno on error.
1788 *
1789 * We can't generate cgroup path using dentry->d_name, as accessing
1790 * dentry->name must be protected by irq-unsafe dentry->d_lock or parent
1791 * inode's i_mutex, while on the other hand cgroup_path() can be called
1792 * with some irq-safe spinlocks held.
1793 */
1794 int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1795 {
1796 int ret = -ENAMETOOLONG;
1797 char *start;
1798
1799 start = buf + buflen - 1;
1800 *start = '\0';
1801
1802 rcu_read_lock();
1803 while (cgrp) {
1804 const char *name = cgroup_name(cgrp);
1805 int len;
1806
1807 len = strlen(name);
1808 if ((start -= len) < buf)
1809 goto out;
1810 memcpy(start, name, len);
1811
1812 if (!cgrp->parent)
1813 break;
1814
1815 if (--start < buf)
1816 goto out;
1817 *start = '/';
1818
1819 cgrp = cgrp->parent;
1820 }
1821 ret = 0;
1822 memmove(buf, start, buf + buflen - start);
1823 out:
1824 rcu_read_unlock();
1825 return ret;
1826 }
1827 EXPORT_SYMBOL_GPL(cgroup_path);
1828
1829 /*
1830 * Control Group taskset
1831 */
1832 struct task_and_cgroup {
1833 struct task_struct *task;
1834 struct cgroup *cgrp;
1835 struct css_set *cg;
1836 };
1837
1838 struct cgroup_taskset {
1839 struct task_and_cgroup single;
1840 struct flex_array *tc_array;
1841 int tc_array_len;
1842 int idx;
1843 struct cgroup *cur_cgrp;
1844 };
1845
1846 /**
1847 * cgroup_taskset_first - reset taskset and return the first task
1848 * @tset: taskset of interest
1849 *
1850 * @tset iteration is initialized and the first task is returned.
1851 */
1852 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
1853 {
1854 if (tset->tc_array) {
1855 tset->idx = 0;
1856 return cgroup_taskset_next(tset);
1857 } else {
1858 tset->cur_cgrp = tset->single.cgrp;
1859 return tset->single.task;
1860 }
1861 }
1862 EXPORT_SYMBOL_GPL(cgroup_taskset_first);
1863
1864 /**
1865 * cgroup_taskset_next - iterate to the next task in taskset
1866 * @tset: taskset of interest
1867 *
1868 * Return the next task in @tset. Iteration must have been initialized
1869 * with cgroup_taskset_first().
1870 */
1871 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
1872 {
1873 struct task_and_cgroup *tc;
1874
1875 if (!tset->tc_array || tset->idx >= tset->tc_array_len)
1876 return NULL;
1877
1878 tc = flex_array_get(tset->tc_array, tset->idx++);
1879 tset->cur_cgrp = tc->cgrp;
1880 return tc->task;
1881 }
1882 EXPORT_SYMBOL_GPL(cgroup_taskset_next);
1883
1884 /**
1885 * cgroup_taskset_cur_cgroup - return the matching cgroup for the current task
1886 * @tset: taskset of interest
1887 *
1888 * Return the cgroup for the current (last returned) task of @tset. This
1889 * function must be preceded by either cgroup_taskset_first() or
1890 * cgroup_taskset_next().
1891 */
1892 struct cgroup *cgroup_taskset_cur_cgroup(struct cgroup_taskset *tset)
1893 {
1894 return tset->cur_cgrp;
1895 }
1896 EXPORT_SYMBOL_GPL(cgroup_taskset_cur_cgroup);
1897
1898 /**
1899 * cgroup_taskset_size - return the number of tasks in taskset
1900 * @tset: taskset of interest
1901 */
1902 int cgroup_taskset_size(struct cgroup_taskset *tset)
1903 {
1904 return tset->tc_array ? tset->tc_array_len : 1;
1905 }
1906 EXPORT_SYMBOL_GPL(cgroup_taskset_size);
1907
1908
1909 /*
1910 * cgroup_task_migrate - move a task from one cgroup to another.
1911 *
1912 * Must be called with cgroup_mutex and threadgroup locked.
1913 */
1914 static void cgroup_task_migrate(struct cgroup *cgrp, struct cgroup *oldcgrp,
1915 struct task_struct *tsk, struct css_set *newcg)
1916 {
1917 struct css_set *oldcg;
1918
1919 /*
1920 * We are synchronized through threadgroup_lock() against PF_EXITING
1921 * setting such that we can't race against cgroup_exit() changing the
1922 * css_set to init_css_set and dropping the old one.
1923 */
1924 WARN_ON_ONCE(tsk->flags & PF_EXITING);
1925 oldcg = tsk->cgroups;
1926
1927 task_lock(tsk);
1928 rcu_assign_pointer(tsk->cgroups, newcg);
1929 task_unlock(tsk);
1930
1931 /* Update the css_set linked lists if we're using them */
1932 write_lock(&css_set_lock);
1933 if (!list_empty(&tsk->cg_list))
1934 list_move(&tsk->cg_list, &newcg->tasks);
1935 write_unlock(&css_set_lock);
1936
1937 /*
1938 * We just gained a reference on oldcg by taking it from the task. As
1939 * trading it for newcg is protected by cgroup_mutex, we're safe to drop
1940 * it here; it will be freed under RCU.
1941 */
1942 set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
1943 put_css_set(oldcg);
1944 }
1945
1946 /**
1947 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
1948 * @cgrp: the cgroup the task is attaching to
1949 * @tsk: the task to be attached
1950 *
1951 * Call with cgroup_mutex and threadgroup locked. May take task_lock of
1952 * @tsk during call.
1953 */
1954 int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
1955 {
1956 int retval = 0;
1957 struct cgroup_subsys *ss, *failed_ss = NULL;
1958 struct cgroup *oldcgrp;
1959 struct cgroupfs_root *root = cgrp->root;
1960 struct cgroup_taskset tset = { };
1961 struct css_set *newcg;
1962
1963 /* @tsk either already exited or can't exit until the end */
1964 if (tsk->flags & PF_EXITING)
1965 return -ESRCH;
1966
1967 /* Nothing to do if the task is already in that cgroup */
1968 oldcgrp = task_cgroup_from_root(tsk, root);
1969 if (cgrp == oldcgrp)
1970 return 0;
1971
1972 tset.single.task = tsk;
1973 tset.single.cgrp = oldcgrp;
1974
1975 for_each_subsys(root, ss) {
1976 if (ss->can_attach) {
1977 retval = ss->can_attach(cgrp, &tset);
1978 if (retval) {
1979 /*
1980 * Remember on which subsystem the can_attach()
1981 * failed, so that we only call cancel_attach()
1982 * against the subsystems whose can_attach()
1983 * succeeded. (See below)
1984 */
1985 failed_ss = ss;
1986 goto out;
1987 }
1988 }
1989 }
1990
1991 newcg = find_css_set(tsk->cgroups, cgrp);
1992 if (!newcg) {
1993 retval = -ENOMEM;
1994 goto out;
1995 }
1996
1997 cgroup_task_migrate(cgrp, oldcgrp, tsk, newcg);
1998
1999 for_each_subsys(root, ss) {
2000 if (ss->attach)
2001 ss->attach(cgrp, &tset);
2002 }
2003
2004 out:
2005 if (retval) {
2006 for_each_subsys(root, ss) {
2007 if (ss == failed_ss)
2008 /*
2009 * This subsystem was the one that failed the
2010 * can_attach() check earlier, so we don't need
2011 * to call cancel_attach() against it or any
2012 * remaining subsystems.
2013 */
2014 break;
2015 if (ss->cancel_attach)
2016 ss->cancel_attach(cgrp, &tset);
2017 }
2018 }
2019 return retval;
2020 }
2021
2022 /**
2023 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2024 * @from: attach to all cgroups of a given task
2025 * @tsk: the task to be attached
2026 */
2027 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2028 {
2029 struct cgroupfs_root *root;
2030 int retval = 0;
2031
2032 cgroup_lock();
2033 for_each_active_root(root) {
2034 struct cgroup *from_cg = task_cgroup_from_root(from, root);
2035
2036 retval = cgroup_attach_task(from_cg, tsk);
2037 if (retval)
2038 break;
2039 }
2040 cgroup_unlock();
2041
2042 return retval;
2043 }
2044 EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2045
2046 /**
2047 * cgroup_attach_proc - attach all threads in a threadgroup to a cgroup
2048 * @cgrp: the cgroup to attach to
2049 * @leader: the threadgroup leader task_struct of the group to be attached
2050 *
2051 * Call holding cgroup_mutex and the group_rwsem of the leader. Will take
2052 * task_lock of each thread in leader's threadgroup individually in turn.
2053 */
2054 static int cgroup_attach_proc(struct cgroup *cgrp, struct task_struct *leader)
2055 {
2056 int retval, i, group_size;
2057 struct cgroup_subsys *ss, *failed_ss = NULL;
2058 /* guaranteed to be initialized later, but the compiler needs this */
2059 struct cgroupfs_root *root = cgrp->root;
2060 /* threadgroup list cursor and array */
2061 struct task_struct *tsk;
2062 struct task_and_cgroup *tc;
2063 struct flex_array *group;
2064 struct cgroup_taskset tset = { };
2065
2066 /*
2067 * step 0: in order to do expensive, possibly blocking operations for
2068 * every thread, we cannot iterate the thread group list, since it needs
2069 * rcu or tasklist locked. instead, build an array of all threads in the
2070 * group - group_rwsem prevents new threads from appearing, and if
2071 * threads exit, this will just be an over-estimate.
2072 */
2073 group_size = get_nr_threads(leader);
2074 /* flex_array supports very large thread-groups better than kmalloc. */
2075 group = flex_array_alloc(sizeof(*tc), group_size, GFP_KERNEL);
2076 if (!group)
2077 return -ENOMEM;
2078 /* pre-allocate to guarantee space while iterating in rcu read-side. */
2079 retval = flex_array_prealloc(group, 0, group_size, GFP_KERNEL);
2080 if (retval)
2081 goto out_free_group_list;
2082
2083 tsk = leader;
2084 i = 0;
2085 /*
2086 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2087 * already PF_EXITING could be freed from underneath us unless we
2088 * take an rcu_read_lock.
2089 */
2090 rcu_read_lock();
2091 do {
2092 struct task_and_cgroup ent;
2093
2094 /* @tsk either already exited or can't exit until the end */
2095 if (tsk->flags & PF_EXITING)
2096 continue;
2097
2098 /* as per above, nr_threads may decrease, but not increase. */
2099 BUG_ON(i >= group_size);
2100 ent.task = tsk;
2101 ent.cgrp = task_cgroup_from_root(tsk, root);
2102 /* nothing to do if this task is already in the cgroup */
2103 if (ent.cgrp == cgrp)
2104 continue;
2105 /*
2106 * saying GFP_ATOMIC has no effect here because we did prealloc
2107 * earlier, but it's good form to communicate our expectations.
2108 */
2109 retval = flex_array_put(group, i, &ent, GFP_ATOMIC);
2110 BUG_ON(retval != 0);
2111 i++;
2112 } while_each_thread(leader, tsk);
2113 rcu_read_unlock();
2114 /* remember the number of threads in the array for later. */
2115 group_size = i;
2116 tset.tc_array = group;
2117 tset.tc_array_len = group_size;
2118
2119 /* methods shouldn't be called if no task is actually migrating */
2120 retval = 0;
2121 if (!group_size)
2122 goto out_free_group_list;
2123
2124 /*
2125 * step 1: check that we can legitimately attach to the cgroup.
2126 */
2127 for_each_subsys(root, ss) {
2128 if (ss->can_attach) {
2129 retval = ss->can_attach(cgrp, &tset);
2130 if (retval) {
2131 failed_ss = ss;
2132 goto out_cancel_attach;
2133 }
2134 }
2135 }
2136
2137 /*
2138 * step 2: make sure css_sets exist for all threads to be migrated.
2139 * we use find_css_set, which allocates a new one if necessary.
2140 */
2141 for (i = 0; i < group_size; i++) {
2142 tc = flex_array_get(group, i);
2143 tc->cg = find_css_set(tc->task->cgroups, cgrp);
2144 if (!tc->cg) {
2145 retval = -ENOMEM;
2146 goto out_put_css_set_refs;
2147 }
2148 }
2149
2150 /*
2151 * step 3: now that we're guaranteed success wrt the css_sets,
2152 * proceed to move all tasks to the new cgroup. There are no
2153 * failure cases after here, so this is the commit point.
2154 */
2155 for (i = 0; i < group_size; i++) {
2156 tc = flex_array_get(group, i);
2157 cgroup_task_migrate(cgrp, tc->cgrp, tc->task, tc->cg);
2158 }
2159 /* nothing is sensitive to fork() after this point. */
2160
2161 /*
2162 * step 4: do subsystem attach callbacks.
2163 */
2164 for_each_subsys(root, ss) {
2165 if (ss->attach)
2166 ss->attach(cgrp, &tset);
2167 }
2168
2169 /*
2170 * step 5: success! and cleanup
2171 */
2172 retval = 0;
2173 out_put_css_set_refs:
2174 if (retval) {
2175 for (i = 0; i < group_size; i++) {
2176 tc = flex_array_get(group, i);
2177 if (!tc->cg)
2178 break;
2179 put_css_set(tc->cg);
2180 }
2181 }
2182 out_cancel_attach:
2183 if (retval) {
2184 for_each_subsys(root, ss) {
2185 if (ss == failed_ss)
2186 break;
2187 if (ss->cancel_attach)
2188 ss->cancel_attach(cgrp, &tset);
2189 }
2190 }
2191 out_free_group_list:
2192 flex_array_free(group);
2193 return retval;
2194 }
2195
2196 /*
2197 * Find the task_struct of the task to attach by vpid and pass it along to the
2198 * function to attach either it or all tasks in its threadgroup. Will lock
2199 * cgroup_mutex and threadgroup; may take task_lock of task.
2200 */
2201 static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
2202 {
2203 struct task_struct *tsk;
2204 const struct cred *cred = current_cred(), *tcred;
2205 int ret;
2206
2207 if (!cgroup_lock_live_group(cgrp))
2208 return -ENODEV;
2209
2210 retry_find_task:
2211 rcu_read_lock();
2212 if (pid) {
2213 tsk = find_task_by_vpid(pid);
2214 if (!tsk) {
2215 rcu_read_unlock();
2216 ret= -ESRCH;
2217 goto out_unlock_cgroup;
2218 }
2219 /*
2220 * even if we're attaching all tasks in the thread group, we
2221 * only need to check permissions on one of them.
2222 */
2223 tcred = __task_cred(tsk);
2224 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2225 !uid_eq(cred->euid, tcred->uid) &&
2226 !uid_eq(cred->euid, tcred->suid)) {
2227 rcu_read_unlock();
2228 ret = -EACCES;
2229 goto out_unlock_cgroup;
2230 }
2231 } else
2232 tsk = current;
2233
2234 if (threadgroup)
2235 tsk = tsk->group_leader;
2236
2237 /*
2238 * Workqueue threads may acquire PF_THREAD_BOUND and become
2239 * trapped in a cpuset, or RT worker may be born in a cgroup
2240 * with no rt_runtime allocated. Just say no.
2241 */
2242 if (tsk == kthreadd_task || (tsk->flags & PF_THREAD_BOUND)) {
2243 ret = -EINVAL;
2244 rcu_read_unlock();
2245 goto out_unlock_cgroup;
2246 }
2247
2248 get_task_struct(tsk);
2249 rcu_read_unlock();
2250
2251 threadgroup_lock(tsk);
2252 if (threadgroup) {
2253 if (!thread_group_leader(tsk)) {
2254 /*
2255 * a race with de_thread from another thread's exec()
2256 * may strip us of our leadership, if this happens,
2257 * there is no choice but to throw this task away and
2258 * try again; this is
2259 * "double-double-toil-and-trouble-check locking".
