cgroup: remove duplicate code in find_css_set()
[deliverable/linux.git] / kernel / cgroup.c
1 /*
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
7 * Copyright notices from the original cpuset code:
8 * --------------------------------------------------
9 * Copyright (C) 2003 BULL SA.
10 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
11 *
12 * Portions derived from Patrick Mochel's sysfs code.
13 * sysfs is Copyright (c) 2001-3 Patrick Mochel
14 *
15 * 2003-10-10 Written by Simon Derr.
16 * 2003-10-22 Updates by Stephen Hemminger.
17 * 2004 May-July Rework by Paul Jackson.
18 * ---------------------------------------------------
19 *
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
23 */
24
25 #include <linux/cgroup.h>
26 #include <linux/errno.h>
27 #include <linux/fs.h>
28 #include <linux/kernel.h>
29 #include <linux/list.h>
30 #include <linux/mm.h>
31 #include <linux/mutex.h>
32 #include <linux/mount.h>
33 #include <linux/pagemap.h>
34 #include <linux/proc_fs.h>
35 #include <linux/rcupdate.h>
36 #include <linux/sched.h>
37 #include <linux/backing-dev.h>
38 #include <linux/seq_file.h>
39 #include <linux/slab.h>
40 #include <linux/magic.h>
41 #include <linux/spinlock.h>
42 #include <linux/string.h>
43 #include <linux/sort.h>
44 #include <linux/kmod.h>
45 #include <linux/delayacct.h>
46 #include <linux/cgroupstats.h>
47
48 #include <asm/atomic.h>
49
50 static DEFINE_MUTEX(cgroup_mutex);
51
52 /* Generate an array of cgroup subsystem pointers */
53 #define SUBSYS(_x) &_x ## _subsys,
54
55 static struct cgroup_subsys *subsys[] = {
56 #include <linux/cgroup_subsys.h>
57 };
58
59 /*
60 * A cgroupfs_root represents the root of a cgroup hierarchy,
61 * and may be associated with a superblock to form an active
62 * hierarchy
63 */
64 struct cgroupfs_root {
65 struct super_block *sb;
66
67 /*
68 * The bitmask of subsystems intended to be attached to this
69 * hierarchy
70 */
71 unsigned long subsys_bits;
72
73 /* The bitmask of subsystems currently attached to this hierarchy */
74 unsigned long actual_subsys_bits;
75
76 /* A list running through the attached subsystems */
77 struct list_head subsys_list;
78
79 /* The root cgroup for this hierarchy */
80 struct cgroup top_cgroup;
81
82 /* Tracks how many cgroups are currently defined in hierarchy.*/
83 int number_of_cgroups;
84
85 /* A list running through the mounted hierarchies */
86 struct list_head root_list;
87
88 /* Hierarchy-specific flags */
89 unsigned long flags;
90
91 /* The path to use for release notifications. No locking
92 * between setting and use - so if userspace updates this
93 * while child cgroups exist, you could miss a
94 * notification. We ensure that it's always a valid
95 * NUL-terminated string */
96 char release_agent_path[PATH_MAX];
97 };
98
99
100 /*
101 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
102 * subsystems that are otherwise unattached - it never has more than a
103 * single cgroup, and all tasks are part of that cgroup.
104 */
105 static struct cgroupfs_root rootnode;
106
107 /* The list of hierarchy roots */
108
109 static LIST_HEAD(roots);
110 static int root_count;
111
112 /* dummytop is a shorthand for the dummy hierarchy's top cgroup */
113 #define dummytop (&rootnode.top_cgroup)
114
115 /* This flag indicates whether tasks in the fork and exit paths should
116 * check for fork/exit handlers to call. This avoids us having to do
117 * extra work in the fork/exit path if none of the subsystems need to
118 * be called.
119 */
120 static int need_forkexit_callback;
121
122 /* bits in struct cgroup flags field */
123 enum {
124 /* Control Group is dead */
125 CGRP_REMOVED,
126 /* Control Group has previously had a child cgroup or a task,
127 * but no longer (only if CGRP_NOTIFY_ON_RELEASE is set) */
128 CGRP_RELEASABLE,
129 /* Control Group requires release notifications to userspace */
130 CGRP_NOTIFY_ON_RELEASE,
131 };
132
133 /* convenient tests for these bits */
134 inline int cgroup_is_removed(const struct cgroup *cgrp)
135 {
136 return test_bit(CGRP_REMOVED, &cgrp->flags);
137 }
138
139 /* bits in struct cgroupfs_root flags field */
140 enum {
141 ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
142 };
143
144 static int cgroup_is_releasable(const struct cgroup *cgrp)
145 {
146 const int bits =
147 (1 << CGRP_RELEASABLE) |
148 (1 << CGRP_NOTIFY_ON_RELEASE);
149 return (cgrp->flags & bits) == bits;
150 }
151
152 static int notify_on_release(const struct cgroup *cgrp)
153 {
154 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
155 }
156
157 /*
158 * for_each_subsys() allows you to iterate on each subsystem attached to
159 * an active hierarchy
160 */
161 #define for_each_subsys(_root, _ss) \
162 list_for_each_entry(_ss, &_root->subsys_list, sibling)
163
164 /* for_each_root() allows you to iterate across the active hierarchies */
165 #define for_each_root(_root) \
166 list_for_each_entry(_root, &roots, root_list)
167
168 /* the list of cgroups eligible for automatic release. Protected by
169 * release_list_lock */
170 static LIST_HEAD(release_list);
171 static DEFINE_SPINLOCK(release_list_lock);
172 static void cgroup_release_agent(struct work_struct *work);
173 static DECLARE_WORK(release_agent_work, cgroup_release_agent);
174 static void check_for_release(struct cgroup *cgrp);
175
176 /* Link structure for associating css_set objects with cgroups */
177 struct cg_cgroup_link {
178 /*
179 * List running through cg_cgroup_links associated with a
180 * cgroup, anchored on cgroup->css_sets
181 */
182 struct list_head cgrp_link_list;
183 /*
184 * List running through cg_cgroup_links pointing at a
185 * single css_set object, anchored on css_set->cg_links
186 */
187 struct list_head cg_link_list;
188 struct css_set *cg;
189 };
190
191 /* The default css_set - used by init and its children prior to any
192 * hierarchies being mounted. It contains a pointer to the root state
193 * for each subsystem. Also used to anchor the list of css_sets. Not
194 * reference-counted, to improve performance when child cgroups
195 * haven't been created.
196 */
197
198 static struct css_set init_css_set;
199 static struct cg_cgroup_link init_css_set_link;
200
201 /* css_set_lock protects the list of css_set objects, and the
202 * chain of tasks off each css_set. Nests outside task->alloc_lock
203 * due to cgroup_iter_start() */
204 static DEFINE_RWLOCK(css_set_lock);
205 static int css_set_count;
206
207 /* We don't maintain the lists running through each css_set to its
208 * task until after the first call to cgroup_iter_start(). This
209 * reduces the fork()/exit() overhead for people who have cgroups
210 * compiled into their kernel but not actually in use */
211 static int use_task_css_set_links;
212
213 /* When we create or destroy a css_set, the operation simply
214 * takes/releases a reference count on all the cgroups referenced
215 * by subsystems in this css_set. This can end up multiple-counting
216 * some cgroups, but that's OK - the ref-count is just a
217 * busy/not-busy indicator; ensuring that we only count each cgroup
218 * once would require taking a global lock to ensure that no
219 * subsystems moved between hierarchies while we were doing so.
220 *
221 * Possible TODO: decide at boot time based on the number of
222 * registered subsystems and the number of CPUs or NUMA nodes whether
223 * it's better for performance to ref-count every subsystem, or to
224 * take a global lock and only add one ref count to each hierarchy.
225 */
226
227 /*
228 * unlink a css_set from the list and free it
229 */
230 static void unlink_css_set(struct css_set *cg)
231 {
232 write_lock(&css_set_lock);
233 list_del(&cg->list);
234 css_set_count--;
235 while (!list_empty(&cg->cg_links)) {
236 struct cg_cgroup_link *link;
237 link = list_entry(cg->cg_links.next,
238 struct cg_cgroup_link, cg_link_list);
239 list_del(&link->cg_link_list);
240 list_del(&link->cgrp_link_list);
241 kfree(link);
242 }
243 write_unlock(&css_set_lock);
244 }
245
246 static void __release_css_set(struct kref *k, int taskexit)
247 {
248 int i;
249 struct css_set *cg = container_of(k, struct css_set, ref);
250
251 unlink_css_set(cg);
252
253 rcu_read_lock();
254 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
255 struct cgroup *cgrp = cg->subsys[i]->cgroup;
256 if (atomic_dec_and_test(&cgrp->count) &&
257 notify_on_release(cgrp)) {
258 if (taskexit)
259 set_bit(CGRP_RELEASABLE, &cgrp->flags);
260 check_for_release(cgrp);
261 }
262 }
263 rcu_read_unlock();
264 kfree(cg);
265 }
266
267 static void release_css_set(struct kref *k)
268 {
269 __release_css_set(k, 0);
270 }
271
272 static void release_css_set_taskexit(struct kref *k)
273 {
274 __release_css_set(k, 1);
275 }
276
277 /*
278 * refcounted get/put for css_set objects
279 */
280 static inline void get_css_set(struct css_set *cg)
281 {
282 kref_get(&cg->ref);
283 }
284
285 static inline void put_css_set(struct css_set *cg)
286 {
287 kref_put(&cg->ref, release_css_set);
288 }
289
290 static inline void put_css_set_taskexit(struct css_set *cg)
291 {
292 kref_put(&cg->ref, release_css_set_taskexit);
293 }
294
295 /*
296 * find_existing_css_set() is a helper for
297 * find_css_set(), and checks to see whether an existing
298 * css_set is suitable. This currently walks a linked-list for
299 * simplicity; a later patch will use a hash table for better
300 * performance
301 *
302 * oldcg: the cgroup group that we're using before the cgroup
303 * transition
304 *
305 * cgrp: the cgroup that we're moving into
306 *
307 * template: location in which to build the desired set of subsystem
308 * state objects for the new cgroup group
309 */
310 static struct css_set *find_existing_css_set(
311 struct css_set *oldcg,
312 struct cgroup *cgrp,
313 struct cgroup_subsys_state *template[])
314 {
315 int i;
316 struct cgroupfs_root *root = cgrp->root;
317 struct list_head *l = &init_css_set.list;
318
319 /* Built the set of subsystem state objects that we want to
320 * see in the new css_set */
321 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
322 if (root->subsys_bits & (1UL << i)) {
323 /* Subsystem is in this hierarchy. So we want
324 * the subsystem state from the new
325 * cgroup */
326 template[i] = cgrp->subsys[i];
327 } else {
328 /* Subsystem is not in this hierarchy, so we
329 * don't want to change the subsystem state */
330 template[i] = oldcg->subsys[i];
331 }
332 }
333
334 /* Look through existing cgroup groups to find one to reuse */
335 do {
336 struct css_set *cg =
337 list_entry(l, struct css_set, list);
338
339 if (!memcmp(template, cg->subsys, sizeof(cg->subsys))) {
340 /* All subsystems matched */
341 return cg;
342 }
343 /* Try the next cgroup group */
344 l = l->next;
345 } while (l != &init_css_set.list);
346
347 /* No existing cgroup group matched */
348 return NULL;
349 }
350
351 /*
352 * allocate_cg_links() allocates "count" cg_cgroup_link structures
353 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
354 * success or a negative error
355 */
356 static int allocate_cg_links(int count, struct list_head *tmp)
357 {
358 struct cg_cgroup_link *link;
359 int i;
360 INIT_LIST_HEAD(tmp);
361 for (i = 0; i < count; i++) {
362 link = kmalloc(sizeof(*link), GFP_KERNEL);
363 if (!link) {
364 while (!list_empty(tmp)) {
365 link = list_entry(tmp->next,
366 struct cg_cgroup_link,
367 cgrp_link_list);
368 list_del(&link->cgrp_link_list);
369 kfree(link);
370 }
371 return -ENOMEM;
372 }
373 list_add(&link->cgrp_link_list, tmp);
374 }
375 return 0;
376 }
377
378 static void free_cg_links(struct list_head *tmp)
379 {
380 while (!list_empty(tmp)) {
381 struct cg_cgroup_link *link;
382 link = list_entry(tmp->next,
383 struct cg_cgroup_link,
384 cgrp_link_list);
385 list_del(&link->cgrp_link_list);
386 kfree(link);
387 }
388 }
389
390 /*
391 * find_css_set() takes an existing cgroup group and a
392 * cgroup object, and returns a css_set object that's
393 * equivalent to the old group, but with the given cgroup
394 * substituted into the appropriate hierarchy. Must be called with
395 * cgroup_mutex held
396 */
397 static struct css_set *find_css_set(
398 struct css_set *oldcg, struct cgroup *cgrp)
399 {
400 struct css_set *res;
401 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
402 int i;
403
404 struct list_head tmp_cg_links;
405 struct cg_cgroup_link *link;
406
407 /* First see if we already have a cgroup group that matches
408 * the desired set */
409 write_lock(&css_set_lock);
410 res = find_existing_css_set(oldcg, cgrp, template);
411 if (res)
412 get_css_set(res);
413 write_unlock(&css_set_lock);
414
415 if (res)
416 return res;
417
418 res = kmalloc(sizeof(*res), GFP_KERNEL);
419 if (!res)
420 return NULL;
421
422 /* Allocate all the cg_cgroup_link objects that we'll need */
423 if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
424 kfree(res);
425 return NULL;
426 }
427
428 kref_init(&res->ref);
429 INIT_LIST_HEAD(&res->cg_links);
430 INIT_LIST_HEAD(&res->tasks);
431
432 /* Copy the set of subsystem state objects generated in
433 * find_existing_css_set() */
434 memcpy(res->subsys, template, sizeof(res->subsys));
435
436 write_lock(&css_set_lock);
437 /* Add reference counts and links from the new css_set. */
438 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
439 struct cgroup *cgrp = res->subsys[i]->cgroup;
440 struct cgroup_subsys *ss = subsys[i];
441 atomic_inc(&cgrp->count);
442 /*
443 * We want to add a link once per cgroup, so we
444 * only do it for the first subsystem in each
445 * hierarchy
446 */
447 if (ss->root->subsys_list.next == &ss->sibling) {
448 BUG_ON(list_empty(&tmp_cg_links));
449 link = list_entry(tmp_cg_links.next,
450 struct cg_cgroup_link,
451 cgrp_link_list);
452 list_del(&link->cgrp_link_list);
453 list_add(&link->cgrp_link_list, &cgrp->css_sets);
454 link->cg = res;
455 list_add(&link->cg_link_list, &res->cg_links);
456 }
457 }
458 if (list_empty(&rootnode.subsys_list)) {
459 link = list_entry(tmp_cg_links.next,
460 struct cg_cgroup_link,
461 cgrp_link_list);
462 list_del(&link->cgrp_link_list);
463 list_add(&link->cgrp_link_list, &dummytop->css_sets);
464 link->cg = res;
465 list_add(&link->cg_link_list, &res->cg_links);
466 }
467
468 BUG_ON(!list_empty(&tmp_cg_links));
469
470 /* Link this cgroup group into the list */
471 list_add(&res->list, &init_css_set.list);
472 css_set_count++;
473 write_unlock(&css_set_lock);
474
475 return res;
476 }
477
478 /*
479 * There is one global cgroup mutex. We also require taking
480 * task_lock() when dereferencing a task's cgroup subsys pointers.
