cgroup: add cgroup_subsys->css_released()
[deliverable/linux.git] / kernel / cgroup.c
1 /*
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/cgroup.h>
32 #include <linux/cred.h>
33 #include <linux/ctype.h>
34 #include <linux/errno.h>
35 #include <linux/init_task.h>
36 #include <linux/kernel.h>
37 #include <linux/list.h>
38 #include <linux/magic.h>
39 #include <linux/mm.h>
40 #include <linux/mutex.h>
41 #include <linux/mount.h>
42 #include <linux/pagemap.h>
43 #include <linux/proc_fs.h>
44 #include <linux/rcupdate.h>
45 #include <linux/sched.h>
46 #include <linux/slab.h>
47 #include <linux/spinlock.h>
48 #include <linux/rwsem.h>
49 #include <linux/string.h>
50 #include <linux/sort.h>
51 #include <linux/kmod.h>
52 #include <linux/delayacct.h>
53 #include <linux/cgroupstats.h>
54 #include <linux/hashtable.h>
55 #include <linux/pid_namespace.h>
56 #include <linux/idr.h>
57 #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
58 #include <linux/kthread.h>
59 #include <linux/delay.h>
60
61 #include <linux/atomic.h>
62
63 /*
64 * pidlists linger the following amount before being destroyed. The goal
65 * is avoiding frequent destruction in the middle of consecutive read calls
66 * Expiring in the middle is a performance problem not a correctness one.
67 * 1 sec should be enough.
68 */
69 #define CGROUP_PIDLIST_DESTROY_DELAY HZ
70
71 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
72 MAX_CFTYPE_NAME + 2)
73
74 /*
75 * cgroup_mutex is the master lock. Any modification to cgroup or its
76 * hierarchy must be performed while holding it.
77 *
78 * css_set_rwsem protects task->cgroups pointer, the list of css_set
79 * objects, and the chain of tasks off each css_set.
80 *
81 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
82 * cgroup.h can use them for lockdep annotations.
83 */
84 #ifdef CONFIG_PROVE_RCU
85 DEFINE_MUTEX(cgroup_mutex);
86 DECLARE_RWSEM(css_set_rwsem);
87 EXPORT_SYMBOL_GPL(cgroup_mutex);
88 EXPORT_SYMBOL_GPL(css_set_rwsem);
89 #else
90 static DEFINE_MUTEX(cgroup_mutex);
91 static DECLARE_RWSEM(css_set_rwsem);
92 #endif
93
94 /*
95 * Protects cgroup_idr and css_idr so that IDs can be released without
96 * grabbing cgroup_mutex.
97 */
98 static DEFINE_SPINLOCK(cgroup_idr_lock);
99
100 /*
101 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
102 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
103 */
104 static DEFINE_SPINLOCK(release_agent_path_lock);
105
106 #define cgroup_assert_mutex_or_rcu_locked() \
107 rcu_lockdep_assert(rcu_read_lock_held() || \
108 lockdep_is_held(&cgroup_mutex), \
109 "cgroup_mutex or RCU read lock required");
110
111 /*
112 * cgroup destruction makes heavy use of work items and there can be a lot
113 * of concurrent destructions. Use a separate workqueue so that cgroup
114 * destruction work items don't end up filling up max_active of system_wq
115 * which may lead to deadlock.
116 */
117 static struct workqueue_struct *cgroup_destroy_wq;
118
119 /*
120 * pidlist destructions need to be flushed on cgroup destruction. Use a
121 * separate workqueue as flush domain.
122 */
123 static struct workqueue_struct *cgroup_pidlist_destroy_wq;
124
125 /* generate an array of cgroup subsystem pointers */
126 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
127 static struct cgroup_subsys *cgroup_subsys[] = {
128 #include <linux/cgroup_subsys.h>
129 };
130 #undef SUBSYS
131
132 /* array of cgroup subsystem names */
133 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
134 static const char *cgroup_subsys_name[] = {
135 #include <linux/cgroup_subsys.h>
136 };
137 #undef SUBSYS
138
139 /*
140 * The default hierarchy, reserved for the subsystems that are otherwise
141 * unattached - it never has more than a single cgroup, and all tasks are
142 * part of that cgroup.
143 */
144 struct cgroup_root cgrp_dfl_root;
145
146 /*
147 * The default hierarchy always exists but is hidden until mounted for the
148 * first time. This is for backward compatibility.
149 */
150 static bool cgrp_dfl_root_visible;
151
152 /*
153 * Set by the boot param of the same name and makes subsystems with NULL
154 * ->dfl_files to use ->legacy_files on the default hierarchy.
155 */
156 static bool cgroup_legacy_files_on_dfl;
157
158 /* some controllers are not supported in the default hierarchy */
159 static unsigned int cgrp_dfl_root_inhibit_ss_mask;
160
161 /* The list of hierarchy roots */
162
163 static LIST_HEAD(cgroup_roots);
164 static int cgroup_root_count;
165
166 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
167 static DEFINE_IDR(cgroup_hierarchy_idr);
168
169 /*
170 * Assign a monotonically increasing serial number to csses. It guarantees
171 * cgroups with bigger numbers are newer than those with smaller numbers.
172 * Also, as csses are always appended to the parent's ->children list, it
173 * guarantees that sibling csses are always sorted in the ascending serial
174 * number order on the list. Protected by cgroup_mutex.
175 */
176 static u64 css_serial_nr_next = 1;
177
178 /* This flag indicates whether tasks in the fork and exit paths should
179 * check for fork/exit handlers to call. This avoids us having to do
180 * extra work in the fork/exit path if none of the subsystems need to
181 * be called.
182 */
183 static int need_forkexit_callback __read_mostly;
184
185 static struct cftype cgroup_dfl_base_files[];
186 static struct cftype cgroup_legacy_base_files[];
187
188 static int rebind_subsystems(struct cgroup_root *dst_root,
189 unsigned int ss_mask);
190 static int cgroup_destroy_locked(struct cgroup *cgrp);
191 static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
192 bool visible);
193 static void css_release(struct percpu_ref *ref);
194 static void kill_css(struct cgroup_subsys_state *css);
195 static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
196 bool is_add);
197
198 /* IDR wrappers which synchronize using cgroup_idr_lock */
199 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
200 gfp_t gfp_mask)
201 {
202 int ret;
203
204 idr_preload(gfp_mask);
205 spin_lock_bh(&cgroup_idr_lock);
206 ret = idr_alloc(idr, ptr, start, end, gfp_mask);
207 spin_unlock_bh(&cgroup_idr_lock);
208 idr_preload_end();
209 return ret;
210 }
211
212 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
213 {
214 void *ret;
215
216 spin_lock_bh(&cgroup_idr_lock);
217 ret = idr_replace(idr, ptr, id);
218 spin_unlock_bh(&cgroup_idr_lock);
219 return ret;
220 }
221
222 static void cgroup_idr_remove(struct idr *idr, int id)
223 {
224 spin_lock_bh(&cgroup_idr_lock);
225 idr_remove(idr, id);
226 spin_unlock_bh(&cgroup_idr_lock);
227 }
228
229 static struct cgroup *cgroup_parent(struct cgroup *cgrp)
230 {
231 struct cgroup_subsys_state *parent_css = cgrp->self.parent;
232
233 if (parent_css)
234 return container_of(parent_css, struct cgroup, self);
235 return NULL;
236 }
237
238 /**
239 * cgroup_css - obtain a cgroup's css for the specified subsystem
240 * @cgrp: the cgroup of interest
241 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
242 *
243 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
244 * function must be called either under cgroup_mutex or rcu_read_lock() and
245 * the caller is responsible for pinning the returned css if it wants to
246 * keep accessing it outside the said locks. This function may return
247 * %NULL if @cgrp doesn't have @subsys_id enabled.
248 */
249 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
250 struct cgroup_subsys *ss)
251 {
252 if (ss)
253 return rcu_dereference_check(cgrp->subsys[ss->id],
254 lockdep_is_held(&cgroup_mutex));
255 else
256 return &cgrp->self;
257 }
258
259 /**
260 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
261 * @cgrp: the cgroup of interest
262 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
263 *
264 * Similar to cgroup_css() but returns the effctive css, which is defined
265 * as the matching css of the nearest ancestor including self which has @ss
266 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
267 * function is guaranteed to return non-NULL css.
268 */
269 static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
270 struct cgroup_subsys *ss)
271 {
272 lockdep_assert_held(&cgroup_mutex);
273
274 if (!ss)
275 return &cgrp->self;
276
277 if (!(cgrp->root->subsys_mask & (1 << ss->id)))
278 return NULL;
279
280 while (cgroup_parent(cgrp) &&
281 !(cgroup_parent(cgrp)->child_subsys_mask & (1 << ss->id)))
282 cgrp = cgroup_parent(cgrp);
283
284 return cgroup_css(cgrp, ss);
285 }
286
287 /* convenient tests for these bits */
288 static inline bool cgroup_is_dead(const struct cgroup *cgrp)
289 {
290 return !(cgrp->self.flags & CSS_ONLINE);
291 }
292
293 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
294 {
295 struct cgroup *cgrp = of->kn->parent->priv;
296 struct cftype *cft = of_cft(of);
297
298 /*
299 * This is open and unprotected implementation of cgroup_css().
300 * seq_css() is only called from a kernfs file operation which has
301 * an active reference on the file. Because all the subsystem
302 * files are drained before a css is disassociated with a cgroup,
303 * the matching css from the cgroup's subsys table is guaranteed to
304 * be and stay valid until the enclosing operation is complete.
305 */
306 if (cft->ss)
307 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
308 else
309 return &cgrp->self;
310 }
311 EXPORT_SYMBOL_GPL(of_css);
312
313 /**
314 * cgroup_is_descendant - test ancestry
315 * @cgrp: the cgroup to be tested
316 * @ancestor: possible ancestor of @cgrp
317 *
318 * Test whether @cgrp is a descendant of @ancestor. It also returns %true
319 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
320 * and @ancestor are accessible.
321 */
322 bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
323 {
324 while (cgrp) {
325 if (cgrp == ancestor)
326 return true;
327 cgrp = cgroup_parent(cgrp);
328 }
329 return false;
330 }
331
332 static int notify_on_release(const struct cgroup *cgrp)
333 {
334 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
335 }
336
337 /**
338 * for_each_css - iterate all css's of a cgroup
339 * @css: the iteration cursor
340 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
341 * @cgrp: the target cgroup to iterate css's of
342 *
343 * Should be called under cgroup_[tree_]mutex.
344 */
345 #define for_each_css(css, ssid, cgrp) \
346 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
347 if (!((css) = rcu_dereference_check( \
348 (cgrp)->subsys[(ssid)], \
349 lockdep_is_held(&cgroup_mutex)))) { } \
350 else
351
352 /**
353 * for_each_e_css - iterate all effective css's of a cgroup
354 * @css: the iteration cursor
355 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
356 * @cgrp: the target cgroup to iterate css's of
357 *
358 * Should be called under cgroup_[tree_]mutex.
359 */
360 #define for_each_e_css(css, ssid, cgrp) \
361 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
362 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
363 ; \
364 else
365
366 /**
367 * for_each_subsys - iterate all enabled cgroup subsystems
368 * @ss: the iteration cursor
369 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
370 */
371 #define for_each_subsys(ss, ssid) \
372 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
373 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
374
375 /* iterate across the hierarchies */
376 #define for_each_root(root) \
377 list_for_each_entry((root), &cgroup_roots, root_list)
378
379 /* iterate over child cgrps, lock should be held throughout iteration */
380 #define cgroup_for_each_live_child(child, cgrp) \
381 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
382 if (({ lockdep_assert_held(&cgroup_mutex); \
383 cgroup_is_dead(child); })) \
384 ; \
385 else
386
387 static void cgroup_release_agent(struct work_struct *work);
388 static void check_for_release(struct cgroup *cgrp);
389
390 /*
391 * A cgroup can be associated with multiple css_sets as different tasks may
392 * belong to different cgroups on different hierarchies. In the other
393 * direction, a css_set is naturally associated with multiple cgroups.
394 * This M:N relationship is represented by the following link structure
395 * which exists for each association and allows traversing the associations
396 * from both sides.
397 */
398 struct cgrp_cset_link {
399 /* the cgroup and css_set this link associates */
400 struct cgroup *cgrp;
401 struct css_set *cset;
402
403 /* list of cgrp_cset_links anchored at cgrp->cset_links */
404 struct list_head cset_link;
405
406 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
407 struct list_head cgrp_link;
408 };
409
410 /*
411 * The default css_set - used by init and its children prior to any
412 * hierarchies being mounted. It contains a pointer to the root state
413 * for each subsystem. Also used to anchor the list of css_sets. Not
414 * reference-counted, to improve performance when child cgroups
415 * haven't been created.
416 */
417 struct css_set init_css_set = {
418 .refcount = ATOMIC_INIT(1),
419 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
420 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
421 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
422 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
423 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
424 };
425
426 static int css_set_count = 1; /* 1 for init_css_set */
427
428 /**
429 * cgroup_update_populated - updated populated count of a cgroup
430 * @cgrp: the target cgroup
431 * @populated: inc or dec populated count
432 *
433 * @cgrp is either getting the first task (css_set) or losing the last.
434 * Update @cgrp->populated_cnt accordingly. The count is propagated
435 * towards root so that a given cgroup's populated_cnt is zero iff the
436 * cgroup and all its descendants are empty.
437 *
438 * @cgrp's interface file "cgroup.populated" is zero if
439 * @cgrp->populated_cnt is zero and 1 otherwise. When @cgrp->populated_cnt
440 * changes from or to zero, userland is notified that the content of the
441 * interface file has changed. This can be used to detect when @cgrp and
442 * its descendants become populated or empty.
443 */
444 static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
445 {
446 lockdep_assert_held(&css_set_rwsem);
447
448 do {
449 bool trigger;
450
451 if (populated)
452 trigger = !cgrp->populated_cnt++;
453 else
454 trigger = !--cgrp->populated_cnt;
455
456 if (!trigger)
457 break;
458
459 if (cgrp->populated_kn)
460 kernfs_notify(cgrp->populated_kn);
461 cgrp = cgroup_parent(cgrp);
462 } while (cgrp);
463 }
464
465 /*
466 * hash table for cgroup groups. This improves the performance to find
467 * an existing css_set. This hash doesn't (currently) take into
468 * account cgroups in empty hierarchies.
469 */
470 #define CSS_SET_HASH_BITS 7
471 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
472
473 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
474 {
475 unsigned long key = 0UL;
476 struct cgroup_subsys *ss;
477 int i;
478
479 for_each_subsys(ss, i)
480 key += (unsigned long)css[i];
481 key = (key >> 16) ^ key;
482
483 return key;
484 }
485
486 static void put_css_set_locked(struct css_set *cset)
487 {
488 struct cgrp_cset_link *link, *tmp_link;
489 struct cgroup_subsys *ss;
490 int ssid;
491
492 lockdep_assert_held(&css_set_rwsem);
493
494 if (!atomic_dec_and_test(&cset->refcount))
495 return;
496
497 /* This css_set is dead. unlink it and release cgroup refcounts */
498 for_each_subsys(ss, ssid)
499 list_del(&cset->e_cset_node[ssid]);
500 hash_del(&cset->hlist);
501 css_set_count--;
502
503 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
504 struct cgroup *cgrp = link->cgrp;
505
506 list_del(&link->cset_link);
507 list_del(&link->cgrp_link);
508
509 /* @cgrp can't go away while we're holding css_set_rwsem */
510 if (list_empty(&cgrp->cset_links)) {
511 cgroup_update_populated(cgrp, false);
512 check_for_release(cgrp);
513 }
514
515 kfree(link);
516 }
517
518 kfree_rcu(cset, rcu_head);
519 }
520
521 static void put_css_set(struct css_set *cset)
522 {
523 /*
524 * Ensure that the refcount doesn't hit zero while any readers
525 * can see it. Similar to atomic_dec_and_lock(), but for an
526 * rwlock
527 */
528 if (atomic_add_unless(&cset->refcount, -1, 1))
529 return;
530
531 down_write(&css_set_rwsem);
532 put_css_set_locked(cset);
533 up_write(&css_set_rwsem);
534 }
535
536 /*
537 * refcounted get/put for css_set objects
538 */
539 static inline void get_css_set(struct css_set *cset)
540 {
541 atomic_inc(&cset->refcount);
542 }
543
544 /**
545 * compare_css_sets - helper function for find_existing_css_set().
546 * @cset: candidate css_set being tested
547 * @old_cset: existing css_set for a task
548 * @new_cgrp: cgroup that's being entered by the task
549 * @template: desired set of css pointers in css_set (pre-calculated)
550 *
551 * Returns true if "cset" matches "old_cset" except for the hierarchy
552 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
553 */
554 static bool compare_css_sets(struct css_set *cset,
555 struct css_set *old_cset,
556 struct cgroup *new_cgrp,
557 struct cgroup_subsys_state *template[])
558 {
559 struct list_head *l1, *l2;
560
561 /*
562 * On the default hierarchy, there can be csets which are
563 * associated with the same set of cgroups but different csses.
564 * Let's first ensure that csses match.
565 */
566 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
567 return false;
568
569 /*
570 * Compare cgroup pointers in order to distinguish between
571 * different cgroups in hierarchies. As different cgroups may
572 * share the same effective css, this comparison is always
573 * necessary.
574 */
575 l1 = &cset->cgrp_links;
576 l2 = &old_cset->cgrp_links;
577 while (1) {
578 struct cgrp_cset_link *link1, *link2;
579 struct cgroup *cgrp1, *cgrp2;
580
581 l1 = l1->next;
582 l2 = l2->next;
583 /* See if we reached the end - both lists are equal length. */
584 if (l1 == &cset->cgrp_links) {
585 BUG_ON(l2 != &old_cset->cgrp_links);
586 break;
587 } else {
588 BUG_ON(l2 == &old_cset->cgrp_links);
589 }
590 /* Locate the cgroups associated with these links. */
591 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
592 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
593 cgrp1 = link1->cgrp;
594 cgrp2 = link2->cgrp;
595 /* Hierarchies should be linked in the same order. */
596 BUG_ON(cgrp1->root != cgrp2->root);
597
598 /*
599 * If this hierarchy is the hierarchy of the cgroup
600 * that's changing, then we need to check that this
601 * css_set points to the new cgroup; if it's any other
602 * hierarchy, then this css_set should point to the
603 * same cgroup as the old css_set.
604 */
605 if (cgrp1->root == new_cgrp->root) {
606 if (cgrp1 != new_cgrp)
607 return false;
608 } else {
609 if (cgrp1 != cgrp2)
610 return false;
611 }
612 }
613 return true;
614 }
615
616 /**
617 * find_existing_css_set - init css array and find the matching css_set
618 * @old_cset: the css_set that we're using before the cgroup transition
619 * @cgrp: the cgroup that we're moving into
620 * @template: out param for the new set of csses, should be clear on entry
621 */
622 static struct css_set *find_existing_css_set(struct css_set *old_cset,
623 struct cgroup *cgrp,
624 struct cgroup_subsys_state *template[])
625 {
626 struct cgroup_root *root = cgrp->root;
627 struct cgroup_subsys *ss;
628 struct css_set *cset;
629 unsigned long key;
630 int i;
631
632 /*
633 * Build the set of subsystem state objects that we want to see in the
634 * new css_set. while subsystems can change globally, the entries here
635 * won't change, so no need for locking.
636 */
637 for_each_subsys(ss, i) {
638 if (root->subsys_mask & (1UL << i)) {
639 /*
640 * @ss is in this hierarchy, so we want the
641 * effective css from @cgrp.
642 */
643 template[i] = cgroup_e_css(cgrp, ss);
644 } else {
645 /*
646 * @ss is not in this hierarchy, so we don't want
647 * to change the css.
648 */
649 template[i] = old_cset->subsys[i];
650 }
651 }
652
653 key = css_set_hash(template);
654 hash_for_each_possible(css_set_table, cset, hlist, key) {
655 if (!compare_css_sets(cset, old_cset, cgrp, template))
656 continue;
657
658 /* This css_set matches what we need */
659 return cset;
660 }
661
662 /* No existing cgroup group matched */
663 return NULL;
664 }
665
666 static void free_cgrp_cset_links(struct list_head *links_to_free)
667 {
668 struct cgrp_cset_link *link, *tmp_link;
669
670 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
671 list_del(&link->cset_link);
672 kfree(link);
673 }
674 }
675
676 /**
677 * allocate_cgrp_cset_links - allocate cgrp_cset_links
678 * @count: the number of links to allocate
679 * @tmp_links: list_head the allocated links are put on
680 *
681 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
682 * through ->cset_link. Returns 0 on success or -errno.
683 */
684 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
685 {
686 struct cgrp_cset_link *link;
687 int i;
688
689 INIT_LIST_HEAD(tmp_links);
690
691 for (i = 0; i < count; i++) {
692 link = kzalloc(sizeof(*link), GFP_KERNEL);
693 if (!link) {
694 free_cgrp_cset_links(tmp_links);
695 return -ENOMEM;
696 }
697 list_add(&link->cset_link, tmp_links);
698 }
699 return 0;
700 }
701
702 /**
703 * link_css_set - a helper function to link a css_set to a cgroup
704 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
705 * @cset: the css_set to be linked
706 * @cgrp: the destination cgroup
707 */
708 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
709 struct cgroup *cgrp)
710 {
711 struct cgrp_cset_link *link;
712
713 BUG_ON(list_empty(tmp_links));
714
715 if (cgroup_on_dfl(cgrp))
716 cset->dfl_cgrp = cgrp;
717
718 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
719 link->cset = cset;
720 link->cgrp = cgrp;
721
722 if (list_empty(&cgrp->cset_links))
723 cgroup_update_populated(cgrp, true);
724 list_move(&link->cset_link, &cgrp->cset_links);
725
726 /*
727 * Always add links to the tail of the list so that the list
728 * is sorted by order of hierarchy creation
729 */
730 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
731 }
732
733 /**
734 * find_css_set - return a new css_set with one cgroup updated
735 * @old_cset: the baseline css_set
736 * @cgrp: the cgroup to be updated
737 *
738 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
739 * substituted into the appropriate hierarchy.