2260 */
2261 threadgroup_unlock(tsk);
2262 put_task_struct(tsk);
2263 goto retry_find_task;
2264 }
2265 ret = cgroup_attach_proc(cgrp, tsk);
2266 } else
2267 ret = cgroup_attach_task(cgrp, tsk);
2268 threadgroup_unlock(tsk);
2269
2270 put_task_struct(tsk);
2271 out_unlock_cgroup:
2272 cgroup_unlock();
2273 return ret;
2274 }
2275
2276 static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
2277 {
2278 return attach_task_by_pid(cgrp, pid, false);
2279 }
2280
2281 static int cgroup_procs_write(struct cgroup *cgrp, struct cftype *cft, u64 tgid)
2282 {
2283 return attach_task_by_pid(cgrp, tgid, true);
2284 }
2285
2286 /**
2287 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
2288 * @cgrp: the cgroup to be checked for liveness
2289 *
2290 * On success, returns true; the lock should be later released with
2291 * cgroup_unlock(). On failure returns false with no lock held.
2292 */
2293 bool cgroup_lock_live_group(struct cgroup *cgrp)
2294 {
2295 mutex_lock(&cgroup_mutex);
2296 if (cgroup_is_removed(cgrp)) {
2297 mutex_unlock(&cgroup_mutex);
2298 return false;
2299 }
2300 return true;
2301 }
2302 EXPORT_SYMBOL_GPL(cgroup_lock_live_group);
2303
2304 static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
2305 const char *buffer)
2306 {
2307 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
2308 if (strlen(buffer) >= PATH_MAX)
2309 return -EINVAL;
2310 if (!cgroup_lock_live_group(cgrp))
2311 return -ENODEV;
2312 mutex_lock(&cgroup_root_mutex);
2313 strcpy(cgrp->root->release_agent_path, buffer);
2314 mutex_unlock(&cgroup_root_mutex);
2315 cgroup_unlock();
2316 return 0;
2317 }
2318
2319 static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
2320 struct seq_file *seq)
2321 {
2322 if (!cgroup_lock_live_group(cgrp))
2323 return -ENODEV;
2324 seq_puts(seq, cgrp->root->release_agent_path);
2325 seq_putc(seq, '\n');
2326 cgroup_unlock();
2327 return 0;
2328 }
2329
2330 /* A buffer size big enough for numbers or short strings */
2331 #define CGROUP_LOCAL_BUFFER_SIZE 64
2332
2333 static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
2334 struct file *file,
2335 const char __user *userbuf,
2336 size_t nbytes, loff_t *unused_ppos)
2337 {
2338 char buffer[CGROUP_LOCAL_BUFFER_SIZE];
2339 int retval = 0;
2340 char *end;
2341
2342 if (!nbytes)
2343 return -EINVAL;
2344 if (nbytes >= sizeof(buffer))
2345 return -E2BIG;
2346 if (copy_from_user(buffer, userbuf, nbytes))
2347 return -EFAULT;
2348
2349 buffer[nbytes] = 0; /* nul-terminate */
2350 if (cft->write_u64) {
2351 u64 val = simple_strtoull(strstrip(buffer), &end, 0);
2352 if (*end)
2353 return -EINVAL;
2354 retval = cft->write_u64(cgrp, cft, val);
2355 } else {
2356 s64 val = simple_strtoll(strstrip(buffer), &end, 0);
2357 if (*end)
2358 return -EINVAL;
2359 retval = cft->write_s64(cgrp, cft, val);
2360 }
2361 if (!retval)
2362 retval = nbytes;
2363 return retval;
2364 }
2365
2366 static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
2367 struct file *file,
2368 const char __user *userbuf,
2369 size_t nbytes, loff_t *unused_ppos)
2370 {
2371 char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
2372 int retval = 0;
2373 size_t max_bytes = cft->max_write_len;
2374 char *buffer = local_buffer;
2375
2376 if (!max_bytes)
2377 max_bytes = sizeof(local_buffer) - 1;
2378 if (nbytes >= max_bytes)
2379 return -E2BIG;
2380 /* Allocate a dynamic buffer if we need one */
2381 if (nbytes >= sizeof(local_buffer)) {
2382 buffer = kmalloc(nbytes + 1, GFP_KERNEL);
2383 if (buffer == NULL)
2384 return -ENOMEM;
2385 }
2386 if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
2387 retval = -EFAULT;
2388 goto out;
2389 }
2390
2391 buffer[nbytes] = 0; /* nul-terminate */
2392 retval = cft->write_string(cgrp, cft, strstrip(buffer));
2393 if (!retval)
2394 retval = nbytes;
2395 out:
2396 if (buffer != local_buffer)
2397 kfree(buffer);
2398 return retval;
2399 }
2400
2401 static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
2402 size_t nbytes, loff_t *ppos)
2403 {
2404 struct cftype *cft = __d_cft(file->f_dentry);
2405 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2406
2407 if (cgroup_is_removed(cgrp))
2408 return -ENODEV;
2409 if (cft->write)
2410 return cft->write(cgrp, cft, file, buf, nbytes, ppos);
2411 if (cft->write_u64 || cft->write_s64)
2412 return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
2413 if (cft->write_string)
2414 return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
2415 if (cft->trigger) {
2416 int ret = cft->trigger(cgrp, (unsigned int)cft->private);
2417 return ret ? ret : nbytes;
2418 }
2419 return -EINVAL;
2420 }
2421
2422 static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
2423 struct file *file,
2424 char __user *buf, size_t nbytes,
2425 loff_t *ppos)
2426 {
2427 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2428 u64 val = cft->read_u64(cgrp, cft);
2429 int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
2430
2431 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2432 }
2433
2434 static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
2435 struct file *file,
2436 char __user *buf, size_t nbytes,
2437 loff_t *ppos)
2438 {
2439 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2440 s64 val = cft->read_s64(cgrp, cft);
2441 int len = sprintf(tmp, "%lld\n", (long long) val);
2442
2443 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2444 }
2445
2446 static ssize_t cgroup_file_read(struct file *file, char __user *buf,
2447 size_t nbytes, loff_t *ppos)
2448 {
2449 struct cftype *cft = __d_cft(file->f_dentry);
2450 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2451
2452 if (cgroup_is_removed(cgrp))
2453 return -ENODEV;
2454
2455 if (cft->read)
2456 return cft->read(cgrp, cft, file, buf, nbytes, ppos);
2457 if (cft->read_u64)
2458 return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
2459 if (cft->read_s64)
2460 return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
2461 return -EINVAL;
2462 }
2463
2464 /*
2465 * seqfile ops/methods for returning structured data. Currently just
2466 * supports string->u64 maps, but can be extended in future.
2467 */
2468
2469 struct cgroup_seqfile_state {
2470 struct cftype *cft;
2471 struct cgroup *cgroup;
2472 };
2473
2474 static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
2475 {
2476 struct seq_file *sf = cb->state;
2477 return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
2478 }
2479
2480 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
2481 {
2482 struct cgroup_seqfile_state *state = m->private;
2483 struct cftype *cft = state->cft;
2484 if (cft->read_map) {
2485 struct cgroup_map_cb cb = {
2486 .fill = cgroup_map_add,
2487 .state = m,
2488 };
2489 return cft->read_map(state->cgroup, cft, &cb);
2490 }
2491 return cft->read_seq_string(state->cgroup, cft, m);
2492 }
2493
2494 static int cgroup_seqfile_release(struct inode *inode, struct file *file)
2495 {
2496 struct seq_file *seq = file->private_data;
2497 kfree(seq->private);
2498 return single_release(inode, file);
2499 }
2500
2501 static const struct file_operations cgroup_seqfile_operations = {
2502 .read = seq_read,
2503 .write = cgroup_file_write,
2504 .llseek = seq_lseek,
2505 .release = cgroup_seqfile_release,
2506 };
2507
2508 static int cgroup_file_open(struct inode *inode, struct file *file)
2509 {
2510 int err;
2511 struct cftype *cft;
2512
2513 err = generic_file_open(inode, file);
2514 if (err)
2515 return err;
2516 cft = __d_cft(file->f_dentry);
2517
2518 if (cft->read_map || cft->read_seq_string) {
2519 struct cgroup_seqfile_state *state =
2520 kzalloc(sizeof(*state), GFP_USER);
2521 if (!state)
2522 return -ENOMEM;
2523 state->cft = cft;
2524 state->cgroup = __d_cgrp(file->f_dentry->d_parent);
2525 file->f_op = &cgroup_seqfile_operations;
2526 err = single_open(file, cgroup_seqfile_show, state);
2527 if (err < 0)
2528 kfree(state);
2529 } else if (cft->open)
2530 err = cft->open(inode, file);
2531 else
2532 err = 0;
2533
2534 return err;
2535 }
2536
2537 static int cgroup_file_release(struct inode *inode, struct file *file)
2538 {
2539 struct cftype *cft = __d_cft(file->f_dentry);
2540 if (cft->release)
2541 return cft->release(inode, file);
2542 return 0;
2543 }
2544
2545 /*
2546 * cgroup_rename - Only allow simple rename of directories in place.
2547 */
2548 static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
2549 struct inode *new_dir, struct dentry *new_dentry)
2550 {
2551 int ret;
2552 struct cgroup_name *name, *old_name;
2553 struct cgroup *cgrp;
2554
2555 /*
2556 * It's convinient to use parent dir's i_mutex to protected
2557 * cgrp->name.
2558 */
2559 lockdep_assert_held(&old_dir->i_mutex);
2560
2561 if (!S_ISDIR(old_dentry->d_inode->i_mode))
2562 return -ENOTDIR;
2563 if (new_dentry->d_inode)
2564 return -EEXIST;
2565 if (old_dir != new_dir)
2566 return -EIO;
2567
2568 cgrp = __d_cgrp(old_dentry);
2569
2570 name = cgroup_alloc_name(new_dentry);
2571 if (!name)
2572 return -ENOMEM;
2573
2574 ret = simple_rename(old_dir, old_dentry, new_dir, new_dentry);
2575 if (ret) {
2576 kfree(name);
2577 return ret;
2578 }
2579
2580 old_name = cgrp->name;
2581 rcu_assign_pointer(cgrp->name, name);
2582
2583 kfree_rcu(old_name, rcu_head);
2584 return 0;
2585 }
2586
2587 static struct simple_xattrs *__d_xattrs(struct dentry *dentry)
2588 {
2589 if (S_ISDIR(dentry->d_inode->i_mode))
2590 return &__d_cgrp(dentry)->xattrs;
2591 else
2592 return &__d_cft(dentry)->xattrs;
2593 }
2594
2595 static inline int xattr_enabled(struct dentry *dentry)
2596 {
2597 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
2598 return test_bit(ROOT_XATTR, &root->flags);
2599 }
2600
2601 static bool is_valid_xattr(const char *name)
2602 {
2603 if (!strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN) ||
2604 !strncmp(name, XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN))
2605 return true;
2606 return false;
2607 }
2608
2609 static int cgroup_setxattr(struct dentry *dentry, const char *name,
2610 const void *val, size_t size, int flags)
2611 {
2612 if (!xattr_enabled(dentry))
2613 return -EOPNOTSUPP;
2614 if (!is_valid_xattr(name))
2615 return -EINVAL;
2616 return simple_xattr_set(__d_xattrs(dentry), name, val, size, flags);
2617 }
2618
2619 static int cgroup_removexattr(struct dentry *dentry, const char *name)
2620 {
2621 if (!xattr_enabled(dentry))
2622 return -EOPNOTSUPP;
2623 if (!is_valid_xattr(name))
2624 return -EINVAL;
2625 return simple_xattr_remove(__d_xattrs(dentry), name);
2626 }
2627
2628 static ssize_t cgroup_getxattr(struct dentry *dentry, const char *name,
2629 void *buf, size_t size)
2630 {
2631 if (!xattr_enabled(dentry))
2632 return -EOPNOTSUPP;
2633 if (!is_valid_xattr(name))
2634 return -EINVAL;
2635 return simple_xattr_get(__d_xattrs(dentry), name, buf, size);
2636 }
2637
2638 static ssize_t cgroup_listxattr(struct dentry *dentry, char *buf, size_t size)
2639 {
2640 if (!xattr_enabled(dentry))
2641 return -EOPNOTSUPP;
2642 return simple_xattr_list(__d_xattrs(dentry), buf, size);
2643 }
2644
2645 static const struct file_operations cgroup_file_operations = {
2646 .read = cgroup_file_read,
2647 .write = cgroup_file_write,
2648 .llseek = generic_file_llseek,
2649 .open = cgroup_file_open,
2650 .release = cgroup_file_release,
2651 };
2652
2653 static const struct inode_operations cgroup_file_inode_operations = {
2654 .setxattr = cgroup_setxattr,
2655 .getxattr = cgroup_getxattr,
2656 .listxattr = cgroup_listxattr,
2657 .removexattr = cgroup_removexattr,
2658 };
2659
2660 static const struct inode_operations cgroup_dir_inode_operations = {
2661 .lookup = cgroup_lookup,
2662 .mkdir = cgroup_mkdir,
2663 .rmdir = cgroup_rmdir,
2664 .rename = cgroup_rename,
2665 .setxattr = cgroup_setxattr,
2666 .getxattr = cgroup_getxattr,
2667 .listxattr = cgroup_listxattr,
2668 .removexattr = cgroup_removexattr,
2669 };
2670
2671 static struct dentry *cgroup_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
2672 {
2673 if (dentry->d_name.len > NAME_MAX)
2674 return ERR_PTR(-ENAMETOOLONG);
2675 d_add(dentry, NULL);
2676 return NULL;
2677 }
2678
2679 /*
2680 * Check if a file is a control file
2681 */
2682 static inline struct cftype *__file_cft(struct file *file)
2683 {
2684 if (file_inode(file)->i_fop != &cgroup_file_operations)
2685 return ERR_PTR(-EINVAL);
2686 return __d_cft(file->f_dentry);
2687 }
2688
2689 static int cgroup_create_file(struct dentry *dentry, umode_t mode,
2690 struct super_block *sb)
2691 {
2692 struct inode *inode;
2693
2694 if (!dentry)
2695 return -ENOENT;
2696 if (dentry->d_inode)
2697 return -EEXIST;
2698
2699 inode = cgroup_new_inode(mode, sb);
2700 if (!inode)
2701 return -ENOMEM;
2702
2703 if (S_ISDIR(mode)) {
2704 inode->i_op = &cgroup_dir_inode_operations;
2705 inode->i_fop = &simple_dir_operations;
2706
2707 /* start off with i_nlink == 2 (for "." entry) */
2708 inc_nlink(inode);
2709 inc_nlink(dentry->d_parent->d_inode);
2710
2711 /*
2712 * Control reaches here with cgroup_mutex held.
2713 * @inode->i_mutex should nest outside cgroup_mutex but we
2714 * want to populate it immediately without releasing
2715 * cgroup_mutex. As @inode isn't visible to anyone else
2716 * yet, trylock will always succeed without affecting
2717 * lockdep checks.
