Merge branch 'upstream' of git://git.linux-mips.org/pub/scm/ralf/upstream-linus
[deliverable/linux.git] / kernel / cgroup.c
1 /*
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/cgroup.h>
32 #include <linux/cred.h>
33 #include <linux/ctype.h>
34 #include <linux/errno.h>
35 #include <linux/init_task.h>
36 #include <linux/kernel.h>
37 #include <linux/list.h>
38 #include <linux/magic.h>
39 #include <linux/mm.h>
40 #include <linux/mutex.h>
41 #include <linux/mount.h>
42 #include <linux/pagemap.h>
43 #include <linux/proc_fs.h>
44 #include <linux/rcupdate.h>
45 #include <linux/sched.h>
46 #include <linux/slab.h>
47 #include <linux/spinlock.h>
48 #include <linux/rwsem.h>
49 #include <linux/percpu-rwsem.h>
50 #include <linux/string.h>
51 #include <linux/sort.h>
52 #include <linux/kmod.h>
53 #include <linux/delayacct.h>
54 #include <linux/cgroupstats.h>
55 #include <linux/hashtable.h>
56 #include <linux/pid_namespace.h>
57 #include <linux/idr.h>
58 #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
59 #include <linux/kthread.h>
60 #include <linux/delay.h>
61
62 #include <linux/atomic.h>
63
64 /*
65 * pidlists linger the following amount before being destroyed. The goal
66 * is avoiding frequent destruction in the middle of consecutive read calls
67 * Expiring in the middle is a performance problem not a correctness one.
68 * 1 sec should be enough.
69 */
70 #define CGROUP_PIDLIST_DESTROY_DELAY HZ
71
72 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
73 MAX_CFTYPE_NAME + 2)
74
75 /*
76 * cgroup_mutex is the master lock. Any modification to cgroup or its
77 * hierarchy must be performed while holding it.
78 *
79 * css_set_rwsem protects task->cgroups pointer, the list of css_set
80 * objects, and the chain of tasks off each css_set.
81 *
82 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
83 * cgroup.h can use them for lockdep annotations.
84 */
85 #ifdef CONFIG_PROVE_RCU
86 DEFINE_MUTEX(cgroup_mutex);
87 DECLARE_RWSEM(css_set_rwsem);
88 EXPORT_SYMBOL_GPL(cgroup_mutex);
89 EXPORT_SYMBOL_GPL(css_set_rwsem);
90 #else
91 static DEFINE_MUTEX(cgroup_mutex);
92 static DECLARE_RWSEM(css_set_rwsem);
93 #endif
94
95 /*
96 * Protects cgroup_idr and css_idr so that IDs can be released without
97 * grabbing cgroup_mutex.
98 */
99 static DEFINE_SPINLOCK(cgroup_idr_lock);
100
101 /*
102 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
103 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
104 */
105 static DEFINE_SPINLOCK(release_agent_path_lock);
106
107 struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
108
109 #define cgroup_assert_mutex_or_rcu_locked() \
110 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
111 !lockdep_is_held(&cgroup_mutex), \
112 "cgroup_mutex or RCU read lock required");
113
114 /*
115 * cgroup destruction makes heavy use of work items and there can be a lot
116 * of concurrent destructions. Use a separate workqueue so that cgroup
117 * destruction work items don't end up filling up max_active of system_wq
118 * which may lead to deadlock.
119 */
120 static struct workqueue_struct *cgroup_destroy_wq;
121
122 /*
123 * pidlist destructions need to be flushed on cgroup destruction. Use a
124 * separate workqueue as flush domain.
125 */
126 static struct workqueue_struct *cgroup_pidlist_destroy_wq;
127
128 /* generate an array of cgroup subsystem pointers */
129 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
130 static struct cgroup_subsys *cgroup_subsys[] = {
131 #include <linux/cgroup_subsys.h>
132 };
133 #undef SUBSYS
134
135 /* array of cgroup subsystem names */
136 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
137 static const char *cgroup_subsys_name[] = {
138 #include <linux/cgroup_subsys.h>
139 };
140 #undef SUBSYS
141
142 /*
143 * The default hierarchy, reserved for the subsystems that are otherwise
144 * unattached - it never has more than a single cgroup, and all tasks are
145 * part of that cgroup.
146 */
147 struct cgroup_root cgrp_dfl_root;
148 EXPORT_SYMBOL_GPL(cgrp_dfl_root);
149
150 /*
151 * The default hierarchy always exists but is hidden until mounted for the
152 * first time. This is for backward compatibility.
153 */
154 static bool cgrp_dfl_root_visible;
155
156 /*
157 * Set by the boot param of the same name and makes subsystems with NULL
158 * ->dfl_files to use ->legacy_files on the default hierarchy.
159 */
160 static bool cgroup_legacy_files_on_dfl;
161
162 /* some controllers are not supported in the default hierarchy */
163 static unsigned long cgrp_dfl_root_inhibit_ss_mask;
164
165 /* The list of hierarchy roots */
166
167 static LIST_HEAD(cgroup_roots);
168 static int cgroup_root_count;
169
170 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
171 static DEFINE_IDR(cgroup_hierarchy_idr);
172
173 /*
174 * Assign a monotonically increasing serial number to csses. It guarantees
175 * cgroups with bigger numbers are newer than those with smaller numbers.
176 * Also, as csses are always appended to the parent's ->children list, it
177 * guarantees that sibling csses are always sorted in the ascending serial
178 * number order on the list. Protected by cgroup_mutex.
179 */
180 static u64 css_serial_nr_next = 1;
181
182 /*
183 * These bitmask flags indicate whether tasks in the fork and exit paths have
184 * fork/exit handlers to call. This avoids us having to do extra work in the
185 * fork/exit path to check which subsystems have fork/exit callbacks.
186 */
187 static unsigned long have_fork_callback __read_mostly;
188 static unsigned long have_exit_callback __read_mostly;
189
190 /* Ditto for the can_fork callback. */
191 static unsigned long have_canfork_callback __read_mostly;
192
193 static struct cftype cgroup_dfl_base_files[];
194 static struct cftype cgroup_legacy_base_files[];
195
196 static int rebind_subsystems(struct cgroup_root *dst_root,
197 unsigned long ss_mask);
198 static int cgroup_destroy_locked(struct cgroup *cgrp);
199 static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
200 bool visible);
201 static void css_release(struct percpu_ref *ref);
202 static void kill_css(struct cgroup_subsys_state *css);
203 static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
204 bool is_add);
205
206 /* IDR wrappers which synchronize using cgroup_idr_lock */
207 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
208 gfp_t gfp_mask)
209 {
210 int ret;
211
212 idr_preload(gfp_mask);
213 spin_lock_bh(&cgroup_idr_lock);
214 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_WAIT);
215 spin_unlock_bh(&cgroup_idr_lock);
216 idr_preload_end();
217 return ret;
218 }
219
220 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
221 {
222 void *ret;
223
224 spin_lock_bh(&cgroup_idr_lock);
225 ret = idr_replace(idr, ptr, id);
226 spin_unlock_bh(&cgroup_idr_lock);
227 return ret;
228 }
229
230 static void cgroup_idr_remove(struct idr *idr, int id)
231 {
232 spin_lock_bh(&cgroup_idr_lock);
233 idr_remove(idr, id);
234 spin_unlock_bh(&cgroup_idr_lock);
235 }
236
237 static struct cgroup *cgroup_parent(struct cgroup *cgrp)
238 {
239 struct cgroup_subsys_state *parent_css = cgrp->self.parent;
240
241 if (parent_css)
242 return container_of(parent_css, struct cgroup, self);
243 return NULL;
244 }
245
246 /**
247 * cgroup_css - obtain a cgroup's css for the specified subsystem
248 * @cgrp: the cgroup of interest
249 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
250 *
251 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
252 * function must be called either under cgroup_mutex or rcu_read_lock() and
253 * the caller is responsible for pinning the returned css if it wants to
254 * keep accessing it outside the said locks. This function may return
255 * %NULL if @cgrp doesn't have @subsys_id enabled.
256 */
257 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
258 struct cgroup_subsys *ss)
259 {
260 if (ss)
261 return rcu_dereference_check(cgrp->subsys[ss->id],
262 lockdep_is_held(&cgroup_mutex));
263 else
264 return &cgrp->self;
265 }
266
267 /**
268 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
269 * @cgrp: the cgroup of interest
270 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
271 *
272 * Similar to cgroup_css() but returns the effective css, which is defined
273 * as the matching css of the nearest ancestor including self which has @ss
274 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
275 * function is guaranteed to return non-NULL css.
276 */
277 static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
278 struct cgroup_subsys *ss)
279 {
280 lockdep_assert_held(&cgroup_mutex);
281
282 if (!ss)
283 return &cgrp->self;
284
285 if (!(cgrp->root->subsys_mask & (1 << ss->id)))
286 return NULL;
287
288 /*
289 * This function is used while updating css associations and thus
290 * can't test the csses directly. Use ->child_subsys_mask.
291 */
292 while (cgroup_parent(cgrp) &&
293 !(cgroup_parent(cgrp)->child_subsys_mask & (1 << ss->id)))
294 cgrp = cgroup_parent(cgrp);
295
296 return cgroup_css(cgrp, ss);
297 }
298
299 /**
300 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
301 * @cgrp: the cgroup of interest
302 * @ss: the subsystem of interest
303 *
304 * Find and get the effective css of @cgrp for @ss. The effective css is
305 * defined as the matching css of the nearest ancestor including self which
306 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
307 * the root css is returned, so this function always returns a valid css.
308 * The returned css must be put using css_put().
309 */
310 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
311 struct cgroup_subsys *ss)
312 {
313 struct cgroup_subsys_state *css;
314
315 rcu_read_lock();
316
317 do {
318 css = cgroup_css(cgrp, ss);
319
320 if (css && css_tryget_online(css))
321 goto out_unlock;
322 cgrp = cgroup_parent(cgrp);
323 } while (cgrp);
324
325 css = init_css_set.subsys[ss->id];
326 css_get(css);
327 out_unlock:
328 rcu_read_unlock();
329 return css;
330 }
331
332 /* convenient tests for these bits */
333 static inline bool cgroup_is_dead(const struct cgroup *cgrp)
334 {
335 return !(cgrp->self.flags & CSS_ONLINE);
336 }
337
338 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
339 {
340 struct cgroup *cgrp = of->kn->parent->priv;
341 struct cftype *cft = of_cft(of);
342
343 /*
344 * This is open and unprotected implementation of cgroup_css().
345 * seq_css() is only called from a kernfs file operation which has
346 * an active reference on the file. Because all the subsystem
347 * files are drained before a css is disassociated with a cgroup,
348 * the matching css from the cgroup's subsys table is guaranteed to
349 * be and stay valid until the enclosing operation is complete.
350 */
351 if (cft->ss)
352 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
353 else
354 return &cgrp->self;
355 }
356 EXPORT_SYMBOL_GPL(of_css);
357
358 /**
359 * cgroup_is_descendant - test ancestry
360 * @cgrp: the cgroup to be tested
361 * @ancestor: possible ancestor of @cgrp
362 *
363 * Test whether @cgrp is a descendant of @ancestor. It also returns %true
364 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
365 * and @ancestor are accessible.
366 */
367 bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
368 {
369 while (cgrp) {
370 if (cgrp == ancestor)
371 return true;
372 cgrp = cgroup_parent(cgrp);
373 }
374 return false;
375 }
376
377 static int notify_on_release(const struct cgroup *cgrp)
378 {
379 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
380 }
381
382 /**
383 * for_each_css - iterate all css's of a cgroup
384 * @css: the iteration cursor
385 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
386 * @cgrp: the target cgroup to iterate css's of
387 *
388 * Should be called under cgroup_[tree_]mutex.
389 */
390 #define for_each_css(css, ssid, cgrp) \
391 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
392 if (!((css) = rcu_dereference_check( \
393 (cgrp)->subsys[(ssid)], \
394 lockdep_is_held(&cgroup_mutex)))) { } \
395 else
396
397 /**
398 * for_each_e_css - iterate all effective css's of a cgroup
399 * @css: the iteration cursor
400 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
401 * @cgrp: the target cgroup to iterate css's of
402 *
403 * Should be called under cgroup_[tree_]mutex.
404 */
405 #define for_each_e_css(css, ssid, cgrp) \
406 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
407 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
408 ; \
409 else
410
411 /**
412 * for_each_subsys - iterate all enabled cgroup subsystems
413 * @ss: the iteration cursor
414 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
415 */
416 #define for_each_subsys(ss, ssid) \
417 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
418 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
419
420 /**
421 * for_each_subsys_which - filter for_each_subsys with a bitmask
422 * @ss: the iteration cursor
423 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
424 * @ss_maskp: a pointer to the bitmask
425 *
426 * The block will only run for cases where the ssid-th bit (1 << ssid) of
427 * mask is set to 1.
428 */
429 #define for_each_subsys_which(ss, ssid, ss_maskp) \
430 if (!CGROUP_SUBSYS_COUNT) /* to avoid spurious gcc warning */ \
431 (ssid) = 0; \
432 else \
433 for_each_set_bit(ssid, ss_maskp, CGROUP_SUBSYS_COUNT) \
434 if (((ss) = cgroup_subsys[ssid]) && false) \
435 break; \
436 else
437
438 /* iterate across the hierarchies */
439 #define for_each_root(root) \
440 list_for_each_entry((root), &cgroup_roots, root_list)
441
442 /* iterate over child cgrps, lock should be held throughout iteration */
443 #define cgroup_for_each_live_child(child, cgrp) \
444 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
445 if (({ lockdep_assert_held(&cgroup_mutex); \
446 cgroup_is_dead(child); })) \
447 ; \
448 else
449
450 static void cgroup_release_agent(struct work_struct *work);
451 static void check_for_release(struct cgroup *cgrp);
452
453 /*
454 * A cgroup can be associated with multiple css_sets as different tasks may
455 * belong to different cgroups on different hierarchies. In the other
456 * direction, a css_set is naturally associated with multiple cgroups.
457 * This M:N relationship is represented by the following link structure
458 * which exists for each association and allows traversing the associations
459 * from both sides.
460 */
461 struct cgrp_cset_link {
462 /* the cgroup and css_set this link associates */
463 struct cgroup *cgrp;
464 struct css_set *cset;
465
466 /* list of cgrp_cset_links anchored at cgrp->cset_links */
467 struct list_head cset_link;
468
469 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
470 struct list_head cgrp_link;
471 };
472
473 /*
474 * The default css_set - used by init and its children prior to any
475 * hierarchies being mounted. It contains a pointer to the root state
476 * for each subsystem. Also used to anchor the list of css_sets. Not
477 * reference-counted, to improve performance when child cgroups
478 * haven't been created.
479 */
480 struct css_set init_css_set = {
481 .refcount = ATOMIC_INIT(1),
482 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
483 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
484 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
485 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
486 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
487 };
488
489 static int css_set_count = 1; /* 1 for init_css_set */
490
491 /**
492 * cgroup_update_populated - updated populated count of a cgroup
493 * @cgrp: the target cgroup
494 * @populated: inc or dec populated count
495 *
496 * @cgrp is either getting the first task (css_set) or losing the last.
497 * Update @cgrp->populated_cnt accordingly. The count is propagated
498 * towards root so that a given cgroup's populated_cnt is zero iff the
499 * cgroup and all its descendants are empty.
500 *
501 * @cgrp's interface file "cgroup.populated" is zero if
502 * @cgrp->populated_cnt is zero and 1 otherwise. When @cgrp->populated_cnt
503 * changes from or to zero, userland is notified that the content of the
504 * interface file has changed. This can be used to detect when @cgrp and
505 * its descendants become populated or empty.
506 */
507 static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
508 {
509 lockdep_assert_held(&css_set_rwsem);
510
511 do {
512 bool trigger;
513
514 if (populated)
515 trigger = !cgrp->populated_cnt++;
516 else
517 trigger = !--cgrp->populated_cnt;
518
519 if (!trigger)
520 break;
521
522 if (cgrp->populated_kn)
523 kernfs_notify(cgrp->populated_kn);
524 cgrp = cgroup_parent(cgrp);
525 } while (cgrp);
526 }
527
528 /*
529 * hash table for cgroup groups. This improves the performance to find
530 * an existing css_set. This hash doesn't (currently) take into
531 * account cgroups in empty hierarchies.
532 */
533 #define CSS_SET_HASH_BITS 7
534 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
535
536 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
537 {
538 unsigned long key = 0UL;
539 struct cgroup_subsys *ss;
540 int i;
541
542 for_each_subsys(ss, i)
543 key += (unsigned long)css[i];
544 key = (key >> 16) ^ key;
545
546 return key;
547 }
548
549 static void put_css_set_locked(struct css_set *cset)
550 {
551 struct cgrp_cset_link *link, *tmp_link;
552 struct cgroup_subsys *ss;
553 int ssid;
554
555 lockdep_assert_held(&css_set_rwsem);
556
557 if (!atomic_dec_and_test(&cset->refcount))
558 return;
559
560 /* This css_set is dead. unlink it and release cgroup refcounts */
561 for_each_subsys(ss, ssid)
562 list_del(&cset->e_cset_node[ssid]);
563 hash_del(&cset->hlist);
564 css_set_count--;
565
566 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
567 struct cgroup *cgrp = link->cgrp;
568
569 list_del(&link->cset_link);
570 list_del(&link->cgrp_link);
571
572 /* @cgrp can't go away while we're holding css_set_rwsem */
573 if (list_empty(&cgrp->cset_links)) {
574 cgroup_update_populated(cgrp, false);
575 check_for_release(cgrp);
576 }
577
578 kfree(link);
579 }
580
581 kfree_rcu(cset, rcu_head);
582 }
583
584 static void put_css_set(struct css_set *cset)
585 {
586 /*
587 * Ensure that the refcount doesn't hit zero while any readers
588 * can see it. Similar to atomic_dec_and_lock(), but for an
589 * rwlock
590 */
591 if (atomic_add_unless(&cset->refcount, -1, 1))
592 return;
593
594 down_write(&css_set_rwsem);
595 put_css_set_locked(cset);
596 up_write(&css_set_rwsem);
597 }
598
599 /*
600 * refcounted get/put for css_set objects
601 */
602 static inline void get_css_set(struct css_set *cset)
603 {
604 atomic_inc(&cset->refcount);
605 }
606
607 /**
608 * compare_css_sets - helper function for find_existing_css_set().
609 * @cset: candidate css_set being tested
610 * @old_cset: existing css_set for a task
611 * @new_cgrp: cgroup that's being entered by the task
612 * @template: desired set of css pointers in css_set (pre-calculated)
613 *
614 * Returns true if "cset" matches "old_cset" except for the hierarchy
615 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
616 */
617 static bool compare_css_sets(struct css_set *cset,
618 struct css_set *old_cset,
619 struct cgroup *new_cgrp,
620 struct cgroup_subsys_state *template[])
621 {
622 struct list_head *l1, *l2;
623
624 /*
625 * On the default hierarchy, there can be csets which are
626 * associated with the same set of cgroups but different csses.
627 * Let's first ensure that csses match.
628 */
629 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
630 return false;
631
632 /*
633 * Compare cgroup pointers in order to distinguish between
634 * different cgroups in hierarchies. As different cgroups may
635 * share the same effective css, this comparison is always
636 * necessary.
637 */
638 l1 = &cset->cgrp_links;
639 l2 = &old_cset->cgrp_links;
640 while (1) {
641 struct cgrp_cset_link *link1, *link2;
642 struct cgroup *cgrp1, *cgrp2;
643
644 l1 = l1->next;
645 l2 = l2->next;
646 /* See if we reached the end - both lists are equal length. */
647 if (l1 == &cset->cgrp_links) {
648 BUG_ON(l2 != &old_cset->cgrp_links);
649 break;
650 } else {
651 BUG_ON(l2 == &old_cset->cgrp_links);
652 }
653 /* Locate the cgroups associated with these links. */
654 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
655 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
656 cgrp1 = link1->cgrp;
657 cgrp2 = link2->cgrp;
658 /* Hierarchies should be linked in the same order. */
659 BUG_ON(cgrp1->root != cgrp2->root);
660
661 /*
662 * If this hierarchy is the hierarchy of the cgroup
663 * that's changing, then we need to check that this
664 * css_set points to the new cgroup; if it's any other
665 * hierarchy, then this css_set should point to the
666 * same cgroup as the old css_set.
667 */
668 if (cgrp1->root == new_cgrp->root) {
669 if (cgrp1 != new_cgrp)
670 return false;
671 } else {
672 if (cgrp1 != cgrp2)
673 return false;
674 }
675 }
676 return true;
677 }
678
679 /**
680 * find_existing_css_set - init css array and find the matching css_set
681 * @old_cset: the css_set that we're using before the cgroup transition
682 * @cgrp: the cgroup that we're moving into
683 * @template: out param for the new set of csses, should be clear on entry
684 */
685 static struct css_set *find_existing_css_set(struct css_set *old_cset,
686 struct cgroup *cgrp,
687 struct cgroup_subsys_state *template[])
688 {
689 struct cgroup_root *root = cgrp->root;
690 struct cgroup_subsys *ss;
691 struct css_set *cset;
692 unsigned long key;
693 int i;
694
695 /*
696 * Build the set of subsystem state objects that we want to see in the
697 * new css_set. while subsystems can change globally, the entries here
698 * won't change, so no need for locking.
699 */
700 for_each_subsys(ss, i) {
701 if (root->subsys_mask & (1UL << i)) {
702 /*
703 * @ss is in this hierarchy, so we want the
704 * effective css from @cgrp.
705 */
706 template[i] = cgroup_e_css(cgrp, ss);
707 } else {
708 /*
709 * @ss is not in this hierarchy, so we don't want
710 * to change the css.
711 */
712 template[i] = old_cset->subsys[i];
713 }
714 }
715
716 key = css_set_hash(template);
717 hash_for_each_possible(css_set_table, cset, hlist, key) {
718 if (!compare_css_sets(cset, old_cset, cgrp, template))
719 continue;
720
721 /* This css_set matches what we need */
722 return cset;
723 }
724
725 /* No existing cgroup group matched */
726 return NULL;
727 }
728
729 static void free_cgrp_cset_links(struct list_head *links_to_free)
730 {
731 struct cgrp_cset_link *link, *tmp_link;
732
733 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
734 list_del(&link->cset_link);
735 kfree(link);
736 }
737 }
738
739 /**
740 * allocate_cgrp_cset_links - allocate cgrp_cset_links
741 * @count: the number of links to allocate
742 * @tmp_links: list_head the allocated links are put on
743 *
744 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
745 * through ->cset_link. Returns 0 on success or -errno.