740 */
741 static struct css_set *find_css_set(struct css_set *old_cset,
742 struct cgroup *cgrp)
743 {
744 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
745 struct css_set *cset;
746 struct list_head tmp_links;
747 struct cgrp_cset_link *link;
748 struct cgroup_subsys *ss;
749 unsigned long key;
750 int ssid;
751
752 lockdep_assert_held(&cgroup_mutex);
753
754 /* First see if we already have a cgroup group that matches
755 * the desired set */
756 down_read(&css_set_rwsem);
757 cset = find_existing_css_set(old_cset, cgrp, template);
758 if (cset)
759 get_css_set(cset);
760 up_read(&css_set_rwsem);
761
762 if (cset)
763 return cset;
764
765 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
766 if (!cset)
767 return NULL;
768
769 /* Allocate all the cgrp_cset_link objects that we'll need */
770 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
771 kfree(cset);
772 return NULL;
773 }
774
775 atomic_set(&cset->refcount, 1);
776 INIT_LIST_HEAD(&cset->cgrp_links);
777 INIT_LIST_HEAD(&cset->tasks);
778 INIT_LIST_HEAD(&cset->mg_tasks);
779 INIT_LIST_HEAD(&cset->mg_preload_node);
780 INIT_LIST_HEAD(&cset->mg_node);
781 INIT_HLIST_NODE(&cset->hlist);
782
783 /* Copy the set of subsystem state objects generated in
784 * find_existing_css_set() */
785 memcpy(cset->subsys, template, sizeof(cset->subsys));
786
787 down_write(&css_set_rwsem);
788 /* Add reference counts and links from the new css_set. */
789 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
790 struct cgroup *c = link->cgrp;
791
792 if (c->root == cgrp->root)
793 c = cgrp;
794 link_css_set(&tmp_links, cset, c);
795 }
796
797 BUG_ON(!list_empty(&tmp_links));
798
799 css_set_count++;
800
801 /* Add @cset to the hash table */
802 key = css_set_hash(cset->subsys);
803 hash_add(css_set_table, &cset->hlist, key);
804
805 for_each_subsys(ss, ssid)
806 list_add_tail(&cset->e_cset_node[ssid],
807 &cset->subsys[ssid]->cgroup->e_csets[ssid]);
808
809 up_write(&css_set_rwsem);
810
811 return cset;
812 }
813
814 static struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
815 {
816 struct cgroup *root_cgrp = kf_root->kn->priv;
817
818 return root_cgrp->root;
819 }
820
821 static int cgroup_init_root_id(struct cgroup_root *root)
822 {
823 int id;
824
825 lockdep_assert_held(&cgroup_mutex);
826
827 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
828 if (id < 0)
829 return id;
830
831 root->hierarchy_id = id;
832 return 0;
833 }
834
835 static void cgroup_exit_root_id(struct cgroup_root *root)
836 {
837 lockdep_assert_held(&cgroup_mutex);
838
839 if (root->hierarchy_id) {
840 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
841 root->hierarchy_id = 0;
842 }
843 }
844
845 static void cgroup_free_root(struct cgroup_root *root)
846 {
847 if (root) {
848 /* hierarhcy ID shoulid already have been released */
849 WARN_ON_ONCE(root->hierarchy_id);
850
851 idr_destroy(&root->cgroup_idr);
852 kfree(root);
853 }
854 }
855
856 static void cgroup_destroy_root(struct cgroup_root *root)
857 {
858 struct cgroup *cgrp = &root->cgrp;
859 struct cgrp_cset_link *link, *tmp_link;
860
861 mutex_lock(&cgroup_mutex);
862
863 BUG_ON(atomic_read(&root->nr_cgrps));
864 BUG_ON(!list_empty(&cgrp->self.children));
865
866 /* Rebind all subsystems back to the default hierarchy */
867 rebind_subsystems(&cgrp_dfl_root, root->subsys_mask);
868
869 /*
870 * Release all the links from cset_links to this hierarchy's
871 * root cgroup
872 */
873 down_write(&css_set_rwsem);
874
875 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
876 list_del(&link->cset_link);
877 list_del(&link->cgrp_link);
878 kfree(link);
879 }
880 up_write(&css_set_rwsem);
881
882 if (!list_empty(&root->root_list)) {
883 list_del(&root->root_list);
884 cgroup_root_count--;
885 }
886
887 cgroup_exit_root_id(root);
888
889 mutex_unlock(&cgroup_mutex);
890
891 kernfs_destroy_root(root->kf_root);
892 cgroup_free_root(root);
893 }
894
895 /* look up cgroup associated with given css_set on the specified hierarchy */
896 static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
897 struct cgroup_root *root)
898 {
899 struct cgroup *res = NULL;
900
901 lockdep_assert_held(&cgroup_mutex);
902 lockdep_assert_held(&css_set_rwsem);
903
904 if (cset == &init_css_set) {
905 res = &root->cgrp;
906 } else {
907 struct cgrp_cset_link *link;
908
909 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
910 struct cgroup *c = link->cgrp;
911
912 if (c->root == root) {
913 res = c;
914 break;
915 }
916 }
917 }
918
919 BUG_ON(!res);
920 return res;
921 }
922
923 /*
924 * Return the cgroup for "task" from the given hierarchy. Must be
925 * called with cgroup_mutex and css_set_rwsem held.
926 */
927 static struct cgroup *task_cgroup_from_root(struct task_struct *task,
928 struct cgroup_root *root)
929 {
930 /*
931 * No need to lock the task - since we hold cgroup_mutex the
932 * task can't change groups, so the only thing that can happen
933 * is that it exits and its css is set back to init_css_set.
934 */
935 return cset_cgroup_from_root(task_css_set(task), root);
936 }
937
938 /*
939 * A task must hold cgroup_mutex to modify cgroups.
940 *
941 * Any task can increment and decrement the count field without lock.
942 * So in general, code holding cgroup_mutex can't rely on the count
943 * field not changing. However, if the count goes to zero, then only
944 * cgroup_attach_task() can increment it again. Because a count of zero
945 * means that no tasks are currently attached, therefore there is no
946 * way a task attached to that cgroup can fork (the other way to
947 * increment the count). So code holding cgroup_mutex can safely
948 * assume that if the count is zero, it will stay zero. Similarly, if
949 * a task holds cgroup_mutex on a cgroup with zero count, it
950 * knows that the cgroup won't be removed, as cgroup_rmdir()
951 * needs that mutex.
952 *
953 * A cgroup can only be deleted if both its 'count' of using tasks
954 * is zero, and its list of 'children' cgroups is empty. Since all
955 * tasks in the system use _some_ cgroup, and since there is always at
956 * least one task in the system (init, pid == 1), therefore, root cgroup
957 * always has either children cgroups and/or using tasks. So we don't
958 * need a special hack to ensure that root cgroup cannot be deleted.
959 *
960 * P.S. One more locking exception. RCU is used to guard the
961 * update of a tasks cgroup pointer by cgroup_attach_task()
962 */
963
964 static int cgroup_populate_dir(struct cgroup *cgrp, unsigned int subsys_mask);
965 static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
966 static const struct file_operations proc_cgroupstats_operations;
967
968 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
969 char *buf)
970 {
971 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
972 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
973 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
974 cft->ss->name, cft->name);
975 else
976 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
977 return buf;
978 }
979
980 /**
981 * cgroup_file_mode - deduce file mode of a control file
982 * @cft: the control file in question
983 *
984 * returns cft->mode if ->mode is not 0
985 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
986 * returns S_IRUGO if it has only a read handler
987 * returns S_IWUSR if it has only a write hander
988 */
989 static umode_t cgroup_file_mode(const struct cftype *cft)
990 {
991 umode_t mode = 0;
992
993 if (cft->mode)
994 return cft->mode;
995
996 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
997 mode |= S_IRUGO;
998
999 if (cft->write_u64 || cft->write_s64 || cft->write)
1000 mode |= S_IWUSR;
1001
1002 return mode;
1003 }
1004
1005 static void cgroup_get(struct cgroup *cgrp)
1006 {
1007 WARN_ON_ONCE(cgroup_is_dead(cgrp));
1008 css_get(&cgrp->self);
1009 }
1010
1011 static bool cgroup_tryget(struct cgroup *cgrp)
1012 {
1013 return css_tryget(&cgrp->self);
1014 }
1015
1016 static void cgroup_put(struct cgroup *cgrp)
1017 {
1018 css_put(&cgrp->self);
1019 }
1020
1021 /**
1022 * cgroup_calc_child_subsys_mask - calculate child_subsys_mask
1023 * @cgrp: the target cgroup
1024 * @subtree_control: the new subtree_control mask to consider
1025 *
1026 * On the default hierarchy, a subsystem may request other subsystems to be
1027 * enabled together through its ->depends_on mask. In such cases, more
1028 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1029 *
1030 * This function calculates which subsystems need to be enabled if
1031 * @subtree_control is to be applied to @cgrp. The returned mask is always
1032 * a superset of @subtree_control and follows the usual hierarchy rules.
1033 */
1034 static unsigned int cgroup_calc_child_subsys_mask(struct cgroup *cgrp,
1035 unsigned int subtree_control)
1036 {
1037 struct cgroup *parent = cgroup_parent(cgrp);
1038 unsigned int cur_ss_mask = subtree_control;
1039 struct cgroup_subsys *ss;
1040 int ssid;
1041
1042 lockdep_assert_held(&cgroup_mutex);
1043
1044 if (!cgroup_on_dfl(cgrp))
1045 return cur_ss_mask;
1046
1047 while (true) {
1048 unsigned int new_ss_mask = cur_ss_mask;
1049
1050 for_each_subsys(ss, ssid)
1051 if (cur_ss_mask & (1 << ssid))
1052 new_ss_mask |= ss->depends_on;
1053
1054 /*
1055 * Mask out subsystems which aren't available. This can
1056 * happen only if some depended-upon subsystems were bound
1057 * to non-default hierarchies.
1058 */
1059 if (parent)
1060 new_ss_mask &= parent->child_subsys_mask;
1061 else
1062 new_ss_mask &= cgrp->root->subsys_mask;
1063
1064 if (new_ss_mask == cur_ss_mask)
1065 break;
1066 cur_ss_mask = new_ss_mask;
1067 }
1068
1069 return cur_ss_mask;
1070 }
1071
1072 /**
1073 * cgroup_refresh_child_subsys_mask - update child_subsys_mask
1074 * @cgrp: the target cgroup
1075 *
1076 * Update @cgrp->child_subsys_mask according to the current
1077 * @cgrp->subtree_control using cgroup_calc_child_subsys_mask().
1078 */
1079 static void cgroup_refresh_child_subsys_mask(struct cgroup *cgrp)
1080 {
1081 cgrp->child_subsys_mask =
1082 cgroup_calc_child_subsys_mask(cgrp, cgrp->subtree_control);
1083 }
1084
1085 /**
1086 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1087 * @kn: the kernfs_node being serviced
1088 *
1089 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1090 * the method finishes if locking succeeded. Note that once this function
1091 * returns the cgroup returned by cgroup_kn_lock_live() may become
1092 * inaccessible any time. If the caller intends to continue to access the
1093 * cgroup, it should pin it before invoking this function.
1094 */
1095 static void cgroup_kn_unlock(struct kernfs_node *kn)
1096 {
1097 struct cgroup *cgrp;
1098
1099 if (kernfs_type(kn) == KERNFS_DIR)
1100 cgrp = kn->priv;
1101 else
1102 cgrp = kn->parent->priv;
1103
1104 mutex_unlock(&cgroup_mutex);
1105
1106 kernfs_unbreak_active_protection(kn);
1107 cgroup_put(cgrp);
1108 }
1109
1110 /**
1111 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1112 * @kn: the kernfs_node being serviced
1113 *
1114 * This helper is to be used by a cgroup kernfs method currently servicing
1115 * @kn. It breaks the active protection, performs cgroup locking and
1116 * verifies that the associated cgroup is alive. Returns the cgroup if
1117 * alive; otherwise, %NULL. A successful return should be undone by a
1118 * matching cgroup_kn_unlock() invocation.
1119 *
1120 * Any cgroup kernfs method implementation which requires locking the
1121 * associated cgroup should use this helper. It avoids nesting cgroup
1122 * locking under kernfs active protection and allows all kernfs operations
1123 * including self-removal.
1124 */
1125 static struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn)
1126 {
1127 struct cgroup *cgrp;
1128
1129 if (kernfs_type(kn) == KERNFS_DIR)
1130 cgrp = kn->priv;
1131 else
1132 cgrp = kn->parent->priv;
1133
1134 /*
1135 * We're gonna grab cgroup_mutex which nests outside kernfs
1136 * active_ref. cgroup liveliness check alone provides enough
1137 * protection against removal. Ensure @cgrp stays accessible and
1138 * break the active_ref protection.
1139 */
1140 if (!cgroup_tryget(cgrp))
1141 return NULL;
1142 kernfs_break_active_protection(kn);
1143
1144 mutex_lock(&cgroup_mutex);
1145
1146 if (!cgroup_is_dead(cgrp))
1147 return cgrp;
1148
1149 cgroup_kn_unlock(kn);
1150 return NULL;
1151 }
1152
1153 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1154 {
1155 char name[CGROUP_FILE_NAME_MAX];
1156
1157 lockdep_assert_held(&cgroup_mutex);
1158 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1159 }
1160
1161 /**
1162 * cgroup_clear_dir - remove subsys files in a cgroup directory
1163 * @cgrp: target cgroup
1164 * @subsys_mask: mask of the subsystem ids whose files should be removed
1165 */
1166 static void cgroup_clear_dir(struct cgroup *cgrp, unsigned int subsys_mask)
1167 {
1168 struct cgroup_subsys *ss;
1169 int i;
1170
1171 for_each_subsys(ss, i) {
1172 struct cftype *cfts;
1173
1174 if (!(subsys_mask & (1 << i)))
1175 continue;
1176 list_for_each_entry(cfts, &ss->cfts, node)
1177 cgroup_addrm_files(cgrp, cfts, false);
1178 }
1179 }
1180
1181 static int rebind_subsystems(struct cgroup_root *dst_root, unsigned int ss_mask)
1182 {
1183 struct cgroup_subsys *ss;
1184 unsigned int tmp_ss_mask;
1185 int ssid, i, ret;
1186
1187 lockdep_assert_held(&cgroup_mutex);
1188
1189 for_each_subsys(ss, ssid) {
1190 if (!(ss_mask & (1 << ssid)))
1191 continue;
1192
1193 /* if @ss has non-root csses attached to it, can't move */
1194 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)))
1195 return -EBUSY;
1196
1197 /* can't move between two non-dummy roots either */
1198 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1199 return -EBUSY;
1200 }
1201
1202 /* skip creating root files on dfl_root for inhibited subsystems */
1203 tmp_ss_mask = ss_mask;
1204 if (dst_root == &cgrp_dfl_root)
1205 tmp_ss_mask &= ~cgrp_dfl_root_inhibit_ss_mask;
1206
1207 ret = cgroup_populate_dir(&dst_root->cgrp, tmp_ss_mask);
1208 if (ret) {
1209 if (dst_root != &cgrp_dfl_root)
1210 return ret;
1211
1212 /*
1213 * Rebinding back to the default root is not allowed to
1214 * fail. Using both default and non-default roots should
1215 * be rare. Moving subsystems back and forth even more so.
1216 * Just warn about it and continue.
1217 */
1218 if (cgrp_dfl_root_visible) {
1219 pr_warn("failed to create files (%d) while rebinding 0x%x to default root\n",
1220 ret, ss_mask);
1221 pr_warn("you may retry by moving them to a different hierarchy and unbinding\n");
1222 }
1223 }
1224
1225 /*
1226 * Nothing can fail from this point on. Remove files for the
1227 * removed subsystems and rebind each subsystem.
1228 */
1229 for_each_subsys(ss, ssid)
1230 if (ss_mask & (1 << ssid))
1231 cgroup_clear_dir(&ss->root->cgrp, 1 << ssid);
1232
1233 for_each_subsys(ss, ssid) {
1234 struct cgroup_root *src_root;
1235 struct cgroup_subsys_state *css;
1236 struct css_set *cset;
1237
1238 if (!(ss_mask & (1 << ssid)))
1239 continue;
1240
1241 src_root = ss->root;
1242 css = cgroup_css(&src_root->cgrp, ss);
1243
1244 WARN_ON(!css || cgroup_css(&dst_root->cgrp, ss));
1245
1246 RCU_INIT_POINTER(src_root->cgrp.subsys[ssid], NULL);
1247 rcu_assign_pointer(dst_root->cgrp.subsys[ssid], css);
1248 ss->root = dst_root;
1249 css->cgroup = &dst_root->cgrp;
1250
1251 down_write(&css_set_rwsem);
1252 hash_for_each(css_set_table, i, cset, hlist)
1253 list_move_tail(&cset->e_cset_node[ss->id],
1254 &dst_root->cgrp.e_csets[ss->id]);
1255 up_write(&css_set_rwsem);
1256
1257 src_root->subsys_mask &= ~(1 << ssid);
1258 src_root->cgrp.subtree_control &= ~(1 << ssid);
1259 cgroup_refresh_child_subsys_mask(&src_root->cgrp);
1260
1261 /* default hierarchy doesn't enable controllers by default */
1262 dst_root->subsys_mask |= 1 << ssid;
1263 if (dst_root != &cgrp_dfl_root) {
1264 dst_root->cgrp.subtree_control |= 1 << ssid;
1265 cgroup_refresh_child_subsys_mask(&dst_root->cgrp);
1266 }
1267
1268 if (ss->bind)
1269 ss->bind(css);
1270 }
1271
1272 kernfs_activate(dst_root->cgrp.kn);
1273 return 0;
1274 }
1275
1276 static int cgroup_show_options(struct seq_file *seq,
1277 struct kernfs_root *kf_root)
1278 {
1279 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1280 struct cgroup_subsys *ss;
1281 int ssid;
1282
1283 for_each_subsys(ss, ssid)
1284 if (root->subsys_mask & (1 << ssid))
1285 seq_printf(seq, ",%s", ss->name);
1286 if (root->flags & CGRP_ROOT_NOPREFIX)
1287 seq_puts(seq, ",noprefix");
1288 if (root->flags & CGRP_ROOT_XATTR)
1289 seq_puts(seq, ",xattr");
1290
1291 spin_lock(&release_agent_path_lock);
1292 if (strlen(root->release_agent_path))
1293 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
1294 spin_unlock(&release_agent_path_lock);
1295
1296 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
1297 seq_puts(seq, ",clone_children");
1298 if (strlen(root->name))
1299 seq_printf(seq, ",name=%s", root->name);
1300 return 0;
1301 }
1302
1303 struct cgroup_sb_opts {
1304 unsigned int subsys_mask;
1305 unsigned int flags;
1306 char *release_agent;
1307 bool cpuset_clone_children;
1308 char *name;
1309 /* User explicitly requested empty subsystem */
1310 bool none;
1311 };
1312
1313 static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
1314 {
1315 char *token, *o = data;
1316 bool all_ss = false, one_ss = false;
1317 unsigned int mask = -1U;
1318 struct cgroup_subsys *ss;
1319 int nr_opts = 0;
1320 int i;
1321
1322 #ifdef CONFIG_CPUSETS
1323 mask = ~(1U << cpuset_cgrp_id);
1324 #endif
1325
1326 memset(opts, 0, sizeof(*opts));
1327
1328 while ((token = strsep(&o, ",")) != NULL) {
1329 nr_opts++;
1330
1331 if (!*token)
1332 return -EINVAL;
1333 if (!strcmp(token, "none")) {
1334 /* Explicitly have no subsystems */
1335 opts->none = true;
1336 continue;
1337 }
1338 if (!strcmp(token, "all")) {
1339 /* Mutually exclusive option 'all' + subsystem name */
1340 if (one_ss)
1341 return -EINVAL;
1342 all_ss = true;
1343 continue;
1344 }
1345 if (!strcmp(token, "__DEVEL__sane_behavior")) {
1346 opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
1347 continue;
1348 }
1349 if (!strcmp(token, "noprefix")) {
1350 opts->flags |= CGRP_ROOT_NOPREFIX;
1351 continue;
1352 }
1353 if (!strcmp(token, "clone_children")) {
1354 opts->cpuset_clone_children = true;
1355 continue;
1356 }
1357 if (!strcmp(token, "xattr")) {
1358 opts->flags |= CGRP_ROOT_XATTR;
1359 continue;
1360 }
1361 if (!strncmp(token, "release_agent=", 14)) {
1362 /* Specifying two release agents is forbidden */
1363 if (opts->release_agent)
1364 return -EINVAL;
1365 opts->release_agent =
1366 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
1367 if (!opts->release_agent)
1368 return -ENOMEM;
1369 continue;
1370 }
1371 if (!strncmp(token, "name=", 5)) {
1372 const char *name = token + 5;
1373 /* Can't specify an empty name */
1374 if (!strlen(name))
1375 return -EINVAL;
1376 /* Must match [\w.-]+ */
1377 for (i = 0; i < strlen(name); i++) {
1378 char c = name[i];
1379 if (isalnum(c))
1380 continue;
1381 if ((c == '.') || (c == '-') || (c == '_'))
1382 continue;
1383 return -EINVAL;
1384 }
1385 /* Specifying two names is forbidden */
1386 if (opts->name)
1387 return -EINVAL;
1388 opts->name = kstrndup(name,
1389 MAX_CGROUP_ROOT_NAMELEN - 1,
1390 GFP_KERNEL);
1391 if (!opts->name)
1392 return -ENOMEM;
1393
1394 continue;
1395 }
1396
1397 for_each_subsys(ss, i) {
1398 if (strcmp(token, ss->name))
1399 continue;
1400 if (ss->disabled)
1401 continue;
1402
1403 /* Mutually exclusive option 'all' + subsystem name */
1404 if (all_ss)
1405 return -EINVAL;
1406 opts->subsys_mask |= (1 << i);
1407 one_ss = true;
1408
1409 break;
1410 }
1411 if (i == CGROUP_SUBSYS_COUNT)
1412 return -ENOENT;
1413 }
1414
1415 if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1416 pr_warn("sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
1417 if (nr_opts != 1) {
1418 pr_err("sane_behavior: no other mount options allowed\n");
1419 return -EINVAL;
1420 }
1421 return 0;
1422 }
1423
1424 /*
1425 * If the 'all' option was specified select all the subsystems,
1426 * otherwise if 'none', 'name=' and a subsystem name options were
1427 * not specified, let's default to 'all'
1428 */
1429 if (all_ss || (!one_ss && !opts->none && !opts->name))
1430 for_each_subsys(ss, i)
1431 if (!ss->disabled)
1432 opts->subsys_mask |= (1 << i);
1433
1434 /*
1435 * We either have to specify by name or by subsystems. (So all
1436 * empty hierarchies must have a name).