2718 */
2719 WARN_ON_ONCE(!mutex_trylock(&inode->i_mutex));
2720 } else if (S_ISREG(mode)) {
2721 inode->i_size = 0;
2722 inode->i_fop = &cgroup_file_operations;
2723 inode->i_op = &cgroup_file_inode_operations;
2724 }
2725 d_instantiate(dentry, inode);
2726 dget(dentry); /* Extra count - pin the dentry in core */
2727 return 0;
2728 }
2729
2730 /**
2731 * cgroup_file_mode - deduce file mode of a control file
2732 * @cft: the control file in question
2733 *
2734 * returns cft->mode if ->mode is not 0
2735 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
2736 * returns S_IRUGO if it has only a read handler
2737 * returns S_IWUSR if it has only a write hander
2738 */
2739 static umode_t cgroup_file_mode(const struct cftype *cft)
2740 {
2741 umode_t mode = 0;
2742
2743 if (cft->mode)
2744 return cft->mode;
2745
2746 if (cft->read || cft->read_u64 || cft->read_s64 ||
2747 cft->read_map || cft->read_seq_string)
2748 mode |= S_IRUGO;
2749
2750 if (cft->write || cft->write_u64 || cft->write_s64 ||
2751 cft->write_string || cft->trigger)
2752 mode |= S_IWUSR;
2753
2754 return mode;
2755 }
2756
2757 static int cgroup_add_file(struct cgroup *cgrp, struct cgroup_subsys *subsys,
2758 struct cftype *cft)
2759 {
2760 struct dentry *dir = cgrp->dentry;
2761 struct cgroup *parent = __d_cgrp(dir);
2762 struct dentry *dentry;
2763 struct cfent *cfe;
2764 int error;
2765 umode_t mode;
2766 char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
2767
2768 simple_xattrs_init(&cft->xattrs);
2769
2770 if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
2771 strcpy(name, subsys->name);
2772 strcat(name, ".");
2773 }
2774 strcat(name, cft->name);
2775
2776 BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
2777
2778 cfe = kzalloc(sizeof(*cfe), GFP_KERNEL);
2779 if (!cfe)
2780 return -ENOMEM;
2781
2782 dentry = lookup_one_len(name, dir, strlen(name));
2783 if (IS_ERR(dentry)) {
2784 error = PTR_ERR(dentry);
2785 goto out;
2786 }
2787
2788 mode = cgroup_file_mode(cft);
2789 error = cgroup_create_file(dentry, mode | S_IFREG, cgrp->root->sb);
2790 if (!error) {
2791 cfe->type = (void *)cft;
2792 cfe->dentry = dentry;
2793 dentry->d_fsdata = cfe;
2794 list_add_tail(&cfe->node, &parent->files);
2795 cfe = NULL;
2796 }
2797 dput(dentry);
2798 out:
2799 kfree(cfe);
2800 return error;
2801 }
2802
2803 static int cgroup_addrm_files(struct cgroup *cgrp, struct cgroup_subsys *subsys,
2804 struct cftype cfts[], bool is_add)
2805 {
2806 struct cftype *cft;
2807 int err, ret = 0;
2808
2809 for (cft = cfts; cft->name[0] != '\0'; cft++) {
2810 /* does cft->flags tell us to skip this file on @cgrp? */
2811 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgrp->parent)
2812 continue;
2813 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgrp->parent)
2814 continue;
2815
2816 if (is_add) {
2817 err = cgroup_add_file(cgrp, subsys, cft);
2818 if (err)
2819 pr_warn("cgroup_addrm_files: failed to add %s, err=%d\n",
2820 cft->name, err);
2821 ret = err;
2822 } else {
2823 cgroup_rm_file(cgrp, cft);
2824 }
2825 }
2826 return ret;
2827 }
2828
2829 static DEFINE_MUTEX(cgroup_cft_mutex);
2830
2831 static void cgroup_cfts_prepare(void)
2832 __acquires(&cgroup_cft_mutex) __acquires(&cgroup_mutex)
2833 {
2834 /*
2835 * Thanks to the entanglement with vfs inode locking, we can't walk
2836 * the existing cgroups under cgroup_mutex and create files.
2837 * Instead, we increment reference on all cgroups and build list of
2838 * them using @cgrp->cft_q_node. Grab cgroup_cft_mutex to ensure
2839 * exclusive access to the field.
2840 */
2841 mutex_lock(&cgroup_cft_mutex);
2842 mutex_lock(&cgroup_mutex);
2843 }
2844
2845 static void cgroup_cfts_commit(struct cgroup_subsys *ss,
2846 struct cftype *cfts, bool is_add)
2847 __releases(&cgroup_mutex) __releases(&cgroup_cft_mutex)
2848 {
2849 LIST_HEAD(pending);
2850 struct cgroup *cgrp, *n;
2851
2852 /* %NULL @cfts indicates abort and don't bother if @ss isn't attached */
2853 if (cfts && ss->root != &rootnode) {
2854 list_for_each_entry(cgrp, &ss->root->allcg_list, allcg_node) {
2855 dget(cgrp->dentry);
2856 list_add_tail(&cgrp->cft_q_node, &pending);
2857 }
2858 }
2859
2860 mutex_unlock(&cgroup_mutex);
2861
2862 /*
2863 * All new cgroups will see @cfts update on @ss->cftsets. Add/rm
2864 * files for all cgroups which were created before.
2865 */
2866 list_for_each_entry_safe(cgrp, n, &pending, cft_q_node) {
2867 struct inode *inode = cgrp->dentry->d_inode;
2868
2869 mutex_lock(&inode->i_mutex);
2870 mutex_lock(&cgroup_mutex);
2871 if (!cgroup_is_removed(cgrp))
2872 cgroup_addrm_files(cgrp, ss, cfts, is_add);
2873 mutex_unlock(&cgroup_mutex);
2874 mutex_unlock(&inode->i_mutex);
2875
2876 list_del_init(&cgrp->cft_q_node);
2877 dput(cgrp->dentry);
2878 }
2879
2880 mutex_unlock(&cgroup_cft_mutex);
2881 }
2882
2883 /**
2884 * cgroup_add_cftypes - add an array of cftypes to a subsystem
2885 * @ss: target cgroup subsystem
2886 * @cfts: zero-length name terminated array of cftypes
2887 *
2888 * Register @cfts to @ss. Files described by @cfts are created for all
2889 * existing cgroups to which @ss is attached and all future cgroups will
2890 * have them too. This function can be called anytime whether @ss is
2891 * attached or not.
2892 *
2893 * Returns 0 on successful registration, -errno on failure. Note that this
2894 * function currently returns 0 as long as @cfts registration is successful
2895 * even if some file creation attempts on existing cgroups fail.
2896 */
2897 int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2898 {
2899 struct cftype_set *set;
2900
2901 set = kzalloc(sizeof(*set), GFP_KERNEL);
2902 if (!set)
2903 return -ENOMEM;
2904
2905 cgroup_cfts_prepare();
2906 set->cfts = cfts;
2907 list_add_tail(&set->node, &ss->cftsets);
2908 cgroup_cfts_commit(ss, cfts, true);
2909
2910 return 0;
2911 }
2912 EXPORT_SYMBOL_GPL(cgroup_add_cftypes);
2913
2914 /**
2915 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
2916 * @ss: target cgroup subsystem
2917 * @cfts: zero-length name terminated array of cftypes
2918 *
2919 * Unregister @cfts from @ss. Files described by @cfts are removed from
2920 * all existing cgroups to which @ss is attached and all future cgroups
2921 * won't have them either. This function can be called anytime whether @ss
2922 * is attached or not.
2923 *
2924 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2925 * registered with @ss.
2926 */
2927 int cgroup_rm_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2928 {
2929 struct cftype_set *set;
2930
2931 cgroup_cfts_prepare();
2932
2933 list_for_each_entry(set, &ss->cftsets, node) {
2934 if (set->cfts == cfts) {
2935 list_del_init(&set->node);
2936 cgroup_cfts_commit(ss, cfts, false);
2937 return 0;
2938 }
2939 }
2940
2941 cgroup_cfts_commit(ss, NULL, false);
2942 return -ENOENT;
2943 }
2944
2945 /**
2946 * cgroup_task_count - count the number of tasks in a cgroup.
2947 * @cgrp: the cgroup in question
2948 *
2949 * Return the number of tasks in the cgroup.
2950 */
2951 int cgroup_task_count(const struct cgroup *cgrp)
2952 {
2953 int count = 0;
2954 struct cg_cgroup_link *link;
2955
2956 read_lock(&css_set_lock);
2957 list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
2958 count += atomic_read(&link->cg->refcount);
2959 }
2960 read_unlock(&css_set_lock);
2961 return count;
2962 }
2963
2964 /*
2965 * Advance a list_head iterator. The iterator should be positioned at
2966 * the start of a css_set
2967 */
2968 static void cgroup_advance_iter(struct cgroup *cgrp,
2969 struct cgroup_iter *it)
2970 {
2971 struct list_head *l = it->cg_link;
2972 struct cg_cgroup_link *link;
2973 struct css_set *cg;
2974
2975 /* Advance to the next non-empty css_set */
2976 do {
2977 l = l->next;
2978 if (l == &cgrp->css_sets) {
2979 it->cg_link = NULL;
2980 return;
2981 }
2982 link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
2983 cg = link->cg;
2984 } while (list_empty(&cg->tasks));
2985 it->cg_link = l;
2986 it->task = cg->tasks.next;
2987 }
2988
2989 /*
2990 * To reduce the fork() overhead for systems that are not actually
2991 * using their cgroups capability, we don't maintain the lists running
2992 * through each css_set to its tasks until we see the list actually
2993 * used - in other words after the first call to cgroup_iter_start().
2994 */
2995 static void cgroup_enable_task_cg_lists(void)
2996 {
2997 struct task_struct *p, *g;
2998 write_lock(&css_set_lock);
2999 use_task_css_set_links = 1;
3000 /*
3001 * We need tasklist_lock because RCU is not safe against
3002 * while_each_thread(). Besides, a forking task that has passed
3003 * cgroup_post_fork() without seeing use_task_css_set_links = 1
3004 * is not guaranteed to have its child immediately visible in the
3005 * tasklist if we walk through it with RCU.
3006 */
3007 read_lock(&tasklist_lock);
3008 do_each_thread(g, p) {
3009 task_lock(p);
3010 /*
3011 * We should check if the process is exiting, otherwise
3012 * it will race with cgroup_exit() in that the list
3013 * entry won't be deleted though the process has exited.
3014 */
3015 if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
3016 list_add(&p->cg_list, &p->cgroups->tasks);
3017 task_unlock(p);
3018 } while_each_thread(g, p);
3019 read_unlock(&tasklist_lock);
3020 write_unlock(&css_set_lock);
3021 }
3022
3023 /**
3024 * cgroup_next_descendant_pre - find the next descendant for pre-order walk
3025 * @pos: the current position (%NULL to initiate traversal)
3026 * @cgroup: cgroup whose descendants to walk
3027 *
3028 * To be used by cgroup_for_each_descendant_pre(). Find the next
3029 * descendant to visit for pre-order traversal of @cgroup's descendants.
3030 */
3031 struct cgroup *cgroup_next_descendant_pre(struct cgroup *pos,
3032 struct cgroup *cgroup)
3033 {
3034 struct cgroup *next;
3035
3036 WARN_ON_ONCE(!rcu_read_lock_held());
3037
3038 /* if first iteration, pretend we just visited @cgroup */
3039 if (!pos) {
3040 if (list_empty(&cgroup->children))
3041 return NULL;
3042 pos = cgroup;
3043 }
3044
3045 /* visit the first child if exists */
3046 next = list_first_or_null_rcu(&pos->children, struct cgroup, sibling);
3047 if (next)
3048 return next;
3049
3050 /* no child, visit my or the closest ancestor's next sibling */
3051 do {
3052 next = list_entry_rcu(pos->sibling.next, struct cgroup,
3053 sibling);
3054 if (&next->sibling != &pos->parent->children)
3055 return next;
3056
3057 pos = pos->parent;
3058 } while (pos != cgroup);
3059
3060 return NULL;
3061 }
3062 EXPORT_SYMBOL_GPL(cgroup_next_descendant_pre);
3063
3064 /**
3065 * cgroup_rightmost_descendant - return the rightmost descendant of a cgroup
3066 * @pos: cgroup of interest
3067 *
3068 * Return the rightmost descendant of @pos. If there's no descendant,
3069 * @pos is returned. This can be used during pre-order traversal to skip
3070 * subtree of @pos.
3071 */
3072 struct cgroup *cgroup_rightmost_descendant(struct cgroup *pos)
3073 {
3074 struct cgroup *last, *tmp;
3075
3076 WARN_ON_ONCE(!rcu_read_lock_held());
3077
3078 do {
3079 last = pos;
3080 /* ->prev isn't RCU safe, walk ->next till the end */
3081 pos = NULL;
3082 list_for_each_entry_rcu(tmp, &last->children, sibling)
3083 pos = tmp;
3084 } while (pos);
3085
3086 return last;
3087 }
3088 EXPORT_SYMBOL_GPL(cgroup_rightmost_descendant);
3089
3090 static struct cgroup *cgroup_leftmost_descendant(struct cgroup *pos)
3091 {
3092 struct cgroup *last;
3093
3094 do {
3095 last = pos;
3096 pos = list_first_or_null_rcu(&pos->children, struct cgroup,
3097 sibling);
3098 } while (pos);
3099
3100 return last;
3101 }
3102
3103 /**
3104 * cgroup_next_descendant_post - find the next descendant for post-order walk
3105 * @pos: the current position (%NULL to initiate traversal)
3106 * @cgroup: cgroup whose descendants to walk
3107 *
3108 * To be used by cgroup_for_each_descendant_post(). Find the next
3109 * descendant to visit for post-order traversal of @cgroup's descendants.
3110 */
3111 struct cgroup *cgroup_next_descendant_post(struct cgroup *pos,
3112 struct cgroup *cgroup)
3113 {
3114 struct cgroup *next;
3115
3116 WARN_ON_ONCE(!rcu_read_lock_held());
3117
3118 /* if first iteration, visit the leftmost descendant */
3119 if (!pos) {
3120 next = cgroup_leftmost_descendant(cgroup);
3121 return next != cgroup ? next : NULL;
3122 }
3123
3124 /* if there's an unvisited sibling, visit its leftmost descendant */
3125 next = list_entry_rcu(pos->sibling.next, struct cgroup, sibling);
3126 if (&next->sibling != &pos->parent->children)
3127 return cgroup_leftmost_descendant(next);
3128
3129 /* no sibling left, visit parent */
3130 next = pos->parent;
3131 return next != cgroup ? next : NULL;
3132 }
3133 EXPORT_SYMBOL_GPL(cgroup_next_descendant_post);
3134
3135 void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
3136 __acquires(css_set_lock)
3137 {
3138 /*
3139 * The first time anyone tries to iterate across a cgroup,
3140 * we need to enable the list linking each css_set to its
3141 * tasks, and fix up all existing tasks.
3142 */
3143 if (!use_task_css_set_links)
3144 cgroup_enable_task_cg_lists();
3145
3146 read_lock(&css_set_lock);
3147 it->cg_link = &cgrp->css_sets;
3148 cgroup_advance_iter(cgrp, it);
3149 }
3150
3151 struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
3152 struct cgroup_iter *it)
3153 {
3154 struct task_struct *res;
3155 struct list_head *l = it->task;
3156 struct cg_cgroup_link *link;
3157
3158 /* If the iterator cg is NULL, we have no tasks */
3159 if (!it->cg_link)
3160 return NULL;
3161 res = list_entry(l, struct task_struct, cg_list);
3162 /* Advance iterator to find next entry */
3163 l = l->next;
3164 link = list_entry(it->cg_link, struct cg_cgroup_link, cgrp_link_list);
3165 if (l == &link->cg->tasks) {
3166 /* We reached the end of this task list - move on to
3167 * the next cg_cgroup_link */
3168 cgroup_advance_iter(cgrp, it);
3169 } else {
3170 it->task = l;
3171 }
3172 return res;
3173 }
3174
3175 void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
3176 __releases(css_set_lock)
3177 {
3178 read_unlock(&css_set_lock);
3179 }
3180
3181 static inline int started_after_time(struct task_struct *t1,
3182 struct timespec *time,
3183 struct task_struct *t2)
3184 {
3185 int start_diff = timespec_compare(&t1->start_time, time);
3186 if (start_diff > 0) {
3187 return 1;
3188 } else if (start_diff < 0) {
3189 return 0;
3190 } else {
3191 /*
3192 * Arbitrarily, if two processes started at the same
3193 * time, we'll say that the lower pointer value
3194 * started first. Note that t2 may have exited by now
3195 * so this may not be a valid pointer any longer, but
3196 * that's fine - it still serves to distinguish
3197 * between two tasks started (effectively) simultaneously.
3198 */
3199 return t1 > t2;
3200 }
3201 }
3202
3203 /*
3204 * This function is a callback from heap_insert() and is used to order
3205 * the heap.