746 */
747 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
748 {
749 struct cgrp_cset_link *link;
750 int i;
751
752 INIT_LIST_HEAD(tmp_links);
753
754 for (i = 0; i < count; i++) {
755 link = kzalloc(sizeof(*link), GFP_KERNEL);
756 if (!link) {
757 free_cgrp_cset_links(tmp_links);
758 return -ENOMEM;
759 }
760 list_add(&link->cset_link, tmp_links);
761 }
762 return 0;
763 }
764
765 /**
766 * link_css_set - a helper function to link a css_set to a cgroup
767 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
768 * @cset: the css_set to be linked
769 * @cgrp: the destination cgroup
770 */
771 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
772 struct cgroup *cgrp)
773 {
774 struct cgrp_cset_link *link;
775
776 BUG_ON(list_empty(tmp_links));
777
778 if (cgroup_on_dfl(cgrp))
779 cset->dfl_cgrp = cgrp;
780
781 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
782 link->cset = cset;
783 link->cgrp = cgrp;
784
785 if (list_empty(&cgrp->cset_links))
786 cgroup_update_populated(cgrp, true);
787 list_move(&link->cset_link, &cgrp->cset_links);
788
789 /*
790 * Always add links to the tail of the list so that the list
791 * is sorted by order of hierarchy creation
792 */
793 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
794 }
795
796 /**
797 * find_css_set - return a new css_set with one cgroup updated
798 * @old_cset: the baseline css_set
799 * @cgrp: the cgroup to be updated
800 *
801 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
802 * substituted into the appropriate hierarchy.
803 */
804 static struct css_set *find_css_set(struct css_set *old_cset,
805 struct cgroup *cgrp)
806 {
807 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
808 struct css_set *cset;
809 struct list_head tmp_links;
810 struct cgrp_cset_link *link;
811 struct cgroup_subsys *ss;
812 unsigned long key;
813 int ssid;
814
815 lockdep_assert_held(&cgroup_mutex);
816
817 /* First see if we already have a cgroup group that matches
818 * the desired set */
819 down_read(&css_set_rwsem);
820 cset = find_existing_css_set(old_cset, cgrp, template);
821 if (cset)
822 get_css_set(cset);
823 up_read(&css_set_rwsem);
824
825 if (cset)
826 return cset;
827
828 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
829 if (!cset)
830 return NULL;
831
832 /* Allocate all the cgrp_cset_link objects that we'll need */
833 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
834 kfree(cset);
835 return NULL;
836 }
837
838 atomic_set(&cset->refcount, 1);
839 INIT_LIST_HEAD(&cset->cgrp_links);
840 INIT_LIST_HEAD(&cset->tasks);
841 INIT_LIST_HEAD(&cset->mg_tasks);
842 INIT_LIST_HEAD(&cset->mg_preload_node);
843 INIT_LIST_HEAD(&cset->mg_node);
844 INIT_HLIST_NODE(&cset->hlist);
845
846 /* Copy the set of subsystem state objects generated in
847 * find_existing_css_set() */
848 memcpy(cset->subsys, template, sizeof(cset->subsys));
849
850 down_write(&css_set_rwsem);
851 /* Add reference counts and links from the new css_set. */
852 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
853 struct cgroup *c = link->cgrp;
854
855 if (c->root == cgrp->root)
856 c = cgrp;
857 link_css_set(&tmp_links, cset, c);
858 }
859
860 BUG_ON(!list_empty(&tmp_links));
861
862 css_set_count++;
863
864 /* Add @cset to the hash table */
865 key = css_set_hash(cset->subsys);
866 hash_add(css_set_table, &cset->hlist, key);
867
868 for_each_subsys(ss, ssid)
869 list_add_tail(&cset->e_cset_node[ssid],
870 &cset->subsys[ssid]->cgroup->e_csets[ssid]);
871
872 up_write(&css_set_rwsem);
873
874 return cset;
875 }
876
877 static struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
878 {
879 struct cgroup *root_cgrp = kf_root->kn->priv;
880
881 return root_cgrp->root;
882 }
883
884 static int cgroup_init_root_id(struct cgroup_root *root)
885 {
886 int id;
887
888 lockdep_assert_held(&cgroup_mutex);
889
890 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
891 if (id < 0)
892 return id;
893
894 root->hierarchy_id = id;
895 return 0;
896 }
897
898 static void cgroup_exit_root_id(struct cgroup_root *root)
899 {
900 lockdep_assert_held(&cgroup_mutex);
901
902 if (root->hierarchy_id) {
903 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
904 root->hierarchy_id = 0;
905 }
906 }
907
908 static void cgroup_free_root(struct cgroup_root *root)
909 {
910 if (root) {
911 /* hierarchy ID should already have been released */
912 WARN_ON_ONCE(root->hierarchy_id);
913
914 idr_destroy(&root->cgroup_idr);
915 kfree(root);
916 }
917 }
918
919 static void cgroup_destroy_root(struct cgroup_root *root)
920 {
921 struct cgroup *cgrp = &root->cgrp;
922 struct cgrp_cset_link *link, *tmp_link;
923
924 mutex_lock(&cgroup_mutex);
925
926 BUG_ON(atomic_read(&root->nr_cgrps));
927 BUG_ON(!list_empty(&cgrp->self.children));
928
929 /* Rebind all subsystems back to the default hierarchy */
930 rebind_subsystems(&cgrp_dfl_root, root->subsys_mask);
931
932 /*
933 * Release all the links from cset_links to this hierarchy's
934 * root cgroup
935 */
936 down_write(&css_set_rwsem);
937
938 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
939 list_del(&link->cset_link);
940 list_del(&link->cgrp_link);
941 kfree(link);
942 }
943 up_write(&css_set_rwsem);
944
945 if (!list_empty(&root->root_list)) {
946 list_del(&root->root_list);
947 cgroup_root_count--;
948 }
949
950 cgroup_exit_root_id(root);
951
952 mutex_unlock(&cgroup_mutex);
953
954 kernfs_destroy_root(root->kf_root);
955 cgroup_free_root(root);
956 }
957
958 /* look up cgroup associated with given css_set on the specified hierarchy */
959 static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
960 struct cgroup_root *root)
961 {
962 struct cgroup *res = NULL;
963
964 lockdep_assert_held(&cgroup_mutex);
965 lockdep_assert_held(&css_set_rwsem);
966
967 if (cset == &init_css_set) {
968 res = &root->cgrp;
969 } else {
970 struct cgrp_cset_link *link;
971
972 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
973 struct cgroup *c = link->cgrp;
974
975 if (c->root == root) {
976 res = c;
977 break;
978 }
979 }
980 }
981
982 BUG_ON(!res);
983 return res;
984 }
985
986 /*
987 * Return the cgroup for "task" from the given hierarchy. Must be
988 * called with cgroup_mutex and css_set_rwsem held.
989 */
990 static struct cgroup *task_cgroup_from_root(struct task_struct *task,
991 struct cgroup_root *root)
992 {
993 /*
994 * No need to lock the task - since we hold cgroup_mutex the
995 * task can't change groups, so the only thing that can happen
996 * is that it exits and its css is set back to init_css_set.
997 */
998 return cset_cgroup_from_root(task_css_set(task), root);
999 }
1000
1001 /*
1002 * A task must hold cgroup_mutex to modify cgroups.
1003 *
1004 * Any task can increment and decrement the count field without lock.
1005 * So in general, code holding cgroup_mutex can't rely on the count
1006 * field not changing. However, if the count goes to zero, then only
1007 * cgroup_attach_task() can increment it again. Because a count of zero
1008 * means that no tasks are currently attached, therefore there is no
1009 * way a task attached to that cgroup can fork (the other way to
1010 * increment the count). So code holding cgroup_mutex can safely
1011 * assume that if the count is zero, it will stay zero. Similarly, if
1012 * a task holds cgroup_mutex on a cgroup with zero count, it
1013 * knows that the cgroup won't be removed, as cgroup_rmdir()
1014 * needs that mutex.
1015 *
1016 * A cgroup can only be deleted if both its 'count' of using tasks
1017 * is zero, and its list of 'children' cgroups is empty. Since all
1018 * tasks in the system use _some_ cgroup, and since there is always at
1019 * least one task in the system (init, pid == 1), therefore, root cgroup
1020 * always has either children cgroups and/or using tasks. So we don't
1021 * need a special hack to ensure that root cgroup cannot be deleted.
1022 *
1023 * P.S. One more locking exception. RCU is used to guard the
1024 * update of a tasks cgroup pointer by cgroup_attach_task()
1025 */
1026
1027 static int cgroup_populate_dir(struct cgroup *cgrp, unsigned long subsys_mask);
1028 static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1029 static const struct file_operations proc_cgroupstats_operations;
1030
1031 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1032 char *buf)
1033 {
1034 struct cgroup_subsys *ss = cft->ss;
1035
1036 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1037 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
1038 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
1039 cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1040 cft->name);
1041 else
1042 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1043 return buf;
1044 }
1045
1046 /**
1047 * cgroup_file_mode - deduce file mode of a control file
1048 * @cft: the control file in question
1049 *
1050 * returns cft->mode if ->mode is not 0
1051 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
1052 * returns S_IRUGO if it has only a read handler
1053 * returns S_IWUSR if it has only a write hander
1054 */
1055 static umode_t cgroup_file_mode(const struct cftype *cft)
1056 {
1057 umode_t mode = 0;
1058
1059 if (cft->mode)
1060 return cft->mode;
1061
1062 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1063 mode |= S_IRUGO;
1064
1065 if (cft->write_u64 || cft->write_s64 || cft->write)
1066 mode |= S_IWUSR;
1067
1068 return mode;
1069 }
1070
1071 static void cgroup_get(struct cgroup *cgrp)
1072 {
1073 WARN_ON_ONCE(cgroup_is_dead(cgrp));
1074 css_get(&cgrp->self);
1075 }
1076
1077 static bool cgroup_tryget(struct cgroup *cgrp)
1078 {
1079 return css_tryget(&cgrp->self);
1080 }
1081
1082 static void cgroup_put(struct cgroup *cgrp)
1083 {
1084 css_put(&cgrp->self);
1085 }
1086
1087 /**
1088 * cgroup_calc_child_subsys_mask - calculate child_subsys_mask
1089 * @cgrp: the target cgroup
1090 * @subtree_control: the new subtree_control mask to consider
1091 *
1092 * On the default hierarchy, a subsystem may request other subsystems to be
1093 * enabled together through its ->depends_on mask. In such cases, more
1094 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1095 *
1096 * This function calculates which subsystems need to be enabled if
1097 * @subtree_control is to be applied to @cgrp. The returned mask is always
1098 * a superset of @subtree_control and follows the usual hierarchy rules.
1099 */
1100 static unsigned long cgroup_calc_child_subsys_mask(struct cgroup *cgrp,
1101 unsigned long subtree_control)
1102 {
1103 struct cgroup *parent = cgroup_parent(cgrp);
1104 unsigned long cur_ss_mask = subtree_control;
1105 struct cgroup_subsys *ss;
1106 int ssid;
1107
1108 lockdep_assert_held(&cgroup_mutex);
1109
1110 if (!cgroup_on_dfl(cgrp))
1111 return cur_ss_mask;
1112
1113 while (true) {
1114 unsigned long new_ss_mask = cur_ss_mask;
1115
1116 for_each_subsys_which(ss, ssid, &cur_ss_mask)
1117 new_ss_mask |= ss->depends_on;
1118
1119 /*
1120 * Mask out subsystems which aren't available. This can
1121 * happen only if some depended-upon subsystems were bound
1122 * to non-default hierarchies.
1123 */
1124 if (parent)
1125 new_ss_mask &= parent->child_subsys_mask;
1126 else
1127 new_ss_mask &= cgrp->root->subsys_mask;
1128
1129 if (new_ss_mask == cur_ss_mask)
1130 break;
1131 cur_ss_mask = new_ss_mask;
1132 }
1133
1134 return cur_ss_mask;
1135 }
1136
1137 /**
1138 * cgroup_refresh_child_subsys_mask - update child_subsys_mask
1139 * @cgrp: the target cgroup
1140 *
1141 * Update @cgrp->child_subsys_mask according to the current
1142 * @cgrp->subtree_control using cgroup_calc_child_subsys_mask().
1143 */
1144 static void cgroup_refresh_child_subsys_mask(struct cgroup *cgrp)
1145 {
1146 cgrp->child_subsys_mask =
1147 cgroup_calc_child_subsys_mask(cgrp, cgrp->subtree_control);
1148 }
1149
1150 /**
1151 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1152 * @kn: the kernfs_node being serviced
1153 *
1154 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1155 * the method finishes if locking succeeded. Note that once this function
1156 * returns the cgroup returned by cgroup_kn_lock_live() may become
1157 * inaccessible any time. If the caller intends to continue to access the
1158 * cgroup, it should pin it before invoking this function.
1159 */
1160 static void cgroup_kn_unlock(struct kernfs_node *kn)
1161 {
1162 struct cgroup *cgrp;
1163
1164 if (kernfs_type(kn) == KERNFS_DIR)
1165 cgrp = kn->priv;
1166 else
1167 cgrp = kn->parent->priv;
1168
1169 mutex_unlock(&cgroup_mutex);
1170
1171 kernfs_unbreak_active_protection(kn);
1172 cgroup_put(cgrp);
1173 }
1174
1175 /**
1176 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1177 * @kn: the kernfs_node being serviced
1178 *
1179 * This helper is to be used by a cgroup kernfs method currently servicing
1180 * @kn. It breaks the active protection, performs cgroup locking and
1181 * verifies that the associated cgroup is alive. Returns the cgroup if
1182 * alive; otherwise, %NULL. A successful return should be undone by a
1183 * matching cgroup_kn_unlock() invocation.
1184 *
1185 * Any cgroup kernfs method implementation which requires locking the
1186 * associated cgroup should use this helper. It avoids nesting cgroup
1187 * locking under kernfs active protection and allows all kernfs operations
1188 * including self-removal.
1189 */
1190 static struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn)
1191 {
1192 struct cgroup *cgrp;
1193
1194 if (kernfs_type(kn) == KERNFS_DIR)
1195 cgrp = kn->priv;
1196 else
1197 cgrp = kn->parent->priv;
1198
1199 /*
1200 * We're gonna grab cgroup_mutex which nests outside kernfs
1201 * active_ref. cgroup liveliness check alone provides enough
1202 * protection against removal. Ensure @cgrp stays accessible and
1203 * break the active_ref protection.
1204 */
1205 if (!cgroup_tryget(cgrp))
1206 return NULL;
1207 kernfs_break_active_protection(kn);
1208
1209 mutex_lock(&cgroup_mutex);
1210
1211 if (!cgroup_is_dead(cgrp))
1212 return cgrp;
1213
1214 cgroup_kn_unlock(kn);
1215 return NULL;
1216 }
1217
1218 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1219 {
1220 char name[CGROUP_FILE_NAME_MAX];
1221
1222 lockdep_assert_held(&cgroup_mutex);
1223 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1224 }
1225
1226 /**
1227 * cgroup_clear_dir - remove subsys files in a cgroup directory
1228 * @cgrp: target cgroup
1229 * @subsys_mask: mask of the subsystem ids whose files should be removed
1230 */
1231 static void cgroup_clear_dir(struct cgroup *cgrp, unsigned long subsys_mask)
1232 {
1233 struct cgroup_subsys *ss;
1234 int i;
1235
1236 for_each_subsys(ss, i) {
1237 struct cftype *cfts;
1238
1239 if (!(subsys_mask & (1 << i)))
1240 continue;
1241 list_for_each_entry(cfts, &ss->cfts, node)
1242 cgroup_addrm_files(cgrp, cfts, false);
1243 }
1244 }
1245
1246 static int rebind_subsystems(struct cgroup_root *dst_root,
1247 unsigned long ss_mask)
1248 {
1249 struct cgroup_subsys *ss;
1250 unsigned long tmp_ss_mask;
1251 int ssid, i, ret;
1252
1253 lockdep_assert_held(&cgroup_mutex);
1254
1255 for_each_subsys_which(ss, ssid, &ss_mask) {
1256 /* if @ss has non-root csses attached to it, can't move */
1257 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)))
1258 return -EBUSY;
1259
1260 /* can't move between two non-dummy roots either */
1261 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1262 return -EBUSY;
1263 }
1264
1265 /* skip creating root files on dfl_root for inhibited subsystems */
1266 tmp_ss_mask = ss_mask;
1267 if (dst_root == &cgrp_dfl_root)
1268 tmp_ss_mask &= ~cgrp_dfl_root_inhibit_ss_mask;
1269
1270 ret = cgroup_populate_dir(&dst_root->cgrp, tmp_ss_mask);
1271 if (ret) {
1272 if (dst_root != &cgrp_dfl_root)
1273 return ret;
1274
1275 /*
1276 * Rebinding back to the default root is not allowed to
1277 * fail. Using both default and non-default roots should
1278 * be rare. Moving subsystems back and forth even more so.
1279 * Just warn about it and continue.
1280 */
1281 if (cgrp_dfl_root_visible) {
1282 pr_warn("failed to create files (%d) while rebinding 0x%lx to default root\n",
1283 ret, ss_mask);
1284 pr_warn("you may retry by moving them to a different hierarchy and unbinding\n");
1285 }
1286 }
1287
1288 /*
1289 * Nothing can fail from this point on. Remove files for the
1290 * removed subsystems and rebind each subsystem.
1291 */
1292 for_each_subsys_which(ss, ssid, &ss_mask)
1293 cgroup_clear_dir(&ss->root->cgrp, 1 << ssid);
1294
1295 for_each_subsys_which(ss, ssid, &ss_mask) {
1296 struct cgroup_root *src_root;
1297 struct cgroup_subsys_state *css;
1298 struct css_set *cset;
1299
1300 src_root = ss->root;
1301 css = cgroup_css(&src_root->cgrp, ss);
1302
1303 WARN_ON(!css || cgroup_css(&dst_root->cgrp, ss));
1304
1305 RCU_INIT_POINTER(src_root->cgrp.subsys[ssid], NULL);
1306 rcu_assign_pointer(dst_root->cgrp.subsys[ssid], css);
1307 ss->root = dst_root;
1308 css->cgroup = &dst_root->cgrp;
1309
1310 down_write(&css_set_rwsem);
1311 hash_for_each(css_set_table, i, cset, hlist)
1312 list_move_tail(&cset->e_cset_node[ss->id],
1313 &dst_root->cgrp.e_csets[ss->id]);
1314 up_write(&css_set_rwsem);
1315
1316 src_root->subsys_mask &= ~(1 << ssid);
1317 src_root->cgrp.subtree_control &= ~(1 << ssid);
1318 cgroup_refresh_child_subsys_mask(&src_root->cgrp);
1319
1320 /* default hierarchy doesn't enable controllers by default */
1321 dst_root->subsys_mask |= 1 << ssid;
1322 if (dst_root != &cgrp_dfl_root) {
1323 dst_root->cgrp.subtree_control |= 1 << ssid;
1324 cgroup_refresh_child_subsys_mask(&dst_root->cgrp);
1325 }
1326
1327 if (ss->bind)
1328 ss->bind(css);
1329 }
1330
1331 kernfs_activate(dst_root->cgrp.kn);
1332 return 0;
1333 }
1334
1335 static int cgroup_show_options(struct seq_file *seq,
1336 struct kernfs_root *kf_root)
1337 {
1338 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1339 struct cgroup_subsys *ss;
1340 int ssid;
1341
1342 if (root != &cgrp_dfl_root)
1343 for_each_subsys(ss, ssid)
1344 if (root->subsys_mask & (1 << ssid))
1345 seq_printf(seq, ",%s", ss->legacy_name);
1346 if (root->flags & CGRP_ROOT_NOPREFIX)
1347 seq_puts(seq, ",noprefix");
1348 if (root->flags & CGRP_ROOT_XATTR)
1349 seq_puts(seq, ",xattr");
1350
1351 spin_lock(&release_agent_path_lock);
1352 if (strlen(root->release_agent_path))
1353 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
1354 spin_unlock(&release_agent_path_lock);
1355
1356 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
1357 seq_puts(seq, ",clone_children");
1358 if (strlen(root->name))
1359 seq_printf(seq, ",name=%s", root->name);
1360 return 0;
1361 }
1362
1363 struct cgroup_sb_opts {
1364 unsigned long subsys_mask;
1365 unsigned int flags;
1366 char *release_agent;
1367 bool cpuset_clone_children;
1368 char *name;
1369 /* User explicitly requested empty subsystem */
1370 bool none;
1371 };
1372
1373 static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
1374 {
1375 char *token, *o = data;
1376 bool all_ss = false, one_ss = false;
1377 unsigned long mask = -1UL;
1378 struct cgroup_subsys *ss;
1379 int nr_opts = 0;
1380 int i;
1381
1382 #ifdef CONFIG_CPUSETS
1383 mask = ~(1U << cpuset_cgrp_id);
1384 #endif
1385
1386 memset(opts, 0, sizeof(*opts));
1387
1388 while ((token = strsep(&o, ",")) != NULL) {
1389 nr_opts++;
1390
1391 if (!*token)
1392 return -EINVAL;
1393 if (!strcmp(token, "none")) {
1394 /* Explicitly have no subsystems */
1395 opts->none = true;
1396 continue;
1397 }
1398 if (!strcmp(token, "all")) {
1399 /* Mutually exclusive option 'all' + subsystem name */
1400 if (one_ss)
1401 return -EINVAL;
1402 all_ss = true;
1403 continue;
1404 }
1405 if (!strcmp(token, "__DEVEL__sane_behavior")) {
1406 opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
1407 continue;
1408 }
1409 if (!strcmp(token, "noprefix")) {
1410 opts->flags |= CGRP_ROOT_NOPREFIX;
1411 continue;
1412 }
1413 if (!strcmp(token, "clone_children")) {
1414 opts->cpuset_clone_children = true;
1415 continue;
1416 }
1417 if (!strcmp(token, "xattr")) {
1418 opts->flags |= CGRP_ROOT_XATTR;
1419 continue;
1420 }
1421 if (!strncmp(token, "release_agent=", 14)) {
1422 /* Specifying two release agents is forbidden */
1423 if (opts->release_agent)
1424 return -EINVAL;
1425 opts->release_agent =
1426 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
1427 if (!opts->release_agent)
1428 return -ENOMEM;
1429 continue;
1430 }
1431 if (!strncmp(token, "name=", 5)) {
1432 const char *name = token + 5;
1433 /* Can't specify an empty name */
1434 if (!strlen(name))
1435 return -EINVAL;
1436 /* Must match [\w.-]+ */
1437 for (i = 0; i < strlen(name); i++) {
1438 char c = name[i];
1439 if (isalnum(c))
1440 continue;
1441 if ((c == '.') || (c == '-') || (c == '_'))
1442 continue;
1443 return -EINVAL;
1444 }
1445 /* Specifying two names is forbidden */
1446 if (opts->name)
1447 return -EINVAL;
1448 opts->name = kstrndup(name,
1449 MAX_CGROUP_ROOT_NAMELEN - 1,
1450 GFP_KERNEL);
1451 if (!opts->name)
1452 return -ENOMEM;
1453
1454 continue;
1455 }
1456
1457 for_each_subsys(ss, i) {
1458 if (strcmp(token, ss->legacy_name))
1459 continue;
1460 if (ss->disabled)
1461 continue;
1462
1463 /* Mutually exclusive option 'all' + subsystem name */
1464 if (all_ss)
1465 return -EINVAL;
1466 opts->subsys_mask |= (1 << i);
1467 one_ss = true;
1468
1469 break;
1470 }
1471 if (i == CGROUP_SUBSYS_COUNT)
1472 return -ENOENT;
1473 }
1474
1475 if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1476 pr_warn("sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
1477 if (nr_opts != 1) {
1478 pr_err("sane_behavior: no other mount options allowed\n");
1479 return -EINVAL;
1480 }
1481 return 0;
1482 }
1483
1484 /*
1485 * If the 'all' option was specified select all the subsystems,
1486 * otherwise if 'none', 'name=' and a subsystem name options were
1487 * not specified, let's default to 'all'
1488 */
1489 if (all_ss || (!one_ss && !opts->none && !opts->name))
1490 for_each_subsys(ss, i)
1491 if (!ss->disabled)
1492 opts->subsys_mask |= (1 << i);
1493
1494 /*
1495 * We either have to specify by name or by subsystems. (So all
1496 * empty hierarchies must have a name).
