CGroup API files: add cgroup map data type
[deliverable/linux.git] / kernel / cgroup.c
1 /*
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
7 * Copyright notices from the original cpuset code:
8 * --------------------------------------------------
9 * Copyright (C) 2003 BULL SA.
10 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
11 *
12 * Portions derived from Patrick Mochel's sysfs code.
13 * sysfs is Copyright (c) 2001-3 Patrick Mochel
14 *
15 * 2003-10-10 Written by Simon Derr.
16 * 2003-10-22 Updates by Stephen Hemminger.
17 * 2004 May-July Rework by Paul Jackson.
18 * ---------------------------------------------------
19 *
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
23 */
24
25 #include <linux/cgroup.h>
26 #include <linux/errno.h>
27 #include <linux/fs.h>
28 #include <linux/kernel.h>
29 #include <linux/list.h>
30 #include <linux/mm.h>
31 #include <linux/mutex.h>
32 #include <linux/mount.h>
33 #include <linux/pagemap.h>
34 #include <linux/proc_fs.h>
35 #include <linux/rcupdate.h>
36 #include <linux/sched.h>
37 #include <linux/backing-dev.h>
38 #include <linux/seq_file.h>
39 #include <linux/slab.h>
40 #include <linux/magic.h>
41 #include <linux/spinlock.h>
42 #include <linux/string.h>
43 #include <linux/sort.h>
44 #include <linux/kmod.h>
45 #include <linux/delayacct.h>
46 #include <linux/cgroupstats.h>
47
48 #include <asm/atomic.h>
49
50 static DEFINE_MUTEX(cgroup_mutex);
51
52 /* Generate an array of cgroup subsystem pointers */
53 #define SUBSYS(_x) &_x ## _subsys,
54
55 static struct cgroup_subsys *subsys[] = {
56 #include <linux/cgroup_subsys.h>
57 };
58
59 /*
60 * A cgroupfs_root represents the root of a cgroup hierarchy,
61 * and may be associated with a superblock to form an active
62 * hierarchy
63 */
64 struct cgroupfs_root {
65 struct super_block *sb;
66
67 /*
68 * The bitmask of subsystems intended to be attached to this
69 * hierarchy
70 */
71 unsigned long subsys_bits;
72
73 /* The bitmask of subsystems currently attached to this hierarchy */
74 unsigned long actual_subsys_bits;
75
76 /* A list running through the attached subsystems */
77 struct list_head subsys_list;
78
79 /* The root cgroup for this hierarchy */
80 struct cgroup top_cgroup;
81
82 /* Tracks how many cgroups are currently defined in hierarchy.*/
83 int number_of_cgroups;
84
85 /* A list running through the mounted hierarchies */
86 struct list_head root_list;
87
88 /* Hierarchy-specific flags */
89 unsigned long flags;
90
91 /* The path to use for release notifications. No locking
92 * between setting and use - so if userspace updates this
93 * while child cgroups exist, you could miss a
94 * notification. We ensure that it's always a valid
95 * NUL-terminated string */
96 char release_agent_path[PATH_MAX];
97 };
98
99
100 /*
101 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
102 * subsystems that are otherwise unattached - it never has more than a
103 * single cgroup, and all tasks are part of that cgroup.
104 */
105 static struct cgroupfs_root rootnode;
106
107 /* The list of hierarchy roots */
108
109 static LIST_HEAD(roots);
110 static int root_count;
111
112 /* dummytop is a shorthand for the dummy hierarchy's top cgroup */
113 #define dummytop (&rootnode.top_cgroup)
114
115 /* This flag indicates whether tasks in the fork and exit paths should
116 * check for fork/exit handlers to call. This avoids us having to do
117 * extra work in the fork/exit path if none of the subsystems need to
118 * be called.