3206 * In this case we order the heap in descending task start time.
3207 */
3208 static inline int started_after(void *p1, void *p2)
3209 {
3210 struct task_struct *t1 = p1;
3211 struct task_struct *t2 = p2;
3212 return started_after_time(t1, &t2->start_time, t2);
3213 }
3214
3215 /**
3216 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
3217 * @scan: struct cgroup_scanner containing arguments for the scan
3218 *
3219 * Arguments include pointers to callback functions test_task() and
3220 * process_task().
3221 * Iterate through all the tasks in a cgroup, calling test_task() for each,
3222 * and if it returns true, call process_task() for it also.
3223 * The test_task pointer may be NULL, meaning always true (select all tasks).
3224 * Effectively duplicates cgroup_iter_{start,next,end}()
3225 * but does not lock css_set_lock for the call to process_task().
3226 * The struct cgroup_scanner may be embedded in any structure of the caller's
3227 * creation.
3228 * It is guaranteed that process_task() will act on every task that
3229 * is a member of the cgroup for the duration of this call. This
3230 * function may or may not call process_task() for tasks that exit
3231 * or move to a different cgroup during the call, or are forked or
3232 * move into the cgroup during the call.
3233 *
3234 * Note that test_task() may be called with locks held, and may in some
3235 * situations be called multiple times for the same task, so it should
3236 * be cheap.
3237 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
3238 * pre-allocated and will be used for heap operations (and its "gt" member will
3239 * be overwritten), else a temporary heap will be used (allocation of which
3240 * may cause this function to fail).
3241 */
3242 int cgroup_scan_tasks(struct cgroup_scanner *scan)
3243 {
3244 int retval, i;
3245 struct cgroup_iter it;
3246 struct task_struct *p, *dropped;
3247 /* Never dereference latest_task, since it's not refcounted */
3248 struct task_struct *latest_task = NULL;
3249 struct ptr_heap tmp_heap;
3250 struct ptr_heap *heap;
3251 struct timespec latest_time = { 0, 0 };
3252
3253 if (scan->heap) {
3254 /* The caller supplied our heap and pre-allocated its memory */
3255 heap = scan->heap;
3256 heap->gt = &started_after;
3257 } else {
3258 /* We need to allocate our own heap memory */
3259 heap = &tmp_heap;
3260 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
3261 if (retval)
3262 /* cannot allocate the heap */
3263 return retval;
3264 }
3265
3266 again:
3267 /*
3268 * Scan tasks in the cgroup, using the scanner's "test_task" callback
3269 * to determine which are of interest, and using the scanner's
3270 * "process_task" callback to process any of them that need an update.
3271 * Since we don't want to hold any locks during the task updates,
3272 * gather tasks to be processed in a heap structure.
3273 * The heap is sorted by descending task start time.
3274 * If the statically-sized heap fills up, we overflow tasks that
3275 * started later, and in future iterations only consider tasks that
3276 * started after the latest task in the previous pass. This
3277 * guarantees forward progress and that we don't miss any tasks.
3278 */
3279 heap->size = 0;
3280 cgroup_iter_start(scan->cg, &it);
3281 while ((p = cgroup_iter_next(scan->cg, &it))) {
3282 /*
3283 * Only affect tasks that qualify per the caller's callback,
3284 * if he provided one
3285 */
3286 if (scan->test_task && !scan->test_task(p, scan))
3287 continue;
3288 /*
3289 * Only process tasks that started after the last task
3290 * we processed
3291 */
3292 if (!started_after_time(p, &latest_time, latest_task))
3293 continue;
3294 dropped = heap_insert(heap, p);
3295 if (dropped == NULL) {
3296 /*
3297 * The new task was inserted; the heap wasn't
3298 * previously full
3299 */
3300 get_task_struct(p);
3301 } else if (dropped != p) {
3302 /*
3303 * The new task was inserted, and pushed out a
3304 * different task
3305 */
3306 get_task_struct(p);
3307 put_task_struct(dropped);
3308 }
3309 /*
3310 * Else the new task was newer than anything already in
3311 * the heap and wasn't inserted
3312 */
3313 }
3314 cgroup_iter_end(scan->cg, &it);
3315
3316 if (heap->size) {
3317 for (i = 0; i < heap->size; i++) {
3318 struct task_struct *q = heap->ptrs[i];
3319 if (i == 0) {
3320 latest_time = q->start_time;
3321 latest_task = q;
3322 }
3323 /* Process the task per the caller's callback */
3324 scan->process_task(q, scan);
3325 put_task_struct(q);
3326 }
3327 /*
3328 * If we had to process any tasks at all, scan again
3329 * in case some of them were in the middle of forking
3330 * children that didn't get processed.
3331 * Not the most efficient way to do it, but it avoids
3332 * having to take callback_mutex in the fork path
3333 */
3334 goto again;
3335 }
3336 if (heap == &tmp_heap)
3337 heap_free(&tmp_heap);
3338 return 0;
3339 }
3340
3341 /*
3342 * Stuff for reading the 'tasks'/'procs' files.
3343 *
3344 * Reading this file can return large amounts of data if a cgroup has
3345 * *lots* of attached tasks. So it may need several calls to read(),
3346 * but we cannot guarantee that the information we produce is correct
3347 * unless we produce it entirely atomically.
3348 *
3349 */
3350
3351 /* which pidlist file are we talking about? */
3352 enum cgroup_filetype {
3353 CGROUP_FILE_PROCS,
3354 CGROUP_FILE_TASKS,
3355 };
3356
3357 /*
3358 * A pidlist is a list of pids that virtually represents the contents of one
3359 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
3360 * a pair (one each for procs, tasks) for each pid namespace that's relevant
3361 * to the cgroup.
3362 */
3363 struct cgroup_pidlist {
3364 /*
3365 * used to find which pidlist is wanted. doesn't change as long as
3366 * this particular list stays in the list.
3367 */
3368 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
3369 /* array of xids */
3370 pid_t *list;
3371 /* how many elements the above list has */
3372 int length;
3373 /* how many files are using the current array */
3374 int use_count;
3375 /* each of these stored in a list by its cgroup */
3376 struct list_head links;
3377 /* pointer to the cgroup we belong to, for list removal purposes */
3378 struct cgroup *owner;
3379 /* protects the other fields */
3380 struct rw_semaphore mutex;
3381 };
3382
3383 /*
3384 * The following two functions "fix" the issue where there are more pids
3385 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3386 * TODO: replace with a kernel-wide solution to this problem
3387 */
3388 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
3389 static void *pidlist_allocate(int count)
3390 {
3391 if (PIDLIST_TOO_LARGE(count))
3392 return vmalloc(count * sizeof(pid_t));
3393 else
3394 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
3395 }
3396 static void pidlist_free(void *p)
3397 {
3398 if (is_vmalloc_addr(p))
3399 vfree(p);
3400 else
3401 kfree(p);
3402 }
3403
3404 /*
3405 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
3406 * Returns the number of unique elements.
3407 */
3408 static int pidlist_uniq(pid_t *list, int length)
3409 {
3410 int src, dest = 1;
3411
3412 /*
3413 * we presume the 0th element is unique, so i starts at 1. trivial
3414 * edge cases first; no work needs to be done for either
3415 */
3416 if (length == 0 || length == 1)
3417 return length;
3418 /* src and dest walk down the list; dest counts unique elements */
3419 for (src = 1; src < length; src++) {
3420 /* find next unique element */
3421 while (list[src] == list[src-1]) {
3422 src++;
3423 if (src == length)
3424 goto after;
3425 }
3426 /* dest always points to where the next unique element goes */
3427 list[dest] = list[src];
3428 dest++;
3429 }
3430 after:
3431 return dest;
3432 }
3433
3434 static int cmppid(const void *a, const void *b)
3435 {
3436 return *(pid_t *)a - *(pid_t *)b;
3437 }
3438
3439 /*
3440 * find the appropriate pidlist for our purpose (given procs vs tasks)
3441 * returns with the lock on that pidlist already held, and takes care
3442 * of the use count, or returns NULL with no locks held if we're out of
3443 * memory.
3444 */
3445 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3446 enum cgroup_filetype type)
3447 {
3448 struct cgroup_pidlist *l;
3449 /* don't need task_nsproxy() if we're looking at ourself */
3450 struct pid_namespace *ns = task_active_pid_ns(current);
3451
3452 /*
3453 * We can't drop the pidlist_mutex before taking the l->mutex in case
3454 * the last ref-holder is trying to remove l from the list at the same
3455 * time. Holding the pidlist_mutex precludes somebody taking whichever
3456 * list we find out from under us - compare release_pid_array().
3457 */
3458 mutex_lock(&cgrp->pidlist_mutex);
3459 list_for_each_entry(l, &cgrp->pidlists, links) {
3460 if (l->key.type == type && l->key.ns == ns) {
3461 /* make sure l doesn't vanish out from under us */
3462 down_write(&l->mutex);
3463 mutex_unlock(&cgrp->pidlist_mutex);
3464 return l;
3465 }
3466 }
3467 /* entry not found; create a new one */
3468 l = kmalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
3469 if (!l) {
3470 mutex_unlock(&cgrp->pidlist_mutex);
3471 return l;
3472 }
3473 init_rwsem(&l->mutex);
3474 down_write(&l->mutex);
3475 l->key.type = type;
3476 l->key.ns = get_pid_ns(ns);
3477 l->use_count = 0; /* don't increment here */
3478 l->list = NULL;
3479 l->owner = cgrp;
3480 list_add(&l->links, &cgrp->pidlists);
3481 mutex_unlock(&cgrp->pidlist_mutex);
3482 return l;
3483 }
3484
3485 /*
3486 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3487 */
3488 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3489 struct cgroup_pidlist **lp)
3490 {
3491 pid_t *array;
3492 int length;
3493 int pid, n = 0; /* used for populating the array */
3494 struct cgroup_iter it;
3495 struct task_struct *tsk;
3496 struct cgroup_pidlist *l;
3497
3498 /*
3499 * If cgroup gets more users after we read count, we won't have
3500 * enough space - tough. This race is indistinguishable to the
3501 * caller from the case that the additional cgroup users didn't
3502 * show up until sometime later on.
3503 */
3504 length = cgroup_task_count(cgrp);
3505 array = pidlist_allocate(length);
3506 if (!array)
3507 return -ENOMEM;
3508 /* now, populate the array */
3509 cgroup_iter_start(cgrp, &it);
3510 while ((tsk = cgroup_iter_next(cgrp, &it))) {
3511 if (unlikely(n == length))
3512 break;
3513 /* get tgid or pid for procs or tasks file respectively */
3514 if (type == CGROUP_FILE_PROCS)
3515 pid = task_tgid_vnr(tsk);
3516 else
3517 pid = task_pid_vnr(tsk);
3518 if (pid > 0) /* make sure to only use valid results */
3519 array[n++] = pid;
3520 }
3521 cgroup_iter_end(cgrp, &it);
3522 length = n;
3523 /* now sort & (if procs) strip out duplicates */
3524 sort(array, length, sizeof(pid_t), cmppid, NULL);
3525 if (type == CGROUP_FILE_PROCS)
3526 length = pidlist_uniq(array, length);
3527 l = cgroup_pidlist_find(cgrp, type);
3528 if (!l) {
3529 pidlist_free(array);
3530 return -ENOMEM;
3531 }
3532 /* store array, freeing old if necessary - lock already held */
3533 pidlist_free(l->list);
3534 l->list = array;
3535 l->length = length;
3536 l->use_count++;
3537 up_write(&l->mutex);
3538 *lp = l;
3539 return 0;
3540 }
3541
3542 /**
3543 * cgroupstats_build - build and fill cgroupstats
3544 * @stats: cgroupstats to fill information into
3545 * @dentry: A dentry entry belonging to the cgroup for which stats have
3546 * been requested.
3547 *
3548 * Build and fill cgroupstats so that taskstats can export it to user
3549 * space.
3550 */
3551 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
3552 {
3553 int ret = -EINVAL;
3554 struct cgroup *cgrp;
3555 struct cgroup_iter it;
3556 struct task_struct *tsk;
3557
3558 /*
3559 * Validate dentry by checking the superblock operations,
3560 * and make sure it's a directory.
3561 */
3562 if (dentry->d_sb->s_op != &cgroup_ops ||
3563 !S_ISDIR(dentry->d_inode->i_mode))
3564 goto err;
3565
3566 ret = 0;
3567 cgrp = dentry->d_fsdata;
3568
3569 cgroup_iter_start(cgrp, &it);
3570 while ((tsk = cgroup_iter_next(cgrp, &it))) {
3571 switch (tsk->state) {
3572 case TASK_RUNNING:
3573 stats->nr_running++;
3574 break;
3575 case TASK_INTERRUPTIBLE:
3576 stats->nr_sleeping++;
3577 break;
3578 case TASK_UNINTERRUPTIBLE:
3579 stats->nr_uninterruptible++;
3580 break;
3581 case TASK_STOPPED:
3582 stats->nr_stopped++;
3583 break;
3584 default:
3585 if (delayacct_is_task_waiting_on_io(tsk))
3586 stats->nr_io_wait++;
3587 break;
3588 }
3589 }
3590 cgroup_iter_end(cgrp, &it);
3591
3592 err:
3593 return ret;
3594 }
3595
3596
3597 /*
3598 * seq_file methods for the tasks/procs files. The seq_file position is the
3599 * next pid to display; the seq_file iterator is a pointer to the pid
3600 * in the cgroup->l->list array.
3601 */
3602
3603 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
3604 {
3605 /*
3606 * Initially we receive a position value that corresponds to
3607 * one more than the last pid shown (or 0 on the first call or
3608 * after a seek to the start). Use a binary-search to find the
3609 * next pid to display, if any
3610 */
3611 struct cgroup_pidlist *l = s->private;
3612 int index = 0, pid = *pos;
3613 int *iter;
3614
3615 down_read(&l->mutex);
3616 if (pid) {
3617 int end = l->length;
3618
3619 while (index < end) {
3620 int mid = (index + end) / 2;
3621 if (l->list[mid] == pid) {
3622 index = mid;
3623 break;
3624 } else if (l->list[mid] <= pid)
3625 index = mid + 1;
3626 else
3627 end = mid;
3628 }
3629 }
3630 /* If we're off the end of the array, we're done */
3631 if (index >= l->length)
3632 return NULL;
3633 /* Update the abstract position to be the actual pid that we found */
3634 iter = l->list + index;
3635 *pos = *iter;
3636 return iter;
3637 }
3638
3639 static void cgroup_pidlist_stop(struct seq_file *s, void *v)
3640 {
3641 struct cgroup_pidlist *l = s->private;
3642 up_read(&l->mutex);
3643 }
3644
3645 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
3646 {
3647 struct cgroup_pidlist *l = s->private;
3648 pid_t *p = v;
3649 pid_t *end = l->list + l->length;
3650 /*
3651 * Advance to the next pid in the array. If this goes off the
3652 * end, we're done
3653 */
3654 p++;
3655 if (p >= end) {
3656 return NULL;
3657 } else {
3658 *pos = *p;
3659 return p;
3660 }
3661 }
3662
3663 static int cgroup_pidlist_show(struct seq_file *s, void *v)
3664 {
3665 return seq_printf(s, "%d\n", *(int *)v);
3666 }
3667
3668 /*
3669 * seq_operations functions for iterating on pidlists through seq_file -
3670 * independent of whether it's tasks or procs
3671 */
3672 static const struct seq_operations cgroup_pidlist_seq_operations = {
3673 .start = cgroup_pidlist_start,
3674 .stop = cgroup_pidlist_stop,
3675 .next = cgroup_pidlist_next,
3676 .show = cgroup_pidlist_show,
3677 };
3678
3679 static void cgroup_release_pid_array(struct cgroup_pidlist *l)
3680 {
3681 /*
3682 * the case where we're the last user of this particular pidlist will
3683 * have us remove it from the cgroup's list, which entails taking the
3684 * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
3685 * pidlist_mutex, we have to take pidlist_mutex first.