481 * See "The task_lock() exception", at the end of this comment.
482 *
483 * A task must hold cgroup_mutex to modify cgroups.
484 *
485 * Any task can increment and decrement the count field without lock.
486 * So in general, code holding cgroup_mutex can't rely on the count
487 * field not changing. However, if the count goes to zero, then only
488 * cgroup_attach_task() can increment it again. Because a count of zero
489 * means that no tasks are currently attached, therefore there is no
490 * way a task attached to that cgroup can fork (the other way to
491 * increment the count). So code holding cgroup_mutex can safely
492 * assume that if the count is zero, it will stay zero. Similarly, if
493 * a task holds cgroup_mutex on a cgroup with zero count, it
494 * knows that the cgroup won't be removed, as cgroup_rmdir()
495 * needs that mutex.
496 *
497 * The cgroup_common_file_write handler for operations that modify
498 * the cgroup hierarchy holds cgroup_mutex across the entire operation,
499 * single threading all such cgroup modifications across the system.
500 *
501 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
502 * (usually) take cgroup_mutex. These are the two most performance
503 * critical pieces of code here. The exception occurs on cgroup_exit(),
504 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
505 * is taken, and if the cgroup count is zero, a usermode call made
506 * to the release agent with the name of the cgroup (path relative to
507 * the root of cgroup file system) as the argument.
508 *
509 * A cgroup can only be deleted if both its 'count' of using tasks
510 * is zero, and its list of 'children' cgroups is empty. Since all
511 * tasks in the system use _some_ cgroup, and since there is always at
512 * least one task in the system (init, pid == 1), therefore, top_cgroup
513 * always has either children cgroups and/or using tasks. So we don't
514 * need a special hack to ensure that top_cgroup cannot be deleted.
515 *
516 * The task_lock() exception
517 *
518 * The need for this exception arises from the action of
519 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
520 * another. It does so using cgroup_mutex, however there are
521 * several performance critical places that need to reference
522 * task->cgroup without the expense of grabbing a system global
523 * mutex. Therefore except as noted below, when dereferencing or, as
524 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
525 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
526 * the task_struct routinely used for such matters.
527 *
528 * P.S. One more locking exception. RCU is used to guard the
529 * update of a tasks cgroup pointer by cgroup_attach_task()
530 */
531
532 /**
533 * cgroup_lock - lock out any changes to cgroup structures
534 *
535 */
536 void cgroup_lock(void)
537 {
538 mutex_lock(&cgroup_mutex);
539 }
540
541 /**
542 * cgroup_unlock - release lock on cgroup changes
543 *
544 * Undo the lock taken in a previous cgroup_lock() call.
545 */
546 void cgroup_unlock(void)
547 {
548 mutex_unlock(&cgroup_mutex);
549 }
550
551 /*
552 * A couple of forward declarations required, due to cyclic reference loop:
553 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
554 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
555 * -> cgroup_mkdir.
556 */
557
558 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode);
559 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
560 static int cgroup_populate_dir(struct cgroup *cgrp);
561 static struct inode_operations cgroup_dir_inode_operations;
562 static struct file_operations proc_cgroupstats_operations;
563
564 static struct backing_dev_info cgroup_backing_dev_info = {
565 .capabilities = BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK,
566 };
567
568 static struct inode *cgroup_new_inode(mode_t mode, struct super_block *sb)
569 {
570 struct inode *inode = new_inode(sb);
571
572 if (inode) {
573 inode->i_mode = mode;
574 inode->i_uid = current->fsuid;
575 inode->i_gid = current->fsgid;
576 inode->i_blocks = 0;
577 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
578 inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
579 }
580 return inode;
581 }
582
583 /*
584 * Call subsys's pre_destroy handler.
585 * This is called before css refcnt check.
586 */
587 static void cgroup_call_pre_destroy(struct cgroup *cgrp)
588 {
589 struct cgroup_subsys *ss;
590 for_each_subsys(cgrp->root, ss)
591 if (ss->pre_destroy && cgrp->subsys[ss->subsys_id])
592 ss->pre_destroy(ss, cgrp);
593 return;
594 }
595
596 static void cgroup_diput(struct dentry *dentry, struct inode *inode)
597 {
598 /* is dentry a directory ? if so, kfree() associated cgroup */
599 if (S_ISDIR(inode->i_mode)) {
600 struct cgroup *cgrp = dentry->d_fsdata;
601 struct cgroup_subsys *ss;
602 BUG_ON(!(cgroup_is_removed(cgrp)));
603 /* It's possible for external users to be holding css
604 * reference counts on a cgroup; css_put() needs to
605 * be able to access the cgroup after decrementing
606 * the reference count in order to know if it needs to
607 * queue the cgroup to be handled by the release
608 * agent */
609 synchronize_rcu();
610
611 mutex_lock(&cgroup_mutex);
612 /*
613 * Release the subsystem state objects.
614 */
615 for_each_subsys(cgrp->root, ss) {
616 if (cgrp->subsys[ss->subsys_id])
617 ss->destroy(ss, cgrp);
618 }
619
620 cgrp->root->number_of_cgroups--;
621 mutex_unlock(&cgroup_mutex);
622
623 /* Drop the active superblock reference that we took when we
624 * created the cgroup */
625 deactivate_super(cgrp->root->sb);
626
627 kfree(cgrp);
628 }
629 iput(inode);
630 }
631
632 static void remove_dir(struct dentry *d)
633 {
634 struct dentry *parent = dget(d->d_parent);
635
636 d_delete(d);
637 simple_rmdir(parent->d_inode, d);
638 dput(parent);
639 }
640
641 static void cgroup_clear_directory(struct dentry *dentry)
642 {
643 struct list_head *node;
644
645 BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
646 spin_lock(&dcache_lock);
647 node = dentry->d_subdirs.next;
648 while (node != &dentry->d_subdirs) {
649 struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
650 list_del_init(node);
651 if (d->d_inode) {
652 /* This should never be called on a cgroup
653 * directory with child cgroups */
654 BUG_ON(d->d_inode->i_mode & S_IFDIR);
655 d = dget_locked(d);
656 spin_unlock(&dcache_lock);
657 d_delete(d);
658 simple_unlink(dentry->d_inode, d);
659 dput(d);
660 spin_lock(&dcache_lock);
661 }
662 node = dentry->d_subdirs.next;
663 }
664 spin_unlock(&dcache_lock);
665 }
666
667 /*
668 * NOTE : the dentry must have been dget()'ed
669 */
670 static void cgroup_d_remove_dir(struct dentry *dentry)
671 {
672 cgroup_clear_directory(dentry);
673
674 spin_lock(&dcache_lock);
675 list_del_init(&dentry->d_u.d_child);
676 spin_unlock(&dcache_lock);
677 remove_dir(dentry);
678 }
679
680 static int rebind_subsystems(struct cgroupfs_root *root,
681 unsigned long final_bits)
682 {
683 unsigned long added_bits, removed_bits;
684 struct cgroup *cgrp = &root->top_cgroup;
685 int i;
686
687 removed_bits = root->actual_subsys_bits & ~final_bits;
688 added_bits = final_bits & ~root->actual_subsys_bits;
689 /* Check that any added subsystems are currently free */
690 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
691 unsigned long bit = 1UL << i;
692 struct cgroup_subsys *ss = subsys[i];
693 if (!(bit & added_bits))
694 continue;
695 if (ss->root != &rootnode) {
696 /* Subsystem isn't free */
697 return -EBUSY;
698 }
699 }
700
701 /* Currently we don't handle adding/removing subsystems when
702 * any child cgroups exist. This is theoretically supportable
703 * but involves complex error handling, so it's being left until
704 * later */
705 if (!list_empty(&cgrp->children))
706 return -EBUSY;
707
708 /* Process each subsystem */
709 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
710 struct cgroup_subsys *ss = subsys[i];
711 unsigned long bit = 1UL << i;
712 if (bit & added_bits) {
713 /* We're binding this subsystem to this hierarchy */
714 BUG_ON(cgrp->subsys[i]);
715 BUG_ON(!dummytop->subsys[i]);
716 BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
717 cgrp->subsys[i] = dummytop->subsys[i];
718 cgrp->subsys[i]->cgroup = cgrp;
719 list_add(&ss->sibling, &root->subsys_list);
720 rcu_assign_pointer(ss->root, root);
721 if (ss->bind)
722 ss->bind(ss, cgrp);
723
724 } else if (bit & removed_bits) {
725 /* We're removing this subsystem */
726 BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
727 BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
728 if (ss->bind)
729 ss->bind(ss, dummytop);
730 dummytop->subsys[i]->cgroup = dummytop;
731 cgrp->subsys[i] = NULL;
732 rcu_assign_pointer(subsys[i]->root, &rootnode);
733 list_del(&ss->sibling);
734 } else if (bit & final_bits) {
735 /* Subsystem state should already exist */
736 BUG_ON(!cgrp->subsys[i]);
737 } else {
738 /* Subsystem state shouldn't exist */
739 BUG_ON(cgrp->subsys[i]);
740 }
741 }
742 root->subsys_bits = root->actual_subsys_bits = final_bits;
743 synchronize_rcu();
744
745 return 0;
746 }
747
748 static int cgroup_show_options(struct seq_file *seq, struct vfsmount *vfs)
749 {
750 struct cgroupfs_root *root = vfs->mnt_sb->s_fs_info;
751 struct cgroup_subsys *ss;
752
753 mutex_lock(&cgroup_mutex);
754 for_each_subsys(root, ss)
755 seq_printf(seq, ",%s", ss->name);
756 if (test_bit(ROOT_NOPREFIX, &root->flags))
757 seq_puts(seq, ",noprefix");
758 if (strlen(root->release_agent_path))
759 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
760 mutex_unlock(&cgroup_mutex);
761 return 0;
762 }
763
764 struct cgroup_sb_opts {
765 unsigned long subsys_bits;
766 unsigned long flags;
767 char *release_agent;
768 };
769
770 /* Convert a hierarchy specifier into a bitmask of subsystems and