1437 */
1438 if (!opts->subsys_mask && !opts->name)
1439 return -EINVAL;
1440
1441 /*
1442 * Option noprefix was introduced just for backward compatibility
1443 * with the old cpuset, so we allow noprefix only if mounting just
1444 * the cpuset subsystem.
1445 */
1446 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
1447 return -EINVAL;
1448
1449 /* Can't specify "none" and some subsystems */
1450 if (opts->subsys_mask && opts->none)
1451 return -EINVAL;
1452
1453 return 0;
1454 }
1455
1456 static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
1457 {
1458 int ret = 0;
1459 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1460 struct cgroup_sb_opts opts;
1461 unsigned int added_mask, removed_mask;
1462
1463 if (root == &cgrp_dfl_root) {
1464 pr_err("remount is not allowed\n");
1465 return -EINVAL;
1466 }
1467
1468 mutex_lock(&cgroup_mutex);
1469
1470 /* See what subsystems are wanted */
1471 ret = parse_cgroupfs_options(data, &opts);
1472 if (ret)
1473 goto out_unlock;
1474
1475 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
1476 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
1477 task_tgid_nr(current), current->comm);
1478
1479 added_mask = opts.subsys_mask & ~root->subsys_mask;
1480 removed_mask = root->subsys_mask & ~opts.subsys_mask;
1481
1482 /* Don't allow flags or name to change at remount */
1483 if ((opts.flags ^ root->flags) ||
1484 (opts.name && strcmp(opts.name, root->name))) {
1485 pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n",
1486 opts.flags, opts.name ?: "", root->flags, root->name);
1487 ret = -EINVAL;
1488 goto out_unlock;
1489 }
1490
1491 /* remounting is not allowed for populated hierarchies */
1492 if (!list_empty(&root->cgrp.self.children)) {
1493 ret = -EBUSY;
1494 goto out_unlock;
1495 }
1496
1497 ret = rebind_subsystems(root, added_mask);
1498 if (ret)
1499 goto out_unlock;
1500
1501 rebind_subsystems(&cgrp_dfl_root, removed_mask);
1502
1503 if (opts.release_agent) {
1504 spin_lock(&release_agent_path_lock);
1505 strcpy(root->release_agent_path, opts.release_agent);
1506 spin_unlock(&release_agent_path_lock);
1507 }
1508 out_unlock:
1509 kfree(opts.release_agent);
1510 kfree(opts.name);
1511 mutex_unlock(&cgroup_mutex);
1512 return ret;
1513 }
1514
1515 /*
1516 * To reduce the fork() overhead for systems that are not actually using
1517 * their cgroups capability, we don't maintain the lists running through
1518 * each css_set to its tasks until we see the list actually used - in other
1519 * words after the first mount.
1520 */
1521 static bool use_task_css_set_links __read_mostly;
1522
1523 static void cgroup_enable_task_cg_lists(void)
1524 {
1525 struct task_struct *p, *g;
1526
1527 down_write(&css_set_rwsem);
1528
1529 if (use_task_css_set_links)
1530 goto out_unlock;
1531
1532 use_task_css_set_links = true;
1533
1534 /*
1535 * We need tasklist_lock because RCU is not safe against
1536 * while_each_thread(). Besides, a forking task that has passed
1537 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1538 * is not guaranteed to have its child immediately visible in the
1539 * tasklist if we walk through it with RCU.
1540 */
1541 read_lock(&tasklist_lock);
1542 do_each_thread(g, p) {
1543 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1544 task_css_set(p) != &init_css_set);
1545
1546 /*
1547 * We should check if the process is exiting, otherwise
1548 * it will race with cgroup_exit() in that the list
1549 * entry won't be deleted though the process has exited.
1550 * Do it while holding siglock so that we don't end up
1551 * racing against cgroup_exit().
1552 */
1553 spin_lock_irq(&p->sighand->siglock);
1554 if (!(p->flags & PF_EXITING)) {
1555 struct css_set *cset = task_css_set(p);
1556
1557 list_add(&p->cg_list, &cset->tasks);
1558 get_css_set(cset);
1559 }
1560 spin_unlock_irq(&p->sighand->siglock);
1561 } while_each_thread(g, p);
1562 read_unlock(&tasklist_lock);
1563 out_unlock:
1564 up_write(&css_set_rwsem);
1565 }
1566
1567 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1568 {
1569 struct cgroup_subsys *ss;
1570 int ssid;
1571
1572 INIT_LIST_HEAD(&cgrp->self.sibling);
1573 INIT_LIST_HEAD(&cgrp->self.children);
1574 INIT_LIST_HEAD(&cgrp->cset_links);
1575 INIT_LIST_HEAD(&cgrp->pidlists);
1576 mutex_init(&cgrp->pidlist_mutex);
1577 cgrp->self.cgroup = cgrp;
1578 cgrp->self.flags |= CSS_ONLINE;
1579
1580 for_each_subsys(ss, ssid)
1581 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
1582
1583 init_waitqueue_head(&cgrp->offline_waitq);
1584 INIT_WORK(&cgrp->release_agent_work, cgroup_release_agent);
1585 }
1586
1587 static void init_cgroup_root(struct cgroup_root *root,
1588 struct cgroup_sb_opts *opts)
1589 {
1590 struct cgroup *cgrp = &root->cgrp;
1591
1592 INIT_LIST_HEAD(&root->root_list);
1593 atomic_set(&root->nr_cgrps, 1);
1594 cgrp->root = root;
1595 init_cgroup_housekeeping(cgrp);
1596 idr_init(&root->cgroup_idr);
1597
1598 root->flags = opts->flags;
1599 if (opts->release_agent)
1600 strcpy(root->release_agent_path, opts->release_agent);
1601 if (opts->name)
1602 strcpy(root->name, opts->name);
1603 if (opts->cpuset_clone_children)
1604 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
1605 }
1606
1607 static int cgroup_setup_root(struct cgroup_root *root, unsigned int ss_mask)
1608 {
1609 LIST_HEAD(tmp_links);
1610 struct cgroup *root_cgrp = &root->cgrp;
1611 struct cftype *base_files;
1612 struct css_set *cset;
1613 int i, ret;
1614
1615 lockdep_assert_held(&cgroup_mutex);
1616
1617 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_NOWAIT);
1618 if (ret < 0)
1619 goto out;
1620 root_cgrp->id = ret;
1621
1622 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 0,
1623 GFP_KERNEL);
1624 if (ret)
1625 goto out;
1626
1627 /*
1628 * We're accessing css_set_count without locking css_set_rwsem here,
1629 * but that's OK - it can only be increased by someone holding
1630 * cgroup_lock, and that's us. The worst that can happen is that we
1631 * have some link structures left over
1632 */
1633 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
1634 if (ret)
1635 goto cancel_ref;
1636
1637 ret = cgroup_init_root_id(root);
1638 if (ret)
1639 goto cancel_ref;
1640
1641 root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops,
1642 KERNFS_ROOT_CREATE_DEACTIVATED,
1643 root_cgrp);
1644 if (IS_ERR(root->kf_root)) {
1645 ret = PTR_ERR(root->kf_root);
1646 goto exit_root_id;
1647 }
1648 root_cgrp->kn = root->kf_root->kn;
1649
1650 if (root == &cgrp_dfl_root)
1651 base_files = cgroup_dfl_base_files;
1652 else
1653 base_files = cgroup_legacy_base_files;
1654
1655 ret = cgroup_addrm_files(root_cgrp, base_files, true);
1656 if (ret)
1657 goto destroy_root;
1658
1659 ret = rebind_subsystems(root, ss_mask);
1660 if (ret)
1661 goto destroy_root;
1662
1663 /*
1664 * There must be no failure case after here, since rebinding takes
1665 * care of subsystems' refcounts, which are explicitly dropped in
1666 * the failure exit path.
1667 */
1668 list_add(&root->root_list, &cgroup_roots);
1669 cgroup_root_count++;
1670
1671 /*
1672 * Link the root cgroup in this hierarchy into all the css_set
1673 * objects.
1674 */
1675 down_write(&css_set_rwsem);
1676 hash_for_each(css_set_table, i, cset, hlist)
1677 link_css_set(&tmp_links, cset, root_cgrp);
1678 up_write(&css_set_rwsem);
1679
1680 BUG_ON(!list_empty(&root_cgrp->self.children));
1681 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
1682
1683 kernfs_activate(root_cgrp->kn);
1684 ret = 0;
1685 goto out;
1686
1687 destroy_root:
1688 kernfs_destroy_root(root->kf_root);
1689 root->kf_root = NULL;
1690 exit_root_id:
1691 cgroup_exit_root_id(root);
1692 cancel_ref:
1693 percpu_ref_exit(&root_cgrp->self.refcnt);
1694 out:
1695 free_cgrp_cset_links(&tmp_links);
1696 return ret;
1697 }
1698
1699 static struct dentry *cgroup_mount(struct file_system_type *fs_type,
1700 int flags, const char *unused_dev_name,
1701 void *data)
1702 {
1703 struct super_block *pinned_sb = NULL;
1704 struct cgroup_subsys *ss;
1705 struct cgroup_root *root;
1706 struct cgroup_sb_opts opts;
1707 struct dentry *dentry;
1708 int ret;
1709 int i;
1710 bool new_sb;
1711
1712 /*
1713 * The first time anyone tries to mount a cgroup, enable the list
1714 * linking each css_set to its tasks and fix up all existing tasks.
1715 */
1716 if (!use_task_css_set_links)
1717 cgroup_enable_task_cg_lists();
1718
1719 mutex_lock(&cgroup_mutex);
1720
1721 /* First find the desired set of subsystems */
1722 ret = parse_cgroupfs_options(data, &opts);
1723 if (ret)
1724 goto out_unlock;
1725
1726 /* look for a matching existing root */
1727 if (opts.flags & CGRP_ROOT_SANE_BEHAVIOR) {
1728 cgrp_dfl_root_visible = true;
1729 root = &cgrp_dfl_root;
1730 cgroup_get(&root->cgrp);
1731 ret = 0;
1732 goto out_unlock;
1733 }
1734
1735 /*
1736 * Destruction of cgroup root is asynchronous, so subsystems may
1737 * still be dying after the previous unmount. Let's drain the
1738 * dying subsystems. We just need to ensure that the ones
1739 * unmounted previously finish dying and don't care about new ones
1740 * starting. Testing ref liveliness is good enough.
1741 */
1742 for_each_subsys(ss, i) {
1743 if (!(opts.subsys_mask & (1 << i)) ||
1744 ss->root == &cgrp_dfl_root)
1745 continue;
1746
1747 if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) {
1748 mutex_unlock(&cgroup_mutex);
1749 msleep(10);
1750 ret = restart_syscall();
1751 goto out_free;
1752 }
1753 cgroup_put(&ss->root->cgrp);
1754 }
1755
1756 for_each_root(root) {
1757 bool name_match = false;
1758
1759 if (root == &cgrp_dfl_root)
1760 continue;
1761
1762 /*
1763 * If we asked for a name then it must match. Also, if
1764 * name matches but sybsys_mask doesn't, we should fail.
1765 * Remember whether name matched.
1766 */
1767 if (opts.name) {
1768 if (strcmp(opts.name, root->name))
1769 continue;
1770 name_match = true;
1771 }
1772
1773 /*
1774 * If we asked for subsystems (or explicitly for no
1775 * subsystems) then they must match.
1776 */
1777 if ((opts.subsys_mask || opts.none) &&
1778 (opts.subsys_mask != root->subsys_mask)) {
1779 if (!name_match)
1780 continue;
1781 ret = -EBUSY;
1782 goto out_unlock;
1783 }
1784
1785 if (root->flags ^ opts.flags)
1786 pr_warn("new mount options do not match the existing superblock, will be ignored\n");
1787
1788 /*
1789 * We want to reuse @root whose lifetime is governed by its
1790 * ->cgrp. Let's check whether @root is alive and keep it
1791 * that way. As cgroup_kill_sb() can happen anytime, we
1792 * want to block it by pinning the sb so that @root doesn't
1793 * get killed before mount is complete.
1794 *
1795 * With the sb pinned, tryget_live can reliably indicate
1796 * whether @root can be reused. If it's being killed,
1797 * drain it. We can use wait_queue for the wait but this
1798 * path is super cold. Let's just sleep a bit and retry.
1799 */
1800 pinned_sb = kernfs_pin_sb(root->kf_root, NULL);
1801 if (IS_ERR(pinned_sb) ||
1802 !percpu_ref_tryget_live(&root->cgrp.self.refcnt)) {
1803 mutex_unlock(&cgroup_mutex);
1804 if (!IS_ERR_OR_NULL(pinned_sb))
1805 deactivate_super(pinned_sb);
1806 msleep(10);
1807 ret = restart_syscall();
1808 goto out_free;
1809 }
1810
1811 ret = 0;
1812 goto out_unlock;
1813 }
1814
1815 /*
1816 * No such thing, create a new one. name= matching without subsys
1817 * specification is allowed for already existing hierarchies but we
1818 * can't create new one without subsys specification.
1819 */
1820 if (!opts.subsys_mask && !opts.none) {
1821 ret = -EINVAL;
1822 goto out_unlock;
1823 }
1824
1825 root = kzalloc(sizeof(*root), GFP_KERNEL);
1826 if (!root) {
1827 ret = -ENOMEM;
1828 goto out_unlock;
1829 }
1830
1831 init_cgroup_root(root, &opts);
1832
1833 ret = cgroup_setup_root(root, opts.subsys_mask);
1834 if (ret)
1835 cgroup_free_root(root);
1836
1837 out_unlock:
1838 mutex_unlock(&cgroup_mutex);
1839 out_free:
1840 kfree(opts.release_agent);
1841 kfree(opts.name);
1842
1843 if (ret)
1844 return ERR_PTR(ret);
1845
1846 dentry = kernfs_mount(fs_type, flags, root->kf_root,
1847 CGROUP_SUPER_MAGIC, &new_sb);
1848 if (IS_ERR(dentry) || !new_sb)
1849 cgroup_put(&root->cgrp);
1850
1851 /*
1852 * If @pinned_sb, we're reusing an existing root and holding an
1853 * extra ref on its sb. Mount is complete. Put the extra ref.
1854 */
1855 if (pinned_sb) {
1856 WARN_ON(new_sb);
1857 deactivate_super(pinned_sb);
1858 }
1859
1860 return dentry;
1861 }
1862
1863 static void cgroup_kill_sb(struct super_block *sb)
1864 {
1865 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
1866 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1867
1868 /*
1869 * If @root doesn't have any mounts or children, start killing it.
1870 * This prevents new mounts by disabling percpu_ref_tryget_live().
1871 * cgroup_mount() may wait for @root's release.
1872 *
1873 * And don't kill the default root.
1874 */
1875 if (css_has_online_children(&root->cgrp.self) ||
1876 root == &cgrp_dfl_root)
1877 cgroup_put(&root->cgrp);
1878 else
1879 percpu_ref_kill(&root->cgrp.self.refcnt);
1880
1881 kernfs_kill_sb(sb);
1882 }
1883
1884 static struct file_system_type cgroup_fs_type = {
1885 .name = "cgroup",
1886 .mount = cgroup_mount,
1887 .kill_sb = cgroup_kill_sb,
1888 };
1889
1890 static struct kobject *cgroup_kobj;
1891
1892 /**
1893 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
1894 * @task: target task
1895 * @buf: the buffer to write the path into
1896 * @buflen: the length of the buffer
1897 *
1898 * Determine @task's cgroup on the first (the one with the lowest non-zero
1899 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
1900 * function grabs cgroup_mutex and shouldn't be used inside locks used by
1901 * cgroup controller callbacks.
1902 *
1903 * Return value is the same as kernfs_path().
1904 */
1905 char *task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
1906 {
1907 struct cgroup_root *root;
1908 struct cgroup *cgrp;
1909 int hierarchy_id = 1;
1910 char *path = NULL;
1911
1912 mutex_lock(&cgroup_mutex);
1913 down_read(&css_set_rwsem);
1914
1915 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
1916
1917 if (root) {
1918 cgrp = task_cgroup_from_root(task, root);
1919 path = cgroup_path(cgrp, buf, buflen);
1920 } else {
1921 /* if no hierarchy exists, everyone is in "/" */
1922 if (strlcpy(buf, "/", buflen) < buflen)
1923 path = buf;
1924 }
1925
1926 up_read(&css_set_rwsem);
1927 mutex_unlock(&cgroup_mutex);
1928 return path;
1929 }
1930 EXPORT_SYMBOL_GPL(task_cgroup_path);
1931
1932 /* used to track tasks and other necessary states during migration */
1933 struct cgroup_taskset {
1934 /* the src and dst cset list running through cset->mg_node */
1935 struct list_head src_csets;
1936 struct list_head dst_csets;
1937
1938 /*
1939 * Fields for cgroup_taskset_*() iteration.
1940 *
1941 * Before migration is committed, the target migration tasks are on
1942 * ->mg_tasks of the csets on ->src_csets. After, on ->mg_tasks of
1943 * the csets on ->dst_csets. ->csets point to either ->src_csets
1944 * or ->dst_csets depending on whether migration is committed.
1945 *
1946 * ->cur_csets and ->cur_task point to the current task position
1947 * during iteration.
1948 */
1949 struct list_head *csets;
1950 struct css_set *cur_cset;
1951 struct task_struct *cur_task;
1952 };
1953
1954 /**
1955 * cgroup_taskset_first - reset taskset and return the first task
1956 * @tset: taskset of interest
1957 *
1958 * @tset iteration is initialized and the first task is returned.
1959 */
1960 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
1961 {
1962 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
1963 tset->cur_task = NULL;
1964
1965 return cgroup_taskset_next(tset);
1966 }
1967
1968 /**
1969 * cgroup_taskset_next - iterate to the next task in taskset
1970 * @tset: taskset of interest
1971 *
1972 * Return the next task in @tset. Iteration must have been initialized
1973 * with cgroup_taskset_first().
1974 */
1975 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
1976 {
1977 struct css_set *cset = tset->cur_cset;
1978 struct task_struct *task = tset->cur_task;
1979
1980 while (&cset->mg_node != tset->csets) {
1981 if (!task)
1982 task = list_first_entry(&cset->mg_tasks,
1983 struct task_struct, cg_list);
1984 else
1985 task = list_next_entry(task, cg_list);
1986
1987 if (&task->cg_list != &cset->mg_tasks) {
1988 tset->cur_cset = cset;
1989 tset->cur_task = task;
1990 return task;
1991 }
1992
1993 cset = list_next_entry(cset, mg_node);
1994 task = NULL;
1995 }
1996
1997 return NULL;
1998 }
1999
2000 /**
2001 * cgroup_task_migrate - move a task from one cgroup to another.
2002 * @old_cgrp: the cgroup @tsk is being migrated from
2003 * @tsk: the task being migrated
2004 * @new_cset: the new css_set @tsk is being attached to
2005 *
2006 * Must be called with cgroup_mutex, threadgroup and css_set_rwsem locked.
2007 */
2008 static void cgroup_task_migrate(struct cgroup *old_cgrp,
2009 struct task_struct *tsk,
2010 struct css_set *new_cset)
2011 {
2012 struct css_set *old_cset;
2013
2014 lockdep_assert_held(&cgroup_mutex);
2015 lockdep_assert_held(&css_set_rwsem);
2016
2017 /*
2018 * We are synchronized through threadgroup_lock() against PF_EXITING
2019 * setting such that we can't race against cgroup_exit() changing the
2020 * css_set to init_css_set and dropping the old one.
2021 */
2022 WARN_ON_ONCE(tsk->flags & PF_EXITING);
2023 old_cset = task_css_set(tsk);
2024
2025 get_css_set(new_cset);
2026 rcu_assign_pointer(tsk->cgroups, new_cset);
2027
2028 /*
2029 * Use move_tail so that cgroup_taskset_first() still returns the
2030 * leader after migration. This works because cgroup_migrate()
2031 * ensures that the dst_cset of the leader is the first on the
2032 * tset's dst_csets list.
2033 */
2034 list_move_tail(&tsk->cg_list, &new_cset->mg_tasks);
2035
2036 /*
2037 * We just gained a reference on old_cset by taking it from the
2038 * task. As trading it for new_cset is protected by cgroup_mutex,
2039 * we're safe to drop it here; it will be freed under RCU.
2040 */
2041 put_css_set_locked(old_cset);
2042 }
2043
2044 /**
2045 * cgroup_migrate_finish - cleanup after attach
2046 * @preloaded_csets: list of preloaded css_sets
2047 *
2048 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2049 * those functions for details.
2050 */
2051 static void cgroup_migrate_finish(struct list_head *preloaded_csets)
2052 {
2053 struct css_set *cset, *tmp_cset;
2054
2055 lockdep_assert_held(&cgroup_mutex);
2056
2057 down_write(&css_set_rwsem);
2058 list_for_each_entry_safe(cset, tmp_cset, preloaded_csets, mg_preload_node) {
2059 cset->mg_src_cgrp = NULL;
2060 cset->mg_dst_cset = NULL;
2061 list_del_init(&cset->mg_preload_node);
2062 put_css_set_locked(cset);
2063 }
2064 up_write(&css_set_rwsem);
2065 }
2066
2067 /**
2068 * cgroup_migrate_add_src - add a migration source css_set
2069 * @src_cset: the source css_set to add
2070 * @dst_cgrp: the destination cgroup
2071 * @preloaded_csets: list of preloaded css_sets
2072 *
2073 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2074 * @src_cset and add it to @preloaded_csets, which should later be cleaned
2075 * up by cgroup_migrate_finish().
2076 *
2077 * This function may be called without holding threadgroup_lock even if the
2078 * target is a process. Threads may be created and destroyed but as long
2079 * as cgroup_mutex is not dropped, no new css_set can be put into play and
2080 * the preloaded css_sets are guaranteed to cover all migrations.
2081 */
2082 static void cgroup_migrate_add_src(struct css_set *src_cset,
2083 struct cgroup *dst_cgrp,
2084 struct list_head *preloaded_csets)
2085 {
2086 struct cgroup *src_cgrp;
2087
2088 lockdep_assert_held(&cgroup_mutex);
2089 lockdep_assert_held(&css_set_rwsem);
2090
2091 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2092
2093 if (!list_empty(&src_cset->mg_preload_node))
2094 return;
2095
2096 WARN_ON(src_cset->mg_src_cgrp);
2097 WARN_ON(!list_empty(&src_cset->mg_tasks));
2098 WARN_ON(!list_empty(&src_cset->mg_node));
2099
2100 src_cset->mg_src_cgrp = src_cgrp;
2101 get_css_set(src_cset);
2102 list_add(&src_cset->mg_preload_node, preloaded_csets);
2103 }
2104
2105 /**
2106 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2107 * @dst_cgrp: the destination cgroup (may be %NULL)
2108 * @preloaded_csets: list of preloaded source css_sets
2109 *
2110 * Tasks are about to be moved to @dst_cgrp and all the source css_sets
2111 * have been preloaded to @preloaded_csets. This function looks up and
2112 * pins all destination css_sets, links each to its source, and append them
2113 * to @preloaded_csets. If @dst_cgrp is %NULL, the destination of each
2114 * source css_set is assumed to be its cgroup on the default hierarchy.
