cgroup: restructure the failure path in cgroup_write_event_control()
[deliverable/linux.git] / kernel / cgroup.c
1 /*
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29 #include <linux/cgroup.h>
30 #include <linux/cred.h>
31 #include <linux/ctype.h>
32 #include <linux/errno.h>
33 #include <linux/init_task.h>
34 #include <linux/kernel.h>
35 #include <linux/list.h>
36 #include <linux/mm.h>
37 #include <linux/mutex.h>
38 #include <linux/mount.h>
39 #include <linux/pagemap.h>
40 #include <linux/proc_fs.h>
41 #include <linux/rcupdate.h>
42 #include <linux/sched.h>
43 #include <linux/backing-dev.h>
44 #include <linux/seq_file.h>
45 #include <linux/slab.h>
46 #include <linux/magic.h>
47 #include <linux/spinlock.h>
48 #include <linux/string.h>
49 #include <linux/sort.h>
50 #include <linux/kmod.h>
51 #include <linux/module.h>
52 #include <linux/delayacct.h>
53 #include <linux/cgroupstats.h>
54 #include <linux/hashtable.h>
55 #include <linux/namei.h>
56 #include <linux/pid_namespace.h>
57 #include <linux/idr.h>
58 #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
59 #include <linux/eventfd.h>
60 #include <linux/poll.h>
61 #include <linux/flex_array.h> /* used in cgroup_attach_task */
62 #include <linux/kthread.h>
63
64 #include <linux/atomic.h>
65
66 /*
67 * cgroup_mutex is the master lock. Any modification to cgroup or its
68 * hierarchy must be performed while holding it.
69 *
70 * cgroup_root_mutex nests inside cgroup_mutex and should be held to modify
71 * cgroupfs_root of any cgroup hierarchy - subsys list, flags,
72 * release_agent_path and so on. Modifying requires both cgroup_mutex and
73 * cgroup_root_mutex. Readers can acquire either of the two. This is to
74 * break the following locking order cycle.
75 *
76 * A. cgroup_mutex -> cred_guard_mutex -> s_type->i_mutex_key -> namespace_sem
77 * B. namespace_sem -> cgroup_mutex
78 *
79 * B happens only through cgroup_show_options() and using cgroup_root_mutex
80 * breaks it.
81 */
82 #ifdef CONFIG_PROVE_RCU
83 DEFINE_MUTEX(cgroup_mutex);
84 EXPORT_SYMBOL_GPL(cgroup_mutex); /* only for task_subsys_state_check() */
85 #else
86 static DEFINE_MUTEX(cgroup_mutex);
87 #endif
88
89 static DEFINE_MUTEX(cgroup_root_mutex);
90
91 /*
92 * Generate an array of cgroup subsystem pointers. At boot time, this is
93 * populated with the built in subsystems, and modular subsystems are
94 * registered after that. The mutable section of this array is protected by
95 * cgroup_mutex.
96 */
97 #define SUBSYS(_x) [_x ## _subsys_id] = &_x ## _subsys,
98 #define IS_SUBSYS_ENABLED(option) IS_BUILTIN(option)
99 static struct cgroup_subsys *cgroup_subsys[CGROUP_SUBSYS_COUNT] = {
100 #include <linux/cgroup_subsys.h>
101 };
102
103 /*
104 * The dummy hierarchy, reserved for the subsystems that are otherwise
105 * unattached - it never has more than a single cgroup, and all tasks are
106 * part of that cgroup.
107 */
108 static struct cgroupfs_root cgroup_dummy_root;
109
110 /* dummy_top is a shorthand for the dummy hierarchy's top cgroup */
111 static struct cgroup * const cgroup_dummy_top = &cgroup_dummy_root.top_cgroup;
112
113 /*
114 * cgroupfs file entry, pointed to from leaf dentry->d_fsdata.
115 */
116 struct cfent {
117 struct list_head node;
118 struct dentry *dentry;
119 struct cftype *type;
120
121 /* file xattrs */
122 struct simple_xattrs xattrs;
123 };
124
125 /*
126 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
127 * cgroup_subsys->use_id != 0.
128 */
129 #define CSS_ID_MAX (65535)
130 struct css_id {
131 /*
132 * The css to which this ID points. This pointer is set to valid value
133 * after cgroup is populated. If cgroup is removed, this will be NULL.
134 * This pointer is expected to be RCU-safe because destroy()
135 * is called after synchronize_rcu(). But for safe use, css_tryget()
136 * should be used for avoiding race.
137 */
138 struct cgroup_subsys_state __rcu *css;
139 /*
140 * ID of this css.
141 */
142 unsigned short id;
143 /*
144 * Depth in hierarchy which this ID belongs to.
145 */
146 unsigned short depth;
147 /*
148 * ID is freed by RCU. (and lookup routine is RCU safe.)
149 */
150 struct rcu_head rcu_head;
151 /*
152 * Hierarchy of CSS ID belongs to.
153 */
154 unsigned short stack[0]; /* Array of Length (depth+1) */
155 };
156
157 /*
158 * cgroup_event represents events which userspace want to receive.
159 */
160 struct cgroup_event {
161 /*
162 * Cgroup which the event belongs to.
163 */
164 struct cgroup *cgrp;
165 /*
166 * Control file which the event associated.
167 */
168 struct cftype *cft;
169 /*
170 * eventfd to signal userspace about the event.
171 */
172 struct eventfd_ctx *eventfd;
173 /*
174 * Each of these stored in a list by the cgroup.
175 */
176 struct list_head list;
177 /*
178 * All fields below needed to unregister event when
179 * userspace closes eventfd.
180 */
181 poll_table pt;
182 wait_queue_head_t *wqh;
183 wait_queue_t wait;
184 struct work_struct remove;
185 };
186
187 /* The list of hierarchy roots */
188
189 static LIST_HEAD(cgroup_roots);
190 static int cgroup_root_count;
191
192 /*
193 * Hierarchy ID allocation and mapping. It follows the same exclusion
194 * rules as other root ops - both cgroup_mutex and cgroup_root_mutex for
195 * writes, either for reads.
196 */
197 static DEFINE_IDR(cgroup_hierarchy_idr);
198
199 static struct cgroup_name root_cgroup_name = { .name = "/" };
200
201 /*
202 * Assign a monotonically increasing serial number to cgroups. It
203 * guarantees cgroups with bigger numbers are newer than those with smaller
204 * numbers. Also, as cgroups are always appended to the parent's
205 * ->children list, it guarantees that sibling cgroups are always sorted in
206 * the ascending serial number order on the list. Protected by
207 * cgroup_mutex.
208 */
209 static u64 cgroup_serial_nr_next = 1;
210
211 /* This flag indicates whether tasks in the fork and exit paths should
212 * check for fork/exit handlers to call. This avoids us having to do
213 * extra work in the fork/exit path if none of the subsystems need to
214 * be called.
215 */
216 static int need_forkexit_callback __read_mostly;
217
218 static struct cftype cgroup_base_files[];
219
220 static void cgroup_offline_fn(struct work_struct *work);
221 static int cgroup_destroy_locked(struct cgroup *cgrp);
222 static int cgroup_addrm_files(struct cgroup *cgrp, struct cgroup_subsys *subsys,
223 struct cftype cfts[], bool is_add);
224
225 /* convenient tests for these bits */
226 static inline bool cgroup_is_dead(const struct cgroup *cgrp)
227 {
228 return test_bit(CGRP_DEAD, &cgrp->flags);
229 }
230
231 /**
232 * cgroup_is_descendant - test ancestry
233 * @cgrp: the cgroup to be tested
234 * @ancestor: possible ancestor of @cgrp
235 *
236 * Test whether @cgrp is a descendant of @ancestor. It also returns %true
237 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
238 * and @ancestor are accessible.
239 */
240 bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
241 {
242 while (cgrp) {
243 if (cgrp == ancestor)
244 return true;
245 cgrp = cgrp->parent;
246 }
247 return false;
248 }
249 EXPORT_SYMBOL_GPL(cgroup_is_descendant);
250
251 static int cgroup_is_releasable(const struct cgroup *cgrp)
252 {
253 const int bits =
254 (1 << CGRP_RELEASABLE) |
255 (1 << CGRP_NOTIFY_ON_RELEASE);
256 return (cgrp->flags & bits) == bits;
257 }
258
259 static int notify_on_release(const struct cgroup *cgrp)
260 {
261 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
262 }
263
264 /**
265 * for_each_subsys - iterate all loaded cgroup subsystems
266 * @ss: the iteration cursor
267 * @i: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
268 *
269 * Should be called under cgroup_mutex.
270 */
271 #define for_each_subsys(ss, i) \
272 for ((i) = 0; (i) < CGROUP_SUBSYS_COUNT; (i)++) \
273 if (({ lockdep_assert_held(&cgroup_mutex); \
274 !((ss) = cgroup_subsys[i]); })) { } \
275 else
276
277 /**
278 * for_each_builtin_subsys - iterate all built-in cgroup subsystems
279 * @ss: the iteration cursor
280 * @i: the index of @ss, CGROUP_BUILTIN_SUBSYS_COUNT after reaching the end
281 *
282 * Bulit-in subsystems are always present and iteration itself doesn't
283 * require any synchronization.
284 */
285 #define for_each_builtin_subsys(ss, i) \
286 for ((i) = 0; (i) < CGROUP_BUILTIN_SUBSYS_COUNT && \
287 (((ss) = cgroup_subsys[i]) || true); (i)++)
288
289 /* iterate each subsystem attached to a hierarchy */
290 #define for_each_root_subsys(root, ss) \
291 list_for_each_entry((ss), &(root)->subsys_list, sibling)
292
293 /* iterate across the active hierarchies */
294 #define for_each_active_root(root) \
295 list_for_each_entry((root), &cgroup_roots, root_list)
296
297 static inline struct cgroup *__d_cgrp(struct dentry *dentry)
298 {
299 return dentry->d_fsdata;
300 }
301
302 static inline struct cfent *__d_cfe(struct dentry *dentry)
303 {
304 return dentry->d_fsdata;
305 }
306
307 static inline struct cftype *__d_cft(struct dentry *dentry)
308 {
309 return __d_cfe(dentry)->type;
310 }
311
312 /**
313 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
314 * @cgrp: the cgroup to be checked for liveness
315 *
316 * On success, returns true; the mutex should be later unlocked. On
317 * failure returns false with no lock held.
318 */
319 static bool cgroup_lock_live_group(struct cgroup *cgrp)
320 {
321 mutex_lock(&cgroup_mutex);
322 if (cgroup_is_dead(cgrp)) {
323 mutex_unlock(&cgroup_mutex);
324 return false;
325 }
326 return true;
327 }
328
329 /* the list of cgroups eligible for automatic release. Protected by
330 * release_list_lock */
331 static LIST_HEAD(release_list);
332 static DEFINE_RAW_SPINLOCK(release_list_lock);
333 static void cgroup_release_agent(struct work_struct *work);
334 static DECLARE_WORK(release_agent_work, cgroup_release_agent);
335 static void check_for_release(struct cgroup *cgrp);
336
337 /*
338 * A cgroup can be associated with multiple css_sets as different tasks may
339 * belong to different cgroups on different hierarchies. In the other
340 * direction, a css_set is naturally associated with multiple cgroups.
341 * This M:N relationship is represented by the following link structure
342 * which exists for each association and allows traversing the associations
343 * from both sides.
344 */
345 struct cgrp_cset_link {
346 /* the cgroup and css_set this link associates */
347 struct cgroup *cgrp;
348 struct css_set *cset;
349
350 /* list of cgrp_cset_links anchored at cgrp->cset_links */
351 struct list_head cset_link;
352
353 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
354 struct list_head cgrp_link;
355 };
356
357 /* The default css_set - used by init and its children prior to any
358 * hierarchies being mounted. It contains a pointer to the root state
359 * for each subsystem. Also used to anchor the list of css_sets. Not
360 * reference-counted, to improve performance when child cgroups
361 * haven't been created.
362 */
363
364 static struct css_set init_css_set;
365 static struct cgrp_cset_link init_cgrp_cset_link;
366
367 static int cgroup_init_idr(struct cgroup_subsys *ss,
368 struct cgroup_subsys_state *css);
369
370 /* css_set_lock protects the list of css_set objects, and the
371 * chain of tasks off each css_set. Nests outside task->alloc_lock
372 * due to cgroup_iter_start() */
373 static DEFINE_RWLOCK(css_set_lock);
374 static int css_set_count;
375
376 /*
377 * hash table for cgroup groups. This improves the performance to find
378 * an existing css_set. This hash doesn't (currently) take into
379 * account cgroups in empty hierarchies.
380 */
381 #define CSS_SET_HASH_BITS 7
382 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
383
384 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
385 {
386 unsigned long key = 0UL;
387 struct cgroup_subsys *ss;
388 int i;
389
390 for_each_subsys(ss, i)
391 key += (unsigned long)css[i];
392 key = (key >> 16) ^ key;
393
394 return key;
395 }
396
397 /* We don't maintain the lists running through each css_set to its
398 * task until after the first call to cgroup_iter_start(). This
399 * reduces the fork()/exit() overhead for people who have cgroups
400 * compiled into their kernel but not actually in use */
401 static int use_task_css_set_links __read_mostly;
402
403 static void __put_css_set(struct css_set *cset, int taskexit)
404 {
405 struct cgrp_cset_link *link, *tmp_link;
406
407 /*
408 * Ensure that the refcount doesn't hit zero while any readers
409 * can see it. Similar to atomic_dec_and_lock(), but for an
410 * rwlock
411 */
412 if (atomic_add_unless(&cset->refcount, -1, 1))
413 return;
414 write_lock(&css_set_lock);
415 if (!atomic_dec_and_test(&cset->refcount)) {
416 write_unlock(&css_set_lock);
417 return;
418 }
419
420 /* This css_set is dead. unlink it and release cgroup refcounts */
421 hash_del(&cset->hlist);
422 css_set_count--;
423
424 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
425 struct cgroup *cgrp = link->cgrp;
426
427 list_del(&link->cset_link);
428 list_del(&link->cgrp_link);
429
430 /* @cgrp can't go away while we're holding css_set_lock */
431 if (list_empty(&cgrp->cset_links) && notify_on_release(cgrp)) {
432 if (taskexit)
433 set_bit(CGRP_RELEASABLE, &cgrp->flags);
434 check_for_release(cgrp);
435 }
436
437 kfree(link);
438 }
439
440 write_unlock(&css_set_lock);
441 kfree_rcu(cset, rcu_head);
442 }
443
444 /*
445 * refcounted get/put for css_set objects
446 */
447 static inline void get_css_set(struct css_set *cset)
448 {
449 atomic_inc(&cset->refcount);
450 }
451
452 static inline void put_css_set(struct css_set *cset)
453 {
454 __put_css_set(cset, 0);
455 }
456
457 static inline void put_css_set_taskexit(struct css_set *cset)
458 {
459 __put_css_set(cset, 1);
460 }
461
462 /**
463 * compare_css_sets - helper function for find_existing_css_set().
464 * @cset: candidate css_set being tested
465 * @old_cset: existing css_set for a task
466 * @new_cgrp: cgroup that's being entered by the task
467 * @template: desired set of css pointers in css_set (pre-calculated)
468 *
469 * Returns true if "cset" matches "old_cset" except for the hierarchy
470 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
471 */
472 static bool compare_css_sets(struct css_set *cset,
473 struct css_set *old_cset,
474 struct cgroup *new_cgrp,
475 struct cgroup_subsys_state *template[])
476 {
477 struct list_head *l1, *l2;
478
479 if (memcmp(template, cset->subsys, sizeof(cset->subsys))) {
480 /* Not all subsystems matched */
481 return false;
482 }
483
484 /*
485 * Compare cgroup pointers in order to distinguish between
486 * different cgroups in heirarchies with no subsystems. We
487 * could get by with just this check alone (and skip the
488 * memcmp above) but on most setups the memcmp check will
489 * avoid the need for this more expensive check on almost all
490 * candidates.
491 */
492
493 l1 = &cset->cgrp_links;
494 l2 = &old_cset->cgrp_links;
495 while (1) {
496 struct cgrp_cset_link *link1, *link2;
497 struct cgroup *cgrp1, *cgrp2;
498
499 l1 = l1->next;
500 l2 = l2->next;
501 /* See if we reached the end - both lists are equal length. */
502 if (l1 == &cset->cgrp_links) {
503 BUG_ON(l2 != &old_cset->cgrp_links);
504 break;
505 } else {
506 BUG_ON(l2 == &old_cset->cgrp_links);
507 }
508 /* Locate the cgroups associated with these links. */
509 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
510 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
511 cgrp1 = link1->cgrp;
512 cgrp2 = link2->cgrp;
513 /* Hierarchies should be linked in the same order. */
514 BUG_ON(cgrp1->root != cgrp2->root);
515
516 /*
517 * If this hierarchy is the hierarchy of the cgroup
518 * that's changing, then we need to check that this
519 * css_set points to the new cgroup; if it's any other
520 * hierarchy, then this css_set should point to the
521 * same cgroup as the old css_set.
522 */
523 if (cgrp1->root == new_cgrp->root) {
524 if (cgrp1 != new_cgrp)
525 return false;
526 } else {
527 if (cgrp1 != cgrp2)
528 return false;
529 }
530 }
531 return true;
532 }
533
534 /**
535 * find_existing_css_set - init css array and find the matching css_set
536 * @old_cset: the css_set that we're using before the cgroup transition
537 * @cgrp: the cgroup that we're moving into
538 * @template: out param for the new set of csses, should be clear on entry
539 */
540 static struct css_set *find_existing_css_set(struct css_set *old_cset,
541 struct cgroup *cgrp,
542 struct cgroup_subsys_state *template[])
543 {
544 struct cgroupfs_root *root = cgrp->root;
545 struct cgroup_subsys *ss;
546 struct css_set *cset;
547 unsigned long key;
548 int i;
549
550 /*
551 * Build the set of subsystem state objects that we want to see in the
552 * new css_set. while subsystems can change globally, the entries here
553 * won't change, so no need for locking.
554 */
555 for_each_subsys(ss, i) {
556 if (root->subsys_mask & (1UL << i)) {
557 /* Subsystem is in this hierarchy. So we want
558 * the subsystem state from the new
559 * cgroup */
560 template[i] = cgrp->subsys[i];
561 } else {
562 /* Subsystem is not in this hierarchy, so we
563 * don't want to change the subsystem state */
564 template[i] = old_cset->subsys[i];
565 }
566 }
567
568 key = css_set_hash(template);
569 hash_for_each_possible(css_set_table, cset, hlist, key) {
570 if (!compare_css_sets(cset, old_cset, cgrp, template))
571 continue;
572
573 /* This css_set matches what we need */
574 return cset;
575 }
576
577 /* No existing cgroup group matched */
578 return NULL;
579 }
580
581 static void free_cgrp_cset_links(struct list_head *links_to_free)
582 {
583 struct cgrp_cset_link *link, *tmp_link;
584
585 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
586 list_del(&link->cset_link);
587 kfree(link);
588 }
589 }
590
591 /**
592 * allocate_cgrp_cset_links - allocate cgrp_cset_links
593 * @count: the number of links to allocate
594 * @tmp_links: list_head the allocated links are put on
595 *
596 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
597 * through ->cset_link. Returns 0 on success or -errno.
598 */
599 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
600 {
601 struct cgrp_cset_link *link;
602 int i;
603
604 INIT_LIST_HEAD(tmp_links);
605
606 for (i = 0; i < count; i++) {
607 link = kzalloc(sizeof(*link), GFP_KERNEL);
608 if (!link) {
609 free_cgrp_cset_links(tmp_links);
610 return -ENOMEM;
611 }
612 list_add(&link->cset_link, tmp_links);
613 }
614 return 0;
615 }
616
617 /**
618 * link_css_set - a helper function to link a css_set to a cgroup
619 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
620 * @cset: the css_set to be linked
621 * @cgrp: the destination cgroup
622 */
623 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
624 struct cgroup *cgrp)
625 {
626 struct cgrp_cset_link *link;
627
628 BUG_ON(list_empty(tmp_links));
629 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
630 link->cset = cset;
631 link->cgrp = cgrp;
632 list_move(&link->cset_link, &cgrp->cset_links);
633 /*
634 * Always add links to the tail of the list so that the list
635 * is sorted by order of hierarchy creation
636 */
637 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
638 }
639
640 /**
641 * find_css_set - return a new css_set with one cgroup updated
642 * @old_cset: the baseline css_set
643 * @cgrp: the cgroup to be updated
644 *
645 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
646 * substituted into the appropriate hierarchy.
647 */
648 static struct css_set *find_css_set(struct css_set *old_cset,
649 struct cgroup *cgrp)
650 {
651 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
652 struct css_set *cset;
653 struct list_head tmp_links;
654 struct cgrp_cset_link *link;
655 unsigned long key;
656
657 lockdep_assert_held(&cgroup_mutex);
658
659 /* First see if we already have a cgroup group that matches
660 * the desired set */
661 read_lock(&css_set_lock);
662 cset = find_existing_css_set(old_cset, cgrp, template);
663 if (cset)
664 get_css_set(cset);
665 read_unlock(&css_set_lock);
666
667 if (cset)
668 return cset;
669
670 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
671 if (!cset)
672 return NULL;
673
674 /* Allocate all the cgrp_cset_link objects that we'll need */
675 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
676 kfree(cset);
677 return NULL;
678 }
679
680 atomic_set(&cset->refcount, 1);
681 INIT_LIST_HEAD(&cset->cgrp_links);
682 INIT_LIST_HEAD(&cset->tasks);
683 INIT_HLIST_NODE(&cset->hlist);
684
685 /* Copy the set of subsystem state objects generated in
686 * find_existing_css_set() */
687 memcpy(cset->subsys, template, sizeof(cset->subsys));
688
689 write_lock(&css_set_lock);
690 /* Add reference counts and links from the new css_set. */
691 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
692 struct cgroup *c = link->cgrp;
693
694 if (c->root == cgrp->root)
695 c = cgrp;
696 link_css_set(&tmp_links, cset, c);
697 }
698
699 BUG_ON(!list_empty(&tmp_links));
700
701 css_set_count++;
702
703 /* Add this cgroup group to the hash table */
704 key = css_set_hash(cset->subsys);
705 hash_add(css_set_table, &cset->hlist, key);
706
707 write_unlock(&css_set_lock);
708
709 return cset;
710 }
711
712 /*
713 * Return the cgroup for "task" from the given hierarchy. Must be
714 * called with cgroup_mutex held.
715 */
716 static struct cgroup *task_cgroup_from_root(struct task_struct *task,
717 struct cgroupfs_root *root)
718 {
719 struct css_set *cset;
720 struct cgroup *res = NULL;
721
722 BUG_ON(!mutex_is_locked(&cgroup_mutex));
723 read_lock(&css_set_lock);
724 /*
725 * No need to lock the task - since we hold cgroup_mutex the
726 * task can't change groups, so the only thing that can happen
727 * is that it exits and its css is set back to init_css_set.
728 */
729 cset = task_css_set(task);
730 if (cset == &init_css_set) {
731 res = &root->top_cgroup;
732 } else {
733 struct cgrp_cset_link *link;
734
735 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
736 struct cgroup *c = link->cgrp;
737
738 if (c->root == root) {
739 res = c;
740 break;
741 }
742 }
743 }
744 read_unlock(&css_set_lock);
745 BUG_ON(!res);
746 return res;
747 }
748
749 /*
750 * There is one global cgroup mutex. We also require taking
751 * task_lock() when dereferencing a task's cgroup subsys pointers.
752 * See "The task_lock() exception", at the end of this comment.
753 *
754 * A task must hold cgroup_mutex to modify cgroups.
755 *
756 * Any task can increment and decrement the count field without lock.
757 * So in general, code holding cgroup_mutex can't rely on the count
758 * field not changing. However, if the count goes to zero, then only
759 * cgroup_attach_task() can increment it again. Because a count of zero
760 * means that no tasks are currently attached, therefore there is no
761 * way a task attached to that cgroup can fork (the other way to
762 * increment the count). So code holding cgroup_mutex can safely
763 * assume that if the count is zero, it will stay zero. Similarly, if
764 * a task holds cgroup_mutex on a cgroup with zero count, it
765 * knows that the cgroup won't be removed, as cgroup_rmdir()
766 * needs that mutex.