771 * flags. */
772 static int parse_cgroupfs_options(char *data,
773 struct cgroup_sb_opts *opts)
774 {
775 char *token, *o = data ?: "all";
776
777 opts->subsys_bits = 0;
778 opts->flags = 0;
779 opts->release_agent = NULL;
780
781 while ((token = strsep(&o, ",")) != NULL) {
782 if (!*token)
783 return -EINVAL;
784 if (!strcmp(token, "all")) {
785 opts->subsys_bits = (1 << CGROUP_SUBSYS_COUNT) - 1;
786 } else if (!strcmp(token, "noprefix")) {
787 set_bit(ROOT_NOPREFIX, &opts->flags);
788 } else if (!strncmp(token, "release_agent=", 14)) {
789 /* Specifying two release agents is forbidden */
790 if (opts->release_agent)
791 return -EINVAL;
792 opts->release_agent = kzalloc(PATH_MAX, GFP_KERNEL);
793 if (!opts->release_agent)
794 return -ENOMEM;
795 strncpy(opts->release_agent, token + 14, PATH_MAX - 1);
796 opts->release_agent[PATH_MAX - 1] = 0;
797 } else {
798 struct cgroup_subsys *ss;
799 int i;
800 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
801 ss = subsys[i];
802 if (!strcmp(token, ss->name)) {
803 set_bit(i, &opts->subsys_bits);
804 break;
805 }
806 }
807 if (i == CGROUP_SUBSYS_COUNT)
808 return -ENOENT;
809 }
810 }
811
812 /* We can't have an empty hierarchy */
813 if (!opts->subsys_bits)
814 return -EINVAL;
815
816 return 0;
817 }
818
819 static int cgroup_remount(struct super_block *sb, int *flags, char *data)
820 {
821 int ret = 0;
822 struct cgroupfs_root *root = sb->s_fs_info;
823 struct cgroup *cgrp = &root->top_cgroup;
824 struct cgroup_sb_opts opts;
825
826 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
827 mutex_lock(&cgroup_mutex);
828
829 /* See what subsystems are wanted */
830 ret = parse_cgroupfs_options(data, &opts);
831 if (ret)
832 goto out_unlock;
833
834 /* Don't allow flags to change at remount */
835 if (opts.flags != root->flags) {
836 ret = -EINVAL;
837 goto out_unlock;
838 }
839
840 ret = rebind_subsystems(root, opts.subsys_bits);
841
842 /* (re)populate subsystem files */
843 if (!ret)
844 cgroup_populate_dir(cgrp);
845
846 if (opts.release_agent)
847 strcpy(root->release_agent_path, opts.release_agent);
848 out_unlock:
849 if (opts.release_agent)
850 kfree(opts.release_agent);
851 mutex_unlock(&cgroup_mutex);
852 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
853 return ret;
854 }
855
856 static struct super_operations cgroup_ops = {
857 .statfs = simple_statfs,
858 .drop_inode = generic_delete_inode,
859 .show_options = cgroup_show_options,
860 .remount_fs = cgroup_remount,
861 };
862
863 static void init_cgroup_root(struct cgroupfs_root *root)
864 {
865 struct cgroup *cgrp = &root->top_cgroup;
866 INIT_LIST_HEAD(&root->subsys_list);
867 INIT_LIST_HEAD(&root->root_list);
868 root->number_of_cgroups = 1;
869 cgrp->root = root;
870 cgrp->top_cgroup = cgrp;
871 INIT_LIST_HEAD(&cgrp->sibling);
872 INIT_LIST_HEAD(&cgrp->children);
873 INIT_LIST_HEAD(&cgrp->css_sets);
874 INIT_LIST_HEAD(&cgrp->release_list);
875 }
876
877 static int cgroup_test_super(struct super_block *sb, void *data)
878 {
879 struct cgroupfs_root *new = data;
880 struct cgroupfs_root *root = sb->s_fs_info;
881
882 /* First check subsystems */
883 if (new->subsys_bits != root->subsys_bits)
884 return 0;
885
886 /* Next check flags */
887 if (new->flags != root->flags)
888 return 0;
889
890 return 1;
891 }
892
893 static int cgroup_set_super(struct super_block *sb, void *data)
894 {
895 int ret;
896 struct cgroupfs_root *root = data;
897
898 ret = set_anon_super(sb, NULL);
899 if (ret)
900 return ret;
901
902 sb->s_fs_info = root;
903 root->sb = sb;
904
905 sb->s_blocksize = PAGE_CACHE_SIZE;
906 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
907 sb->s_magic = CGROUP_SUPER_MAGIC;
908 sb->s_op = &cgroup_ops;
909
910 return 0;
911 }
912
913 static int cgroup_get_rootdir(struct super_block *sb)
914 {
915 struct inode *inode =
916 cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
917 struct dentry *dentry;
918
919 if (!inode)
920 return -ENOMEM;
921
922 inode->i_op = &simple_dir_inode_operations;
923 inode->i_fop = &simple_dir_operations;
924 inode->i_op = &cgroup_dir_inode_operations;
925 /* directories start off with i_nlink == 2 (for "." entry) */
926 inc_nlink(inode);
927 dentry = d_alloc_root(inode);
928 if (!dentry) {
929 iput(inode);
930 return -ENOMEM;
931 }
932 sb->s_root = dentry;
933 return 0;
934 }
935
936 static int cgroup_get_sb(struct file_system_type *fs_type,
937 int flags, const char *unused_dev_name,
938 void *data, struct vfsmount *mnt)
939 {
940 struct cgroup_sb_opts opts;
941 int ret = 0;
942 struct super_block *sb;
943 struct cgroupfs_root *root;
944 struct list_head tmp_cg_links, *l;
945 INIT_LIST_HEAD(&tmp_cg_links);
946
947 /* First find the desired set of subsystems */
948 ret = parse_cgroupfs_options(data, &opts);
949 if (ret) {
950 if (opts.release_agent)
951 kfree(opts.release_agent);
952 return ret;
953 }
954
955 root = kzalloc(sizeof(*root), GFP_KERNEL);
956 if (!root) {
957 if (opts.release_agent)
958 kfree(opts.release_agent);
959 return -ENOMEM;
960 }
961
962 init_cgroup_root(root);
963 root->subsys_bits = opts.subsys_bits;
964 root->flags = opts.flags;
965 if (opts.release_agent) {
966 strcpy(root->release_agent_path, opts.release_agent);
967 kfree(opts.release_agent);
968 }
969
970 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, root);
971
972 if (IS_ERR(sb)) {
973 kfree(root);
974 return PTR_ERR(sb);
975 }
976
977 if (sb->s_fs_info != root) {
978 /* Reusing an existing superblock */
979 BUG_ON(sb->s_root == NULL);
980 kfree(root);
981 root = NULL;
982 } else {
983 /* New superblock */
984 struct cgroup *cgrp = &root->top_cgroup;
985 struct inode *inode;
986
987 BUG_ON(sb->s_root != NULL);
988
989 ret = cgroup_get_rootdir(sb);
990 if (ret)
991 goto drop_new_super;
992 inode = sb->s_root->d_inode;
993
994 mutex_lock(&inode->i_mutex);
995 mutex_lock(&cgroup_mutex);
996
997 /*
998 * We're accessing css_set_count without locking
999 * css_set_lock here, but that's OK - it can only be
1000 * increased by someone holding cgroup_lock, and
1001 * that's us. The worst that can happen is that we
1002 * have some link structures left over
1003 */
1004 ret = allocate_cg_links(css_set_count, &tmp_cg_links);
1005 if (ret) {
1006 mutex_unlock(&cgroup_mutex);
1007 mutex_unlock(&inode->i_mutex);
1008 goto drop_new_super;
1009 }
1010
1011 ret = rebind_subsystems(root, root->subsys_bits);
1012 if (ret == -EBUSY) {
1013 mutex_unlock(&cgroup_mutex);
1014 mutex_unlock(&inode->i_mutex);
1015 goto drop_new_super;
1016 }
1017
1018 /* EBUSY should be the only error here */
1019 BUG_ON(ret);
1020
1021 list_add(&root->root_list, &roots);
1022 root_count++;
1023
1024 sb->s_root->d_fsdata = &root->top_cgroup;
1025 root->top_cgroup.dentry = sb->s_root;
1026
1027 /* Link the top cgroup in this hierarchy into all
1028 * the css_set objects */
1029 write_lock(&css_set_lock);
1030 l = &init_css_set.list;
1031 do {
1032 struct css_set *cg;
1033 struct cg_cgroup_link *link;
1034 cg = list_entry(l, struct css_set, list);
1035 BUG_ON(list_empty(&tmp_cg_links));
1036 link = list_entry(tmp_cg_links.next,
1037 struct cg_cgroup_link,
1038 cgrp_link_list);
1039 list_del(&link->cgrp_link_list);
1040 link->cg = cg;
1041 list_add(&link->cgrp_link_list,
1042 &root->top_cgroup.css_sets);
1043 list_add(&link->cg_link_list, &cg->cg_links);
1044 l = l->next;
1045 } while (l != &init_css_set.list);
1046 write_unlock(&css_set_lock);
1047
1048 free_cg_links(&tmp_cg_links);
1049
1050 BUG_ON(!list_empty(&cgrp->sibling));
1051 BUG_ON(!list_empty(&cgrp->children));
1052 BUG_ON(root->number_of_cgroups != 1);
1053
1054 cgroup_populate_dir(cgrp);
1055 mutex_unlock(&inode->i_mutex);
1056 mutex_unlock(&cgroup_mutex);
1057 }
1058
1059 return simple_set_mnt(mnt, sb);
1060
1061 drop_new_super:
1062 up_write(&sb->s_umount);
1063 deactivate_super(sb);
1064 free_cg_links(&tmp_cg_links);
1065 return ret;
1066 }
1067
1068 static void cgroup_kill_sb(struct super_block *sb) {
1069 struct cgroupfs_root *root = sb->s_fs_info;
1070 struct cgroup *cgrp = &root->top_cgroup;
1071 int ret;
1072
1073 BUG_ON(!root);
1074
1075 BUG_ON(root->number_of_cgroups != 1);
1076 BUG_ON(!list_empty(&cgrp->children));
1077 BUG_ON(!list_empty(&cgrp->sibling));
1078
1079 mutex_lock(&cgroup_mutex);
1080
1081 /* Rebind all subsystems back to the default hierarchy */
1082 ret = rebind_subsystems(root, 0);
1083 /* Shouldn't be able to fail ... */
1084 BUG_ON(ret);
1085
1086 /*
1087 * Release all the links from css_sets to this hierarchy's
1088 * root cgroup
1089 */
1090 write_lock(&css_set_lock);
1091 while (!list_empty(&cgrp->css_sets)) {
1092 struct cg_cgroup_link *link;
1093 link = list_entry(cgrp->css_sets.next,
1094 struct cg_cgroup_link, cgrp_link_list);
1095 list_del(&link->cg_link_list);
1096 list_del(&link->cgrp_link_list);
1097 kfree(link);
1098 }
1099 write_unlock(&css_set_lock);
1100
1101 if (!list_empty(&root->root_list)) {
1102 list_del(&root->root_list);
1103 root_count--;
1104 }
1105 mutex_unlock(&cgroup_mutex);
1106
1107 kfree(root);
1108 kill_litter_super(sb);
1109 }
1110
1111 static struct file_system_type cgroup_fs_type = {
1112 .name = "cgroup",
1113 .get_sb = cgroup_get_sb,
1114 .kill_sb = cgroup_kill_sb,
1115 };
1116
1117 static inline struct cgroup *__d_cgrp(struct dentry *dentry)
1118 {
1119 return dentry->d_fsdata;
1120 }
1121
1122 static inline struct cftype *__d_cft(struct dentry *dentry)
1123 {
1124 return dentry->d_fsdata;
1125 }
1126
1127 /**
1128 * cgroup_path - generate the path of a cgroup
1129 * @cgrp: the cgroup in question
1130 * @buf: the buffer to write the path into
1131 * @buflen: the length of the buffer
1132 *
1133 * Called with cgroup_mutex held. Writes path of cgroup into buf.
1134 * Returns 0 on success, -errno on error.