3686 */
3687 mutex_lock(&l->owner->pidlist_mutex);
3688 down_write(&l->mutex);
3689 BUG_ON(!l->use_count);
3690 if (!--l->use_count) {
3691 /* we're the last user if refcount is 0; remove and free */
3692 list_del(&l->links);
3693 mutex_unlock(&l->owner->pidlist_mutex);
3694 pidlist_free(l->list);
3695 put_pid_ns(l->key.ns);
3696 up_write(&l->mutex);
3697 kfree(l);
3698 return;
3699 }
3700 mutex_unlock(&l->owner->pidlist_mutex);
3701 up_write(&l->mutex);
3702 }
3703
3704 static int cgroup_pidlist_release(struct inode *inode, struct file *file)
3705 {
3706 struct cgroup_pidlist *l;
3707 if (!(file->f_mode & FMODE_READ))
3708 return 0;
3709 /*
3710 * the seq_file will only be initialized if the file was opened for
3711 * reading; hence we check if it's not null only in that case.
3712 */
3713 l = ((struct seq_file *)file->private_data)->private;
3714 cgroup_release_pid_array(l);
3715 return seq_release(inode, file);
3716 }
3717
3718 static const struct file_operations cgroup_pidlist_operations = {
3719 .read = seq_read,
3720 .llseek = seq_lseek,
3721 .write = cgroup_file_write,
3722 .release = cgroup_pidlist_release,
3723 };
3724
3725 /*
3726 * The following functions handle opens on a file that displays a pidlist
3727 * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
3728 * in the cgroup.
3729 */
3730 /* helper function for the two below it */
3731 static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type)
3732 {
3733 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
3734 struct cgroup_pidlist *l;
3735 int retval;
3736
3737 /* Nothing to do for write-only files */
3738 if (!(file->f_mode & FMODE_READ))
3739 return 0;
3740
3741 /* have the array populated */
3742 retval = pidlist_array_load(cgrp, type, &l);
3743 if (retval)
3744 return retval;
3745 /* configure file information */
3746 file->f_op = &cgroup_pidlist_operations;
3747
3748 retval = seq_open(file, &cgroup_pidlist_seq_operations);
3749 if (retval) {
3750 cgroup_release_pid_array(l);
3751 return retval;
3752 }
3753 ((struct seq_file *)file->private_data)->private = l;
3754 return 0;
3755 }
3756 static int cgroup_tasks_open(struct inode *unused, struct file *file)
3757 {
3758 return cgroup_pidlist_open(file, CGROUP_FILE_TASKS);
3759 }
3760 static int cgroup_procs_open(struct inode *unused, struct file *file)
3761 {
3762 return cgroup_pidlist_open(file, CGROUP_FILE_PROCS);
3763 }
3764
3765 static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
3766 struct cftype *cft)
3767 {
3768 return notify_on_release(cgrp);
3769 }
3770
3771 static int cgroup_write_notify_on_release(struct cgroup *cgrp,
3772 struct cftype *cft,
3773 u64 val)
3774 {
3775 clear_bit(CGRP_RELEASABLE, &cgrp->flags);
3776 if (val)
3777 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3778 else
3779 clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3780 return 0;
3781 }
3782
3783 /*
3784 * Unregister event and free resources.
3785 *
3786 * Gets called from workqueue.
3787 */
3788 static void cgroup_event_remove(struct work_struct *work)
3789 {
3790 struct cgroup_event *event = container_of(work, struct cgroup_event,
3791 remove);
3792 struct cgroup *cgrp = event->cgrp;
3793
3794 remove_wait_queue(event->wqh, &event->wait);
3795
3796 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3797
3798 /* Notify userspace the event is going away. */
3799 eventfd_signal(event->eventfd, 1);
3800
3801 eventfd_ctx_put(event->eventfd);
3802 kfree(event);
3803 dput(cgrp->dentry);
3804 }
3805
3806 /*
3807 * Gets called on POLLHUP on eventfd when user closes it.
3808 *
3809 * Called with wqh->lock held and interrupts disabled.
3810 */
3811 static int cgroup_event_wake(wait_queue_t *wait, unsigned mode,
3812 int sync, void *key)
3813 {
3814 struct cgroup_event *event = container_of(wait,
3815 struct cgroup_event, wait);
3816 struct cgroup *cgrp = event->cgrp;
3817 unsigned long flags = (unsigned long)key;
3818
3819 if (flags & POLLHUP) {
3820 /*
3821 * If the event has been detached at cgroup removal, we
3822 * can simply return knowing the other side will cleanup
3823 * for us.
3824 *
3825 * We can't race against event freeing since the other
3826 * side will require wqh->lock via remove_wait_queue(),
3827 * which we hold.
3828 */
3829 spin_lock(&cgrp->event_list_lock);
3830 if (!list_empty(&event->list)) {
3831 list_del_init(&event->list);
3832 /*
3833 * We are in atomic context, but cgroup_event_remove()
3834 * may sleep, so we have to call it in workqueue.
3835 */
3836 schedule_work(&event->remove);
3837 }
3838 spin_unlock(&cgrp->event_list_lock);
3839 }
3840
3841 return 0;
3842 }
3843
3844 static void cgroup_event_ptable_queue_proc(struct file *file,
3845 wait_queue_head_t *wqh, poll_table *pt)
3846 {
3847 struct cgroup_event *event = container_of(pt,
3848 struct cgroup_event, pt);
3849
3850 event->wqh = wqh;
3851 add_wait_queue(wqh, &event->wait);
3852 }
3853
3854 /*
3855 * Parse input and register new cgroup event handler.
3856 *
3857 * Input must be in format '<event_fd> <control_fd> <args>'.
3858 * Interpretation of args is defined by control file implementation.
3859 */
3860 static int cgroup_write_event_control(struct cgroup *cgrp, struct cftype *cft,
3861 const char *buffer)
3862 {
3863 struct cgroup_event *event = NULL;
3864 struct cgroup *cgrp_cfile;
3865 unsigned int efd, cfd;
3866 struct file *efile = NULL;
3867 struct file *cfile = NULL;
3868 char *endp;
3869 int ret;
3870
3871 efd = simple_strtoul(buffer, &endp, 10);
3872 if (*endp != ' ')
3873 return -EINVAL;
3874 buffer = endp + 1;
3875
3876 cfd = simple_strtoul(buffer, &endp, 10);
3877 if ((*endp != ' ') && (*endp != '\0'))
3878 return -EINVAL;
3879 buffer = endp + 1;
3880
3881 event = kzalloc(sizeof(*event), GFP_KERNEL);
3882 if (!event)
3883 return -ENOMEM;
3884 event->cgrp = cgrp;
3885 INIT_LIST_HEAD(&event->list);
3886 init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc);
3887 init_waitqueue_func_entry(&event->wait, cgroup_event_wake);
3888 INIT_WORK(&event->remove, cgroup_event_remove);
3889
3890 efile = eventfd_fget(efd);
3891 if (IS_ERR(efile)) {
3892 ret = PTR_ERR(efile);
3893 goto fail;
3894 }
3895
3896 event->eventfd = eventfd_ctx_fileget(efile);
3897 if (IS_ERR(event->eventfd)) {
3898 ret = PTR_ERR(event->eventfd);
3899 goto fail;
3900 }
3901
3902 cfile = fget(cfd);
3903 if (!cfile) {
3904 ret = -EBADF;
3905 goto fail;
3906 }
3907
3908 /* the process need read permission on control file */
3909 /* AV: shouldn't we check that it's been opened for read instead? */
3910 ret = inode_permission(file_inode(cfile), MAY_READ);
3911 if (ret < 0)
3912 goto fail;
3913
3914 event->cft = __file_cft(cfile);
3915 if (IS_ERR(event->cft)) {
3916 ret = PTR_ERR(event->cft);
3917 goto fail;
3918 }
3919
3920 /*
3921 * The file to be monitored must be in the same cgroup as
3922 * cgroup.event_control is.
3923 */
3924 cgrp_cfile = __d_cgrp(cfile->f_dentry->d_parent);
3925 if (cgrp_cfile != cgrp) {
3926 ret = -EINVAL;
3927 goto fail;
3928 }
3929
3930 if (!event->cft->register_event || !event->cft->unregister_event) {
3931 ret = -EINVAL;
3932 goto fail;
3933 }
3934
3935 ret = event->cft->register_event(cgrp, event->cft,
3936 event->eventfd, buffer);
3937 if (ret)
3938 goto fail;
3939
3940 /*
3941 * Events should be removed after rmdir of cgroup directory, but before
3942 * destroying subsystem state objects. Let's take reference to cgroup
3943 * directory dentry to do that.
3944 */
3945 dget(cgrp->dentry);
3946
3947 spin_lock(&cgrp->event_list_lock);
3948 list_add(&event->list, &cgrp->event_list);
3949 spin_unlock(&cgrp->event_list_lock);
3950
3951 fput(cfile);
3952 fput(efile);
3953
3954 return 0;
3955
3956 fail:
3957 if (cfile)
3958 fput(cfile);
3959
3960 if (event && event->eventfd && !IS_ERR(event->eventfd))
3961 eventfd_ctx_put(event->eventfd);
3962
3963 if (!IS_ERR_OR_NULL(efile))
3964 fput(efile);
3965
3966 kfree(event);
3967
3968 return ret;
3969 }
3970
3971 static u64 cgroup_clone_children_read(struct cgroup *cgrp,
3972 struct cftype *cft)
3973 {
3974 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
3975 }
3976
3977 static int cgroup_clone_children_write(struct cgroup *cgrp,
3978 struct cftype *cft,
3979 u64 val)
3980 {
3981 if (val)
3982 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
3983 else
3984 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
3985 return 0;
3986 }
3987
3988 /*
3989 * for the common functions, 'private' gives the type of file
3990 */
3991 /* for hysterical raisins, we can't put this on the older files */
3992 #define CGROUP_FILE_GENERIC_PREFIX "cgroup."
3993 static struct cftype files[] = {
3994 {
3995 .name = "tasks",
3996 .open = cgroup_tasks_open,
3997 .write_u64 = cgroup_tasks_write,
3998 .release = cgroup_pidlist_release,
3999 .mode = S_IRUGO | S_IWUSR,
4000 },
4001 {
4002 .name = CGROUP_FILE_GENERIC_PREFIX "procs",
4003 .open = cgroup_procs_open,
4004 .write_u64 = cgroup_procs_write,
4005 .release = cgroup_pidlist_release,
4006 .mode = S_IRUGO | S_IWUSR,
4007 },
4008 {
4009 .name = "notify_on_release",
4010 .read_u64 = cgroup_read_notify_on_release,
4011 .write_u64 = cgroup_write_notify_on_release,
4012 },
4013 {
4014 .name = CGROUP_FILE_GENERIC_PREFIX "event_control",
4015 .write_string = cgroup_write_event_control,
4016 .mode = S_IWUGO,
4017 },
4018 {
4019 .name = "cgroup.clone_children",
4020 .read_u64 = cgroup_clone_children_read,
4021 .write_u64 = cgroup_clone_children_write,
4022 },
4023 {
4024 .name = "release_agent",
4025 .flags = CFTYPE_ONLY_ON_ROOT,
4026 .read_seq_string = cgroup_release_agent_show,
4027 .write_string = cgroup_release_agent_write,
4028 .max_write_len = PATH_MAX,
4029 },
4030 { } /* terminate */
4031 };
4032
4033 /**
4034 * cgroup_populate_dir - selectively creation of files in a directory
4035 * @cgrp: target cgroup
4036 * @base_files: true if the base files should be added
4037 * @subsys_mask: mask of the subsystem ids whose files should be added
4038 */
4039 static int cgroup_populate_dir(struct cgroup *cgrp, bool base_files,
4040 unsigned long subsys_mask)
4041 {
4042 int err;
4043 struct cgroup_subsys *ss;
4044
4045 if (base_files) {
4046 err = cgroup_addrm_files(cgrp, NULL, files, true);
4047 if (err < 0)
4048 return err;
4049 }
4050
4051 /* process cftsets of each subsystem */
4052 for_each_subsys(cgrp->root, ss) {
4053 struct cftype_set *set;
4054 if (!test_bit(ss->subsys_id, &subsys_mask))
4055 continue;
4056
4057 list_for_each_entry(set, &ss->cftsets, node)
4058 cgroup_addrm_files(cgrp, ss, set->cfts, true);
4059 }
4060
4061 /* This cgroup is ready now */
4062 for_each_subsys(cgrp->root, ss) {
4063 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
4064 /*
4065 * Update id->css pointer and make this css visible from
4066 * CSS ID functions. This pointer will be dereferened
4067 * from RCU-read-side without locks.
4068 */
4069 if (css->id)
4070 rcu_assign_pointer(css->id->css, css);
4071 }
4072
4073 return 0;
4074 }
4075
4076 static void css_dput_fn(struct work_struct *work)
4077 {
4078 struct cgroup_subsys_state *css =
4079 container_of(work, struct cgroup_subsys_state, dput_work);
4080 struct dentry *dentry = css->cgroup->dentry;
4081 struct super_block *sb = dentry->d_sb;
4082
4083 atomic_inc(&sb->s_active);
4084 dput(dentry);
4085 deactivate_super(sb);
4086 }
4087
4088 static void init_cgroup_css(struct cgroup_subsys_state *css,
4089 struct cgroup_subsys *ss,
4090 struct cgroup *cgrp)
4091 {
4092 css->cgroup = cgrp;
4093 atomic_set(&css->refcnt, 1);
4094 css->flags = 0;
4095 css->id = NULL;
4096 if (cgrp == dummytop)
4097 css->flags |= CSS_ROOT;
4098 BUG_ON(cgrp->subsys[ss->subsys_id]);
4099 cgrp->subsys[ss->subsys_id] = css;
4100
4101 /*
4102 * css holds an extra ref to @cgrp->dentry which is put on the last
4103 * css_put(). dput() requires process context, which css_put() may
4104 * be called without. @css->dput_work will be used to invoke
4105 * dput() asynchronously from css_put().
4106 */
4107 INIT_WORK(&css->dput_work, css_dput_fn);
4108 }
4109
4110 /* invoke ->post_create() on a new CSS and mark it online if successful */
4111 static int online_css(struct cgroup_subsys *ss, struct cgroup *cgrp)
4112 {
4113 int ret = 0;
4114
4115 lockdep_assert_held(&cgroup_mutex);
4116
4117 if (ss->css_online)
4118 ret = ss->css_online(cgrp);
4119 if (!ret)
4120 cgrp->subsys[ss->subsys_id]->flags |= CSS_ONLINE;
4121 return ret;
4122 }
4123
4124 /* if the CSS is online, invoke ->pre_destory() on it and mark it offline */
4125 static void offline_css(struct cgroup_subsys *ss, struct cgroup *cgrp)
4126 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
4127 {
4128 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
4129
4130 lockdep_assert_held(&cgroup_mutex);
4131
4132 if (!(css->flags & CSS_ONLINE))
4133 return;
4134
4135 if (ss->css_offline)
4136 ss->css_offline(cgrp);
4137
4138 cgrp->subsys[ss->subsys_id]->flags &= ~CSS_ONLINE;
4139 }
4140
4141 /*
4142 * cgroup_create - create a cgroup
4143 * @parent: cgroup that will be parent of the new cgroup
4144 * @dentry: dentry of the new cgroup
4145 * @mode: mode to set on new inode
4146 *
4147 * Must be called with the mutex on the parent inode held
4148 */
4149 static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
4150 umode_t mode)
4151 {
4152 struct cgroup *cgrp;
4153 struct cgroup_name *name;
4154 struct cgroupfs_root *root = parent->root;
4155 int err = 0;
4156 struct cgroup_subsys *ss;
4157 struct super_block *sb = root->sb;
4158
4159 /* allocate the cgroup and its ID, 0 is reserved for the root */
4160 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
4161 if (!cgrp)
4162 return -ENOMEM;
4163
4164 name = cgroup_alloc_name(dentry);
4165 if (!name)
4166 goto err_free_cgrp;
4167 rcu_assign_pointer(cgrp->name, name);
4168
4169 cgrp->id = ida_simple_get(&root->cgroup_ida, 1, 0, GFP_KERNEL);
4170 if (cgrp->id < 0)
4171 goto err_free_name;
4172
4173 /*
4174 * Only live parents can have children. Note that the liveliness
4175 * check isn't strictly necessary because cgroup_mkdir() and
4176 * cgroup_rmdir() are fully synchronized by i_mutex; however, do it
4177 * anyway so that locking is contained inside cgroup proper and we
4178 * don't get nasty surprises if we ever grow another caller.