767 *
768 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
769 * (usually) take cgroup_mutex. These are the two most performance
770 * critical pieces of code here. The exception occurs on cgroup_exit(),
771 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
772 * is taken, and if the cgroup count is zero, a usermode call made
773 * to the release agent with the name of the cgroup (path relative to
774 * the root of cgroup file system) as the argument.
775 *
776 * A cgroup can only be deleted if both its 'count' of using tasks
777 * is zero, and its list of 'children' cgroups is empty. Since all
778 * tasks in the system use _some_ cgroup, and since there is always at
779 * least one task in the system (init, pid == 1), therefore, top_cgroup
780 * always has either children cgroups and/or using tasks. So we don't
781 * need a special hack to ensure that top_cgroup cannot be deleted.
782 *
783 * The task_lock() exception
784 *
785 * The need for this exception arises from the action of
786 * cgroup_attach_task(), which overwrites one task's cgroup pointer with
787 * another. It does so using cgroup_mutex, however there are
788 * several performance critical places that need to reference
789 * task->cgroup without the expense of grabbing a system global
790 * mutex. Therefore except as noted below, when dereferencing or, as
791 * in cgroup_attach_task(), modifying a task's cgroup pointer we use
792 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
793 * the task_struct routinely used for such matters.
794 *
795 * P.S. One more locking exception. RCU is used to guard the
796 * update of a tasks cgroup pointer by cgroup_attach_task()
797 */
798
799 /*
800 * A couple of forward declarations required, due to cyclic reference loop:
801 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
802 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
803 * -> cgroup_mkdir.
804 */
805
806 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode);
807 static struct dentry *cgroup_lookup(struct inode *, struct dentry *, unsigned int);
808 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
809 static int cgroup_populate_dir(struct cgroup *cgrp, unsigned long subsys_mask);
810 static const struct inode_operations cgroup_dir_inode_operations;
811 static const struct file_operations proc_cgroupstats_operations;
812
813 static struct backing_dev_info cgroup_backing_dev_info = {
814 .name = "cgroup",
815 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
816 };
817
818 static int alloc_css_id(struct cgroup_subsys *ss,
819 struct cgroup *parent, struct cgroup *child);
820
821 static struct inode *cgroup_new_inode(umode_t mode, struct super_block *sb)
822 {
823 struct inode *inode = new_inode(sb);
824
825 if (inode) {
826 inode->i_ino = get_next_ino();
827 inode->i_mode = mode;
828 inode->i_uid = current_fsuid();
829 inode->i_gid = current_fsgid();
830 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
831 inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
832 }
833 return inode;
834 }
835
836 static struct cgroup_name *cgroup_alloc_name(struct dentry *dentry)
837 {
838 struct cgroup_name *name;
839
840 name = kmalloc(sizeof(*name) + dentry->d_name.len + 1, GFP_KERNEL);
841 if (!name)
842 return NULL;
843 strcpy(name->name, dentry->d_name.name);
844 return name;
845 }
846
847 static void cgroup_free_fn(struct work_struct *work)
848 {
849 struct cgroup *cgrp = container_of(work, struct cgroup, destroy_work);
850 struct cgroup_subsys *ss;
851
852 mutex_lock(&cgroup_mutex);
853 /*
854 * Release the subsystem state objects.
855 */
856 for_each_root_subsys(cgrp->root, ss)
857 ss->css_free(cgrp);
858
859 cgrp->root->number_of_cgroups--;
860 mutex_unlock(&cgroup_mutex);
861
862 /*
863 * We get a ref to the parent's dentry, and put the ref when
864 * this cgroup is being freed, so it's guaranteed that the
865 * parent won't be destroyed before its children.
866 */
867 dput(cgrp->parent->dentry);
868
869 /*
870 * Drop the active superblock reference that we took when we
871 * created the cgroup. This will free cgrp->root, if we are
872 * holding the last reference to @sb.
873 */
874 deactivate_super(cgrp->root->sb);
875
876 /*
877 * if we're getting rid of the cgroup, refcount should ensure
878 * that there are no pidlists left.
879 */
880 BUG_ON(!list_empty(&cgrp->pidlists));
881
882 simple_xattrs_free(&cgrp->xattrs);
883
884 kfree(rcu_dereference_raw(cgrp->name));
885 kfree(cgrp);
886 }
887
888 static void cgroup_free_rcu(struct rcu_head *head)
889 {
890 struct cgroup *cgrp = container_of(head, struct cgroup, rcu_head);
891
892 INIT_WORK(&cgrp->destroy_work, cgroup_free_fn);
893 schedule_work(&cgrp->destroy_work);
894 }
895
896 static void cgroup_diput(struct dentry *dentry, struct inode *inode)
897 {
898 /* is dentry a directory ? if so, kfree() associated cgroup */
899 if (S_ISDIR(inode->i_mode)) {
900 struct cgroup *cgrp = dentry->d_fsdata;
901
902 BUG_ON(!(cgroup_is_dead(cgrp)));
903 call_rcu(&cgrp->rcu_head, cgroup_free_rcu);
904 } else {
905 struct cfent *cfe = __d_cfe(dentry);
906 struct cgroup *cgrp = dentry->d_parent->d_fsdata;
907
908 WARN_ONCE(!list_empty(&cfe->node) &&
909 cgrp != &cgrp->root->top_cgroup,
910 "cfe still linked for %s\n", cfe->type->name);
911 simple_xattrs_free(&cfe->xattrs);
912 kfree(cfe);
913 }
914 iput(inode);
915 }
916
917 static int cgroup_delete(const struct dentry *d)
918 {
919 return 1;
920 }
921
922 static void remove_dir(struct dentry *d)
923 {
924 struct dentry *parent = dget(d->d_parent);
925
926 d_delete(d);
927 simple_rmdir(parent->d_inode, d);
928 dput(parent);
929 }
930
931 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
932 {
933 struct cfent *cfe;
934
935 lockdep_assert_held(&cgrp->dentry->d_inode->i_mutex);
936 lockdep_assert_held(&cgroup_mutex);
937
938 /*
939 * If we're doing cleanup due to failure of cgroup_create(),
940 * the corresponding @cfe may not exist.
941 */
942 list_for_each_entry(cfe, &cgrp->files, node) {
943 struct dentry *d = cfe->dentry;
944
945 if (cft && cfe->type != cft)
946 continue;
947
948 dget(d);
949 d_delete(d);
950 simple_unlink(cgrp->dentry->d_inode, d);
951 list_del_init(&cfe->node);
952 dput(d);
953
954 break;
955 }
956 }
957
958 /**
959 * cgroup_clear_dir - remove subsys files in a cgroup directory
960 * @cgrp: target cgroup
961 * @subsys_mask: mask of the subsystem ids whose files should be removed
962 */
963 static void cgroup_clear_dir(struct cgroup *cgrp, unsigned long subsys_mask)
964 {
965 struct cgroup_subsys *ss;
966 int i;
967
968 for_each_subsys(ss, i) {
969 struct cftype_set *set;
970
971 if (!test_bit(i, &subsys_mask))
972 continue;
973 list_for_each_entry(set, &ss->cftsets, node)
974 cgroup_addrm_files(cgrp, NULL, set->cfts, false);
975 }
976 }
977
978 /*
979 * NOTE : the dentry must have been dget()'ed
980 */
981 static void cgroup_d_remove_dir(struct dentry *dentry)
982 {
983 struct dentry *parent;
984
985 parent = dentry->d_parent;
986 spin_lock(&parent->d_lock);
987 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
988 list_del_init(&dentry->d_u.d_child);
989 spin_unlock(&dentry->d_lock);
990 spin_unlock(&parent->d_lock);
991 remove_dir(dentry);
992 }
993
994 /*
995 * Call with cgroup_mutex held. Drops reference counts on modules, including
996 * any duplicate ones that parse_cgroupfs_options took. If this function
997 * returns an error, no reference counts are touched.
998 */
999 static int rebind_subsystems(struct cgroupfs_root *root,
1000 unsigned long added_mask, unsigned removed_mask)
1001 {
1002 struct cgroup *cgrp = &root->top_cgroup;
1003 struct cgroup_subsys *ss;
1004 unsigned long pinned = 0;
1005 int i, ret;
1006
1007 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1008 BUG_ON(!mutex_is_locked(&cgroup_root_mutex));
1009
1010 /* Check that any added subsystems are currently free */
1011 for_each_subsys(ss, i) {
1012 if (!(added_mask & (1 << i)))
1013 continue;
1014
1015 /* is the subsystem mounted elsewhere? */
1016 if (ss->root != &cgroup_dummy_root) {
1017 ret = -EBUSY;
1018 goto out_put;
1019 }
1020
1021 /* pin the module */
1022 if (!try_module_get(ss->module)) {
1023 ret = -ENOENT;
1024 goto out_put;
1025 }
1026 pinned |= 1 << i;
1027 }
1028
1029 /* subsys could be missing if unloaded between parsing and here */
1030 if (added_mask != pinned) {
1031 ret = -ENOENT;
1032 goto out_put;
1033 }
1034
1035 ret = cgroup_populate_dir(cgrp, added_mask);
1036 if (ret)
1037 goto out_put;
1038
1039 /*
1040 * Nothing can fail from this point on. Remove files for the
1041 * removed subsystems and rebind each subsystem.
1042 */
1043 cgroup_clear_dir(cgrp, removed_mask);
1044
1045 for_each_subsys(ss, i) {
1046 unsigned long bit = 1UL << i;
1047
1048 if (bit & added_mask) {
1049 /* We're binding this subsystem to this hierarchy */
1050 BUG_ON(cgrp->subsys[i]);
1051 BUG_ON(!cgroup_dummy_top->subsys[i]);
1052 BUG_ON(cgroup_dummy_top->subsys[i]->cgroup != cgroup_dummy_top);
1053
1054 cgrp->subsys[i] = cgroup_dummy_top->subsys[i];
1055 cgrp->subsys[i]->cgroup = cgrp;
1056 list_move(&ss->sibling, &root->subsys_list);
1057 ss->root = root;
1058 if (ss->bind)
1059 ss->bind(cgrp);
1060
1061 /* refcount was already taken, and we're keeping it */
1062 root->subsys_mask |= bit;
1063 } else if (bit & removed_mask) {
1064 /* We're removing this subsystem */
1065 BUG_ON(cgrp->subsys[i] != cgroup_dummy_top->subsys[i]);
1066 BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
1067
1068 if (ss->bind)
1069 ss->bind(cgroup_dummy_top);
1070 cgroup_dummy_top->subsys[i]->cgroup = cgroup_dummy_top;
1071 cgrp->subsys[i] = NULL;
1072 cgroup_subsys[i]->root = &cgroup_dummy_root;
1073 list_move(&ss->sibling, &cgroup_dummy_root.subsys_list);
1074
1075 /* subsystem is now free - drop reference on module */
1076 module_put(ss->module);
1077 root->subsys_mask &= ~bit;
1078 }
1079 }
1080
1081 /*
1082 * Mark @root has finished binding subsystems. @root->subsys_mask
1083 * now matches the bound subsystems.
1084 */
1085 root->flags |= CGRP_ROOT_SUBSYS_BOUND;
1086
1087 return 0;
1088
1089 out_put:
1090 for_each_subsys(ss, i)
1091 if (pinned & (1 << i))
1092 module_put(ss->module);
1093 return ret;
1094 }
1095
1096 static int cgroup_show_options(struct seq_file *seq, struct dentry *dentry)
1097 {
1098 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
1099 struct cgroup_subsys *ss;
1100
1101 mutex_lock(&cgroup_root_mutex);
1102 for_each_root_subsys(root, ss)
1103 seq_printf(seq, ",%s", ss->name);
1104 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR)
1105 seq_puts(seq, ",sane_behavior");
1106 if (root->flags & CGRP_ROOT_NOPREFIX)
1107 seq_puts(seq, ",noprefix");
1108 if (root->flags & CGRP_ROOT_XATTR)
1109 seq_puts(seq, ",xattr");
1110 if (strlen(root->release_agent_path))
1111 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
1112 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags))
1113 seq_puts(seq, ",clone_children");
1114 if (strlen(root->name))
1115 seq_printf(seq, ",name=%s", root->name);
1116 mutex_unlock(&cgroup_root_mutex);
1117 return 0;
1118 }
1119
1120 struct cgroup_sb_opts {
1121 unsigned long subsys_mask;
1122 unsigned long flags;
1123 char *release_agent;
1124 bool cpuset_clone_children;
1125 char *name;
1126 /* User explicitly requested empty subsystem */
1127 bool none;
1128
1129 struct cgroupfs_root *new_root;
1130
1131 };
1132
1133 /*
1134 * Convert a hierarchy specifier into a bitmask of subsystems and
1135 * flags. Call with cgroup_mutex held to protect the cgroup_subsys[]
1136 * array. This function takes refcounts on subsystems to be used, unless it
1137 * returns error, in which case no refcounts are taken.
1138 */
1139 static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
1140 {
1141 char *token, *o = data;
1142 bool all_ss = false, one_ss = false;
1143 unsigned long mask = (unsigned long)-1;
1144 struct cgroup_subsys *ss;
1145 int i;
1146
1147 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1148
1149 #ifdef CONFIG_CPUSETS
1150 mask = ~(1UL << cpuset_subsys_id);
1151 #endif
1152
1153 memset(opts, 0, sizeof(*opts));
1154
1155 while ((token = strsep(&o, ",")) != NULL) {
1156 if (!*token)
1157 return -EINVAL;
1158 if (!strcmp(token, "none")) {
1159 /* Explicitly have no subsystems */
1160 opts->none = true;
1161 continue;
1162 }
1163 if (!strcmp(token, "all")) {
1164 /* Mutually exclusive option 'all' + subsystem name */
1165 if (one_ss)
1166 return -EINVAL;
1167 all_ss = true;
1168 continue;
1169 }
1170 if (!strcmp(token, "__DEVEL__sane_behavior")) {
1171 opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
1172 continue;
1173 }
1174 if (!strcmp(token, "noprefix")) {
1175 opts->flags |= CGRP_ROOT_NOPREFIX;
1176 continue;
1177 }
1178 if (!strcmp(token, "clone_children")) {
1179 opts->cpuset_clone_children = true;
1180 continue;
1181 }
1182 if (!strcmp(token, "xattr")) {
1183 opts->flags |= CGRP_ROOT_XATTR;
1184 continue;
1185 }
1186 if (!strncmp(token, "release_agent=", 14)) {
1187 /* Specifying two release agents is forbidden */
1188 if (opts->release_agent)
1189 return -EINVAL;
1190 opts->release_agent =
1191 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
1192 if (!opts->release_agent)
1193 return -ENOMEM;
1194 continue;
1195 }
1196 if (!strncmp(token, "name=", 5)) {
1197 const char *name = token + 5;
1198 /* Can't specify an empty name */
1199 if (!strlen(name))
1200 return -EINVAL;
1201 /* Must match [\w.-]+ */
1202 for (i = 0; i < strlen(name); i++) {
1203 char c = name[i];
1204 if (isalnum(c))
1205 continue;
1206 if ((c == '.') || (c == '-') || (c == '_'))
1207 continue;
1208 return -EINVAL;
1209 }
1210 /* Specifying two names is forbidden */
1211 if (opts->name)
1212 return -EINVAL;
1213 opts->name = kstrndup(name,
1214 MAX_CGROUP_ROOT_NAMELEN - 1,
1215 GFP_KERNEL);
1216 if (!opts->name)
1217 return -ENOMEM;
1218
1219 continue;
1220 }
1221
1222 for_each_subsys(ss, i) {
1223 if (strcmp(token, ss->name))
1224 continue;
1225 if (ss->disabled)
1226 continue;
1227
1228 /* Mutually exclusive option 'all' + subsystem name */
1229 if (all_ss)
1230 return -EINVAL;
1231 set_bit(i, &opts->subsys_mask);
1232 one_ss = true;
1233
1234 break;
1235 }
1236 if (i == CGROUP_SUBSYS_COUNT)
1237 return -ENOENT;
1238 }
1239
1240 /*
1241 * If the 'all' option was specified select all the subsystems,
1242 * otherwise if 'none', 'name=' and a subsystem name options
1243 * were not specified, let's default to 'all'
1244 */
1245 if (all_ss || (!one_ss && !opts->none && !opts->name))
1246 for_each_subsys(ss, i)
1247 if (!ss->disabled)
1248 set_bit(i, &opts->subsys_mask);
1249
1250 /* Consistency checks */
1251
1252 if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1253 pr_warning("cgroup: sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
1254
1255 if (opts->flags & CGRP_ROOT_NOPREFIX) {
1256 pr_err("cgroup: sane_behavior: noprefix is not allowed\n");
1257 return -EINVAL;
1258 }
1259
1260 if (opts->cpuset_clone_children) {
1261 pr_err("cgroup: sane_behavior: clone_children is not allowed\n");
1262 return -EINVAL;
1263 }
1264 }
1265
1266 /*
1267 * Option noprefix was introduced just for backward compatibility
1268 * with the old cpuset, so we allow noprefix only if mounting just
1269 * the cpuset subsystem.
1270 */
1271 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
1272 return -EINVAL;
1273
1274
1275 /* Can't specify "none" and some subsystems */
1276 if (opts->subsys_mask && opts->none)
1277 return -EINVAL;
1278
1279 /*
1280 * We either have to specify by name or by subsystems. (So all
1281 * empty hierarchies must have a name).
1282 */
1283 if (!opts->subsys_mask && !opts->name)
1284 return -EINVAL;
1285
1286 return 0;
1287 }
1288
1289 static int cgroup_remount(struct super_block *sb, int *flags, char *data)
1290 {
1291 int ret = 0;
1292 struct cgroupfs_root *root = sb->s_fs_info;
1293 struct cgroup *cgrp = &root->top_cgroup;
1294 struct cgroup_sb_opts opts;
1295 unsigned long added_mask, removed_mask;
1296
1297 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1298 pr_err("cgroup: sane_behavior: remount is not allowed\n");
1299 return -EINVAL;
1300 }
1301
1302 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
1303 mutex_lock(&cgroup_mutex);
1304 mutex_lock(&cgroup_root_mutex);
1305
1306 /* See what subsystems are wanted */
1307 ret = parse_cgroupfs_options(data, &opts);
1308 if (ret)
1309 goto out_unlock;
1310
1311 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
1312 pr_warning("cgroup: option changes via remount are deprecated (pid=%d comm=%s)\n",
1313 task_tgid_nr(current), current->comm);
1314
1315 added_mask = opts.subsys_mask & ~root->subsys_mask;
1316 removed_mask = root->subsys_mask & ~opts.subsys_mask;
1317
1318 /* Don't allow flags or name to change at remount */
1319 if (((opts.flags ^ root->flags) & CGRP_ROOT_OPTION_MASK) ||
1320 (opts.name && strcmp(opts.name, root->name))) {
1321 pr_err("cgroup: option or name mismatch, new: 0x%lx \"%s\", old: 0x%lx \"%s\"\n",
1322 opts.flags & CGRP_ROOT_OPTION_MASK, opts.name ?: "",
1323 root->flags & CGRP_ROOT_OPTION_MASK, root->name);
1324 ret = -EINVAL;
1325 goto out_unlock;
1326 }
1327
1328 /* remounting is not allowed for populated hierarchies */
1329 if (root->number_of_cgroups > 1) {
1330 ret = -EBUSY;
1331 goto out_unlock;
1332 }
1333
1334 ret = rebind_subsystems(root, added_mask, removed_mask);
1335 if (ret)
1336 goto out_unlock;
1337
1338 if (opts.release_agent)
1339 strcpy(root->release_agent_path, opts.release_agent);
1340 out_unlock:
1341 kfree(opts.release_agent);
1342 kfree(opts.name);
1343 mutex_unlock(&cgroup_root_mutex);
1344 mutex_unlock(&cgroup_mutex);
1345 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
1346 return ret;
1347 }
1348
1349 static const struct super_operations cgroup_ops = {
1350 .statfs = simple_statfs,
1351 .drop_inode = generic_delete_inode,
1352 .show_options = cgroup_show_options,
1353 .remount_fs = cgroup_remount,
1354 };
1355
1356 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1357 {
1358 INIT_LIST_HEAD(&cgrp->sibling);
1359 INIT_LIST_HEAD(&cgrp->children);
1360 INIT_LIST_HEAD(&cgrp->files);
1361 INIT_LIST_HEAD(&cgrp->cset_links);
1362 INIT_LIST_HEAD(&cgrp->release_list);
1363 INIT_LIST_HEAD(&cgrp->pidlists);
1364 mutex_init(&cgrp->pidlist_mutex);
1365 INIT_LIST_HEAD(&cgrp->event_list);
1366 spin_lock_init(&cgrp->event_list_lock);
1367 simple_xattrs_init(&cgrp->xattrs);
1368 }
1369
1370 static void init_cgroup_root(struct cgroupfs_root *root)
1371 {
1372 struct cgroup *cgrp = &root->top_cgroup;
1373
1374 INIT_LIST_HEAD(&root->subsys_list);
1375 INIT_LIST_HEAD(&root->root_list);
1376 root->number_of_cgroups = 1;
1377 cgrp->root = root;
1378 RCU_INIT_POINTER(cgrp->name, &root_cgroup_name);
1379 init_cgroup_housekeeping(cgrp);
1380 idr_init(&root->cgroup_idr);
1381 }
1382
1383 static int cgroup_init_root_id(struct cgroupfs_root *root, int start, int end)
1384 {
1385 int id;
1386
1387 lockdep_assert_held(&cgroup_mutex);
1388 lockdep_assert_held(&cgroup_root_mutex);
1389
1390 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, start, end,
1391 GFP_KERNEL);
1392 if (id < 0)
1393 return id;
1394
1395 root->hierarchy_id = id;
1396 return 0;
1397 }
1398
1399 static void cgroup_exit_root_id(struct cgroupfs_root *root)
1400 {
1401 lockdep_assert_held(&cgroup_mutex);
1402 lockdep_assert_held(&cgroup_root_mutex);
1403
1404 if (root->hierarchy_id) {
1405 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1406 root->hierarchy_id = 0;
1407 }
1408 }
1409
1410 static int cgroup_test_super(struct super_block *sb, void *data)
1411 {
1412 struct cgroup_sb_opts *opts = data;
1413 struct cgroupfs_root *root = sb->s_fs_info;
1414
1415 /* If we asked for a name then it must match */
1416 if (opts->name && strcmp(opts->name, root->name))
1417 return 0;
1418
1419 /*
1420 * If we asked for subsystems (or explicitly for no
1421 * subsystems) then they must match
1422 */
1423 if ((opts->subsys_mask || opts->none)
1424 && (opts->subsys_mask != root->subsys_mask))
1425 return 0;
1426
1427 return 1;
1428 }
1429
1430 static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
1431 {
1432 struct cgroupfs_root *root;
1433
1434 if (!opts->subsys_mask && !opts->none)
1435 return NULL;
1436
1437 root = kzalloc(sizeof(*root), GFP_KERNEL);
1438 if (!root)
1439 return ERR_PTR(-ENOMEM);
1440
1441 init_cgroup_root(root);
1442
1443 /*
1444 * We need to set @root->subsys_mask now so that @root can be
1445 * matched by cgroup_test_super() before it finishes
1446 * initialization; otherwise, competing mounts with the same
1447 * options may try to bind the same subsystems instead of waiting
1448 * for the first one leading to unexpected mount errors.
1449 * SUBSYS_BOUND will be set once actual binding is complete.