1135 */
1136 int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1137 {
1138 char *start;
1139
1140 if (cgrp == dummytop) {
1141 /*
1142 * Inactive subsystems have no dentry for their root
1143 * cgroup
1144 */
1145 strcpy(buf, "/");
1146 return 0;
1147 }
1148
1149 start = buf + buflen;
1150
1151 *--start = '\0';
1152 for (;;) {
1153 int len = cgrp->dentry->d_name.len;
1154 if ((start -= len) < buf)
1155 return -ENAMETOOLONG;
1156 memcpy(start, cgrp->dentry->d_name.name, len);
1157 cgrp = cgrp->parent;
1158 if (!cgrp)
1159 break;
1160 if (!cgrp->parent)
1161 continue;
1162 if (--start < buf)
1163 return -ENAMETOOLONG;
1164 *start = '/';
1165 }
1166 memmove(buf, start, buf + buflen - start);
1167 return 0;
1168 }
1169
1170 /*
1171 * Return the first subsystem attached to a cgroup's hierarchy, and
1172 * its subsystem id.
1173 */
1174
1175 static void get_first_subsys(const struct cgroup *cgrp,
1176 struct cgroup_subsys_state **css, int *subsys_id)
1177 {
1178 const struct cgroupfs_root *root = cgrp->root;
1179 const struct cgroup_subsys *test_ss;
1180 BUG_ON(list_empty(&root->subsys_list));
1181 test_ss = list_entry(root->subsys_list.next,
1182 struct cgroup_subsys, sibling);
1183 if (css) {
1184 *css = cgrp->subsys[test_ss->subsys_id];
1185 BUG_ON(!*css);
1186 }
1187 if (subsys_id)
1188 *subsys_id = test_ss->subsys_id;
1189 }
1190
1191 /**
1192 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
1193 * @cgrp: the cgroup the task is attaching to
1194 * @tsk: the task to be attached
1195 *
1196 * Call holding cgroup_mutex. May take task_lock of
1197 * the task 'tsk' during call.
1198 */
1199 int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
1200 {
1201 int retval = 0;
1202 struct cgroup_subsys *ss;
1203 struct cgroup *oldcgrp;
1204 struct css_set *cg = tsk->cgroups;
1205 struct css_set *newcg;
1206 struct cgroupfs_root *root = cgrp->root;
1207 int subsys_id;
1208
1209 get_first_subsys(cgrp, NULL, &subsys_id);
1210
1211 /* Nothing to do if the task is already in that cgroup */
1212 oldcgrp = task_cgroup(tsk, subsys_id);
1213 if (cgrp == oldcgrp)
1214 return 0;
1215
1216 for_each_subsys(root, ss) {
1217 if (ss->can_attach) {
1218 retval = ss->can_attach(ss, cgrp, tsk);
1219 if (retval)
1220 return retval;
1221 }
1222 }
1223
1224 /*
1225 * Locate or allocate a new css_set for this task,
1226 * based on its final set of cgroups
1227 */
1228 newcg = find_css_set(cg, cgrp);
1229 if (!newcg)
1230 return -ENOMEM;
1231
1232 task_lock(tsk);
1233 if (tsk->flags & PF_EXITING) {
1234 task_unlock(tsk);
1235 put_css_set(newcg);
1236 return -ESRCH;
1237 }
1238 rcu_assign_pointer(tsk->cgroups, newcg);
1239 task_unlock(tsk);
1240
1241 /* Update the css_set linked lists if we're using them */
1242 write_lock(&css_set_lock);
1243 if (!list_empty(&tsk->cg_list)) {
1244 list_del(&tsk->cg_list);
1245 list_add(&tsk->cg_list, &newcg->tasks);
1246 }
1247 write_unlock(&css_set_lock);
1248
1249 for_each_subsys(root, ss) {
1250 if (ss->attach)
1251 ss->attach(ss, cgrp, oldcgrp, tsk);
1252 }
1253 set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
1254 synchronize_rcu();
1255 put_css_set(cg);
1256 return 0;
1257 }
1258
1259 /*
1260 * Attach task with pid 'pid' to cgroup 'cgrp'. Call with
1261 * cgroup_mutex, may take task_lock of task
1262 */
1263 static int attach_task_by_pid(struct cgroup *cgrp, char *pidbuf)
1264 {
1265 pid_t pid;
1266 struct task_struct *tsk;
1267 int ret;
1268
1269 if (sscanf(pidbuf, "%d", &pid) != 1)
1270 return -EIO;
1271
1272 if (pid) {
1273 rcu_read_lock();
1274 tsk = find_task_by_vpid(pid);
1275 if (!tsk || tsk->flags & PF_EXITING) {
1276 rcu_read_unlock();
1277 return -ESRCH;
1278 }
1279 get_task_struct(tsk);
1280 rcu_read_unlock();
1281
1282 if ((current->euid) && (current->euid != tsk->uid)
1283 && (current->euid != tsk->suid)) {
1284 put_task_struct(tsk);
1285 return -EACCES;
1286 }
1287 } else {
1288 tsk = current;
1289 get_task_struct(tsk);
1290 }
1291
1292 ret = cgroup_attach_task(cgrp, tsk);
1293 put_task_struct(tsk);
1294 return ret;
1295 }
1296
1297 /* The various types of files and directories in a cgroup file system */
1298 enum cgroup_filetype {
1299 FILE_ROOT,
1300 FILE_DIR,
1301 FILE_TASKLIST,
1302 FILE_NOTIFY_ON_RELEASE,
1303 FILE_RELEASABLE,
1304 FILE_RELEASE_AGENT,
1305 };
1306
1307 static ssize_t cgroup_write_uint(struct cgroup *cgrp, struct cftype *cft,
1308 struct file *file,
1309 const char __user *userbuf,
1310 size_t nbytes, loff_t *unused_ppos)
1311 {
1312 char buffer[64];
1313 int retval = 0;
1314 u64 val;
1315 char *end;
1316
1317 if (!nbytes)
1318 return -EINVAL;
1319 if (nbytes >= sizeof(buffer))
1320 return -E2BIG;
1321 if (copy_from_user(buffer, userbuf, nbytes))
1322 return -EFAULT;
1323
1324 buffer[nbytes] = 0; /* nul-terminate */
1325
1326 /* strip newline if necessary */
1327 if (nbytes && (buffer[nbytes-1] == '\n'))
1328 buffer[nbytes-1] = 0;
1329 val = simple_strtoull(buffer, &end, 0);
1330 if (*end)
1331 return -EINVAL;
1332
1333 /* Pass to subsystem */
1334 retval = cft->write_uint(cgrp, cft, val);
1335 if (!retval)
1336 retval = nbytes;
1337 return retval;
1338 }
1339
1340 static ssize_t cgroup_common_file_write(struct cgroup *cgrp,
1341 struct cftype *cft,
1342 struct file *file,
1343 const char __user *userbuf,
1344 size_t nbytes, loff_t *unused_ppos)
1345 {
1346 enum cgroup_filetype type = cft->private;
1347 char *buffer;
1348 int retval = 0;
1349
1350 if (nbytes >= PATH_MAX)
1351 return -E2BIG;
1352
1353 /* +1 for nul-terminator */
1354 buffer = kmalloc(nbytes + 1, GFP_KERNEL);
1355 if (buffer == NULL)
1356 return -ENOMEM;
1357
1358 if (copy_from_user(buffer, userbuf, nbytes)) {
1359 retval = -EFAULT;
1360 goto out1;
1361 }
1362 buffer[nbytes] = 0; /* nul-terminate */
1363 strstrip(buffer); /* strip -just- trailing whitespace */
1364
1365 mutex_lock(&cgroup_mutex);
1366
1367 /*
1368 * This was already checked for in cgroup_file_write(), but
1369 * check again now we're holding cgroup_mutex.
1370 */
1371 if (cgroup_is_removed(cgrp)) {
1372 retval = -ENODEV;
1373 goto out2;
1374 }
1375
1376 switch (type) {
1377 case FILE_TASKLIST:
1378 retval = attach_task_by_pid(cgrp, buffer);
1379 break;
1380 case FILE_NOTIFY_ON_RELEASE:
1381 clear_bit(CGRP_RELEASABLE, &cgrp->flags);
1382 if (simple_strtoul(buffer, NULL, 10) != 0)
1383 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
1384 else
1385 clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
1386 break;
1387 case FILE_RELEASE_AGENT:
1388 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
1389 strcpy(cgrp->root->release_agent_path, buffer);
1390 break;
1391 default:
1392 retval = -EINVAL;
1393 goto out2;
1394 }
1395
1396 if (retval == 0)
1397 retval = nbytes;
1398 out2:
1399 mutex_unlock(&cgroup_mutex);
1400 out1:
1401 kfree(buffer);
1402 return retval;
1403 }
1404
1405 static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
1406 size_t nbytes, loff_t *ppos)
1407 {
1408 struct cftype *cft = __d_cft(file->f_dentry);
1409 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
1410
1411 if (!cft || cgroup_is_removed(cgrp))
1412 return -ENODEV;
1413 if (cft->write)
1414 return cft->write(cgrp, cft, file, buf, nbytes, ppos);
1415 if (cft->write_uint)
1416 return cgroup_write_uint(cgrp, cft, file, buf, nbytes, ppos);
1417 return -EINVAL;
1418 }
1419
1420 static ssize_t cgroup_read_uint(struct cgroup *cgrp, struct cftype *cft,
1421 struct file *file,
1422 char __user *buf, size_t nbytes,
1423 loff_t *ppos)
1424 {
1425 char tmp[64];
1426 u64 val = cft->read_uint(cgrp, cft);
1427 int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
1428
1429 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
1430 }
1431
1432 static ssize_t cgroup_common_file_read(struct cgroup *cgrp,
1433 struct cftype *cft,
1434 struct file *file,
1435 char __user *buf,
1436 size_t nbytes, loff_t *ppos)
1437 {
1438 enum cgroup_filetype type = cft->private;
1439 char *page;
1440 ssize_t retval = 0;
1441 char *s;
1442
1443 if (!(page = (char *)__get_free_page(GFP_KERNEL)))
1444 return -ENOMEM;
1445
1446 s = page;
1447
1448 switch (type) {
1449 case FILE_RELEASE_AGENT:
1450 {
1451 struct cgroupfs_root *root;
1452 size_t n;
1453 mutex_lock(&cgroup_mutex);
1454 root = cgrp->root;
1455 n = strnlen(root->release_agent_path,
1456 sizeof(root->release_agent_path));
1457 n = min(n, (size_t) PAGE_SIZE);
1458 strncpy(s, root->release_agent_path, n);
1459 mutex_unlock(&cgroup_mutex);
1460 s += n;
1461 break;
1462 }
1463 default:
1464 retval = -EINVAL;
1465 goto out;
1466 }
1467 *s++ = '\n';
1468
1469 retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
1470 out:
1471 free_page((unsigned long)page);
1472 return retval;
1473 }
1474
1475 static ssize_t cgroup_file_read(struct file *file, char __user *buf,
1476 size_t nbytes, loff_t *ppos)
1477 {
1478 struct cftype *cft = __d_cft(file->f_dentry);
1479 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
1480
1481 if (!cft || cgroup_is_removed(cgrp))
1482 return -ENODEV;
1483
1484 if (cft->read)
1485 return cft->read(cgrp, cft, file, buf, nbytes, ppos);
1486 if (cft->read_uint)
1487 return cgroup_read_uint(cgrp, cft, file, buf, nbytes, ppos);
1488 return -EINVAL;
1489 }
1490
1491 static int cgroup_file_open(struct inode *inode, struct file *file)
1492 {
1493 int err;
1494 struct cftype *cft;
1495
1496 err = generic_file_open(inode, file);
1497 if (err)
1498 return err;
1499
1500 cft = __d_cft(file->f_dentry);
1501 if (!cft)
1502 return -ENODEV;
1503 if (cft->open)
1504 err = cft->open(inode, file);
1505 else
1506 err = 0;
1507
1508 return err;
1509 }
1510
1511 static int cgroup_file_release(struct inode *inode, struct file *file)
1512 {
1513 struct cftype *cft = __d_cft(file->f_dentry);
1514 if (cft->release)
1515 return cft->release(inode, file);
1516 return 0;
1517 }
1518
1519 /*
1520 * cgroup_rename - Only allow simple rename of directories in place.