4179 */
4180 if (!cgroup_lock_live_group(parent)) {
4181 err = -ENODEV;
4182 goto err_free_id;
4183 }
4184
4185 /* Grab a reference on the superblock so the hierarchy doesn't
4186 * get deleted on unmount if there are child cgroups. This
4187 * can be done outside cgroup_mutex, since the sb can't
4188 * disappear while someone has an open control file on the
4189 * fs */
4190 atomic_inc(&sb->s_active);
4191
4192 init_cgroup_housekeeping(cgrp);
4193
4194 dentry->d_fsdata = cgrp;
4195 cgrp->dentry = dentry;
4196
4197 cgrp->parent = parent;
4198 cgrp->root = parent->root;
4199 cgrp->top_cgroup = parent->top_cgroup;
4200
4201 if (notify_on_release(parent))
4202 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4203
4204 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4205 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
4206
4207 for_each_subsys(root, ss) {
4208 struct cgroup_subsys_state *css;
4209
4210 css = ss->css_alloc(cgrp);
4211 if (IS_ERR(css)) {
4212 err = PTR_ERR(css);
4213 goto err_free_all;
4214 }
4215 init_cgroup_css(css, ss, cgrp);
4216 if (ss->use_id) {
4217 err = alloc_css_id(ss, parent, cgrp);
4218 if (err)
4219 goto err_free_all;
4220 }
4221 }
4222
4223 /*
4224 * Create directory. cgroup_create_file() returns with the new
4225 * directory locked on success so that it can be populated without
4226 * dropping cgroup_mutex.
4227 */
4228 err = cgroup_create_file(dentry, S_IFDIR | mode, sb);
4229 if (err < 0)
4230 goto err_free_all;
4231 lockdep_assert_held(&dentry->d_inode->i_mutex);
4232
4233 /* allocation complete, commit to creation */
4234 list_add_tail(&cgrp->allcg_node, &root->allcg_list);
4235 list_add_tail_rcu(&cgrp->sibling, &cgrp->parent->children);
4236 root->number_of_cgroups++;
4237
4238 /* each css holds a ref to the cgroup's dentry */
4239 for_each_subsys(root, ss)
4240 dget(dentry);
4241
4242 /* creation succeeded, notify subsystems */
4243 for_each_subsys(root, ss) {
4244 err = online_css(ss, cgrp);
4245 if (err)
4246 goto err_destroy;
4247
4248 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
4249 parent->parent) {
4250 pr_warning("cgroup: %s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4251 current->comm, current->pid, ss->name);
4252 if (!strcmp(ss->name, "memory"))
4253 pr_warning("cgroup: \"memory\" requires setting use_hierarchy to 1 on the root.\n");
4254 ss->warned_broken_hierarchy = true;
4255 }
4256 }
4257
4258 err = cgroup_populate_dir(cgrp, true, root->subsys_mask);
4259 if (err)
4260 goto err_destroy;
4261
4262 mutex_unlock(&cgroup_mutex);
4263 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
4264
4265 return 0;
4266
4267 err_free_all:
4268 for_each_subsys(root, ss) {
4269 if (cgrp->subsys[ss->subsys_id])
4270 ss->css_free(cgrp);
4271 }
4272 mutex_unlock(&cgroup_mutex);
4273 /* Release the reference count that we took on the superblock */
4274 deactivate_super(sb);
4275 err_free_id:
4276 ida_simple_remove(&root->cgroup_ida, cgrp->id);
4277 err_free_name:
4278 kfree(rcu_dereference_raw(cgrp->name));
4279 err_free_cgrp:
4280 kfree(cgrp);
4281 return err;
4282
4283 err_destroy:
4284 cgroup_destroy_locked(cgrp);
4285 mutex_unlock(&cgroup_mutex);
4286 mutex_unlock(&dentry->d_inode->i_mutex);
4287 return err;
4288 }
4289
4290 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
4291 {
4292 struct cgroup *c_parent = dentry->d_parent->d_fsdata;
4293
4294 /* the vfs holds inode->i_mutex already */
4295 return cgroup_create(c_parent, dentry, mode | S_IFDIR);
4296 }
4297
4298 static int cgroup_destroy_locked(struct cgroup *cgrp)
4299 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
4300 {
4301 struct dentry *d = cgrp->dentry;
4302 struct cgroup *parent = cgrp->parent;
4303 struct cgroup_event *event, *tmp;
4304 struct cgroup_subsys *ss;
4305
4306 lockdep_assert_held(&d->d_inode->i_mutex);
4307 lockdep_assert_held(&cgroup_mutex);
4308
4309 if (atomic_read(&cgrp->count) || !list_empty(&cgrp->children))
4310 return -EBUSY;
4311
4312 /*
4313 * Block new css_tryget() by deactivating refcnt and mark @cgrp
4314 * removed. This makes future css_tryget() and child creation
4315 * attempts fail thus maintaining the removal conditions verified
4316 * above.
4317 */
4318 for_each_subsys(cgrp->root, ss) {
4319 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
4320
4321 WARN_ON(atomic_read(&css->refcnt) < 0);
4322 atomic_add(CSS_DEACT_BIAS, &css->refcnt);
4323 }
4324 set_bit(CGRP_REMOVED, &cgrp->flags);
4325
4326 /* tell subsystems to initate destruction */
4327 for_each_subsys(cgrp->root, ss)
4328 offline_css(ss, cgrp);
4329
4330 /*
4331 * Put all the base refs. Each css holds an extra reference to the
4332 * cgroup's dentry and cgroup removal proceeds regardless of css
4333 * refs. On the last put of each css, whenever that may be, the
4334 * extra dentry ref is put so that dentry destruction happens only
4335 * after all css's are released.
4336 */
4337 for_each_subsys(cgrp->root, ss)
4338 css_put(cgrp->subsys[ss->subsys_id]);
4339
4340 raw_spin_lock(&release_list_lock);
4341 if (!list_empty(&cgrp->release_list))
4342 list_del_init(&cgrp->release_list);
4343 raw_spin_unlock(&release_list_lock);
4344
4345 /* delete this cgroup from parent->children */
4346 list_del_rcu(&cgrp->sibling);
4347 list_del_init(&cgrp->allcg_node);
4348
4349 dget(d);
4350 cgroup_d_remove_dir(d);
4351 dput(d);
4352
4353 set_bit(CGRP_RELEASABLE, &parent->flags);
4354 check_for_release(parent);
4355
4356 /*
4357 * Unregister events and notify userspace.
4358 * Notify userspace about cgroup removing only after rmdir of cgroup
4359 * directory to avoid race between userspace and kernelspace.
4360 */
4361 spin_lock(&cgrp->event_list_lock);
4362 list_for_each_entry_safe(event, tmp, &cgrp->event_list, list) {
4363 list_del_init(&event->list);
4364 schedule_work(&event->remove);
4365 }
4366 spin_unlock(&cgrp->event_list_lock);
4367
4368 return 0;
4369 }
4370
4371 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
4372 {
4373 int ret;
4374
4375 mutex_lock(&cgroup_mutex);
4376 ret = cgroup_destroy_locked(dentry->d_fsdata);
4377 mutex_unlock(&cgroup_mutex);
4378
4379 return ret;
4380 }
4381
4382 static void __init_or_module cgroup_init_cftsets(struct cgroup_subsys *ss)
4383 {
4384 INIT_LIST_HEAD(&ss->cftsets);
4385
4386 /*
4387 * base_cftset is embedded in subsys itself, no need to worry about
4388 * deregistration.
4389 */
4390 if (ss->base_cftypes) {
4391 ss->base_cftset.cfts = ss->base_cftypes;
4392 list_add_tail(&ss->base_cftset.node, &ss->cftsets);
4393 }
4394 }
4395
4396 static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
4397 {
4398 struct cgroup_subsys_state *css;
4399
4400 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
4401
4402 mutex_lock(&cgroup_mutex);
4403
4404 /* init base cftset */
4405 cgroup_init_cftsets(ss);
4406
4407 /* Create the top cgroup state for this subsystem */
4408 list_add(&ss->sibling, &rootnode.subsys_list);
4409 ss->root = &rootnode;
4410 css = ss->css_alloc(dummytop);
4411 /* We don't handle early failures gracefully */
4412 BUG_ON(IS_ERR(css));
4413 init_cgroup_css(css, ss, dummytop);
4414
4415 /* Update the init_css_set to contain a subsys
4416 * pointer to this state - since the subsystem is
4417 * newly registered, all tasks and hence the
4418 * init_css_set is in the subsystem's top cgroup. */
4419 init_css_set.subsys[ss->subsys_id] = css;
4420
4421 need_forkexit_callback |= ss->fork || ss->exit;
4422
4423 /* At system boot, before all subsystems have been
4424 * registered, no tasks have been forked, so we don't
4425 * need to invoke fork callbacks here. */
4426 BUG_ON(!list_empty(&init_task.tasks));
4427
4428 ss->active = 1;
4429 BUG_ON(online_css(ss, dummytop));
4430
4431 mutex_unlock(&cgroup_mutex);
4432
4433 /* this function shouldn't be used with modular subsystems, since they
4434 * need to register a subsys_id, among other things */
4435 BUG_ON(ss->module);
4436 }
4437
4438 /**
4439 * cgroup_load_subsys: load and register a modular subsystem at runtime
4440 * @ss: the subsystem to load
4441 *
4442 * This function should be called in a modular subsystem's initcall. If the
4443 * subsystem is built as a module, it will be assigned a new subsys_id and set
4444 * up for use. If the subsystem is built-in anyway, work is delegated to the
4445 * simpler cgroup_init_subsys.
4446 */
4447 int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss)
4448 {
4449 struct cgroup_subsys_state *css;
4450 int i, ret;
4451 struct hlist_node *tmp;
4452 struct css_set *cg;
4453 unsigned long key;
4454
4455 /* check name and function validity */
4456 if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN ||
4457 ss->css_alloc == NULL || ss->css_free == NULL)
4458 return -EINVAL;
4459
4460 /*
4461 * we don't support callbacks in modular subsystems. this check is
4462 * before the ss->module check for consistency; a subsystem that could
4463 * be a module should still have no callbacks even if the user isn't
4464 * compiling it as one.
4465 */
4466 if (ss->fork || ss->exit)
4467 return -EINVAL;
4468
4469 /*
4470 * an optionally modular subsystem is built-in: we want to do nothing,
4471 * since cgroup_init_subsys will have already taken care of it.
4472 */
4473 if (ss->module == NULL) {
4474 /* a sanity check */
4475 BUG_ON(subsys[ss->subsys_id] != ss);
4476 return 0;
4477 }
4478
4479 /* init base cftset */
4480 cgroup_init_cftsets(ss);
4481
4482 mutex_lock(&cgroup_mutex);
4483 subsys[ss->subsys_id] = ss;
4484
4485 /*
4486 * no ss->css_alloc seems to need anything important in the ss
4487 * struct, so this can happen first (i.e. before the rootnode
4488 * attachment).
4489 */
4490 css = ss->css_alloc(dummytop);
4491 if (IS_ERR(css)) {
4492 /* failure case - need to deassign the subsys[] slot. */
4493 subsys[ss->subsys_id] = NULL;
4494 mutex_unlock(&cgroup_mutex);
4495 return PTR_ERR(css);
4496 }
4497
4498 list_add(&ss->sibling, &rootnode.subsys_list);
4499 ss->root = &rootnode;
4500
4501 /* our new subsystem will be attached to the dummy hierarchy. */
4502 init_cgroup_css(css, ss, dummytop);
4503 /* init_idr must be after init_cgroup_css because it sets css->id. */
4504 if (ss->use_id) {
4505 ret = cgroup_init_idr(ss, css);
4506 if (ret)
4507 goto err_unload;
4508 }
4509
4510 /*
4511 * Now we need to entangle the css into the existing css_sets. unlike
4512 * in cgroup_init_subsys, there are now multiple css_sets, so each one
4513 * will need a new pointer to it; done by iterating the css_set_table.
4514 * furthermore, modifying the existing css_sets will corrupt the hash
4515 * table state, so each changed css_set will need its hash recomputed.
4516 * this is all done under the css_set_lock.
4517 */
4518 write_lock(&css_set_lock);
4519 hash_for_each_safe(css_set_table, i, tmp, cg, hlist) {
4520 /* skip entries that we already rehashed */
4521 if (cg->subsys[ss->subsys_id])
4522 continue;
4523 /* remove existing entry */
4524 hash_del(&cg->hlist);
4525 /* set new value */
4526 cg->subsys[ss->subsys_id] = css;
4527 /* recompute hash and restore entry */
4528 key = css_set_hash(cg->subsys);
4529 hash_add(css_set_table, &cg->hlist, key);
4530 }
4531 write_unlock(&css_set_lock);
4532
4533 ss->active = 1;
4534 ret = online_css(ss, dummytop);
4535 if (ret)
4536 goto err_unload;
4537
4538 /* success! */
4539 mutex_unlock(&cgroup_mutex);
4540 return 0;
4541
4542 err_unload:
4543 mutex_unlock(&cgroup_mutex);
4544 /* @ss can't be mounted here as try_module_get() would fail */
4545 cgroup_unload_subsys(ss);
4546 return ret;
4547 }
4548 EXPORT_SYMBOL_GPL(cgroup_load_subsys);
4549
4550 /**
4551 * cgroup_unload_subsys: unload a modular subsystem
4552 * @ss: the subsystem to unload
4553 *
4554 * This function should be called in a modular subsystem's exitcall. When this
4555 * function is invoked, the refcount on the subsystem's module will be 0, so
4556 * the subsystem will not be attached to any hierarchy.
4557 */
4558 void cgroup_unload_subsys(struct cgroup_subsys *ss)
4559 {
4560 struct cg_cgroup_link *link;
4561
4562 BUG_ON(ss->module == NULL);
4563
4564 /*
4565 * we shouldn't be called if the subsystem is in use, and the use of
4566 * try_module_get in parse_cgroupfs_options should ensure that it
4567 * doesn't start being used while we're killing it off.
4568 */
4569 BUG_ON(ss->root != &rootnode);
4570
4571 mutex_lock(&cgroup_mutex);
4572
4573 offline_css(ss, dummytop);
4574 ss->active = 0;
4575
4576 if (ss->use_id)
4577 idr_destroy(&ss->idr);
4578
4579 /* deassign the subsys_id */
4580 subsys[ss->subsys_id] = NULL;
4581
4582 /* remove subsystem from rootnode's list of subsystems */
4583 list_del_init(&ss->sibling);
4584
4585 /*
4586 * disentangle the css from all css_sets attached to the dummytop. as
4587 * in loading, we need to pay our respects to the hashtable gods.
4588 */
4589 write_lock(&css_set_lock);
4590 list_for_each_entry(link, &dummytop->css_sets, cgrp_link_list) {
4591 struct css_set *cg = link->cg;
4592 unsigned long key;
4593
4594 hash_del(&cg->hlist);
4595 cg->subsys[ss->subsys_id] = NULL;
4596 key = css_set_hash(cg->subsys);
4597 hash_add(css_set_table, &cg->hlist, key);
4598 }
4599 write_unlock(&css_set_lock);
4600
4601 /*
4602 * remove subsystem's css from the dummytop and free it - need to
4603 * free before marking as null because ss->css_free needs the
4604 * cgrp->subsys pointer to find their state. note that this also
4605 * takes care of freeing the css_id.