1450 */
1451 root->subsys_mask = opts->subsys_mask;
1452 root->flags = opts->flags;
1453 if (opts->release_agent)
1454 strcpy(root->release_agent_path, opts->release_agent);
1455 if (opts->name)
1456 strcpy(root->name, opts->name);
1457 if (opts->cpuset_clone_children)
1458 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags);
1459 return root;
1460 }
1461
1462 static void cgroup_free_root(struct cgroupfs_root *root)
1463 {
1464 if (root) {
1465 /* hierarhcy ID shoulid already have been released */
1466 WARN_ON_ONCE(root->hierarchy_id);
1467
1468 idr_destroy(&root->cgroup_idr);
1469 kfree(root);
1470 }
1471 }
1472
1473 static int cgroup_set_super(struct super_block *sb, void *data)
1474 {
1475 int ret;
1476 struct cgroup_sb_opts *opts = data;
1477
1478 /* If we don't have a new root, we can't set up a new sb */
1479 if (!opts->new_root)
1480 return -EINVAL;
1481
1482 BUG_ON(!opts->subsys_mask && !opts->none);
1483
1484 ret = set_anon_super(sb, NULL);
1485 if (ret)
1486 return ret;
1487
1488 sb->s_fs_info = opts->new_root;
1489 opts->new_root->sb = sb;
1490
1491 sb->s_blocksize = PAGE_CACHE_SIZE;
1492 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
1493 sb->s_magic = CGROUP_SUPER_MAGIC;
1494 sb->s_op = &cgroup_ops;
1495
1496 return 0;
1497 }
1498
1499 static int cgroup_get_rootdir(struct super_block *sb)
1500 {
1501 static const struct dentry_operations cgroup_dops = {
1502 .d_iput = cgroup_diput,
1503 .d_delete = cgroup_delete,
1504 };
1505
1506 struct inode *inode =
1507 cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
1508
1509 if (!inode)
1510 return -ENOMEM;
1511
1512 inode->i_fop = &simple_dir_operations;
1513 inode->i_op = &cgroup_dir_inode_operations;
1514 /* directories start off with i_nlink == 2 (for "." entry) */
1515 inc_nlink(inode);
1516 sb->s_root = d_make_root(inode);
1517 if (!sb->s_root)
1518 return -ENOMEM;
1519 /* for everything else we want ->d_op set */
1520 sb->s_d_op = &cgroup_dops;
1521 return 0;
1522 }
1523
1524 static struct dentry *cgroup_mount(struct file_system_type *fs_type,
1525 int flags, const char *unused_dev_name,
1526 void *data)
1527 {
1528 struct cgroup_sb_opts opts;
1529 struct cgroupfs_root *root;
1530 int ret = 0;
1531 struct super_block *sb;
1532 struct cgroupfs_root *new_root;
1533 struct list_head tmp_links;
1534 struct inode *inode;
1535 const struct cred *cred;
1536
1537 /* First find the desired set of subsystems */
1538 mutex_lock(&cgroup_mutex);
1539 ret = parse_cgroupfs_options(data, &opts);
1540 mutex_unlock(&cgroup_mutex);
1541 if (ret)
1542 goto out_err;
1543
1544 /*
1545 * Allocate a new cgroup root. We may not need it if we're
1546 * reusing an existing hierarchy.
1547 */
1548 new_root = cgroup_root_from_opts(&opts);
1549 if (IS_ERR(new_root)) {
1550 ret = PTR_ERR(new_root);
1551 goto out_err;
1552 }
1553 opts.new_root = new_root;
1554
1555 /* Locate an existing or new sb for this hierarchy */
1556 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, 0, &opts);
1557 if (IS_ERR(sb)) {
1558 ret = PTR_ERR(sb);
1559 cgroup_free_root(opts.new_root);
1560 goto out_err;
1561 }
1562
1563 root = sb->s_fs_info;
1564 BUG_ON(!root);
1565 if (root == opts.new_root) {
1566 /* We used the new root structure, so this is a new hierarchy */
1567 struct cgroup *root_cgrp = &root->top_cgroup;
1568 struct cgroupfs_root *existing_root;
1569 int i;
1570 struct css_set *cset;
1571
1572 BUG_ON(sb->s_root != NULL);
1573
1574 ret = cgroup_get_rootdir(sb);
1575 if (ret)
1576 goto drop_new_super;
1577 inode = sb->s_root->d_inode;
1578
1579 mutex_lock(&inode->i_mutex);
1580 mutex_lock(&cgroup_mutex);
1581 mutex_lock(&cgroup_root_mutex);
1582
1583 root_cgrp->id = idr_alloc(&root->cgroup_idr, root_cgrp,
1584 0, 1, GFP_KERNEL);
1585 if (root_cgrp->id < 0)
1586 goto unlock_drop;
1587
1588 /* Check for name clashes with existing mounts */
1589 ret = -EBUSY;
1590 if (strlen(root->name))
1591 for_each_active_root(existing_root)
1592 if (!strcmp(existing_root->name, root->name))
1593 goto unlock_drop;
1594
1595 /*
1596 * We're accessing css_set_count without locking
1597 * css_set_lock here, but that's OK - it can only be
1598 * increased by someone holding cgroup_lock, and
1599 * that's us. The worst that can happen is that we
1600 * have some link structures left over
1601 */
1602 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
1603 if (ret)
1604 goto unlock_drop;
1605
1606 /* ID 0 is reserved for dummy root, 1 for unified hierarchy */
1607 ret = cgroup_init_root_id(root, 2, 0);
1608 if (ret)
1609 goto unlock_drop;
1610
1611 sb->s_root->d_fsdata = root_cgrp;
1612 root_cgrp->dentry = sb->s_root;
1613
1614 /*
1615 * We're inside get_sb() and will call lookup_one_len() to
1616 * create the root files, which doesn't work if SELinux is
1617 * in use. The following cred dancing somehow works around
1618 * it. See 2ce9738ba ("cgroupfs: use init_cred when
1619 * populating new cgroupfs mount") for more details.
1620 */
1621 cred = override_creds(&init_cred);
1622
1623 ret = cgroup_addrm_files(root_cgrp, NULL, cgroup_base_files, true);
1624 if (ret)
1625 goto rm_base_files;
1626
1627 ret = rebind_subsystems(root, root->subsys_mask, 0);
1628 if (ret)
1629 goto rm_base_files;
1630
1631 revert_creds(cred);
1632
1633 /*
1634 * There must be no failure case after here, since rebinding
1635 * takes care of subsystems' refcounts, which are explicitly
1636 * dropped in the failure exit path.
1637 */
1638
1639 list_add(&root->root_list, &cgroup_roots);
1640 cgroup_root_count++;
1641
1642 /* Link the top cgroup in this hierarchy into all
1643 * the css_set objects */
1644 write_lock(&css_set_lock);
1645 hash_for_each(css_set_table, i, cset, hlist)
1646 link_css_set(&tmp_links, cset, root_cgrp);
1647 write_unlock(&css_set_lock);
1648
1649 free_cgrp_cset_links(&tmp_links);
1650
1651 BUG_ON(!list_empty(&root_cgrp->children));
1652 BUG_ON(root->number_of_cgroups != 1);
1653
1654 mutex_unlock(&cgroup_root_mutex);
1655 mutex_unlock(&cgroup_mutex);
1656 mutex_unlock(&inode->i_mutex);
1657 } else {
1658 /*
1659 * We re-used an existing hierarchy - the new root (if
1660 * any) is not needed
1661 */
1662 cgroup_free_root(opts.new_root);
1663
1664 if ((root->flags ^ opts.flags) & CGRP_ROOT_OPTION_MASK) {
1665 if ((root->flags | opts.flags) & CGRP_ROOT_SANE_BEHAVIOR) {
1666 pr_err("cgroup: sane_behavior: new mount options should match the existing superblock\n");
1667 ret = -EINVAL;
1668 goto drop_new_super;
1669 } else {
1670 pr_warning("cgroup: new mount options do not match the existing superblock, will be ignored\n");
1671 }
1672 }
1673 }
1674
1675 kfree(opts.release_agent);
1676 kfree(opts.name);
1677 return dget(sb->s_root);
1678
1679 rm_base_files:
1680 free_cgrp_cset_links(&tmp_links);
1681 cgroup_addrm_files(&root->top_cgroup, NULL, cgroup_base_files, false);
1682 revert_creds(cred);
1683 unlock_drop:
1684 cgroup_exit_root_id(root);
1685 mutex_unlock(&cgroup_root_mutex);
1686 mutex_unlock(&cgroup_mutex);
1687 mutex_unlock(&inode->i_mutex);
1688 drop_new_super:
1689 deactivate_locked_super(sb);
1690 out_err:
1691 kfree(opts.release_agent);
1692 kfree(opts.name);
1693 return ERR_PTR(ret);
1694 }
1695
1696 static void cgroup_kill_sb(struct super_block *sb) {
1697 struct cgroupfs_root *root = sb->s_fs_info;
1698 struct cgroup *cgrp = &root->top_cgroup;
1699 struct cgrp_cset_link *link, *tmp_link;
1700 int ret;
1701
1702 BUG_ON(!root);
1703
1704 BUG_ON(root->number_of_cgroups != 1);
1705 BUG_ON(!list_empty(&cgrp->children));
1706
1707 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
1708 mutex_lock(&cgroup_mutex);
1709 mutex_lock(&cgroup_root_mutex);
1710
1711 /* Rebind all subsystems back to the default hierarchy */
1712 if (root->flags & CGRP_ROOT_SUBSYS_BOUND) {
1713 ret = rebind_subsystems(root, 0, root->subsys_mask);
1714 /* Shouldn't be able to fail ... */
1715 BUG_ON(ret);
1716 }
1717
1718 /*
1719 * Release all the links from cset_links to this hierarchy's
1720 * root cgroup
1721 */
1722 write_lock(&css_set_lock);
1723
1724 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1725 list_del(&link->cset_link);
1726 list_del(&link->cgrp_link);
1727 kfree(link);
1728 }
1729 write_unlock(&css_set_lock);
1730
1731 if (!list_empty(&root->root_list)) {
1732 list_del(&root->root_list);
1733 cgroup_root_count--;
1734 }
1735
1736 cgroup_exit_root_id(root);
1737
1738 mutex_unlock(&cgroup_root_mutex);
1739 mutex_unlock(&cgroup_mutex);
1740 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
1741
1742 simple_xattrs_free(&cgrp->xattrs);
1743
1744 kill_litter_super(sb);
1745 cgroup_free_root(root);
1746 }
1747
1748 static struct file_system_type cgroup_fs_type = {
1749 .name = "cgroup",
1750 .mount = cgroup_mount,
1751 .kill_sb = cgroup_kill_sb,
1752 };
1753
1754 static struct kobject *cgroup_kobj;
1755
1756 /**
1757 * cgroup_path - generate the path of a cgroup
1758 * @cgrp: the cgroup in question
1759 * @buf: the buffer to write the path into
1760 * @buflen: the length of the buffer
1761 *
1762 * Writes path of cgroup into buf. Returns 0 on success, -errno on error.
1763 *
1764 * We can't generate cgroup path using dentry->d_name, as accessing
1765 * dentry->name must be protected by irq-unsafe dentry->d_lock or parent
1766 * inode's i_mutex, while on the other hand cgroup_path() can be called
1767 * with some irq-safe spinlocks held.
1768 */
1769 int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1770 {
1771 int ret = -ENAMETOOLONG;
1772 char *start;
1773
1774 if (!cgrp->parent) {
1775 if (strlcpy(buf, "/", buflen) >= buflen)
1776 return -ENAMETOOLONG;
1777 return 0;
1778 }
1779
1780 start = buf + buflen - 1;
1781 *start = '\0';
1782
1783 rcu_read_lock();
1784 do {
1785 const char *name = cgroup_name(cgrp);
1786 int len;
1787
1788 len = strlen(name);
1789 if ((start -= len) < buf)
1790 goto out;
1791 memcpy(start, name, len);
1792
1793 if (--start < buf)
1794 goto out;
1795 *start = '/';
1796
1797 cgrp = cgrp->parent;
1798 } while (cgrp->parent);
1799 ret = 0;
1800 memmove(buf, start, buf + buflen - start);
1801 out:
1802 rcu_read_unlock();
1803 return ret;
1804 }
1805 EXPORT_SYMBOL_GPL(cgroup_path);
1806
1807 /**
1808 * task_cgroup_path_from_hierarchy - cgroup path of a task on a hierarchy
1809 * @task: target task
1810 * @hierarchy_id: the hierarchy to look up @task's cgroup from
1811 * @buf: the buffer to write the path into
1812 * @buflen: the length of the buffer
1813 *
1814 * Determine @task's cgroup on the hierarchy specified by @hierarchy_id and
1815 * copy its path into @buf. This function grabs cgroup_mutex and shouldn't
1816 * be used inside locks used by cgroup controller callbacks.
1817 */
1818 int task_cgroup_path_from_hierarchy(struct task_struct *task, int hierarchy_id,
1819 char *buf, size_t buflen)
1820 {
1821 struct cgroupfs_root *root;
1822 struct cgroup *cgrp = NULL;
1823 int ret = -ENOENT;
1824
1825 mutex_lock(&cgroup_mutex);
1826
1827 root = idr_find(&cgroup_hierarchy_idr, hierarchy_id);
1828 if (root) {
1829 cgrp = task_cgroup_from_root(task, root);
1830 ret = cgroup_path(cgrp, buf, buflen);
1831 }
1832
1833 mutex_unlock(&cgroup_mutex);
1834
1835 return ret;
1836 }
1837 EXPORT_SYMBOL_GPL(task_cgroup_path_from_hierarchy);
1838
1839 /*
1840 * Control Group taskset
1841 */
1842 struct task_and_cgroup {
1843 struct task_struct *task;
1844 struct cgroup *cgrp;
1845 struct css_set *cset;
1846 };
1847
1848 struct cgroup_taskset {
1849 struct task_and_cgroup single;
1850 struct flex_array *tc_array;
1851 int tc_array_len;
1852 int idx;
1853 struct cgroup *cur_cgrp;
1854 };
1855
1856 /**
1857 * cgroup_taskset_first - reset taskset and return the first task
1858 * @tset: taskset of interest
1859 *
1860 * @tset iteration is initialized and the first task is returned.
1861 */
1862 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
1863 {
1864 if (tset->tc_array) {
1865 tset->idx = 0;
1866 return cgroup_taskset_next(tset);
1867 } else {
1868 tset->cur_cgrp = tset->single.cgrp;
1869 return tset->single.task;
1870 }
1871 }
1872 EXPORT_SYMBOL_GPL(cgroup_taskset_first);
1873
1874 /**
1875 * cgroup_taskset_next - iterate to the next task in taskset
1876 * @tset: taskset of interest
1877 *
1878 * Return the next task in @tset. Iteration must have been initialized
1879 * with cgroup_taskset_first().
1880 */
1881 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
1882 {
1883 struct task_and_cgroup *tc;
1884
1885 if (!tset->tc_array || tset->idx >= tset->tc_array_len)
1886 return NULL;
1887
1888 tc = flex_array_get(tset->tc_array, tset->idx++);
1889 tset->cur_cgrp = tc->cgrp;
1890 return tc->task;
1891 }
1892 EXPORT_SYMBOL_GPL(cgroup_taskset_next);
1893
1894 /**
1895 * cgroup_taskset_cur_cgroup - return the matching cgroup for the current task
1896 * @tset: taskset of interest
1897 *
1898 * Return the cgroup for the current (last returned) task of @tset. This
1899 * function must be preceded by either cgroup_taskset_first() or
1900 * cgroup_taskset_next().
1901 */
1902 struct cgroup *cgroup_taskset_cur_cgroup(struct cgroup_taskset *tset)
1903 {
1904 return tset->cur_cgrp;
1905 }
1906 EXPORT_SYMBOL_GPL(cgroup_taskset_cur_cgroup);
1907
1908 /**
1909 * cgroup_taskset_size - return the number of tasks in taskset
1910 * @tset: taskset of interest
1911 */
1912 int cgroup_taskset_size(struct cgroup_taskset *tset)
1913 {
1914 return tset->tc_array ? tset->tc_array_len : 1;
1915 }
1916 EXPORT_SYMBOL_GPL(cgroup_taskset_size);
1917
1918
1919 /*
1920 * cgroup_task_migrate - move a task from one cgroup to another.
1921 *
1922 * Must be called with cgroup_mutex and threadgroup locked.
1923 */
1924 static void cgroup_task_migrate(struct cgroup *old_cgrp,
1925 struct task_struct *tsk,
1926 struct css_set *new_cset)
1927 {
1928 struct css_set *old_cset;
1929
1930 /*
1931 * We are synchronized through threadgroup_lock() against PF_EXITING
1932 * setting such that we can't race against cgroup_exit() changing the
1933 * css_set to init_css_set and dropping the old one.
1934 */
1935 WARN_ON_ONCE(tsk->flags & PF_EXITING);
1936 old_cset = task_css_set(tsk);
1937
1938 task_lock(tsk);
1939 rcu_assign_pointer(tsk->cgroups, new_cset);
1940 task_unlock(tsk);
1941
1942 /* Update the css_set linked lists if we're using them */
1943 write_lock(&css_set_lock);
1944 if (!list_empty(&tsk->cg_list))
1945 list_move(&tsk->cg_list, &new_cset->tasks);
1946 write_unlock(&css_set_lock);
1947
1948 /*
1949 * We just gained a reference on old_cset by taking it from the
1950 * task. As trading it for new_cset is protected by cgroup_mutex,
1951 * we're safe to drop it here; it will be freed under RCU.
1952 */
1953 set_bit(CGRP_RELEASABLE, &old_cgrp->flags);
1954 put_css_set(old_cset);
1955 }
1956
1957 /**
1958 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
1959 * @cgrp: the cgroup to attach to
1960 * @tsk: the task or the leader of the threadgroup to be attached
1961 * @threadgroup: attach the whole threadgroup?
1962 *
1963 * Call holding cgroup_mutex and the group_rwsem of the leader. Will take
1964 * task_lock of @tsk or each thread in the threadgroup individually in turn.
1965 */
1966 static int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk,
1967 bool threadgroup)
1968 {
1969 int retval, i, group_size;
1970 struct cgroup_subsys *ss, *failed_ss = NULL;
1971 struct cgroupfs_root *root = cgrp->root;
1972 /* threadgroup list cursor and array */
1973 struct task_struct *leader = tsk;
1974 struct task_and_cgroup *tc;
1975 struct flex_array *group;
1976 struct cgroup_taskset tset = { };
1977
1978 /*
1979 * step 0: in order to do expensive, possibly blocking operations for
1980 * every thread, we cannot iterate the thread group list, since it needs
1981 * rcu or tasklist locked. instead, build an array of all threads in the
1982 * group - group_rwsem prevents new threads from appearing, and if
1983 * threads exit, this will just be an over-estimate.
1984 */
1985 if (threadgroup)
1986 group_size = get_nr_threads(tsk);
1987 else
1988 group_size = 1;
1989 /* flex_array supports very large thread-groups better than kmalloc. */
1990 group = flex_array_alloc(sizeof(*tc), group_size, GFP_KERNEL);
1991 if (!group)
1992 return -ENOMEM;
1993 /* pre-allocate to guarantee space while iterating in rcu read-side. */
1994 retval = flex_array_prealloc(group, 0, group_size, GFP_KERNEL);
1995 if (retval)
1996 goto out_free_group_list;
1997
1998 i = 0;
1999 /*
2000 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2001 * already PF_EXITING could be freed from underneath us unless we
2002 * take an rcu_read_lock.
2003 */
2004 rcu_read_lock();
2005 do {
2006 struct task_and_cgroup ent;
2007
2008 /* @tsk either already exited or can't exit until the end */
2009 if (tsk->flags & PF_EXITING)
2010 continue;
2011
2012 /* as per above, nr_threads may decrease, but not increase. */
2013 BUG_ON(i >= group_size);
2014 ent.task = tsk;
2015 ent.cgrp = task_cgroup_from_root(tsk, root);
2016 /* nothing to do if this task is already in the cgroup */
2017 if (ent.cgrp == cgrp)
2018 continue;
2019 /*
2020 * saying GFP_ATOMIC has no effect here because we did prealloc
2021 * earlier, but it's good form to communicate our expectations.
2022 */
2023 retval = flex_array_put(group, i, &ent, GFP_ATOMIC);
2024 BUG_ON(retval != 0);
2025 i++;
2026
2027 if (!threadgroup)
2028 break;
2029 } while_each_thread(leader, tsk);
2030 rcu_read_unlock();
2031 /* remember the number of threads in the array for later. */
2032 group_size = i;
2033 tset.tc_array = group;
2034 tset.tc_array_len = group_size;
2035
2036 /* methods shouldn't be called if no task is actually migrating */
2037 retval = 0;
2038 if (!group_size)
2039 goto out_free_group_list;
2040
2041 /*
2042 * step 1: check that we can legitimately attach to the cgroup.
2043 */
2044 for_each_root_subsys(root, ss) {
2045 if (ss->can_attach) {
2046 retval = ss->can_attach(cgrp, &tset);
2047 if (retval) {
2048 failed_ss = ss;
2049 goto out_cancel_attach;
2050 }
2051 }
2052 }
2053
2054 /*
2055 * step 2: make sure css_sets exist for all threads to be migrated.
2056 * we use find_css_set, which allocates a new one if necessary.
2057 */
2058 for (i = 0; i < group_size; i++) {
2059 struct css_set *old_cset;
2060
2061 tc = flex_array_get(group, i);
2062 old_cset = task_css_set(tc->task);
2063 tc->cset = find_css_set(old_cset, cgrp);
2064 if (!tc->cset) {
2065 retval = -ENOMEM;
2066 goto out_put_css_set_refs;
2067 }
2068 }
2069
2070 /*
2071 * step 3: now that we're guaranteed success wrt the css_sets,
2072 * proceed to move all tasks to the new cgroup. There are no
2073 * failure cases after here, so this is the commit point.
2074 */
2075 for (i = 0; i < group_size; i++) {
2076 tc = flex_array_get(group, i);
2077 cgroup_task_migrate(tc->cgrp, tc->task, tc->cset);
2078 }
2079 /* nothing is sensitive to fork() after this point. */
2080
2081 /*
2082 * step 4: do subsystem attach callbacks.
2083 */
2084 for_each_root_subsys(root, ss) {
2085 if (ss->attach)
2086 ss->attach(cgrp, &tset);
2087 }
2088
2089 /*
2090 * step 5: success! and cleanup
2091 */
2092 retval = 0;
2093 out_put_css_set_refs:
2094 if (retval) {
2095 for (i = 0; i < group_size; i++) {
2096 tc = flex_array_get(group, i);
2097 if (!tc->cset)
2098 break;
2099 put_css_set(tc->cset);
2100 }
2101 }
2102 out_cancel_attach:
2103 if (retval) {
2104 for_each_root_subsys(root, ss) {
2105 if (ss == failed_ss)
2106 break;
2107 if (ss->cancel_attach)
2108 ss->cancel_attach(cgrp, &tset);
2109 }
2110 }
2111 out_free_group_list:
2112 flex_array_free(group);
2113 return retval;
2114 }
2115
2116 /*
2117 * Find the task_struct of the task to attach by vpid and pass it along to the
2118 * function to attach either it or all tasks in its threadgroup. Will lock
2119 * cgroup_mutex and threadgroup; may take task_lock of task.
2120 */
2121 static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
2122 {
2123 struct task_struct *tsk;
2124 const struct cred *cred = current_cred(), *tcred;
2125 int ret;
2126
2127 if (!cgroup_lock_live_group(cgrp))
2128 return -ENODEV;
2129
2130 retry_find_task:
2131 rcu_read_lock();
2132 if (pid) {
2133 tsk = find_task_by_vpid(pid);
2134 if (!tsk) {
2135 rcu_read_unlock();
2136 ret= -ESRCH;
2137 goto out_unlock_cgroup;
2138 }
2139 /*
2140 * even if we're attaching all tasks in the thread group, we
2141 * only need to check permissions on one of them.
2142 */
2143 tcred = __task_cred(tsk);
2144 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2145 !uid_eq(cred->euid, tcred->uid) &&
2146 !uid_eq(cred->euid, tcred->suid)) {
2147 rcu_read_unlock();
2148 ret = -EACCES;
2149 goto out_unlock_cgroup;
2150 }
2151 } else
2152 tsk = current;
2153
2154 if (threadgroup)
2155 tsk = tsk->group_leader;
2156
2157 /*
2158 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
2159 * trapped in a cpuset, or RT worker may be born in a cgroup
2160 * with no rt_runtime allocated. Just say no.