1521 */
1522 static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
1523 struct inode *new_dir, struct dentry *new_dentry)
1524 {
1525 if (!S_ISDIR(old_dentry->d_inode->i_mode))
1526 return -ENOTDIR;
1527 if (new_dentry->d_inode)
1528 return -EEXIST;
1529 if (old_dir != new_dir)
1530 return -EIO;
1531 return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
1532 }
1533
1534 static struct file_operations cgroup_file_operations = {
1535 .read = cgroup_file_read,
1536 .write = cgroup_file_write,
1537 .llseek = generic_file_llseek,
1538 .open = cgroup_file_open,
1539 .release = cgroup_file_release,
1540 };
1541
1542 static struct inode_operations cgroup_dir_inode_operations = {
1543 .lookup = simple_lookup,
1544 .mkdir = cgroup_mkdir,
1545 .rmdir = cgroup_rmdir,
1546 .rename = cgroup_rename,
1547 };
1548
1549 static int cgroup_create_file(struct dentry *dentry, int mode,
1550 struct super_block *sb)
1551 {
1552 static struct dentry_operations cgroup_dops = {
1553 .d_iput = cgroup_diput,
1554 };
1555
1556 struct inode *inode;
1557
1558 if (!dentry)
1559 return -ENOENT;
1560 if (dentry->d_inode)
1561 return -EEXIST;
1562
1563 inode = cgroup_new_inode(mode, sb);
1564 if (!inode)
1565 return -ENOMEM;
1566
1567 if (S_ISDIR(mode)) {
1568 inode->i_op = &cgroup_dir_inode_operations;
1569 inode->i_fop = &simple_dir_operations;
1570
1571 /* start off with i_nlink == 2 (for "." entry) */
1572 inc_nlink(inode);
1573
1574 /* start with the directory inode held, so that we can
1575 * populate it without racing with another mkdir */
1576 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
1577 } else if (S_ISREG(mode)) {
1578 inode->i_size = 0;
1579 inode->i_fop = &cgroup_file_operations;
1580 }
1581 dentry->d_op = &cgroup_dops;
1582 d_instantiate(dentry, inode);
1583 dget(dentry); /* Extra count - pin the dentry in core */
1584 return 0;
1585 }
1586
1587 /*
1588 * cgroup_create_dir - create a directory for an object.
1589 * @cgrp: the cgroup we create the directory for. It must have a valid
1590 * ->parent field. And we are going to fill its ->dentry field.
1591 * @dentry: dentry of the new cgroup
1592 * @mode: mode to set on new directory.
1593 */
1594 static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
1595 int mode)
1596 {
1597 struct dentry *parent;
1598 int error = 0;
1599
1600 parent = cgrp->parent->dentry;
1601 error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
1602 if (!error) {
1603 dentry->d_fsdata = cgrp;
1604 inc_nlink(parent->d_inode);
1605 cgrp->dentry = dentry;
1606 dget(dentry);
1607 }
1608 dput(dentry);
1609
1610 return error;
1611 }
1612
1613 int cgroup_add_file(struct cgroup *cgrp,
1614 struct cgroup_subsys *subsys,
1615 const struct cftype *cft)
1616 {
1617 struct dentry *dir = cgrp->dentry;
1618 struct dentry *dentry;
1619 int error;
1620
1621 char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
1622 if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
1623 strcpy(name, subsys->name);
1624 strcat(name, ".");
1625 }
1626 strcat(name, cft->name);
1627 BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
1628 dentry = lookup_one_len(name, dir, strlen(name));
1629 if (!IS_ERR(dentry)) {
1630 error = cgroup_create_file(dentry, 0644 | S_IFREG,
1631 cgrp->root->sb);
1632 if (!error)
1633 dentry->d_fsdata = (void *)cft;
1634 dput(dentry);
1635 } else
1636 error = PTR_ERR(dentry);
1637 return error;
1638 }
1639
1640 int cgroup_add_files(struct cgroup *cgrp,
1641 struct cgroup_subsys *subsys,
1642 const struct cftype cft[],
1643 int count)
1644 {
1645 int i, err;
1646 for (i = 0; i < count; i++) {
1647 err = cgroup_add_file(cgrp, subsys, &cft[i]);
1648 if (err)
1649 return err;
1650 }
1651 return 0;
1652 }
1653
1654 /**
1655 * cgroup_task_count - count the number of tasks in a cgroup.
1656 * @cgrp: the cgroup in question
1657 *
1658 * Return the number of tasks in the cgroup.
1659 */
1660 int cgroup_task_count(const struct cgroup *cgrp)
1661 {
1662 int count = 0;
1663 struct list_head *l;
1664
1665 read_lock(&css_set_lock);
1666 l = cgrp->css_sets.next;
1667 while (l != &cgrp->css_sets) {
1668 struct cg_cgroup_link *link =
1669 list_entry(l, struct cg_cgroup_link, cgrp_link_list);
1670 count += atomic_read(&link->cg->ref.refcount);
1671 l = l->next;
1672 }
1673 read_unlock(&css_set_lock);
1674 return count;
1675 }
1676
1677 /*
1678 * Advance a list_head iterator. The iterator should be positioned at
1679 * the start of a css_set
1680 */
1681 static void cgroup_advance_iter(struct cgroup *cgrp,
1682 struct cgroup_iter *it)
1683 {
1684 struct list_head *l = it->cg_link;
1685 struct cg_cgroup_link *link;
1686 struct css_set *cg;
1687
1688 /* Advance to the next non-empty css_set */
1689 do {
1690 l = l->next;
1691 if (l == &cgrp->css_sets) {
1692 it->cg_link = NULL;
1693 return;
1694 }
1695 link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
1696 cg = link->cg;
1697 } while (list_empty(&cg->tasks));
1698 it->cg_link = l;
1699 it->task = cg->tasks.next;
1700 }
1701
1702 /*
1703 * To reduce the fork() overhead for systems that are not actually
1704 * using their cgroups capability, we don't maintain the lists running
1705 * through each css_set to its tasks until we see the list actually
1706 * used - in other words after the first call to cgroup_iter_start().
1707 *
1708 * The tasklist_lock is not held here, as do_each_thread() and
1709 * while_each_thread() are protected by RCU.
1710 */
1711 void cgroup_enable_task_cg_lists(void)
1712 {
1713 struct task_struct *p, *g;
1714 write_lock(&css_set_lock);
1715 use_task_css_set_links = 1;
1716 do_each_thread(g, p) {
1717 task_lock(p);
1718 if (list_empty(&p->cg_list))
1719 list_add(&p->cg_list, &p->cgroups->tasks);
1720 task_unlock(p);
1721 } while_each_thread(g, p);
1722 write_unlock(&css_set_lock);
1723 }
1724
1725 void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
1726 {
1727 /*
1728 * The first time anyone tries to iterate across a cgroup,
1729 * we need to enable the list linking each css_set to its
1730 * tasks, and fix up all existing tasks.
1731 */
1732 if (!use_task_css_set_links)
1733 cgroup_enable_task_cg_lists();
1734
1735 read_lock(&css_set_lock);
1736 it->cg_link = &cgrp->css_sets;
1737 cgroup_advance_iter(cgrp, it);
1738 }
1739
1740 struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
1741 struct cgroup_iter *it)
1742 {
1743 struct task_struct *res;
1744 struct list_head *l = it->task;
1745
1746 /* If the iterator cg is NULL, we have no tasks */
1747 if (!it->cg_link)
1748 return NULL;
1749 res = list_entry(l, struct task_struct, cg_list);
1750 /* Advance iterator to find next entry */
1751 l = l->next;
1752 if (l == &res->cgroups->tasks) {
1753 /* We reached the end of this task list - move on to
1754 * the next cg_cgroup_link */
1755 cgroup_advance_iter(cgrp, it);
1756 } else {
1757 it->task = l;
1758 }
1759 return res;
1760 }
1761
1762 void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
1763 {
1764 read_unlock(&css_set_lock);
1765 }
1766
1767 static inline int started_after_time(struct task_struct *t1,
1768 struct timespec *time,
1769 struct task_struct *t2)
1770 {
1771 int start_diff = timespec_compare(&t1->start_time, time);
1772 if (start_diff > 0) {
1773 return 1;
1774 } else if (start_diff < 0) {
1775 return 0;
1776 } else {
1777 /*
1778 * Arbitrarily, if two processes started at the same
1779 * time, we'll say that the lower pointer value
1780 * started first. Note that t2 may have exited by now
1781 * so this may not be a valid pointer any longer, but
1782 * that's fine - it still serves to distinguish
1783 * between two tasks started (effectively) simultaneously.
1784 */
1785 return t1 > t2;
1786 }
1787 }
1788
1789 /*
1790 * This function is a callback from heap_insert() and is used to order
1791 * the heap.
1792 * In this case we order the heap in descending task start time.
1793 */
1794 static inline int started_after(void *p1, void *p2)
1795 {
1796 struct task_struct *t1 = p1;
1797 struct task_struct *t2 = p2;
1798 return started_after_time(t1, &t2->start_time, t2);
1799 }
1800
1801 /**
1802 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
1803 * @scan: struct cgroup_scanner containing arguments for the scan
1804 *
1805 * Arguments include pointers to callback functions test_task() and
1806 * process_task().
1807 * Iterate through all the tasks in a cgroup, calling test_task() for each,
1808 * and if it returns true, call process_task() for it also.
1809 * The test_task pointer may be NULL, meaning always true (select all tasks).
1810 * Effectively duplicates cgroup_iter_{start,next,end}()
1811 * but does not lock css_set_lock for the call to process_task().
1812 * The struct cgroup_scanner may be embedded in any structure of the caller's
1813 * creation.
1814 * It is guaranteed that process_task() will act on every task that
1815 * is a member of the cgroup for the duration of this call. This
1816 * function may or may not call process_task() for tasks that exit
1817 * or move to a different cgroup during the call, or are forked or
1818 * move into the cgroup during the call.
1819 *
1820 * Note that test_task() may be called with locks held, and may in some
1821 * situations be called multiple times for the same task, so it should
1822 * be cheap.
1823 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
1824 * pre-allocated and will be used for heap operations (and its "gt" member will
1825 * be overwritten), else a temporary heap will be used (allocation of which
1826 * may cause this function to fail).
1827 */
1828 int cgroup_scan_tasks(struct cgroup_scanner *scan)
1829 {
1830 int retval, i;
1831 struct cgroup_iter it;
1832 struct task_struct *p, *dropped;
1833 /* Never dereference latest_task, since it's not refcounted */
1834 struct task_struct *latest_task = NULL;
1835 struct ptr_heap tmp_heap;
1836 struct ptr_heap *heap;
1837 struct timespec latest_time = { 0, 0 };
1838
1839 if (scan->heap) {
1840 /* The caller supplied our heap and pre-allocated its memory */
1841 heap = scan->heap;
1842 heap->gt = &started_after;
1843 } else {
1844 /* We need to allocate our own heap memory */
1845 heap = &tmp_heap;
1846 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
1847 if (retval)
1848 /* cannot allocate the heap */
1849 return retval;
1850 }
1851
1852 again:
1853 /*
1854 * Scan tasks in the cgroup, using the scanner's "test_task" callback
1855 * to determine which are of interest, and using the scanner's
1856 * "process_task" callback to process any of them that need an update.
1857 * Since we don't want to hold any locks during the task updates,
1858 * gather tasks to be processed in a heap structure.
1859 * The heap is sorted by descending task start time.
1860 * If the statically-sized heap fills up, we overflow tasks that
1861 * started later, and in future iterations only consider tasks that
1862 * started after the latest task in the previous pass. This
1863 * guarantees forward progress and that we don't miss any tasks.
1864 */
1865 heap->size = 0;
1866 cgroup_iter_start(scan->cg, &it);
1867 while ((p = cgroup_iter_next(scan->cg, &it))) {
1868 /*
1869 * Only affect tasks that qualify per the caller's callback,
1870 * if he provided one
1871 */
1872 if (scan->test_task && !scan->test_task(p, scan))
1873 continue;
1874 /*
1875 * Only process tasks that started after the last task
1876 * we processed
1877 */
1878 if (!started_after_time(p, &latest_time, latest_task))
1879 continue;
1880 dropped = heap_insert(heap, p);
1881 if (dropped == NULL) {
1882 /*
1883 * The new task was inserted; the heap wasn't
1884 * previously full
1885 */
1886 get_task_struct(p);
1887 } else if (dropped != p) {
1888 /*
1889 * The new task was inserted, and pushed out a
1890 * different task
1891 */
1892 get_task_struct(p);
1893 put_task_struct(dropped);
1894 }
1895 /*
1896 * Else the new task was newer than anything already in
1897 * the heap and wasn't inserted
1898 */
1899 }
1900 cgroup_iter_end(scan->cg, &it);
1901
1902 if (heap->size) {
1903 for (i = 0; i < heap->size; i++) {
1904 struct task_struct *p = heap->ptrs[i];
1905 if (i == 0) {
1906 latest_time = p->start_time;
1907 latest_task = p;
1908 }
1909 /* Process the task per the caller's callback */
1910 scan->process_task(p, scan);
1911 put_task_struct(p);
1912 }
1913 /*
1914 * If we had to process any tasks at all, scan again
1915 * in case some of them were in the middle of forking
1916 * children that didn't get processed.