1497 */
1498 if (!opts->subsys_mask && !opts->name)
1499 return -EINVAL;
1500
1501 /*
1502 * Option noprefix was introduced just for backward compatibility
1503 * with the old cpuset, so we allow noprefix only if mounting just
1504 * the cpuset subsystem.
1505 */
1506 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
1507 return -EINVAL;
1508
1509 /* Can't specify "none" and some subsystems */
1510 if (opts->subsys_mask && opts->none)
1511 return -EINVAL;
1512
1513 return 0;
1514 }
1515
1516 static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
1517 {
1518 int ret = 0;
1519 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1520 struct cgroup_sb_opts opts;
1521 unsigned long added_mask, removed_mask;
1522
1523 if (root == &cgrp_dfl_root) {
1524 pr_err("remount is not allowed\n");
1525 return -EINVAL;
1526 }
1527
1528 mutex_lock(&cgroup_mutex);
1529
1530 /* See what subsystems are wanted */
1531 ret = parse_cgroupfs_options(data, &opts);
1532 if (ret)
1533 goto out_unlock;
1534
1535 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
1536 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
1537 task_tgid_nr(current), current->comm);
1538
1539 added_mask = opts.subsys_mask & ~root->subsys_mask;
1540 removed_mask = root->subsys_mask & ~opts.subsys_mask;
1541
1542 /* Don't allow flags or name to change at remount */
1543 if ((opts.flags ^ root->flags) ||
1544 (opts.name && strcmp(opts.name, root->name))) {
1545 pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n",
1546 opts.flags, opts.name ?: "", root->flags, root->name);
1547 ret = -EINVAL;
1548 goto out_unlock;
1549 }
1550
1551 /* remounting is not allowed for populated hierarchies */
1552 if (!list_empty(&root->cgrp.self.children)) {
1553 ret = -EBUSY;
1554 goto out_unlock;
1555 }
1556
1557 ret = rebind_subsystems(root, added_mask);
1558 if (ret)
1559 goto out_unlock;
1560
1561 rebind_subsystems(&cgrp_dfl_root, removed_mask);
1562
1563 if (opts.release_agent) {
1564 spin_lock(&release_agent_path_lock);
1565 strcpy(root->release_agent_path, opts.release_agent);
1566 spin_unlock(&release_agent_path_lock);
1567 }
1568 out_unlock:
1569 kfree(opts.release_agent);
1570 kfree(opts.name);
1571 mutex_unlock(&cgroup_mutex);
1572 return ret;
1573 }
1574
1575 /*
1576 * To reduce the fork() overhead for systems that are not actually using
1577 * their cgroups capability, we don't maintain the lists running through
1578 * each css_set to its tasks until we see the list actually used - in other
1579 * words after the first mount.
1580 */
1581 static bool use_task_css_set_links __read_mostly;
1582
1583 static void cgroup_enable_task_cg_lists(void)
1584 {
1585 struct task_struct *p, *g;
1586
1587 down_write(&css_set_rwsem);
1588
1589 if (use_task_css_set_links)
1590 goto out_unlock;
1591
1592 use_task_css_set_links = true;
1593
1594 /*
1595 * We need tasklist_lock because RCU is not safe against
1596 * while_each_thread(). Besides, a forking task that has passed
1597 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1598 * is not guaranteed to have its child immediately visible in the
1599 * tasklist if we walk through it with RCU.
1600 */
1601 read_lock(&tasklist_lock);
1602 do_each_thread(g, p) {
1603 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1604 task_css_set(p) != &init_css_set);
1605
1606 /*
1607 * We should check if the process is exiting, otherwise
1608 * it will race with cgroup_exit() in that the list
1609 * entry won't be deleted though the process has exited.
1610 * Do it while holding siglock so that we don't end up
1611 * racing against cgroup_exit().
1612 */
1613 spin_lock_irq(&p->sighand->siglock);
1614 if (!(p->flags & PF_EXITING)) {
1615 struct css_set *cset = task_css_set(p);
1616
1617 list_add(&p->cg_list, &cset->tasks);
1618 get_css_set(cset);
1619 }
1620 spin_unlock_irq(&p->sighand->siglock);
1621 } while_each_thread(g, p);
1622 read_unlock(&tasklist_lock);
1623 out_unlock:
1624 up_write(&css_set_rwsem);
1625 }
1626
1627 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1628 {
1629 struct cgroup_subsys *ss;
1630 int ssid;
1631
1632 INIT_LIST_HEAD(&cgrp->self.sibling);
1633 INIT_LIST_HEAD(&cgrp->self.children);
1634 INIT_LIST_HEAD(&cgrp->cset_links);
1635 INIT_LIST_HEAD(&cgrp->pidlists);
1636 mutex_init(&cgrp->pidlist_mutex);
1637 cgrp->self.cgroup = cgrp;
1638 cgrp->self.flags |= CSS_ONLINE;
1639
1640 for_each_subsys(ss, ssid)
1641 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
1642
1643 init_waitqueue_head(&cgrp->offline_waitq);
1644 INIT_WORK(&cgrp->release_agent_work, cgroup_release_agent);
1645 }
1646
1647 static void init_cgroup_root(struct cgroup_root *root,
1648 struct cgroup_sb_opts *opts)
1649 {
1650 struct cgroup *cgrp = &root->cgrp;
1651
1652 INIT_LIST_HEAD(&root->root_list);
1653 atomic_set(&root->nr_cgrps, 1);
1654 cgrp->root = root;
1655 init_cgroup_housekeeping(cgrp);
1656 idr_init(&root->cgroup_idr);
1657
1658 root->flags = opts->flags;
1659 if (opts->release_agent)
1660 strcpy(root->release_agent_path, opts->release_agent);
1661 if (opts->name)
1662 strcpy(root->name, opts->name);
1663 if (opts->cpuset_clone_children)
1664 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
1665 }
1666
1667 static int cgroup_setup_root(struct cgroup_root *root, unsigned long ss_mask)
1668 {
1669 LIST_HEAD(tmp_links);
1670 struct cgroup *root_cgrp = &root->cgrp;
1671 struct cftype *base_files;
1672 struct css_set *cset;
1673 int i, ret;
1674
1675 lockdep_assert_held(&cgroup_mutex);
1676
1677 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL);
1678 if (ret < 0)
1679 goto out;
1680 root_cgrp->id = ret;
1681
1682 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 0,
1683 GFP_KERNEL);
1684 if (ret)
1685 goto out;
1686
1687 /*
1688 * We're accessing css_set_count without locking css_set_rwsem here,
1689 * but that's OK - it can only be increased by someone holding
1690 * cgroup_lock, and that's us. The worst that can happen is that we
1691 * have some link structures left over
1692 */
1693 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
1694 if (ret)
1695 goto cancel_ref;
1696
1697 ret = cgroup_init_root_id(root);
1698 if (ret)
1699 goto cancel_ref;
1700
1701 root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops,
1702 KERNFS_ROOT_CREATE_DEACTIVATED,
1703 root_cgrp);
1704 if (IS_ERR(root->kf_root)) {
1705 ret = PTR_ERR(root->kf_root);
1706 goto exit_root_id;
1707 }
1708 root_cgrp->kn = root->kf_root->kn;
1709
1710 if (root == &cgrp_dfl_root)
1711 base_files = cgroup_dfl_base_files;
1712 else
1713 base_files = cgroup_legacy_base_files;
1714
1715 ret = cgroup_addrm_files(root_cgrp, base_files, true);
1716 if (ret)
1717 goto destroy_root;
1718
1719 ret = rebind_subsystems(root, ss_mask);
1720 if (ret)
1721 goto destroy_root;
1722
1723 /*
1724 * There must be no failure case after here, since rebinding takes
1725 * care of subsystems' refcounts, which are explicitly dropped in
1726 * the failure exit path.
1727 */
1728 list_add(&root->root_list, &cgroup_roots);
1729 cgroup_root_count++;
1730
1731 /*
1732 * Link the root cgroup in this hierarchy into all the css_set
1733 * objects.
1734 */
1735 down_write(&css_set_rwsem);
1736 hash_for_each(css_set_table, i, cset, hlist)
1737 link_css_set(&tmp_links, cset, root_cgrp);
1738 up_write(&css_set_rwsem);
1739
1740 BUG_ON(!list_empty(&root_cgrp->self.children));
1741 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
1742
1743 kernfs_activate(root_cgrp->kn);
1744 ret = 0;
1745 goto out;
1746
1747 destroy_root:
1748 kernfs_destroy_root(root->kf_root);
1749 root->kf_root = NULL;
1750 exit_root_id:
1751 cgroup_exit_root_id(root);
1752 cancel_ref:
1753 percpu_ref_exit(&root_cgrp->self.refcnt);
1754 out:
1755 free_cgrp_cset_links(&tmp_links);
1756 return ret;
1757 }
1758
1759 static struct dentry *cgroup_mount(struct file_system_type *fs_type,
1760 int flags, const char *unused_dev_name,
1761 void *data)
1762 {
1763 struct super_block *pinned_sb = NULL;
1764 struct cgroup_subsys *ss;
1765 struct cgroup_root *root;
1766 struct cgroup_sb_opts opts;
1767 struct dentry *dentry;
1768 int ret;
1769 int i;
1770 bool new_sb;
1771
1772 /*
1773 * The first time anyone tries to mount a cgroup, enable the list
1774 * linking each css_set to its tasks and fix up all existing tasks.
1775 */
1776 if (!use_task_css_set_links)
1777 cgroup_enable_task_cg_lists();
1778
1779 mutex_lock(&cgroup_mutex);
1780
1781 /* First find the desired set of subsystems */
1782 ret = parse_cgroupfs_options(data, &opts);
1783 if (ret)
1784 goto out_unlock;
1785
1786 /* look for a matching existing root */
1787 if (opts.flags & CGRP_ROOT_SANE_BEHAVIOR) {
1788 cgrp_dfl_root_visible = true;
1789 root = &cgrp_dfl_root;
1790 cgroup_get(&root->cgrp);
1791 ret = 0;
1792 goto out_unlock;
1793 }
1794
1795 /*
1796 * Destruction of cgroup root is asynchronous, so subsystems may
1797 * still be dying after the previous unmount. Let's drain the
1798 * dying subsystems. We just need to ensure that the ones
1799 * unmounted previously finish dying and don't care about new ones
1800 * starting. Testing ref liveliness is good enough.
1801 */
1802 for_each_subsys(ss, i) {
1803 if (!(opts.subsys_mask & (1 << i)) ||
1804 ss->root == &cgrp_dfl_root)
1805 continue;
1806
1807 if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) {
1808 mutex_unlock(&cgroup_mutex);
1809 msleep(10);
1810 ret = restart_syscall();
1811 goto out_free;
1812 }
1813 cgroup_put(&ss->root->cgrp);
1814 }
1815
1816 for_each_root(root) {
1817 bool name_match = false;
1818
1819 if (root == &cgrp_dfl_root)
1820 continue;
1821
1822 /*
1823 * If we asked for a name then it must match. Also, if
1824 * name matches but sybsys_mask doesn't, we should fail.
1825 * Remember whether name matched.
1826 */
1827 if (opts.name) {
1828 if (strcmp(opts.name, root->name))
1829 continue;
1830 name_match = true;
1831 }
1832
1833 /*
1834 * If we asked for subsystems (or explicitly for no
1835 * subsystems) then they must match.
1836 */
1837 if ((opts.subsys_mask || opts.none) &&
1838 (opts.subsys_mask != root->subsys_mask)) {
1839 if (!name_match)
1840 continue;
1841 ret = -EBUSY;
1842 goto out_unlock;
1843 }
1844
1845 if (root->flags ^ opts.flags)
1846 pr_warn("new mount options do not match the existing superblock, will be ignored\n");
1847
1848 /*
1849 * We want to reuse @root whose lifetime is governed by its
1850 * ->cgrp. Let's check whether @root is alive and keep it
1851 * that way. As cgroup_kill_sb() can happen anytime, we
1852 * want to block it by pinning the sb so that @root doesn't
1853 * get killed before mount is complete.
1854 *
1855 * With the sb pinned, tryget_live can reliably indicate
1856 * whether @root can be reused. If it's being killed,
1857 * drain it. We can use wait_queue for the wait but this
1858 * path is super cold. Let's just sleep a bit and retry.
1859 */
1860 pinned_sb = kernfs_pin_sb(root->kf_root, NULL);
1861 if (IS_ERR(pinned_sb) ||
1862 !percpu_ref_tryget_live(&root->cgrp.self.refcnt)) {
1863 mutex_unlock(&cgroup_mutex);
1864 if (!IS_ERR_OR_NULL(pinned_sb))
1865 deactivate_super(pinned_sb);
1866 msleep(10);
1867 ret = restart_syscall();
1868 goto out_free;
1869 }
1870
1871 ret = 0;
1872 goto out_unlock;
1873 }
1874
1875 /*
1876 * No such thing, create a new one. name= matching without subsys
1877 * specification is allowed for already existing hierarchies but we
1878 * can't create new one without subsys specification.
1879 */
1880 if (!opts.subsys_mask && !opts.none) {
1881 ret = -EINVAL;
1882 goto out_unlock;
1883 }
1884
1885 root = kzalloc(sizeof(*root), GFP_KERNEL);
1886 if (!root) {
1887 ret = -ENOMEM;
1888 goto out_unlock;
1889 }
1890
1891 init_cgroup_root(root, &opts);
1892
1893 ret = cgroup_setup_root(root, opts.subsys_mask);
1894 if (ret)
1895 cgroup_free_root(root);
1896
1897 out_unlock:
1898 mutex_unlock(&cgroup_mutex);
1899 out_free:
1900 kfree(opts.release_agent);
1901 kfree(opts.name);
1902
1903 if (ret)
1904 return ERR_PTR(ret);
1905
1906 dentry = kernfs_mount(fs_type, flags, root->kf_root,
1907 CGROUP_SUPER_MAGIC, &new_sb);
1908 if (IS_ERR(dentry) || !new_sb)
1909 cgroup_put(&root->cgrp);
1910
1911 /*
1912 * If @pinned_sb, we're reusing an existing root and holding an
1913 * extra ref on its sb. Mount is complete. Put the extra ref.
1914 */
1915 if (pinned_sb) {
1916 WARN_ON(new_sb);
1917 deactivate_super(pinned_sb);
1918 }
1919
1920 return dentry;
1921 }
1922
1923 static void cgroup_kill_sb(struct super_block *sb)
1924 {
1925 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
1926 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1927
1928 /*
1929 * If @root doesn't have any mounts or children, start killing it.
1930 * This prevents new mounts by disabling percpu_ref_tryget_live().
1931 * cgroup_mount() may wait for @root's release.
1932 *
1933 * And don't kill the default root.
1934 */
1935 if (!list_empty(&root->cgrp.self.children) ||
1936 root == &cgrp_dfl_root)
1937 cgroup_put(&root->cgrp);
1938 else
1939 percpu_ref_kill(&root->cgrp.self.refcnt);
1940
1941 kernfs_kill_sb(sb);
1942 }
1943
1944 static struct file_system_type cgroup_fs_type = {
1945 .name = "cgroup",
1946 .mount = cgroup_mount,
1947 .kill_sb = cgroup_kill_sb,
1948 };
1949
1950 /**
1951 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
1952 * @task: target task
1953 * @buf: the buffer to write the path into
1954 * @buflen: the length of the buffer
1955 *
1956 * Determine @task's cgroup on the first (the one with the lowest non-zero
1957 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
1958 * function grabs cgroup_mutex and shouldn't be used inside locks used by
1959 * cgroup controller callbacks.
1960 *
1961 * Return value is the same as kernfs_path().
1962 */
1963 char *task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
1964 {
1965 struct cgroup_root *root;
1966 struct cgroup *cgrp;
1967 int hierarchy_id = 1;
1968 char *path = NULL;
1969
1970 mutex_lock(&cgroup_mutex);
1971 down_read(&css_set_rwsem);
1972
1973 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
1974
1975 if (root) {
1976 cgrp = task_cgroup_from_root(task, root);
1977 path = cgroup_path(cgrp, buf, buflen);
1978 } else {
1979 /* if no hierarchy exists, everyone is in "/" */
1980 if (strlcpy(buf, "/", buflen) < buflen)
1981 path = buf;
1982 }
1983
1984 up_read(&css_set_rwsem);
1985 mutex_unlock(&cgroup_mutex);
1986 return path;
1987 }
1988 EXPORT_SYMBOL_GPL(task_cgroup_path);
1989
1990 /* used to track tasks and other necessary states during migration */
1991 struct cgroup_taskset {
1992 /* the src and dst cset list running through cset->mg_node */
1993 struct list_head src_csets;
1994 struct list_head dst_csets;
1995
1996 /*
1997 * Fields for cgroup_taskset_*() iteration.
1998 *
1999 * Before migration is committed, the target migration tasks are on
2000 * ->mg_tasks of the csets on ->src_csets. After, on ->mg_tasks of
2001 * the csets on ->dst_csets. ->csets point to either ->src_csets
2002 * or ->dst_csets depending on whether migration is committed.
2003 *
2004 * ->cur_csets and ->cur_task point to the current task position
2005 * during iteration.
2006 */
2007 struct list_head *csets;
2008 struct css_set *cur_cset;
2009 struct task_struct *cur_task;
2010 };
2011
2012 /**
2013 * cgroup_taskset_first - reset taskset and return the first task
2014 * @tset: taskset of interest
2015 *
2016 * @tset iteration is initialized and the first task is returned.
2017 */
2018 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
2019 {
2020 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2021 tset->cur_task = NULL;
2022
2023 return cgroup_taskset_next(tset);
2024 }
2025
2026 /**
2027 * cgroup_taskset_next - iterate to the next task in taskset
2028 * @tset: taskset of interest
2029 *
2030 * Return the next task in @tset. Iteration must have been initialized
2031 * with cgroup_taskset_first().
2032 */
2033 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
2034 {
2035 struct css_set *cset = tset->cur_cset;
2036 struct task_struct *task = tset->cur_task;
2037
2038 while (&cset->mg_node != tset->csets) {
2039 if (!task)
2040 task = list_first_entry(&cset->mg_tasks,
2041 struct task_struct, cg_list);
2042 else
2043 task = list_next_entry(task, cg_list);
2044
2045 if (&task->cg_list != &cset->mg_tasks) {
2046 tset->cur_cset = cset;
2047 tset->cur_task = task;
2048 return task;
2049 }
2050
2051 cset = list_next_entry(cset, mg_node);
2052 task = NULL;
2053 }
2054
2055 return NULL;
2056 }
2057
2058 /**
2059 * cgroup_task_migrate - move a task from one cgroup to another.
2060 * @old_cgrp: the cgroup @tsk is being migrated from
2061 * @tsk: the task being migrated
2062 * @new_cset: the new css_set @tsk is being attached to
2063 *
2064 * Must be called with cgroup_mutex, threadgroup and css_set_rwsem locked.
2065 */
2066 static void cgroup_task_migrate(struct cgroup *old_cgrp,
2067 struct task_struct *tsk,
2068 struct css_set *new_cset)
2069 {
2070 struct css_set *old_cset;
2071
2072 lockdep_assert_held(&cgroup_mutex);
2073 lockdep_assert_held(&css_set_rwsem);
2074
2075 /*
2076 * We are synchronized through cgroup_threadgroup_rwsem against
2077 * PF_EXITING setting such that we can't race against cgroup_exit()
2078 * changing the css_set to init_css_set and dropping the old one.
2079 */
2080 WARN_ON_ONCE(tsk->flags & PF_EXITING);
2081 old_cset = task_css_set(tsk);
2082
2083 get_css_set(new_cset);
2084 rcu_assign_pointer(tsk->cgroups, new_cset);
2085
2086 /*
2087 * Use move_tail so that cgroup_taskset_first() still returns the
2088 * leader after migration. This works because cgroup_migrate()
2089 * ensures that the dst_cset of the leader is the first on the
2090 * tset's dst_csets list.
2091 */
2092 list_move_tail(&tsk->cg_list, &new_cset->mg_tasks);
2093
2094 /*
2095 * We just gained a reference on old_cset by taking it from the
2096 * task. As trading it for new_cset is protected by cgroup_mutex,
2097 * we're safe to drop it here; it will be freed under RCU.
2098 */
2099 put_css_set_locked(old_cset);
2100 }
2101
2102 /**
2103 * cgroup_migrate_finish - cleanup after attach
2104 * @preloaded_csets: list of preloaded css_sets
2105 *
2106 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2107 * those functions for details.
2108 */
2109 static void cgroup_migrate_finish(struct list_head *preloaded_csets)
2110 {
2111 struct css_set *cset, *tmp_cset;
2112
2113 lockdep_assert_held(&cgroup_mutex);
2114
2115 down_write(&css_set_rwsem);
2116 list_for_each_entry_safe(cset, tmp_cset, preloaded_csets, mg_preload_node) {
2117 cset->mg_src_cgrp = NULL;
2118 cset->mg_dst_cset = NULL;
2119 list_del_init(&cset->mg_preload_node);
2120 put_css_set_locked(cset);
2121 }
2122 up_write(&css_set_rwsem);
2123 }
2124
2125 /**
2126 * cgroup_migrate_add_src - add a migration source css_set
2127 * @src_cset: the source css_set to add
2128 * @dst_cgrp: the destination cgroup
2129 * @preloaded_csets: list of preloaded css_sets
2130 *
2131 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2132 * @src_cset and add it to @preloaded_csets, which should later be cleaned
2133 * up by cgroup_migrate_finish().
2134 *
2135 * This function may be called without holding cgroup_threadgroup_rwsem
2136 * even if the target is a process. Threads may be created and destroyed
2137 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2138 * into play and the preloaded css_sets are guaranteed to cover all
2139 * migrations.
2140 */
2141 static void cgroup_migrate_add_src(struct css_set *src_cset,
2142 struct cgroup *dst_cgrp,
2143 struct list_head *preloaded_csets)
2144 {
2145 struct cgroup *src_cgrp;
2146
2147 lockdep_assert_held(&cgroup_mutex);
2148 lockdep_assert_held(&css_set_rwsem);
2149
2150 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2151
2152 if (!list_empty(&src_cset->mg_preload_node))
2153 return;
2154
2155 WARN_ON(src_cset->mg_src_cgrp);
2156 WARN_ON(!list_empty(&src_cset->mg_tasks));
2157 WARN_ON(!list_empty(&src_cset->mg_node));
2158
2159 src_cset->mg_src_cgrp = src_cgrp;
2160 get_css_set(src_cset);
2161 list_add(&src_cset->mg_preload_node, preloaded_csets);
2162 }
2163
2164 /**
2165 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2166 * @dst_cgrp: the destination cgroup (may be %NULL)
2167 * @preloaded_csets: list of preloaded source css_sets
2168 *
2169 * Tasks are about to be moved to @dst_cgrp and all the source css_sets
2170 * have been preloaded to @preloaded_csets. This function looks up and
2171 * pins all destination css_sets, links each to its source, and append them
2172 * to @preloaded_csets. If @dst_cgrp is %NULL, the destination of each
2173 * source css_set is assumed to be its cgroup on the default hierarchy.