2161 */
2162 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
2163 ret = -EINVAL;
2164 rcu_read_unlock();
2165 goto out_unlock_cgroup;
2166 }
2167
2168 get_task_struct(tsk);
2169 rcu_read_unlock();
2170
2171 threadgroup_lock(tsk);
2172 if (threadgroup) {
2173 if (!thread_group_leader(tsk)) {
2174 /*
2175 * a race with de_thread from another thread's exec()
2176 * may strip us of our leadership, if this happens,
2177 * there is no choice but to throw this task away and
2178 * try again; this is
2179 * "double-double-toil-and-trouble-check locking".
2180 */
2181 threadgroup_unlock(tsk);
2182 put_task_struct(tsk);
2183 goto retry_find_task;
2184 }
2185 }
2186
2187 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
2188
2189 threadgroup_unlock(tsk);
2190
2191 put_task_struct(tsk);
2192 out_unlock_cgroup:
2193 mutex_unlock(&cgroup_mutex);
2194 return ret;
2195 }
2196
2197 /**
2198 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2199 * @from: attach to all cgroups of a given task
2200 * @tsk: the task to be attached
2201 */
2202 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2203 {
2204 struct cgroupfs_root *root;
2205 int retval = 0;
2206
2207 mutex_lock(&cgroup_mutex);
2208 for_each_active_root(root) {
2209 struct cgroup *from_cgrp = task_cgroup_from_root(from, root);
2210
2211 retval = cgroup_attach_task(from_cgrp, tsk, false);
2212 if (retval)
2213 break;
2214 }
2215 mutex_unlock(&cgroup_mutex);
2216
2217 return retval;
2218 }
2219 EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2220
2221 static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
2222 {
2223 return attach_task_by_pid(cgrp, pid, false);
2224 }
2225
2226 static int cgroup_procs_write(struct cgroup *cgrp, struct cftype *cft, u64 tgid)
2227 {
2228 return attach_task_by_pid(cgrp, tgid, true);
2229 }
2230
2231 static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
2232 const char *buffer)
2233 {
2234 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
2235 if (strlen(buffer) >= PATH_MAX)
2236 return -EINVAL;
2237 if (!cgroup_lock_live_group(cgrp))
2238 return -ENODEV;
2239 mutex_lock(&cgroup_root_mutex);
2240 strcpy(cgrp->root->release_agent_path, buffer);
2241 mutex_unlock(&cgroup_root_mutex);
2242 mutex_unlock(&cgroup_mutex);
2243 return 0;
2244 }
2245
2246 static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
2247 struct seq_file *seq)
2248 {
2249 if (!cgroup_lock_live_group(cgrp))
2250 return -ENODEV;
2251 seq_puts(seq, cgrp->root->release_agent_path);
2252 seq_putc(seq, '\n');
2253 mutex_unlock(&cgroup_mutex);
2254 return 0;
2255 }
2256
2257 static int cgroup_sane_behavior_show(struct cgroup *cgrp, struct cftype *cft,
2258 struct seq_file *seq)
2259 {
2260 seq_printf(seq, "%d\n", cgroup_sane_behavior(cgrp));
2261 return 0;
2262 }
2263
2264 /* A buffer size big enough for numbers or short strings */
2265 #define CGROUP_LOCAL_BUFFER_SIZE 64
2266
2267 static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
2268 struct file *file,
2269 const char __user *userbuf,
2270 size_t nbytes, loff_t *unused_ppos)
2271 {
2272 char buffer[CGROUP_LOCAL_BUFFER_SIZE];
2273 int retval = 0;
2274 char *end;
2275
2276 if (!nbytes)
2277 return -EINVAL;
2278 if (nbytes >= sizeof(buffer))
2279 return -E2BIG;
2280 if (copy_from_user(buffer, userbuf, nbytes))
2281 return -EFAULT;
2282
2283 buffer[nbytes] = 0; /* nul-terminate */
2284 if (cft->write_u64) {
2285 u64 val = simple_strtoull(strstrip(buffer), &end, 0);
2286 if (*end)
2287 return -EINVAL;
2288 retval = cft->write_u64(cgrp, cft, val);
2289 } else {
2290 s64 val = simple_strtoll(strstrip(buffer), &end, 0);
2291 if (*end)
2292 return -EINVAL;
2293 retval = cft->write_s64(cgrp, cft, val);
2294 }
2295 if (!retval)
2296 retval = nbytes;
2297 return retval;
2298 }
2299
2300 static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
2301 struct file *file,
2302 const char __user *userbuf,
2303 size_t nbytes, loff_t *unused_ppos)
2304 {
2305 char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
2306 int retval = 0;
2307 size_t max_bytes = cft->max_write_len;
2308 char *buffer = local_buffer;
2309
2310 if (!max_bytes)
2311 max_bytes = sizeof(local_buffer) - 1;
2312 if (nbytes >= max_bytes)
2313 return -E2BIG;
2314 /* Allocate a dynamic buffer if we need one */
2315 if (nbytes >= sizeof(local_buffer)) {
2316 buffer = kmalloc(nbytes + 1, GFP_KERNEL);
2317 if (buffer == NULL)
2318 return -ENOMEM;
2319 }
2320 if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
2321 retval = -EFAULT;
2322 goto out;
2323 }
2324
2325 buffer[nbytes] = 0; /* nul-terminate */
2326 retval = cft->write_string(cgrp, cft, strstrip(buffer));
2327 if (!retval)
2328 retval = nbytes;
2329 out:
2330 if (buffer != local_buffer)
2331 kfree(buffer);
2332 return retval;
2333 }
2334
2335 static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
2336 size_t nbytes, loff_t *ppos)
2337 {
2338 struct cftype *cft = __d_cft(file->f_dentry);
2339 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2340
2341 if (cgroup_is_dead(cgrp))
2342 return -ENODEV;
2343 if (cft->write)
2344 return cft->write(cgrp, cft, file, buf, nbytes, ppos);
2345 if (cft->write_u64 || cft->write_s64)
2346 return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
2347 if (cft->write_string)
2348 return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
2349 if (cft->trigger) {
2350 int ret = cft->trigger(cgrp, (unsigned int)cft->private);
2351 return ret ? ret : nbytes;
2352 }
2353 return -EINVAL;
2354 }
2355
2356 static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
2357 struct file *file,
2358 char __user *buf, size_t nbytes,
2359 loff_t *ppos)
2360 {
2361 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2362 u64 val = cft->read_u64(cgrp, cft);
2363 int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
2364
2365 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2366 }
2367
2368 static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
2369 struct file *file,
2370 char __user *buf, size_t nbytes,
2371 loff_t *ppos)
2372 {
2373 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2374 s64 val = cft->read_s64(cgrp, cft);
2375 int len = sprintf(tmp, "%lld\n", (long long) val);
2376
2377 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2378 }
2379
2380 static ssize_t cgroup_file_read(struct file *file, char __user *buf,
2381 size_t nbytes, loff_t *ppos)
2382 {
2383 struct cftype *cft = __d_cft(file->f_dentry);
2384 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2385
2386 if (cgroup_is_dead(cgrp))
2387 return -ENODEV;
2388
2389 if (cft->read)
2390 return cft->read(cgrp, cft, file, buf, nbytes, ppos);
2391 if (cft->read_u64)
2392 return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
2393 if (cft->read_s64)
2394 return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
2395 return -EINVAL;
2396 }
2397
2398 /*
2399 * seqfile ops/methods for returning structured data. Currently just
2400 * supports string->u64 maps, but can be extended in future.
2401 */
2402
2403 static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
2404 {
2405 struct seq_file *sf = cb->state;
2406 return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
2407 }
2408
2409 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
2410 {
2411 struct cfent *cfe = m->private;
2412 struct cftype *cft = cfe->type;
2413 struct cgroup *cgrp = __d_cgrp(cfe->dentry->d_parent);
2414
2415 if (cft->read_map) {
2416 struct cgroup_map_cb cb = {
2417 .fill = cgroup_map_add,
2418 .state = m,
2419 };
2420 return cft->read_map(cgrp, cft, &cb);
2421 }
2422 return cft->read_seq_string(cgrp, cft, m);
2423 }
2424
2425 static const struct file_operations cgroup_seqfile_operations = {
2426 .read = seq_read,
2427 .write = cgroup_file_write,
2428 .llseek = seq_lseek,
2429 .release = single_release,
2430 };
2431
2432 static int cgroup_file_open(struct inode *inode, struct file *file)
2433 {
2434 int err;
2435 struct cfent *cfe;
2436 struct cftype *cft;
2437
2438 err = generic_file_open(inode, file);
2439 if (err)
2440 return err;
2441 cfe = __d_cfe(file->f_dentry);
2442 cft = cfe->type;
2443
2444 if (cft->read_map || cft->read_seq_string) {
2445 file->f_op = &cgroup_seqfile_operations;
2446 err = single_open(file, cgroup_seqfile_show, cfe);
2447 } else if (cft->open) {
2448 err = cft->open(inode, file);
2449 }
2450
2451 return err;
2452 }
2453
2454 static int cgroup_file_release(struct inode *inode, struct file *file)
2455 {
2456 struct cftype *cft = __d_cft(file->f_dentry);
2457 if (cft->release)
2458 return cft->release(inode, file);
2459 return 0;
2460 }
2461
2462 /*
2463 * cgroup_rename - Only allow simple rename of directories in place.
2464 */
2465 static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
2466 struct inode *new_dir, struct dentry *new_dentry)
2467 {
2468 int ret;
2469 struct cgroup_name *name, *old_name;
2470 struct cgroup *cgrp;
2471
2472 /*
2473 * It's convinient to use parent dir's i_mutex to protected
2474 * cgrp->name.
2475 */
2476 lockdep_assert_held(&old_dir->i_mutex);
2477
2478 if (!S_ISDIR(old_dentry->d_inode->i_mode))
2479 return -ENOTDIR;
2480 if (new_dentry->d_inode)
2481 return -EEXIST;
2482 if (old_dir != new_dir)
2483 return -EIO;
2484
2485 cgrp = __d_cgrp(old_dentry);
2486
2487 /*
2488 * This isn't a proper migration and its usefulness is very
2489 * limited. Disallow if sane_behavior.
2490 */
2491 if (cgroup_sane_behavior(cgrp))
2492 return -EPERM;
2493
2494 name = cgroup_alloc_name(new_dentry);
2495 if (!name)
2496 return -ENOMEM;
2497
2498 ret = simple_rename(old_dir, old_dentry, new_dir, new_dentry);
2499 if (ret) {
2500 kfree(name);
2501 return ret;
2502 }
2503
2504 old_name = rcu_dereference_protected(cgrp->name, true);
2505 rcu_assign_pointer(cgrp->name, name);
2506
2507 kfree_rcu(old_name, rcu_head);
2508 return 0;
2509 }
2510
2511 static struct simple_xattrs *__d_xattrs(struct dentry *dentry)
2512 {
2513 if (S_ISDIR(dentry->d_inode->i_mode))
2514 return &__d_cgrp(dentry)->xattrs;
2515 else
2516 return &__d_cfe(dentry)->xattrs;
2517 }
2518
2519 static inline int xattr_enabled(struct dentry *dentry)
2520 {
2521 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
2522 return root->flags & CGRP_ROOT_XATTR;
2523 }
2524
2525 static bool is_valid_xattr(const char *name)
2526 {
2527 if (!strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN) ||
2528 !strncmp(name, XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN))
2529 return true;
2530 return false;
2531 }
2532
2533 static int cgroup_setxattr(struct dentry *dentry, const char *name,
2534 const void *val, size_t size, int flags)
2535 {
2536 if (!xattr_enabled(dentry))
2537 return -EOPNOTSUPP;
2538 if (!is_valid_xattr(name))
2539 return -EINVAL;
2540 return simple_xattr_set(__d_xattrs(dentry), name, val, size, flags);
2541 }
2542
2543 static int cgroup_removexattr(struct dentry *dentry, const char *name)
2544 {
2545 if (!xattr_enabled(dentry))
2546 return -EOPNOTSUPP;
2547 if (!is_valid_xattr(name))
2548 return -EINVAL;
2549 return simple_xattr_remove(__d_xattrs(dentry), name);
2550 }
2551
2552 static ssize_t cgroup_getxattr(struct dentry *dentry, const char *name,
2553 void *buf, size_t size)
2554 {
2555 if (!xattr_enabled(dentry))
2556 return -EOPNOTSUPP;
2557 if (!is_valid_xattr(name))
2558 return -EINVAL;
2559 return simple_xattr_get(__d_xattrs(dentry), name, buf, size);
2560 }
2561
2562 static ssize_t cgroup_listxattr(struct dentry *dentry, char *buf, size_t size)
2563 {
2564 if (!xattr_enabled(dentry))
2565 return -EOPNOTSUPP;
2566 return simple_xattr_list(__d_xattrs(dentry), buf, size);
2567 }
2568
2569 static const struct file_operations cgroup_file_operations = {
2570 .read = cgroup_file_read,
2571 .write = cgroup_file_write,
2572 .llseek = generic_file_llseek,
2573 .open = cgroup_file_open,
2574 .release = cgroup_file_release,
2575 };
2576
2577 static const struct inode_operations cgroup_file_inode_operations = {
2578 .setxattr = cgroup_setxattr,
2579 .getxattr = cgroup_getxattr,
2580 .listxattr = cgroup_listxattr,
2581 .removexattr = cgroup_removexattr,
2582 };
2583
2584 static const struct inode_operations cgroup_dir_inode_operations = {
2585 .lookup = cgroup_lookup,
2586 .mkdir = cgroup_mkdir,
2587 .rmdir = cgroup_rmdir,
2588 .rename = cgroup_rename,
2589 .setxattr = cgroup_setxattr,
2590 .getxattr = cgroup_getxattr,
2591 .listxattr = cgroup_listxattr,
2592 .removexattr = cgroup_removexattr,
2593 };
2594
2595 static struct dentry *cgroup_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
2596 {
2597 if (dentry->d_name.len > NAME_MAX)
2598 return ERR_PTR(-ENAMETOOLONG);
2599 d_add(dentry, NULL);
2600 return NULL;
2601 }
2602
2603 /*
2604 * Check if a file is a control file
2605 */
2606 static inline struct cftype *__file_cft(struct file *file)
2607 {
2608 if (file_inode(file)->i_fop != &cgroup_file_operations)
2609 return ERR_PTR(-EINVAL);
2610 return __d_cft(file->f_dentry);
2611 }
2612
2613 static int cgroup_create_file(struct dentry *dentry, umode_t mode,
2614 struct super_block *sb)
2615 {
2616 struct inode *inode;
2617
2618 if (!dentry)
2619 return -ENOENT;
2620 if (dentry->d_inode)
2621 return -EEXIST;
2622
2623 inode = cgroup_new_inode(mode, sb);
2624 if (!inode)
2625 return -ENOMEM;
2626
2627 if (S_ISDIR(mode)) {
2628 inode->i_op = &cgroup_dir_inode_operations;
2629 inode->i_fop = &simple_dir_operations;
2630
2631 /* start off with i_nlink == 2 (for "." entry) */
2632 inc_nlink(inode);
2633 inc_nlink(dentry->d_parent->d_inode);
2634
2635 /*
2636 * Control reaches here with cgroup_mutex held.
2637 * @inode->i_mutex should nest outside cgroup_mutex but we
2638 * want to populate it immediately without releasing
2639 * cgroup_mutex. As @inode isn't visible to anyone else
2640 * yet, trylock will always succeed without affecting
2641 * lockdep checks.
2642 */
2643 WARN_ON_ONCE(!mutex_trylock(&inode->i_mutex));
2644 } else if (S_ISREG(mode)) {
2645 inode->i_size = 0;
2646 inode->i_fop = &cgroup_file_operations;
2647 inode->i_op = &cgroup_file_inode_operations;
2648 }
2649 d_instantiate(dentry, inode);
2650 dget(dentry); /* Extra count - pin the dentry in core */
2651 return 0;
2652 }
2653
2654 /**
2655 * cgroup_file_mode - deduce file mode of a control file
2656 * @cft: the control file in question
2657 *
2658 * returns cft->mode if ->mode is not 0
2659 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
2660 * returns S_IRUGO if it has only a read handler
2661 * returns S_IWUSR if it has only a write hander
2662 */
2663 static umode_t cgroup_file_mode(const struct cftype *cft)
2664 {
2665 umode_t mode = 0;
2666
2667 if (cft->mode)
2668 return cft->mode;
2669
2670 if (cft->read || cft->read_u64 || cft->read_s64 ||
2671 cft->read_map || cft->read_seq_string)
2672 mode |= S_IRUGO;
2673
2674 if (cft->write || cft->write_u64 || cft->write_s64 ||
2675 cft->write_string || cft->trigger)
2676 mode |= S_IWUSR;
2677
2678 return mode;
2679 }
2680
2681 static int cgroup_add_file(struct cgroup *cgrp, struct cgroup_subsys *subsys,
2682 struct cftype *cft)
2683 {
2684 struct dentry *dir = cgrp->dentry;
2685 struct cgroup *parent = __d_cgrp(dir);
2686 struct dentry *dentry;
2687 struct cfent *cfe;
2688 int error;
2689 umode_t mode;
2690 char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
2691
2692 if (subsys && !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) {
2693 strcpy(name, subsys->name);
2694 strcat(name, ".");
2695 }
2696 strcat(name, cft->name);
2697
2698 BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
2699
2700 cfe = kzalloc(sizeof(*cfe), GFP_KERNEL);
2701 if (!cfe)
2702 return -ENOMEM;
2703
2704 dentry = lookup_one_len(name, dir, strlen(name));
2705 if (IS_ERR(dentry)) {
2706 error = PTR_ERR(dentry);
2707 goto out;
2708 }
2709
2710 cfe->type = (void *)cft;
2711 cfe->dentry = dentry;
2712 dentry->d_fsdata = cfe;
2713 simple_xattrs_init(&cfe->xattrs);
2714
2715 mode = cgroup_file_mode(cft);
2716 error = cgroup_create_file(dentry, mode | S_IFREG, cgrp->root->sb);
2717 if (!error) {
2718 list_add_tail(&cfe->node, &parent->files);
2719 cfe = NULL;
2720 }
2721 dput(dentry);
2722 out:
2723 kfree(cfe);
2724 return error;
2725 }
2726
2727 /**
2728 * cgroup_addrm_files - add or remove files to a cgroup directory
2729 * @cgrp: the target cgroup
2730 * @subsys: the subsystem of files to be added
2731 * @cfts: array of cftypes to be added
2732 * @is_add: whether to add or remove
2733 *
2734 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
2735 * All @cfts should belong to @subsys. For removals, this function never
2736 * fails. If addition fails, this function doesn't remove files already
2737 * added. The caller is responsible for cleaning up.
2738 */
2739 static int cgroup_addrm_files(struct cgroup *cgrp, struct cgroup_subsys *subsys,
2740 struct cftype cfts[], bool is_add)
2741 {
2742 struct cftype *cft;
2743 int ret;
2744
2745 lockdep_assert_held(&cgrp->dentry->d_inode->i_mutex);
2746 lockdep_assert_held(&cgroup_mutex);
2747
2748 for (cft = cfts; cft->name[0] != '\0'; cft++) {
2749 /* does cft->flags tell us to skip this file on @cgrp? */
2750 if ((cft->flags & CFTYPE_INSANE) && cgroup_sane_behavior(cgrp))
2751 continue;
2752 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgrp->parent)
2753 continue;
2754 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgrp->parent)
2755 continue;
2756
2757 if (is_add) {
2758 ret = cgroup_add_file(cgrp, subsys, cft);
2759 if (ret) {
2760 pr_warn("cgroup_addrm_files: failed to add %s, err=%d\n",
2761 cft->name, ret);
2762 return ret;
2763 }
2764 } else {
2765 cgroup_rm_file(cgrp, cft);
2766 }
2767 }
2768 return 0;
2769 }
2770
2771 static void cgroup_cfts_prepare(void)
2772 __acquires(&cgroup_mutex)
2773 {
2774 /*
2775 * Thanks to the entanglement with vfs inode locking, we can't walk
2776 * the existing cgroups under cgroup_mutex and create files.
2777 * Instead, we use cgroup_for_each_descendant_pre() and drop RCU
2778 * read lock before calling cgroup_addrm_files().
2779 */
2780 mutex_lock(&cgroup_mutex);
2781 }
2782
2783 static int cgroup_cfts_commit(struct cgroup_subsys *ss,
2784 struct cftype *cfts, bool is_add)
2785 __releases(&cgroup_mutex)
2786 {
2787 LIST_HEAD(pending);
2788 struct cgroup *cgrp, *root = &ss->root->top_cgroup;
2789 struct super_block *sb = ss->root->sb;
2790 struct dentry *prev = NULL;
2791 struct inode *inode;
2792 u64 update_before;
2793 int ret = 0;
2794
2795 /* %NULL @cfts indicates abort and don't bother if @ss isn't attached */
2796 if (!cfts || ss->root == &cgroup_dummy_root ||
2797 !atomic_inc_not_zero(&sb->s_active)) {
2798 mutex_unlock(&cgroup_mutex);
2799 return 0;
2800 }
2801
2802 /*
2803 * All cgroups which are created after we drop cgroup_mutex will
2804 * have the updated set of files, so we only need to update the
2805 * cgroups created before the current @cgroup_serial_nr_next.
2806 */
2807 update_before = cgroup_serial_nr_next;
2808
2809 mutex_unlock(&cgroup_mutex);
2810
2811 /* @root always needs to be updated */
2812 inode = root->dentry->d_inode;
2813 mutex_lock(&inode->i_mutex);
2814 mutex_lock(&cgroup_mutex);
2815 ret = cgroup_addrm_files(root, ss, cfts, is_add);
2816 mutex_unlock(&cgroup_mutex);
2817 mutex_unlock(&inode->i_mutex);
2818
2819 if (ret)
2820 goto out_deact;
2821
2822 /* add/rm files for all cgroups created before */
2823 rcu_read_lock();
2824 cgroup_for_each_descendant_pre(cgrp, root) {
2825 if (cgroup_is_dead(cgrp))
2826 continue;
2827
2828 inode = cgrp->dentry->d_inode;
2829 dget(cgrp->dentry);
2830 rcu_read_unlock();
2831
2832 dput(prev);
2833 prev = cgrp->dentry;
2834
2835 mutex_lock(&inode->i_mutex);
2836 mutex_lock(&cgroup_mutex);
2837 if (cgrp->serial_nr < update_before && !cgroup_is_dead(cgrp))
2838 ret = cgroup_addrm_files(cgrp, ss, cfts, is_add);
2839 mutex_unlock(&cgroup_mutex);
2840 mutex_unlock(&inode->i_mutex);
2841
2842 rcu_read_lock();
2843 if (ret)
2844 break;
2845 }
2846 rcu_read_unlock();
2847 dput(prev);
2848 out_deact:
2849 deactivate_super(sb);
2850 return ret;
2851 }
2852
2853 /**
2854 * cgroup_add_cftypes - add an array of cftypes to a subsystem
2855 * @ss: target cgroup subsystem
2856 * @cfts: zero-length name terminated array of cftypes
2857 *
2858 * Register @cfts to @ss. Files described by @cfts are created for all
2859 * existing cgroups to which @ss is attached and all future cgroups will
2860 * have them too. This function can be called anytime whether @ss is
2861 * attached or not.
2862 *
2863 * Returns 0 on successful registration, -errno on failure. Note that this
2864 * function currently returns 0 as long as @cfts registration is successful
2865 * even if some file creation attempts on existing cgroups fail.