1917 * Not the most efficient way to do it, but it avoids
1918 * having to take callback_mutex in the fork path
1919 */
1920 goto again;
1921 }
1922 if (heap == &tmp_heap)
1923 heap_free(&tmp_heap);
1924 return 0;
1925 }
1926
1927 /*
1928 * Stuff for reading the 'tasks' file.
1929 *
1930 * Reading this file can return large amounts of data if a cgroup has
1931 * *lots* of attached tasks. So it may need several calls to read(),
1932 * but we cannot guarantee that the information we produce is correct
1933 * unless we produce it entirely atomically.
1934 *
1935 * Upon tasks file open(), a struct ctr_struct is allocated, that
1936 * will have a pointer to an array (also allocated here). The struct
1937 * ctr_struct * is stored in file->private_data. Its resources will
1938 * be freed by release() when the file is closed. The array is used
1939 * to sprintf the PIDs and then used by read().
1940 */
1941 struct ctr_struct {
1942 char *buf;
1943 int bufsz;
1944 };
1945
1946 /*
1947 * Load into 'pidarray' up to 'npids' of the tasks using cgroup
1948 * 'cgrp'. Return actual number of pids loaded. No need to
1949 * task_lock(p) when reading out p->cgroup, since we're in an RCU
1950 * read section, so the css_set can't go away, and is
1951 * immutable after creation.
1952 */
1953 static int pid_array_load(pid_t *pidarray, int npids, struct cgroup *cgrp)
1954 {
1955 int n = 0;
1956 struct cgroup_iter it;
1957 struct task_struct *tsk;
1958 cgroup_iter_start(cgrp, &it);
1959 while ((tsk = cgroup_iter_next(cgrp, &it))) {
1960 if (unlikely(n == npids))
1961 break;
1962 pidarray[n++] = task_pid_vnr(tsk);
1963 }
1964 cgroup_iter_end(cgrp, &it);
1965 return n;
1966 }
1967
1968 /**
1969 * cgroupstats_build - build and fill cgroupstats
1970 * @stats: cgroupstats to fill information into
1971 * @dentry: A dentry entry belonging to the cgroup for which stats have
1972 * been requested.
1973 *
1974 * Build and fill cgroupstats so that taskstats can export it to user
1975 * space.
1976 */
1977 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
1978 {
1979 int ret = -EINVAL;
1980 struct cgroup *cgrp;
1981 struct cgroup_iter it;
1982 struct task_struct *tsk;
1983 /*
1984 * Validate dentry by checking the superblock operations
1985 */
1986 if (dentry->d_sb->s_op != &cgroup_ops)
1987 goto err;
1988
1989 ret = 0;
1990 cgrp = dentry->d_fsdata;
1991 rcu_read_lock();
1992
1993 cgroup_iter_start(cgrp, &it);
1994 while ((tsk = cgroup_iter_next(cgrp, &it))) {
1995 switch (tsk->state) {
1996 case TASK_RUNNING:
1997 stats->nr_running++;
1998 break;
1999 case TASK_INTERRUPTIBLE:
2000 stats->nr_sleeping++;
2001 break;
2002 case TASK_UNINTERRUPTIBLE:
2003 stats->nr_uninterruptible++;
2004 break;
2005 case TASK_STOPPED:
2006 stats->nr_stopped++;
2007 break;
2008 default:
2009 if (delayacct_is_task_waiting_on_io(tsk))
2010 stats->nr_io_wait++;
2011 break;
2012 }
2013 }
2014 cgroup_iter_end(cgrp, &it);
2015
2016 rcu_read_unlock();
2017 err:
2018 return ret;
2019 }
2020
2021 static int cmppid(const void *a, const void *b)
2022 {
2023 return *(pid_t *)a - *(pid_t *)b;
2024 }
2025
2026 /*
2027 * Convert array 'a' of 'npids' pid_t's to a string of newline separated
2028 * decimal pids in 'buf'. Don't write more than 'sz' chars, but return
2029 * count 'cnt' of how many chars would be written if buf were large enough.
2030 */
2031 static int pid_array_to_buf(char *buf, int sz, pid_t *a, int npids)
2032 {
2033 int cnt = 0;
2034 int i;
2035
2036 for (i = 0; i < npids; i++)
2037 cnt += snprintf(buf + cnt, max(sz - cnt, 0), "%d\n", a[i]);
2038 return cnt;
2039 }
2040
2041 /*
2042 * Handle an open on 'tasks' file. Prepare a buffer listing the
2043 * process id's of tasks currently attached to the cgroup being opened.
2044 *
2045 * Does not require any specific cgroup mutexes, and does not take any.
2046 */
2047 static int cgroup_tasks_open(struct inode *unused, struct file *file)
2048 {
2049 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2050 struct ctr_struct *ctr;
2051 pid_t *pidarray;
2052 int npids;
2053 char c;
2054
2055 if (!(file->f_mode & FMODE_READ))
2056 return 0;
2057
2058 ctr = kmalloc(sizeof(*ctr), GFP_KERNEL);
2059 if (!ctr)
2060 goto err0;
2061
2062 /*
2063 * If cgroup gets more users after we read count, we won't have
2064 * enough space - tough. This race is indistinguishable to the
2065 * caller from the case that the additional cgroup users didn't
2066 * show up until sometime later on.
2067 */
2068 npids = cgroup_task_count(cgrp);
2069 if (npids) {
2070 pidarray = kmalloc(npids * sizeof(pid_t), GFP_KERNEL);
2071 if (!pidarray)
2072 goto err1;
2073
2074 npids = pid_array_load(pidarray, npids, cgrp);
2075 sort(pidarray, npids, sizeof(pid_t), cmppid, NULL);
2076
2077 /* Call pid_array_to_buf() twice, first just to get bufsz */
2078 ctr->bufsz = pid_array_to_buf(&c, sizeof(c), pidarray, npids) + 1;
2079 ctr->buf = kmalloc(ctr->bufsz, GFP_KERNEL);
2080 if (!ctr->buf)
2081 goto err2;
2082 ctr->bufsz = pid_array_to_buf(ctr->buf, ctr->bufsz, pidarray, npids);
2083
2084 kfree(pidarray);
2085 } else {
2086 ctr->buf = 0;
2087 ctr->bufsz = 0;
2088 }
2089 file->private_data = ctr;
2090 return 0;
2091
2092 err2:
2093 kfree(pidarray);
2094 err1:
2095 kfree(ctr);
2096 err0:
2097 return -ENOMEM;
2098 }
2099
2100 static ssize_t cgroup_tasks_read(struct cgroup *cgrp,
2101 struct cftype *cft,
2102 struct file *file, char __user *buf,
2103 size_t nbytes, loff_t *ppos)
2104 {
2105 struct ctr_struct *ctr = file->private_data;
2106
2107 return simple_read_from_buffer(buf, nbytes, ppos, ctr->buf, ctr->bufsz);
2108 }
2109
2110 static int cgroup_tasks_release(struct inode *unused_inode,
2111 struct file *file)
2112 {
2113 struct ctr_struct *ctr;
2114
2115 if (file->f_mode & FMODE_READ) {
2116 ctr = file->private_data;
2117 kfree(ctr->buf);
2118 kfree(ctr);
2119 }
2120 return 0;
2121 }
2122
2123 static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
2124 struct cftype *cft)
2125 {
2126 return notify_on_release(cgrp);
2127 }
2128
2129 static u64 cgroup_read_releasable(struct cgroup *cgrp, struct cftype *cft)
2130 {
2131 return test_bit(CGRP_RELEASABLE, &cgrp->flags);
2132 }
2133
2134 /*
2135 * for the common functions, 'private' gives the type of file
2136 */
2137 static struct cftype files[] = {
2138 {
2139 .name = "tasks",
2140 .open = cgroup_tasks_open,
2141 .read = cgroup_tasks_read,
2142 .write = cgroup_common_file_write,
2143 .release = cgroup_tasks_release,
2144 .private = FILE_TASKLIST,
2145 },
2146
2147 {
2148 .name = "notify_on_release",
2149 .read_uint = cgroup_read_notify_on_release,
2150 .write = cgroup_common_file_write,
2151 .private = FILE_NOTIFY_ON_RELEASE,
2152 },
2153
2154 {
2155 .name = "releasable",
2156 .read_uint = cgroup_read_releasable,
2157 .private = FILE_RELEASABLE,
2158 }
2159 };
2160
2161 static struct cftype cft_release_agent = {
2162 .name = "release_agent",
2163 .read = cgroup_common_file_read,
2164 .write = cgroup_common_file_write,
2165 .private = FILE_RELEASE_AGENT,
2166 };
2167
2168 static int cgroup_populate_dir(struct cgroup *cgrp)
2169 {
2170 int err;
2171 struct cgroup_subsys *ss;
2172
2173 /* First clear out any existing files */
2174 cgroup_clear_directory(cgrp->dentry);
2175
2176 err = cgroup_add_files(cgrp, NULL, files, ARRAY_SIZE(files));
2177 if (err < 0)
2178 return err;
2179
2180 if (cgrp == cgrp->top_cgroup) {
2181 if ((err = cgroup_add_file(cgrp, NULL, &cft_release_agent)) < 0)
2182 return err;
2183 }
2184
2185 for_each_subsys(cgrp->root, ss) {
2186 if (ss->populate && (err = ss->populate(ss, cgrp)) < 0)
2187 return err;
2188 }
2189
2190 return 0;
2191 }
2192
2193 static void init_cgroup_css(struct cgroup_subsys_state *css,
2194 struct cgroup_subsys *ss,
2195 struct cgroup *cgrp)
2196 {
2197 css->cgroup = cgrp;
2198 atomic_set(&css->refcnt, 0);
2199 css->flags = 0;
2200 if (cgrp == dummytop)
2201 set_bit(CSS_ROOT, &css->flags);
2202 BUG_ON(cgrp->subsys[ss->subsys_id]);
2203 cgrp->subsys[ss->subsys_id] = css;
2204 }
2205
2206 /*
2207 * cgroup_create - create a cgroup
2208 * @parent: cgroup that will be parent of the new cgroup
2209 * @dentry: dentry of the new cgroup
2210 * @mode: mode to set on new inode
2211 *
2212 * Must be called with the mutex on the parent inode held
2213 */
2214 static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
2215 int mode)
2216 {
2217 struct cgroup *cgrp;
2218 struct cgroupfs_root *root = parent->root;
2219 int err = 0;
2220 struct cgroup_subsys *ss;
2221 struct super_block *sb = root->sb;
2222
2223 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
2224 if (!cgrp)
2225 return -ENOMEM;
2226
2227 /* Grab a reference on the superblock so the hierarchy doesn't
2228 * get deleted on unmount if there are child cgroups. This
2229 * can be done outside cgroup_mutex, since the sb can't
2230 * disappear while someone has an open control file on the
2231 * fs */
2232 atomic_inc(&sb->s_active);
2233
2234 mutex_lock(&cgroup_mutex);
2235
2236 cgrp->flags = 0;
2237 INIT_LIST_HEAD(&cgrp->sibling);
2238 INIT_LIST_HEAD(&cgrp->children);
2239 INIT_LIST_HEAD(&cgrp->css_sets);
2240 INIT_LIST_HEAD(&cgrp->release_list);
2241
2242 cgrp->parent = parent;
2243 cgrp->root = parent->root;
2244 cgrp->top_cgroup = parent->top_cgroup;
2245
2246 for_each_subsys(root, ss) {
2247 struct cgroup_subsys_state *css = ss->create(ss, cgrp);
2248 if (IS_ERR(css)) {
2249 err = PTR_ERR(css);
2250 goto err_destroy;
2251 }
2252 init_cgroup_css(css, ss, cgrp);
2253 }
2254
2255 list_add(&cgrp->sibling, &cgrp->parent->children);
2256 root->number_of_cgroups++;
2257
2258 err = cgroup_create_dir(cgrp, dentry, mode);
2259 if (err < 0)
2260 goto err_remove;
2261
2262 /* The cgroup directory was pre-locked for us */
2263 BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
2264
2265 err = cgroup_populate_dir(cgrp);
2266 /* If err < 0, we have a half-filled directory - oh well ;) */
2267
2268 mutex_unlock(&cgroup_mutex);
2269 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
2270
2271 return 0;
2272
2273 err_remove:
2274
2275 list_del(&cgrp->sibling);
2276 root->number_of_cgroups--;
2277
2278 err_destroy:
2279
2280 for_each_subsys(root, ss) {
2281 if (cgrp->subsys[ss->subsys_id])
2282 ss->destroy(ss, cgrp);
2283 }
2284
2285 mutex_unlock(&cgroup_mutex);
2286
2287 /* Release the reference count that we took on the superblock */
2288 deactivate_super(sb);
2289
2290 kfree(cgrp);
2291 return err;
2292 }
2293
2294 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2295 {
2296 struct cgroup *c_parent = dentry->d_parent->d_fsdata;
2297
2298 /* the vfs holds inode->i_mutex already */
2299 return cgroup_create(c_parent, dentry, mode | S_IFDIR);
2300 }
2301
2302 static inline int cgroup_has_css_refs(struct cgroup *cgrp)
2303 {
2304 /* Check the reference count on each subsystem. Since we
2305 * already established that there are no tasks in the
2306 * cgroup, if the css refcount is also 0, then there should
2307 * be no outstanding references, so the subsystem is safe to
2308 * destroy. We scan across all subsystems rather than using
2309 * the per-hierarchy linked list of mounted subsystems since
2310 * we can be called via check_for_release() with no
2311 * synchronization other than RCU, and the subsystem linked
2312 * list isn't RCU-safe */
2313 int i;
2314 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2315 struct cgroup_subsys *ss = subsys[i];
2316 struct cgroup_subsys_state *css;
2317 /* Skip subsystems not in this hierarchy */
2318 if (ss->root != cgrp->root)
2319 continue;
2320 css = cgrp->subsys[ss->subsys_id];
2321 /* When called from check_for_release() it's possible
2322 * that by this point the cgroup has been removed
2323 * and the css deleted. But a false-positive doesn't
2324 * matter, since it can only happen if the cgroup
2325 * has been deleted and hence no longer needs the
2326 * release agent to be called anyway. */
2327 if (css && atomic_read(&css->refcnt))
2328 return 1;
2329 }
2330 return 0;
2331 }
2332
2333 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
2334 {
2335 struct cgroup *cgrp = dentry->d_fsdata;
2336 struct dentry *d;
2337 struct cgroup *parent;
2338 struct super_block *sb;
2339 struct cgroupfs_root *root;
2340
2341 /* the vfs holds both inode->i_mutex already */
2342
2343 mutex_lock(&cgroup_mutex);
2344 if (atomic_read(&cgrp->count) != 0) {
2345 mutex_unlock(&cgroup_mutex);
2346 return -EBUSY;
2347 }
2348 if (!list_empty(&cgrp->children)) {
2349 mutex_unlock(&cgroup_mutex);
2350 return -EBUSY;
2351 }
2352
2353 parent = cgrp->parent;
2354 root = cgrp->root;
2355 sb = root->sb;
2356
2357 /*
2358 * Call pre_destroy handlers of subsys. Notify subsystems
2359 * that rmdir() request comes.