4606 */
4607 ss->css_free(dummytop);
4608 dummytop->subsys[ss->subsys_id] = NULL;
4609
4610 mutex_unlock(&cgroup_mutex);
4611 }
4612 EXPORT_SYMBOL_GPL(cgroup_unload_subsys);
4613
4614 /**
4615 * cgroup_init_early - cgroup initialization at system boot
4616 *
4617 * Initialize cgroups at system boot, and initialize any
4618 * subsystems that request early init.
4619 */
4620 int __init cgroup_init_early(void)
4621 {
4622 int i;
4623 atomic_set(&init_css_set.refcount, 1);
4624 INIT_LIST_HEAD(&init_css_set.cg_links);
4625 INIT_LIST_HEAD(&init_css_set.tasks);
4626 INIT_HLIST_NODE(&init_css_set.hlist);
4627 css_set_count = 1;
4628 init_cgroup_root(&rootnode);
4629 root_count = 1;
4630 init_task.cgroups = &init_css_set;
4631
4632 init_css_set_link.cg = &init_css_set;
4633 init_css_set_link.cgrp = dummytop;
4634 list_add(&init_css_set_link.cgrp_link_list,
4635 &rootnode.top_cgroup.css_sets);
4636 list_add(&init_css_set_link.cg_link_list,
4637 &init_css_set.cg_links);
4638
4639 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4640 struct cgroup_subsys *ss = subsys[i];
4641
4642 /* at bootup time, we don't worry about modular subsystems */
4643 if (!ss || ss->module)
4644 continue;
4645
4646 BUG_ON(!ss->name);
4647 BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
4648 BUG_ON(!ss->css_alloc);
4649 BUG_ON(!ss->css_free);
4650 if (ss->subsys_id != i) {
4651 printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
4652 ss->name, ss->subsys_id);
4653 BUG();
4654 }
4655
4656 if (ss->early_init)
4657 cgroup_init_subsys(ss);
4658 }
4659 return 0;
4660 }
4661
4662 /**
4663 * cgroup_init - cgroup initialization
4664 *
4665 * Register cgroup filesystem and /proc file, and initialize
4666 * any subsystems that didn't request early init.
4667 */
4668 int __init cgroup_init(void)
4669 {
4670 int err;
4671 int i;
4672 unsigned long key;
4673
4674 err = bdi_init(&cgroup_backing_dev_info);
4675 if (err)
4676 return err;
4677
4678 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4679 struct cgroup_subsys *ss = subsys[i];
4680
4681 /* at bootup time, we don't worry about modular subsystems */
4682 if (!ss || ss->module)
4683 continue;
4684 if (!ss->early_init)
4685 cgroup_init_subsys(ss);
4686 if (ss->use_id)
4687 cgroup_init_idr(ss, init_css_set.subsys[ss->subsys_id]);
4688 }
4689
4690 /* Add init_css_set to the hash table */
4691 key = css_set_hash(init_css_set.subsys);
4692 hash_add(css_set_table, &init_css_set.hlist, key);
4693 BUG_ON(!init_root_id(&rootnode));
4694
4695 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
4696 if (!cgroup_kobj) {
4697 err = -ENOMEM;
4698 goto out;
4699 }
4700
4701 err = register_filesystem(&cgroup_fs_type);
4702 if (err < 0) {
4703 kobject_put(cgroup_kobj);
4704 goto out;
4705 }
4706
4707 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
4708
4709 out:
4710 if (err)
4711 bdi_destroy(&cgroup_backing_dev_info);
4712
4713 return err;
4714 }
4715
4716 /*
4717 * proc_cgroup_show()
4718 * - Print task's cgroup paths into seq_file, one line for each hierarchy
4719 * - Used for /proc/<pid>/cgroup.
4720 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
4721 * doesn't really matter if tsk->cgroup changes after we read it,
4722 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
4723 * anyway. No need to check that tsk->cgroup != NULL, thanks to
4724 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
4725 * cgroup to top_cgroup.
4726 */
4727
4728 /* TODO: Use a proper seq_file iterator */
4729 static int proc_cgroup_show(struct seq_file *m, void *v)
4730 {
4731 struct pid *pid;
4732 struct task_struct *tsk;
4733 char *buf;
4734 int retval;
4735 struct cgroupfs_root *root;
4736
4737 retval = -ENOMEM;
4738 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4739 if (!buf)
4740 goto out;
4741
4742 retval = -ESRCH;
4743 pid = m->private;
4744 tsk = get_pid_task(pid, PIDTYPE_PID);
4745 if (!tsk)
4746 goto out_free;
4747
4748 retval = 0;
4749
4750 mutex_lock(&cgroup_mutex);
4751
4752 for_each_active_root(root) {
4753 struct cgroup_subsys *ss;
4754 struct cgroup *cgrp;
4755 int count = 0;
4756
4757 seq_printf(m, "%d:", root->hierarchy_id);
4758 for_each_subsys(root, ss)
4759 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
4760 if (strlen(root->name))
4761 seq_printf(m, "%sname=%s", count ? "," : "",
4762 root->name);
4763 seq_putc(m, ':');
4764 cgrp = task_cgroup_from_root(tsk, root);
4765 retval = cgroup_path(cgrp, buf, PAGE_SIZE);
4766 if (retval < 0)
4767 goto out_unlock;
4768 seq_puts(m, buf);
4769 seq_putc(m, '\n');
4770 }
4771
4772 out_unlock:
4773 mutex_unlock(&cgroup_mutex);
4774 put_task_struct(tsk);
4775 out_free:
4776 kfree(buf);
4777 out:
4778 return retval;
4779 }
4780
4781 static int cgroup_open(struct inode *inode, struct file *file)
4782 {
4783 struct pid *pid = PROC_I(inode)->pid;
4784 return single_open(file, proc_cgroup_show, pid);
4785 }
4786
4787 const struct file_operations proc_cgroup_operations = {
4788 .open = cgroup_open,
4789 .read = seq_read,
4790 .llseek = seq_lseek,
4791 .release = single_release,
4792 };
4793
4794 /* Display information about each subsystem and each hierarchy */
4795 static int proc_cgroupstats_show(struct seq_file *m, void *v)
4796 {
4797 int i;
4798
4799 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
4800 /*
4801 * ideally we don't want subsystems moving around while we do this.
4802 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
4803 * subsys/hierarchy state.
4804 */
4805 mutex_lock(&cgroup_mutex);
4806 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4807 struct cgroup_subsys *ss = subsys[i];
4808 if (ss == NULL)
4809 continue;
4810 seq_printf(m, "%s\t%d\t%d\t%d\n",
4811 ss->name, ss->root->hierarchy_id,
4812 ss->root->number_of_cgroups, !ss->disabled);
4813 }
4814 mutex_unlock(&cgroup_mutex);
4815 return 0;
4816 }
4817
4818 static int cgroupstats_open(struct inode *inode, struct file *file)
4819 {
4820 return single_open(file, proc_cgroupstats_show, NULL);
4821 }
4822
4823 static const struct file_operations proc_cgroupstats_operations = {
4824 .open = cgroupstats_open,
4825 .read = seq_read,
4826 .llseek = seq_lseek,
4827 .release = single_release,
4828 };
4829
4830 /**
4831 * cgroup_fork - attach newly forked task to its parents cgroup.
4832 * @child: pointer to task_struct of forking parent process.
4833 *
4834 * Description: A task inherits its parent's cgroup at fork().
4835 *
4836 * A pointer to the shared css_set was automatically copied in
4837 * fork.c by dup_task_struct(). However, we ignore that copy, since
4838 * it was not made under the protection of RCU or cgroup_mutex, so
4839 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
4840 * have already changed current->cgroups, allowing the previously
4841 * referenced cgroup group to be removed and freed.
4842 *
4843 * At the point that cgroup_fork() is called, 'current' is the parent
4844 * task, and the passed argument 'child' points to the child task.
4845 */
4846 void cgroup_fork(struct task_struct *child)
4847 {
4848 task_lock(current);
4849 child->cgroups = current->cgroups;
4850 get_css_set(child->cgroups);
4851 task_unlock(current);
4852 INIT_LIST_HEAD(&child->cg_list);
4853 }
4854
4855 /**
4856 * cgroup_post_fork - called on a new task after adding it to the task list
4857 * @child: the task in question
4858 *
4859 * Adds the task to the list running through its css_set if necessary and
4860 * call the subsystem fork() callbacks. Has to be after the task is
4861 * visible on the task list in case we race with the first call to
4862 * cgroup_iter_start() - to guarantee that the new task ends up on its
4863 * list.
4864 */
4865 void cgroup_post_fork(struct task_struct *child)
4866 {
4867 int i;
4868
4869 /*
4870 * use_task_css_set_links is set to 1 before we walk the tasklist
4871 * under the tasklist_lock and we read it here after we added the child
4872 * to the tasklist under the tasklist_lock as well. If the child wasn't
4873 * yet in the tasklist when we walked through it from
4874 * cgroup_enable_task_cg_lists(), then use_task_css_set_links value
4875 * should be visible now due to the paired locking and barriers implied
4876 * by LOCK/UNLOCK: it is written before the tasklist_lock unlock
4877 * in cgroup_enable_task_cg_lists() and read here after the tasklist_lock
4878 * lock on fork.
4879 */
4880 if (use_task_css_set_links) {
4881 write_lock(&css_set_lock);
4882 task_lock(child);
4883 if (list_empty(&child->cg_list))
4884 list_add(&child->cg_list, &child->cgroups->tasks);
4885 task_unlock(child);
4886 write_unlock(&css_set_lock);
4887 }
4888
4889 /*
4890 * Call ss->fork(). This must happen after @child is linked on
4891 * css_set; otherwise, @child might change state between ->fork()
4892 * and addition to css_set.
4893 */
4894 if (need_forkexit_callback) {
4895 /*
4896 * fork/exit callbacks are supported only for builtin
4897 * subsystems, and the builtin section of the subsys
4898 * array is immutable, so we don't need to lock the
4899 * subsys array here. On the other hand, modular section
4900 * of the array can be freed at module unload, so we
4901 * can't touch that.
4902 */
4903 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4904 struct cgroup_subsys *ss = subsys[i];
4905
4906 if (ss->fork)
4907 ss->fork(child);
4908 }
4909 }
4910 }
4911
4912 /**
4913 * cgroup_exit - detach cgroup from exiting task
4914 * @tsk: pointer to task_struct of exiting process
4915 * @run_callback: run exit callbacks?
4916 *
4917 * Description: Detach cgroup from @tsk and release it.
4918 *
4919 * Note that cgroups marked notify_on_release force every task in
4920 * them to take the global cgroup_mutex mutex when exiting.
4921 * This could impact scaling on very large systems. Be reluctant to
4922 * use notify_on_release cgroups where very high task exit scaling
4923 * is required on large systems.
4924 *
4925 * the_top_cgroup_hack:
4926 *
4927 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
4928 *
4929 * We call cgroup_exit() while the task is still competent to
4930 * handle notify_on_release(), then leave the task attached to the
4931 * root cgroup in each hierarchy for the remainder of its exit.
4932 *
4933 * To do this properly, we would increment the reference count on
4934 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
4935 * code we would add a second cgroup function call, to drop that
4936 * reference. This would just create an unnecessary hot spot on
4937 * the top_cgroup reference count, to no avail.
4938 *
4939 * Normally, holding a reference to a cgroup without bumping its
4940 * count is unsafe. The cgroup could go away, or someone could
4941 * attach us to a different cgroup, decrementing the count on
4942 * the first cgroup that we never incremented. But in this case,
4943 * top_cgroup isn't going away, and either task has PF_EXITING set,
4944 * which wards off any cgroup_attach_task() attempts, or task is a failed
4945 * fork, never visible to cgroup_attach_task.
4946 */
4947 void cgroup_exit(struct task_struct *tsk, int run_callbacks)
4948 {
4949 struct css_set *cg;
4950 int i;
4951
4952 /*
4953 * Unlink from the css_set task list if necessary.
4954 * Optimistically check cg_list before taking
4955 * css_set_lock
4956 */
4957 if (!list_empty(&tsk->cg_list)) {
4958 write_lock(&css_set_lock);
4959 if (!list_empty(&tsk->cg_list))
4960 list_del_init(&tsk->cg_list);
4961 write_unlock(&css_set_lock);
4962 }
4963
4964 /* Reassign the task to the init_css_set. */
4965 task_lock(tsk);
4966 cg = tsk->cgroups;
4967 tsk->cgroups = &init_css_set;
4968
4969 if (run_callbacks && need_forkexit_callback) {
4970 /*
4971 * fork/exit callbacks are supported only for builtin
4972 * subsystems, see cgroup_post_fork() for details.
4973 */
4974 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4975 struct cgroup_subsys *ss = subsys[i];
4976
4977 if (ss->exit) {
4978 struct cgroup *old_cgrp =
4979 rcu_dereference_raw(cg->subsys[i])->cgroup;
4980 struct cgroup *cgrp = task_cgroup(tsk, i);
4981 ss->exit(cgrp, old_cgrp, tsk);
4982 }
4983 }
4984 }
4985 task_unlock(tsk);
4986
4987 put_css_set_taskexit(cg);
4988 }
4989
4990 static void check_for_release(struct cgroup *cgrp)
4991 {
4992 /* All of these checks rely on RCU to keep the cgroup
4993 * structure alive */
4994 if (cgroup_is_releasable(cgrp) &&
4995 !atomic_read(&cgrp->count) && list_empty(&cgrp->children)) {
4996 /*
4997 * Control Group is currently removeable. If it's not
4998 * already queued for a userspace notification, queue
4999 * it now
5000 */
5001 int need_schedule_work = 0;
5002
5003 raw_spin_lock(&release_list_lock);
5004 if (!cgroup_is_removed(cgrp) &&
5005 list_empty(&cgrp->release_list)) {
5006 list_add(&cgrp->release_list, &release_list);
5007 need_schedule_work = 1;
5008 }
5009 raw_spin_unlock(&release_list_lock);
5010 if (need_schedule_work)
5011 schedule_work(&release_agent_work);
5012 }
5013 }
5014
5015 /* Caller must verify that the css is not for root cgroup */
5016 bool __css_tryget(struct cgroup_subsys_state *css)
5017 {
5018 while (true) {
5019 int t, v;
5020
5021 v = css_refcnt(css);
5022 t = atomic_cmpxchg(&css->refcnt, v, v + 1);
5023 if (likely(t == v))
5024 return true;
5025 else if (t < 0)
5026 return false;
5027 cpu_relax();
5028 }
5029 }
5030 EXPORT_SYMBOL_GPL(__css_tryget);
5031
5032 /* Caller must verify that the css is not for root cgroup */
5033 void __css_put(struct cgroup_subsys_state *css)
5034 {
5035 int v;
5036
5037 v = css_unbias_refcnt(atomic_dec_return(&css->refcnt));
5038 if (v == 0)
5039 schedule_work(&css->dput_work);
5040 }
5041 EXPORT_SYMBOL_GPL(__css_put);
5042
5043 /*
5044 * Notify userspace when a cgroup is released, by running the
5045 * configured release agent with the name of the cgroup (path
5046 * relative to the root of cgroup file system) as the argument.
5047 *
5048 * Most likely, this user command will try to rmdir this cgroup.
5049 *
5050 * This races with the possibility that some other task will be
5051 * attached to this cgroup before it is removed, or that some other
5052 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5053 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5054 * unused, and this cgroup will be reprieved from its death sentence,
5055 * to continue to serve a useful existence. Next time it's released,
5056 * we will get notified again, if it still has 'notify_on_release' set.
5057 *
5058 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5059 * means only wait until the task is successfully execve()'d. The
5060 * separate release agent task is forked by call_usermodehelper(),
5061 * then control in this thread returns here, without waiting for the
5062 * release agent task. We don't bother to wait because the caller of
5063 * this routine has no use for the exit status of the release agent
5064 * task, so no sense holding our caller up for that.