2866 */
2867 int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2868 {
2869 struct cftype_set *set;
2870 int ret;
2871
2872 set = kzalloc(sizeof(*set), GFP_KERNEL);
2873 if (!set)
2874 return -ENOMEM;
2875
2876 cgroup_cfts_prepare();
2877 set->cfts = cfts;
2878 list_add_tail(&set->node, &ss->cftsets);
2879 ret = cgroup_cfts_commit(ss, cfts, true);
2880 if (ret)
2881 cgroup_rm_cftypes(ss, cfts);
2882 return ret;
2883 }
2884 EXPORT_SYMBOL_GPL(cgroup_add_cftypes);
2885
2886 /**
2887 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
2888 * @ss: target cgroup subsystem
2889 * @cfts: zero-length name terminated array of cftypes
2890 *
2891 * Unregister @cfts from @ss. Files described by @cfts are removed from
2892 * all existing cgroups to which @ss is attached and all future cgroups
2893 * won't have them either. This function can be called anytime whether @ss
2894 * is attached or not.
2895 *
2896 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2897 * registered with @ss.
2898 */
2899 int cgroup_rm_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2900 {
2901 struct cftype_set *set;
2902
2903 cgroup_cfts_prepare();
2904
2905 list_for_each_entry(set, &ss->cftsets, node) {
2906 if (set->cfts == cfts) {
2907 list_del(&set->node);
2908 kfree(set);
2909 cgroup_cfts_commit(ss, cfts, false);
2910 return 0;
2911 }
2912 }
2913
2914 cgroup_cfts_commit(ss, NULL, false);
2915 return -ENOENT;
2916 }
2917
2918 /**
2919 * cgroup_task_count - count the number of tasks in a cgroup.
2920 * @cgrp: the cgroup in question
2921 *
2922 * Return the number of tasks in the cgroup.
2923 */
2924 int cgroup_task_count(const struct cgroup *cgrp)
2925 {
2926 int count = 0;
2927 struct cgrp_cset_link *link;
2928
2929 read_lock(&css_set_lock);
2930 list_for_each_entry(link, &cgrp->cset_links, cset_link)
2931 count += atomic_read(&link->cset->refcount);
2932 read_unlock(&css_set_lock);
2933 return count;
2934 }
2935
2936 /*
2937 * Advance a list_head iterator. The iterator should be positioned at
2938 * the start of a css_set
2939 */
2940 static void cgroup_advance_iter(struct cgroup *cgrp, struct cgroup_iter *it)
2941 {
2942 struct list_head *l = it->cset_link;
2943 struct cgrp_cset_link *link;
2944 struct css_set *cset;
2945
2946 /* Advance to the next non-empty css_set */
2947 do {
2948 l = l->next;
2949 if (l == &cgrp->cset_links) {
2950 it->cset_link = NULL;
2951 return;
2952 }
2953 link = list_entry(l, struct cgrp_cset_link, cset_link);
2954 cset = link->cset;
2955 } while (list_empty(&cset->tasks));
2956 it->cset_link = l;
2957 it->task = cset->tasks.next;
2958 }
2959
2960 /*
2961 * To reduce the fork() overhead for systems that are not actually
2962 * using their cgroups capability, we don't maintain the lists running
2963 * through each css_set to its tasks until we see the list actually
2964 * used - in other words after the first call to cgroup_iter_start().
2965 */
2966 static void cgroup_enable_task_cg_lists(void)
2967 {
2968 struct task_struct *p, *g;
2969 write_lock(&css_set_lock);
2970 use_task_css_set_links = 1;
2971 /*
2972 * We need tasklist_lock because RCU is not safe against
2973 * while_each_thread(). Besides, a forking task that has passed
2974 * cgroup_post_fork() without seeing use_task_css_set_links = 1
2975 * is not guaranteed to have its child immediately visible in the
2976 * tasklist if we walk through it with RCU.
2977 */
2978 read_lock(&tasklist_lock);
2979 do_each_thread(g, p) {
2980 task_lock(p);
2981 /*
2982 * We should check if the process is exiting, otherwise
2983 * it will race with cgroup_exit() in that the list
2984 * entry won't be deleted though the process has exited.
2985 */
2986 if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
2987 list_add(&p->cg_list, &task_css_set(p)->tasks);
2988 task_unlock(p);
2989 } while_each_thread(g, p);
2990 read_unlock(&tasklist_lock);
2991 write_unlock(&css_set_lock);
2992 }
2993
2994 /**
2995 * cgroup_next_sibling - find the next sibling of a given cgroup
2996 * @pos: the current cgroup
2997 *
2998 * This function returns the next sibling of @pos and should be called
2999 * under RCU read lock. The only requirement is that @pos is accessible.
3000 * The next sibling is guaranteed to be returned regardless of @pos's
3001 * state.
3002 */
3003 struct cgroup *cgroup_next_sibling(struct cgroup *pos)
3004 {
3005 struct cgroup *next;
3006
3007 WARN_ON_ONCE(!rcu_read_lock_held());
3008
3009 /*
3010 * @pos could already have been removed. Once a cgroup is removed,
3011 * its ->sibling.next is no longer updated when its next sibling
3012 * changes. As CGRP_DEAD assertion is serialized and happens
3013 * before the cgroup is taken off the ->sibling list, if we see it
3014 * unasserted, it's guaranteed that the next sibling hasn't
3015 * finished its grace period even if it's already removed, and thus
3016 * safe to dereference from this RCU critical section. If
3017 * ->sibling.next is inaccessible, cgroup_is_dead() is guaranteed
3018 * to be visible as %true here.
3019 */
3020 if (likely(!cgroup_is_dead(pos))) {
3021 next = list_entry_rcu(pos->sibling.next, struct cgroup, sibling);
3022 if (&next->sibling != &pos->parent->children)
3023 return next;
3024 return NULL;
3025 }
3026
3027 /*
3028 * Can't dereference the next pointer. Each cgroup is given a
3029 * monotonically increasing unique serial number and always
3030 * appended to the sibling list, so the next one can be found by
3031 * walking the parent's children until we see a cgroup with higher
3032 * serial number than @pos's.
3033 *
3034 * While this path can be slow, it's taken only when either the
3035 * current cgroup is removed or iteration and removal race.
3036 */
3037 list_for_each_entry_rcu(next, &pos->parent->children, sibling)
3038 if (next->serial_nr > pos->serial_nr)
3039 return next;
3040 return NULL;
3041 }
3042 EXPORT_SYMBOL_GPL(cgroup_next_sibling);
3043
3044 /**
3045 * cgroup_next_descendant_pre - find the next descendant for pre-order walk
3046 * @pos: the current position (%NULL to initiate traversal)
3047 * @cgroup: cgroup whose descendants to walk
3048 *
3049 * To be used by cgroup_for_each_descendant_pre(). Find the next
3050 * descendant to visit for pre-order traversal of @cgroup's descendants.
3051 *
3052 * While this function requires RCU read locking, it doesn't require the
3053 * whole traversal to be contained in a single RCU critical section. This
3054 * function will return the correct next descendant as long as both @pos
3055 * and @cgroup are accessible and @pos is a descendant of @cgroup.
3056 */
3057 struct cgroup *cgroup_next_descendant_pre(struct cgroup *pos,
3058 struct cgroup *cgroup)
3059 {
3060 struct cgroup *next;
3061
3062 WARN_ON_ONCE(!rcu_read_lock_held());
3063
3064 /* if first iteration, pretend we just visited @cgroup */
3065 if (!pos)
3066 pos = cgroup;
3067
3068 /* visit the first child if exists */
3069 next = list_first_or_null_rcu(&pos->children, struct cgroup, sibling);
3070 if (next)
3071 return next;
3072
3073 /* no child, visit my or the closest ancestor's next sibling */
3074 while (pos != cgroup) {
3075 next = cgroup_next_sibling(pos);
3076 if (next)
3077 return next;
3078 pos = pos->parent;
3079 }
3080
3081 return NULL;
3082 }
3083 EXPORT_SYMBOL_GPL(cgroup_next_descendant_pre);
3084
3085 /**
3086 * cgroup_rightmost_descendant - return the rightmost descendant of a cgroup
3087 * @pos: cgroup of interest
3088 *
3089 * Return the rightmost descendant of @pos. If there's no descendant,
3090 * @pos is returned. This can be used during pre-order traversal to skip
3091 * subtree of @pos.
3092 *
3093 * While this function requires RCU read locking, it doesn't require the
3094 * whole traversal to be contained in a single RCU critical section. This
3095 * function will return the correct rightmost descendant as long as @pos is
3096 * accessible.
3097 */
3098 struct cgroup *cgroup_rightmost_descendant(struct cgroup *pos)
3099 {
3100 struct cgroup *last, *tmp;
3101
3102 WARN_ON_ONCE(!rcu_read_lock_held());
3103
3104 do {
3105 last = pos;
3106 /* ->prev isn't RCU safe, walk ->next till the end */
3107 pos = NULL;
3108 list_for_each_entry_rcu(tmp, &last->children, sibling)
3109 pos = tmp;
3110 } while (pos);
3111
3112 return last;
3113 }
3114 EXPORT_SYMBOL_GPL(cgroup_rightmost_descendant);
3115
3116 static struct cgroup *cgroup_leftmost_descendant(struct cgroup *pos)
3117 {
3118 struct cgroup *last;
3119
3120 do {
3121 last = pos;
3122 pos = list_first_or_null_rcu(&pos->children, struct cgroup,
3123 sibling);
3124 } while (pos);
3125
3126 return last;
3127 }
3128
3129 /**
3130 * cgroup_next_descendant_post - find the next descendant for post-order walk
3131 * @pos: the current position (%NULL to initiate traversal)
3132 * @cgroup: cgroup whose descendants to walk
3133 *
3134 * To be used by cgroup_for_each_descendant_post(). Find the next
3135 * descendant to visit for post-order traversal of @cgroup's descendants.
3136 *
3137 * While this function requires RCU read locking, it doesn't require the
3138 * whole traversal to be contained in a single RCU critical section. This
3139 * function will return the correct next descendant as long as both @pos
3140 * and @cgroup are accessible and @pos is a descendant of @cgroup.
3141 */
3142 struct cgroup *cgroup_next_descendant_post(struct cgroup *pos,
3143 struct cgroup *cgroup)
3144 {
3145 struct cgroup *next;
3146
3147 WARN_ON_ONCE(!rcu_read_lock_held());
3148
3149 /* if first iteration, visit the leftmost descendant */
3150 if (!pos) {
3151 next = cgroup_leftmost_descendant(cgroup);
3152 return next != cgroup ? next : NULL;
3153 }
3154
3155 /* if there's an unvisited sibling, visit its leftmost descendant */
3156 next = cgroup_next_sibling(pos);
3157 if (next)
3158 return cgroup_leftmost_descendant(next);
3159
3160 /* no sibling left, visit parent */
3161 next = pos->parent;
3162 return next != cgroup ? next : NULL;
3163 }
3164 EXPORT_SYMBOL_GPL(cgroup_next_descendant_post);
3165
3166 void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
3167 __acquires(css_set_lock)
3168 {
3169 /*
3170 * The first time anyone tries to iterate across a cgroup,
3171 * we need to enable the list linking each css_set to its
3172 * tasks, and fix up all existing tasks.
3173 */
3174 if (!use_task_css_set_links)
3175 cgroup_enable_task_cg_lists();
3176
3177 read_lock(&css_set_lock);
3178 it->cset_link = &cgrp->cset_links;
3179 cgroup_advance_iter(cgrp, it);
3180 }
3181
3182 struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
3183 struct cgroup_iter *it)
3184 {
3185 struct task_struct *res;
3186 struct list_head *l = it->task;
3187 struct cgrp_cset_link *link;
3188
3189 /* If the iterator cg is NULL, we have no tasks */
3190 if (!it->cset_link)
3191 return NULL;
3192 res = list_entry(l, struct task_struct, cg_list);
3193 /* Advance iterator to find next entry */
3194 l = l->next;
3195 link = list_entry(it->cset_link, struct cgrp_cset_link, cset_link);
3196 if (l == &link->cset->tasks) {
3197 /* We reached the end of this task list - move on to
3198 * the next cg_cgroup_link */
3199 cgroup_advance_iter(cgrp, it);
3200 } else {
3201 it->task = l;
3202 }
3203 return res;
3204 }
3205
3206 void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
3207 __releases(css_set_lock)
3208 {
3209 read_unlock(&css_set_lock);
3210 }
3211
3212 static inline int started_after_time(struct task_struct *t1,
3213 struct timespec *time,
3214 struct task_struct *t2)
3215 {
3216 int start_diff = timespec_compare(&t1->start_time, time);
3217 if (start_diff > 0) {
3218 return 1;
3219 } else if (start_diff < 0) {
3220 return 0;
3221 } else {
3222 /*
3223 * Arbitrarily, if two processes started at the same
3224 * time, we'll say that the lower pointer value
3225 * started first. Note that t2 may have exited by now
3226 * so this may not be a valid pointer any longer, but
3227 * that's fine - it still serves to distinguish
3228 * between two tasks started (effectively) simultaneously.
3229 */
3230 return t1 > t2;
3231 }
3232 }
3233
3234 /*
3235 * This function is a callback from heap_insert() and is used to order
3236 * the heap.
3237 * In this case we order the heap in descending task start time.
3238 */
3239 static inline int started_after(void *p1, void *p2)
3240 {
3241 struct task_struct *t1 = p1;
3242 struct task_struct *t2 = p2;
3243 return started_after_time(t1, &t2->start_time, t2);
3244 }
3245
3246 /**
3247 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
3248 * @scan: struct cgroup_scanner containing arguments for the scan
3249 *
3250 * Arguments include pointers to callback functions test_task() and
3251 * process_task().
3252 * Iterate through all the tasks in a cgroup, calling test_task() for each,
3253 * and if it returns true, call process_task() for it also.
3254 * The test_task pointer may be NULL, meaning always true (select all tasks).
3255 * Effectively duplicates cgroup_iter_{start,next,end}()
3256 * but does not lock css_set_lock for the call to process_task().
3257 * The struct cgroup_scanner may be embedded in any structure of the caller's
3258 * creation.
3259 * It is guaranteed that process_task() will act on every task that
3260 * is a member of the cgroup for the duration of this call. This
3261 * function may or may not call process_task() for tasks that exit
3262 * or move to a different cgroup during the call, or are forked or
3263 * move into the cgroup during the call.
3264 *
3265 * Note that test_task() may be called with locks held, and may in some
3266 * situations be called multiple times for the same task, so it should
3267 * be cheap.
3268 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
3269 * pre-allocated and will be used for heap operations (and its "gt" member will
3270 * be overwritten), else a temporary heap will be used (allocation of which
3271 * may cause this function to fail).
3272 */
3273 int cgroup_scan_tasks(struct cgroup_scanner *scan)
3274 {
3275 int retval, i;
3276 struct cgroup_iter it;
3277 struct task_struct *p, *dropped;
3278 /* Never dereference latest_task, since it's not refcounted */
3279 struct task_struct *latest_task = NULL;
3280 struct ptr_heap tmp_heap;
3281 struct ptr_heap *heap;
3282 struct timespec latest_time = { 0, 0 };
3283
3284 if (scan->heap) {
3285 /* The caller supplied our heap and pre-allocated its memory */
3286 heap = scan->heap;
3287 heap->gt = &started_after;
3288 } else {
3289 /* We need to allocate our own heap memory */
3290 heap = &tmp_heap;
3291 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
3292 if (retval)
3293 /* cannot allocate the heap */
3294 return retval;
3295 }
3296
3297 again:
3298 /*
3299 * Scan tasks in the cgroup, using the scanner's "test_task" callback
3300 * to determine which are of interest, and using the scanner's
3301 * "process_task" callback to process any of them that need an update.
3302 * Since we don't want to hold any locks during the task updates,
3303 * gather tasks to be processed in a heap structure.
3304 * The heap is sorted by descending task start time.
3305 * If the statically-sized heap fills up, we overflow tasks that
3306 * started later, and in future iterations only consider tasks that
3307 * started after the latest task in the previous pass. This
3308 * guarantees forward progress and that we don't miss any tasks.
3309 */
3310 heap->size = 0;
3311 cgroup_iter_start(scan->cgrp, &it);
3312 while ((p = cgroup_iter_next(scan->cgrp, &it))) {
3313 /*
3314 * Only affect tasks that qualify per the caller's callback,
3315 * if he provided one
3316 */
3317 if (scan->test_task && !scan->test_task(p, scan))
3318 continue;
3319 /*
3320 * Only process tasks that started after the last task
3321 * we processed
3322 */
3323 if (!started_after_time(p, &latest_time, latest_task))
3324 continue;
3325 dropped = heap_insert(heap, p);
3326 if (dropped == NULL) {
3327 /*
3328 * The new task was inserted; the heap wasn't
3329 * previously full
3330 */
3331 get_task_struct(p);
3332 } else if (dropped != p) {
3333 /*
3334 * The new task was inserted, and pushed out a
3335 * different task
3336 */
3337 get_task_struct(p);
3338 put_task_struct(dropped);
3339 }
3340 /*
3341 * Else the new task was newer than anything already in
3342 * the heap and wasn't inserted
3343 */
3344 }
3345 cgroup_iter_end(scan->cgrp, &it);
3346
3347 if (heap->size) {
3348 for (i = 0; i < heap->size; i++) {
3349 struct task_struct *q = heap->ptrs[i];
3350 if (i == 0) {
3351 latest_time = q->start_time;
3352 latest_task = q;
3353 }
3354 /* Process the task per the caller's callback */
3355 scan->process_task(q, scan);
3356 put_task_struct(q);
3357 }
3358 /*
3359 * If we had to process any tasks at all, scan again
3360 * in case some of them were in the middle of forking
3361 * children that didn't get processed.
3362 * Not the most efficient way to do it, but it avoids
3363 * having to take callback_mutex in the fork path
3364 */
3365 goto again;
3366 }
3367 if (heap == &tmp_heap)
3368 heap_free(&tmp_heap);
3369 return 0;
3370 }
3371
3372 static void cgroup_transfer_one_task(struct task_struct *task,
3373 struct cgroup_scanner *scan)
3374 {
3375 struct cgroup *new_cgroup = scan->data;
3376
3377 mutex_lock(&cgroup_mutex);
3378 cgroup_attach_task(new_cgroup, task, false);
3379 mutex_unlock(&cgroup_mutex);
3380 }
3381
3382 /**
3383 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
3384 * @to: cgroup to which the tasks will be moved
3385 * @from: cgroup in which the tasks currently reside
3386 */
3387 int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
3388 {
3389 struct cgroup_scanner scan;
3390
3391 scan.cgrp = from;
3392 scan.test_task = NULL; /* select all tasks in cgroup */
3393 scan.process_task = cgroup_transfer_one_task;
3394 scan.heap = NULL;
3395 scan.data = to;
3396
3397 return cgroup_scan_tasks(&scan);
3398 }
3399
3400 /*
3401 * Stuff for reading the 'tasks'/'procs' files.
3402 *
3403 * Reading this file can return large amounts of data if a cgroup has
3404 * *lots* of attached tasks. So it may need several calls to read(),
3405 * but we cannot guarantee that the information we produce is correct
3406 * unless we produce it entirely atomically.
3407 *
3408 */
3409
3410 /* which pidlist file are we talking about? */
3411 enum cgroup_filetype {
3412 CGROUP_FILE_PROCS,
3413 CGROUP_FILE_TASKS,
3414 };
3415
3416 /*
3417 * A pidlist is a list of pids that virtually represents the contents of one
3418 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
3419 * a pair (one each for procs, tasks) for each pid namespace that's relevant
3420 * to the cgroup.
3421 */
3422 struct cgroup_pidlist {
3423 /*
3424 * used to find which pidlist is wanted. doesn't change as long as
3425 * this particular list stays in the list.
3426 */
3427 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
3428 /* array of xids */
3429 pid_t *list;
3430 /* how many elements the above list has */
3431 int length;
3432 /* how many files are using the current array */
3433 int use_count;
3434 /* each of these stored in a list by its cgroup */
3435 struct list_head links;
3436 /* pointer to the cgroup we belong to, for list removal purposes */
3437 struct cgroup *owner;
3438 /* protects the other fields */
3439 struct rw_semaphore mutex;
3440 };
3441
3442 /*
3443 * The following two functions "fix" the issue where there are more pids
3444 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3445 * TODO: replace with a kernel-wide solution to this problem
3446 */
3447 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
3448 static void *pidlist_allocate(int count)
3449 {
3450 if (PIDLIST_TOO_LARGE(count))
3451 return vmalloc(count * sizeof(pid_t));
3452 else
3453 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
3454 }
3455 static void pidlist_free(void *p)
3456 {
3457 if (is_vmalloc_addr(p))
3458 vfree(p);
3459 else
3460 kfree(p);
3461 }
3462
3463 /*
3464 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
3465 * Returns the number of unique elements.
3466 */
3467 static int pidlist_uniq(pid_t *list, int length)
3468 {
3469 int src, dest = 1;
3470
3471 /*
3472 * we presume the 0th element is unique, so i starts at 1. trivial
3473 * edge cases first; no work needs to be done for either
3474 */
3475 if (length == 0 || length == 1)
3476 return length;
3477 /* src and dest walk down the list; dest counts unique elements */
3478 for (src = 1; src < length; src++) {
3479 /* find next unique element */
3480 while (list[src] == list[src-1]) {
3481 src++;
3482 if (src == length)
3483 goto after;
3484 }
3485 /* dest always points to where the next unique element goes */
3486 list[dest] = list[src];
3487 dest++;
3488 }
3489 after:
3490 return dest;
3491 }
3492
3493 static int cmppid(const void *a, const void *b)
3494 {
3495 return *(pid_t *)a - *(pid_t *)b;
3496 }
3497
3498 /*
3499 * find the appropriate pidlist for our purpose (given procs vs tasks)
3500 * returns with the lock on that pidlist already held, and takes care
3501 * of the use count, or returns NULL with no locks held if we're out of
3502 * memory.
3503 */
3504 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3505 enum cgroup_filetype type)
3506 {
3507 struct cgroup_pidlist *l;
3508 /* don't need task_nsproxy() if we're looking at ourself */
3509 struct pid_namespace *ns = task_active_pid_ns(current);
3510
3511 /*
3512 * We can't drop the pidlist_mutex before taking the l->mutex in case
3513 * the last ref-holder is trying to remove l from the list at the same
3514 * time. Holding the pidlist_mutex precludes somebody taking whichever
3515 * list we find out from under us - compare release_pid_array().
3516 */
3517 mutex_lock(&cgrp->pidlist_mutex);
3518 list_for_each_entry(l, &cgrp->pidlists, links) {
3519 if (l->key.type == type && l->key.ns == ns) {
3520 /* make sure l doesn't vanish out from under us */
3521 down_write(&l->mutex);
3522 mutex_unlock(&cgrp->pidlist_mutex);
3523 return l;
3524 }
3525 }
3526 /* entry not found; create a new one */
3527 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
3528 if (!l) {
3529 mutex_unlock(&cgrp->pidlist_mutex);
3530 return l;
3531 }
3532 init_rwsem(&l->mutex);
3533 down_write(&l->mutex);
3534 l->key.type = type;
3535 l->key.ns = get_pid_ns(ns);
3536 l->owner = cgrp;
3537 list_add(&l->links, &cgrp->pidlists);
3538 mutex_unlock(&cgrp->pidlist_mutex);
3539 return l;
3540 }
3541
3542 /*
3543 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3544 */
3545 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3546 struct cgroup_pidlist **lp)
3547 {
3548 pid_t *array;
3549 int length;
3550 int pid, n = 0; /* used for populating the array */
3551 struct cgroup_iter it;
3552 struct task_struct *tsk;
3553 struct cgroup_pidlist *l;
3554
3555 /*
3556 * If cgroup gets more users after we read count, we won't have
3557 * enough space - tough. This race is indistinguishable to the
3558 * caller from the case that the additional cgroup users didn't
3559 * show up until sometime later on.