2360 */
2361 cgroup_call_pre_destroy(cgrp);
2362
2363 if (cgroup_has_css_refs(cgrp)) {
2364 mutex_unlock(&cgroup_mutex);
2365 return -EBUSY;
2366 }
2367
2368 spin_lock(&release_list_lock);
2369 set_bit(CGRP_REMOVED, &cgrp->flags);
2370 if (!list_empty(&cgrp->release_list))
2371 list_del(&cgrp->release_list);
2372 spin_unlock(&release_list_lock);
2373 /* delete my sibling from parent->children */
2374 list_del(&cgrp->sibling);
2375 spin_lock(&cgrp->dentry->d_lock);
2376 d = dget(cgrp->dentry);
2377 cgrp->dentry = NULL;
2378 spin_unlock(&d->d_lock);
2379
2380 cgroup_d_remove_dir(d);
2381 dput(d);
2382
2383 set_bit(CGRP_RELEASABLE, &parent->flags);
2384 check_for_release(parent);
2385
2386 mutex_unlock(&cgroup_mutex);
2387 return 0;
2388 }
2389
2390 static void cgroup_init_subsys(struct cgroup_subsys *ss)
2391 {
2392 struct cgroup_subsys_state *css;
2393 struct list_head *l;
2394
2395 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
2396
2397 /* Create the top cgroup state for this subsystem */
2398 ss->root = &rootnode;
2399 css = ss->create(ss, dummytop);
2400 /* We don't handle early failures gracefully */
2401 BUG_ON(IS_ERR(css));
2402 init_cgroup_css(css, ss, dummytop);
2403
2404 /* Update all cgroup groups to contain a subsys
2405 * pointer to this state - since the subsystem is
2406 * newly registered, all tasks and hence all cgroup
2407 * groups are in the subsystem's top cgroup. */
2408 write_lock(&css_set_lock);
2409 l = &init_css_set.list;
2410 do {
2411 struct css_set *cg =
2412 list_entry(l, struct css_set, list);
2413 cg->subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
2414 l = l->next;
2415 } while (l != &init_css_set.list);
2416 write_unlock(&css_set_lock);
2417
2418 /* If this subsystem requested that it be notified with fork
2419 * events, we should send it one now for every process in the
2420 * system */
2421 if (ss->fork) {
2422 struct task_struct *g, *p;
2423
2424 read_lock(&tasklist_lock);
2425 do_each_thread(g, p) {
2426 ss->fork(ss, p);
2427 } while_each_thread(g, p);
2428 read_unlock(&tasklist_lock);
2429 }
2430
2431 need_forkexit_callback |= ss->fork || ss->exit;
2432
2433 ss->active = 1;
2434 }
2435
2436 /**
2437 * cgroup_init_early - cgroup initialization at system boot
2438 *
2439 * Initialize cgroups at system boot, and initialize any
2440 * subsystems that request early init.
2441 */
2442 int __init cgroup_init_early(void)
2443 {
2444 int i;
2445 kref_init(&init_css_set.ref);
2446 kref_get(&init_css_set.ref);
2447 INIT_LIST_HEAD(&init_css_set.list);
2448 INIT_LIST_HEAD(&init_css_set.cg_links);
2449 INIT_LIST_HEAD(&init_css_set.tasks);
2450 css_set_count = 1;
2451 init_cgroup_root(&rootnode);
2452 list_add(&rootnode.root_list, &roots);
2453 root_count = 1;
2454 init_task.cgroups = &init_css_set;
2455
2456 init_css_set_link.cg = &init_css_set;
2457 list_add(&init_css_set_link.cgrp_link_list,
2458 &rootnode.top_cgroup.css_sets);
2459 list_add(&init_css_set_link.cg_link_list,
2460 &init_css_set.cg_links);
2461
2462 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2463 struct cgroup_subsys *ss = subsys[i];
2464
2465 BUG_ON(!ss->name);
2466 BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
2467 BUG_ON(!ss->create);
2468 BUG_ON(!ss->destroy);
2469 if (ss->subsys_id != i) {
2470 printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
2471 ss->name, ss->subsys_id);
2472 BUG();
2473 }
2474
2475 if (ss->early_init)
2476 cgroup_init_subsys(ss);
2477 }
2478 return 0;
2479 }
2480
2481 /**
2482 * cgroup_init - cgroup initialization
2483 *
2484 * Register cgroup filesystem and /proc file, and initialize
2485 * any subsystems that didn't request early init.
2486 */
2487 int __init cgroup_init(void)
2488 {
2489 int err;
2490 int i;
2491 struct proc_dir_entry *entry;
2492
2493 err = bdi_init(&cgroup_backing_dev_info);
2494 if (err)
2495 return err;
2496
2497 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2498 struct cgroup_subsys *ss = subsys[i];
2499 if (!ss->early_init)
2500 cgroup_init_subsys(ss);
2501 }
2502
2503 err = register_filesystem(&cgroup_fs_type);
2504 if (err < 0)
2505 goto out;
2506
2507 entry = create_proc_entry("cgroups", 0, NULL);
2508 if (entry)
2509 entry->proc_fops = &proc_cgroupstats_operations;
2510
2511 out:
2512 if (err)
2513 bdi_destroy(&cgroup_backing_dev_info);
2514
2515 return err;
2516 }
2517
2518 /*
2519 * proc_cgroup_show()
2520 * - Print task's cgroup paths into seq_file, one line for each hierarchy
2521 * - Used for /proc/<pid>/cgroup.
2522 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
2523 * doesn't really matter if tsk->cgroup changes after we read it,
2524 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
2525 * anyway. No need to check that tsk->cgroup != NULL, thanks to
2526 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
2527 * cgroup to top_cgroup.
2528 */
2529
2530 /* TODO: Use a proper seq_file iterator */
2531 static int proc_cgroup_show(struct seq_file *m, void *v)
2532 {
2533 struct pid *pid;
2534 struct task_struct *tsk;
2535 char *buf;
2536 int retval;
2537 struct cgroupfs_root *root;
2538
2539 retval = -ENOMEM;
2540 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2541 if (!buf)
2542 goto out;
2543
2544 retval = -ESRCH;
2545 pid = m->private;
2546 tsk = get_pid_task(pid, PIDTYPE_PID);
2547 if (!tsk)
2548 goto out_free;
2549
2550 retval = 0;
2551
2552 mutex_lock(&cgroup_mutex);
2553
2554 for_each_root(root) {
2555 struct cgroup_subsys *ss;
2556 struct cgroup *cgrp;
2557 int subsys_id;
2558 int count = 0;
2559
2560 /* Skip this hierarchy if it has no active subsystems */
2561 if (!root->actual_subsys_bits)
2562 continue;
2563 for_each_subsys(root, ss)
2564 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
2565 seq_putc(m, ':');
2566 get_first_subsys(&root->top_cgroup, NULL, &subsys_id);
2567 cgrp = task_cgroup(tsk, subsys_id);
2568 retval = cgroup_path(cgrp, buf, PAGE_SIZE);
2569 if (retval < 0)
2570 goto out_unlock;
2571 seq_puts(m, buf);
2572 seq_putc(m, '\n');
2573 }
2574
2575 out_unlock:
2576 mutex_unlock(&cgroup_mutex);
2577 put_task_struct(tsk);
2578 out_free:
2579 kfree(buf);
2580 out:
2581 return retval;
2582 }
2583
2584 static int cgroup_open(struct inode *inode, struct file *file)
2585 {
2586 struct pid *pid = PROC_I(inode)->pid;
2587 return single_open(file, proc_cgroup_show, pid);
2588 }
2589
2590 struct file_operations proc_cgroup_operations = {
2591 .open = cgroup_open,
2592 .read = seq_read,
2593 .llseek = seq_lseek,
2594 .release = single_release,
2595 };
2596
2597 /* Display information about each subsystem and each hierarchy */
2598 static int proc_cgroupstats_show(struct seq_file *m, void *v)
2599 {
2600 int i;
2601
2602 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\n");
2603 mutex_lock(&cgroup_mutex);
2604 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2605 struct cgroup_subsys *ss = subsys[i];
2606 seq_printf(m, "%s\t%lu\t%d\n",
2607 ss->name, ss->root->subsys_bits,
2608 ss->root->number_of_cgroups);
2609 }
2610 mutex_unlock(&cgroup_mutex);
2611 return 0;
2612 }
2613
2614 static int cgroupstats_open(struct inode *inode, struct file *file)
2615 {
2616 return single_open(file, proc_cgroupstats_show, 0);
2617 }
2618
2619 static struct file_operations proc_cgroupstats_operations = {
2620 .open = cgroupstats_open,
2621 .read = seq_read,
2622 .llseek = seq_lseek,
2623 .release = single_release,
2624 };
2625
2626 /**
2627 * cgroup_fork - attach newly forked task to its parents cgroup.
2628 * @child: pointer to task_struct of forking parent process.
2629 *
2630 * Description: A task inherits its parent's cgroup at fork().
2631 *
2632 * A pointer to the shared css_set was automatically copied in
2633 * fork.c by dup_task_struct(). However, we ignore that copy, since
2634 * it was not made under the protection of RCU or cgroup_mutex, so
2635 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
2636 * have already changed current->cgroups, allowing the previously
2637 * referenced cgroup group to be removed and freed.
2638 *
2639 * At the point that cgroup_fork() is called, 'current' is the parent
2640 * task, and the passed argument 'child' points to the child task.
2641 */
2642 void cgroup_fork(struct task_struct *child)
2643 {
2644 task_lock(current);
2645 child->cgroups = current->cgroups;
2646 get_css_set(child->cgroups);
2647 task_unlock(current);
2648 INIT_LIST_HEAD(&child->cg_list);
2649 }
2650
2651 /**
2652 * cgroup_fork_callbacks - run fork callbacks
2653 * @child: the new task
2654 *
2655 * Called on a new task very soon before adding it to the
2656 * tasklist. No need to take any locks since no-one can
2657 * be operating on this task.
2658 */
2659 void cgroup_fork_callbacks(struct task_struct *child)
2660 {
2661 if (need_forkexit_callback) {
2662 int i;
2663 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2664 struct cgroup_subsys *ss = subsys[i];
2665 if (ss->fork)
2666 ss->fork(ss, child);
2667 }
2668 }
2669 }
2670
2671 /**
2672 * cgroup_post_fork - called on a new task after adding it to the task list
2673 * @child: the task in question
2674 *
2675 * Adds the task to the list running through its css_set if necessary.