2174 *
2175 * This function must be called after cgroup_migrate_add_src() has been
2176 * called on each migration source css_set. After migration is performed
2177 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2178 * @preloaded_csets.
2179 */
2180 static int cgroup_migrate_prepare_dst(struct cgroup *dst_cgrp,
2181 struct list_head *preloaded_csets)
2182 {
2183 LIST_HEAD(csets);
2184 struct css_set *src_cset, *tmp_cset;
2185
2186 lockdep_assert_held(&cgroup_mutex);
2187
2188 /*
2189 * Except for the root, child_subsys_mask must be zero for a cgroup
2190 * with tasks so that child cgroups don't compete against tasks.
2191 */
2192 if (dst_cgrp && cgroup_on_dfl(dst_cgrp) && cgroup_parent(dst_cgrp) &&
2193 dst_cgrp->child_subsys_mask)
2194 return -EBUSY;
2195
2196 /* look up the dst cset for each src cset and link it to src */
2197 list_for_each_entry_safe(src_cset, tmp_cset, preloaded_csets, mg_preload_node) {
2198 struct css_set *dst_cset;
2199
2200 dst_cset = find_css_set(src_cset,
2201 dst_cgrp ?: src_cset->dfl_cgrp);
2202 if (!dst_cset)
2203 goto err;
2204
2205 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2206
2207 /*
2208 * If src cset equals dst, it's noop. Drop the src.
2209 * cgroup_migrate() will skip the cset too. Note that we
2210 * can't handle src == dst as some nodes are used by both.
2211 */
2212 if (src_cset == dst_cset) {
2213 src_cset->mg_src_cgrp = NULL;
2214 list_del_init(&src_cset->mg_preload_node);
2215 put_css_set(src_cset);
2216 put_css_set(dst_cset);
2217 continue;
2218 }
2219
2220 src_cset->mg_dst_cset = dst_cset;
2221
2222 if (list_empty(&dst_cset->mg_preload_node))
2223 list_add(&dst_cset->mg_preload_node, &csets);
2224 else
2225 put_css_set(dst_cset);
2226 }
2227
2228 list_splice_tail(&csets, preloaded_csets);
2229 return 0;
2230 err:
2231 cgroup_migrate_finish(&csets);
2232 return -ENOMEM;
2233 }
2234
2235 /**
2236 * cgroup_migrate - migrate a process or task to a cgroup
2237 * @cgrp: the destination cgroup
2238 * @leader: the leader of the process or the task to migrate
2239 * @threadgroup: whether @leader points to the whole process or a single task
2240 *
2241 * Migrate a process or task denoted by @leader to @cgrp. If migrating a
2242 * process, the caller must be holding cgroup_threadgroup_rwsem. The
2243 * caller is also responsible for invoking cgroup_migrate_add_src() and
2244 * cgroup_migrate_prepare_dst() on the targets before invoking this
2245 * function and following up with cgroup_migrate_finish().
2246 *
2247 * As long as a controller's ->can_attach() doesn't fail, this function is
2248 * guaranteed to succeed. This means that, excluding ->can_attach()
2249 * failure, when migrating multiple targets, the success or failure can be
2250 * decided for all targets by invoking group_migrate_prepare_dst() before
2251 * actually starting migrating.
2252 */
2253 static int cgroup_migrate(struct cgroup *cgrp, struct task_struct *leader,
2254 bool threadgroup)
2255 {
2256 struct cgroup_taskset tset = {
2257 .src_csets = LIST_HEAD_INIT(tset.src_csets),
2258 .dst_csets = LIST_HEAD_INIT(tset.dst_csets),
2259 .csets = &tset.src_csets,
2260 };
2261 struct cgroup_subsys_state *css, *failed_css = NULL;
2262 struct css_set *cset, *tmp_cset;
2263 struct task_struct *task, *tmp_task;
2264 int i, ret;
2265
2266 /*
2267 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2268 * already PF_EXITING could be freed from underneath us unless we
2269 * take an rcu_read_lock.
2270 */
2271 down_write(&css_set_rwsem);
2272 rcu_read_lock();
2273 task = leader;
2274 do {
2275 /* @task either already exited or can't exit until the end */
2276 if (task->flags & PF_EXITING)
2277 goto next;
2278
2279 /* leave @task alone if post_fork() hasn't linked it yet */
2280 if (list_empty(&task->cg_list))
2281 goto next;
2282
2283 cset = task_css_set(task);
2284 if (!cset->mg_src_cgrp)
2285 goto next;
2286
2287 /*
2288 * cgroup_taskset_first() must always return the leader.
2289 * Take care to avoid disturbing the ordering.
2290 */
2291 list_move_tail(&task->cg_list, &cset->mg_tasks);
2292 if (list_empty(&cset->mg_node))
2293 list_add_tail(&cset->mg_node, &tset.src_csets);
2294 if (list_empty(&cset->mg_dst_cset->mg_node))
2295 list_move_tail(&cset->mg_dst_cset->mg_node,
2296 &tset.dst_csets);
2297 next:
2298 if (!threadgroup)
2299 break;
2300 } while_each_thread(leader, task);
2301 rcu_read_unlock();
2302 up_write(&css_set_rwsem);
2303
2304 /* methods shouldn't be called if no task is actually migrating */
2305 if (list_empty(&tset.src_csets))
2306 return 0;
2307
2308 /* check that we can legitimately attach to the cgroup */
2309 for_each_e_css(css, i, cgrp) {
2310 if (css->ss->can_attach) {
2311 ret = css->ss->can_attach(css, &tset);
2312 if (ret) {
2313 failed_css = css;
2314 goto out_cancel_attach;
2315 }
2316 }
2317 }
2318
2319 /*
2320 * Now that we're guaranteed success, proceed to move all tasks to
2321 * the new cgroup. There are no failure cases after here, so this
2322 * is the commit point.
2323 */
2324 down_write(&css_set_rwsem);
2325 list_for_each_entry(cset, &tset.src_csets, mg_node) {
2326 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list)
2327 cgroup_task_migrate(cset->mg_src_cgrp, task,
2328 cset->mg_dst_cset);
2329 }
2330 up_write(&css_set_rwsem);
2331
2332 /*
2333 * Migration is committed, all target tasks are now on dst_csets.
2334 * Nothing is sensitive to fork() after this point. Notify
2335 * controllers that migration is complete.
2336 */
2337 tset.csets = &tset.dst_csets;
2338
2339 for_each_e_css(css, i, cgrp)
2340 if (css->ss->attach)
2341 css->ss->attach(css, &tset);
2342
2343 ret = 0;
2344 goto out_release_tset;
2345
2346 out_cancel_attach:
2347 for_each_e_css(css, i, cgrp) {
2348 if (css == failed_css)
2349 break;
2350 if (css->ss->cancel_attach)
2351 css->ss->cancel_attach(css, &tset);
2352 }
2353 out_release_tset:
2354 down_write(&css_set_rwsem);
2355 list_splice_init(&tset.dst_csets, &tset.src_csets);
2356 list_for_each_entry_safe(cset, tmp_cset, &tset.src_csets, mg_node) {
2357 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2358 list_del_init(&cset->mg_node);
2359 }
2360 up_write(&css_set_rwsem);
2361 return ret;
2362 }
2363
2364 /**
2365 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2366 * @dst_cgrp: the cgroup to attach to
2367 * @leader: the task or the leader of the threadgroup to be attached
2368 * @threadgroup: attach the whole threadgroup?
2369 *
2370 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2371 */
2372 static int cgroup_attach_task(struct cgroup *dst_cgrp,
2373 struct task_struct *leader, bool threadgroup)
2374 {
2375 LIST_HEAD(preloaded_csets);
2376 struct task_struct *task;
2377 int ret;
2378
2379 /* look up all src csets */
2380 down_read(&css_set_rwsem);
2381 rcu_read_lock();
2382 task = leader;
2383 do {
2384 cgroup_migrate_add_src(task_css_set(task), dst_cgrp,
2385 &preloaded_csets);
2386 if (!threadgroup)
2387 break;
2388 } while_each_thread(leader, task);
2389 rcu_read_unlock();
2390 up_read(&css_set_rwsem);
2391
2392 /* prepare dst csets and commit */
2393 ret = cgroup_migrate_prepare_dst(dst_cgrp, &preloaded_csets);
2394 if (!ret)
2395 ret = cgroup_migrate(dst_cgrp, leader, threadgroup);
2396
2397 cgroup_migrate_finish(&preloaded_csets);
2398 return ret;
2399 }
2400
2401 static int cgroup_procs_write_permission(struct task_struct *task,
2402 struct cgroup *dst_cgrp,
2403 struct kernfs_open_file *of)
2404 {
2405 const struct cred *cred = current_cred();
2406 const struct cred *tcred = get_task_cred(task);
2407 int ret = 0;
2408
2409 /*
2410 * even if we're attaching all tasks in the thread group, we only
2411 * need to check permissions on one of them.
2412 */
2413 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2414 !uid_eq(cred->euid, tcred->uid) &&
2415 !uid_eq(cred->euid, tcred->suid))
2416 ret = -EACCES;
2417
2418 if (!ret && cgroup_on_dfl(dst_cgrp)) {
2419 struct super_block *sb = of->file->f_path.dentry->d_sb;
2420 struct cgroup *cgrp;
2421 struct inode *inode;
2422
2423 down_read(&css_set_rwsem);
2424 cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
2425 up_read(&css_set_rwsem);
2426
2427 while (!cgroup_is_descendant(dst_cgrp, cgrp))
2428 cgrp = cgroup_parent(cgrp);
2429
2430 ret = -ENOMEM;
2431 inode = kernfs_get_inode(sb, cgrp->procs_kn);
2432 if (inode) {
2433 ret = inode_permission(inode, MAY_WRITE);
2434 iput(inode);
2435 }
2436 }
2437
2438 put_cred(tcred);
2439 return ret;
2440 }
2441
2442 /*
2443 * Find the task_struct of the task to attach by vpid and pass it along to the
2444 * function to attach either it or all tasks in its threadgroup. Will lock
2445 * cgroup_mutex and threadgroup.
2446 */
2447 static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
2448 size_t nbytes, loff_t off, bool threadgroup)
2449 {
2450 struct task_struct *tsk;
2451 struct cgroup *cgrp;
2452 pid_t pid;
2453 int ret;
2454
2455 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2456 return -EINVAL;
2457
2458 cgrp = cgroup_kn_lock_live(of->kn);
2459 if (!cgrp)
2460 return -ENODEV;
2461
2462 percpu_down_write(&cgroup_threadgroup_rwsem);
2463 rcu_read_lock();
2464 if (pid) {
2465 tsk = find_task_by_vpid(pid);
2466 if (!tsk) {
2467 ret = -ESRCH;
2468 goto out_unlock_rcu;
2469 }
2470 } else {
2471 tsk = current;
2472 }
2473
2474 if (threadgroup)
2475 tsk = tsk->group_leader;
2476
2477 /*
2478 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
2479 * trapped in a cpuset, or RT worker may be born in a cgroup
2480 * with no rt_runtime allocated. Just say no.
2481 */
2482 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
2483 ret = -EINVAL;
2484 goto out_unlock_rcu;
2485 }
2486
2487 get_task_struct(tsk);
2488 rcu_read_unlock();
2489
2490 ret = cgroup_procs_write_permission(tsk, cgrp, of);
2491 if (!ret)
2492 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
2493
2494 put_task_struct(tsk);
2495 goto out_unlock_threadgroup;
2496
2497 out_unlock_rcu:
2498 rcu_read_unlock();
2499 out_unlock_threadgroup:
2500 percpu_up_write(&cgroup_threadgroup_rwsem);
2501 cgroup_kn_unlock(of->kn);
2502 return ret ?: nbytes;
2503 }
2504
2505 /**
2506 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2507 * @from: attach to all cgroups of a given task
2508 * @tsk: the task to be attached
2509 */
2510 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2511 {
2512 struct cgroup_root *root;
2513 int retval = 0;
2514
2515 mutex_lock(&cgroup_mutex);
2516 for_each_root(root) {
2517 struct cgroup *from_cgrp;
2518
2519 if (root == &cgrp_dfl_root)
2520 continue;
2521
2522 down_read(&css_set_rwsem);
2523 from_cgrp = task_cgroup_from_root(from, root);
2524 up_read(&css_set_rwsem);
2525
2526 retval = cgroup_attach_task(from_cgrp, tsk, false);
2527 if (retval)
2528 break;
2529 }
2530 mutex_unlock(&cgroup_mutex);
2531
2532 return retval;
2533 }
2534 EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2535
2536 static ssize_t cgroup_tasks_write(struct kernfs_open_file *of,
2537 char *buf, size_t nbytes, loff_t off)
2538 {
2539 return __cgroup_procs_write(of, buf, nbytes, off, false);
2540 }
2541
2542 static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
2543 char *buf, size_t nbytes, loff_t off)
2544 {
2545 return __cgroup_procs_write(of, buf, nbytes, off, true);
2546 }
2547
2548 static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
2549 char *buf, size_t nbytes, loff_t off)
2550 {
2551 struct cgroup *cgrp;
2552
2553 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
2554
2555 cgrp = cgroup_kn_lock_live(of->kn);
2556 if (!cgrp)
2557 return -ENODEV;
2558 spin_lock(&release_agent_path_lock);
2559 strlcpy(cgrp->root->release_agent_path, strstrip(buf),
2560 sizeof(cgrp->root->release_agent_path));
2561 spin_unlock(&release_agent_path_lock);
2562 cgroup_kn_unlock(of->kn);
2563 return nbytes;
2564 }
2565
2566 static int cgroup_release_agent_show(struct seq_file *seq, void *v)
2567 {
2568 struct cgroup *cgrp = seq_css(seq)->cgroup;
2569
2570 spin_lock(&release_agent_path_lock);
2571 seq_puts(seq, cgrp->root->release_agent_path);
2572 spin_unlock(&release_agent_path_lock);
2573 seq_putc(seq, '\n');
2574 return 0;
2575 }
2576
2577 static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
2578 {
2579 seq_puts(seq, "0\n");
2580 return 0;
2581 }
2582
2583 static void cgroup_print_ss_mask(struct seq_file *seq, unsigned long ss_mask)
2584 {
2585 struct cgroup_subsys *ss;
2586 bool printed = false;
2587 int ssid;
2588
2589 for_each_subsys_which(ss, ssid, &ss_mask) {
2590 if (printed)
2591 seq_putc(seq, ' ');
2592 seq_printf(seq, "%s", ss->name);
2593 printed = true;
2594 }
2595 if (printed)
2596 seq_putc(seq, '\n');
2597 }
2598
2599 /* show controllers which are currently attached to the default hierarchy */
2600 static int cgroup_root_controllers_show(struct seq_file *seq, void *v)
2601 {
2602 struct cgroup *cgrp = seq_css(seq)->cgroup;
2603
2604 cgroup_print_ss_mask(seq, cgrp->root->subsys_mask &
2605 ~cgrp_dfl_root_inhibit_ss_mask);
2606 return 0;
2607 }
2608
2609 /* show controllers which are enabled from the parent */
2610 static int cgroup_controllers_show(struct seq_file *seq, void *v)
2611 {
2612 struct cgroup *cgrp = seq_css(seq)->cgroup;
2613
2614 cgroup_print_ss_mask(seq, cgroup_parent(cgrp)->subtree_control);
2615 return 0;
2616 }
2617
2618 /* show controllers which are enabled for a given cgroup's children */
2619 static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
2620 {
2621 struct cgroup *cgrp = seq_css(seq)->cgroup;
2622
2623 cgroup_print_ss_mask(seq, cgrp->subtree_control);
2624 return 0;
2625 }
2626
2627 /**
2628 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2629 * @cgrp: root of the subtree to update csses for
2630 *
2631 * @cgrp's child_subsys_mask has changed and its subtree's (self excluded)
2632 * css associations need to be updated accordingly. This function looks up
2633 * all css_sets which are attached to the subtree, creates the matching
2634 * updated css_sets and migrates the tasks to the new ones.
2635 */
2636 static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2637 {
2638 LIST_HEAD(preloaded_csets);
2639 struct cgroup_subsys_state *css;
2640 struct css_set *src_cset;
2641 int ret;
2642
2643 lockdep_assert_held(&cgroup_mutex);
2644
2645 percpu_down_write(&cgroup_threadgroup_rwsem);
2646
2647 /* look up all csses currently attached to @cgrp's subtree */
2648 down_read(&css_set_rwsem);
2649 css_for_each_descendant_pre(css, cgroup_css(cgrp, NULL)) {
2650 struct cgrp_cset_link *link;
2651
2652 /* self is not affected by child_subsys_mask change */
2653 if (css->cgroup == cgrp)
2654 continue;
2655
2656 list_for_each_entry(link, &css->cgroup->cset_links, cset_link)
2657 cgroup_migrate_add_src(link->cset, cgrp,
2658 &preloaded_csets);
2659 }
2660 up_read(&css_set_rwsem);
2661
2662 /* NULL dst indicates self on default hierarchy */
2663 ret = cgroup_migrate_prepare_dst(NULL, &preloaded_csets);
2664 if (ret)
2665 goto out_finish;
2666
2667 list_for_each_entry(src_cset, &preloaded_csets, mg_preload_node) {
2668 struct task_struct *last_task = NULL, *task;
2669
2670 /* src_csets precede dst_csets, break on the first dst_cset */
2671 if (!src_cset->mg_src_cgrp)
2672 break;
2673
2674 /*
2675 * All tasks in src_cset need to be migrated to the
2676 * matching dst_cset. Empty it process by process. We
2677 * walk tasks but migrate processes. The leader might even
2678 * belong to a different cset but such src_cset would also
2679 * be among the target src_csets because the default
2680 * hierarchy enforces per-process membership.
2681 */
2682 while (true) {
2683 down_read(&css_set_rwsem);
2684 task = list_first_entry_or_null(&src_cset->tasks,
2685 struct task_struct, cg_list);
2686 if (task) {
2687 task = task->group_leader;
2688 WARN_ON_ONCE(!task_css_set(task)->mg_src_cgrp);
2689 get_task_struct(task);
2690 }
2691 up_read(&css_set_rwsem);
2692
2693 if (!task)
2694 break;
2695
2696 /* guard against possible infinite loop */
2697 if (WARN(last_task == task,
2698 "cgroup: update_dfl_csses failed to make progress, aborting in inconsistent state\n"))
2699 goto out_finish;
2700 last_task = task;
2701
2702 ret = cgroup_migrate(src_cset->dfl_cgrp, task, true);
2703
2704 put_task_struct(task);
2705
2706 if (WARN(ret, "cgroup: failed to update controllers for the default hierarchy (%d), further operations may crash or hang\n", ret))
2707 goto out_finish;
2708 }
2709 }
2710
2711 out_finish:
2712 cgroup_migrate_finish(&preloaded_csets);
2713 percpu_up_write(&cgroup_threadgroup_rwsem);
2714 return ret;
2715 }
2716
2717 /* change the enabled child controllers for a cgroup in the default hierarchy */
2718 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
2719 char *buf, size_t nbytes,
2720 loff_t off)
2721 {
2722 unsigned long enable = 0, disable = 0;
2723 unsigned long css_enable, css_disable, old_sc, new_sc, old_ss, new_ss;
2724 struct cgroup *cgrp, *child;
2725 struct cgroup_subsys *ss;
2726 char *tok;
2727 int ssid, ret;
2728
2729 /*
2730 * Parse input - space separated list of subsystem names prefixed
2731 * with either + or -.
2732 */
2733 buf = strstrip(buf);
2734 while ((tok = strsep(&buf, " "))) {
2735 unsigned long tmp_ss_mask = ~cgrp_dfl_root_inhibit_ss_mask;
2736
2737 if (tok[0] == '\0')
2738 continue;
2739 for_each_subsys_which(ss, ssid, &tmp_ss_mask) {
2740 if (ss->disabled || strcmp(tok + 1, ss->name))
2741 continue;
2742
2743 if (*tok == '+') {
2744 enable |= 1 << ssid;
2745 disable &= ~(1 << ssid);
2746 } else if (*tok == '-') {
2747 disable |= 1 << ssid;
2748 enable &= ~(1 << ssid);
2749 } else {
2750 return -EINVAL;
2751 }
2752 break;
2753 }
2754 if (ssid == CGROUP_SUBSYS_COUNT)
2755 return -EINVAL;
2756 }
2757
2758 cgrp = cgroup_kn_lock_live(of->kn);
2759 if (!cgrp)
2760 return -ENODEV;
2761
2762 for_each_subsys(ss, ssid) {
2763 if (enable & (1 << ssid)) {
2764 if (cgrp->subtree_control & (1 << ssid)) {
2765 enable &= ~(1 << ssid);
2766 continue;
2767 }
2768
2769 /* unavailable or not enabled on the parent? */
2770 if (!(cgrp_dfl_root.subsys_mask & (1 << ssid)) ||
2771 (cgroup_parent(cgrp) &&
2772 !(cgroup_parent(cgrp)->subtree_control & (1 << ssid)))) {
2773 ret = -ENOENT;
2774 goto out_unlock;
2775 }
2776 } else if (disable & (1 << ssid)) {
2777 if (!(cgrp->subtree_control & (1 << ssid))) {
2778 disable &= ~(1 << ssid);
2779 continue;
2780 }
2781
2782 /* a child has it enabled? */
2783 cgroup_for_each_live_child(child, cgrp) {
2784 if (child->subtree_control & (1 << ssid)) {
2785 ret = -EBUSY;
2786 goto out_unlock;
2787 }
2788 }
2789 }
2790 }
2791
2792 if (!enable && !disable) {
2793 ret = 0;
2794 goto out_unlock;
2795 }
2796
2797 /*
2798 * Except for the root, subtree_control must be zero for a cgroup
2799 * with tasks so that child cgroups don't compete against tasks.
2800 */
2801 if (enable && cgroup_parent(cgrp) && !list_empty(&cgrp->cset_links)) {
2802 ret = -EBUSY;
2803 goto out_unlock;
2804 }
2805
2806 /*
2807 * Update subsys masks and calculate what needs to be done. More
2808 * subsystems than specified may need to be enabled or disabled
2809 * depending on subsystem dependencies.
2810 */
2811 old_sc = cgrp->subtree_control;
2812 old_ss = cgrp->child_subsys_mask;
2813 new_sc = (old_sc | enable) & ~disable;
2814 new_ss = cgroup_calc_child_subsys_mask(cgrp, new_sc);
2815
2816 css_enable = ~old_ss & new_ss;
2817 css_disable = old_ss & ~new_ss;
2818 enable |= css_enable;
2819 disable |= css_disable;
2820
2821 /*
2822 * Because css offlining is asynchronous, userland might try to
2823 * re-enable the same controller while the previous instance is
2824 * still around. In such cases, wait till it's gone using
2825 * offline_waitq.