3560 */
3561 length = cgroup_task_count(cgrp);
3562 array = pidlist_allocate(length);
3563 if (!array)
3564 return -ENOMEM;
3565 /* now, populate the array */
3566 cgroup_iter_start(cgrp, &it);
3567 while ((tsk = cgroup_iter_next(cgrp, &it))) {
3568 if (unlikely(n == length))
3569 break;
3570 /* get tgid or pid for procs or tasks file respectively */
3571 if (type == CGROUP_FILE_PROCS)
3572 pid = task_tgid_vnr(tsk);
3573 else
3574 pid = task_pid_vnr(tsk);
3575 if (pid > 0) /* make sure to only use valid results */
3576 array[n++] = pid;
3577 }
3578 cgroup_iter_end(cgrp, &it);
3579 length = n;
3580 /* now sort & (if procs) strip out duplicates */
3581 sort(array, length, sizeof(pid_t), cmppid, NULL);
3582 if (type == CGROUP_FILE_PROCS)
3583 length = pidlist_uniq(array, length);
3584 l = cgroup_pidlist_find(cgrp, type);
3585 if (!l) {
3586 pidlist_free(array);
3587 return -ENOMEM;
3588 }
3589 /* store array, freeing old if necessary - lock already held */
3590 pidlist_free(l->list);
3591 l->list = array;
3592 l->length = length;
3593 l->use_count++;
3594 up_write(&l->mutex);
3595 *lp = l;
3596 return 0;
3597 }
3598
3599 /**
3600 * cgroupstats_build - build and fill cgroupstats
3601 * @stats: cgroupstats to fill information into
3602 * @dentry: A dentry entry belonging to the cgroup for which stats have
3603 * been requested.
3604 *
3605 * Build and fill cgroupstats so that taskstats can export it to user
3606 * space.
3607 */
3608 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
3609 {
3610 int ret = -EINVAL;
3611 struct cgroup *cgrp;
3612 struct cgroup_iter it;
3613 struct task_struct *tsk;
3614
3615 /*
3616 * Validate dentry by checking the superblock operations,
3617 * and make sure it's a directory.
3618 */
3619 if (dentry->d_sb->s_op != &cgroup_ops ||
3620 !S_ISDIR(dentry->d_inode->i_mode))
3621 goto err;
3622
3623 ret = 0;
3624 cgrp = dentry->d_fsdata;
3625
3626 cgroup_iter_start(cgrp, &it);
3627 while ((tsk = cgroup_iter_next(cgrp, &it))) {
3628 switch (tsk->state) {
3629 case TASK_RUNNING:
3630 stats->nr_running++;
3631 break;
3632 case TASK_INTERRUPTIBLE:
3633 stats->nr_sleeping++;
3634 break;
3635 case TASK_UNINTERRUPTIBLE:
3636 stats->nr_uninterruptible++;
3637 break;
3638 case TASK_STOPPED:
3639 stats->nr_stopped++;
3640 break;
3641 default:
3642 if (delayacct_is_task_waiting_on_io(tsk))
3643 stats->nr_io_wait++;
3644 break;
3645 }
3646 }
3647 cgroup_iter_end(cgrp, &it);
3648
3649 err:
3650 return ret;
3651 }
3652
3653
3654 /*
3655 * seq_file methods for the tasks/procs files. The seq_file position is the
3656 * next pid to display; the seq_file iterator is a pointer to the pid
3657 * in the cgroup->l->list array.
3658 */
3659
3660 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
3661 {
3662 /*
3663 * Initially we receive a position value that corresponds to
3664 * one more than the last pid shown (or 0 on the first call or
3665 * after a seek to the start). Use a binary-search to find the
3666 * next pid to display, if any
3667 */
3668 struct cgroup_pidlist *l = s->private;
3669 int index = 0, pid = *pos;
3670 int *iter;
3671
3672 down_read(&l->mutex);
3673 if (pid) {
3674 int end = l->length;
3675
3676 while (index < end) {
3677 int mid = (index + end) / 2;
3678 if (l->list[mid] == pid) {
3679 index = mid;
3680 break;
3681 } else if (l->list[mid] <= pid)
3682 index = mid + 1;
3683 else
3684 end = mid;
3685 }
3686 }
3687 /* If we're off the end of the array, we're done */
3688 if (index >= l->length)
3689 return NULL;
3690 /* Update the abstract position to be the actual pid that we found */
3691 iter = l->list + index;
3692 *pos = *iter;
3693 return iter;
3694 }
3695
3696 static void cgroup_pidlist_stop(struct seq_file *s, void *v)
3697 {
3698 struct cgroup_pidlist *l = s->private;
3699 up_read(&l->mutex);
3700 }
3701
3702 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
3703 {
3704 struct cgroup_pidlist *l = s->private;
3705 pid_t *p = v;
3706 pid_t *end = l->list + l->length;
3707 /*
3708 * Advance to the next pid in the array. If this goes off the
3709 * end, we're done
3710 */
3711 p++;
3712 if (p >= end) {
3713 return NULL;
3714 } else {
3715 *pos = *p;
3716 return p;
3717 }
3718 }
3719
3720 static int cgroup_pidlist_show(struct seq_file *s, void *v)
3721 {
3722 return seq_printf(s, "%d\n", *(int *)v);
3723 }
3724
3725 /*
3726 * seq_operations functions for iterating on pidlists through seq_file -
3727 * independent of whether it's tasks or procs
3728 */
3729 static const struct seq_operations cgroup_pidlist_seq_operations = {
3730 .start = cgroup_pidlist_start,
3731 .stop = cgroup_pidlist_stop,
3732 .next = cgroup_pidlist_next,
3733 .show = cgroup_pidlist_show,
3734 };
3735
3736 static void cgroup_release_pid_array(struct cgroup_pidlist *l)
3737 {
3738 /*
3739 * the case where we're the last user of this particular pidlist will
3740 * have us remove it from the cgroup's list, which entails taking the
3741 * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
3742 * pidlist_mutex, we have to take pidlist_mutex first.
3743 */
3744 mutex_lock(&l->owner->pidlist_mutex);
3745 down_write(&l->mutex);
3746 BUG_ON(!l->use_count);
3747 if (!--l->use_count) {
3748 /* we're the last user if refcount is 0; remove and free */
3749 list_del(&l->links);
3750 mutex_unlock(&l->owner->pidlist_mutex);
3751 pidlist_free(l->list);
3752 put_pid_ns(l->key.ns);
3753 up_write(&l->mutex);
3754 kfree(l);
3755 return;
3756 }
3757 mutex_unlock(&l->owner->pidlist_mutex);
3758 up_write(&l->mutex);
3759 }
3760
3761 static int cgroup_pidlist_release(struct inode *inode, struct file *file)
3762 {
3763 struct cgroup_pidlist *l;
3764 if (!(file->f_mode & FMODE_READ))
3765 return 0;
3766 /*
3767 * the seq_file will only be initialized if the file was opened for
3768 * reading; hence we check if it's not null only in that case.
3769 */
3770 l = ((struct seq_file *)file->private_data)->private;
3771 cgroup_release_pid_array(l);
3772 return seq_release(inode, file);
3773 }
3774
3775 static const struct file_operations cgroup_pidlist_operations = {
3776 .read = seq_read,
3777 .llseek = seq_lseek,
3778 .write = cgroup_file_write,
3779 .release = cgroup_pidlist_release,
3780 };
3781
3782 /*
3783 * The following functions handle opens on a file that displays a pidlist
3784 * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
3785 * in the cgroup.
3786 */
3787 /* helper function for the two below it */
3788 static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type)
3789 {
3790 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
3791 struct cgroup_pidlist *l;
3792 int retval;
3793
3794 /* Nothing to do for write-only files */
3795 if (!(file->f_mode & FMODE_READ))
3796 return 0;
3797
3798 /* have the array populated */
3799 retval = pidlist_array_load(cgrp, type, &l);
3800 if (retval)
3801 return retval;
3802 /* configure file information */
3803 file->f_op = &cgroup_pidlist_operations;
3804
3805 retval = seq_open(file, &cgroup_pidlist_seq_operations);
3806 if (retval) {
3807 cgroup_release_pid_array(l);
3808 return retval;
3809 }
3810 ((struct seq_file *)file->private_data)->private = l;
3811 return 0;
3812 }
3813 static int cgroup_tasks_open(struct inode *unused, struct file *file)
3814 {
3815 return cgroup_pidlist_open(file, CGROUP_FILE_TASKS);
3816 }
3817 static int cgroup_procs_open(struct inode *unused, struct file *file)
3818 {
3819 return cgroup_pidlist_open(file, CGROUP_FILE_PROCS);
3820 }
3821
3822 static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
3823 struct cftype *cft)
3824 {
3825 return notify_on_release(cgrp);
3826 }
3827
3828 static int cgroup_write_notify_on_release(struct cgroup *cgrp,
3829 struct cftype *cft,
3830 u64 val)
3831 {
3832 clear_bit(CGRP_RELEASABLE, &cgrp->flags);
3833 if (val)
3834 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3835 else
3836 clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3837 return 0;
3838 }
3839
3840 /*
3841 * When dput() is called asynchronously, if umount has been done and
3842 * then deactivate_super() in cgroup_free_fn() kills the superblock,
3843 * there's a small window that vfs will see the root dentry with non-zero
3844 * refcnt and trigger BUG().
3845 *
3846 * That's why we hold a reference before dput() and drop it right after.
3847 */
3848 static void cgroup_dput(struct cgroup *cgrp)
3849 {
3850 struct super_block *sb = cgrp->root->sb;
3851
3852 atomic_inc(&sb->s_active);
3853 dput(cgrp->dentry);
3854 deactivate_super(sb);
3855 }
3856
3857 /*
3858 * Unregister event and free resources.
3859 *
3860 * Gets called from workqueue.
3861 */
3862 static void cgroup_event_remove(struct work_struct *work)
3863 {
3864 struct cgroup_event *event = container_of(work, struct cgroup_event,
3865 remove);
3866 struct cgroup *cgrp = event->cgrp;
3867
3868 remove_wait_queue(event->wqh, &event->wait);
3869
3870 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3871
3872 /* Notify userspace the event is going away. */
3873 eventfd_signal(event->eventfd, 1);
3874
3875 eventfd_ctx_put(event->eventfd);
3876 kfree(event);
3877 cgroup_dput(cgrp);
3878 }
3879
3880 /*
3881 * Gets called on POLLHUP on eventfd when user closes it.
3882 *
3883 * Called with wqh->lock held and interrupts disabled.
3884 */
3885 static int cgroup_event_wake(wait_queue_t *wait, unsigned mode,
3886 int sync, void *key)
3887 {
3888 struct cgroup_event *event = container_of(wait,
3889 struct cgroup_event, wait);
3890 struct cgroup *cgrp = event->cgrp;
3891 unsigned long flags = (unsigned long)key;
3892
3893 if (flags & POLLHUP) {
3894 /*
3895 * If the event has been detached at cgroup removal, we
3896 * can simply return knowing the other side will cleanup
3897 * for us.
3898 *
3899 * We can't race against event freeing since the other
3900 * side will require wqh->lock via remove_wait_queue(),
3901 * which we hold.
3902 */
3903 spin_lock(&cgrp->event_list_lock);
3904 if (!list_empty(&event->list)) {
3905 list_del_init(&event->list);
3906 /*
3907 * We are in atomic context, but cgroup_event_remove()
3908 * may sleep, so we have to call it in workqueue.
3909 */
3910 schedule_work(&event->remove);
3911 }
3912 spin_unlock(&cgrp->event_list_lock);
3913 }
3914
3915 return 0;
3916 }
3917
3918 static void cgroup_event_ptable_queue_proc(struct file *file,
3919 wait_queue_head_t *wqh, poll_table *pt)
3920 {
3921 struct cgroup_event *event = container_of(pt,
3922 struct cgroup_event, pt);
3923
3924 event->wqh = wqh;
3925 add_wait_queue(wqh, &event->wait);
3926 }
3927
3928 /*
3929 * Parse input and register new cgroup event handler.
3930 *
3931 * Input must be in format '<event_fd> <control_fd> <args>'.
3932 * Interpretation of args is defined by control file implementation.
3933 */
3934 static int cgroup_write_event_control(struct cgroup *cgrp, struct cftype *cft,
3935 const char *buffer)
3936 {
3937 struct cgroup_event *event;
3938 struct cgroup *cgrp_cfile;
3939 unsigned int efd, cfd;
3940 struct file *efile;
3941 struct file *cfile;
3942 char *endp;
3943 int ret;
3944
3945 efd = simple_strtoul(buffer, &endp, 10);
3946 if (*endp != ' ')
3947 return -EINVAL;
3948 buffer = endp + 1;
3949
3950 cfd = simple_strtoul(buffer, &endp, 10);
3951 if ((*endp != ' ') && (*endp != '\0'))
3952 return -EINVAL;
3953 buffer = endp + 1;
3954
3955 event = kzalloc(sizeof(*event), GFP_KERNEL);
3956 if (!event)
3957 return -ENOMEM;
3958 event->cgrp = cgrp;
3959 INIT_LIST_HEAD(&event->list);
3960 init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc);
3961 init_waitqueue_func_entry(&event->wait, cgroup_event_wake);
3962 INIT_WORK(&event->remove, cgroup_event_remove);
3963
3964 efile = eventfd_fget(efd);
3965 if (IS_ERR(efile)) {
3966 ret = PTR_ERR(efile);
3967 goto out_kfree;
3968 }
3969
3970 event->eventfd = eventfd_ctx_fileget(efile);
3971 if (IS_ERR(event->eventfd)) {
3972 ret = PTR_ERR(event->eventfd);
3973 goto out_put_efile;
3974 }
3975
3976 cfile = fget(cfd);
3977 if (!cfile) {
3978 ret = -EBADF;
3979 goto out_put_eventfd;
3980 }
3981
3982 /* the process need read permission on control file */
3983 /* AV: shouldn't we check that it's been opened for read instead? */
3984 ret = inode_permission(file_inode(cfile), MAY_READ);
3985 if (ret < 0)
3986 goto out_put_cfile;
3987
3988 event->cft = __file_cft(cfile);
3989 if (IS_ERR(event->cft)) {
3990 ret = PTR_ERR(event->cft);
3991 goto out_put_cfile;
3992 }
3993
3994 /*
3995 * The file to be monitored must be in the same cgroup as
3996 * cgroup.event_control is.
3997 */
3998 cgrp_cfile = __d_cgrp(cfile->f_dentry->d_parent);
3999 if (cgrp_cfile != cgrp) {
4000 ret = -EINVAL;
4001 goto out_put_cfile;
4002 }
4003
4004 if (!event->cft->register_event || !event->cft->unregister_event) {
4005 ret = -EINVAL;
4006 goto out_put_cfile;
4007 }
4008
4009 ret = event->cft->register_event(cgrp, event->cft,
4010 event->eventfd, buffer);
4011 if (ret)
4012 goto out_put_cfile;
4013
4014 efile->f_op->poll(efile, &event->pt);
4015
4016 /*
4017 * Events should be removed after rmdir of cgroup directory, but before
4018 * destroying subsystem state objects. Let's take reference to cgroup
4019 * directory dentry to do that.
4020 */
4021 dget(cgrp->dentry);
4022
4023 spin_lock(&cgrp->event_list_lock);
4024 list_add(&event->list, &cgrp->event_list);
4025 spin_unlock(&cgrp->event_list_lock);
4026
4027 fput(cfile);
4028 fput(efile);
4029
4030 return 0;
4031
4032 out_put_cfile:
4033 fput(cfile);
4034 out_put_eventfd:
4035 eventfd_ctx_put(event->eventfd);
4036 out_put_efile:
4037 fput(efile);
4038 out_kfree:
4039 kfree(event);
4040
4041 return ret;
4042 }
4043
4044 static u64 cgroup_clone_children_read(struct cgroup *cgrp,
4045 struct cftype *cft)
4046 {
4047 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
4048 }
4049
4050 static int cgroup_clone_children_write(struct cgroup *cgrp,
4051 struct cftype *cft,
4052 u64 val)
4053 {
4054 if (val)
4055 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
4056 else
4057 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
4058 return 0;
4059 }
4060
4061 static struct cftype cgroup_base_files[] = {
4062 {
4063 .name = "cgroup.procs",
4064 .open = cgroup_procs_open,
4065 .write_u64 = cgroup_procs_write,
4066 .release = cgroup_pidlist_release,
4067 .mode = S_IRUGO | S_IWUSR,
4068 },
4069 {
4070 .name = "cgroup.event_control",
4071 .write_string = cgroup_write_event_control,
4072 .mode = S_IWUGO,
4073 },
4074 {
4075 .name = "cgroup.clone_children",
4076 .flags = CFTYPE_INSANE,
4077 .read_u64 = cgroup_clone_children_read,
4078 .write_u64 = cgroup_clone_children_write,
4079 },
4080 {
4081 .name = "cgroup.sane_behavior",
4082 .flags = CFTYPE_ONLY_ON_ROOT,
4083 .read_seq_string = cgroup_sane_behavior_show,
4084 },
4085
4086 /*
4087 * Historical crazy stuff. These don't have "cgroup." prefix and
4088 * don't exist if sane_behavior. If you're depending on these, be
4089 * prepared to be burned.
4090 */
4091 {
4092 .name = "tasks",
4093 .flags = CFTYPE_INSANE, /* use "procs" instead */
4094 .open = cgroup_tasks_open,
4095 .write_u64 = cgroup_tasks_write,
4096 .release = cgroup_pidlist_release,
4097 .mode = S_IRUGO | S_IWUSR,
4098 },
4099 {
4100 .name = "notify_on_release",
4101 .flags = CFTYPE_INSANE,
4102 .read_u64 = cgroup_read_notify_on_release,
4103 .write_u64 = cgroup_write_notify_on_release,
4104 },
4105 {
4106 .name = "release_agent",
4107 .flags = CFTYPE_INSANE | CFTYPE_ONLY_ON_ROOT,
4108 .read_seq_string = cgroup_release_agent_show,
4109 .write_string = cgroup_release_agent_write,
4110 .max_write_len = PATH_MAX,
4111 },
4112 { } /* terminate */
4113 };
4114
4115 /**
4116 * cgroup_populate_dir - create subsys files in a cgroup directory
4117 * @cgrp: target cgroup
4118 * @subsys_mask: mask of the subsystem ids whose files should be added
4119 *
4120 * On failure, no file is added.
4121 */
4122 static int cgroup_populate_dir(struct cgroup *cgrp, unsigned long subsys_mask)
4123 {
4124 struct cgroup_subsys *ss;
4125 int i, ret = 0;
4126
4127 /* process cftsets of each subsystem */
4128 for_each_subsys(ss, i) {
4129 struct cftype_set *set;
4130
4131 if (!test_bit(i, &subsys_mask))
4132 continue;
4133
4134 list_for_each_entry(set, &ss->cftsets, node) {
4135 ret = cgroup_addrm_files(cgrp, ss, set->cfts, true);
4136 if (ret < 0)
4137 goto err;
4138 }
4139 }
4140
4141 /* This cgroup is ready now */
4142 for_each_root_subsys(cgrp->root, ss) {
4143 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
4144 struct css_id *id = rcu_dereference_protected(css->id, true);
4145
4146 /*
4147 * Update id->css pointer and make this css visible from
4148 * CSS ID functions. This pointer will be dereferened
4149 * from RCU-read-side without locks.
4150 */
4151 if (id)
4152 rcu_assign_pointer(id->css, css);
4153 }
4154
4155 return 0;
4156 err:
4157 cgroup_clear_dir(cgrp, subsys_mask);
4158 return ret;
4159 }
4160
4161 static void css_dput_fn(struct work_struct *work)
4162 {
4163 struct cgroup_subsys_state *css =
4164 container_of(work, struct cgroup_subsys_state, dput_work);
4165
4166 cgroup_dput(css->cgroup);
4167 }
4168
4169 static void css_release(struct percpu_ref *ref)
4170 {
4171 struct cgroup_subsys_state *css =
4172 container_of(ref, struct cgroup_subsys_state, refcnt);
4173
4174 schedule_work(&css->dput_work);
4175 }
4176
4177 static void init_cgroup_css(struct cgroup_subsys_state *css,
4178 struct cgroup_subsys *ss,
4179 struct cgroup *cgrp)
4180 {
4181 css->cgroup = cgrp;
4182 css->flags = 0;
4183 css->id = NULL;
4184 if (cgrp == cgroup_dummy_top)
4185 css->flags |= CSS_ROOT;
4186 BUG_ON(cgrp->subsys[ss->subsys_id]);
4187 cgrp->subsys[ss->subsys_id] = css;
4188
4189 /*
4190 * css holds an extra ref to @cgrp->dentry which is put on the last
4191 * css_put(). dput() requires process context, which css_put() may
4192 * be called without. @css->dput_work will be used to invoke
4193 * dput() asynchronously from css_put().
4194 */
4195 INIT_WORK(&css->dput_work, css_dput_fn);
4196 }
4197
4198 /* invoke ->css_online() on a new CSS and mark it online if successful */
4199 static int online_css(struct cgroup_subsys *ss, struct cgroup *cgrp)
4200 {
4201 int ret = 0;
4202
4203 lockdep_assert_held(&cgroup_mutex);
4204
4205 if (ss->css_online)
4206 ret = ss->css_online(cgrp);
4207 if (!ret)
4208 cgrp->subsys[ss->subsys_id]->flags |= CSS_ONLINE;
4209 return ret;
4210 }
4211
4212 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
4213 static void offline_css(struct cgroup_subsys *ss, struct cgroup *cgrp)
4214 {
4215 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
4216
4217 lockdep_assert_held(&cgroup_mutex);
4218
4219 if (!(css->flags & CSS_ONLINE))
4220 return;
4221
4222 if (ss->css_offline)
4223 ss->css_offline(cgrp);
4224
4225 cgrp->subsys[ss->subsys_id]->flags &= ~CSS_ONLINE;
4226 }
4227
4228 /*
4229 * cgroup_create - create a cgroup
4230 * @parent: cgroup that will be parent of the new cgroup
4231 * @dentry: dentry of the new cgroup
4232 * @mode: mode to set on new inode
4233 *
4234 * Must be called with the mutex on the parent inode held
4235 */
4236 static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
4237 umode_t mode)
4238 {
4239 struct cgroup *cgrp;
4240 struct cgroup_name *name;
4241 struct cgroupfs_root *root = parent->root;
4242 int err = 0;
4243 struct cgroup_subsys *ss;
4244 struct super_block *sb = root->sb;
4245
4246 /* allocate the cgroup and its ID, 0 is reserved for the root */
4247 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
4248 if (!cgrp)
4249 return -ENOMEM;
4250
4251 name = cgroup_alloc_name(dentry);
4252 if (!name)
4253 goto err_free_cgrp;
4254 rcu_assign_pointer(cgrp->name, name);
4255
4256 /*
4257 * Temporarily set the pointer to NULL, so idr_find() won't return
4258 * a half-baked cgroup.
4259 */
4260 cgrp->id = idr_alloc(&root->cgroup_idr, NULL, 1, 0, GFP_KERNEL);
4261 if (cgrp->id < 0)
4262 goto err_free_name;
4263
4264 /*
4265 * Only live parents can have children. Note that the liveliness
4266 * check isn't strictly necessary because cgroup_mkdir() and
4267 * cgroup_rmdir() are fully synchronized by i_mutex; however, do it
4268 * anyway so that locking is contained inside cgroup proper and we
4269 * don't get nasty surprises if we ever grow another caller.
4270 */
4271 if (!cgroup_lock_live_group(parent)) {
4272 err = -ENODEV;
4273 goto err_free_id;
4274 }
4275
4276 /* Grab a reference on the superblock so the hierarchy doesn't
4277 * get deleted on unmount if there are child cgroups. This
4278 * can be done outside cgroup_mutex, since the sb can't
4279 * disappear while someone has an open control file on the
4280 * fs */
4281 atomic_inc(&sb->s_active);
4282
4283 init_cgroup_housekeeping(cgrp);
4284
4285 dentry->d_fsdata = cgrp;
4286 cgrp->dentry = dentry;
4287
4288 cgrp->parent = parent;
4289 cgrp->root = parent->root;
4290
4291 if (notify_on_release(parent))
4292 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4293
4294 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4295 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
4296
4297 for_each_root_subsys(root, ss) {
4298 struct cgroup_subsys_state *css;
4299
4300 css = ss->css_alloc(cgrp);
4301 if (IS_ERR(css)) {
4302 err = PTR_ERR(css);
4303 goto err_free_all;
4304 }
4305
4306 err = percpu_ref_init(&css->refcnt, css_release);
4307 if (err)
4308 goto err_free_all;
4309
4310 init_cgroup_css(css, ss, cgrp);
4311
4312 if (ss->use_id) {
4313 err = alloc_css_id(ss, parent, cgrp);
4314 if (err)
4315 goto err_free_all;
4316 }
4317 }
4318
4319 /*
4320 * Create directory. cgroup_create_file() returns with the new
4321 * directory locked on success so that it can be populated without
4322 * dropping cgroup_mutex.