2115 *
2116 * This function must be called after cgroup_migrate_add_src() has been
2117 * called on each migration source css_set. After migration is performed
2118 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2119 * @preloaded_csets.
2120 */
2121 static int cgroup_migrate_prepare_dst(struct cgroup *dst_cgrp,
2122 struct list_head *preloaded_csets)
2123 {
2124 LIST_HEAD(csets);
2125 struct css_set *src_cset, *tmp_cset;
2126
2127 lockdep_assert_held(&cgroup_mutex);
2128
2129 /*
2130 * Except for the root, child_subsys_mask must be zero for a cgroup
2131 * with tasks so that child cgroups don't compete against tasks.
2132 */
2133 if (dst_cgrp && cgroup_on_dfl(dst_cgrp) && cgroup_parent(dst_cgrp) &&
2134 dst_cgrp->child_subsys_mask)
2135 return -EBUSY;
2136
2137 /* look up the dst cset for each src cset and link it to src */
2138 list_for_each_entry_safe(src_cset, tmp_cset, preloaded_csets, mg_preload_node) {
2139 struct css_set *dst_cset;
2140
2141 dst_cset = find_css_set(src_cset,
2142 dst_cgrp ?: src_cset->dfl_cgrp);
2143 if (!dst_cset)
2144 goto err;
2145
2146 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2147
2148 /*
2149 * If src cset equals dst, it's noop. Drop the src.
2150 * cgroup_migrate() will skip the cset too. Note that we
2151 * can't handle src == dst as some nodes are used by both.
2152 */
2153 if (src_cset == dst_cset) {
2154 src_cset->mg_src_cgrp = NULL;
2155 list_del_init(&src_cset->mg_preload_node);
2156 put_css_set(src_cset);
2157 put_css_set(dst_cset);
2158 continue;
2159 }
2160
2161 src_cset->mg_dst_cset = dst_cset;
2162
2163 if (list_empty(&dst_cset->mg_preload_node))
2164 list_add(&dst_cset->mg_preload_node, &csets);
2165 else
2166 put_css_set(dst_cset);
2167 }
2168
2169 list_splice_tail(&csets, preloaded_csets);
2170 return 0;
2171 err:
2172 cgroup_migrate_finish(&csets);
2173 return -ENOMEM;
2174 }
2175
2176 /**
2177 * cgroup_migrate - migrate a process or task to a cgroup
2178 * @cgrp: the destination cgroup
2179 * @leader: the leader of the process or the task to migrate
2180 * @threadgroup: whether @leader points to the whole process or a single task
2181 *
2182 * Migrate a process or task denoted by @leader to @cgrp. If migrating a
2183 * process, the caller must be holding threadgroup_lock of @leader. The
2184 * caller is also responsible for invoking cgroup_migrate_add_src() and
2185 * cgroup_migrate_prepare_dst() on the targets before invoking this
2186 * function and following up with cgroup_migrate_finish().
2187 *
2188 * As long as a controller's ->can_attach() doesn't fail, this function is
2189 * guaranteed to succeed. This means that, excluding ->can_attach()
2190 * failure, when migrating multiple targets, the success or failure can be
2191 * decided for all targets by invoking group_migrate_prepare_dst() before
2192 * actually starting migrating.
2193 */
2194 static int cgroup_migrate(struct cgroup *cgrp, struct task_struct *leader,
2195 bool threadgroup)
2196 {
2197 struct cgroup_taskset tset = {
2198 .src_csets = LIST_HEAD_INIT(tset.src_csets),
2199 .dst_csets = LIST_HEAD_INIT(tset.dst_csets),
2200 .csets = &tset.src_csets,
2201 };
2202 struct cgroup_subsys_state *css, *failed_css = NULL;
2203 struct css_set *cset, *tmp_cset;
2204 struct task_struct *task, *tmp_task;
2205 int i, ret;
2206
2207 /*
2208 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2209 * already PF_EXITING could be freed from underneath us unless we
2210 * take an rcu_read_lock.
2211 */
2212 down_write(&css_set_rwsem);
2213 rcu_read_lock();
2214 task = leader;
2215 do {
2216 /* @task either already exited or can't exit until the end */
2217 if (task->flags & PF_EXITING)
2218 goto next;
2219
2220 /* leave @task alone if post_fork() hasn't linked it yet */
2221 if (list_empty(&task->cg_list))
2222 goto next;
2223
2224 cset = task_css_set(task);
2225 if (!cset->mg_src_cgrp)
2226 goto next;
2227
2228 /*
2229 * cgroup_taskset_first() must always return the leader.
2230 * Take care to avoid disturbing the ordering.
2231 */
2232 list_move_tail(&task->cg_list, &cset->mg_tasks);
2233 if (list_empty(&cset->mg_node))
2234 list_add_tail(&cset->mg_node, &tset.src_csets);
2235 if (list_empty(&cset->mg_dst_cset->mg_node))
2236 list_move_tail(&cset->mg_dst_cset->mg_node,
2237 &tset.dst_csets);
2238 next:
2239 if (!threadgroup)
2240 break;
2241 } while_each_thread(leader, task);
2242 rcu_read_unlock();
2243 up_write(&css_set_rwsem);
2244
2245 /* methods shouldn't be called if no task is actually migrating */
2246 if (list_empty(&tset.src_csets))
2247 return 0;
2248
2249 /* check that we can legitimately attach to the cgroup */
2250 for_each_e_css(css, i, cgrp) {
2251 if (css->ss->can_attach) {
2252 ret = css->ss->can_attach(css, &tset);
2253 if (ret) {
2254 failed_css = css;
2255 goto out_cancel_attach;
2256 }
2257 }
2258 }
2259
2260 /*
2261 * Now that we're guaranteed success, proceed to move all tasks to
2262 * the new cgroup. There are no failure cases after here, so this
2263 * is the commit point.
2264 */
2265 down_write(&css_set_rwsem);
2266 list_for_each_entry(cset, &tset.src_csets, mg_node) {
2267 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list)
2268 cgroup_task_migrate(cset->mg_src_cgrp, task,
2269 cset->mg_dst_cset);
2270 }
2271 up_write(&css_set_rwsem);
2272
2273 /*
2274 * Migration is committed, all target tasks are now on dst_csets.
2275 * Nothing is sensitive to fork() after this point. Notify
2276 * controllers that migration is complete.
2277 */
2278 tset.csets = &tset.dst_csets;
2279
2280 for_each_e_css(css, i, cgrp)
2281 if (css->ss->attach)
2282 css->ss->attach(css, &tset);
2283
2284 ret = 0;
2285 goto out_release_tset;
2286
2287 out_cancel_attach:
2288 for_each_e_css(css, i, cgrp) {
2289 if (css == failed_css)
2290 break;
2291 if (css->ss->cancel_attach)
2292 css->ss->cancel_attach(css, &tset);
2293 }
2294 out_release_tset:
2295 down_write(&css_set_rwsem);
2296 list_splice_init(&tset.dst_csets, &tset.src_csets);
2297 list_for_each_entry_safe(cset, tmp_cset, &tset.src_csets, mg_node) {
2298 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2299 list_del_init(&cset->mg_node);
2300 }
2301 up_write(&css_set_rwsem);
2302 return ret;
2303 }
2304
2305 /**
2306 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2307 * @dst_cgrp: the cgroup to attach to
2308 * @leader: the task or the leader of the threadgroup to be attached
2309 * @threadgroup: attach the whole threadgroup?
2310 *
2311 * Call holding cgroup_mutex and threadgroup_lock of @leader.
2312 */
2313 static int cgroup_attach_task(struct cgroup *dst_cgrp,
2314 struct task_struct *leader, bool threadgroup)
2315 {
2316 LIST_HEAD(preloaded_csets);
2317 struct task_struct *task;
2318 int ret;
2319
2320 /* look up all src csets */
2321 down_read(&css_set_rwsem);
2322 rcu_read_lock();
2323 task = leader;
2324 do {
2325 cgroup_migrate_add_src(task_css_set(task), dst_cgrp,
2326 &preloaded_csets);
2327 if (!threadgroup)
2328 break;
2329 } while_each_thread(leader, task);
2330 rcu_read_unlock();
2331 up_read(&css_set_rwsem);
2332
2333 /* prepare dst csets and commit */
2334 ret = cgroup_migrate_prepare_dst(dst_cgrp, &preloaded_csets);
2335 if (!ret)
2336 ret = cgroup_migrate(dst_cgrp, leader, threadgroup);
2337
2338 cgroup_migrate_finish(&preloaded_csets);
2339 return ret;
2340 }
2341
2342 /*
2343 * Find the task_struct of the task to attach by vpid and pass it along to the
2344 * function to attach either it or all tasks in its threadgroup. Will lock
2345 * cgroup_mutex and threadgroup.
2346 */
2347 static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
2348 size_t nbytes, loff_t off, bool threadgroup)
2349 {
2350 struct task_struct *tsk;
2351 const struct cred *cred = current_cred(), *tcred;
2352 struct cgroup *cgrp;
2353 pid_t pid;
2354 int ret;
2355
2356 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2357 return -EINVAL;
2358
2359 cgrp = cgroup_kn_lock_live(of->kn);
2360 if (!cgrp)
2361 return -ENODEV;
2362
2363 retry_find_task:
2364 rcu_read_lock();
2365 if (pid) {
2366 tsk = find_task_by_vpid(pid);
2367 if (!tsk) {
2368 rcu_read_unlock();
2369 ret = -ESRCH;
2370 goto out_unlock_cgroup;
2371 }
2372 /*
2373 * even if we're attaching all tasks in the thread group, we
2374 * only need to check permissions on one of them.
2375 */
2376 tcred = __task_cred(tsk);
2377 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2378 !uid_eq(cred->euid, tcred->uid) &&
2379 !uid_eq(cred->euid, tcred->suid)) {
2380 rcu_read_unlock();
2381 ret = -EACCES;
2382 goto out_unlock_cgroup;
2383 }
2384 } else
2385 tsk = current;
2386
2387 if (threadgroup)
2388 tsk = tsk->group_leader;
2389
2390 /*
2391 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
2392 * trapped in a cpuset, or RT worker may be born in a cgroup
2393 * with no rt_runtime allocated. Just say no.
2394 */
2395 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
2396 ret = -EINVAL;
2397 rcu_read_unlock();
2398 goto out_unlock_cgroup;
2399 }
2400
2401 get_task_struct(tsk);
2402 rcu_read_unlock();
2403
2404 threadgroup_lock(tsk);
2405 if (threadgroup) {
2406 if (!thread_group_leader(tsk)) {
2407 /*
2408 * a race with de_thread from another thread's exec()
2409 * may strip us of our leadership, if this happens,
2410 * there is no choice but to throw this task away and
2411 * try again; this is
2412 * "double-double-toil-and-trouble-check locking".
2413 */
2414 threadgroup_unlock(tsk);
2415 put_task_struct(tsk);
2416 goto retry_find_task;
2417 }
2418 }
2419
2420 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
2421
2422 threadgroup_unlock(tsk);
2423
2424 put_task_struct(tsk);
2425 out_unlock_cgroup:
2426 cgroup_kn_unlock(of->kn);
2427 return ret ?: nbytes;
2428 }
2429
2430 /**
2431 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2432 * @from: attach to all cgroups of a given task
2433 * @tsk: the task to be attached
2434 */
2435 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2436 {
2437 struct cgroup_root *root;
2438 int retval = 0;
2439
2440 mutex_lock(&cgroup_mutex);
2441 for_each_root(root) {
2442 struct cgroup *from_cgrp;
2443
2444 if (root == &cgrp_dfl_root)
2445 continue;
2446
2447 down_read(&css_set_rwsem);
2448 from_cgrp = task_cgroup_from_root(from, root);
2449 up_read(&css_set_rwsem);
2450
2451 retval = cgroup_attach_task(from_cgrp, tsk, false);
2452 if (retval)
2453 break;
2454 }
2455 mutex_unlock(&cgroup_mutex);
2456
2457 return retval;
2458 }
2459 EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2460
2461 static ssize_t cgroup_tasks_write(struct kernfs_open_file *of,
2462 char *buf, size_t nbytes, loff_t off)
2463 {
2464 return __cgroup_procs_write(of, buf, nbytes, off, false);
2465 }
2466
2467 static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
2468 char *buf, size_t nbytes, loff_t off)
2469 {
2470 return __cgroup_procs_write(of, buf, nbytes, off, true);
2471 }
2472
2473 static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
2474 char *buf, size_t nbytes, loff_t off)
2475 {
2476 struct cgroup *cgrp;
2477
2478 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
2479
2480 cgrp = cgroup_kn_lock_live(of->kn);
2481 if (!cgrp)
2482 return -ENODEV;
2483 spin_lock(&release_agent_path_lock);
2484 strlcpy(cgrp->root->release_agent_path, strstrip(buf),
2485 sizeof(cgrp->root->release_agent_path));
2486 spin_unlock(&release_agent_path_lock);
2487 cgroup_kn_unlock(of->kn);
2488 return nbytes;
2489 }
2490
2491 static int cgroup_release_agent_show(struct seq_file *seq, void *v)
2492 {
2493 struct cgroup *cgrp = seq_css(seq)->cgroup;
2494
2495 spin_lock(&release_agent_path_lock);
2496 seq_puts(seq, cgrp->root->release_agent_path);
2497 spin_unlock(&release_agent_path_lock);
2498 seq_putc(seq, '\n');
2499 return 0;
2500 }
2501
2502 static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
2503 {
2504 seq_puts(seq, "0\n");
2505 return 0;
2506 }
2507
2508 static void cgroup_print_ss_mask(struct seq_file *seq, unsigned int ss_mask)
2509 {
2510 struct cgroup_subsys *ss;
2511 bool printed = false;
2512 int ssid;
2513
2514 for_each_subsys(ss, ssid) {
2515 if (ss_mask & (1 << ssid)) {
2516 if (printed)
2517 seq_putc(seq, ' ');
2518 seq_printf(seq, "%s", ss->name);
2519 printed = true;
2520 }
2521 }
2522 if (printed)
2523 seq_putc(seq, '\n');
2524 }
2525
2526 /* show controllers which are currently attached to the default hierarchy */
2527 static int cgroup_root_controllers_show(struct seq_file *seq, void *v)
2528 {
2529 struct cgroup *cgrp = seq_css(seq)->cgroup;
2530
2531 cgroup_print_ss_mask(seq, cgrp->root->subsys_mask &
2532 ~cgrp_dfl_root_inhibit_ss_mask);
2533 return 0;
2534 }
2535
2536 /* show controllers which are enabled from the parent */
2537 static int cgroup_controllers_show(struct seq_file *seq, void *v)
2538 {
2539 struct cgroup *cgrp = seq_css(seq)->cgroup;
2540
2541 cgroup_print_ss_mask(seq, cgroup_parent(cgrp)->subtree_control);
2542 return 0;
2543 }
2544
2545 /* show controllers which are enabled for a given cgroup's children */
2546 static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
2547 {
2548 struct cgroup *cgrp = seq_css(seq)->cgroup;
2549
2550 cgroup_print_ss_mask(seq, cgrp->subtree_control);
2551 return 0;
2552 }
2553
2554 /**
2555 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2556 * @cgrp: root of the subtree to update csses for
2557 *
2558 * @cgrp's child_subsys_mask has changed and its subtree's (self excluded)
2559 * css associations need to be updated accordingly. This function looks up
2560 * all css_sets which are attached to the subtree, creates the matching
2561 * updated css_sets and migrates the tasks to the new ones.
2562 */
2563 static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2564 {
2565 LIST_HEAD(preloaded_csets);
2566 struct cgroup_subsys_state *css;
2567 struct css_set *src_cset;
2568 int ret;
2569
2570 lockdep_assert_held(&cgroup_mutex);
2571
2572 /* look up all csses currently attached to @cgrp's subtree */
2573 down_read(&css_set_rwsem);
2574 css_for_each_descendant_pre(css, cgroup_css(cgrp, NULL)) {
2575 struct cgrp_cset_link *link;
2576
2577 /* self is not affected by child_subsys_mask change */
2578 if (css->cgroup == cgrp)
2579 continue;
2580
2581 list_for_each_entry(link, &css->cgroup->cset_links, cset_link)
2582 cgroup_migrate_add_src(link->cset, cgrp,
2583 &preloaded_csets);
2584 }
2585 up_read(&css_set_rwsem);
2586
2587 /* NULL dst indicates self on default hierarchy */
2588 ret = cgroup_migrate_prepare_dst(NULL, &preloaded_csets);
2589 if (ret)
2590 goto out_finish;
2591
2592 list_for_each_entry(src_cset, &preloaded_csets, mg_preload_node) {
2593 struct task_struct *last_task = NULL, *task;
2594
2595 /* src_csets precede dst_csets, break on the first dst_cset */
2596 if (!src_cset->mg_src_cgrp)
2597 break;
2598
2599 /*
2600 * All tasks in src_cset need to be migrated to the
2601 * matching dst_cset. Empty it process by process. We
2602 * walk tasks but migrate processes. The leader might even
2603 * belong to a different cset but such src_cset would also
2604 * be among the target src_csets because the default
2605 * hierarchy enforces per-process membership.
2606 */
2607 while (true) {
2608 down_read(&css_set_rwsem);
2609 task = list_first_entry_or_null(&src_cset->tasks,
2610 struct task_struct, cg_list);
2611 if (task) {
2612 task = task->group_leader;
2613 WARN_ON_ONCE(!task_css_set(task)->mg_src_cgrp);
2614 get_task_struct(task);
2615 }
2616 up_read(&css_set_rwsem);
2617
2618 if (!task)
2619 break;
2620
2621 /* guard against possible infinite loop */
2622 if (WARN(last_task == task,
2623 "cgroup: update_dfl_csses failed to make progress, aborting in inconsistent state\n"))
2624 goto out_finish;
2625 last_task = task;
2626
2627 threadgroup_lock(task);
2628 /* raced against de_thread() from another thread? */
2629 if (!thread_group_leader(task)) {
2630 threadgroup_unlock(task);
2631 put_task_struct(task);
2632 continue;
2633 }
2634
2635 ret = cgroup_migrate(src_cset->dfl_cgrp, task, true);
2636
2637 threadgroup_unlock(task);
2638 put_task_struct(task);
2639
2640 if (WARN(ret, "cgroup: failed to update controllers for the default hierarchy (%d), further operations may crash or hang\n", ret))
2641 goto out_finish;
2642 }
2643 }
2644
2645 out_finish:
2646 cgroup_migrate_finish(&preloaded_csets);
2647 return ret;
2648 }
2649
2650 /* change the enabled child controllers for a cgroup in the default hierarchy */
2651 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
2652 char *buf, size_t nbytes,
2653 loff_t off)
2654 {
2655 unsigned int enable = 0, disable = 0;
2656 unsigned int css_enable, css_disable, old_sc, new_sc, old_ss, new_ss;
2657 struct cgroup *cgrp, *child;
2658 struct cgroup_subsys *ss;
2659 char *tok;
2660 int ssid, ret;
2661
2662 /*
2663 * Parse input - space separated list of subsystem names prefixed
2664 * with either + or -.
2665 */
2666 buf = strstrip(buf);
2667 while ((tok = strsep(&buf, " "))) {
2668 if (tok[0] == '\0')
2669 continue;
2670 for_each_subsys(ss, ssid) {
2671 if (ss->disabled || strcmp(tok + 1, ss->name) ||
2672 ((1 << ss->id) & cgrp_dfl_root_inhibit_ss_mask))
2673 continue;
2674
2675 if (*tok == '+') {
2676 enable |= 1 << ssid;
2677 disable &= ~(1 << ssid);
2678 } else if (*tok == '-') {
2679 disable |= 1 << ssid;
2680 enable &= ~(1 << ssid);
2681 } else {
2682 return -EINVAL;
2683 }
2684 break;
2685 }
2686 if (ssid == CGROUP_SUBSYS_COUNT)
2687 return -EINVAL;
2688 }
2689
2690 cgrp = cgroup_kn_lock_live(of->kn);
2691 if (!cgrp)
2692 return -ENODEV;
2693
2694 for_each_subsys(ss, ssid) {
2695 if (enable & (1 << ssid)) {
2696 if (cgrp->subtree_control & (1 << ssid)) {
2697 enable &= ~(1 << ssid);
2698 continue;
2699 }
2700
2701 /* unavailable or not enabled on the parent? */
2702 if (!(cgrp_dfl_root.subsys_mask & (1 << ssid)) ||
2703 (cgroup_parent(cgrp) &&
2704 !(cgroup_parent(cgrp)->subtree_control & (1 << ssid)))) {
2705 ret = -ENOENT;
2706 goto out_unlock;
2707 }
2708 } else if (disable & (1 << ssid)) {
2709 if (!(cgrp->subtree_control & (1 << ssid))) {
2710 disable &= ~(1 << ssid);
2711 continue;
2712 }
2713
2714 /* a child has it enabled? */
2715 cgroup_for_each_live_child(child, cgrp) {
2716 if (child->subtree_control & (1 << ssid)) {
2717 ret = -EBUSY;
2718 goto out_unlock;
2719 }
2720 }
2721 }
2722 }
2723
2724 if (!enable && !disable) {
2725 ret = 0;
2726 goto out_unlock;
2727 }
2728
2729 /*
2730 * Except for the root, subtree_control must be zero for a cgroup
2731 * with tasks so that child cgroups don't compete against tasks.
2732 */
2733 if (enable && cgroup_parent(cgrp) && !list_empty(&cgrp->cset_links)) {
2734 ret = -EBUSY;
2735 goto out_unlock;
2736 }
2737
2738 /*
2739 * Update subsys masks and calculate what needs to be done. More
2740 * subsystems than specified may need to be enabled or disabled
2741 * depending on subsystem dependencies.