2826 */
2827 for_each_subsys_which(ss, ssid, &css_enable) {
2828 cgroup_for_each_live_child(child, cgrp) {
2829 DEFINE_WAIT(wait);
2830
2831 if (!cgroup_css(child, ss))
2832 continue;
2833
2834 cgroup_get(child);
2835 prepare_to_wait(&child->offline_waitq, &wait,
2836 TASK_UNINTERRUPTIBLE);
2837 cgroup_kn_unlock(of->kn);
2838 schedule();
2839 finish_wait(&child->offline_waitq, &wait);
2840 cgroup_put(child);
2841
2842 return restart_syscall();
2843 }
2844 }
2845
2846 cgrp->subtree_control = new_sc;
2847 cgrp->child_subsys_mask = new_ss;
2848
2849 /*
2850 * Create new csses or make the existing ones visible. A css is
2851 * created invisible if it's being implicitly enabled through
2852 * dependency. An invisible css is made visible when the userland
2853 * explicitly enables it.
2854 */
2855 for_each_subsys(ss, ssid) {
2856 if (!(enable & (1 << ssid)))
2857 continue;
2858
2859 cgroup_for_each_live_child(child, cgrp) {
2860 if (css_enable & (1 << ssid))
2861 ret = create_css(child, ss,
2862 cgrp->subtree_control & (1 << ssid));
2863 else
2864 ret = cgroup_populate_dir(child, 1 << ssid);
2865 if (ret)
2866 goto err_undo_css;
2867 }
2868 }
2869
2870 /*
2871 * At this point, cgroup_e_css() results reflect the new csses
2872 * making the following cgroup_update_dfl_csses() properly update
2873 * css associations of all tasks in the subtree.
2874 */
2875 ret = cgroup_update_dfl_csses(cgrp);
2876 if (ret)
2877 goto err_undo_css;
2878
2879 /*
2880 * All tasks are migrated out of disabled csses. Kill or hide
2881 * them. A css is hidden when the userland requests it to be
2882 * disabled while other subsystems are still depending on it. The
2883 * css must not actively control resources and be in the vanilla
2884 * state if it's made visible again later. Controllers which may
2885 * be depended upon should provide ->css_reset() for this purpose.
2886 */
2887 for_each_subsys(ss, ssid) {
2888 if (!(disable & (1 << ssid)))
2889 continue;
2890
2891 cgroup_for_each_live_child(child, cgrp) {
2892 struct cgroup_subsys_state *css = cgroup_css(child, ss);
2893
2894 if (css_disable & (1 << ssid)) {
2895 kill_css(css);
2896 } else {
2897 cgroup_clear_dir(child, 1 << ssid);
2898 if (ss->css_reset)
2899 ss->css_reset(css);
2900 }
2901 }
2902 }
2903
2904 /*
2905 * The effective csses of all the descendants (excluding @cgrp) may
2906 * have changed. Subsystems can optionally subscribe to this event
2907 * by implementing ->css_e_css_changed() which is invoked if any of
2908 * the effective csses seen from the css's cgroup may have changed.
2909 */
2910 for_each_subsys(ss, ssid) {
2911 struct cgroup_subsys_state *this_css = cgroup_css(cgrp, ss);
2912 struct cgroup_subsys_state *css;
2913
2914 if (!ss->css_e_css_changed || !this_css)
2915 continue;
2916
2917 css_for_each_descendant_pre(css, this_css)
2918 if (css != this_css)
2919 ss->css_e_css_changed(css);
2920 }
2921
2922 kernfs_activate(cgrp->kn);
2923 ret = 0;
2924 out_unlock:
2925 cgroup_kn_unlock(of->kn);
2926 return ret ?: nbytes;
2927
2928 err_undo_css:
2929 cgrp->subtree_control = old_sc;
2930 cgrp->child_subsys_mask = old_ss;
2931
2932 for_each_subsys(ss, ssid) {
2933 if (!(enable & (1 << ssid)))
2934 continue;
2935
2936 cgroup_for_each_live_child(child, cgrp) {
2937 struct cgroup_subsys_state *css = cgroup_css(child, ss);
2938
2939 if (!css)
2940 continue;
2941
2942 if (css_enable & (1 << ssid))
2943 kill_css(css);
2944 else
2945 cgroup_clear_dir(child, 1 << ssid);
2946 }
2947 }
2948 goto out_unlock;
2949 }
2950
2951 static int cgroup_populated_show(struct seq_file *seq, void *v)
2952 {
2953 seq_printf(seq, "%d\n", (bool)seq_css(seq)->cgroup->populated_cnt);
2954 return 0;
2955 }
2956
2957 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
2958 size_t nbytes, loff_t off)
2959 {
2960 struct cgroup *cgrp = of->kn->parent->priv;
2961 struct cftype *cft = of->kn->priv;
2962 struct cgroup_subsys_state *css;
2963 int ret;
2964
2965 if (cft->write)
2966 return cft->write(of, buf, nbytes, off);
2967
2968 /*
2969 * kernfs guarantees that a file isn't deleted with operations in
2970 * flight, which means that the matching css is and stays alive and
2971 * doesn't need to be pinned. The RCU locking is not necessary
2972 * either. It's just for the convenience of using cgroup_css().
2973 */
2974 rcu_read_lock();
2975 css = cgroup_css(cgrp, cft->ss);
2976 rcu_read_unlock();
2977
2978 if (cft->write_u64) {
2979 unsigned long long v;
2980 ret = kstrtoull(buf, 0, &v);
2981 if (!ret)
2982 ret = cft->write_u64(css, cft, v);
2983 } else if (cft->write_s64) {
2984 long long v;
2985 ret = kstrtoll(buf, 0, &v);
2986 if (!ret)
2987 ret = cft->write_s64(css, cft, v);
2988 } else {
2989 ret = -EINVAL;
2990 }
2991
2992 return ret ?: nbytes;
2993 }
2994
2995 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
2996 {
2997 return seq_cft(seq)->seq_start(seq, ppos);
2998 }
2999
3000 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
3001 {
3002 return seq_cft(seq)->seq_next(seq, v, ppos);
3003 }
3004
3005 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
3006 {
3007 seq_cft(seq)->seq_stop(seq, v);
3008 }
3009
3010 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
3011 {
3012 struct cftype *cft = seq_cft(m);
3013 struct cgroup_subsys_state *css = seq_css(m);
3014
3015 if (cft->seq_show)
3016 return cft->seq_show(m, arg);
3017
3018 if (cft->read_u64)
3019 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3020 else if (cft->read_s64)
3021 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3022 else
3023 return -EINVAL;
3024 return 0;
3025 }
3026
3027 static struct kernfs_ops cgroup_kf_single_ops = {
3028 .atomic_write_len = PAGE_SIZE,
3029 .write = cgroup_file_write,
3030 .seq_show = cgroup_seqfile_show,
3031 };
3032
3033 static struct kernfs_ops cgroup_kf_ops = {
3034 .atomic_write_len = PAGE_SIZE,
3035 .write = cgroup_file_write,
3036 .seq_start = cgroup_seqfile_start,
3037 .seq_next = cgroup_seqfile_next,
3038 .seq_stop = cgroup_seqfile_stop,
3039 .seq_show = cgroup_seqfile_show,
3040 };
3041
3042 /*
3043 * cgroup_rename - Only allow simple rename of directories in place.
3044 */
3045 static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
3046 const char *new_name_str)
3047 {
3048 struct cgroup *cgrp = kn->priv;
3049 int ret;
3050
3051 if (kernfs_type(kn) != KERNFS_DIR)
3052 return -ENOTDIR;
3053 if (kn->parent != new_parent)
3054 return -EIO;
3055
3056 /*
3057 * This isn't a proper migration and its usefulness is very
3058 * limited. Disallow on the default hierarchy.
3059 */
3060 if (cgroup_on_dfl(cgrp))
3061 return -EPERM;
3062
3063 /*
3064 * We're gonna grab cgroup_mutex which nests outside kernfs
3065 * active_ref. kernfs_rename() doesn't require active_ref
3066 * protection. Break them before grabbing cgroup_mutex.
3067 */
3068 kernfs_break_active_protection(new_parent);
3069 kernfs_break_active_protection(kn);
3070
3071 mutex_lock(&cgroup_mutex);
3072
3073 ret = kernfs_rename(kn, new_parent, new_name_str);
3074
3075 mutex_unlock(&cgroup_mutex);
3076
3077 kernfs_unbreak_active_protection(kn);
3078 kernfs_unbreak_active_protection(new_parent);
3079 return ret;
3080 }
3081
3082 /* set uid and gid of cgroup dirs and files to that of the creator */
3083 static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3084 {
3085 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3086 .ia_uid = current_fsuid(),
3087 .ia_gid = current_fsgid(), };
3088
3089 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3090 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3091 return 0;
3092
3093 return kernfs_setattr(kn, &iattr);
3094 }
3095
3096 static int cgroup_add_file(struct cgroup *cgrp, struct cftype *cft)
3097 {
3098 char name[CGROUP_FILE_NAME_MAX];
3099 struct kernfs_node *kn;
3100 struct lock_class_key *key = NULL;
3101 int ret;
3102
3103 #ifdef CONFIG_DEBUG_LOCK_ALLOC
3104 key = &cft->lockdep_key;
3105 #endif
3106 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3107 cgroup_file_mode(cft), 0, cft->kf_ops, cft,
3108 NULL, key);
3109 if (IS_ERR(kn))
3110 return PTR_ERR(kn);
3111
3112 ret = cgroup_kn_set_ugid(kn);
3113 if (ret) {
3114 kernfs_remove(kn);
3115 return ret;
3116 }
3117
3118 if (cft->write == cgroup_procs_write)
3119 cgrp->procs_kn = kn;
3120 else if (cft->seq_show == cgroup_populated_show)
3121 cgrp->populated_kn = kn;
3122 return 0;
3123 }
3124
3125 /**
3126 * cgroup_addrm_files - add or remove files to a cgroup directory
3127 * @cgrp: the target cgroup
3128 * @cfts: array of cftypes to be added
3129 * @is_add: whether to add or remove
3130 *
3131 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
3132 * For removals, this function never fails. If addition fails, this
3133 * function doesn't remove files already added. The caller is responsible
3134 * for cleaning up.
3135 */
3136 static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
3137 bool is_add)
3138 {
3139 struct cftype *cft;
3140 int ret;
3141
3142 lockdep_assert_held(&cgroup_mutex);
3143
3144 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3145 /* does cft->flags tell us to skip this file on @cgrp? */
3146 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
3147 continue;
3148 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
3149 continue;
3150 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
3151 continue;
3152 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
3153 continue;
3154
3155 if (is_add) {
3156 ret = cgroup_add_file(cgrp, cft);
3157 if (ret) {
3158 pr_warn("%s: failed to add %s, err=%d\n",
3159 __func__, cft->name, ret);
3160 return ret;
3161 }
3162 } else {
3163 cgroup_rm_file(cgrp, cft);
3164 }
3165 }
3166 return 0;
3167 }
3168
3169 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
3170 {
3171 LIST_HEAD(pending);
3172 struct cgroup_subsys *ss = cfts[0].ss;
3173 struct cgroup *root = &ss->root->cgrp;
3174 struct cgroup_subsys_state *css;
3175 int ret = 0;
3176
3177 lockdep_assert_held(&cgroup_mutex);
3178
3179 /* add/rm files for all cgroups created before */
3180 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
3181 struct cgroup *cgrp = css->cgroup;
3182
3183 if (cgroup_is_dead(cgrp))
3184 continue;
3185
3186 ret = cgroup_addrm_files(cgrp, cfts, is_add);
3187 if (ret)
3188 break;
3189 }
3190
3191 if (is_add && !ret)
3192 kernfs_activate(root->kn);
3193 return ret;
3194 }
3195
3196 static void cgroup_exit_cftypes(struct cftype *cfts)
3197 {
3198 struct cftype *cft;
3199
3200 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3201 /* free copy for custom atomic_write_len, see init_cftypes() */
3202 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3203 kfree(cft->kf_ops);
3204 cft->kf_ops = NULL;
3205 cft->ss = NULL;
3206
3207 /* revert flags set by cgroup core while adding @cfts */
3208 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
3209 }
3210 }
3211
3212 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3213 {
3214 struct cftype *cft;
3215
3216 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3217 struct kernfs_ops *kf_ops;
3218
3219 WARN_ON(cft->ss || cft->kf_ops);
3220
3221 if (cft->seq_start)
3222 kf_ops = &cgroup_kf_ops;
3223 else
3224 kf_ops = &cgroup_kf_single_ops;
3225
3226 /*
3227 * Ugh... if @cft wants a custom max_write_len, we need to
3228 * make a copy of kf_ops to set its atomic_write_len.
3229 */
3230 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3231 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3232 if (!kf_ops) {
3233 cgroup_exit_cftypes(cfts);
3234 return -ENOMEM;
3235 }
3236 kf_ops->atomic_write_len = cft->max_write_len;
3237 }
3238
3239 cft->kf_ops = kf_ops;
3240 cft->ss = ss;
3241 }
3242
3243 return 0;
3244 }
3245
3246 static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3247 {
3248 lockdep_assert_held(&cgroup_mutex);
3249
3250 if (!cfts || !cfts[0].ss)
3251 return -ENOENT;
3252
3253 list_del(&cfts->node);
3254 cgroup_apply_cftypes(cfts, false);
3255 cgroup_exit_cftypes(cfts);
3256 return 0;
3257 }
3258
3259 /**
3260 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
3261 * @cfts: zero-length name terminated array of cftypes
3262 *
3263 * Unregister @cfts. Files described by @cfts are removed from all
3264 * existing cgroups and all future cgroups won't have them either. This
3265 * function can be called anytime whether @cfts' subsys is attached or not.
3266 *
3267 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
3268 * registered.
3269 */
3270 int cgroup_rm_cftypes(struct cftype *cfts)
3271 {
3272 int ret;
3273
3274 mutex_lock(&cgroup_mutex);
3275 ret = cgroup_rm_cftypes_locked(cfts);
3276 mutex_unlock(&cgroup_mutex);
3277 return ret;
3278 }
3279
3280 /**
3281 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3282 * @ss: target cgroup subsystem
3283 * @cfts: zero-length name terminated array of cftypes
3284 *
3285 * Register @cfts to @ss. Files described by @cfts are created for all
3286 * existing cgroups to which @ss is attached and all future cgroups will
3287 * have them too. This function can be called anytime whether @ss is
3288 * attached or not.
3289 *
3290 * Returns 0 on successful registration, -errno on failure. Note that this
3291 * function currently returns 0 as long as @cfts registration is successful
3292 * even if some file creation attempts on existing cgroups fail.
3293 */
3294 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3295 {
3296 int ret;
3297
3298 if (ss->disabled)
3299 return 0;
3300
3301 if (!cfts || cfts[0].name[0] == '\0')
3302 return 0;
3303
3304 ret = cgroup_init_cftypes(ss, cfts);
3305 if (ret)
3306 return ret;
3307
3308 mutex_lock(&cgroup_mutex);
3309
3310 list_add_tail(&cfts->node, &ss->cfts);
3311 ret = cgroup_apply_cftypes(cfts, true);
3312 if (ret)
3313 cgroup_rm_cftypes_locked(cfts);
3314
3315 mutex_unlock(&cgroup_mutex);
3316 return ret;
3317 }
3318
3319 /**
3320 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3321 * @ss: target cgroup subsystem
3322 * @cfts: zero-length name terminated array of cftypes
3323 *
3324 * Similar to cgroup_add_cftypes() but the added files are only used for
3325 * the default hierarchy.
3326 */
3327 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3328 {
3329 struct cftype *cft;
3330
3331 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3332 cft->flags |= __CFTYPE_ONLY_ON_DFL;
3333 return cgroup_add_cftypes(ss, cfts);
3334 }
3335
3336 /**
3337 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3338 * @ss: target cgroup subsystem
3339 * @cfts: zero-length name terminated array of cftypes
3340 *
3341 * Similar to cgroup_add_cftypes() but the added files are only used for
3342 * the legacy hierarchies.
3343 */
3344 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3345 {
3346 struct cftype *cft;
3347
3348 /*
3349 * If legacy_flies_on_dfl, we want to show the legacy files on the
3350 * dfl hierarchy but iff the target subsystem hasn't been updated
3351 * for the dfl hierarchy yet.
3352 */
3353 if (!cgroup_legacy_files_on_dfl ||
3354 ss->dfl_cftypes != ss->legacy_cftypes) {
3355 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3356 cft->flags |= __CFTYPE_NOT_ON_DFL;
3357 }
3358
3359 return cgroup_add_cftypes(ss, cfts);
3360 }
3361
3362 /**
3363 * cgroup_task_count - count the number of tasks in a cgroup.
3364 * @cgrp: the cgroup in question
3365 *
3366 * Return the number of tasks in the cgroup.
3367 */
3368 static int cgroup_task_count(const struct cgroup *cgrp)
3369 {
3370 int count = 0;
3371 struct cgrp_cset_link *link;
3372
3373 down_read(&css_set_rwsem);
3374 list_for_each_entry(link, &cgrp->cset_links, cset_link)
3375 count += atomic_read(&link->cset->refcount);
3376 up_read(&css_set_rwsem);
3377 return count;
3378 }
3379
3380 /**
3381 * css_next_child - find the next child of a given css
3382 * @pos: the current position (%NULL to initiate traversal)
3383 * @parent: css whose children to walk
3384 *
3385 * This function returns the next child of @parent and should be called
3386 * under either cgroup_mutex or RCU read lock. The only requirement is
3387 * that @parent and @pos are accessible. The next sibling is guaranteed to
3388 * be returned regardless of their states.
3389 *
3390 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3391 * css which finished ->css_online() is guaranteed to be visible in the
3392 * future iterations and will stay visible until the last reference is put.
3393 * A css which hasn't finished ->css_online() or already finished
3394 * ->css_offline() may show up during traversal. It's each subsystem's
3395 * responsibility to synchronize against on/offlining.
3396 */
3397 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
3398 struct cgroup_subsys_state *parent)
3399 {
3400 struct cgroup_subsys_state *next;
3401
3402 cgroup_assert_mutex_or_rcu_locked();
3403
3404 /*
3405 * @pos could already have been unlinked from the sibling list.
3406 * Once a cgroup is removed, its ->sibling.next is no longer
3407 * updated when its next sibling changes. CSS_RELEASED is set when
3408 * @pos is taken off list, at which time its next pointer is valid,
3409 * and, as releases are serialized, the one pointed to by the next
3410 * pointer is guaranteed to not have started release yet. This
3411 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3412 * critical section, the one pointed to by its next pointer is
3413 * guaranteed to not have finished its RCU grace period even if we
3414 * have dropped rcu_read_lock() inbetween iterations.
3415 *
3416 * If @pos has CSS_RELEASED set, its next pointer can't be
3417 * dereferenced; however, as each css is given a monotonically
3418 * increasing unique serial number and always appended to the
3419 * sibling list, the next one can be found by walking the parent's
3420 * children until the first css with higher serial number than
3421 * @pos's. While this path can be slower, it happens iff iteration
3422 * races against release and the race window is very small.
3423 */
3424 if (!pos) {
3425 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
3426 } else if (likely(!(pos->flags & CSS_RELEASED))) {
3427 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
3428 } else {
3429 list_for_each_entry_rcu(next, &parent->children, sibling)
3430 if (next->serial_nr > pos->serial_nr)
3431 break;
3432 }
3433
3434 /*
3435 * @next, if not pointing to the head, can be dereferenced and is
3436 * the next sibling.
3437 */
3438 if (&next->sibling != &parent->children)
3439 return next;
3440 return NULL;
3441 }
3442
3443 /**
3444 * css_next_descendant_pre - find the next descendant for pre-order walk
3445 * @pos: the current position (%NULL to initiate traversal)
3446 * @root: css whose descendants to walk
3447 *
3448 * To be used by css_for_each_descendant_pre(). Find the next descendant
3449 * to visit for pre-order traversal of @root's descendants. @root is
3450 * included in the iteration and the first node to be visited.
3451 *
3452 * While this function requires cgroup_mutex or RCU read locking, it
3453 * doesn't require the whole traversal to be contained in a single critical
3454 * section. This function will return the correct next descendant as long
3455 * as both @pos and @root are accessible and @pos is a descendant of @root.
3456 *
3457 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3458 * css which finished ->css_online() is guaranteed to be visible in the
3459 * future iterations and will stay visible until the last reference is put.
3460 * A css which hasn't finished ->css_online() or already finished
3461 * ->css_offline() may show up during traversal. It's each subsystem's
3462 * responsibility to synchronize against on/offlining.
3463 */
3464 struct cgroup_subsys_state *
3465 css_next_descendant_pre(struct cgroup_subsys_state *pos,
3466 struct cgroup_subsys_state *root)
3467 {
3468 struct cgroup_subsys_state *next;
3469
3470 cgroup_assert_mutex_or_rcu_locked();
3471
3472 /* if first iteration, visit @root */
3473 if (!pos)
3474 return root;
3475
3476 /* visit the first child if exists */
3477 next = css_next_child(NULL, pos);
3478 if (next)
3479 return next;
3480
3481 /* no child, visit my or the closest ancestor's next sibling */
3482 while (pos != root) {
3483 next = css_next_child(pos, pos->parent);
3484 if (next)
3485 return next;
3486 pos = pos->parent;
3487 }
3488
3489 return NULL;
3490 }
3491
3492 /**
3493 * css_rightmost_descendant - return the rightmost descendant of a css
3494 * @pos: css of interest
3495 *
3496 * Return the rightmost descendant of @pos. If there's no descendant, @pos
3497 * is returned. This can be used during pre-order traversal to skip
3498 * subtree of @pos.
3499 *
3500 * While this function requires cgroup_mutex or RCU read locking, it
3501 * doesn't require the whole traversal to be contained in a single critical
3502 * section. This function will return the correct rightmost descendant as
3503 * long as @pos is accessible.
3504 */
3505 struct cgroup_subsys_state *
3506 css_rightmost_descendant(struct cgroup_subsys_state *pos)
3507 {
3508 struct cgroup_subsys_state *last, *tmp;
3509
3510 cgroup_assert_mutex_or_rcu_locked();
3511
3512 do {
3513 last = pos;
3514 /* ->prev isn't RCU safe, walk ->next till the end */
3515 pos = NULL;
3516 css_for_each_child(tmp, last)
3517 pos = tmp;
3518 } while (pos);
3519
3520 return last;
3521 }
3522
3523 static struct cgroup_subsys_state *
3524 css_leftmost_descendant(struct cgroup_subsys_state *pos)
3525 {
3526 struct cgroup_subsys_state *last;
3527
3528 do {
3529 last = pos;
3530 pos = css_next_child(NULL, pos);
3531 } while (pos);
3532
3533 return last;
3534 }
3535
3536 /**
3537 * css_next_descendant_post - find the next descendant for post-order walk
3538 * @pos: the current position (%NULL to initiate traversal)
3539 * @root: css whose descendants to walk
3540 *
3541 * To be used by css_for_each_descendant_post(). Find the next descendant
3542 * to visit for post-order traversal of @root's descendants. @root is
3543 * included in the iteration and the last node to be visited.
3544 *
3545 * While this function requires cgroup_mutex or RCU read locking, it
3546 * doesn't require the whole traversal to be contained in a single critical
3547 * section. This function will return the correct next descendant as long
3548 * as both @pos and @cgroup are accessible and @pos is a descendant of
3549 * @cgroup.