4323 */
4324 err = cgroup_create_file(dentry, S_IFDIR | mode, sb);
4325 if (err < 0)
4326 goto err_free_all;
4327 lockdep_assert_held(&dentry->d_inode->i_mutex);
4328
4329 cgrp->serial_nr = cgroup_serial_nr_next++;
4330
4331 /* allocation complete, commit to creation */
4332 list_add_tail_rcu(&cgrp->sibling, &cgrp->parent->children);
4333 root->number_of_cgroups++;
4334
4335 /* each css holds a ref to the cgroup's dentry */
4336 for_each_root_subsys(root, ss)
4337 dget(dentry);
4338
4339 /* hold a ref to the parent's dentry */
4340 dget(parent->dentry);
4341
4342 /* creation succeeded, notify subsystems */
4343 for_each_root_subsys(root, ss) {
4344 err = online_css(ss, cgrp);
4345 if (err)
4346 goto err_destroy;
4347
4348 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
4349 parent->parent) {
4350 pr_warning("cgroup: %s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4351 current->comm, current->pid, ss->name);
4352 if (!strcmp(ss->name, "memory"))
4353 pr_warning("cgroup: \"memory\" requires setting use_hierarchy to 1 on the root.\n");
4354 ss->warned_broken_hierarchy = true;
4355 }
4356 }
4357
4358 idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
4359
4360 err = cgroup_addrm_files(cgrp, NULL, cgroup_base_files, true);
4361 if (err)
4362 goto err_destroy;
4363
4364 err = cgroup_populate_dir(cgrp, root->subsys_mask);
4365 if (err)
4366 goto err_destroy;
4367
4368 mutex_unlock(&cgroup_mutex);
4369 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
4370
4371 return 0;
4372
4373 err_free_all:
4374 for_each_root_subsys(root, ss) {
4375 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
4376
4377 if (css) {
4378 percpu_ref_cancel_init(&css->refcnt);
4379 ss->css_free(cgrp);
4380 }
4381 }
4382 mutex_unlock(&cgroup_mutex);
4383 /* Release the reference count that we took on the superblock */
4384 deactivate_super(sb);
4385 err_free_id:
4386 idr_remove(&root->cgroup_idr, cgrp->id);
4387 err_free_name:
4388 kfree(rcu_dereference_raw(cgrp->name));
4389 err_free_cgrp:
4390 kfree(cgrp);
4391 return err;
4392
4393 err_destroy:
4394 cgroup_destroy_locked(cgrp);
4395 mutex_unlock(&cgroup_mutex);
4396 mutex_unlock(&dentry->d_inode->i_mutex);
4397 return err;
4398 }
4399
4400 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
4401 {
4402 struct cgroup *c_parent = dentry->d_parent->d_fsdata;
4403
4404 /* the vfs holds inode->i_mutex already */
4405 return cgroup_create(c_parent, dentry, mode | S_IFDIR);
4406 }
4407
4408 static void cgroup_css_killed(struct cgroup *cgrp)
4409 {
4410 if (!atomic_dec_and_test(&cgrp->css_kill_cnt))
4411 return;
4412
4413 /* percpu ref's of all css's are killed, kick off the next step */
4414 INIT_WORK(&cgrp->destroy_work, cgroup_offline_fn);
4415 schedule_work(&cgrp->destroy_work);
4416 }
4417
4418 static void css_ref_killed_fn(struct percpu_ref *ref)
4419 {
4420 struct cgroup_subsys_state *css =
4421 container_of(ref, struct cgroup_subsys_state, refcnt);
4422
4423 cgroup_css_killed(css->cgroup);
4424 }
4425
4426 /**
4427 * cgroup_destroy_locked - the first stage of cgroup destruction
4428 * @cgrp: cgroup to be destroyed
4429 *
4430 * css's make use of percpu refcnts whose killing latency shouldn't be
4431 * exposed to userland and are RCU protected. Also, cgroup core needs to
4432 * guarantee that css_tryget() won't succeed by the time ->css_offline() is
4433 * invoked. To satisfy all the requirements, destruction is implemented in
4434 * the following two steps.
4435 *
4436 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
4437 * userland visible parts and start killing the percpu refcnts of
4438 * css's. Set up so that the next stage will be kicked off once all
4439 * the percpu refcnts are confirmed to be killed.
4440 *
4441 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
4442 * rest of destruction. Once all cgroup references are gone, the
4443 * cgroup is RCU-freed.
4444 *
4445 * This function implements s1. After this step, @cgrp is gone as far as
4446 * the userland is concerned and a new cgroup with the same name may be
4447 * created. As cgroup doesn't care about the names internally, this
4448 * doesn't cause any problem.
4449 */
4450 static int cgroup_destroy_locked(struct cgroup *cgrp)
4451 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
4452 {
4453 struct dentry *d = cgrp->dentry;
4454 struct cgroup_event *event, *tmp;
4455 struct cgroup_subsys *ss;
4456 bool empty;
4457
4458 lockdep_assert_held(&d->d_inode->i_mutex);
4459 lockdep_assert_held(&cgroup_mutex);
4460
4461 /*
4462 * css_set_lock synchronizes access to ->cset_links and prevents
4463 * @cgrp from being removed while __put_css_set() is in progress.
4464 */
4465 read_lock(&css_set_lock);
4466 empty = list_empty(&cgrp->cset_links) && list_empty(&cgrp->children);
4467 read_unlock(&css_set_lock);
4468 if (!empty)
4469 return -EBUSY;
4470
4471 /*
4472 * Block new css_tryget() by killing css refcnts. cgroup core
4473 * guarantees that, by the time ->css_offline() is invoked, no new
4474 * css reference will be given out via css_tryget(). We can't
4475 * simply call percpu_ref_kill() and proceed to offlining css's
4476 * because percpu_ref_kill() doesn't guarantee that the ref is seen
4477 * as killed on all CPUs on return.
4478 *
4479 * Use percpu_ref_kill_and_confirm() to get notifications as each
4480 * css is confirmed to be seen as killed on all CPUs. The
4481 * notification callback keeps track of the number of css's to be
4482 * killed and schedules cgroup_offline_fn() to perform the rest of
4483 * destruction once the percpu refs of all css's are confirmed to
4484 * be killed.
4485 */
4486 atomic_set(&cgrp->css_kill_cnt, 1);
4487 for_each_root_subsys(cgrp->root, ss) {
4488 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
4489
4490 /*
4491 * Killing would put the base ref, but we need to keep it
4492 * alive until after ->css_offline.
4493 */
4494 percpu_ref_get(&css->refcnt);
4495
4496 atomic_inc(&cgrp->css_kill_cnt);
4497 percpu_ref_kill_and_confirm(&css->refcnt, css_ref_killed_fn);
4498 }
4499 cgroup_css_killed(cgrp);
4500
4501 /*
4502 * Mark @cgrp dead. This prevents further task migration and child
4503 * creation by disabling cgroup_lock_live_group(). Note that
4504 * CGRP_DEAD assertion is depended upon by cgroup_next_sibling() to
4505 * resume iteration after dropping RCU read lock. See
4506 * cgroup_next_sibling() for details.
4507 */
4508 set_bit(CGRP_DEAD, &cgrp->flags);
4509
4510 /* CGRP_DEAD is set, remove from ->release_list for the last time */
4511 raw_spin_lock(&release_list_lock);
4512 if (!list_empty(&cgrp->release_list))
4513 list_del_init(&cgrp->release_list);
4514 raw_spin_unlock(&release_list_lock);
4515
4516 /*
4517 * Clear and remove @cgrp directory. The removal puts the base ref
4518 * but we aren't quite done with @cgrp yet, so hold onto it.
4519 */
4520 cgroup_clear_dir(cgrp, cgrp->root->subsys_mask);
4521 cgroup_addrm_files(cgrp, NULL, cgroup_base_files, false);
4522 dget(d);
4523 cgroup_d_remove_dir(d);
4524
4525 /*
4526 * Unregister events and notify userspace.
4527 * Notify userspace about cgroup removing only after rmdir of cgroup
4528 * directory to avoid race between userspace and kernelspace.
4529 */
4530 spin_lock(&cgrp->event_list_lock);
4531 list_for_each_entry_safe(event, tmp, &cgrp->event_list, list) {
4532 list_del_init(&event->list);
4533 schedule_work(&event->remove);
4534 }
4535 spin_unlock(&cgrp->event_list_lock);
4536
4537 return 0;
4538 };
4539
4540 /**
4541 * cgroup_offline_fn - the second step of cgroup destruction
4542 * @work: cgroup->destroy_free_work
4543 *
4544 * This function is invoked from a work item for a cgroup which is being
4545 * destroyed after the percpu refcnts of all css's are guaranteed to be
4546 * seen as killed on all CPUs, and performs the rest of destruction. This
4547 * is the second step of destruction described in the comment above
4548 * cgroup_destroy_locked().
4549 */
4550 static void cgroup_offline_fn(struct work_struct *work)
4551 {
4552 struct cgroup *cgrp = container_of(work, struct cgroup, destroy_work);
4553 struct cgroup *parent = cgrp->parent;
4554 struct dentry *d = cgrp->dentry;
4555 struct cgroup_subsys *ss;
4556
4557 mutex_lock(&cgroup_mutex);
4558
4559 /*
4560 * css_tryget() is guaranteed to fail now. Tell subsystems to
4561 * initate destruction.
4562 */
4563 for_each_root_subsys(cgrp->root, ss)
4564 offline_css(ss, cgrp);
4565
4566 /*
4567 * Put the css refs from cgroup_destroy_locked(). Each css holds
4568 * an extra reference to the cgroup's dentry and cgroup removal
4569 * proceeds regardless of css refs. On the last put of each css,
4570 * whenever that may be, the extra dentry ref is put so that dentry
4571 * destruction happens only after all css's are released.
4572 */
4573 for_each_root_subsys(cgrp->root, ss)
4574 css_put(cgrp->subsys[ss->subsys_id]);
4575
4576 /* delete this cgroup from parent->children */
4577 list_del_rcu(&cgrp->sibling);
4578
4579 /*
4580 * We should remove the cgroup object from idr before its grace
4581 * period starts, so we won't be looking up a cgroup while the
4582 * cgroup is being freed.
4583 */
4584 idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4585 cgrp->id = -1;
4586
4587 dput(d);
4588
4589 set_bit(CGRP_RELEASABLE, &parent->flags);
4590 check_for_release(parent);
4591
4592 mutex_unlock(&cgroup_mutex);
4593 }
4594
4595 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
4596 {
4597 int ret;
4598
4599 mutex_lock(&cgroup_mutex);
4600 ret = cgroup_destroy_locked(dentry->d_fsdata);
4601 mutex_unlock(&cgroup_mutex);
4602
4603 return ret;
4604 }
4605
4606 static void __init_or_module cgroup_init_cftsets(struct cgroup_subsys *ss)
4607 {
4608 INIT_LIST_HEAD(&ss->cftsets);
4609
4610 /*
4611 * base_cftset is embedded in subsys itself, no need to worry about
4612 * deregistration.
4613 */
4614 if (ss->base_cftypes) {
4615 ss->base_cftset.cfts = ss->base_cftypes;
4616 list_add_tail(&ss->base_cftset.node, &ss->cftsets);
4617 }
4618 }
4619
4620 static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
4621 {
4622 struct cgroup_subsys_state *css;
4623
4624 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
4625
4626 mutex_lock(&cgroup_mutex);
4627
4628 /* init base cftset */
4629 cgroup_init_cftsets(ss);
4630
4631 /* Create the top cgroup state for this subsystem */
4632 list_add(&ss->sibling, &cgroup_dummy_root.subsys_list);
4633 ss->root = &cgroup_dummy_root;
4634 css = ss->css_alloc(cgroup_dummy_top);
4635 /* We don't handle early failures gracefully */
4636 BUG_ON(IS_ERR(css));
4637 init_cgroup_css(css, ss, cgroup_dummy_top);
4638
4639 /* Update the init_css_set to contain a subsys
4640 * pointer to this state - since the subsystem is
4641 * newly registered, all tasks and hence the
4642 * init_css_set is in the subsystem's top cgroup. */
4643 init_css_set.subsys[ss->subsys_id] = css;
4644
4645 need_forkexit_callback |= ss->fork || ss->exit;
4646
4647 /* At system boot, before all subsystems have been
4648 * registered, no tasks have been forked, so we don't
4649 * need to invoke fork callbacks here. */
4650 BUG_ON(!list_empty(&init_task.tasks));
4651
4652 BUG_ON(online_css(ss, cgroup_dummy_top));
4653
4654 mutex_unlock(&cgroup_mutex);
4655
4656 /* this function shouldn't be used with modular subsystems, since they
4657 * need to register a subsys_id, among other things */
4658 BUG_ON(ss->module);
4659 }
4660
4661 /**
4662 * cgroup_load_subsys: load and register a modular subsystem at runtime
4663 * @ss: the subsystem to load
4664 *
4665 * This function should be called in a modular subsystem's initcall. If the
4666 * subsystem is built as a module, it will be assigned a new subsys_id and set
4667 * up for use. If the subsystem is built-in anyway, work is delegated to the
4668 * simpler cgroup_init_subsys.
4669 */
4670 int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss)
4671 {
4672 struct cgroup_subsys_state *css;
4673 int i, ret;
4674 struct hlist_node *tmp;
4675 struct css_set *cset;
4676 unsigned long key;
4677
4678 /* check name and function validity */
4679 if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN ||
4680 ss->css_alloc == NULL || ss->css_free == NULL)
4681 return -EINVAL;
4682
4683 /*
4684 * we don't support callbacks in modular subsystems. this check is
4685 * before the ss->module check for consistency; a subsystem that could
4686 * be a module should still have no callbacks even if the user isn't
4687 * compiling it as one.
4688 */
4689 if (ss->fork || ss->exit)
4690 return -EINVAL;
4691
4692 /*
4693 * an optionally modular subsystem is built-in: we want to do nothing,
4694 * since cgroup_init_subsys will have already taken care of it.
4695 */
4696 if (ss->module == NULL) {
4697 /* a sanity check */
4698 BUG_ON(cgroup_subsys[ss->subsys_id] != ss);
4699 return 0;
4700 }
4701
4702 /* init base cftset */
4703 cgroup_init_cftsets(ss);
4704
4705 mutex_lock(&cgroup_mutex);
4706 cgroup_subsys[ss->subsys_id] = ss;
4707
4708 /*
4709 * no ss->css_alloc seems to need anything important in the ss
4710 * struct, so this can happen first (i.e. before the dummy root
4711 * attachment).
4712 */
4713 css = ss->css_alloc(cgroup_dummy_top);
4714 if (IS_ERR(css)) {
4715 /* failure case - need to deassign the cgroup_subsys[] slot. */
4716 cgroup_subsys[ss->subsys_id] = NULL;
4717 mutex_unlock(&cgroup_mutex);
4718 return PTR_ERR(css);
4719 }
4720
4721 list_add(&ss->sibling, &cgroup_dummy_root.subsys_list);
4722 ss->root = &cgroup_dummy_root;
4723
4724 /* our new subsystem will be attached to the dummy hierarchy. */
4725 init_cgroup_css(css, ss, cgroup_dummy_top);
4726 /* init_idr must be after init_cgroup_css because it sets css->id. */
4727 if (ss->use_id) {
4728 ret = cgroup_init_idr(ss, css);
4729 if (ret)
4730 goto err_unload;
4731 }
4732
4733 /*
4734 * Now we need to entangle the css into the existing css_sets. unlike
4735 * in cgroup_init_subsys, there are now multiple css_sets, so each one
4736 * will need a new pointer to it; done by iterating the css_set_table.
4737 * furthermore, modifying the existing css_sets will corrupt the hash
4738 * table state, so each changed css_set will need its hash recomputed.
4739 * this is all done under the css_set_lock.
4740 */
4741 write_lock(&css_set_lock);
4742 hash_for_each_safe(css_set_table, i, tmp, cset, hlist) {
4743 /* skip entries that we already rehashed */
4744 if (cset->subsys[ss->subsys_id])
4745 continue;
4746 /* remove existing entry */
4747 hash_del(&cset->hlist);
4748 /* set new value */
4749 cset->subsys[ss->subsys_id] = css;
4750 /* recompute hash and restore entry */
4751 key = css_set_hash(cset->subsys);
4752 hash_add(css_set_table, &cset->hlist, key);
4753 }
4754 write_unlock(&css_set_lock);
4755
4756 ret = online_css(ss, cgroup_dummy_top);
4757 if (ret)
4758 goto err_unload;
4759
4760 /* success! */
4761 mutex_unlock(&cgroup_mutex);
4762 return 0;
4763
4764 err_unload:
4765 mutex_unlock(&cgroup_mutex);
4766 /* @ss can't be mounted here as try_module_get() would fail */
4767 cgroup_unload_subsys(ss);
4768 return ret;
4769 }
4770 EXPORT_SYMBOL_GPL(cgroup_load_subsys);
4771
4772 /**
4773 * cgroup_unload_subsys: unload a modular subsystem
4774 * @ss: the subsystem to unload
4775 *
4776 * This function should be called in a modular subsystem's exitcall. When this
4777 * function is invoked, the refcount on the subsystem's module will be 0, so
4778 * the subsystem will not be attached to any hierarchy.
4779 */
4780 void cgroup_unload_subsys(struct cgroup_subsys *ss)
4781 {
4782 struct cgrp_cset_link *link;
4783
4784 BUG_ON(ss->module == NULL);
4785
4786 /*
4787 * we shouldn't be called if the subsystem is in use, and the use of
4788 * try_module_get() in rebind_subsystems() should ensure that it
4789 * doesn't start being used while we're killing it off.
4790 */
4791 BUG_ON(ss->root != &cgroup_dummy_root);
4792
4793 mutex_lock(&cgroup_mutex);
4794
4795 offline_css(ss, cgroup_dummy_top);
4796
4797 if (ss->use_id)
4798 idr_destroy(&ss->idr);
4799
4800 /* deassign the subsys_id */
4801 cgroup_subsys[ss->subsys_id] = NULL;
4802
4803 /* remove subsystem from the dummy root's list of subsystems */
4804 list_del_init(&ss->sibling);
4805
4806 /*
4807 * disentangle the css from all css_sets attached to the dummy
4808 * top. as in loading, we need to pay our respects to the hashtable
4809 * gods.
4810 */
4811 write_lock(&css_set_lock);
4812 list_for_each_entry(link, &cgroup_dummy_top->cset_links, cset_link) {
4813 struct css_set *cset = link->cset;
4814 unsigned long key;
4815
4816 hash_del(&cset->hlist);
4817 cset->subsys[ss->subsys_id] = NULL;
4818 key = css_set_hash(cset->subsys);
4819 hash_add(css_set_table, &cset->hlist, key);
4820 }
4821 write_unlock(&css_set_lock);
4822
4823 /*
4824 * remove subsystem's css from the cgroup_dummy_top and free it -
4825 * need to free before marking as null because ss->css_free needs
4826 * the cgrp->subsys pointer to find their state. note that this
4827 * also takes care of freeing the css_id.
4828 */
4829 ss->css_free(cgroup_dummy_top);
4830 cgroup_dummy_top->subsys[ss->subsys_id] = NULL;
4831
4832 mutex_unlock(&cgroup_mutex);
4833 }
4834 EXPORT_SYMBOL_GPL(cgroup_unload_subsys);
4835
4836 /**
4837 * cgroup_init_early - cgroup initialization at system boot
4838 *
4839 * Initialize cgroups at system boot, and initialize any
4840 * subsystems that request early init.
4841 */
4842 int __init cgroup_init_early(void)
4843 {
4844 struct cgroup_subsys *ss;
4845 int i;
4846
4847 atomic_set(&init_css_set.refcount, 1);
4848 INIT_LIST_HEAD(&init_css_set.cgrp_links);
4849 INIT_LIST_HEAD(&init_css_set.tasks);
4850 INIT_HLIST_NODE(&init_css_set.hlist);
4851 css_set_count = 1;
4852 init_cgroup_root(&cgroup_dummy_root);
4853 cgroup_root_count = 1;
4854 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
4855
4856 init_cgrp_cset_link.cset = &init_css_set;
4857 init_cgrp_cset_link.cgrp = cgroup_dummy_top;
4858 list_add(&init_cgrp_cset_link.cset_link, &cgroup_dummy_top->cset_links);
4859 list_add(&init_cgrp_cset_link.cgrp_link, &init_css_set.cgrp_links);
4860
4861 /* at bootup time, we don't worry about modular subsystems */
4862 for_each_builtin_subsys(ss, i) {
4863 BUG_ON(!ss->name);
4864 BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
4865 BUG_ON(!ss->css_alloc);
4866 BUG_ON(!ss->css_free);
4867 if (ss->subsys_id != i) {
4868 printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
4869 ss->name, ss->subsys_id);
4870 BUG();
4871 }
4872
4873 if (ss->early_init)
4874 cgroup_init_subsys(ss);
4875 }
4876 return 0;
4877 }
4878
4879 /**
4880 * cgroup_init - cgroup initialization
4881 *
4882 * Register cgroup filesystem and /proc file, and initialize
4883 * any subsystems that didn't request early init.
4884 */
4885 int __init cgroup_init(void)
4886 {
4887 struct cgroup_subsys *ss;
4888 unsigned long key;
4889 int i, err;
4890
4891 err = bdi_init(&cgroup_backing_dev_info);
4892 if (err)
4893 return err;
4894
4895 for_each_builtin_subsys(ss, i) {
4896 if (!ss->early_init)
4897 cgroup_init_subsys(ss);
4898 if (ss->use_id)
4899 cgroup_init_idr(ss, init_css_set.subsys[ss->subsys_id]);
4900 }
4901
4902 /* allocate id for the dummy hierarchy */
4903 mutex_lock(&cgroup_mutex);
4904 mutex_lock(&cgroup_root_mutex);
4905
4906 /* Add init_css_set to the hash table */
4907 key = css_set_hash(init_css_set.subsys);
4908 hash_add(css_set_table, &init_css_set.hlist, key);
4909
4910 BUG_ON(cgroup_init_root_id(&cgroup_dummy_root, 0, 1));
4911
4912 err = idr_alloc(&cgroup_dummy_root.cgroup_idr, cgroup_dummy_top,
4913 0, 1, GFP_KERNEL);
4914 BUG_ON(err < 0);
4915
4916 mutex_unlock(&cgroup_root_mutex);
4917 mutex_unlock(&cgroup_mutex);
4918
4919 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
4920 if (!cgroup_kobj) {
4921 err = -ENOMEM;
4922 goto out;
4923 }
4924
4925 err = register_filesystem(&cgroup_fs_type);
4926 if (err < 0) {
4927 kobject_put(cgroup_kobj);
4928 goto out;
4929 }
4930
4931 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
4932
4933 out:
4934 if (err)
4935 bdi_destroy(&cgroup_backing_dev_info);
4936
4937 return err;
4938 }
4939
4940 /*
4941 * proc_cgroup_show()
4942 * - Print task's cgroup paths into seq_file, one line for each hierarchy
4943 * - Used for /proc/<pid>/cgroup.
4944 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
4945 * doesn't really matter if tsk->cgroup changes after we read it,
4946 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
4947 * anyway. No need to check that tsk->cgroup != NULL, thanks to
4948 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
4949 * cgroup to top_cgroup.