2742 */
2743 old_sc = cgrp->subtree_control;
2744 old_ss = cgrp->child_subsys_mask;
2745 new_sc = (old_sc | enable) & ~disable;
2746 new_ss = cgroup_calc_child_subsys_mask(cgrp, new_sc);
2747
2748 css_enable = ~old_ss & new_ss;
2749 css_disable = old_ss & ~new_ss;
2750 enable |= css_enable;
2751 disable |= css_disable;
2752
2753 /*
2754 * Because css offlining is asynchronous, userland might try to
2755 * re-enable the same controller while the previous instance is
2756 * still around. In such cases, wait till it's gone using
2757 * offline_waitq.
2758 */
2759 for_each_subsys(ss, ssid) {
2760 if (!(css_enable & (1 << ssid)))
2761 continue;
2762
2763 cgroup_for_each_live_child(child, cgrp) {
2764 DEFINE_WAIT(wait);
2765
2766 if (!cgroup_css(child, ss))
2767 continue;
2768
2769 cgroup_get(child);
2770 prepare_to_wait(&child->offline_waitq, &wait,
2771 TASK_UNINTERRUPTIBLE);
2772 cgroup_kn_unlock(of->kn);
2773 schedule();
2774 finish_wait(&child->offline_waitq, &wait);
2775 cgroup_put(child);
2776
2777 return restart_syscall();
2778 }
2779 }
2780
2781 cgrp->subtree_control = new_sc;
2782 cgrp->child_subsys_mask = new_ss;
2783
2784 /*
2785 * Create new csses or make the existing ones visible. A css is
2786 * created invisible if it's being implicitly enabled through
2787 * dependency. An invisible css is made visible when the userland
2788 * explicitly enables it.
2789 */
2790 for_each_subsys(ss, ssid) {
2791 if (!(enable & (1 << ssid)))
2792 continue;
2793
2794 cgroup_for_each_live_child(child, cgrp) {
2795 if (css_enable & (1 << ssid))
2796 ret = create_css(child, ss,
2797 cgrp->subtree_control & (1 << ssid));
2798 else
2799 ret = cgroup_populate_dir(child, 1 << ssid);
2800 if (ret)
2801 goto err_undo_css;
2802 }
2803 }
2804
2805 /*
2806 * At this point, cgroup_e_css() results reflect the new csses
2807 * making the following cgroup_update_dfl_csses() properly update
2808 * css associations of all tasks in the subtree.
2809 */
2810 ret = cgroup_update_dfl_csses(cgrp);
2811 if (ret)
2812 goto err_undo_css;
2813
2814 /*
2815 * All tasks are migrated out of disabled csses. Kill or hide
2816 * them. A css is hidden when the userland requests it to be
2817 * disabled while other subsystems are still depending on it. The
2818 * css must not actively control resources and be in the vanilla
2819 * state if it's made visible again later. Controllers which may
2820 * be depended upon should provide ->css_reset() for this purpose.
2821 */
2822 for_each_subsys(ss, ssid) {
2823 if (!(disable & (1 << ssid)))
2824 continue;
2825
2826 cgroup_for_each_live_child(child, cgrp) {
2827 struct cgroup_subsys_state *css = cgroup_css(child, ss);
2828
2829 if (css_disable & (1 << ssid)) {
2830 kill_css(css);
2831 } else {
2832 cgroup_clear_dir(child, 1 << ssid);
2833 if (ss->css_reset)
2834 ss->css_reset(css);
2835 }
2836 }
2837 }
2838
2839 kernfs_activate(cgrp->kn);
2840 ret = 0;
2841 out_unlock:
2842 cgroup_kn_unlock(of->kn);
2843 return ret ?: nbytes;
2844
2845 err_undo_css:
2846 cgrp->subtree_control = old_sc;
2847 cgrp->child_subsys_mask = old_ss;
2848
2849 for_each_subsys(ss, ssid) {
2850 if (!(enable & (1 << ssid)))
2851 continue;
2852
2853 cgroup_for_each_live_child(child, cgrp) {
2854 struct cgroup_subsys_state *css = cgroup_css(child, ss);
2855
2856 if (!css)
2857 continue;
2858
2859 if (css_enable & (1 << ssid))
2860 kill_css(css);
2861 else
2862 cgroup_clear_dir(child, 1 << ssid);
2863 }
2864 }
2865 goto out_unlock;
2866 }
2867
2868 static int cgroup_populated_show(struct seq_file *seq, void *v)
2869 {
2870 seq_printf(seq, "%d\n", (bool)seq_css(seq)->cgroup->populated_cnt);
2871 return 0;
2872 }
2873
2874 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
2875 size_t nbytes, loff_t off)
2876 {
2877 struct cgroup *cgrp = of->kn->parent->priv;
2878 struct cftype *cft = of->kn->priv;
2879 struct cgroup_subsys_state *css;
2880 int ret;
2881
2882 if (cft->write)
2883 return cft->write(of, buf, nbytes, off);
2884
2885 /*
2886 * kernfs guarantees that a file isn't deleted with operations in
2887 * flight, which means that the matching css is and stays alive and
2888 * doesn't need to be pinned. The RCU locking is not necessary
2889 * either. It's just for the convenience of using cgroup_css().
2890 */
2891 rcu_read_lock();
2892 css = cgroup_css(cgrp, cft->ss);
2893 rcu_read_unlock();
2894
2895 if (cft->write_u64) {
2896 unsigned long long v;
2897 ret = kstrtoull(buf, 0, &v);
2898 if (!ret)
2899 ret = cft->write_u64(css, cft, v);
2900 } else if (cft->write_s64) {
2901 long long v;
2902 ret = kstrtoll(buf, 0, &v);
2903 if (!ret)
2904 ret = cft->write_s64(css, cft, v);
2905 } else {
2906 ret = -EINVAL;
2907 }
2908
2909 return ret ?: nbytes;
2910 }
2911
2912 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
2913 {
2914 return seq_cft(seq)->seq_start(seq, ppos);
2915 }
2916
2917 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
2918 {
2919 return seq_cft(seq)->seq_next(seq, v, ppos);
2920 }
2921
2922 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
2923 {
2924 seq_cft(seq)->seq_stop(seq, v);
2925 }
2926
2927 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
2928 {
2929 struct cftype *cft = seq_cft(m);
2930 struct cgroup_subsys_state *css = seq_css(m);
2931
2932 if (cft->seq_show)
2933 return cft->seq_show(m, arg);
2934
2935 if (cft->read_u64)
2936 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
2937 else if (cft->read_s64)
2938 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
2939 else
2940 return -EINVAL;
2941 return 0;
2942 }
2943
2944 static struct kernfs_ops cgroup_kf_single_ops = {
2945 .atomic_write_len = PAGE_SIZE,
2946 .write = cgroup_file_write,
2947 .seq_show = cgroup_seqfile_show,
2948 };
2949
2950 static struct kernfs_ops cgroup_kf_ops = {
2951 .atomic_write_len = PAGE_SIZE,
2952 .write = cgroup_file_write,
2953 .seq_start = cgroup_seqfile_start,
2954 .seq_next = cgroup_seqfile_next,
2955 .seq_stop = cgroup_seqfile_stop,
2956 .seq_show = cgroup_seqfile_show,
2957 };
2958
2959 /*
2960 * cgroup_rename - Only allow simple rename of directories in place.
2961 */
2962 static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
2963 const char *new_name_str)
2964 {
2965 struct cgroup *cgrp = kn->priv;
2966 int ret;
2967
2968 if (kernfs_type(kn) != KERNFS_DIR)
2969 return -ENOTDIR;
2970 if (kn->parent != new_parent)
2971 return -EIO;
2972
2973 /*
2974 * This isn't a proper migration and its usefulness is very
2975 * limited. Disallow on the default hierarchy.
2976 */
2977 if (cgroup_on_dfl(cgrp))
2978 return -EPERM;
2979
2980 /*
2981 * We're gonna grab cgroup_mutex which nests outside kernfs
2982 * active_ref. kernfs_rename() doesn't require active_ref
2983 * protection. Break them before grabbing cgroup_mutex.
2984 */
2985 kernfs_break_active_protection(new_parent);
2986 kernfs_break_active_protection(kn);
2987
2988 mutex_lock(&cgroup_mutex);
2989
2990 ret = kernfs_rename(kn, new_parent, new_name_str);
2991
2992 mutex_unlock(&cgroup_mutex);
2993
2994 kernfs_unbreak_active_protection(kn);
2995 kernfs_unbreak_active_protection(new_parent);
2996 return ret;
2997 }
2998
2999 /* set uid and gid of cgroup dirs and files to that of the creator */
3000 static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3001 {
3002 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3003 .ia_uid = current_fsuid(),
3004 .ia_gid = current_fsgid(), };
3005
3006 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3007 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3008 return 0;
3009
3010 return kernfs_setattr(kn, &iattr);
3011 }
3012
3013 static int cgroup_add_file(struct cgroup *cgrp, struct cftype *cft)
3014 {
3015 char name[CGROUP_FILE_NAME_MAX];
3016 struct kernfs_node *kn;
3017 struct lock_class_key *key = NULL;
3018 int ret;
3019
3020 #ifdef CONFIG_DEBUG_LOCK_ALLOC
3021 key = &cft->lockdep_key;
3022 #endif
3023 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3024 cgroup_file_mode(cft), 0, cft->kf_ops, cft,
3025 NULL, false, key);
3026 if (IS_ERR(kn))
3027 return PTR_ERR(kn);
3028
3029 ret = cgroup_kn_set_ugid(kn);
3030 if (ret) {
3031 kernfs_remove(kn);
3032 return ret;
3033 }
3034
3035 if (cft->seq_show == cgroup_populated_show)
3036 cgrp->populated_kn = kn;
3037 return 0;
3038 }
3039
3040 /**
3041 * cgroup_addrm_files - add or remove files to a cgroup directory
3042 * @cgrp: the target cgroup
3043 * @cfts: array of cftypes to be added
3044 * @is_add: whether to add or remove
3045 *
3046 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
3047 * For removals, this function never fails. If addition fails, this
3048 * function doesn't remove files already added. The caller is responsible
3049 * for cleaning up.
3050 */
3051 static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
3052 bool is_add)
3053 {
3054 struct cftype *cft;
3055 int ret;
3056
3057 lockdep_assert_held(&cgroup_mutex);
3058
3059 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3060 /* does cft->flags tell us to skip this file on @cgrp? */
3061 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
3062 continue;
3063 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
3064 continue;
3065 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
3066 continue;
3067 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
3068 continue;
3069
3070 if (is_add) {
3071 ret = cgroup_add_file(cgrp, cft);
3072 if (ret) {
3073 pr_warn("%s: failed to add %s, err=%d\n",
3074 __func__, cft->name, ret);
3075 return ret;
3076 }
3077 } else {
3078 cgroup_rm_file(cgrp, cft);
3079 }
3080 }
3081 return 0;
3082 }
3083
3084 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
3085 {
3086 LIST_HEAD(pending);
3087 struct cgroup_subsys *ss = cfts[0].ss;
3088 struct cgroup *root = &ss->root->cgrp;
3089 struct cgroup_subsys_state *css;
3090 int ret = 0;
3091
3092 lockdep_assert_held(&cgroup_mutex);
3093
3094 /* add/rm files for all cgroups created before */
3095 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
3096 struct cgroup *cgrp = css->cgroup;
3097
3098 if (cgroup_is_dead(cgrp))
3099 continue;
3100
3101 ret = cgroup_addrm_files(cgrp, cfts, is_add);
3102 if (ret)
3103 break;
3104 }
3105
3106 if (is_add && !ret)
3107 kernfs_activate(root->kn);
3108 return ret;
3109 }
3110
3111 static void cgroup_exit_cftypes(struct cftype *cfts)
3112 {
3113 struct cftype *cft;
3114
3115 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3116 /* free copy for custom atomic_write_len, see init_cftypes() */
3117 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3118 kfree(cft->kf_ops);
3119 cft->kf_ops = NULL;
3120 cft->ss = NULL;
3121
3122 /* revert flags set by cgroup core while adding @cfts */
3123 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
3124 }
3125 }
3126
3127 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3128 {
3129 struct cftype *cft;
3130
3131 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3132 struct kernfs_ops *kf_ops;
3133
3134 WARN_ON(cft->ss || cft->kf_ops);
3135
3136 if (cft->seq_start)
3137 kf_ops = &cgroup_kf_ops;
3138 else
3139 kf_ops = &cgroup_kf_single_ops;
3140
3141 /*
3142 * Ugh... if @cft wants a custom max_write_len, we need to
3143 * make a copy of kf_ops to set its atomic_write_len.
3144 */
3145 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3146 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3147 if (!kf_ops) {
3148 cgroup_exit_cftypes(cfts);
3149 return -ENOMEM;
3150 }
3151 kf_ops->atomic_write_len = cft->max_write_len;
3152 }
3153
3154 cft->kf_ops = kf_ops;
3155 cft->ss = ss;
3156 }
3157
3158 return 0;
3159 }
3160
3161 static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3162 {
3163 lockdep_assert_held(&cgroup_mutex);
3164
3165 if (!cfts || !cfts[0].ss)
3166 return -ENOENT;
3167
3168 list_del(&cfts->node);
3169 cgroup_apply_cftypes(cfts, false);
3170 cgroup_exit_cftypes(cfts);
3171 return 0;
3172 }
3173
3174 /**
3175 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
3176 * @cfts: zero-length name terminated array of cftypes
3177 *
3178 * Unregister @cfts. Files described by @cfts are removed from all
3179 * existing cgroups and all future cgroups won't have them either. This
3180 * function can be called anytime whether @cfts' subsys is attached or not.
3181 *
3182 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
3183 * registered.
3184 */
3185 int cgroup_rm_cftypes(struct cftype *cfts)
3186 {
3187 int ret;
3188
3189 mutex_lock(&cgroup_mutex);
3190 ret = cgroup_rm_cftypes_locked(cfts);
3191 mutex_unlock(&cgroup_mutex);
3192 return ret;
3193 }
3194
3195 /**
3196 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3197 * @ss: target cgroup subsystem
3198 * @cfts: zero-length name terminated array of cftypes
3199 *
3200 * Register @cfts to @ss. Files described by @cfts are created for all
3201 * existing cgroups to which @ss is attached and all future cgroups will
3202 * have them too. This function can be called anytime whether @ss is
3203 * attached or not.
3204 *
3205 * Returns 0 on successful registration, -errno on failure. Note that this
3206 * function currently returns 0 as long as @cfts registration is successful
3207 * even if some file creation attempts on existing cgroups fail.
3208 */
3209 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3210 {
3211 int ret;
3212
3213 if (ss->disabled)
3214 return 0;
3215
3216 if (!cfts || cfts[0].name[0] == '\0')
3217 return 0;
3218
3219 ret = cgroup_init_cftypes(ss, cfts);
3220 if (ret)
3221 return ret;
3222
3223 mutex_lock(&cgroup_mutex);
3224
3225 list_add_tail(&cfts->node, &ss->cfts);
3226 ret = cgroup_apply_cftypes(cfts, true);
3227 if (ret)
3228 cgroup_rm_cftypes_locked(cfts);
3229
3230 mutex_unlock(&cgroup_mutex);
3231 return ret;
3232 }
3233
3234 /**
3235 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3236 * @ss: target cgroup subsystem
3237 * @cfts: zero-length name terminated array of cftypes
3238 *
3239 * Similar to cgroup_add_cftypes() but the added files are only used for
3240 * the default hierarchy.
3241 */
3242 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3243 {
3244 struct cftype *cft;
3245
3246 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3247 cft->flags |= __CFTYPE_ONLY_ON_DFL;
3248 return cgroup_add_cftypes(ss, cfts);
3249 }
3250
3251 /**
3252 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3253 * @ss: target cgroup subsystem
3254 * @cfts: zero-length name terminated array of cftypes
3255 *
3256 * Similar to cgroup_add_cftypes() but the added files are only used for
3257 * the legacy hierarchies.
3258 */
3259 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3260 {
3261 struct cftype *cft;
3262
3263 /*
3264 * If legacy_flies_on_dfl, we want to show the legacy files on the
3265 * dfl hierarchy but iff the target subsystem hasn't been updated
3266 * for the dfl hierarchy yet.
3267 */
3268 if (!cgroup_legacy_files_on_dfl ||
3269 ss->dfl_cftypes != ss->legacy_cftypes) {
3270 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3271 cft->flags |= __CFTYPE_NOT_ON_DFL;
3272 }
3273
3274 return cgroup_add_cftypes(ss, cfts);
3275 }
3276
3277 /**
3278 * cgroup_task_count - count the number of tasks in a cgroup.
3279 * @cgrp: the cgroup in question
3280 *
3281 * Return the number of tasks in the cgroup.
3282 */
3283 static int cgroup_task_count(const struct cgroup *cgrp)
3284 {
3285 int count = 0;
3286 struct cgrp_cset_link *link;
3287
3288 down_read(&css_set_rwsem);
3289 list_for_each_entry(link, &cgrp->cset_links, cset_link)
3290 count += atomic_read(&link->cset->refcount);
3291 up_read(&css_set_rwsem);
3292 return count;
3293 }
3294
3295 /**
3296 * css_next_child - find the next child of a given css
3297 * @pos: the current position (%NULL to initiate traversal)
3298 * @parent: css whose children to walk
3299 *
3300 * This function returns the next child of @parent and should be called
3301 * under either cgroup_mutex or RCU read lock. The only requirement is
3302 * that @parent and @pos are accessible. The next sibling is guaranteed to
3303 * be returned regardless of their states.
3304 *
3305 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3306 * css which finished ->css_online() is guaranteed to be visible in the
3307 * future iterations and will stay visible until the last reference is put.
3308 * A css which hasn't finished ->css_online() or already finished
3309 * ->css_offline() may show up during traversal. It's each subsystem's
3310 * responsibility to synchronize against on/offlining.
3311 */
3312 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
3313 struct cgroup_subsys_state *parent)
3314 {
3315 struct cgroup_subsys_state *next;
3316
3317 cgroup_assert_mutex_or_rcu_locked();
3318
3319 /*
3320 * @pos could already have been unlinked from the sibling list.
3321 * Once a cgroup is removed, its ->sibling.next is no longer
3322 * updated when its next sibling changes. CSS_RELEASED is set when
3323 * @pos is taken off list, at which time its next pointer is valid,
3324 * and, as releases are serialized, the one pointed to by the next
3325 * pointer is guaranteed to not have started release yet. This
3326 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3327 * critical section, the one pointed to by its next pointer is
3328 * guaranteed to not have finished its RCU grace period even if we
3329 * have dropped rcu_read_lock() inbetween iterations.
3330 *
3331 * If @pos has CSS_RELEASED set, its next pointer can't be
3332 * dereferenced; however, as each css is given a monotonically
3333 * increasing unique serial number and always appended to the
3334 * sibling list, the next one can be found by walking the parent's
3335 * children until the first css with higher serial number than
3336 * @pos's. While this path can be slower, it happens iff iteration
3337 * races against release and the race window is very small.
3338 */
3339 if (!pos) {
3340 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
3341 } else if (likely(!(pos->flags & CSS_RELEASED))) {
3342 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
3343 } else {
3344 list_for_each_entry_rcu(next, &parent->children, sibling)
3345 if (next->serial_nr > pos->serial_nr)
3346 break;
3347 }
3348
3349 /*
3350 * @next, if not pointing to the head, can be dereferenced and is
3351 * the next sibling.
3352 */
3353 if (&next->sibling != &parent->children)
3354 return next;
3355 return NULL;
3356 }
3357
3358 /**
3359 * css_next_descendant_pre - find the next descendant for pre-order walk
3360 * @pos: the current position (%NULL to initiate traversal)
3361 * @root: css whose descendants to walk
3362 *
3363 * To be used by css_for_each_descendant_pre(). Find the next descendant
3364 * to visit for pre-order traversal of @root's descendants. @root is
3365 * included in the iteration and the first node to be visited.
3366 *
3367 * While this function requires cgroup_mutex or RCU read locking, it
3368 * doesn't require the whole traversal to be contained in a single critical
3369 * section. This function will return the correct next descendant as long
3370 * as both @pos and @root are accessible and @pos is a descendant of @root.
3371 *
3372 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3373 * css which finished ->css_online() is guaranteed to be visible in the
3374 * future iterations and will stay visible until the last reference is put.
3375 * A css which hasn't finished ->css_online() or already finished
3376 * ->css_offline() may show up during traversal. It's each subsystem's
3377 * responsibility to synchronize against on/offlining.
3378 */
3379 struct cgroup_subsys_state *
3380 css_next_descendant_pre(struct cgroup_subsys_state *pos,
3381 struct cgroup_subsys_state *root)
3382 {
3383 struct cgroup_subsys_state *next;
3384
3385 cgroup_assert_mutex_or_rcu_locked();
3386
3387 /* if first iteration, visit @root */
3388 if (!pos)
3389 return root;
3390
3391 /* visit the first child if exists */
3392 next = css_next_child(NULL, pos);
3393 if (next)
3394 return next;
3395
3396 /* no child, visit my or the closest ancestor's next sibling */
3397 while (pos != root) {
3398 next = css_next_child(pos, pos->parent);
3399 if (next)
3400 return next;
3401 pos = pos->parent;
3402 }
3403
3404 return NULL;
3405 }
3406
3407 /**
3408 * css_rightmost_descendant - return the rightmost descendant of a css
3409 * @pos: css of interest
3410 *
3411 * Return the rightmost descendant of @pos. If there's no descendant, @pos
3412 * is returned. This can be used during pre-order traversal to skip
3413 * subtree of @pos.
3414 *
3415 * While this function requires cgroup_mutex or RCU read locking, it
3416 * doesn't require the whole traversal to be contained in a single critical
3417 * section. This function will return the correct rightmost descendant as
3418 * long as @pos is accessible.
3419 */
3420 struct cgroup_subsys_state *
3421 css_rightmost_descendant(struct cgroup_subsys_state *pos)
3422 {
3423 struct cgroup_subsys_state *last, *tmp;
3424
3425 cgroup_assert_mutex_or_rcu_locked();
3426
3427 do {
3428 last = pos;
3429 /* ->prev isn't RCU safe, walk ->next till the end */
3430 pos = NULL;
3431 css_for_each_child(tmp, last)
3432 pos = tmp;
3433 } while (pos);
3434
3435 return last;
3436 }
3437
3438 static struct cgroup_subsys_state *
3439 css_leftmost_descendant(struct cgroup_subsys_state *pos)
3440 {
3441 struct cgroup_subsys_state *last;
3442
3443 do {
3444 last = pos;
3445 pos = css_next_child(NULL, pos);
3446 } while (pos);
3447
3448 return last;
3449 }
3450
3451 /**
3452 * css_next_descendant_post - find the next descendant for post-order walk
3453 * @pos: the current position (%NULL to initiate traversal)
3454 * @root: css whose descendants to walk
3455 *
3456 * To be used by css_for_each_descendant_post(). Find the next descendant
3457 * to visit for post-order traversal of @root's descendants. @root is
3458 * included in the iteration and the last node to be visited.