3550 *
3551 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3552 * css which finished ->css_online() is guaranteed to be visible in the
3553 * future iterations and will stay visible until the last reference is put.
3554 * A css which hasn't finished ->css_online() or already finished
3555 * ->css_offline() may show up during traversal. It's each subsystem's
3556 * responsibility to synchronize against on/offlining.
3557 */
3558 struct cgroup_subsys_state *
3559 css_next_descendant_post(struct cgroup_subsys_state *pos,
3560 struct cgroup_subsys_state *root)
3561 {
3562 struct cgroup_subsys_state *next;
3563
3564 cgroup_assert_mutex_or_rcu_locked();
3565
3566 /* if first iteration, visit leftmost descendant which may be @root */
3567 if (!pos)
3568 return css_leftmost_descendant(root);
3569
3570 /* if we visited @root, we're done */
3571 if (pos == root)
3572 return NULL;
3573
3574 /* if there's an unvisited sibling, visit its leftmost descendant */
3575 next = css_next_child(pos, pos->parent);
3576 if (next)
3577 return css_leftmost_descendant(next);
3578
3579 /* no sibling left, visit parent */
3580 return pos->parent;
3581 }
3582
3583 /**
3584 * css_has_online_children - does a css have online children
3585 * @css: the target css
3586 *
3587 * Returns %true if @css has any online children; otherwise, %false. This
3588 * function can be called from any context but the caller is responsible
3589 * for synchronizing against on/offlining as necessary.
3590 */
3591 bool css_has_online_children(struct cgroup_subsys_state *css)
3592 {
3593 struct cgroup_subsys_state *child;
3594 bool ret = false;
3595
3596 rcu_read_lock();
3597 css_for_each_child(child, css) {
3598 if (child->flags & CSS_ONLINE) {
3599 ret = true;
3600 break;
3601 }
3602 }
3603 rcu_read_unlock();
3604 return ret;
3605 }
3606
3607 /**
3608 * css_advance_task_iter - advance a task itererator to the next css_set
3609 * @it: the iterator to advance
3610 *
3611 * Advance @it to the next css_set to walk.
3612 */
3613 static void css_advance_task_iter(struct css_task_iter *it)
3614 {
3615 struct list_head *l = it->cset_pos;
3616 struct cgrp_cset_link *link;
3617 struct css_set *cset;
3618
3619 /* Advance to the next non-empty css_set */
3620 do {
3621 l = l->next;
3622 if (l == it->cset_head) {
3623 it->cset_pos = NULL;
3624 return;
3625 }
3626
3627 if (it->ss) {
3628 cset = container_of(l, struct css_set,
3629 e_cset_node[it->ss->id]);
3630 } else {
3631 link = list_entry(l, struct cgrp_cset_link, cset_link);
3632 cset = link->cset;
3633 }
3634 } while (list_empty(&cset->tasks) && list_empty(&cset->mg_tasks));
3635
3636 it->cset_pos = l;
3637
3638 if (!list_empty(&cset->tasks))
3639 it->task_pos = cset->tasks.next;
3640 else
3641 it->task_pos = cset->mg_tasks.next;
3642
3643 it->tasks_head = &cset->tasks;
3644 it->mg_tasks_head = &cset->mg_tasks;
3645 }
3646
3647 /**
3648 * css_task_iter_start - initiate task iteration
3649 * @css: the css to walk tasks of
3650 * @it: the task iterator to use
3651 *
3652 * Initiate iteration through the tasks of @css. The caller can call
3653 * css_task_iter_next() to walk through the tasks until the function
3654 * returns NULL. On completion of iteration, css_task_iter_end() must be
3655 * called.
3656 *
3657 * Note that this function acquires a lock which is released when the
3658 * iteration finishes. The caller can't sleep while iteration is in
3659 * progress.
3660 */
3661 void css_task_iter_start(struct cgroup_subsys_state *css,
3662 struct css_task_iter *it)
3663 __acquires(css_set_rwsem)
3664 {
3665 /* no one should try to iterate before mounting cgroups */
3666 WARN_ON_ONCE(!use_task_css_set_links);
3667
3668 down_read(&css_set_rwsem);
3669
3670 it->ss = css->ss;
3671
3672 if (it->ss)
3673 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
3674 else
3675 it->cset_pos = &css->cgroup->cset_links;
3676
3677 it->cset_head = it->cset_pos;
3678
3679 css_advance_task_iter(it);
3680 }
3681
3682 /**
3683 * css_task_iter_next - return the next task for the iterator
3684 * @it: the task iterator being iterated
3685 *
3686 * The "next" function for task iteration. @it should have been
3687 * initialized via css_task_iter_start(). Returns NULL when the iteration
3688 * reaches the end.
3689 */
3690 struct task_struct *css_task_iter_next(struct css_task_iter *it)
3691 {
3692 struct task_struct *res;
3693 struct list_head *l = it->task_pos;
3694
3695 /* If the iterator cg is NULL, we have no tasks */
3696 if (!it->cset_pos)
3697 return NULL;
3698 res = list_entry(l, struct task_struct, cg_list);
3699
3700 /*
3701 * Advance iterator to find next entry. cset->tasks is consumed
3702 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
3703 * next cset.
3704 */
3705 l = l->next;
3706
3707 if (l == it->tasks_head)
3708 l = it->mg_tasks_head->next;
3709
3710 if (l == it->mg_tasks_head)
3711 css_advance_task_iter(it);
3712 else
3713 it->task_pos = l;
3714
3715 return res;
3716 }
3717
3718 /**
3719 * css_task_iter_end - finish task iteration
3720 * @it: the task iterator to finish
3721 *
3722 * Finish task iteration started by css_task_iter_start().
3723 */
3724 void css_task_iter_end(struct css_task_iter *it)
3725 __releases(css_set_rwsem)
3726 {
3727 up_read(&css_set_rwsem);
3728 }
3729
3730 /**
3731 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
3732 * @to: cgroup to which the tasks will be moved
3733 * @from: cgroup in which the tasks currently reside
3734 *
3735 * Locking rules between cgroup_post_fork() and the migration path
3736 * guarantee that, if a task is forking while being migrated, the new child
3737 * is guaranteed to be either visible in the source cgroup after the
3738 * parent's migration is complete or put into the target cgroup. No task
3739 * can slip out of migration through forking.
3740 */
3741 int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
3742 {
3743 LIST_HEAD(preloaded_csets);
3744 struct cgrp_cset_link *link;
3745 struct css_task_iter it;
3746 struct task_struct *task;
3747 int ret;
3748
3749 mutex_lock(&cgroup_mutex);
3750
3751 /* all tasks in @from are being moved, all csets are source */
3752 down_read(&css_set_rwsem);
3753 list_for_each_entry(link, &from->cset_links, cset_link)
3754 cgroup_migrate_add_src(link->cset, to, &preloaded_csets);
3755 up_read(&css_set_rwsem);
3756
3757 ret = cgroup_migrate_prepare_dst(to, &preloaded_csets);
3758 if (ret)
3759 goto out_err;
3760
3761 /*
3762 * Migrate tasks one-by-one until @form is empty. This fails iff
3763 * ->can_attach() fails.
3764 */
3765 do {
3766 css_task_iter_start(&from->self, &it);
3767 task = css_task_iter_next(&it);
3768 if (task)
3769 get_task_struct(task);
3770 css_task_iter_end(&it);
3771
3772 if (task) {
3773 ret = cgroup_migrate(to, task, false);
3774 put_task_struct(task);
3775 }
3776 } while (task && !ret);
3777 out_err:
3778 cgroup_migrate_finish(&preloaded_csets);
3779 mutex_unlock(&cgroup_mutex);
3780 return ret;
3781 }
3782
3783 /*
3784 * Stuff for reading the 'tasks'/'procs' files.
3785 *
3786 * Reading this file can return large amounts of data if a cgroup has
3787 * *lots* of attached tasks. So it may need several calls to read(),
3788 * but we cannot guarantee that the information we produce is correct
3789 * unless we produce it entirely atomically.
3790 *
3791 */
3792
3793 /* which pidlist file are we talking about? */
3794 enum cgroup_filetype {
3795 CGROUP_FILE_PROCS,
3796 CGROUP_FILE_TASKS,
3797 };
3798
3799 /*
3800 * A pidlist is a list of pids that virtually represents the contents of one
3801 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
3802 * a pair (one each for procs, tasks) for each pid namespace that's relevant
3803 * to the cgroup.
3804 */
3805 struct cgroup_pidlist {
3806 /*
3807 * used to find which pidlist is wanted. doesn't change as long as
3808 * this particular list stays in the list.
3809 */
3810 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
3811 /* array of xids */
3812 pid_t *list;
3813 /* how many elements the above list has */
3814 int length;
3815 /* each of these stored in a list by its cgroup */
3816 struct list_head links;
3817 /* pointer to the cgroup we belong to, for list removal purposes */
3818 struct cgroup *owner;
3819 /* for delayed destruction */
3820 struct delayed_work destroy_dwork;
3821 };
3822
3823 /*
3824 * The following two functions "fix" the issue where there are more pids
3825 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3826 * TODO: replace with a kernel-wide solution to this problem
3827 */
3828 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
3829 static void *pidlist_allocate(int count)
3830 {
3831 if (PIDLIST_TOO_LARGE(count))
3832 return vmalloc(count * sizeof(pid_t));
3833 else
3834 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
3835 }
3836
3837 static void pidlist_free(void *p)
3838 {
3839 kvfree(p);
3840 }
3841
3842 /*
3843 * Used to destroy all pidlists lingering waiting for destroy timer. None
3844 * should be left afterwards.
3845 */
3846 static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
3847 {
3848 struct cgroup_pidlist *l, *tmp_l;
3849
3850 mutex_lock(&cgrp->pidlist_mutex);
3851 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
3852 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
3853 mutex_unlock(&cgrp->pidlist_mutex);
3854
3855 flush_workqueue(cgroup_pidlist_destroy_wq);
3856 BUG_ON(!list_empty(&cgrp->pidlists));
3857 }
3858
3859 static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
3860 {
3861 struct delayed_work *dwork = to_delayed_work(work);
3862 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
3863 destroy_dwork);
3864 struct cgroup_pidlist *tofree = NULL;
3865
3866 mutex_lock(&l->owner->pidlist_mutex);
3867
3868 /*
3869 * Destroy iff we didn't get queued again. The state won't change
3870 * as destroy_dwork can only be queued while locked.
3871 */
3872 if (!delayed_work_pending(dwork)) {
3873 list_del(&l->links);
3874 pidlist_free(l->list);
3875 put_pid_ns(l->key.ns);
3876 tofree = l;
3877 }
3878
3879 mutex_unlock(&l->owner->pidlist_mutex);
3880 kfree(tofree);
3881 }
3882
3883 /*
3884 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
3885 * Returns the number of unique elements.
3886 */
3887 static int pidlist_uniq(pid_t *list, int length)
3888 {
3889 int src, dest = 1;
3890
3891 /*
3892 * we presume the 0th element is unique, so i starts at 1. trivial
3893 * edge cases first; no work needs to be done for either
3894 */
3895 if (length == 0 || length == 1)
3896 return length;
3897 /* src and dest walk down the list; dest counts unique elements */
3898 for (src = 1; src < length; src++) {
3899 /* find next unique element */
3900 while (list[src] == list[src-1]) {
3901 src++;
3902 if (src == length)
3903 goto after;
3904 }
3905 /* dest always points to where the next unique element goes */
3906 list[dest] = list[src];
3907 dest++;
3908 }
3909 after:
3910 return dest;
3911 }
3912
3913 /*
3914 * The two pid files - task and cgroup.procs - guaranteed that the result
3915 * is sorted, which forced this whole pidlist fiasco. As pid order is
3916 * different per namespace, each namespace needs differently sorted list,
3917 * making it impossible to use, for example, single rbtree of member tasks
3918 * sorted by task pointer. As pidlists can be fairly large, allocating one
3919 * per open file is dangerous, so cgroup had to implement shared pool of
3920 * pidlists keyed by cgroup and namespace.
3921 *
3922 * All this extra complexity was caused by the original implementation
3923 * committing to an entirely unnecessary property. In the long term, we
3924 * want to do away with it. Explicitly scramble sort order if on the
3925 * default hierarchy so that no such expectation exists in the new
3926 * interface.
3927 *
3928 * Scrambling is done by swapping every two consecutive bits, which is
3929 * non-identity one-to-one mapping which disturbs sort order sufficiently.
3930 */
3931 static pid_t pid_fry(pid_t pid)
3932 {
3933 unsigned a = pid & 0x55555555;
3934 unsigned b = pid & 0xAAAAAAAA;
3935
3936 return (a << 1) | (b >> 1);
3937 }
3938
3939 static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
3940 {
3941 if (cgroup_on_dfl(cgrp))
3942 return pid_fry(pid);
3943 else
3944 return pid;
3945 }
3946
3947 static int cmppid(const void *a, const void *b)
3948 {
3949 return *(pid_t *)a - *(pid_t *)b;
3950 }
3951
3952 static int fried_cmppid(const void *a, const void *b)
3953 {
3954 return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
3955 }
3956
3957 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3958 enum cgroup_filetype type)
3959 {
3960 struct cgroup_pidlist *l;
3961 /* don't need task_nsproxy() if we're looking at ourself */
3962 struct pid_namespace *ns = task_active_pid_ns(current);
3963
3964 lockdep_assert_held(&cgrp->pidlist_mutex);
3965
3966 list_for_each_entry(l, &cgrp->pidlists, links)
3967 if (l->key.type == type && l->key.ns == ns)
3968 return l;
3969 return NULL;
3970 }
3971
3972 /*
3973 * find the appropriate pidlist for our purpose (given procs vs tasks)
3974 * returns with the lock on that pidlist already held, and takes care
3975 * of the use count, or returns NULL with no locks held if we're out of
3976 * memory.
3977 */
3978 static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
3979 enum cgroup_filetype type)
3980 {
3981 struct cgroup_pidlist *l;
3982
3983 lockdep_assert_held(&cgrp->pidlist_mutex);
3984
3985 l = cgroup_pidlist_find(cgrp, type);
3986 if (l)
3987 return l;
3988
3989 /* entry not found; create a new one */
3990 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
3991 if (!l)
3992 return l;
3993
3994 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
3995 l->key.type = type;
3996 /* don't need task_nsproxy() if we're looking at ourself */
3997 l->key.ns = get_pid_ns(task_active_pid_ns(current));
3998 l->owner = cgrp;
3999 list_add(&l->links, &cgrp->pidlists);
4000 return l;
4001 }
4002
4003 /*
4004 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
4005 */
4006 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
4007 struct cgroup_pidlist **lp)
4008 {
4009 pid_t *array;
4010 int length;
4011 int pid, n = 0; /* used for populating the array */
4012 struct css_task_iter it;
4013 struct task_struct *tsk;
4014 struct cgroup_pidlist *l;
4015
4016 lockdep_assert_held(&cgrp->pidlist_mutex);
4017
4018 /*
4019 * If cgroup gets more users after we read count, we won't have
4020 * enough space - tough. This race is indistinguishable to the
4021 * caller from the case that the additional cgroup users didn't
4022 * show up until sometime later on.
4023 */
4024 length = cgroup_task_count(cgrp);
4025 array = pidlist_allocate(length);
4026 if (!array)
4027 return -ENOMEM;
4028 /* now, populate the array */
4029 css_task_iter_start(&cgrp->self, &it);
4030 while ((tsk = css_task_iter_next(&it))) {
4031 if (unlikely(n == length))
4032 break;
4033 /* get tgid or pid for procs or tasks file respectively */
4034 if (type == CGROUP_FILE_PROCS)
4035 pid = task_tgid_vnr(tsk);
4036 else
4037 pid = task_pid_vnr(tsk);
4038 if (pid > 0) /* make sure to only use valid results */
4039 array[n++] = pid;
4040 }
4041 css_task_iter_end(&it);
4042 length = n;
4043 /* now sort & (if procs) strip out duplicates */
4044 if (cgroup_on_dfl(cgrp))
4045 sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
4046 else
4047 sort(array, length, sizeof(pid_t), cmppid, NULL);
4048 if (type == CGROUP_FILE_PROCS)
4049 length = pidlist_uniq(array, length);
4050
4051 l = cgroup_pidlist_find_create(cgrp, type);
4052 if (!l) {
4053 pidlist_free(array);
4054 return -ENOMEM;
4055 }
4056
4057 /* store array, freeing old if necessary */
4058 pidlist_free(l->list);
4059 l->list = array;
4060 l->length = length;
4061 *lp = l;
4062 return 0;
4063 }
4064
4065 /**
4066 * cgroupstats_build - build and fill cgroupstats
4067 * @stats: cgroupstats to fill information into
4068 * @dentry: A dentry entry belonging to the cgroup for which stats have
4069 * been requested.
4070 *
4071 * Build and fill cgroupstats so that taskstats can export it to user
4072 * space.
4073 */
4074 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
4075 {
4076 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
4077 struct cgroup *cgrp;
4078 struct css_task_iter it;
4079 struct task_struct *tsk;
4080
4081 /* it should be kernfs_node belonging to cgroupfs and is a directory */
4082 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
4083 kernfs_type(kn) != KERNFS_DIR)
4084 return -EINVAL;
4085
4086 mutex_lock(&cgroup_mutex);
4087
4088 /*
4089 * We aren't being called from kernfs and there's no guarantee on
4090 * @kn->priv's validity. For this and css_tryget_online_from_dir(),
4091 * @kn->priv is RCU safe. Let's do the RCU dancing.
4092 */
4093 rcu_read_lock();
4094 cgrp = rcu_dereference(kn->priv);
4095 if (!cgrp || cgroup_is_dead(cgrp)) {
4096 rcu_read_unlock();
4097 mutex_unlock(&cgroup_mutex);
4098 return -ENOENT;
4099 }
4100 rcu_read_unlock();
4101
4102 css_task_iter_start(&cgrp->self, &it);
4103 while ((tsk = css_task_iter_next(&it))) {
4104 switch (tsk->state) {
4105 case TASK_RUNNING:
4106 stats->nr_running++;
4107 break;
4108 case TASK_INTERRUPTIBLE:
4109 stats->nr_sleeping++;
4110 break;
4111 case TASK_UNINTERRUPTIBLE:
4112 stats->nr_uninterruptible++;
4113 break;
4114 case TASK_STOPPED:
4115 stats->nr_stopped++;
4116 break;
4117 default:
4118 if (delayacct_is_task_waiting_on_io(tsk))
4119 stats->nr_io_wait++;
4120 break;
4121 }
4122 }
4123 css_task_iter_end(&it);
4124
4125 mutex_unlock(&cgroup_mutex);
4126 return 0;
4127 }
4128
4129
4130 /*
4131 * seq_file methods for the tasks/procs files. The seq_file position is the
4132 * next pid to display; the seq_file iterator is a pointer to the pid
4133 * in the cgroup->l->list array.
4134 */
4135
4136 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
4137 {
4138 /*
4139 * Initially we receive a position value that corresponds to
4140 * one more than the last pid shown (or 0 on the first call or
4141 * after a seek to the start). Use a binary-search to find the
4142 * next pid to display, if any
4143 */
4144 struct kernfs_open_file *of = s->private;
4145 struct cgroup *cgrp = seq_css(s)->cgroup;
4146 struct cgroup_pidlist *l;
4147 enum cgroup_filetype type = seq_cft(s)->private;
4148 int index = 0, pid = *pos;
4149 int *iter, ret;
4150
4151 mutex_lock(&cgrp->pidlist_mutex);
4152
4153 /*
4154 * !NULL @of->priv indicates that this isn't the first start()
4155 * after open. If the matching pidlist is around, we can use that.
4156 * Look for it. Note that @of->priv can't be used directly. It
4157 * could already have been destroyed.
4158 */
4159 if (of->priv)
4160 of->priv = cgroup_pidlist_find(cgrp, type);
4161
4162 /*
4163 * Either this is the first start() after open or the matching
4164 * pidlist has been destroyed inbetween. Create a new one.
4165 */
4166 if (!of->priv) {
4167 ret = pidlist_array_load(cgrp, type,
4168 (struct cgroup_pidlist **)&of->priv);
4169 if (ret)
4170 return ERR_PTR(ret);
4171 }
4172 l = of->priv;
4173
4174 if (pid) {
4175 int end = l->length;
4176
4177 while (index < end) {
4178 int mid = (index + end) / 2;
4179 if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
4180 index = mid;
4181 break;
4182 } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
4183 index = mid + 1;
4184 else
4185 end = mid;
4186 }
4187 }
4188 /* If we're off the end of the array, we're done */
4189 if (index >= l->length)
4190 return NULL;
4191 /* Update the abstract position to be the actual pid that we found */
4192 iter = l->list + index;
4193 *pos = cgroup_pid_fry(cgrp, *iter);
4194 return iter;
4195 }
4196
4197 static void cgroup_pidlist_stop(struct seq_file *s, void *v)
4198 {
4199 struct kernfs_open_file *of = s->private;
4200 struct cgroup_pidlist *l = of->priv;
4201
4202 if (l)
4203 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
4204 CGROUP_PIDLIST_DESTROY_DELAY);
4205 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
4206 }
4207
4208 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
4209 {
4210 struct kernfs_open_file *of = s->private;
4211 struct cgroup_pidlist *l = of->priv;
4212 pid_t *p = v;
4213 pid_t *end = l->list + l->length;
4214 /*
4215 * Advance to the next pid in the array. If this goes off the
4216 * end, we're done
4217 */
4218 p++;
4219 if (p >= end) {
4220 return NULL;
4221 } else {
4222 *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
4223 return p;
4224 }
4225 }
4226
4227 static int cgroup_pidlist_show(struct seq_file *s, void *v)
4228 {
4229 seq_printf(s, "%d\n", *(int *)v);
4230
4231 return 0;
4232 }
4233
4234 static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
4235 struct cftype *cft)
4236 {
4237 return notify_on_release(css->cgroup);
4238 }
4239
4240 static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
4241 struct cftype *cft, u64 val)
4242 {
4243 if (val)
4244 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
4245 else
4246 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
4247 return 0;
4248 }
4249
4250 static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
4251 struct cftype *cft)
4252 {
4253 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4254 }
4255
4256 static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
4257 struct cftype *cft, u64 val)
4258 {
4259 if (val)
4260 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4261 else
4262 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4263 return 0;
4264 }
4265
4266 /* cgroup core interface files for the default hierarchy */
4267 static struct cftype cgroup_dfl_base_files[] = {
4268 {
4269 .name = "cgroup.procs",
4270 .seq_start = cgroup_pidlist_start,
4271 .seq_next = cgroup_pidlist_next,
4272 .seq_stop = cgroup_pidlist_stop,
4273 .seq_show = cgroup_pidlist_show,
4274 .private = CGROUP_FILE_PROCS,
4275 .write = cgroup_procs_write,
4276 .mode = S_IRUGO | S_IWUSR,
4277 },
4278 {
4279 .name = "cgroup.controllers",
4280 .flags = CFTYPE_ONLY_ON_ROOT,
4281 .seq_show = cgroup_root_controllers_show,
4282 },
4283 {
4284 .name = "cgroup.controllers",
4285 .flags = CFTYPE_NOT_ON_ROOT,
4286 .seq_show = cgroup_controllers_show,
4287 },
4288 {
4289 .name = "cgroup.subtree_control",
4290 .seq_show = cgroup_subtree_control_show,
4291 .write = cgroup_subtree_control_write,
4292 },
4293 {
4294 .name = "cgroup.populated",
4295 .flags = CFTYPE_NOT_ON_ROOT,
4296 .seq_show = cgroup_populated_show,
4297 },
4298 { } /* terminate */
4299 };
4300
4301 /* cgroup core interface files for the legacy hierarchies */
4302 static struct cftype cgroup_legacy_base_files[] = {
4303 {
4304 .name = "cgroup.procs",
4305 .seq_start = cgroup_pidlist_start,
4306 .seq_next = cgroup_pidlist_next,
4307 .seq_stop = cgroup_pidlist_stop,
4308 .seq_show = cgroup_pidlist_show,
4309 .private = CGROUP_FILE_PROCS,
4310 .write = cgroup_procs_write,
4311 .mode = S_IRUGO | S_IWUSR,
4312 },
4313 {
4314 .name = "cgroup.clone_children",
4315 .read_u64 = cgroup_clone_children_read,
4316 .write_u64 = cgroup_clone_children_write,
4317 },
4318 {
4319 .name = "cgroup.sane_behavior",
4320 .flags = CFTYPE_ONLY_ON_ROOT,
4321 .seq_show = cgroup_sane_behavior_show,
4322 },
4323 {
4324 .name = "tasks",
4325 .seq_start = cgroup_pidlist_start,
4326 .seq_next = cgroup_pidlist_next,
4327 .seq_stop = cgroup_pidlist_stop,
4328 .seq_show = cgroup_pidlist_show,
4329 .private = CGROUP_FILE_TASKS,
4330 .write = cgroup_tasks_write,
4331 .mode = S_IRUGO | S_IWUSR,
4332 },
4333 {
4334 .name = "notify_on_release",
4335 .read_u64 = cgroup_read_notify_on_release,
4336 .write_u64 = cgroup_write_notify_on_release,
4337 },
4338 {
4339 .name = "release_agent",
4340 .flags = CFTYPE_ONLY_ON_ROOT,
4341 .seq_show = cgroup_release_agent_show,
4342 .write = cgroup_release_agent_write,
4343 .max_write_len = PATH_MAX - 1,
4344 },
4345 { } /* terminate */
4346 };
4347
4348 /**
4349 * cgroup_populate_dir - create subsys files in a cgroup directory
4350 * @cgrp: target cgroup
4351 * @subsys_mask: mask of the subsystem ids whose files should be added
4352 *
4353 * On failure, no file is added.