2676 * Has to be after the task is visible on the task list in case we race
2677 * with the first call to cgroup_iter_start() - to guarantee that the
2678 * new task ends up on its list.
2679 */
2680 void cgroup_post_fork(struct task_struct *child)
2681 {
2682 if (use_task_css_set_links) {
2683 write_lock(&css_set_lock);
2684 if (list_empty(&child->cg_list))
2685 list_add(&child->cg_list, &child->cgroups->tasks);
2686 write_unlock(&css_set_lock);
2687 }
2688 }
2689 /**
2690 * cgroup_exit - detach cgroup from exiting task
2691 * @tsk: pointer to task_struct of exiting process
2692 * @run_callback: run exit callbacks?
2693 *
2694 * Description: Detach cgroup from @tsk and release it.
2695 *
2696 * Note that cgroups marked notify_on_release force every task in
2697 * them to take the global cgroup_mutex mutex when exiting.
2698 * This could impact scaling on very large systems. Be reluctant to
2699 * use notify_on_release cgroups where very high task exit scaling
2700 * is required on large systems.
2701 *
2702 * the_top_cgroup_hack:
2703 *
2704 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
2705 *
2706 * We call cgroup_exit() while the task is still competent to
2707 * handle notify_on_release(), then leave the task attached to the
2708 * root cgroup in each hierarchy for the remainder of its exit.
2709 *
2710 * To do this properly, we would increment the reference count on
2711 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
2712 * code we would add a second cgroup function call, to drop that
2713 * reference. This would just create an unnecessary hot spot on
2714 * the top_cgroup reference count, to no avail.
2715 *
2716 * Normally, holding a reference to a cgroup without bumping its
2717 * count is unsafe. The cgroup could go away, or someone could
2718 * attach us to a different cgroup, decrementing the count on
2719 * the first cgroup that we never incremented. But in this case,
2720 * top_cgroup isn't going away, and either task has PF_EXITING set,
2721 * which wards off any cgroup_attach_task() attempts, or task is a failed
2722 * fork, never visible to cgroup_attach_task.
2723 */
2724 void cgroup_exit(struct task_struct *tsk, int run_callbacks)
2725 {
2726 int i;
2727 struct css_set *cg;
2728
2729 if (run_callbacks && need_forkexit_callback) {
2730 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2731 struct cgroup_subsys *ss = subsys[i];
2732 if (ss->exit)
2733 ss->exit(ss, tsk);
2734 }
2735 }
2736
2737 /*
2738 * Unlink from the css_set task list if necessary.
2739 * Optimistically check cg_list before taking
2740 * css_set_lock
2741 */
2742 if (!list_empty(&tsk->cg_list)) {
2743 write_lock(&css_set_lock);
2744 if (!list_empty(&tsk->cg_list))
2745 list_del(&tsk->cg_list);
2746 write_unlock(&css_set_lock);
2747 }
2748
2749 /* Reassign the task to the init_css_set. */
2750 task_lock(tsk);
2751 cg = tsk->cgroups;
2752 tsk->cgroups = &init_css_set;
2753 task_unlock(tsk);
2754 if (cg)
2755 put_css_set_taskexit(cg);
2756 }
2757
2758 /**
2759 * cgroup_clone - clone the cgroup the given subsystem is attached to
2760 * @tsk: the task to be moved
2761 * @subsys: the given subsystem
2762 *
2763 * Duplicate the current cgroup in the hierarchy that the given
2764 * subsystem is attached to, and move this task into the new
2765 * child.
2766 */
2767 int cgroup_clone(struct task_struct *tsk, struct cgroup_subsys *subsys)
2768 {
2769 struct dentry *dentry;
2770 int ret = 0;
2771 char nodename[MAX_CGROUP_TYPE_NAMELEN];
2772 struct cgroup *parent, *child;
2773 struct inode *inode;
2774 struct css_set *cg;
2775 struct cgroupfs_root *root;
2776 struct cgroup_subsys *ss;
2777
2778 /* We shouldn't be called by an unregistered subsystem */
2779 BUG_ON(!subsys->active);
2780
2781 /* First figure out what hierarchy and cgroup we're dealing
2782 * with, and pin them so we can drop cgroup_mutex */
2783 mutex_lock(&cgroup_mutex);
2784 again:
2785 root = subsys->root;
2786 if (root == &rootnode) {
2787 printk(KERN_INFO
2788 "Not cloning cgroup for unused subsystem %s\n",
2789 subsys->name);
2790 mutex_unlock(&cgroup_mutex);
2791 return 0;
2792 }
2793 cg = tsk->cgroups;
2794 parent = task_cgroup(tsk, subsys->subsys_id);
2795
2796 snprintf(nodename, MAX_CGROUP_TYPE_NAMELEN, "node_%d", tsk->pid);
2797
2798 /* Pin the hierarchy */
2799 atomic_inc(&parent->root->sb->s_active);
2800
2801 /* Keep the cgroup alive */
2802 get_css_set(cg);
2803 mutex_unlock(&cgroup_mutex);
2804
2805 /* Now do the VFS work to create a cgroup */
2806 inode = parent->dentry->d_inode;
2807
2808 /* Hold the parent directory mutex across this operation to
2809 * stop anyone else deleting the new cgroup */
2810 mutex_lock(&inode->i_mutex);
2811 dentry = lookup_one_len(nodename, parent->dentry, strlen(nodename));
2812 if (IS_ERR(dentry)) {
2813 printk(KERN_INFO
2814 "cgroup: Couldn't allocate dentry for %s: %ld\n", nodename,
2815 PTR_ERR(dentry));
2816 ret = PTR_ERR(dentry);
2817 goto out_release;
2818 }
2819
2820 /* Create the cgroup directory, which also creates the cgroup */
2821 ret = vfs_mkdir(inode, dentry, S_IFDIR | 0755);
2822 child = __d_cgrp(dentry);
2823 dput(dentry);
2824 if (ret) {
2825 printk(KERN_INFO
2826 "Failed to create cgroup %s: %d\n", nodename,
2827 ret);
2828 goto out_release;
2829 }
2830
2831 if (!child) {
2832 printk(KERN_INFO
2833 "Couldn't find new cgroup %s\n", nodename);
2834 ret = -ENOMEM;
2835 goto out_release;
2836 }
2837
2838 /* The cgroup now exists. Retake cgroup_mutex and check
2839 * that we're still in the same state that we thought we
2840 * were. */
2841 mutex_lock(&cgroup_mutex);
2842 if ((root != subsys->root) ||
2843 (parent != task_cgroup(tsk, subsys->subsys_id))) {
2844 /* Aargh, we raced ... */
2845 mutex_unlock(&inode->i_mutex);
2846 put_css_set(cg);
2847
2848 deactivate_super(parent->root->sb);
2849 /* The cgroup is still accessible in the VFS, but
2850 * we're not going to try to rmdir() it at this
2851 * point. */
2852 printk(KERN_INFO
2853 "Race in cgroup_clone() - leaking cgroup %s\n",
2854 nodename);
2855 goto again;
2856 }
2857
2858 /* do any required auto-setup */
2859 for_each_subsys(root, ss) {
2860 if (ss->post_clone)
2861 ss->post_clone(ss, child);
2862 }
2863
2864 /* All seems fine. Finish by moving the task into the new cgroup */
2865 ret = cgroup_attach_task(child, tsk);
2866 mutex_unlock(&cgroup_mutex);
2867
2868 out_release:
2869 mutex_unlock(&inode->i_mutex);
2870
2871 mutex_lock(&cgroup_mutex);
2872 put_css_set(cg);
2873 mutex_unlock(&cgroup_mutex);
2874 deactivate_super(parent->root->sb);
2875 return ret;
2876 }
2877
2878 /**
2879 * cgroup_is_descendant - see if @cgrp is a descendant of current task's cgrp
2880 * @cgrp: the cgroup in question
2881 *
2882 * See if @cgrp is a descendant of the current task's cgroup in
2883 * the appropriate hierarchy.
2884 *
2885 * If we are sending in dummytop, then presumably we are creating
2886 * the top cgroup in the subsystem.
2887 *
2888 * Called only by the ns (nsproxy) cgroup.
2889 */
2890 int cgroup_is_descendant(const struct cgroup *cgrp)
2891 {
2892 int ret;
2893 struct cgroup *target;
2894 int subsys_id;
2895
2896 if (cgrp == dummytop)
2897 return 1;
2898
2899 get_first_subsys(cgrp, NULL, &subsys_id);
2900 target = task_cgroup(current, subsys_id);
2901 while (cgrp != target && cgrp!= cgrp->top_cgroup)
2902 cgrp = cgrp->parent;
2903 ret = (cgrp == target);
2904 return ret;
2905 }
2906
2907 static void check_for_release(struct cgroup *cgrp)
2908 {
2909 /* All of these checks rely on RCU to keep the cgroup
2910 * structure alive */
2911 if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
2912 && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
2913 /* Control Group is currently removeable. If it's not
2914 * already queued for a userspace notification, queue
2915 * it now */
2916 int need_schedule_work = 0;
2917 spin_lock(&release_list_lock);
2918 if (!cgroup_is_removed(cgrp) &&
2919 list_empty(&cgrp->release_list)) {
2920 list_add(&cgrp->release_list, &release_list);
2921 need_schedule_work = 1;
2922 }
2923 spin_unlock(&release_list_lock);
2924 if (need_schedule_work)
2925 schedule_work(&release_agent_work);
2926 }
2927 }
2928
2929 void __css_put(struct cgroup_subsys_state *css)
2930 {
2931 struct cgroup *cgrp = css->cgroup;
2932 rcu_read_lock();
2933 if (atomic_dec_and_test(&css->refcnt) && notify_on_release(cgrp)) {
2934 set_bit(CGRP_RELEASABLE, &cgrp->flags);
2935 check_for_release(cgrp);
2936 }
2937 rcu_read_unlock();
2938 }
2939
2940 /*
2941 * Notify userspace when a cgroup is released, by running the
2942 * configured release agent with the name of the cgroup (path
2943 * relative to the root of cgroup file system) as the argument.
2944 *
2945 * Most likely, this user command will try to rmdir this cgroup.
2946 *
2947 * This races with the possibility that some other task will be
2948 * attached to this cgroup before it is removed, or that some other
2949 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
2950 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
2951 * unused, and this cgroup will be reprieved from its death sentence,
2952 * to continue to serve a useful existence. Next time it's released,
2953 * we will get notified again, if it still has 'notify_on_release' set.
2954 *
2955 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
2956 * means only wait until the task is successfully execve()'d. The
2957 * separate release agent task is forked by call_usermodehelper(),
2958 * then control in this thread returns here, without waiting for the
2959 * release agent task. We don't bother to wait because the caller of
2960 * this routine has no use for the exit status of the release agent
2961 * task, so no sense holding our caller up for that.
2962 */
2963 static void cgroup_release_agent(struct work_struct *work)
2964 {
2965 BUG_ON(work != &release_agent_work);
2966 mutex_lock(&cgroup_mutex);
2967 spin_lock(&release_list_lock);
2968 while (!list_empty(&release_list)) {
2969 char *argv[3], *envp[3];
2970 int i;
2971 char *pathbuf;
2972 struct cgroup *cgrp = list_entry(release_list.next,
2973 struct cgroup,
2974 release_list);
2975 list_del_init(&cgrp->release_list);
2976 spin_unlock(&release_list_lock);
2977 pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2978 if (!pathbuf) {
2979 spin_lock(&release_list_lock);
2980 continue;
2981 }
2982
2983 if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0) {
2984 kfree(pathbuf);
2985 spin_lock(&release_list_lock);
2986 continue;
2987 }
2988
2989 i = 0;
2990 argv[i++] = cgrp->root->release_agent_path;
2991 argv[i++] = (char *)pathbuf;
2992 argv[i] = NULL;
2993
2994 i = 0;
2995 /* minimal command environment */
2996 envp[i++] = "HOME=/";
2997 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
2998 envp[i] = NULL;
2999
3000 /* Drop the lock while we invoke the usermode helper,
3001 * since the exec could involve hitting disk and hence
3002 * be a slow process */
3003 mutex_unlock(&cgroup_mutex);
3004 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
3005 kfree(pathbuf);
3006 mutex_lock(&cgroup_mutex);
3007 spin_lock(&release_list_lock);
3008 }
3009 spin_unlock(&release_list_lock);
3010 mutex_unlock(&cgroup_mutex);
3011 }
This page took 0.137844 seconds and 6 git commands to generate.