3459 *
3460 * While this function requires cgroup_mutex or RCU read locking, it
3461 * doesn't require the whole traversal to be contained in a single critical
3462 * section. This function will return the correct next descendant as long
3463 * as both @pos and @cgroup are accessible and @pos is a descendant of
3464 * @cgroup.
3465 *
3466 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3467 * css which finished ->css_online() is guaranteed to be visible in the
3468 * future iterations and will stay visible until the last reference is put.
3469 * A css which hasn't finished ->css_online() or already finished
3470 * ->css_offline() may show up during traversal. It's each subsystem's
3471 * responsibility to synchronize against on/offlining.
3472 */
3473 struct cgroup_subsys_state *
3474 css_next_descendant_post(struct cgroup_subsys_state *pos,
3475 struct cgroup_subsys_state *root)
3476 {
3477 struct cgroup_subsys_state *next;
3478
3479 cgroup_assert_mutex_or_rcu_locked();
3480
3481 /* if first iteration, visit leftmost descendant which may be @root */
3482 if (!pos)
3483 return css_leftmost_descendant(root);
3484
3485 /* if we visited @root, we're done */
3486 if (pos == root)
3487 return NULL;
3488
3489 /* if there's an unvisited sibling, visit its leftmost descendant */
3490 next = css_next_child(pos, pos->parent);
3491 if (next)
3492 return css_leftmost_descendant(next);
3493
3494 /* no sibling left, visit parent */
3495 return pos->parent;
3496 }
3497
3498 /**
3499 * css_has_online_children - does a css have online children
3500 * @css: the target css
3501 *
3502 * Returns %true if @css has any online children; otherwise, %false. This
3503 * function can be called from any context but the caller is responsible
3504 * for synchronizing against on/offlining as necessary.
3505 */
3506 bool css_has_online_children(struct cgroup_subsys_state *css)
3507 {
3508 struct cgroup_subsys_state *child;
3509 bool ret = false;
3510
3511 rcu_read_lock();
3512 css_for_each_child(child, css) {
3513 if (child->flags & CSS_ONLINE) {
3514 ret = true;
3515 break;
3516 }
3517 }
3518 rcu_read_unlock();
3519 return ret;
3520 }
3521
3522 /**
3523 * css_advance_task_iter - advance a task itererator to the next css_set
3524 * @it: the iterator to advance
3525 *
3526 * Advance @it to the next css_set to walk.
3527 */
3528 static void css_advance_task_iter(struct css_task_iter *it)
3529 {
3530 struct list_head *l = it->cset_pos;
3531 struct cgrp_cset_link *link;
3532 struct css_set *cset;
3533
3534 /* Advance to the next non-empty css_set */
3535 do {
3536 l = l->next;
3537 if (l == it->cset_head) {
3538 it->cset_pos = NULL;
3539 return;
3540 }
3541
3542 if (it->ss) {
3543 cset = container_of(l, struct css_set,
3544 e_cset_node[it->ss->id]);
3545 } else {
3546 link = list_entry(l, struct cgrp_cset_link, cset_link);
3547 cset = link->cset;
3548 }
3549 } while (list_empty(&cset->tasks) && list_empty(&cset->mg_tasks));
3550
3551 it->cset_pos = l;
3552
3553 if (!list_empty(&cset->tasks))
3554 it->task_pos = cset->tasks.next;
3555 else
3556 it->task_pos = cset->mg_tasks.next;
3557
3558 it->tasks_head = &cset->tasks;
3559 it->mg_tasks_head = &cset->mg_tasks;
3560 }
3561
3562 /**
3563 * css_task_iter_start - initiate task iteration
3564 * @css: the css to walk tasks of
3565 * @it: the task iterator to use
3566 *
3567 * Initiate iteration through the tasks of @css. The caller can call
3568 * css_task_iter_next() to walk through the tasks until the function
3569 * returns NULL. On completion of iteration, css_task_iter_end() must be
3570 * called.
3571 *
3572 * Note that this function acquires a lock which is released when the
3573 * iteration finishes. The caller can't sleep while iteration is in
3574 * progress.
3575 */
3576 void css_task_iter_start(struct cgroup_subsys_state *css,
3577 struct css_task_iter *it)
3578 __acquires(css_set_rwsem)
3579 {
3580 /* no one should try to iterate before mounting cgroups */
3581 WARN_ON_ONCE(!use_task_css_set_links);
3582
3583 down_read(&css_set_rwsem);
3584
3585 it->ss = css->ss;
3586
3587 if (it->ss)
3588 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
3589 else
3590 it->cset_pos = &css->cgroup->cset_links;
3591
3592 it->cset_head = it->cset_pos;
3593
3594 css_advance_task_iter(it);
3595 }
3596
3597 /**
3598 * css_task_iter_next - return the next task for the iterator
3599 * @it: the task iterator being iterated
3600 *
3601 * The "next" function for task iteration. @it should have been
3602 * initialized via css_task_iter_start(). Returns NULL when the iteration
3603 * reaches the end.
3604 */
3605 struct task_struct *css_task_iter_next(struct css_task_iter *it)
3606 {
3607 struct task_struct *res;
3608 struct list_head *l = it->task_pos;
3609
3610 /* If the iterator cg is NULL, we have no tasks */
3611 if (!it->cset_pos)
3612 return NULL;
3613 res = list_entry(l, struct task_struct, cg_list);
3614
3615 /*
3616 * Advance iterator to find next entry. cset->tasks is consumed
3617 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
3618 * next cset.
3619 */
3620 l = l->next;
3621
3622 if (l == it->tasks_head)
3623 l = it->mg_tasks_head->next;
3624
3625 if (l == it->mg_tasks_head)
3626 css_advance_task_iter(it);
3627 else
3628 it->task_pos = l;
3629
3630 return res;
3631 }
3632
3633 /**
3634 * css_task_iter_end - finish task iteration
3635 * @it: the task iterator to finish
3636 *
3637 * Finish task iteration started by css_task_iter_start().
3638 */
3639 void css_task_iter_end(struct css_task_iter *it)
3640 __releases(css_set_rwsem)
3641 {
3642 up_read(&css_set_rwsem);
3643 }
3644
3645 /**
3646 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
3647 * @to: cgroup to which the tasks will be moved
3648 * @from: cgroup in which the tasks currently reside
3649 *
3650 * Locking rules between cgroup_post_fork() and the migration path
3651 * guarantee that, if a task is forking while being migrated, the new child
3652 * is guaranteed to be either visible in the source cgroup after the
3653 * parent's migration is complete or put into the target cgroup. No task
3654 * can slip out of migration through forking.
3655 */
3656 int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
3657 {
3658 LIST_HEAD(preloaded_csets);
3659 struct cgrp_cset_link *link;
3660 struct css_task_iter it;
3661 struct task_struct *task;
3662 int ret;
3663
3664 mutex_lock(&cgroup_mutex);
3665
3666 /* all tasks in @from are being moved, all csets are source */
3667 down_read(&css_set_rwsem);
3668 list_for_each_entry(link, &from->cset_links, cset_link)
3669 cgroup_migrate_add_src(link->cset, to, &preloaded_csets);
3670 up_read(&css_set_rwsem);
3671
3672 ret = cgroup_migrate_prepare_dst(to, &preloaded_csets);
3673 if (ret)
3674 goto out_err;
3675
3676 /*
3677 * Migrate tasks one-by-one until @form is empty. This fails iff
3678 * ->can_attach() fails.
3679 */
3680 do {
3681 css_task_iter_start(&from->self, &it);
3682 task = css_task_iter_next(&it);
3683 if (task)
3684 get_task_struct(task);
3685 css_task_iter_end(&it);
3686
3687 if (task) {
3688 ret = cgroup_migrate(to, task, false);
3689 put_task_struct(task);
3690 }
3691 } while (task && !ret);
3692 out_err:
3693 cgroup_migrate_finish(&preloaded_csets);
3694 mutex_unlock(&cgroup_mutex);
3695 return ret;
3696 }
3697
3698 /*
3699 * Stuff for reading the 'tasks'/'procs' files.
3700 *
3701 * Reading this file can return large amounts of data if a cgroup has
3702 * *lots* of attached tasks. So it may need several calls to read(),
3703 * but we cannot guarantee that the information we produce is correct
3704 * unless we produce it entirely atomically.
3705 *
3706 */
3707
3708 /* which pidlist file are we talking about? */
3709 enum cgroup_filetype {
3710 CGROUP_FILE_PROCS,
3711 CGROUP_FILE_TASKS,
3712 };
3713
3714 /*
3715 * A pidlist is a list of pids that virtually represents the contents of one
3716 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
3717 * a pair (one each for procs, tasks) for each pid namespace that's relevant
3718 * to the cgroup.
3719 */
3720 struct cgroup_pidlist {
3721 /*
3722 * used to find which pidlist is wanted. doesn't change as long as
3723 * this particular list stays in the list.
3724 */
3725 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
3726 /* array of xids */
3727 pid_t *list;
3728 /* how many elements the above list has */
3729 int length;
3730 /* each of these stored in a list by its cgroup */
3731 struct list_head links;
3732 /* pointer to the cgroup we belong to, for list removal purposes */
3733 struct cgroup *owner;
3734 /* for delayed destruction */
3735 struct delayed_work destroy_dwork;
3736 };
3737
3738 /*
3739 * The following two functions "fix" the issue where there are more pids
3740 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3741 * TODO: replace with a kernel-wide solution to this problem
3742 */
3743 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
3744 static void *pidlist_allocate(int count)
3745 {
3746 if (PIDLIST_TOO_LARGE(count))
3747 return vmalloc(count * sizeof(pid_t));
3748 else
3749 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
3750 }
3751
3752 static void pidlist_free(void *p)
3753 {
3754 if (is_vmalloc_addr(p))
3755 vfree(p);
3756 else
3757 kfree(p);
3758 }
3759
3760 /*
3761 * Used to destroy all pidlists lingering waiting for destroy timer. None
3762 * should be left afterwards.
3763 */
3764 static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
3765 {
3766 struct cgroup_pidlist *l, *tmp_l;
3767
3768 mutex_lock(&cgrp->pidlist_mutex);
3769 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
3770 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
3771 mutex_unlock(&cgrp->pidlist_mutex);
3772
3773 flush_workqueue(cgroup_pidlist_destroy_wq);
3774 BUG_ON(!list_empty(&cgrp->pidlists));
3775 }
3776
3777 static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
3778 {
3779 struct delayed_work *dwork = to_delayed_work(work);
3780 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
3781 destroy_dwork);
3782 struct cgroup_pidlist *tofree = NULL;
3783
3784 mutex_lock(&l->owner->pidlist_mutex);
3785
3786 /*
3787 * Destroy iff we didn't get queued again. The state won't change
3788 * as destroy_dwork can only be queued while locked.
3789 */
3790 if (!delayed_work_pending(dwork)) {
3791 list_del(&l->links);
3792 pidlist_free(l->list);
3793 put_pid_ns(l->key.ns);
3794 tofree = l;
3795 }
3796
3797 mutex_unlock(&l->owner->pidlist_mutex);
3798 kfree(tofree);
3799 }
3800
3801 /*
3802 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
3803 * Returns the number of unique elements.
3804 */
3805 static int pidlist_uniq(pid_t *list, int length)
3806 {
3807 int src, dest = 1;
3808
3809 /*
3810 * we presume the 0th element is unique, so i starts at 1. trivial
3811 * edge cases first; no work needs to be done for either
3812 */
3813 if (length == 0 || length == 1)
3814 return length;
3815 /* src and dest walk down the list; dest counts unique elements */
3816 for (src = 1; src < length; src++) {
3817 /* find next unique element */
3818 while (list[src] == list[src-1]) {
3819 src++;
3820 if (src == length)
3821 goto after;
3822 }
3823 /* dest always points to where the next unique element goes */
3824 list[dest] = list[src];
3825 dest++;
3826 }
3827 after:
3828 return dest;
3829 }
3830
3831 /*
3832 * The two pid files - task and cgroup.procs - guaranteed that the result
3833 * is sorted, which forced this whole pidlist fiasco. As pid order is
3834 * different per namespace, each namespace needs differently sorted list,
3835 * making it impossible to use, for example, single rbtree of member tasks
3836 * sorted by task pointer. As pidlists can be fairly large, allocating one
3837 * per open file is dangerous, so cgroup had to implement shared pool of
3838 * pidlists keyed by cgroup and namespace.
3839 *
3840 * All this extra complexity was caused by the original implementation
3841 * committing to an entirely unnecessary property. In the long term, we
3842 * want to do away with it. Explicitly scramble sort order if on the
3843 * default hierarchy so that no such expectation exists in the new
3844 * interface.
3845 *
3846 * Scrambling is done by swapping every two consecutive bits, which is
3847 * non-identity one-to-one mapping which disturbs sort order sufficiently.
3848 */
3849 static pid_t pid_fry(pid_t pid)
3850 {
3851 unsigned a = pid & 0x55555555;
3852 unsigned b = pid & 0xAAAAAAAA;
3853
3854 return (a << 1) | (b >> 1);
3855 }
3856
3857 static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
3858 {
3859 if (cgroup_on_dfl(cgrp))
3860 return pid_fry(pid);
3861 else
3862 return pid;
3863 }
3864
3865 static int cmppid(const void *a, const void *b)
3866 {
3867 return *(pid_t *)a - *(pid_t *)b;
3868 }
3869
3870 static int fried_cmppid(const void *a, const void *b)
3871 {
3872 return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
3873 }
3874
3875 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3876 enum cgroup_filetype type)
3877 {
3878 struct cgroup_pidlist *l;
3879 /* don't need task_nsproxy() if we're looking at ourself */
3880 struct pid_namespace *ns = task_active_pid_ns(current);
3881
3882 lockdep_assert_held(&cgrp->pidlist_mutex);
3883
3884 list_for_each_entry(l, &cgrp->pidlists, links)
3885 if (l->key.type == type && l->key.ns == ns)
3886 return l;
3887 return NULL;
3888 }
3889
3890 /*
3891 * find the appropriate pidlist for our purpose (given procs vs tasks)
3892 * returns with the lock on that pidlist already held, and takes care
3893 * of the use count, or returns NULL with no locks held if we're out of
3894 * memory.
3895 */
3896 static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
3897 enum cgroup_filetype type)
3898 {
3899 struct cgroup_pidlist *l;
3900
3901 lockdep_assert_held(&cgrp->pidlist_mutex);
3902
3903 l = cgroup_pidlist_find(cgrp, type);
3904 if (l)
3905 return l;
3906
3907 /* entry not found; create a new one */
3908 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
3909 if (!l)
3910 return l;
3911
3912 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
3913 l->key.type = type;
3914 /* don't need task_nsproxy() if we're looking at ourself */
3915 l->key.ns = get_pid_ns(task_active_pid_ns(current));
3916 l->owner = cgrp;
3917 list_add(&l->links, &cgrp->pidlists);
3918 return l;
3919 }
3920
3921 /*
3922 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3923 */
3924 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3925 struct cgroup_pidlist **lp)
3926 {
3927 pid_t *array;
3928 int length;
3929 int pid, n = 0; /* used for populating the array */
3930 struct css_task_iter it;
3931 struct task_struct *tsk;
3932 struct cgroup_pidlist *l;
3933
3934 lockdep_assert_held(&cgrp->pidlist_mutex);
3935
3936 /*
3937 * If cgroup gets more users after we read count, we won't have
3938 * enough space - tough. This race is indistinguishable to the
3939 * caller from the case that the additional cgroup users didn't
3940 * show up until sometime later on.
3941 */
3942 length = cgroup_task_count(cgrp);
3943 array = pidlist_allocate(length);
3944 if (!array)
3945 return -ENOMEM;
3946 /* now, populate the array */
3947 css_task_iter_start(&cgrp->self, &it);
3948 while ((tsk = css_task_iter_next(&it))) {
3949 if (unlikely(n == length))
3950 break;
3951 /* get tgid or pid for procs or tasks file respectively */
3952 if (type == CGROUP_FILE_PROCS)
3953 pid = task_tgid_vnr(tsk);
3954 else
3955 pid = task_pid_vnr(tsk);
3956 if (pid > 0) /* make sure to only use valid results */
3957 array[n++] = pid;
3958 }
3959 css_task_iter_end(&it);
3960 length = n;
3961 /* now sort & (if procs) strip out duplicates */
3962 if (cgroup_on_dfl(cgrp))
3963 sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
3964 else
3965 sort(array, length, sizeof(pid_t), cmppid, NULL);
3966 if (type == CGROUP_FILE_PROCS)
3967 length = pidlist_uniq(array, length);
3968
3969 l = cgroup_pidlist_find_create(cgrp, type);
3970 if (!l) {
3971 pidlist_free(array);
3972 return -ENOMEM;
3973 }
3974
3975 /* store array, freeing old if necessary */
3976 pidlist_free(l->list);
3977 l->list = array;
3978 l->length = length;
3979 *lp = l;
3980 return 0;
3981 }
3982
3983 /**
3984 * cgroupstats_build - build and fill cgroupstats
3985 * @stats: cgroupstats to fill information into
3986 * @dentry: A dentry entry belonging to the cgroup for which stats have
3987 * been requested.
3988 *
3989 * Build and fill cgroupstats so that taskstats can export it to user
3990 * space.
3991 */
3992 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
3993 {
3994 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
3995 struct cgroup *cgrp;
3996 struct css_task_iter it;
3997 struct task_struct *tsk;
3998
3999 /* it should be kernfs_node belonging to cgroupfs and is a directory */
4000 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
4001 kernfs_type(kn) != KERNFS_DIR)
4002 return -EINVAL;
4003
4004 mutex_lock(&cgroup_mutex);
4005
4006 /*
4007 * We aren't being called from kernfs and there's no guarantee on
4008 * @kn->priv's validity. For this and css_tryget_online_from_dir(),
4009 * @kn->priv is RCU safe. Let's do the RCU dancing.
4010 */
4011 rcu_read_lock();
4012 cgrp = rcu_dereference(kn->priv);
4013 if (!cgrp || cgroup_is_dead(cgrp)) {
4014 rcu_read_unlock();
4015 mutex_unlock(&cgroup_mutex);
4016 return -ENOENT;
4017 }
4018 rcu_read_unlock();
4019
4020 css_task_iter_start(&cgrp->self, &it);
4021 while ((tsk = css_task_iter_next(&it))) {
4022 switch (tsk->state) {
4023 case TASK_RUNNING:
4024 stats->nr_running++;
4025 break;
4026 case TASK_INTERRUPTIBLE:
4027 stats->nr_sleeping++;
4028 break;
4029 case TASK_UNINTERRUPTIBLE:
4030 stats->nr_uninterruptible++;
4031 break;
4032 case TASK_STOPPED:
4033 stats->nr_stopped++;
4034 break;
4035 default:
4036 if (delayacct_is_task_waiting_on_io(tsk))
4037 stats->nr_io_wait++;
4038 break;
4039 }
4040 }
4041 css_task_iter_end(&it);
4042
4043 mutex_unlock(&cgroup_mutex);
4044 return 0;
4045 }
4046
4047
4048 /*
4049 * seq_file methods for the tasks/procs files. The seq_file position is the
4050 * next pid to display; the seq_file iterator is a pointer to the pid
4051 * in the cgroup->l->list array.
4052 */
4053
4054 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
4055 {
4056 /*
4057 * Initially we receive a position value that corresponds to
4058 * one more than the last pid shown (or 0 on the first call or
4059 * after a seek to the start). Use a binary-search to find the
4060 * next pid to display, if any
4061 */
4062 struct kernfs_open_file *of = s->private;
4063 struct cgroup *cgrp = seq_css(s)->cgroup;
4064 struct cgroup_pidlist *l;
4065 enum cgroup_filetype type = seq_cft(s)->private;
4066 int index = 0, pid = *pos;
4067 int *iter, ret;
4068
4069 mutex_lock(&cgrp->pidlist_mutex);
4070
4071 /*
4072 * !NULL @of->priv indicates that this isn't the first start()
4073 * after open. If the matching pidlist is around, we can use that.
4074 * Look for it. Note that @of->priv can't be used directly. It
4075 * could already have been destroyed.
4076 */
4077 if (of->priv)
4078 of->priv = cgroup_pidlist_find(cgrp, type);
4079
4080 /*
4081 * Either this is the first start() after open or the matching
4082 * pidlist has been destroyed inbetween. Create a new one.