4354 */
4355 static int cgroup_populate_dir(struct cgroup *cgrp, unsigned long subsys_mask)
4356 {
4357 struct cgroup_subsys *ss;
4358 int i, ret = 0;
4359
4360 /* process cftsets of each subsystem */
4361 for_each_subsys(ss, i) {
4362 struct cftype *cfts;
4363
4364 if (!(subsys_mask & (1 << i)))
4365 continue;
4366
4367 list_for_each_entry(cfts, &ss->cfts, node) {
4368 ret = cgroup_addrm_files(cgrp, cfts, true);
4369 if (ret < 0)
4370 goto err;
4371 }
4372 }
4373 return 0;
4374 err:
4375 cgroup_clear_dir(cgrp, subsys_mask);
4376 return ret;
4377 }
4378
4379 /*
4380 * css destruction is four-stage process.
4381 *
4382 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4383 * Implemented in kill_css().
4384 *
4385 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
4386 * and thus css_tryget_online() is guaranteed to fail, the css can be
4387 * offlined by invoking offline_css(). After offlining, the base ref is
4388 * put. Implemented in css_killed_work_fn().
4389 *
4390 * 3. When the percpu_ref reaches zero, the only possible remaining
4391 * accessors are inside RCU read sections. css_release() schedules the
4392 * RCU callback.
4393 *
4394 * 4. After the grace period, the css can be freed. Implemented in
4395 * css_free_work_fn().
4396 *
4397 * It is actually hairier because both step 2 and 4 require process context
4398 * and thus involve punting to css->destroy_work adding two additional
4399 * steps to the already complex sequence.
4400 */
4401 static void css_free_work_fn(struct work_struct *work)
4402 {
4403 struct cgroup_subsys_state *css =
4404 container_of(work, struct cgroup_subsys_state, destroy_work);
4405 struct cgroup_subsys *ss = css->ss;
4406 struct cgroup *cgrp = css->cgroup;
4407
4408 percpu_ref_exit(&css->refcnt);
4409
4410 if (ss) {
4411 /* css free path */
4412 int id = css->id;
4413
4414 if (css->parent)
4415 css_put(css->parent);
4416
4417 ss->css_free(css);
4418 cgroup_idr_remove(&ss->css_idr, id);
4419 cgroup_put(cgrp);
4420 } else {
4421 /* cgroup free path */
4422 atomic_dec(&cgrp->root->nr_cgrps);
4423 cgroup_pidlist_destroy_all(cgrp);
4424 cancel_work_sync(&cgrp->release_agent_work);
4425
4426 if (cgroup_parent(cgrp)) {
4427 /*
4428 * We get a ref to the parent, and put the ref when
4429 * this cgroup is being freed, so it's guaranteed
4430 * that the parent won't be destroyed before its
4431 * children.
4432 */
4433 cgroup_put(cgroup_parent(cgrp));
4434 kernfs_put(cgrp->kn);
4435 kfree(cgrp);
4436 } else {
4437 /*
4438 * This is root cgroup's refcnt reaching zero,
4439 * which indicates that the root should be
4440 * released.
4441 */
4442 cgroup_destroy_root(cgrp->root);
4443 }
4444 }
4445 }
4446
4447 static void css_free_rcu_fn(struct rcu_head *rcu_head)
4448 {
4449 struct cgroup_subsys_state *css =
4450 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
4451
4452 INIT_WORK(&css->destroy_work, css_free_work_fn);
4453 queue_work(cgroup_destroy_wq, &css->destroy_work);
4454 }
4455
4456 static void css_release_work_fn(struct work_struct *work)
4457 {
4458 struct cgroup_subsys_state *css =
4459 container_of(work, struct cgroup_subsys_state, destroy_work);
4460 struct cgroup_subsys *ss = css->ss;
4461 struct cgroup *cgrp = css->cgroup;
4462
4463 mutex_lock(&cgroup_mutex);
4464
4465 css->flags |= CSS_RELEASED;
4466 list_del_rcu(&css->sibling);
4467
4468 if (ss) {
4469 /* css release path */
4470 cgroup_idr_replace(&ss->css_idr, NULL, css->id);
4471 if (ss->css_released)
4472 ss->css_released(css);
4473 } else {
4474 /* cgroup release path */
4475 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4476 cgrp->id = -1;
4477
4478 /*
4479 * There are two control paths which try to determine
4480 * cgroup from dentry without going through kernfs -
4481 * cgroupstats_build() and css_tryget_online_from_dir().
4482 * Those are supported by RCU protecting clearing of
4483 * cgrp->kn->priv backpointer.
4484 */
4485 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, NULL);
4486 }
4487
4488 mutex_unlock(&cgroup_mutex);
4489
4490 call_rcu(&css->rcu_head, css_free_rcu_fn);
4491 }
4492
4493 static void css_release(struct percpu_ref *ref)
4494 {
4495 struct cgroup_subsys_state *css =
4496 container_of(ref, struct cgroup_subsys_state, refcnt);
4497
4498 INIT_WORK(&css->destroy_work, css_release_work_fn);
4499 queue_work(cgroup_destroy_wq, &css->destroy_work);
4500 }
4501
4502 static void init_and_link_css(struct cgroup_subsys_state *css,
4503 struct cgroup_subsys *ss, struct cgroup *cgrp)
4504 {
4505 lockdep_assert_held(&cgroup_mutex);
4506
4507 cgroup_get(cgrp);
4508
4509 memset(css, 0, sizeof(*css));
4510 css->cgroup = cgrp;
4511 css->ss = ss;
4512 INIT_LIST_HEAD(&css->sibling);
4513 INIT_LIST_HEAD(&css->children);
4514 css->serial_nr = css_serial_nr_next++;
4515
4516 if (cgroup_parent(cgrp)) {
4517 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
4518 css_get(css->parent);
4519 }
4520
4521 BUG_ON(cgroup_css(cgrp, ss));
4522 }
4523
4524 /* invoke ->css_online() on a new CSS and mark it online if successful */
4525 static int online_css(struct cgroup_subsys_state *css)
4526 {
4527 struct cgroup_subsys *ss = css->ss;
4528 int ret = 0;
4529
4530 lockdep_assert_held(&cgroup_mutex);
4531
4532 if (ss->css_online)
4533 ret = ss->css_online(css);
4534 if (!ret) {
4535 css->flags |= CSS_ONLINE;
4536 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
4537 }
4538 return ret;
4539 }
4540
4541 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
4542 static void offline_css(struct cgroup_subsys_state *css)
4543 {
4544 struct cgroup_subsys *ss = css->ss;
4545
4546 lockdep_assert_held(&cgroup_mutex);
4547
4548 if (!(css->flags & CSS_ONLINE))
4549 return;
4550
4551 if (ss->css_offline)
4552 ss->css_offline(css);
4553
4554 css->flags &= ~CSS_ONLINE;
4555 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
4556
4557 wake_up_all(&css->cgroup->offline_waitq);
4558 }
4559
4560 /**
4561 * create_css - create a cgroup_subsys_state
4562 * @cgrp: the cgroup new css will be associated with
4563 * @ss: the subsys of new css
4564 * @visible: whether to create control knobs for the new css or not
4565 *
4566 * Create a new css associated with @cgrp - @ss pair. On success, the new
4567 * css is online and installed in @cgrp with all interface files created if
4568 * @visible. Returns 0 on success, -errno on failure.
4569 */
4570 static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
4571 bool visible)
4572 {
4573 struct cgroup *parent = cgroup_parent(cgrp);
4574 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
4575 struct cgroup_subsys_state *css;
4576 int err;
4577
4578 lockdep_assert_held(&cgroup_mutex);
4579
4580 css = ss->css_alloc(parent_css);
4581 if (IS_ERR(css))
4582 return PTR_ERR(css);
4583
4584 init_and_link_css(css, ss, cgrp);
4585
4586 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
4587 if (err)
4588 goto err_free_css;
4589
4590 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
4591 if (err < 0)
4592 goto err_free_percpu_ref;
4593 css->id = err;
4594
4595 if (visible) {
4596 err = cgroup_populate_dir(cgrp, 1 << ss->id);
4597 if (err)
4598 goto err_free_id;
4599 }
4600
4601 /* @css is ready to be brought online now, make it visible */
4602 list_add_tail_rcu(&css->sibling, &parent_css->children);
4603 cgroup_idr_replace(&ss->css_idr, css, css->id);
4604
4605 err = online_css(css);
4606 if (err)
4607 goto err_list_del;
4608
4609 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
4610 cgroup_parent(parent)) {
4611 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4612 current->comm, current->pid, ss->name);
4613 if (!strcmp(ss->name, "memory"))
4614 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
4615 ss->warned_broken_hierarchy = true;
4616 }
4617
4618 return 0;
4619
4620 err_list_del:
4621 list_del_rcu(&css->sibling);
4622 cgroup_clear_dir(css->cgroup, 1 << css->ss->id);
4623 err_free_id:
4624 cgroup_idr_remove(&ss->css_idr, css->id);
4625 err_free_percpu_ref:
4626 percpu_ref_exit(&css->refcnt);
4627 err_free_css:
4628 call_rcu(&css->rcu_head, css_free_rcu_fn);
4629 return err;
4630 }
4631
4632 static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
4633 umode_t mode)
4634 {
4635 struct cgroup *parent, *cgrp;
4636 struct cgroup_root *root;
4637 struct cgroup_subsys *ss;
4638 struct kernfs_node *kn;
4639 struct cftype *base_files;
4640 int ssid, ret;
4641
4642 /* Do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable.
4643 */
4644 if (strchr(name, '\n'))
4645 return -EINVAL;
4646
4647 parent = cgroup_kn_lock_live(parent_kn);
4648 if (!parent)
4649 return -ENODEV;
4650 root = parent->root;
4651
4652 /* allocate the cgroup and its ID, 0 is reserved for the root */
4653 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
4654 if (!cgrp) {
4655 ret = -ENOMEM;
4656 goto out_unlock;
4657 }
4658
4659 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
4660 if (ret)
4661 goto out_free_cgrp;
4662
4663 /*
4664 * Temporarily set the pointer to NULL, so idr_find() won't return
4665 * a half-baked cgroup.
4666 */
4667 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL);
4668 if (cgrp->id < 0) {
4669 ret = -ENOMEM;
4670 goto out_cancel_ref;
4671 }
4672
4673 init_cgroup_housekeeping(cgrp);
4674
4675 cgrp->self.parent = &parent->self;
4676 cgrp->root = root;
4677
4678 if (notify_on_release(parent))
4679 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4680
4681 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4682 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
4683
4684 /* create the directory */
4685 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
4686 if (IS_ERR(kn)) {
4687 ret = PTR_ERR(kn);
4688 goto out_free_id;
4689 }
4690 cgrp->kn = kn;
4691
4692 /*
4693 * This extra ref will be put in cgroup_free_fn() and guarantees
4694 * that @cgrp->kn is always accessible.
4695 */
4696 kernfs_get(kn);
4697
4698 cgrp->self.serial_nr = css_serial_nr_next++;
4699
4700 /* allocation complete, commit to creation */
4701 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
4702 atomic_inc(&root->nr_cgrps);
4703 cgroup_get(parent);
4704
4705 /*
4706 * @cgrp is now fully operational. If something fails after this
4707 * point, it'll be released via the normal destruction path.
4708 */
4709 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
4710
4711 ret = cgroup_kn_set_ugid(kn);
4712 if (ret)
4713 goto out_destroy;
4714
4715 if (cgroup_on_dfl(cgrp))
4716 base_files = cgroup_dfl_base_files;
4717 else
4718 base_files = cgroup_legacy_base_files;
4719
4720 ret = cgroup_addrm_files(cgrp, base_files, true);
4721 if (ret)
4722 goto out_destroy;
4723
4724 /* let's create and online css's */
4725 for_each_subsys(ss, ssid) {
4726 if (parent->child_subsys_mask & (1 << ssid)) {
4727 ret = create_css(cgrp, ss,
4728 parent->subtree_control & (1 << ssid));
4729 if (ret)
4730 goto out_destroy;
4731 }
4732 }
4733
4734 /*
4735 * On the default hierarchy, a child doesn't automatically inherit
4736 * subtree_control from the parent. Each is configured manually.
4737 */
4738 if (!cgroup_on_dfl(cgrp)) {
4739 cgrp->subtree_control = parent->subtree_control;
4740 cgroup_refresh_child_subsys_mask(cgrp);
4741 }
4742
4743 kernfs_activate(kn);
4744
4745 ret = 0;
4746 goto out_unlock;
4747
4748 out_free_id:
4749 cgroup_idr_remove(&root->cgroup_idr, cgrp->id);
4750 out_cancel_ref:
4751 percpu_ref_exit(&cgrp->self.refcnt);
4752 out_free_cgrp:
4753 kfree(cgrp);
4754 out_unlock:
4755 cgroup_kn_unlock(parent_kn);
4756 return ret;
4757
4758 out_destroy:
4759 cgroup_destroy_locked(cgrp);
4760 goto out_unlock;
4761 }
4762
4763 /*
4764 * This is called when the refcnt of a css is confirmed to be killed.
4765 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
4766 * initate destruction and put the css ref from kill_css().
4767 */
4768 static void css_killed_work_fn(struct work_struct *work)
4769 {
4770 struct cgroup_subsys_state *css =
4771 container_of(work, struct cgroup_subsys_state, destroy_work);
4772
4773 mutex_lock(&cgroup_mutex);
4774 offline_css(css);
4775 mutex_unlock(&cgroup_mutex);
4776
4777 css_put(css);
4778 }
4779
4780 /* css kill confirmation processing requires process context, bounce */
4781 static void css_killed_ref_fn(struct percpu_ref *ref)
4782 {
4783 struct cgroup_subsys_state *css =
4784 container_of(ref, struct cgroup_subsys_state, refcnt);
4785
4786 INIT_WORK(&css->destroy_work, css_killed_work_fn);
4787 queue_work(cgroup_destroy_wq, &css->destroy_work);
4788 }
4789
4790 /**
4791 * kill_css - destroy a css
4792 * @css: css to destroy
4793 *
4794 * This function initiates destruction of @css by removing cgroup interface
4795 * files and putting its base reference. ->css_offline() will be invoked
4796 * asynchronously once css_tryget_online() is guaranteed to fail and when
4797 * the reference count reaches zero, @css will be released.
4798 */
4799 static void kill_css(struct cgroup_subsys_state *css)
4800 {
4801 lockdep_assert_held(&cgroup_mutex);
4802
4803 /*
4804 * This must happen before css is disassociated with its cgroup.
4805 * See seq_css() for details.
4806 */
4807 cgroup_clear_dir(css->cgroup, 1 << css->ss->id);
4808
4809 /*
4810 * Killing would put the base ref, but we need to keep it alive
4811 * until after ->css_offline().
4812 */
4813 css_get(css);
4814
4815 /*
4816 * cgroup core guarantees that, by the time ->css_offline() is
4817 * invoked, no new css reference will be given out via
4818 * css_tryget_online(). We can't simply call percpu_ref_kill() and
4819 * proceed to offlining css's because percpu_ref_kill() doesn't
4820 * guarantee that the ref is seen as killed on all CPUs on return.
4821 *
4822 * Use percpu_ref_kill_and_confirm() to get notifications as each
4823 * css is confirmed to be seen as killed on all CPUs.
4824 */
4825 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
4826 }
4827
4828 /**
4829 * cgroup_destroy_locked - the first stage of cgroup destruction
4830 * @cgrp: cgroup to be destroyed
4831 *
4832 * css's make use of percpu refcnts whose killing latency shouldn't be
4833 * exposed to userland and are RCU protected. Also, cgroup core needs to
4834 * guarantee that css_tryget_online() won't succeed by the time
4835 * ->css_offline() is invoked. To satisfy all the requirements,
4836 * destruction is implemented in the following two steps.
4837 *
4838 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
4839 * userland visible parts and start killing the percpu refcnts of
4840 * css's. Set up so that the next stage will be kicked off once all
4841 * the percpu refcnts are confirmed to be killed.
4842 *
4843 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
4844 * rest of destruction. Once all cgroup references are gone, the
4845 * cgroup is RCU-freed.
4846 *
4847 * This function implements s1. After this step, @cgrp is gone as far as
4848 * the userland is concerned and a new cgroup with the same name may be
4849 * created. As cgroup doesn't care about the names internally, this
4850 * doesn't cause any problem.
4851 */
4852 static int cgroup_destroy_locked(struct cgroup *cgrp)
4853 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
4854 {
4855 struct cgroup_subsys_state *css;
4856 bool empty;
4857 int ssid;
4858
4859 lockdep_assert_held(&cgroup_mutex);
4860
4861 /*
4862 * css_set_rwsem synchronizes access to ->cset_links and prevents
4863 * @cgrp from being removed while put_css_set() is in progress.
4864 */
4865 down_read(&css_set_rwsem);
4866 empty = list_empty(&cgrp->cset_links);
4867 up_read(&css_set_rwsem);
4868 if (!empty)
4869 return -EBUSY;
4870
4871 /*
4872 * Make sure there's no live children. We can't test emptiness of
4873 * ->self.children as dead children linger on it while being
4874 * drained; otherwise, "rmdir parent/child parent" may fail.
4875 */
4876 if (css_has_online_children(&cgrp->self))
4877 return -EBUSY;
4878
4879 /*
4880 * Mark @cgrp dead. This prevents further task migration and child
4881 * creation by disabling cgroup_lock_live_group().
4882 */
4883 cgrp->self.flags &= ~CSS_ONLINE;
4884
4885 /* initiate massacre of all css's */
4886 for_each_css(css, ssid, cgrp)
4887 kill_css(css);
4888
4889 /*
4890 * Remove @cgrp directory along with the base files. @cgrp has an
4891 * extra ref on its kn.
4892 */
4893 kernfs_remove(cgrp->kn);
4894
4895 check_for_release(cgroup_parent(cgrp));
4896
4897 /* put the base reference */
4898 percpu_ref_kill(&cgrp->self.refcnt);
4899
4900 return 0;
4901 };
4902
4903 static int cgroup_rmdir(struct kernfs_node *kn)
4904 {
4905 struct cgroup *cgrp;
4906 int ret = 0;
4907
4908 cgrp = cgroup_kn_lock_live(kn);
4909 if (!cgrp)
4910 return 0;
4911
4912 ret = cgroup_destroy_locked(cgrp);
4913
4914 cgroup_kn_unlock(kn);
4915 return ret;
4916 }
4917
4918 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
4919 .remount_fs = cgroup_remount,
4920 .show_options = cgroup_show_options,
4921 .mkdir = cgroup_mkdir,
4922 .rmdir = cgroup_rmdir,
4923 .rename = cgroup_rename,
4924 };
4925
4926 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
4927 {
4928 struct cgroup_subsys_state *css;
4929
4930 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
4931
4932 mutex_lock(&cgroup_mutex);
4933
4934 idr_init(&ss->css_idr);
4935 INIT_LIST_HEAD(&ss->cfts);
4936
4937 /* Create the root cgroup state for this subsystem */
4938 ss->root = &cgrp_dfl_root;
4939 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
4940 /* We don't handle early failures gracefully */
4941 BUG_ON(IS_ERR(css));
4942 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
4943
4944 /*
4945 * Root csses are never destroyed and we can't initialize
4946 * percpu_ref during early init. Disable refcnting.
4947 */
4948 css->flags |= CSS_NO_REF;
4949
4950 if (early) {
4951 /* allocation can't be done safely during early init */
4952 css->id = 1;
4953 } else {
4954 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
4955 BUG_ON(css->id < 0);
4956 }
4957
4958 /* Update the init_css_set to contain a subsys
4959 * pointer to this state - since the subsystem is
4960 * newly registered, all tasks and hence the
4961 * init_css_set is in the subsystem's root cgroup. */
4962 init_css_set.subsys[ss->id] = css;
4963
4964 have_fork_callback |= (bool)ss->fork << ss->id;
4965 have_exit_callback |= (bool)ss->exit << ss->id;
4966 have_canfork_callback |= (bool)ss->can_fork << ss->id;
4967
4968 /* At system boot, before all subsystems have been
4969 * registered, no tasks have been forked, so we don't
4970 * need to invoke fork callbacks here. */
4971 BUG_ON(!list_empty(&init_task.tasks));
4972
4973 BUG_ON(online_css(css));
4974
4975 mutex_unlock(&cgroup_mutex);
4976 }
4977
4978 /**
4979 * cgroup_init_early - cgroup initialization at system boot
4980 *
4981 * Initialize cgroups at system boot, and initialize any
4982 * subsystems that request early init.