4950 */
4951
4952 /* TODO: Use a proper seq_file iterator */
4953 int proc_cgroup_show(struct seq_file *m, void *v)
4954 {
4955 struct pid *pid;
4956 struct task_struct *tsk;
4957 char *buf;
4958 int retval;
4959 struct cgroupfs_root *root;
4960
4961 retval = -ENOMEM;
4962 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4963 if (!buf)
4964 goto out;
4965
4966 retval = -ESRCH;
4967 pid = m->private;
4968 tsk = get_pid_task(pid, PIDTYPE_PID);
4969 if (!tsk)
4970 goto out_free;
4971
4972 retval = 0;
4973
4974 mutex_lock(&cgroup_mutex);
4975
4976 for_each_active_root(root) {
4977 struct cgroup_subsys *ss;
4978 struct cgroup *cgrp;
4979 int count = 0;
4980
4981 seq_printf(m, "%d:", root->hierarchy_id);
4982 for_each_root_subsys(root, ss)
4983 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
4984 if (strlen(root->name))
4985 seq_printf(m, "%sname=%s", count ? "," : "",
4986 root->name);
4987 seq_putc(m, ':');
4988 cgrp = task_cgroup_from_root(tsk, root);
4989 retval = cgroup_path(cgrp, buf, PAGE_SIZE);
4990 if (retval < 0)
4991 goto out_unlock;
4992 seq_puts(m, buf);
4993 seq_putc(m, '\n');
4994 }
4995
4996 out_unlock:
4997 mutex_unlock(&cgroup_mutex);
4998 put_task_struct(tsk);
4999 out_free:
5000 kfree(buf);
5001 out:
5002 return retval;
5003 }
5004
5005 /* Display information about each subsystem and each hierarchy */
5006 static int proc_cgroupstats_show(struct seq_file *m, void *v)
5007 {
5008 struct cgroup_subsys *ss;
5009 int i;
5010
5011 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
5012 /*
5013 * ideally we don't want subsystems moving around while we do this.
5014 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
5015 * subsys/hierarchy state.
5016 */
5017 mutex_lock(&cgroup_mutex);
5018
5019 for_each_subsys(ss, i)
5020 seq_printf(m, "%s\t%d\t%d\t%d\n",
5021 ss->name, ss->root->hierarchy_id,
5022 ss->root->number_of_cgroups, !ss->disabled);
5023
5024 mutex_unlock(&cgroup_mutex);
5025 return 0;
5026 }
5027
5028 static int cgroupstats_open(struct inode *inode, struct file *file)
5029 {
5030 return single_open(file, proc_cgroupstats_show, NULL);
5031 }
5032
5033 static const struct file_operations proc_cgroupstats_operations = {
5034 .open = cgroupstats_open,
5035 .read = seq_read,
5036 .llseek = seq_lseek,
5037 .release = single_release,
5038 };
5039
5040 /**
5041 * cgroup_fork - attach newly forked task to its parents cgroup.
5042 * @child: pointer to task_struct of forking parent process.
5043 *
5044 * Description: A task inherits its parent's cgroup at fork().
5045 *
5046 * A pointer to the shared css_set was automatically copied in
5047 * fork.c by dup_task_struct(). However, we ignore that copy, since
5048 * it was not made under the protection of RCU or cgroup_mutex, so
5049 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
5050 * have already changed current->cgroups, allowing the previously
5051 * referenced cgroup group to be removed and freed.
5052 *
5053 * At the point that cgroup_fork() is called, 'current' is the parent
5054 * task, and the passed argument 'child' points to the child task.
5055 */
5056 void cgroup_fork(struct task_struct *child)
5057 {
5058 task_lock(current);
5059 get_css_set(task_css_set(current));
5060 child->cgroups = current->cgroups;
5061 task_unlock(current);
5062 INIT_LIST_HEAD(&child->cg_list);
5063 }
5064
5065 /**
5066 * cgroup_post_fork - called on a new task after adding it to the task list
5067 * @child: the task in question
5068 *
5069 * Adds the task to the list running through its css_set if necessary and
5070 * call the subsystem fork() callbacks. Has to be after the task is
5071 * visible on the task list in case we race with the first call to
5072 * cgroup_iter_start() - to guarantee that the new task ends up on its
5073 * list.
5074 */
5075 void cgroup_post_fork(struct task_struct *child)
5076 {
5077 struct cgroup_subsys *ss;
5078 int i;
5079
5080 /*
5081 * use_task_css_set_links is set to 1 before we walk the tasklist
5082 * under the tasklist_lock and we read it here after we added the child
5083 * to the tasklist under the tasklist_lock as well. If the child wasn't
5084 * yet in the tasklist when we walked through it from
5085 * cgroup_enable_task_cg_lists(), then use_task_css_set_links value
5086 * should be visible now due to the paired locking and barriers implied
5087 * by LOCK/UNLOCK: it is written before the tasklist_lock unlock
5088 * in cgroup_enable_task_cg_lists() and read here after the tasklist_lock
5089 * lock on fork.
5090 */
5091 if (use_task_css_set_links) {
5092 write_lock(&css_set_lock);
5093 task_lock(child);
5094 if (list_empty(&child->cg_list))
5095 list_add(&child->cg_list, &task_css_set(child)->tasks);
5096 task_unlock(child);
5097 write_unlock(&css_set_lock);
5098 }
5099
5100 /*
5101 * Call ss->fork(). This must happen after @child is linked on
5102 * css_set; otherwise, @child might change state between ->fork()
5103 * and addition to css_set.
5104 */
5105 if (need_forkexit_callback) {
5106 /*
5107 * fork/exit callbacks are supported only for builtin
5108 * subsystems, and the builtin section of the subsys
5109 * array is immutable, so we don't need to lock the
5110 * subsys array here. On the other hand, modular section
5111 * of the array can be freed at module unload, so we
5112 * can't touch that.
5113 */
5114 for_each_builtin_subsys(ss, i)
5115 if (ss->fork)
5116 ss->fork(child);
5117 }
5118 }
5119
5120 /**
5121 * cgroup_exit - detach cgroup from exiting task
5122 * @tsk: pointer to task_struct of exiting process
5123 * @run_callback: run exit callbacks?
5124 *
5125 * Description: Detach cgroup from @tsk and release it.
5126 *
5127 * Note that cgroups marked notify_on_release force every task in
5128 * them to take the global cgroup_mutex mutex when exiting.
5129 * This could impact scaling on very large systems. Be reluctant to
5130 * use notify_on_release cgroups where very high task exit scaling
5131 * is required on large systems.
5132 *
5133 * the_top_cgroup_hack:
5134 *
5135 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
5136 *
5137 * We call cgroup_exit() while the task is still competent to
5138 * handle notify_on_release(), then leave the task attached to the
5139 * root cgroup in each hierarchy for the remainder of its exit.
5140 *
5141 * To do this properly, we would increment the reference count on
5142 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
5143 * code we would add a second cgroup function call, to drop that
5144 * reference. This would just create an unnecessary hot spot on
5145 * the top_cgroup reference count, to no avail.
5146 *
5147 * Normally, holding a reference to a cgroup without bumping its
5148 * count is unsafe. The cgroup could go away, or someone could
5149 * attach us to a different cgroup, decrementing the count on
5150 * the first cgroup that we never incremented. But in this case,
5151 * top_cgroup isn't going away, and either task has PF_EXITING set,
5152 * which wards off any cgroup_attach_task() attempts, or task is a failed
5153 * fork, never visible to cgroup_attach_task.
5154 */
5155 void cgroup_exit(struct task_struct *tsk, int run_callbacks)
5156 {
5157 struct cgroup_subsys *ss;
5158 struct css_set *cset;
5159 int i;
5160
5161 /*
5162 * Unlink from the css_set task list if necessary.
5163 * Optimistically check cg_list before taking
5164 * css_set_lock
5165 */
5166 if (!list_empty(&tsk->cg_list)) {
5167 write_lock(&css_set_lock);
5168 if (!list_empty(&tsk->cg_list))
5169 list_del_init(&tsk->cg_list);
5170 write_unlock(&css_set_lock);
5171 }
5172
5173 /* Reassign the task to the init_css_set. */
5174 task_lock(tsk);
5175 cset = task_css_set(tsk);
5176 RCU_INIT_POINTER(tsk->cgroups, &init_css_set);
5177
5178 if (run_callbacks && need_forkexit_callback) {
5179 /*
5180 * fork/exit callbacks are supported only for builtin
5181 * subsystems, see cgroup_post_fork() for details.
5182 */
5183 for_each_builtin_subsys(ss, i) {
5184 if (ss->exit) {
5185 struct cgroup *old_cgrp = cset->subsys[i]->cgroup;
5186 struct cgroup *cgrp = task_cgroup(tsk, i);
5187
5188 ss->exit(cgrp, old_cgrp, tsk);
5189 }
5190 }
5191 }
5192 task_unlock(tsk);
5193
5194 put_css_set_taskexit(cset);
5195 }
5196
5197 static void check_for_release(struct cgroup *cgrp)
5198 {
5199 if (cgroup_is_releasable(cgrp) &&
5200 list_empty(&cgrp->cset_links) && list_empty(&cgrp->children)) {
5201 /*
5202 * Control Group is currently removeable. If it's not
5203 * already queued for a userspace notification, queue
5204 * it now
5205 */
5206 int need_schedule_work = 0;
5207
5208 raw_spin_lock(&release_list_lock);
5209 if (!cgroup_is_dead(cgrp) &&
5210 list_empty(&cgrp->release_list)) {
5211 list_add(&cgrp->release_list, &release_list);
5212 need_schedule_work = 1;
5213 }
5214 raw_spin_unlock(&release_list_lock);
5215 if (need_schedule_work)
5216 schedule_work(&release_agent_work);
5217 }
5218 }
5219
5220 /*
5221 * Notify userspace when a cgroup is released, by running the
5222 * configured release agent with the name of the cgroup (path
5223 * relative to the root of cgroup file system) as the argument.
5224 *
5225 * Most likely, this user command will try to rmdir this cgroup.
5226 *
5227 * This races with the possibility that some other task will be
5228 * attached to this cgroup before it is removed, or that some other
5229 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5230 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5231 * unused, and this cgroup will be reprieved from its death sentence,
5232 * to continue to serve a useful existence. Next time it's released,
5233 * we will get notified again, if it still has 'notify_on_release' set.
5234 *
5235 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5236 * means only wait until the task is successfully execve()'d. The
5237 * separate release agent task is forked by call_usermodehelper(),
5238 * then control in this thread returns here, without waiting for the
5239 * release agent task. We don't bother to wait because the caller of
5240 * this routine has no use for the exit status of the release agent
5241 * task, so no sense holding our caller up for that.
5242 */
5243 static void cgroup_release_agent(struct work_struct *work)
5244 {
5245 BUG_ON(work != &release_agent_work);
5246 mutex_lock(&cgroup_mutex);
5247 raw_spin_lock(&release_list_lock);
5248 while (!list_empty(&release_list)) {
5249 char *argv[3], *envp[3];
5250 int i;
5251 char *pathbuf = NULL, *agentbuf = NULL;
5252 struct cgroup *cgrp = list_entry(release_list.next,
5253 struct cgroup,
5254 release_list);
5255 list_del_init(&cgrp->release_list);
5256 raw_spin_unlock(&release_list_lock);
5257 pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
5258 if (!pathbuf)
5259 goto continue_free;
5260 if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
5261 goto continue_free;
5262 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5263 if (!agentbuf)
5264 goto continue_free;
5265
5266 i = 0;
5267 argv[i++] = agentbuf;
5268 argv[i++] = pathbuf;
5269 argv[i] = NULL;
5270
5271 i = 0;
5272 /* minimal command environment */
5273 envp[i++] = "HOME=/";
5274 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5275 envp[i] = NULL;
5276
5277 /* Drop the lock while we invoke the usermode helper,
5278 * since the exec could involve hitting disk and hence
5279 * be a slow process */
5280 mutex_unlock(&cgroup_mutex);
5281 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
5282 mutex_lock(&cgroup_mutex);
5283 continue_free:
5284 kfree(pathbuf);
5285 kfree(agentbuf);
5286 raw_spin_lock(&release_list_lock);
5287 }
5288 raw_spin_unlock(&release_list_lock);
5289 mutex_unlock(&cgroup_mutex);
5290 }
5291
5292 static int __init cgroup_disable(char *str)
5293 {
5294 struct cgroup_subsys *ss;
5295 char *token;
5296 int i;
5297
5298 while ((token = strsep(&str, ",")) != NULL) {
5299 if (!*token)
5300 continue;
5301
5302 /*
5303 * cgroup_disable, being at boot time, can't know about
5304 * module subsystems, so we don't worry about them.
5305 */
5306 for_each_builtin_subsys(ss, i) {
5307 if (!strcmp(token, ss->name)) {
5308 ss->disabled = 1;
5309 printk(KERN_INFO "Disabling %s control group"
5310 " subsystem\n", ss->name);
5311 break;
5312 }
5313 }
5314 }
5315 return 1;
5316 }
5317 __setup("cgroup_disable=", cgroup_disable);
5318
5319 /*
5320 * Functons for CSS ID.
5321 */
5322
5323 /* to get ID other than 0, this should be called when !cgroup_is_dead() */
5324 unsigned short css_id(struct cgroup_subsys_state *css)
5325 {
5326 struct css_id *cssid;
5327
5328 /*
5329 * This css_id() can return correct value when somone has refcnt
5330 * on this or this is under rcu_read_lock(). Once css->id is allocated,
5331 * it's unchanged until freed.
5332 */
5333 cssid = rcu_dereference_raw(css->id);
5334
5335 if (cssid)
5336 return cssid->id;
5337 return 0;
5338 }
5339 EXPORT_SYMBOL_GPL(css_id);
5340
5341 /**
5342 * css_is_ancestor - test "root" css is an ancestor of "child"
5343 * @child: the css to be tested.
5344 * @root: the css supporsed to be an ancestor of the child.
5345 *
5346 * Returns true if "root" is an ancestor of "child" in its hierarchy. Because
5347 * this function reads css->id, the caller must hold rcu_read_lock().
5348 * But, considering usual usage, the csses should be valid objects after test.
5349 * Assuming that the caller will do some action to the child if this returns
5350 * returns true, the caller must take "child";s reference count.
5351 * If "child" is valid object and this returns true, "root" is valid, too.
5352 */
5353
5354 bool css_is_ancestor(struct cgroup_subsys_state *child,
5355 const struct cgroup_subsys_state *root)
5356 {
5357 struct css_id *child_id;
5358 struct css_id *root_id;
5359
5360 child_id = rcu_dereference(child->id);
5361 if (!child_id)
5362 return false;
5363 root_id = rcu_dereference(root->id);
5364 if (!root_id)
5365 return false;
5366 if (child_id->depth < root_id->depth)
5367 return false;
5368 if (child_id->stack[root_id->depth] != root_id->id)
5369 return false;
5370 return true;
5371 }
5372
5373 void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
5374 {
5375 struct css_id *id = rcu_dereference_protected(css->id, true);
5376
5377 /* When this is called before css_id initialization, id can be NULL */
5378 if (!id)
5379 return;
5380
5381 BUG_ON(!ss->use_id);
5382
5383 rcu_assign_pointer(id->css, NULL);
5384 rcu_assign_pointer(css->id, NULL);
5385 spin_lock(&ss->id_lock);
5386 idr_remove(&ss->idr, id->id);
5387 spin_unlock(&ss->id_lock);
5388 kfree_rcu(id, rcu_head);
5389 }
5390 EXPORT_SYMBOL_GPL(free_css_id);
5391
5392 /*
5393 * This is called by init or create(). Then, calls to this function are
5394 * always serialized (By cgroup_mutex() at create()).
5395 */
5396
5397 static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
5398 {
5399 struct css_id *newid;
5400 int ret, size;
5401
5402 BUG_ON(!ss->use_id);
5403
5404 size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
5405 newid = kzalloc(size, GFP_KERNEL);
5406 if (!newid)
5407 return ERR_PTR(-ENOMEM);
5408
5409 idr_preload(GFP_KERNEL);
5410 spin_lock(&ss->id_lock);
5411 /* Don't use 0. allocates an ID of 1-65535 */
5412 ret = idr_alloc(&ss->idr, newid, 1, CSS_ID_MAX + 1, GFP_NOWAIT);
5413 spin_unlock(&ss->id_lock);
5414 idr_preload_end();
5415
5416 /* Returns error when there are no free spaces for new ID.*/
5417 if (ret < 0)
5418 goto err_out;
5419
5420 newid->id = ret;
5421 newid->depth = depth;
5422 return newid;
5423 err_out:
5424 kfree(newid);
5425 return ERR_PTR(ret);
5426
5427 }
5428
5429 static int __init_or_module cgroup_init_idr(struct cgroup_subsys *ss,
5430 struct cgroup_subsys_state *rootcss)
5431 {
5432 struct css_id *newid;
5433
5434 spin_lock_init(&ss->id_lock);
5435 idr_init(&ss->idr);
5436
5437 newid = get_new_cssid(ss, 0);
5438 if (IS_ERR(newid))
5439 return PTR_ERR(newid);
5440
5441 newid->stack[0] = newid->id;
5442 RCU_INIT_POINTER(newid->css, rootcss);
5443 RCU_INIT_POINTER(rootcss->id, newid);
5444 return 0;
5445 }
5446
5447 static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
5448 struct cgroup *child)
5449 {
5450 int subsys_id, i, depth = 0;
5451 struct cgroup_subsys_state *parent_css, *child_css;
5452 struct css_id *child_id, *parent_id;
5453
5454 subsys_id = ss->subsys_id;
5455 parent_css = parent->subsys[subsys_id];
5456 child_css = child->subsys[subsys_id];
5457 parent_id = rcu_dereference_protected(parent_css->id, true);
5458 depth = parent_id->depth + 1;
5459
5460 child_id = get_new_cssid(ss, depth);
5461 if (IS_ERR(child_id))
5462 return PTR_ERR(child_id);
5463
5464 for (i = 0; i < depth; i++)
5465 child_id->stack[i] = parent_id->stack[i];
5466 child_id->stack[depth] = child_id->id;
5467 /*
5468 * child_id->css pointer will be set after this cgroup is available
5469 * see cgroup_populate_dir()
5470 */
5471 rcu_assign_pointer(child_css->id, child_id);
5472
5473 return 0;
5474 }
5475
5476 /**
5477 * css_lookup - lookup css by id
5478 * @ss: cgroup subsys to be looked into.
5479 * @id: the id
5480 *
5481 * Returns pointer to cgroup_subsys_state if there is valid one with id.
5482 * NULL if not. Should be called under rcu_read_lock()
5483 */
5484 struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
5485 {
5486 struct css_id *cssid = NULL;
5487
5488 BUG_ON(!ss->use_id);
5489 cssid = idr_find(&ss->idr, id);
5490
5491 if (unlikely(!cssid))
5492 return NULL;
5493
5494 return rcu_dereference(cssid->css);
5495 }
5496 EXPORT_SYMBOL_GPL(css_lookup);
5497
5498 /*
5499 * get corresponding css from file open on cgroupfs directory
5500 */
5501 struct cgroup_subsys_state *cgroup_css_from_dir(struct file *f, int id)
5502 {
5503 struct cgroup *cgrp;
5504 struct inode *inode;
5505 struct cgroup_subsys_state *css;
5506
5507 inode = file_inode(f);
5508 /* check in cgroup filesystem dir */
5509 if (inode->i_op != &cgroup_dir_inode_operations)
5510 return ERR_PTR(-EBADF);
5511
5512 if (id < 0 || id >= CGROUP_SUBSYS_COUNT)
5513 return ERR_PTR(-EINVAL);
5514
5515 /* get cgroup */
5516 cgrp = __d_cgrp(f->f_dentry);
5517 css = cgrp->subsys[id];
5518 return css ? css : ERR_PTR(-ENOENT);
5519 }
5520
5521 #ifdef CONFIG_CGROUP_DEBUG
5522 static struct cgroup_subsys_state *debug_css_alloc(struct cgroup *cgrp)
5523 {
5524 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5525
5526 if (!css)
5527 return ERR_PTR(-ENOMEM);
5528
5529 return css;
5530 }
5531
5532 static void debug_css_free(struct cgroup *cgrp)
5533 {
5534 kfree(cgrp->subsys[debug_subsys_id]);
5535 }
5536
5537 static u64 debug_taskcount_read(struct cgroup *cgrp, struct cftype *cft)
5538 {
5539 return cgroup_task_count(cgrp);
5540 }
5541
5542 static u64 current_css_set_read(struct cgroup *cgrp, struct cftype *cft)
5543 {
5544 return (u64)(unsigned long)current->cgroups;
5545 }
5546
5547 static u64 current_css_set_refcount_read(struct cgroup *cgrp,
5548 struct cftype *cft)
5549 {
5550 u64 count;
5551
5552 rcu_read_lock();
5553 count = atomic_read(&task_css_set(current)->refcount);
5554 rcu_read_unlock();
5555 return count;
5556 }
5557
5558 static int current_css_set_cg_links_read(struct cgroup *cgrp,
5559 struct cftype *cft,
5560 struct seq_file *seq)
5561 {
5562 struct cgrp_cset_link *link;
5563 struct css_set *cset;
5564
5565 read_lock(&css_set_lock);
5566 rcu_read_lock();
5567 cset = rcu_dereference(current->cgroups);
5568 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
5569 struct cgroup *c = link->cgrp;
5570 const char *name;
5571
5572 if (c->dentry)
5573 name = c->dentry->d_name.name;
5574 else
5575 name = "?";
5576 seq_printf(seq, "Root %d group %s\n",
5577 c->root->hierarchy_id, name);
5578 }
5579 rcu_read_unlock();
5580 read_unlock(&css_set_lock);
5581 return 0;
5582 }
5583
5584 #define MAX_TASKS_SHOWN_PER_CSS 25
5585 static int cgroup_css_links_read(struct cgroup *cgrp,
5586 struct cftype *cft,
5587 struct seq_file *seq)
5588 {
5589 struct cgrp_cset_link *link;
5590
5591 read_lock(&css_set_lock);
5592 list_for_each_entry(link, &cgrp->cset_links, cset_link) {
5593 struct css_set *cset = link->cset;
5594 struct task_struct *task;
5595 int count = 0;
5596 seq_printf(seq, "css_set %p\n", cset);
5597 list_for_each_entry(task, &cset->tasks, cg_list) {
5598 if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
5599 seq_puts(seq, " ...\n");
5600 break;
5601 } else {
5602 seq_printf(seq, " task %d\n",
5603 task_pid_vnr(task));
5604 }
5605 }
5606 }
5607 read_unlock(&css_set_lock);
5608 return 0;
5609 }
5610
5611 static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft)
5612 {
5613 return test_bit(CGRP_RELEASABLE, &cgrp->flags);
5614 }
5615
5616 static struct cftype debug_files[] = {
5617 {
5618 .name = "taskcount",
5619 .read_u64 = debug_taskcount_read,
5620 },
5621
5622 {
5623 .name = "current_css_set",
5624 .read_u64 = current_css_set_read,
5625 },
5626
5627 {
5628 .name = "current_css_set_refcount",
5629 .read_u64 = current_css_set_refcount_read,
5630 },
5631
5632 {
5633 .name = "current_css_set_cg_links",
5634 .read_seq_string = current_css_set_cg_links_read,
5635 },
5636
5637 {
5638 .name = "cgroup_css_links",
5639 .read_seq_string = cgroup_css_links_read,
5640 },
5641
5642 {
5643 .name = "releasable",
5644 .read_u64 = releasable_read,
5645 },
5646
5647 { } /* terminate */
5648 };
5649
5650 struct cgroup_subsys debug_subsys = {
5651 .name = "debug",
5652 .css_alloc = debug_css_alloc,
5653 .css_free = debug_css_free,
5654 .subsys_id = debug_subsys_id,
5655 .base_cftypes = debug_files,
5656 };
5657 #endif /* CONFIG_CGROUP_DEBUG */
This page took 0.207144 seconds and 6 git commands to generate.