4083 */
4084 if (!of->priv) {
4085 ret = pidlist_array_load(cgrp, type,
4086 (struct cgroup_pidlist **)&of->priv);
4087 if (ret)
4088 return ERR_PTR(ret);
4089 }
4090 l = of->priv;
4091
4092 if (pid) {
4093 int end = l->length;
4094
4095 while (index < end) {
4096 int mid = (index + end) / 2;
4097 if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
4098 index = mid;
4099 break;
4100 } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
4101 index = mid + 1;
4102 else
4103 end = mid;
4104 }
4105 }
4106 /* If we're off the end of the array, we're done */
4107 if (index >= l->length)
4108 return NULL;
4109 /* Update the abstract position to be the actual pid that we found */
4110 iter = l->list + index;
4111 *pos = cgroup_pid_fry(cgrp, *iter);
4112 return iter;
4113 }
4114
4115 static void cgroup_pidlist_stop(struct seq_file *s, void *v)
4116 {
4117 struct kernfs_open_file *of = s->private;
4118 struct cgroup_pidlist *l = of->priv;
4119
4120 if (l)
4121 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
4122 CGROUP_PIDLIST_DESTROY_DELAY);
4123 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
4124 }
4125
4126 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
4127 {
4128 struct kernfs_open_file *of = s->private;
4129 struct cgroup_pidlist *l = of->priv;
4130 pid_t *p = v;
4131 pid_t *end = l->list + l->length;
4132 /*
4133 * Advance to the next pid in the array. If this goes off the
4134 * end, we're done
4135 */
4136 p++;
4137 if (p >= end) {
4138 return NULL;
4139 } else {
4140 *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
4141 return p;
4142 }
4143 }
4144
4145 static int cgroup_pidlist_show(struct seq_file *s, void *v)
4146 {
4147 return seq_printf(s, "%d\n", *(int *)v);
4148 }
4149
4150 static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
4151 struct cftype *cft)
4152 {
4153 return notify_on_release(css->cgroup);
4154 }
4155
4156 static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
4157 struct cftype *cft, u64 val)
4158 {
4159 if (val)
4160 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
4161 else
4162 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
4163 return 0;
4164 }
4165
4166 static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
4167 struct cftype *cft)
4168 {
4169 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4170 }
4171
4172 static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
4173 struct cftype *cft, u64 val)
4174 {
4175 if (val)
4176 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4177 else
4178 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4179 return 0;
4180 }
4181
4182 /* cgroup core interface files for the default hierarchy */
4183 static struct cftype cgroup_dfl_base_files[] = {
4184 {
4185 .name = "cgroup.procs",
4186 .seq_start = cgroup_pidlist_start,
4187 .seq_next = cgroup_pidlist_next,
4188 .seq_stop = cgroup_pidlist_stop,
4189 .seq_show = cgroup_pidlist_show,
4190 .private = CGROUP_FILE_PROCS,
4191 .write = cgroup_procs_write,
4192 .mode = S_IRUGO | S_IWUSR,
4193 },
4194 {
4195 .name = "cgroup.controllers",
4196 .flags = CFTYPE_ONLY_ON_ROOT,
4197 .seq_show = cgroup_root_controllers_show,
4198 },
4199 {
4200 .name = "cgroup.controllers",
4201 .flags = CFTYPE_NOT_ON_ROOT,
4202 .seq_show = cgroup_controllers_show,
4203 },
4204 {
4205 .name = "cgroup.subtree_control",
4206 .seq_show = cgroup_subtree_control_show,
4207 .write = cgroup_subtree_control_write,
4208 },
4209 {
4210 .name = "cgroup.populated",
4211 .flags = CFTYPE_NOT_ON_ROOT,
4212 .seq_show = cgroup_populated_show,
4213 },
4214 { } /* terminate */
4215 };
4216
4217 /* cgroup core interface files for the legacy hierarchies */
4218 static struct cftype cgroup_legacy_base_files[] = {
4219 {
4220 .name = "cgroup.procs",
4221 .seq_start = cgroup_pidlist_start,
4222 .seq_next = cgroup_pidlist_next,
4223 .seq_stop = cgroup_pidlist_stop,
4224 .seq_show = cgroup_pidlist_show,
4225 .private = CGROUP_FILE_PROCS,
4226 .write = cgroup_procs_write,
4227 .mode = S_IRUGO | S_IWUSR,
4228 },
4229 {
4230 .name = "cgroup.clone_children",
4231 .read_u64 = cgroup_clone_children_read,
4232 .write_u64 = cgroup_clone_children_write,
4233 },
4234 {
4235 .name = "cgroup.sane_behavior",
4236 .flags = CFTYPE_ONLY_ON_ROOT,
4237 .seq_show = cgroup_sane_behavior_show,
4238 },
4239 {
4240 .name = "tasks",
4241 .seq_start = cgroup_pidlist_start,
4242 .seq_next = cgroup_pidlist_next,
4243 .seq_stop = cgroup_pidlist_stop,
4244 .seq_show = cgroup_pidlist_show,
4245 .private = CGROUP_FILE_TASKS,
4246 .write = cgroup_tasks_write,
4247 .mode = S_IRUGO | S_IWUSR,
4248 },
4249 {
4250 .name = "notify_on_release",
4251 .read_u64 = cgroup_read_notify_on_release,
4252 .write_u64 = cgroup_write_notify_on_release,
4253 },
4254 {
4255 .name = "release_agent",
4256 .flags = CFTYPE_ONLY_ON_ROOT,
4257 .seq_show = cgroup_release_agent_show,
4258 .write = cgroup_release_agent_write,
4259 .max_write_len = PATH_MAX - 1,
4260 },
4261 { } /* terminate */
4262 };
4263
4264 /**
4265 * cgroup_populate_dir - create subsys files in a cgroup directory
4266 * @cgrp: target cgroup
4267 * @subsys_mask: mask of the subsystem ids whose files should be added
4268 *
4269 * On failure, no file is added.
4270 */
4271 static int cgroup_populate_dir(struct cgroup *cgrp, unsigned int subsys_mask)
4272 {
4273 struct cgroup_subsys *ss;
4274 int i, ret = 0;
4275
4276 /* process cftsets of each subsystem */
4277 for_each_subsys(ss, i) {
4278 struct cftype *cfts;
4279
4280 if (!(subsys_mask & (1 << i)))
4281 continue;
4282
4283 list_for_each_entry(cfts, &ss->cfts, node) {
4284 ret = cgroup_addrm_files(cgrp, cfts, true);
4285 if (ret < 0)
4286 goto err;
4287 }
4288 }
4289 return 0;
4290 err:
4291 cgroup_clear_dir(cgrp, subsys_mask);
4292 return ret;
4293 }
4294
4295 /*
4296 * css destruction is four-stage process.
4297 *
4298 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4299 * Implemented in kill_css().
4300 *
4301 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
4302 * and thus css_tryget_online() is guaranteed to fail, the css can be
4303 * offlined by invoking offline_css(). After offlining, the base ref is
4304 * put. Implemented in css_killed_work_fn().
4305 *
4306 * 3. When the percpu_ref reaches zero, the only possible remaining
4307 * accessors are inside RCU read sections. css_release() schedules the
4308 * RCU callback.
4309 *
4310 * 4. After the grace period, the css can be freed. Implemented in
4311 * css_free_work_fn().
4312 *
4313 * It is actually hairier because both step 2 and 4 require process context
4314 * and thus involve punting to css->destroy_work adding two additional
4315 * steps to the already complex sequence.
4316 */
4317 static void css_free_work_fn(struct work_struct *work)
4318 {
4319 struct cgroup_subsys_state *css =
4320 container_of(work, struct cgroup_subsys_state, destroy_work);
4321 struct cgroup *cgrp = css->cgroup;
4322
4323 percpu_ref_exit(&css->refcnt);
4324
4325 if (css->ss) {
4326 /* css free path */
4327 if (css->parent)
4328 css_put(css->parent);
4329
4330 css->ss->css_free(css);
4331 cgroup_put(cgrp);
4332 } else {
4333 /* cgroup free path */
4334 atomic_dec(&cgrp->root->nr_cgrps);
4335 cgroup_pidlist_destroy_all(cgrp);
4336 cancel_work_sync(&cgrp->release_agent_work);
4337
4338 if (cgroup_parent(cgrp)) {
4339 /*
4340 * We get a ref to the parent, and put the ref when
4341 * this cgroup is being freed, so it's guaranteed
4342 * that the parent won't be destroyed before its
4343 * children.
4344 */
4345 cgroup_put(cgroup_parent(cgrp));
4346 kernfs_put(cgrp->kn);
4347 kfree(cgrp);
4348 } else {
4349 /*
4350 * This is root cgroup's refcnt reaching zero,
4351 * which indicates that the root should be
4352 * released.
4353 */
4354 cgroup_destroy_root(cgrp->root);
4355 }
4356 }
4357 }
4358
4359 static void css_free_rcu_fn(struct rcu_head *rcu_head)
4360 {
4361 struct cgroup_subsys_state *css =
4362 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
4363
4364 INIT_WORK(&css->destroy_work, css_free_work_fn);
4365 queue_work(cgroup_destroy_wq, &css->destroy_work);
4366 }
4367
4368 static void css_release_work_fn(struct work_struct *work)
4369 {
4370 struct cgroup_subsys_state *css =
4371 container_of(work, struct cgroup_subsys_state, destroy_work);
4372 struct cgroup_subsys *ss = css->ss;
4373 struct cgroup *cgrp = css->cgroup;
4374
4375 mutex_lock(&cgroup_mutex);
4376
4377 css->flags |= CSS_RELEASED;
4378 list_del_rcu(&css->sibling);
4379
4380 if (ss) {
4381 /* css release path */
4382 cgroup_idr_remove(&ss->css_idr, css->id);
4383 if (ss->css_released)
4384 ss->css_released(css);
4385 } else {
4386 /* cgroup release path */
4387 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4388 cgrp->id = -1;
4389
4390 /*
4391 * There are two control paths which try to determine
4392 * cgroup from dentry without going through kernfs -
4393 * cgroupstats_build() and css_tryget_online_from_dir().
4394 * Those are supported by RCU protecting clearing of
4395 * cgrp->kn->priv backpointer.
4396 */
4397 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, NULL);
4398 }
4399
4400 mutex_unlock(&cgroup_mutex);
4401
4402 call_rcu(&css->rcu_head, css_free_rcu_fn);
4403 }
4404
4405 static void css_release(struct percpu_ref *ref)
4406 {
4407 struct cgroup_subsys_state *css =
4408 container_of(ref, struct cgroup_subsys_state, refcnt);
4409
4410 INIT_WORK(&css->destroy_work, css_release_work_fn);
4411 queue_work(cgroup_destroy_wq, &css->destroy_work);
4412 }
4413
4414 static void init_and_link_css(struct cgroup_subsys_state *css,
4415 struct cgroup_subsys *ss, struct cgroup *cgrp)
4416 {
4417 lockdep_assert_held(&cgroup_mutex);
4418
4419 cgroup_get(cgrp);
4420
4421 memset(css, 0, sizeof(*css));
4422 css->cgroup = cgrp;
4423 css->ss = ss;
4424 INIT_LIST_HEAD(&css->sibling);
4425 INIT_LIST_HEAD(&css->children);
4426 css->serial_nr = css_serial_nr_next++;
4427
4428 if (cgroup_parent(cgrp)) {
4429 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
4430 css_get(css->parent);
4431 }
4432
4433 BUG_ON(cgroup_css(cgrp, ss));
4434 }
4435
4436 /* invoke ->css_online() on a new CSS and mark it online if successful */
4437 static int online_css(struct cgroup_subsys_state *css)
4438 {
4439 struct cgroup_subsys *ss = css->ss;
4440 int ret = 0;
4441
4442 lockdep_assert_held(&cgroup_mutex);
4443
4444 if (ss->css_online)
4445 ret = ss->css_online(css);
4446 if (!ret) {
4447 css->flags |= CSS_ONLINE;
4448 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
4449 }
4450 return ret;
4451 }
4452
4453 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
4454 static void offline_css(struct cgroup_subsys_state *css)
4455 {
4456 struct cgroup_subsys *ss = css->ss;
4457
4458 lockdep_assert_held(&cgroup_mutex);
4459
4460 if (!(css->flags & CSS_ONLINE))
4461 return;
4462
4463 if (ss->css_offline)
4464 ss->css_offline(css);
4465
4466 css->flags &= ~CSS_ONLINE;
4467 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
4468
4469 wake_up_all(&css->cgroup->offline_waitq);
4470 }
4471
4472 /**
4473 * create_css - create a cgroup_subsys_state
4474 * @cgrp: the cgroup new css will be associated with
4475 * @ss: the subsys of new css
4476 * @visible: whether to create control knobs for the new css or not
4477 *
4478 * Create a new css associated with @cgrp - @ss pair. On success, the new
4479 * css is online and installed in @cgrp with all interface files created if
4480 * @visible. Returns 0 on success, -errno on failure.
4481 */
4482 static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
4483 bool visible)
4484 {
4485 struct cgroup *parent = cgroup_parent(cgrp);
4486 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
4487 struct cgroup_subsys_state *css;
4488 int err;
4489
4490 lockdep_assert_held(&cgroup_mutex);
4491
4492 css = ss->css_alloc(parent_css);
4493 if (IS_ERR(css))
4494 return PTR_ERR(css);
4495
4496 init_and_link_css(css, ss, cgrp);
4497
4498 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
4499 if (err)
4500 goto err_free_css;
4501
4502 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_NOWAIT);
4503 if (err < 0)
4504 goto err_free_percpu_ref;
4505 css->id = err;
4506
4507 if (visible) {
4508 err = cgroup_populate_dir(cgrp, 1 << ss->id);
4509 if (err)
4510 goto err_free_id;
4511 }
4512
4513 /* @css is ready to be brought online now, make it visible */
4514 list_add_tail_rcu(&css->sibling, &parent_css->children);
4515 cgroup_idr_replace(&ss->css_idr, css, css->id);
4516
4517 err = online_css(css);
4518 if (err)
4519 goto err_list_del;
4520
4521 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
4522 cgroup_parent(parent)) {
4523 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4524 current->comm, current->pid, ss->name);
4525 if (!strcmp(ss->name, "memory"))
4526 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
4527 ss->warned_broken_hierarchy = true;
4528 }
4529
4530 return 0;
4531
4532 err_list_del:
4533 list_del_rcu(&css->sibling);
4534 cgroup_clear_dir(css->cgroup, 1 << css->ss->id);
4535 err_free_id:
4536 cgroup_idr_remove(&ss->css_idr, css->id);
4537 err_free_percpu_ref:
4538 percpu_ref_exit(&css->refcnt);
4539 err_free_css:
4540 call_rcu(&css->rcu_head, css_free_rcu_fn);
4541 return err;
4542 }
4543
4544 static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
4545 umode_t mode)
4546 {
4547 struct cgroup *parent, *cgrp;
4548 struct cgroup_root *root;
4549 struct cgroup_subsys *ss;
4550 struct kernfs_node *kn;
4551 struct cftype *base_files;
4552 int ssid, ret;
4553
4554 /* Do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable.
4555 */
4556 if (strchr(name, '\n'))
4557 return -EINVAL;
4558
4559 parent = cgroup_kn_lock_live(parent_kn);
4560 if (!parent)
4561 return -ENODEV;
4562 root = parent->root;
4563
4564 /* allocate the cgroup and its ID, 0 is reserved for the root */
4565 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
4566 if (!cgrp) {
4567 ret = -ENOMEM;
4568 goto out_unlock;
4569 }
4570
4571 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
4572 if (ret)
4573 goto out_free_cgrp;
4574
4575 /*
4576 * Temporarily set the pointer to NULL, so idr_find() won't return
4577 * a half-baked cgroup.
4578 */
4579 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_NOWAIT);
4580 if (cgrp->id < 0) {
4581 ret = -ENOMEM;
4582 goto out_cancel_ref;
4583 }
4584
4585 init_cgroup_housekeeping(cgrp);
4586
4587 cgrp->self.parent = &parent->self;
4588 cgrp->root = root;
4589
4590 if (notify_on_release(parent))
4591 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4592
4593 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4594 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
4595
4596 /* create the directory */
4597 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
4598 if (IS_ERR(kn)) {
4599 ret = PTR_ERR(kn);
4600 goto out_free_id;
4601 }
4602 cgrp->kn = kn;
4603
4604 /*
4605 * This extra ref will be put in cgroup_free_fn() and guarantees
4606 * that @cgrp->kn is always accessible.
4607 */
4608 kernfs_get(kn);
4609
4610 cgrp->self.serial_nr = css_serial_nr_next++;
4611
4612 /* allocation complete, commit to creation */
4613 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
4614 atomic_inc(&root->nr_cgrps);
4615 cgroup_get(parent);
4616
4617 /*
4618 * @cgrp is now fully operational. If something fails after this
4619 * point, it'll be released via the normal destruction path.
4620 */
4621 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
4622
4623 ret = cgroup_kn_set_ugid(kn);
4624 if (ret)
4625 goto out_destroy;
4626
4627 if (cgroup_on_dfl(cgrp))
4628 base_files = cgroup_dfl_base_files;
4629 else
4630 base_files = cgroup_legacy_base_files;
4631
4632 ret = cgroup_addrm_files(cgrp, base_files, true);
4633 if (ret)
4634 goto out_destroy;
4635
4636 /* let's create and online css's */
4637 for_each_subsys(ss, ssid) {
4638 if (parent->child_subsys_mask & (1 << ssid)) {
4639 ret = create_css(cgrp, ss,
4640 parent->subtree_control & (1 << ssid));
4641 if (ret)
4642 goto out_destroy;
4643 }
4644 }
4645
4646 /*
4647 * On the default hierarchy, a child doesn't automatically inherit
4648 * subtree_control from the parent. Each is configured manually.
4649 */
4650 if (!cgroup_on_dfl(cgrp)) {
4651 cgrp->subtree_control = parent->subtree_control;
4652 cgroup_refresh_child_subsys_mask(cgrp);
4653 }
4654
4655 kernfs_activate(kn);
4656
4657 ret = 0;
4658 goto out_unlock;
4659
4660 out_free_id:
4661 cgroup_idr_remove(&root->cgroup_idr, cgrp->id);
4662 out_cancel_ref:
4663 percpu_ref_exit(&cgrp->self.refcnt);
4664 out_free_cgrp:
4665 kfree(cgrp);
4666 out_unlock:
4667 cgroup_kn_unlock(parent_kn);
4668 return ret;
4669
4670 out_destroy:
4671 cgroup_destroy_locked(cgrp);
4672 goto out_unlock;
4673 }
4674
4675 /*
4676 * This is called when the refcnt of a css is confirmed to be killed.
4677 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
4678 * initate destruction and put the css ref from kill_css().
4679 */
4680 static void css_killed_work_fn(struct work_struct *work)
4681 {
4682 struct cgroup_subsys_state *css =
4683 container_of(work, struct cgroup_subsys_state, destroy_work);
4684
4685 mutex_lock(&cgroup_mutex);
4686 offline_css(css);
4687 mutex_unlock(&cgroup_mutex);
4688
4689 css_put(css);
4690 }
4691
4692 /* css kill confirmation processing requires process context, bounce */
4693 static void css_killed_ref_fn(struct percpu_ref *ref)
4694 {
4695 struct cgroup_subsys_state *css =
4696 container_of(ref, struct cgroup_subsys_state, refcnt);
4697
4698 INIT_WORK(&css->destroy_work, css_killed_work_fn);
4699 queue_work(cgroup_destroy_wq, &css->destroy_work);
4700 }
4701
4702 /**
4703 * kill_css - destroy a css
4704 * @css: css to destroy
4705 *
4706 * This function initiates destruction of @css by removing cgroup interface
4707 * files and putting its base reference. ->css_offline() will be invoked
4708 * asynchronously once css_tryget_online() is guaranteed to fail and when
4709 * the reference count reaches zero, @css will be released.
4710 */
4711 static void kill_css(struct cgroup_subsys_state *css)
4712 {
4713 lockdep_assert_held(&cgroup_mutex);
4714
4715 /*
4716 * This must happen before css is disassociated with its cgroup.
4717 * See seq_css() for details.
4718 */
4719 cgroup_clear_dir(css->cgroup, 1 << css->ss->id);
4720
4721 /*
4722 * Killing would put the base ref, but we need to keep it alive
4723 * until after ->css_offline().
4724 */
4725 css_get(css);
4726
4727 /*
4728 * cgroup core guarantees that, by the time ->css_offline() is
4729 * invoked, no new css reference will be given out via
4730 * css_tryget_online(). We can't simply call percpu_ref_kill() and
4731 * proceed to offlining css's because percpu_ref_kill() doesn't
4732 * guarantee that the ref is seen as killed on all CPUs on return.
4733 *
4734 * Use percpu_ref_kill_and_confirm() to get notifications as each
4735 * css is confirmed to be seen as killed on all CPUs.
4736 */
4737 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
4738 }
4739
4740 /**
4741 * cgroup_destroy_locked - the first stage of cgroup destruction
4742 * @cgrp: cgroup to be destroyed
4743 *
4744 * css's make use of percpu refcnts whose killing latency shouldn't be
4745 * exposed to userland and are RCU protected. Also, cgroup core needs to
4746 * guarantee that css_tryget_online() won't succeed by the time
4747 * ->css_offline() is invoked. To satisfy all the requirements,
4748 * destruction is implemented in the following two steps.
4749 *
4750 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
4751 * userland visible parts and start killing the percpu refcnts of
4752 * css's. Set up so that the next stage will be kicked off once all
4753 * the percpu refcnts are confirmed to be killed.
4754 *
4755 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
4756 * rest of destruction. Once all cgroup references are gone, the
4757 * cgroup is RCU-freed.
4758 *
4759 * This function implements s1. After this step, @cgrp is gone as far as
4760 * the userland is concerned and a new cgroup with the same name may be
4761 * created. As cgroup doesn't care about the names internally, this
4762 * doesn't cause any problem.
4763 */
4764 static int cgroup_destroy_locked(struct cgroup *cgrp)
4765 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
4766 {
4767 struct cgroup_subsys_state *css;
4768 bool empty;
4769 int ssid;
4770
4771 lockdep_assert_held(&cgroup_mutex);
4772
4773 /*
4774 * css_set_rwsem synchronizes access to ->cset_links and prevents
4775 * @cgrp from being removed while put_css_set() is in progress.
4776 */
4777 down_read(&css_set_rwsem);
4778 empty = list_empty(&cgrp->cset_links);
4779 up_read(&css_set_rwsem);
4780 if (!empty)
4781 return -EBUSY;
4782
4783 /*
4784 * Make sure there's no live children. We can't test emptiness of
4785 * ->self.children as dead children linger on it while being
4786 * drained; otherwise, "rmdir parent/child parent" may fail.
4787 */
4788 if (css_has_online_children(&cgrp->self))
4789 return -EBUSY;
4790
4791 /*
4792 * Mark @cgrp dead. This prevents further task migration and child
4793 * creation by disabling cgroup_lock_live_group().
4794 */
4795 cgrp->self.flags &= ~CSS_ONLINE;
4796
4797 /* initiate massacre of all css's */
4798 for_each_css(css, ssid, cgrp)
4799 kill_css(css);
4800
4801 /*
4802 * Remove @cgrp directory along with the base files. @cgrp has an
4803 * extra ref on its kn.
4804 */
4805 kernfs_remove(cgrp->kn);
4806
4807 check_for_release(cgroup_parent(cgrp));
4808
4809 /* put the base reference */
4810 percpu_ref_kill(&cgrp->self.refcnt);
4811
4812 return 0;
4813 };
4814
4815 static int cgroup_rmdir(struct kernfs_node *kn)
4816 {
4817 struct cgroup *cgrp;
4818 int ret = 0;
4819
4820 cgrp = cgroup_kn_lock_live(kn);
4821 if (!cgrp)
4822 return 0;
4823
4824 ret = cgroup_destroy_locked(cgrp);
4825
4826 cgroup_kn_unlock(kn);
4827 return ret;
4828 }
4829
4830 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
4831 .remount_fs = cgroup_remount,
4832 .show_options = cgroup_show_options,
4833 .mkdir = cgroup_mkdir,
4834 .rmdir = cgroup_rmdir,
4835 .rename = cgroup_rename,
4836 };
4837
4838 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
4839 {
4840 struct cgroup_subsys_state *css;
4841
4842 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
4843
4844 mutex_lock(&cgroup_mutex);
4845
4846 idr_init(&ss->css_idr);
4847 INIT_LIST_HEAD(&ss->cfts);
4848
4849 /* Create the root cgroup state for this subsystem */
4850 ss->root = &cgrp_dfl_root;
4851 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
4852 /* We don't handle early failures gracefully */
4853 BUG_ON(IS_ERR(css));
4854 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
4855
4856 /*
4857 * Root csses are never destroyed and we can't initialize
4858 * percpu_ref during early init. Disable refcnting.