4983 */
4984 int __init cgroup_init_early(void)
4985 {
4986 static struct cgroup_sb_opts __initdata opts;
4987 struct cgroup_subsys *ss;
4988 int i;
4989
4990 init_cgroup_root(&cgrp_dfl_root, &opts);
4991 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
4992
4993 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
4994
4995 for_each_subsys(ss, i) {
4996 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
4997 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p name:id=%d:%s\n",
4998 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
4999 ss->id, ss->name);
5000 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5001 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5002
5003 ss->id = i;
5004 ss->name = cgroup_subsys_name[i];
5005 if (!ss->legacy_name)
5006 ss->legacy_name = cgroup_subsys_name[i];
5007
5008 if (ss->early_init)
5009 cgroup_init_subsys(ss, true);
5010 }
5011 return 0;
5012 }
5013
5014 /**
5015 * cgroup_init - cgroup initialization
5016 *
5017 * Register cgroup filesystem and /proc file, and initialize
5018 * any subsystems that didn't request early init.
5019 */
5020 int __init cgroup_init(void)
5021 {
5022 struct cgroup_subsys *ss;
5023 unsigned long key;
5024 int ssid, err;
5025
5026 BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem));
5027 BUG_ON(cgroup_init_cftypes(NULL, cgroup_dfl_base_files));
5028 BUG_ON(cgroup_init_cftypes(NULL, cgroup_legacy_base_files));
5029
5030 mutex_lock(&cgroup_mutex);
5031
5032 /* Add init_css_set to the hash table */
5033 key = css_set_hash(init_css_set.subsys);
5034 hash_add(css_set_table, &init_css_set.hlist, key);
5035
5036 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
5037
5038 mutex_unlock(&cgroup_mutex);
5039
5040 for_each_subsys(ss, ssid) {
5041 if (ss->early_init) {
5042 struct cgroup_subsys_state *css =
5043 init_css_set.subsys[ss->id];
5044
5045 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5046 GFP_KERNEL);
5047 BUG_ON(css->id < 0);
5048 } else {
5049 cgroup_init_subsys(ss, false);
5050 }
5051
5052 list_add_tail(&init_css_set.e_cset_node[ssid],
5053 &cgrp_dfl_root.cgrp.e_csets[ssid]);
5054
5055 /*
5056 * Setting dfl_root subsys_mask needs to consider the
5057 * disabled flag and cftype registration needs kmalloc,
5058 * both of which aren't available during early_init.
5059 */
5060 if (ss->disabled)
5061 continue;
5062
5063 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5064
5065 if (cgroup_legacy_files_on_dfl && !ss->dfl_cftypes)
5066 ss->dfl_cftypes = ss->legacy_cftypes;
5067
5068 if (!ss->dfl_cftypes)
5069 cgrp_dfl_root_inhibit_ss_mask |= 1 << ss->id;
5070
5071 if (ss->dfl_cftypes == ss->legacy_cftypes) {
5072 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5073 } else {
5074 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5075 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
5076 }
5077
5078 if (ss->bind)
5079 ss->bind(init_css_set.subsys[ssid]);
5080 }
5081
5082 err = sysfs_create_mount_point(fs_kobj, "cgroup");
5083 if (err)
5084 return err;
5085
5086 err = register_filesystem(&cgroup_fs_type);
5087 if (err < 0) {
5088 sysfs_remove_mount_point(fs_kobj, "cgroup");
5089 return err;
5090 }
5091
5092 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
5093 return 0;
5094 }
5095
5096 static int __init cgroup_wq_init(void)
5097 {
5098 /*
5099 * There isn't much point in executing destruction path in
5100 * parallel. Good chunk is serialized with cgroup_mutex anyway.
5101 * Use 1 for @max_active.
5102 *
5103 * We would prefer to do this in cgroup_init() above, but that
5104 * is called before init_workqueues(): so leave this until after.
5105 */
5106 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
5107 BUG_ON(!cgroup_destroy_wq);
5108
5109 /*
5110 * Used to destroy pidlists and separate to serve as flush domain.
5111 * Cap @max_active to 1 too.
5112 */
5113 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
5114 0, 1);
5115 BUG_ON(!cgroup_pidlist_destroy_wq);
5116
5117 return 0;
5118 }
5119 core_initcall(cgroup_wq_init);
5120
5121 /*
5122 * proc_cgroup_show()
5123 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5124 * - Used for /proc/<pid>/cgroup.
5125 */
5126 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5127 struct pid *pid, struct task_struct *tsk)
5128 {
5129 char *buf, *path;
5130 int retval;
5131 struct cgroup_root *root;
5132
5133 retval = -ENOMEM;
5134 buf = kmalloc(PATH_MAX, GFP_KERNEL);
5135 if (!buf)
5136 goto out;
5137
5138 mutex_lock(&cgroup_mutex);
5139 down_read(&css_set_rwsem);
5140
5141 for_each_root(root) {
5142 struct cgroup_subsys *ss;
5143 struct cgroup *cgrp;
5144 int ssid, count = 0;
5145
5146 if (root == &cgrp_dfl_root && !cgrp_dfl_root_visible)
5147 continue;
5148
5149 seq_printf(m, "%d:", root->hierarchy_id);
5150 if (root != &cgrp_dfl_root)
5151 for_each_subsys(ss, ssid)
5152 if (root->subsys_mask & (1 << ssid))
5153 seq_printf(m, "%s%s", count++ ? "," : "",
5154 ss->legacy_name);
5155 if (strlen(root->name))
5156 seq_printf(m, "%sname=%s", count ? "," : "",
5157 root->name);
5158 seq_putc(m, ':');
5159 cgrp = task_cgroup_from_root(tsk, root);
5160 path = cgroup_path(cgrp, buf, PATH_MAX);
5161 if (!path) {
5162 retval = -ENAMETOOLONG;
5163 goto out_unlock;
5164 }
5165 seq_puts(m, path);
5166 seq_putc(m, '\n');
5167 }
5168
5169 retval = 0;
5170 out_unlock:
5171 up_read(&css_set_rwsem);
5172 mutex_unlock(&cgroup_mutex);
5173 kfree(buf);
5174 out:
5175 return retval;
5176 }
5177
5178 /* Display information about each subsystem and each hierarchy */
5179 static int proc_cgroupstats_show(struct seq_file *m, void *v)
5180 {
5181 struct cgroup_subsys *ss;
5182 int i;
5183
5184 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
5185 /*
5186 * ideally we don't want subsystems moving around while we do this.
5187 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
5188 * subsys/hierarchy state.
5189 */
5190 mutex_lock(&cgroup_mutex);
5191
5192 for_each_subsys(ss, i)
5193 seq_printf(m, "%s\t%d\t%d\t%d\n",
5194 ss->legacy_name, ss->root->hierarchy_id,
5195 atomic_read(&ss->root->nr_cgrps), !ss->disabled);
5196
5197 mutex_unlock(&cgroup_mutex);
5198 return 0;
5199 }
5200
5201 static int cgroupstats_open(struct inode *inode, struct file *file)
5202 {
5203 return single_open(file, proc_cgroupstats_show, NULL);
5204 }
5205
5206 static const struct file_operations proc_cgroupstats_operations = {
5207 .open = cgroupstats_open,
5208 .read = seq_read,
5209 .llseek = seq_lseek,
5210 .release = single_release,
5211 };
5212
5213 static void **subsys_canfork_priv_p(void *ss_priv[CGROUP_CANFORK_COUNT], int i)
5214 {
5215 if (CGROUP_CANFORK_START <= i && i < CGROUP_CANFORK_END)
5216 return &ss_priv[i - CGROUP_CANFORK_START];
5217 return NULL;
5218 }
5219
5220 static void *subsys_canfork_priv(void *ss_priv[CGROUP_CANFORK_COUNT], int i)
5221 {
5222 void **private = subsys_canfork_priv_p(ss_priv, i);
5223 return private ? *private : NULL;
5224 }
5225
5226 /**
5227 * cgroup_fork - initialize cgroup related fields during copy_process()
5228 * @child: pointer to task_struct of forking parent process.
5229 *
5230 * A task is associated with the init_css_set until cgroup_post_fork()
5231 * attaches it to the parent's css_set. Empty cg_list indicates that
5232 * @child isn't holding reference to its css_set.
5233 */
5234 void cgroup_fork(struct task_struct *child)
5235 {
5236 RCU_INIT_POINTER(child->cgroups, &init_css_set);
5237 INIT_LIST_HEAD(&child->cg_list);
5238 }
5239
5240 /**
5241 * cgroup_can_fork - called on a new task before the process is exposed
5242 * @child: the task in question.
5243 *
5244 * This calls the subsystem can_fork() callbacks. If the can_fork() callback
5245 * returns an error, the fork aborts with that error code. This allows for
5246 * a cgroup subsystem to conditionally allow or deny new forks.
5247 */
5248 int cgroup_can_fork(struct task_struct *child,
5249 void *ss_priv[CGROUP_CANFORK_COUNT])
5250 {
5251 struct cgroup_subsys *ss;
5252 int i, j, ret;
5253
5254 for_each_subsys_which(ss, i, &have_canfork_callback) {
5255 ret = ss->can_fork(child, subsys_canfork_priv_p(ss_priv, i));
5256 if (ret)
5257 goto out_revert;
5258 }
5259
5260 return 0;
5261
5262 out_revert:
5263 for_each_subsys(ss, j) {
5264 if (j >= i)
5265 break;
5266 if (ss->cancel_fork)
5267 ss->cancel_fork(child, subsys_canfork_priv(ss_priv, j));
5268 }
5269
5270 return ret;
5271 }
5272
5273 /**
5274 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
5275 * @child: the task in question
5276 *
5277 * This calls the cancel_fork() callbacks if a fork failed *after*
5278 * cgroup_can_fork() succeded.
5279 */
5280 void cgroup_cancel_fork(struct task_struct *child,
5281 void *ss_priv[CGROUP_CANFORK_COUNT])
5282 {
5283 struct cgroup_subsys *ss;
5284 int i;
5285
5286 for_each_subsys(ss, i)
5287 if (ss->cancel_fork)
5288 ss->cancel_fork(child, subsys_canfork_priv(ss_priv, i));
5289 }
5290
5291 /**
5292 * cgroup_post_fork - called on a new task after adding it to the task list
5293 * @child: the task in question
5294 *
5295 * Adds the task to the list running through its css_set if necessary and
5296 * call the subsystem fork() callbacks. Has to be after the task is
5297 * visible on the task list in case we race with the first call to
5298 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5299 * list.
5300 */
5301 void cgroup_post_fork(struct task_struct *child,
5302 void *old_ss_priv[CGROUP_CANFORK_COUNT])
5303 {
5304 struct cgroup_subsys *ss;
5305 int i;
5306
5307 /*
5308 * This may race against cgroup_enable_task_cg_lists(). As that
5309 * function sets use_task_css_set_links before grabbing
5310 * tasklist_lock and we just went through tasklist_lock to add
5311 * @child, it's guaranteed that either we see the set
5312 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5313 * @child during its iteration.
5314 *
5315 * If we won the race, @child is associated with %current's
5316 * css_set. Grabbing css_set_rwsem guarantees both that the
5317 * association is stable, and, on completion of the parent's
5318 * migration, @child is visible in the source of migration or
5319 * already in the destination cgroup. This guarantee is necessary
5320 * when implementing operations which need to migrate all tasks of
5321 * a cgroup to another.
5322 *
5323 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
5324 * will remain in init_css_set. This is safe because all tasks are
5325 * in the init_css_set before cg_links is enabled and there's no
5326 * operation which transfers all tasks out of init_css_set.
5327 */
5328 if (use_task_css_set_links) {
5329 struct css_set *cset;
5330
5331 down_write(&css_set_rwsem);
5332 cset = task_css_set(current);
5333 if (list_empty(&child->cg_list)) {
5334 rcu_assign_pointer(child->cgroups, cset);
5335 list_add(&child->cg_list, &cset->tasks);
5336 get_css_set(cset);
5337 }
5338 up_write(&css_set_rwsem);
5339 }
5340
5341 /*
5342 * Call ss->fork(). This must happen after @child is linked on
5343 * css_set; otherwise, @child might change state between ->fork()
5344 * and addition to css_set.
5345 */
5346 for_each_subsys_which(ss, i, &have_fork_callback)
5347 ss->fork(child, subsys_canfork_priv(old_ss_priv, i));
5348 }
5349
5350 /**
5351 * cgroup_exit - detach cgroup from exiting task
5352 * @tsk: pointer to task_struct of exiting process
5353 *
5354 * Description: Detach cgroup from @tsk and release it.
5355 *
5356 * Note that cgroups marked notify_on_release force every task in
5357 * them to take the global cgroup_mutex mutex when exiting.
5358 * This could impact scaling on very large systems. Be reluctant to
5359 * use notify_on_release cgroups where very high task exit scaling
5360 * is required on large systems.
5361 *
5362 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
5363 * call cgroup_exit() while the task is still competent to handle
5364 * notify_on_release(), then leave the task attached to the root cgroup in
5365 * each hierarchy for the remainder of its exit. No need to bother with
5366 * init_css_set refcnting. init_css_set never goes away and we can't race
5367 * with migration path - PF_EXITING is visible to migration path.
5368 */
5369 void cgroup_exit(struct task_struct *tsk)
5370 {
5371 struct cgroup_subsys *ss;
5372 struct css_set *cset;
5373 bool put_cset = false;
5374 int i;
5375
5376 /*
5377 * Unlink from @tsk from its css_set. As migration path can't race
5378 * with us, we can check cg_list without grabbing css_set_rwsem.
5379 */
5380 if (!list_empty(&tsk->cg_list)) {
5381 down_write(&css_set_rwsem);
5382 list_del_init(&tsk->cg_list);
5383 up_write(&css_set_rwsem);
5384 put_cset = true;
5385 }
5386
5387 /* Reassign the task to the init_css_set. */
5388 cset = task_css_set(tsk);
5389 RCU_INIT_POINTER(tsk->cgroups, &init_css_set);
5390
5391 /* see cgroup_post_fork() for details */
5392 for_each_subsys_which(ss, i, &have_exit_callback) {
5393 struct cgroup_subsys_state *old_css = cset->subsys[i];
5394 struct cgroup_subsys_state *css = task_css(tsk, i);
5395
5396 ss->exit(css, old_css, tsk);
5397 }
5398
5399 if (put_cset)
5400 put_css_set(cset);
5401 }
5402
5403 static void check_for_release(struct cgroup *cgrp)
5404 {
5405 if (notify_on_release(cgrp) && !cgroup_has_tasks(cgrp) &&
5406 !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
5407 schedule_work(&cgrp->release_agent_work);
5408 }
5409
5410 /*
5411 * Notify userspace when a cgroup is released, by running the
5412 * configured release agent with the name of the cgroup (path
5413 * relative to the root of cgroup file system) as the argument.
5414 *
5415 * Most likely, this user command will try to rmdir this cgroup.
5416 *
5417 * This races with the possibility that some other task will be
5418 * attached to this cgroup before it is removed, or that some other
5419 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5420 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5421 * unused, and this cgroup will be reprieved from its death sentence,
5422 * to continue to serve a useful existence. Next time it's released,
5423 * we will get notified again, if it still has 'notify_on_release' set.
5424 *
5425 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5426 * means only wait until the task is successfully execve()'d. The
5427 * separate release agent task is forked by call_usermodehelper(),
5428 * then control in this thread returns here, without waiting for the
5429 * release agent task. We don't bother to wait because the caller of
5430 * this routine has no use for the exit status of the release agent
5431 * task, so no sense holding our caller up for that.
5432 */
5433 static void cgroup_release_agent(struct work_struct *work)
5434 {
5435 struct cgroup *cgrp =
5436 container_of(work, struct cgroup, release_agent_work);
5437 char *pathbuf = NULL, *agentbuf = NULL, *path;
5438 char *argv[3], *envp[3];
5439
5440 mutex_lock(&cgroup_mutex);
5441
5442 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
5443 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5444 if (!pathbuf || !agentbuf)
5445 goto out;
5446
5447 path = cgroup_path(cgrp, pathbuf, PATH_MAX);
5448 if (!path)
5449 goto out;
5450
5451 argv[0] = agentbuf;
5452 argv[1] = path;
5453 argv[2] = NULL;
5454
5455 /* minimal command environment */
5456 envp[0] = "HOME=/";
5457 envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5458 envp[2] = NULL;
5459
5460 mutex_unlock(&cgroup_mutex);
5461 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
5462 goto out_free;
5463 out:
5464 mutex_unlock(&cgroup_mutex);
5465 out_free:
5466 kfree(agentbuf);
5467 kfree(pathbuf);
5468 }
5469
5470 static int __init cgroup_disable(char *str)
5471 {
5472 struct cgroup_subsys *ss;
5473 char *token;
5474 int i;
5475
5476 while ((token = strsep(&str, ",")) != NULL) {
5477 if (!*token)
5478 continue;
5479
5480 for_each_subsys(ss, i) {
5481 if (strcmp(token, ss->name) &&
5482 strcmp(token, ss->legacy_name))
5483 continue;
5484
5485 ss->disabled = 1;
5486 printk(KERN_INFO "Disabling %s control group subsystem\n",
5487 ss->name);
5488 break;
5489 }
5490 }
5491 return 1;
5492 }
5493 __setup("cgroup_disable=", cgroup_disable);
5494
5495 static int __init cgroup_set_legacy_files_on_dfl(char *str)
5496 {
5497 printk("cgroup: using legacy files on the default hierarchy\n");
5498 cgroup_legacy_files_on_dfl = true;
5499 return 0;
5500 }
5501 __setup("cgroup__DEVEL__legacy_files_on_dfl", cgroup_set_legacy_files_on_dfl);
5502
5503 /**
5504 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
5505 * @dentry: directory dentry of interest
5506 * @ss: subsystem of interest
5507 *
5508 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
5509 * to get the corresponding css and return it. If such css doesn't exist
5510 * or can't be pinned, an ERR_PTR value is returned.
5511 */
5512 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
5513 struct cgroup_subsys *ss)
5514 {
5515 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
5516 struct cgroup_subsys_state *css = NULL;
5517 struct cgroup *cgrp;
5518
5519 /* is @dentry a cgroup dir? */
5520 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
5521 kernfs_type(kn) != KERNFS_DIR)
5522 return ERR_PTR(-EBADF);
5523
5524 rcu_read_lock();
5525
5526 /*
5527 * This path doesn't originate from kernfs and @kn could already
5528 * have been or be removed at any point. @kn->priv is RCU
5529 * protected for this access. See css_release_work_fn() for details.
5530 */
5531 cgrp = rcu_dereference(kn->priv);
5532 if (cgrp)
5533 css = cgroup_css(cgrp, ss);
5534
5535 if (!css || !css_tryget_online(css))
5536 css = ERR_PTR(-ENOENT);
5537
5538 rcu_read_unlock();
5539 return css;
5540 }
5541
5542 /**
5543 * css_from_id - lookup css by id
5544 * @id: the cgroup id
5545 * @ss: cgroup subsys to be looked into
5546 *
5547 * Returns the css if there's valid one with @id, otherwise returns NULL.
5548 * Should be called under rcu_read_lock().
5549 */
5550 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
5551 {
5552 WARN_ON_ONCE(!rcu_read_lock_held());
5553 return id > 0 ? idr_find(&ss->css_idr, id) : NULL;
5554 }
5555
5556 #ifdef CONFIG_CGROUP_DEBUG
5557 static struct cgroup_subsys_state *
5558 debug_css_alloc(struct cgroup_subsys_state *parent_css)
5559 {
5560 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5561
5562 if (!css)
5563 return ERR_PTR(-ENOMEM);
5564
5565 return css;
5566 }
5567
5568 static void debug_css_free(struct cgroup_subsys_state *css)
5569 {
5570 kfree(css);
5571 }
5572
5573 static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
5574 struct cftype *cft)
5575 {
5576 return cgroup_task_count(css->cgroup);
5577 }
5578
5579 static u64 current_css_set_read(struct cgroup_subsys_state *css,
5580 struct cftype *cft)
5581 {
5582 return (u64)(unsigned long)current->cgroups;
5583 }
5584
5585 static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
5586 struct cftype *cft)
5587 {
5588 u64 count;
5589
5590 rcu_read_lock();
5591 count = atomic_read(&task_css_set(current)->refcount);
5592 rcu_read_unlock();
5593 return count;
5594 }
5595
5596 static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
5597 {
5598 struct cgrp_cset_link *link;
5599 struct css_set *cset;
5600 char *name_buf;
5601
5602 name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
5603 if (!name_buf)
5604 return -ENOMEM;
5605
5606 down_read(&css_set_rwsem);
5607 rcu_read_lock();
5608 cset = rcu_dereference(current->cgroups);
5609 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
5610 struct cgroup *c = link->cgrp;
5611
5612 cgroup_name(c, name_buf, NAME_MAX + 1);
5613 seq_printf(seq, "Root %d group %s\n",
5614 c->root->hierarchy_id, name_buf);
5615 }
5616 rcu_read_unlock();
5617 up_read(&css_set_rwsem);
5618 kfree(name_buf);
5619 return 0;
5620 }
5621
5622 #define MAX_TASKS_SHOWN_PER_CSS 25
5623 static int cgroup_css_links_read(struct seq_file *seq, void *v)
5624 {
5625 struct cgroup_subsys_state *css = seq_css(seq);
5626 struct cgrp_cset_link *link;
5627
5628 down_read(&css_set_rwsem);
5629 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
5630 struct css_set *cset = link->cset;
5631 struct task_struct *task;
5632 int count = 0;
5633
5634 seq_printf(seq, "css_set %p\n", cset);
5635
5636 list_for_each_entry(task, &cset->tasks, cg_list) {
5637 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5638 goto overflow;
5639 seq_printf(seq, " task %d\n", task_pid_vnr(task));
5640 }
5641
5642 list_for_each_entry(task, &cset->mg_tasks, cg_list) {
5643 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5644 goto overflow;
5645 seq_printf(seq, " task %d\n", task_pid_vnr(task));
5646 }
5647 continue;
5648 overflow:
5649 seq_puts(seq, " ...\n");
5650 }
5651 up_read(&css_set_rwsem);
5652 return 0;
5653 }
5654
5655 static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
5656 {
5657 return (!cgroup_has_tasks(css->cgroup) &&
5658 !css_has_online_children(&css->cgroup->self));
5659 }
5660
5661 static struct cftype debug_files[] = {
5662 {
5663 .name = "taskcount",
5664 .read_u64 = debug_taskcount_read,
5665 },
5666
5667 {
5668 .name = "current_css_set",
5669 .read_u64 = current_css_set_read,
5670 },
5671
5672 {
5673 .name = "current_css_set_refcount",
5674 .read_u64 = current_css_set_refcount_read,
5675 },
5676
5677 {
5678 .name = "current_css_set_cg_links",
5679 .seq_show = current_css_set_cg_links_read,
5680 },
5681
5682 {
5683 .name = "cgroup_css_links",
5684 .seq_show = cgroup_css_links_read,
5685 },
5686
5687 {
5688 .name = "releasable",
5689 .read_u64 = releasable_read,
5690 },
5691
5692 { } /* terminate */
5693 };
5694
5695 struct cgroup_subsys debug_cgrp_subsys = {
5696 .css_alloc = debug_css_alloc,
5697 .css_free = debug_css_free,
5698 .legacy_cftypes = debug_files,
5699 };
5700 #endif /* CONFIG_CGROUP_DEBUG */
This page took 0.153913 seconds and 6 git commands to generate.