5065 */
5066 static void cgroup_release_agent(struct work_struct *work)
5067 {
5068 BUG_ON(work != &release_agent_work);
5069 mutex_lock(&cgroup_mutex);
5070 raw_spin_lock(&release_list_lock);
5071 while (!list_empty(&release_list)) {
5072 char *argv[3], *envp[3];
5073 int i;
5074 char *pathbuf = NULL, *agentbuf = NULL;
5075 struct cgroup *cgrp = list_entry(release_list.next,
5076 struct cgroup,
5077 release_list);
5078 list_del_init(&cgrp->release_list);
5079 raw_spin_unlock(&release_list_lock);
5080 pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
5081 if (!pathbuf)
5082 goto continue_free;
5083 if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
5084 goto continue_free;
5085 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5086 if (!agentbuf)
5087 goto continue_free;
5088
5089 i = 0;
5090 argv[i++] = agentbuf;
5091 argv[i++] = pathbuf;
5092 argv[i] = NULL;
5093
5094 i = 0;
5095 /* minimal command environment */
5096 envp[i++] = "HOME=/";
5097 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5098 envp[i] = NULL;
5099
5100 /* Drop the lock while we invoke the usermode helper,
5101 * since the exec could involve hitting disk and hence
5102 * be a slow process */
5103 mutex_unlock(&cgroup_mutex);
5104 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
5105 mutex_lock(&cgroup_mutex);
5106 continue_free:
5107 kfree(pathbuf);
5108 kfree(agentbuf);
5109 raw_spin_lock(&release_list_lock);
5110 }
5111 raw_spin_unlock(&release_list_lock);
5112 mutex_unlock(&cgroup_mutex);
5113 }
5114
5115 static int __init cgroup_disable(char *str)
5116 {
5117 int i;
5118 char *token;
5119
5120 while ((token = strsep(&str, ",")) != NULL) {
5121 if (!*token)
5122 continue;
5123 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
5124 struct cgroup_subsys *ss = subsys[i];
5125
5126 /*
5127 * cgroup_disable, being at boot time, can't
5128 * know about module subsystems, so we don't
5129 * worry about them.
5130 */
5131 if (!ss || ss->module)
5132 continue;
5133
5134 if (!strcmp(token, ss->name)) {
5135 ss->disabled = 1;
5136 printk(KERN_INFO "Disabling %s control group"
5137 " subsystem\n", ss->name);
5138 break;
5139 }
5140 }
5141 }
5142 return 1;
5143 }
5144 __setup("cgroup_disable=", cgroup_disable);
5145
5146 /*
5147 * Functons for CSS ID.
5148 */
5149
5150 /*
5151 *To get ID other than 0, this should be called when !cgroup_is_removed().
5152 */
5153 unsigned short css_id(struct cgroup_subsys_state *css)
5154 {
5155 struct css_id *cssid;
5156
5157 /*
5158 * This css_id() can return correct value when somone has refcnt
5159 * on this or this is under rcu_read_lock(). Once css->id is allocated,
5160 * it's unchanged until freed.
5161 */
5162 cssid = rcu_dereference_check(css->id, css_refcnt(css));
5163
5164 if (cssid)
5165 return cssid->id;
5166 return 0;
5167 }
5168 EXPORT_SYMBOL_GPL(css_id);
5169
5170 unsigned short css_depth(struct cgroup_subsys_state *css)
5171 {
5172 struct css_id *cssid;
5173
5174 cssid = rcu_dereference_check(css->id, css_refcnt(css));
5175
5176 if (cssid)
5177 return cssid->depth;
5178 return 0;
5179 }
5180 EXPORT_SYMBOL_GPL(css_depth);
5181
5182 /**
5183 * css_is_ancestor - test "root" css is an ancestor of "child"
5184 * @child: the css to be tested.
5185 * @root: the css supporsed to be an ancestor of the child.
5186 *
5187 * Returns true if "root" is an ancestor of "child" in its hierarchy. Because
5188 * this function reads css->id, the caller must hold rcu_read_lock().
5189 * But, considering usual usage, the csses should be valid objects after test.
5190 * Assuming that the caller will do some action to the child if this returns
5191 * returns true, the caller must take "child";s reference count.
5192 * If "child" is valid object and this returns true, "root" is valid, too.
5193 */
5194
5195 bool css_is_ancestor(struct cgroup_subsys_state *child,
5196 const struct cgroup_subsys_state *root)
5197 {
5198 struct css_id *child_id;
5199 struct css_id *root_id;
5200
5201 child_id = rcu_dereference(child->id);
5202 if (!child_id)
5203 return false;
5204 root_id = rcu_dereference(root->id);
5205 if (!root_id)
5206 return false;
5207 if (child_id->depth < root_id->depth)
5208 return false;
5209 if (child_id->stack[root_id->depth] != root_id->id)
5210 return false;
5211 return true;
5212 }
5213
5214 void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
5215 {
5216 struct css_id *id = css->id;
5217 /* When this is called before css_id initialization, id can be NULL */
5218 if (!id)
5219 return;
5220
5221 BUG_ON(!ss->use_id);
5222
5223 rcu_assign_pointer(id->css, NULL);
5224 rcu_assign_pointer(css->id, NULL);
5225 spin_lock(&ss->id_lock);
5226 idr_remove(&ss->idr, id->id);
5227 spin_unlock(&ss->id_lock);
5228 kfree_rcu(id, rcu_head);
5229 }
5230 EXPORT_SYMBOL_GPL(free_css_id);
5231
5232 /*
5233 * This is called by init or create(). Then, calls to this function are
5234 * always serialized (By cgroup_mutex() at create()).
5235 */
5236
5237 static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
5238 {
5239 struct css_id *newid;
5240 int ret, size;
5241
5242 BUG_ON(!ss->use_id);
5243
5244 size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
5245 newid = kzalloc(size, GFP_KERNEL);
5246 if (!newid)
5247 return ERR_PTR(-ENOMEM);
5248
5249 idr_preload(GFP_KERNEL);
5250 spin_lock(&ss->id_lock);
5251 /* Don't use 0. allocates an ID of 1-65535 */
5252 ret = idr_alloc(&ss->idr, newid, 1, CSS_ID_MAX + 1, GFP_NOWAIT);
5253 spin_unlock(&ss->id_lock);
5254 idr_preload_end();
5255
5256 /* Returns error when there are no free spaces for new ID.*/
5257 if (ret < 0)
5258 goto err_out;
5259
5260 newid->id = ret;
5261 newid->depth = depth;
5262 return newid;
5263 err_out:
5264 kfree(newid);
5265 return ERR_PTR(ret);
5266
5267 }
5268
5269 static int __init_or_module cgroup_init_idr(struct cgroup_subsys *ss,
5270 struct cgroup_subsys_state *rootcss)
5271 {
5272 struct css_id *newid;
5273
5274 spin_lock_init(&ss->id_lock);
5275 idr_init(&ss->idr);
5276
5277 newid = get_new_cssid(ss, 0);
5278 if (IS_ERR(newid))
5279 return PTR_ERR(newid);
5280
5281 newid->stack[0] = newid->id;
5282 newid->css = rootcss;
5283 rootcss->id = newid;
5284 return 0;
5285 }
5286
5287 static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
5288 struct cgroup *child)
5289 {
5290 int subsys_id, i, depth = 0;
5291 struct cgroup_subsys_state *parent_css, *child_css;
5292 struct css_id *child_id, *parent_id;
5293
5294 subsys_id = ss->subsys_id;
5295 parent_css = parent->subsys[subsys_id];
5296 child_css = child->subsys[subsys_id];
5297 parent_id = parent_css->id;
5298 depth = parent_id->depth + 1;
5299
5300 child_id = get_new_cssid(ss, depth);
5301 if (IS_ERR(child_id))
5302 return PTR_ERR(child_id);
5303
5304 for (i = 0; i < depth; i++)
5305 child_id->stack[i] = parent_id->stack[i];
5306 child_id->stack[depth] = child_id->id;
5307 /*
5308 * child_id->css pointer will be set after this cgroup is available
5309 * see cgroup_populate_dir()
5310 */
5311 rcu_assign_pointer(child_css->id, child_id);
5312
5313 return 0;
5314 }
5315
5316 /**
5317 * css_lookup - lookup css by id
5318 * @ss: cgroup subsys to be looked into.
5319 * @id: the id
5320 *
5321 * Returns pointer to cgroup_subsys_state if there is valid one with id.
5322 * NULL if not. Should be called under rcu_read_lock()
5323 */
5324 struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
5325 {
5326 struct css_id *cssid = NULL;
5327
5328 BUG_ON(!ss->use_id);
5329 cssid = idr_find(&ss->idr, id);
5330
5331 if (unlikely(!cssid))
5332 return NULL;
5333
5334 return rcu_dereference(cssid->css);
5335 }
5336 EXPORT_SYMBOL_GPL(css_lookup);
5337
5338 /**
5339 * css_get_next - lookup next cgroup under specified hierarchy.
5340 * @ss: pointer to subsystem
5341 * @id: current position of iteration.
5342 * @root: pointer to css. search tree under this.
5343 * @foundid: position of found object.
5344 *
5345 * Search next css under the specified hierarchy of rootid. Calling under
5346 * rcu_read_lock() is necessary. Returns NULL if it reaches the end.
5347 */
5348 struct cgroup_subsys_state *
5349 css_get_next(struct cgroup_subsys *ss, int id,
5350 struct cgroup_subsys_state *root, int *foundid)
5351 {
5352 struct cgroup_subsys_state *ret = NULL;
5353 struct css_id *tmp;
5354 int tmpid;
5355 int rootid = css_id(root);
5356 int depth = css_depth(root);
5357
5358 if (!rootid)
5359 return NULL;
5360
5361 BUG_ON(!ss->use_id);
5362 WARN_ON_ONCE(!rcu_read_lock_held());
5363
5364 /* fill start point for scan */
5365 tmpid = id;
5366 while (1) {
5367 /*
5368 * scan next entry from bitmap(tree), tmpid is updated after
5369 * idr_get_next().
5370 */
5371 tmp = idr_get_next(&ss->idr, &tmpid);
5372 if (!tmp)
5373 break;
5374 if (tmp->depth >= depth && tmp->stack[depth] == rootid) {
5375 ret = rcu_dereference(tmp->css);
5376 if (ret) {
5377 *foundid = tmpid;
5378 break;
5379 }
5380 }
5381 /* continue to scan from next id */
5382 tmpid = tmpid + 1;
5383 }
5384 return ret;
5385 }
5386
5387 /*
5388 * get corresponding css from file open on cgroupfs directory
5389 */
5390 struct cgroup_subsys_state *cgroup_css_from_dir(struct file *f, int id)
5391 {
5392 struct cgroup *cgrp;
5393 struct inode *inode;
5394 struct cgroup_subsys_state *css;
5395
5396 inode = file_inode(f);
5397 /* check in cgroup filesystem dir */
5398 if (inode->i_op != &cgroup_dir_inode_operations)
5399 return ERR_PTR(-EBADF);
5400
5401 if (id < 0 || id >= CGROUP_SUBSYS_COUNT)
5402 return ERR_PTR(-EINVAL);
5403
5404 /* get cgroup */
5405 cgrp = __d_cgrp(f->f_dentry);
5406 css = cgrp->subsys[id];
5407 return css ? css : ERR_PTR(-ENOENT);
5408 }
5409
5410 #ifdef CONFIG_CGROUP_DEBUG
5411 static struct cgroup_subsys_state *debug_css_alloc(struct cgroup *cont)
5412 {
5413 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5414
5415 if (!css)
5416 return ERR_PTR(-ENOMEM);
5417
5418 return css;
5419 }
5420
5421 static void debug_css_free(struct cgroup *cont)
5422 {
5423 kfree(cont->subsys[debug_subsys_id]);
5424 }
5425
5426 static u64 cgroup_refcount_read(struct cgroup *cont, struct cftype *cft)
5427 {
5428 return atomic_read(&cont->count);
5429 }
5430
5431 static u64 debug_taskcount_read(struct cgroup *cont, struct cftype *cft)
5432 {
5433 return cgroup_task_count(cont);
5434 }
5435
5436 static u64 current_css_set_read(struct cgroup *cont, struct cftype *cft)
5437 {
5438 return (u64)(unsigned long)current->cgroups;
5439 }
5440
5441 static u64 current_css_set_refcount_read(struct cgroup *cont,
5442 struct cftype *cft)
5443 {
5444 u64 count;
5445
5446 rcu_read_lock();
5447 count = atomic_read(&current->cgroups->refcount);
5448 rcu_read_unlock();
5449 return count;
5450 }
5451
5452 static int current_css_set_cg_links_read(struct cgroup *cont,
5453 struct cftype *cft,
5454 struct seq_file *seq)
5455 {
5456 struct cg_cgroup_link *link;
5457 struct css_set *cg;
5458
5459 read_lock(&css_set_lock);
5460 rcu_read_lock();
5461 cg = rcu_dereference(current->cgroups);
5462 list_for_each_entry(link, &cg->cg_links, cg_link_list) {
5463 struct cgroup *c = link->cgrp;
5464 const char *name;
5465
5466 if (c->dentry)
5467 name = c->dentry->d_name.name;
5468 else
5469 name = "?";
5470 seq_printf(seq, "Root %d group %s\n",
5471 c->root->hierarchy_id, name);
5472 }
5473 rcu_read_unlock();
5474 read_unlock(&css_set_lock);
5475 return 0;
5476 }
5477
5478 #define MAX_TASKS_SHOWN_PER_CSS 25
5479 static int cgroup_css_links_read(struct cgroup *cont,
5480 struct cftype *cft,
5481 struct seq_file *seq)
5482 {
5483 struct cg_cgroup_link *link;
5484
5485 read_lock(&css_set_lock);
5486 list_for_each_entry(link, &cont->css_sets, cgrp_link_list) {
5487 struct css_set *cg = link->cg;
5488 struct task_struct *task;
5489 int count = 0;
5490 seq_printf(seq, "css_set %p\n", cg);
5491 list_for_each_entry(task, &cg->tasks, cg_list) {
5492 if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
5493 seq_puts(seq, " ...\n");
5494 break;
5495 } else {
5496 seq_printf(seq, " task %d\n",
5497 task_pid_vnr(task));
5498 }
5499 }
5500 }
5501 read_unlock(&css_set_lock);
5502 return 0;
5503 }
5504
5505 static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft)
5506 {
5507 return test_bit(CGRP_RELEASABLE, &cgrp->flags);
5508 }
5509
5510 static struct cftype debug_files[] = {
5511 {
5512 .name = "cgroup_refcount",
5513 .read_u64 = cgroup_refcount_read,
5514 },
5515 {
5516 .name = "taskcount",
5517 .read_u64 = debug_taskcount_read,
5518 },
5519
5520 {
5521 .name = "current_css_set",
5522 .read_u64 = current_css_set_read,
5523 },
5524
5525 {
5526 .name = "current_css_set_refcount",
5527 .read_u64 = current_css_set_refcount_read,
5528 },
5529
5530 {
5531 .name = "current_css_set_cg_links",
5532 .read_seq_string = current_css_set_cg_links_read,
5533 },
5534
5535 {
5536 .name = "cgroup_css_links",
5537 .read_seq_string = cgroup_css_links_read,
5538 },
5539
5540 {
5541 .name = "releasable",
5542 .read_u64 = releasable_read,
5543 },
5544
5545 { } /* terminate */
5546 };
5547
5548 struct cgroup_subsys debug_subsys = {
5549 .name = "debug",
5550 .css_alloc = debug_css_alloc,
5551 .css_free = debug_css_free,
5552 .subsys_id = debug_subsys_id,
5553 .base_cftypes = debug_files,
5554 };
5555 #endif /* CONFIG_CGROUP_DEBUG */
This page took 0.197075 seconds and 6 git commands to generate.