4859 */
4860 css->flags |= CSS_NO_REF;
4861
4862 if (early) {
4863 /* allocation can't be done safely during early init */
4864 css->id = 1;
4865 } else {
4866 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
4867 BUG_ON(css->id < 0);
4868 }
4869
4870 /* Update the init_css_set to contain a subsys
4871 * pointer to this state - since the subsystem is
4872 * newly registered, all tasks and hence the
4873 * init_css_set is in the subsystem's root cgroup. */
4874 init_css_set.subsys[ss->id] = css;
4875
4876 need_forkexit_callback |= ss->fork || ss->exit;
4877
4878 /* At system boot, before all subsystems have been
4879 * registered, no tasks have been forked, so we don't
4880 * need to invoke fork callbacks here. */
4881 BUG_ON(!list_empty(&init_task.tasks));
4882
4883 BUG_ON(online_css(css));
4884
4885 mutex_unlock(&cgroup_mutex);
4886 }
4887
4888 /**
4889 * cgroup_init_early - cgroup initialization at system boot
4890 *
4891 * Initialize cgroups at system boot, and initialize any
4892 * subsystems that request early init.
4893 */
4894 int __init cgroup_init_early(void)
4895 {
4896 static struct cgroup_sb_opts __initdata opts;
4897 struct cgroup_subsys *ss;
4898 int i;
4899
4900 init_cgroup_root(&cgrp_dfl_root, &opts);
4901 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
4902
4903 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
4904
4905 for_each_subsys(ss, i) {
4906 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
4907 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p name:id=%d:%s\n",
4908 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
4909 ss->id, ss->name);
4910 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
4911 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
4912
4913 ss->id = i;
4914 ss->name = cgroup_subsys_name[i];
4915
4916 if (ss->early_init)
4917 cgroup_init_subsys(ss, true);
4918 }
4919 return 0;
4920 }
4921
4922 /**
4923 * cgroup_init - cgroup initialization
4924 *
4925 * Register cgroup filesystem and /proc file, and initialize
4926 * any subsystems that didn't request early init.
4927 */
4928 int __init cgroup_init(void)
4929 {
4930 struct cgroup_subsys *ss;
4931 unsigned long key;
4932 int ssid, err;
4933
4934 BUG_ON(cgroup_init_cftypes(NULL, cgroup_dfl_base_files));
4935 BUG_ON(cgroup_init_cftypes(NULL, cgroup_legacy_base_files));
4936
4937 mutex_lock(&cgroup_mutex);
4938
4939 /* Add init_css_set to the hash table */
4940 key = css_set_hash(init_css_set.subsys);
4941 hash_add(css_set_table, &init_css_set.hlist, key);
4942
4943 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
4944
4945 mutex_unlock(&cgroup_mutex);
4946
4947 for_each_subsys(ss, ssid) {
4948 if (ss->early_init) {
4949 struct cgroup_subsys_state *css =
4950 init_css_set.subsys[ss->id];
4951
4952 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
4953 GFP_KERNEL);
4954 BUG_ON(css->id < 0);
4955 } else {
4956 cgroup_init_subsys(ss, false);
4957 }
4958
4959 list_add_tail(&init_css_set.e_cset_node[ssid],
4960 &cgrp_dfl_root.cgrp.e_csets[ssid]);
4961
4962 /*
4963 * Setting dfl_root subsys_mask needs to consider the
4964 * disabled flag and cftype registration needs kmalloc,
4965 * both of which aren't available during early_init.
4966 */
4967 if (ss->disabled)
4968 continue;
4969
4970 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
4971
4972 if (cgroup_legacy_files_on_dfl && !ss->dfl_cftypes)
4973 ss->dfl_cftypes = ss->legacy_cftypes;
4974
4975 if (!ss->dfl_cftypes)
4976 cgrp_dfl_root_inhibit_ss_mask |= 1 << ss->id;
4977
4978 if (ss->dfl_cftypes == ss->legacy_cftypes) {
4979 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
4980 } else {
4981 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
4982 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
4983 }
4984 }
4985
4986 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
4987 if (!cgroup_kobj)
4988 return -ENOMEM;
4989
4990 err = register_filesystem(&cgroup_fs_type);
4991 if (err < 0) {
4992 kobject_put(cgroup_kobj);
4993 return err;
4994 }
4995
4996 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
4997 return 0;
4998 }
4999
5000 static int __init cgroup_wq_init(void)
5001 {
5002 /*
5003 * There isn't much point in executing destruction path in
5004 * parallel. Good chunk is serialized with cgroup_mutex anyway.
5005 * Use 1 for @max_active.
5006 *
5007 * We would prefer to do this in cgroup_init() above, but that
5008 * is called before init_workqueues(): so leave this until after.
5009 */
5010 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
5011 BUG_ON(!cgroup_destroy_wq);
5012
5013 /*
5014 * Used to destroy pidlists and separate to serve as flush domain.
5015 * Cap @max_active to 1 too.
5016 */
5017 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
5018 0, 1);
5019 BUG_ON(!cgroup_pidlist_destroy_wq);
5020
5021 return 0;
5022 }
5023 core_initcall(cgroup_wq_init);
5024
5025 /*
5026 * proc_cgroup_show()
5027 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5028 * - Used for /proc/<pid>/cgroup.
5029 */
5030 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5031 struct pid *pid, struct task_struct *tsk)
5032 {
5033 char *buf, *path;
5034 int retval;
5035 struct cgroup_root *root;
5036
5037 retval = -ENOMEM;
5038 buf = kmalloc(PATH_MAX, GFP_KERNEL);
5039 if (!buf)
5040 goto out;
5041
5042 mutex_lock(&cgroup_mutex);
5043 down_read(&css_set_rwsem);
5044
5045 for_each_root(root) {
5046 struct cgroup_subsys *ss;
5047 struct cgroup *cgrp;
5048 int ssid, count = 0;
5049
5050 if (root == &cgrp_dfl_root && !cgrp_dfl_root_visible)
5051 continue;
5052
5053 seq_printf(m, "%d:", root->hierarchy_id);
5054 for_each_subsys(ss, ssid)
5055 if (root->subsys_mask & (1 << ssid))
5056 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
5057 if (strlen(root->name))
5058 seq_printf(m, "%sname=%s", count ? "," : "",
5059 root->name);
5060 seq_putc(m, ':');
5061 cgrp = task_cgroup_from_root(tsk, root);
5062 path = cgroup_path(cgrp, buf, PATH_MAX);
5063 if (!path) {
5064 retval = -ENAMETOOLONG;
5065 goto out_unlock;
5066 }
5067 seq_puts(m, path);
5068 seq_putc(m, '\n');
5069 }
5070
5071 retval = 0;
5072 out_unlock:
5073 up_read(&css_set_rwsem);
5074 mutex_unlock(&cgroup_mutex);
5075 kfree(buf);
5076 out:
5077 return retval;
5078 }
5079
5080 /* Display information about each subsystem and each hierarchy */
5081 static int proc_cgroupstats_show(struct seq_file *m, void *v)
5082 {
5083 struct cgroup_subsys *ss;
5084 int i;
5085
5086 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
5087 /*
5088 * ideally we don't want subsystems moving around while we do this.
5089 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
5090 * subsys/hierarchy state.
5091 */
5092 mutex_lock(&cgroup_mutex);
5093
5094 for_each_subsys(ss, i)
5095 seq_printf(m, "%s\t%d\t%d\t%d\n",
5096 ss->name, ss->root->hierarchy_id,
5097 atomic_read(&ss->root->nr_cgrps), !ss->disabled);
5098
5099 mutex_unlock(&cgroup_mutex);
5100 return 0;
5101 }
5102
5103 static int cgroupstats_open(struct inode *inode, struct file *file)
5104 {
5105 return single_open(file, proc_cgroupstats_show, NULL);
5106 }
5107
5108 static const struct file_operations proc_cgroupstats_operations = {
5109 .open = cgroupstats_open,
5110 .read = seq_read,
5111 .llseek = seq_lseek,
5112 .release = single_release,
5113 };
5114
5115 /**
5116 * cgroup_fork - initialize cgroup related fields during copy_process()
5117 * @child: pointer to task_struct of forking parent process.
5118 *
5119 * A task is associated with the init_css_set until cgroup_post_fork()
5120 * attaches it to the parent's css_set. Empty cg_list indicates that
5121 * @child isn't holding reference to its css_set.
5122 */
5123 void cgroup_fork(struct task_struct *child)
5124 {
5125 RCU_INIT_POINTER(child->cgroups, &init_css_set);
5126 INIT_LIST_HEAD(&child->cg_list);
5127 }
5128
5129 /**
5130 * cgroup_post_fork - called on a new task after adding it to the task list
5131 * @child: the task in question
5132 *
5133 * Adds the task to the list running through its css_set if necessary and
5134 * call the subsystem fork() callbacks. Has to be after the task is
5135 * visible on the task list in case we race with the first call to
5136 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5137 * list.
5138 */
5139 void cgroup_post_fork(struct task_struct *child)
5140 {
5141 struct cgroup_subsys *ss;
5142 int i;
5143
5144 /*
5145 * This may race against cgroup_enable_task_cg_lists(). As that
5146 * function sets use_task_css_set_links before grabbing
5147 * tasklist_lock and we just went through tasklist_lock to add
5148 * @child, it's guaranteed that either we see the set
5149 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5150 * @child during its iteration.
5151 *
5152 * If we won the race, @child is associated with %current's
5153 * css_set. Grabbing css_set_rwsem guarantees both that the
5154 * association is stable, and, on completion of the parent's
5155 * migration, @child is visible in the source of migration or
5156 * already in the destination cgroup. This guarantee is necessary
5157 * when implementing operations which need to migrate all tasks of
5158 * a cgroup to another.
5159 *
5160 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
5161 * will remain in init_css_set. This is safe because all tasks are
5162 * in the init_css_set before cg_links is enabled and there's no
5163 * operation which transfers all tasks out of init_css_set.
5164 */
5165 if (use_task_css_set_links) {
5166 struct css_set *cset;
5167
5168 down_write(&css_set_rwsem);
5169 cset = task_css_set(current);
5170 if (list_empty(&child->cg_list)) {
5171 rcu_assign_pointer(child->cgroups, cset);
5172 list_add(&child->cg_list, &cset->tasks);
5173 get_css_set(cset);
5174 }
5175 up_write(&css_set_rwsem);
5176 }
5177
5178 /*
5179 * Call ss->fork(). This must happen after @child is linked on
5180 * css_set; otherwise, @child might change state between ->fork()
5181 * and addition to css_set.
5182 */
5183 if (need_forkexit_callback) {
5184 for_each_subsys(ss, i)
5185 if (ss->fork)
5186 ss->fork(child);
5187 }
5188 }
5189
5190 /**
5191 * cgroup_exit - detach cgroup from exiting task
5192 * @tsk: pointer to task_struct of exiting process
5193 *
5194 * Description: Detach cgroup from @tsk and release it.
5195 *
5196 * Note that cgroups marked notify_on_release force every task in
5197 * them to take the global cgroup_mutex mutex when exiting.
5198 * This could impact scaling on very large systems. Be reluctant to
5199 * use notify_on_release cgroups where very high task exit scaling
5200 * is required on large systems.
5201 *
5202 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
5203 * call cgroup_exit() while the task is still competent to handle
5204 * notify_on_release(), then leave the task attached to the root cgroup in
5205 * each hierarchy for the remainder of its exit. No need to bother with
5206 * init_css_set refcnting. init_css_set never goes away and we can't race
5207 * with migration path - PF_EXITING is visible to migration path.
5208 */
5209 void cgroup_exit(struct task_struct *tsk)
5210 {
5211 struct cgroup_subsys *ss;
5212 struct css_set *cset;
5213 bool put_cset = false;
5214 int i;
5215
5216 /*
5217 * Unlink from @tsk from its css_set. As migration path can't race
5218 * with us, we can check cg_list without grabbing css_set_rwsem.
5219 */
5220 if (!list_empty(&tsk->cg_list)) {
5221 down_write(&css_set_rwsem);
5222 list_del_init(&tsk->cg_list);
5223 up_write(&css_set_rwsem);
5224 put_cset = true;
5225 }
5226
5227 /* Reassign the task to the init_css_set. */
5228 cset = task_css_set(tsk);
5229 RCU_INIT_POINTER(tsk->cgroups, &init_css_set);
5230
5231 if (need_forkexit_callback) {
5232 /* see cgroup_post_fork() for details */
5233 for_each_subsys(ss, i) {
5234 if (ss->exit) {
5235 struct cgroup_subsys_state *old_css = cset->subsys[i];
5236 struct cgroup_subsys_state *css = task_css(tsk, i);
5237
5238 ss->exit(css, old_css, tsk);
5239 }
5240 }
5241 }
5242
5243 if (put_cset)
5244 put_css_set(cset);
5245 }
5246
5247 static void check_for_release(struct cgroup *cgrp)
5248 {
5249 if (notify_on_release(cgrp) && !cgroup_has_tasks(cgrp) &&
5250 !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
5251 schedule_work(&cgrp->release_agent_work);
5252 }
5253
5254 /*
5255 * Notify userspace when a cgroup is released, by running the
5256 * configured release agent with the name of the cgroup (path
5257 * relative to the root of cgroup file system) as the argument.
5258 *
5259 * Most likely, this user command will try to rmdir this cgroup.
5260 *
5261 * This races with the possibility that some other task will be
5262 * attached to this cgroup before it is removed, or that some other
5263 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5264 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5265 * unused, and this cgroup will be reprieved from its death sentence,
5266 * to continue to serve a useful existence. Next time it's released,
5267 * we will get notified again, if it still has 'notify_on_release' set.
5268 *
5269 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5270 * means only wait until the task is successfully execve()'d. The
5271 * separate release agent task is forked by call_usermodehelper(),
5272 * then control in this thread returns here, without waiting for the
5273 * release agent task. We don't bother to wait because the caller of
5274 * this routine has no use for the exit status of the release agent
5275 * task, so no sense holding our caller up for that.
5276 */
5277 static void cgroup_release_agent(struct work_struct *work)
5278 {
5279 struct cgroup *cgrp =
5280 container_of(work, struct cgroup, release_agent_work);
5281 char *pathbuf = NULL, *agentbuf = NULL, *path;
5282 char *argv[3], *envp[3];
5283
5284 mutex_lock(&cgroup_mutex);
5285
5286 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
5287 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5288 if (!pathbuf || !agentbuf)
5289 goto out;
5290
5291 path = cgroup_path(cgrp, pathbuf, PATH_MAX);
5292 if (!path)
5293 goto out;
5294
5295 argv[0] = agentbuf;
5296 argv[1] = path;
5297 argv[2] = NULL;
5298
5299 /* minimal command environment */
5300 envp[0] = "HOME=/";
5301 envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5302 envp[2] = NULL;
5303
5304 mutex_unlock(&cgroup_mutex);
5305 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
5306 goto out_free;
5307 out:
5308 mutex_unlock(&cgroup_mutex);
5309 out_free:
5310 kfree(agentbuf);
5311 kfree(pathbuf);
5312 }
5313
5314 static int __init cgroup_disable(char *str)
5315 {
5316 struct cgroup_subsys *ss;
5317 char *token;
5318 int i;
5319
5320 while ((token = strsep(&str, ",")) != NULL) {
5321 if (!*token)
5322 continue;
5323
5324 for_each_subsys(ss, i) {
5325 if (!strcmp(token, ss->name)) {
5326 ss->disabled = 1;
5327 printk(KERN_INFO "Disabling %s control group"
5328 " subsystem\n", ss->name);
5329 break;
5330 }
5331 }
5332 }
5333 return 1;
5334 }
5335 __setup("cgroup_disable=", cgroup_disable);
5336
5337 static int __init cgroup_set_legacy_files_on_dfl(char *str)
5338 {
5339 printk("cgroup: using legacy files on the default hierarchy\n");
5340 cgroup_legacy_files_on_dfl = true;
5341 return 0;
5342 }
5343 __setup("cgroup__DEVEL__legacy_files_on_dfl", cgroup_set_legacy_files_on_dfl);
5344
5345 /**
5346 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
5347 * @dentry: directory dentry of interest
5348 * @ss: subsystem of interest
5349 *
5350 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
5351 * to get the corresponding css and return it. If such css doesn't exist
5352 * or can't be pinned, an ERR_PTR value is returned.
5353 */
5354 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
5355 struct cgroup_subsys *ss)
5356 {
5357 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
5358 struct cgroup_subsys_state *css = NULL;
5359 struct cgroup *cgrp;
5360
5361 /* is @dentry a cgroup dir? */
5362 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
5363 kernfs_type(kn) != KERNFS_DIR)
5364 return ERR_PTR(-EBADF);
5365
5366 rcu_read_lock();
5367
5368 /*
5369 * This path doesn't originate from kernfs and @kn could already
5370 * have been or be removed at any point. @kn->priv is RCU
5371 * protected for this access. See css_release_work_fn() for details.
5372 */
5373 cgrp = rcu_dereference(kn->priv);
5374 if (cgrp)
5375 css = cgroup_css(cgrp, ss);
5376
5377 if (!css || !css_tryget_online(css))
5378 css = ERR_PTR(-ENOENT);
5379
5380 rcu_read_unlock();
5381 return css;
5382 }
5383
5384 /**
5385 * css_from_id - lookup css by id
5386 * @id: the cgroup id
5387 * @ss: cgroup subsys to be looked into
5388 *
5389 * Returns the css if there's valid one with @id, otherwise returns NULL.
5390 * Should be called under rcu_read_lock().
5391 */
5392 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
5393 {
5394 WARN_ON_ONCE(!rcu_read_lock_held());
5395 return idr_find(&ss->css_idr, id);
5396 }
5397
5398 #ifdef CONFIG_CGROUP_DEBUG
5399 static struct cgroup_subsys_state *
5400 debug_css_alloc(struct cgroup_subsys_state *parent_css)
5401 {
5402 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5403
5404 if (!css)
5405 return ERR_PTR(-ENOMEM);
5406
5407 return css;
5408 }
5409
5410 static void debug_css_free(struct cgroup_subsys_state *css)
5411 {
5412 kfree(css);
5413 }
5414
5415 static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
5416 struct cftype *cft)
5417 {
5418 return cgroup_task_count(css->cgroup);
5419 }
5420
5421 static u64 current_css_set_read(struct cgroup_subsys_state *css,
5422 struct cftype *cft)
5423 {
5424 return (u64)(unsigned long)current->cgroups;
5425 }
5426
5427 static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
5428 struct cftype *cft)
5429 {
5430 u64 count;
5431
5432 rcu_read_lock();
5433 count = atomic_read(&task_css_set(current)->refcount);
5434 rcu_read_unlock();
5435 return count;
5436 }
5437
5438 static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
5439 {
5440 struct cgrp_cset_link *link;
5441 struct css_set *cset;
5442 char *name_buf;
5443
5444 name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
5445 if (!name_buf)
5446 return -ENOMEM;
5447
5448 down_read(&css_set_rwsem);
5449 rcu_read_lock();
5450 cset = rcu_dereference(current->cgroups);
5451 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
5452 struct cgroup *c = link->cgrp;
5453
5454 cgroup_name(c, name_buf, NAME_MAX + 1);
5455 seq_printf(seq, "Root %d group %s\n",
5456 c->root->hierarchy_id, name_buf);
5457 }
5458 rcu_read_unlock();
5459 up_read(&css_set_rwsem);
5460 kfree(name_buf);
5461 return 0;
5462 }
5463
5464 #define MAX_TASKS_SHOWN_PER_CSS 25
5465 static int cgroup_css_links_read(struct seq_file *seq, void *v)
5466 {
5467 struct cgroup_subsys_state *css = seq_css(seq);
5468 struct cgrp_cset_link *link;
5469
5470 down_read(&css_set_rwsem);
5471 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
5472 struct css_set *cset = link->cset;
5473 struct task_struct *task;
5474 int count = 0;
5475
5476 seq_printf(seq, "css_set %p\n", cset);
5477
5478 list_for_each_entry(task, &cset->tasks, cg_list) {
5479 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5480 goto overflow;
5481 seq_printf(seq, " task %d\n", task_pid_vnr(task));
5482 }
5483
5484 list_for_each_entry(task, &cset->mg_tasks, cg_list) {
5485 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5486 goto overflow;
5487 seq_printf(seq, " task %d\n", task_pid_vnr(task));
5488 }
5489 continue;
5490 overflow:
5491 seq_puts(seq, " ...\n");
5492 }
5493 up_read(&css_set_rwsem);
5494 return 0;
5495 }
5496
5497 static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
5498 {
5499 return (!cgroup_has_tasks(css->cgroup) &&
5500 !css_has_online_children(&css->cgroup->self));
5501 }
5502
5503 static struct cftype debug_files[] = {
5504 {
5505 .name = "taskcount",
5506 .read_u64 = debug_taskcount_read,
5507 },
5508
5509 {
5510 .name = "current_css_set",
5511 .read_u64 = current_css_set_read,
5512 },
5513
5514 {
5515 .name = "current_css_set_refcount",
5516 .read_u64 = current_css_set_refcount_read,
5517 },
5518
5519 {
5520 .name = "current_css_set_cg_links",
5521 .seq_show = current_css_set_cg_links_read,
5522 },
5523
5524 {
5525 .name = "cgroup_css_links",
5526 .seq_show = cgroup_css_links_read,
5527 },
5528
5529 {
5530 .name = "releasable",
5531 .read_u64 = releasable_read,
5532 },
5533
5534 { } /* terminate */
5535 };
5536
5537 struct cgroup_subsys debug_cgrp_subsys = {
5538 .css_alloc = debug_css_alloc,
5539 .css_free = debug_css_free,
5540 .legacy_cftypes = debug_files,
5541 };
5542 #endif /* CONFIG_CGROUP_DEBUG */
This page took 0.137504 seconds and 6 git commands to generate.