119 */
120 static int need_forkexit_callback;
121
122 /* bits in struct cgroup flags field */
123 enum {
124 /* Control Group is dead */
125 CGRP_REMOVED,
126 /* Control Group has previously had a child cgroup or a task,
127 * but no longer (only if CGRP_NOTIFY_ON_RELEASE is set) */
128 CGRP_RELEASABLE,
129 /* Control Group requires release notifications to userspace */
130 CGRP_NOTIFY_ON_RELEASE,
131 };
132
133 /* convenient tests for these bits */
134 inline int cgroup_is_removed(const struct cgroup *cgrp)
135 {
136 return test_bit(CGRP_REMOVED, &cgrp->flags);
137 }
138
139 /* bits in struct cgroupfs_root flags field */
140 enum {
141 ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
142 };
143
144 static int cgroup_is_releasable(const struct cgroup *cgrp)
145 {
146 const int bits =
147 (1 << CGRP_RELEASABLE) |
148 (1 << CGRP_NOTIFY_ON_RELEASE);
149 return (cgrp->flags & bits) == bits;
150 }
151
152 static int notify_on_release(const struct cgroup *cgrp)
153 {
154 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
155 }
156
157 /*
158 * for_each_subsys() allows you to iterate on each subsystem attached to
159 * an active hierarchy
160 */
161 #define for_each_subsys(_root, _ss) \
162 list_for_each_entry(_ss, &_root->subsys_list, sibling)
163
164 /* for_each_root() allows you to iterate across the active hierarchies */
165 #define for_each_root(_root) \
166 list_for_each_entry(_root, &roots, root_list)
167
168 /* the list of cgroups eligible for automatic release. Protected by
169 * release_list_lock */
170 static LIST_HEAD(release_list);
171 static DEFINE_SPINLOCK(release_list_lock);
172 static void cgroup_release_agent(struct work_struct *work);
173 static DECLARE_WORK(release_agent_work, cgroup_release_agent);
174 static void check_for_release(struct cgroup *cgrp);
175
176 /* Link structure for associating css_set objects with cgroups */
177 struct cg_cgroup_link {
178 /*
179 * List running through cg_cgroup_links associated with a
180 * cgroup, anchored on cgroup->css_sets
181 */
182 struct list_head cgrp_link_list;
183 /*
184 * List running through cg_cgroup_links pointing at a
185 * single css_set object, anchored on css_set->cg_links
186 */
187 struct list_head cg_link_list;
188 struct css_set *cg;
189 };
190
191 /* The default css_set - used by init and its children prior to any
192 * hierarchies being mounted. It contains a pointer to the root state
193 * for each subsystem. Also used to anchor the list of css_sets. Not
194 * reference-counted, to improve performance when child cgroups
195 * haven't been created.
196 */
197
198 static struct css_set init_css_set;
199 static struct cg_cgroup_link init_css_set_link;
200
201 /* css_set_lock protects the list of css_set objects, and the
202 * chain of tasks off each css_set. Nests outside task->alloc_lock
203 * due to cgroup_iter_start() */
204 static DEFINE_RWLOCK(css_set_lock);
205 static int css_set_count;
206
207 /* We don't maintain the lists running through each css_set to its
208 * task until after the first call to cgroup_iter_start(). This
209 * reduces the fork()/exit() overhead for people who have cgroups
210 * compiled into their kernel but not actually in use */
211 static int use_task_css_set_links;
212
213 /* When we create or destroy a css_set, the operation simply
214 * takes/releases a reference count on all the cgroups referenced
215 * by subsystems in this css_set. This can end up multiple-counting
216 * some cgroups, but that's OK - the ref-count is just a
217 * busy/not-busy indicator; ensuring that we only count each cgroup
218 * once would require taking a global lock to ensure that no
219 * subsystems moved between hierarchies while we were doing so.
220 *
221 * Possible TODO: decide at boot time based on the number of
222 * registered subsystems and the number of CPUs or NUMA nodes whether
223 * it's better for performance to ref-count every subsystem, or to
224 * take a global lock and only add one ref count to each hierarchy.
225 */
226
227 /*
228 * unlink a css_set from the list and free it
229 */
230 static void unlink_css_set(struct css_set *cg)
231 {
232 write_lock(&css_set_lock);
233 list_del(&cg->list);
234 css_set_count--;
235 while (!list_empty(&cg->cg_links)) {
236 struct cg_cgroup_link *link;
237 link = list_entry(cg->cg_links.next,
238 struct cg_cgroup_link, cg_link_list);
239 list_del(&link->cg_link_list);
240 list_del(&link->cgrp_link_list);
241 kfree(link);
242 }
243 write_unlock(&css_set_lock);
244 }
245
246 static void __release_css_set(struct kref *k, int taskexit)
247 {
248 int i;
249 struct css_set *cg = container_of(k, struct css_set, ref);
250
251 unlink_css_set(cg);
252
253 rcu_read_lock();
254 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
255 struct cgroup *cgrp = cg->subsys[i]->cgroup;
256 if (atomic_dec_and_test(&cgrp->count) &&
257 notify_on_release(cgrp)) {
258 if (taskexit)
259 set_bit(CGRP_RELEASABLE, &cgrp->flags);
260 check_for_release(cgrp);
261 }
262 }
263 rcu_read_unlock();
264 kfree(cg);
265 }
266
267 static void release_css_set(struct kref *k)
268 {
269 __release_css_set(k, 0);
270 }
271
272 static void release_css_set_taskexit(struct kref *k)
273 {
274 __release_css_set(k, 1);
275 }
276
277 /*
278 * refcounted get/put for css_set objects
279 */
280 static inline void get_css_set(struct css_set *cg)
281 {
282 kref_get(&cg->ref);
283 }
284
285 static inline void put_css_set(struct css_set *cg)
286 {
287 kref_put(&cg->ref, release_css_set);
288 }
289
290 static inline void put_css_set_taskexit(struct css_set *cg)
291 {
292 kref_put(&cg->ref, release_css_set_taskexit);
293 }
294
295 /*
296 * find_existing_css_set() is a helper for
297 * find_css_set(), and checks to see whether an existing
298 * css_set is suitable. This currently walks a linked-list for
299 * simplicity; a later patch will use a hash table for better
300 * performance
301 *
302 * oldcg: the cgroup group that we're using before the cgroup
303 * transition
304 *
305 * cgrp: the cgroup that we're moving into
306 *
307 * template: location in which to build the desired set of subsystem
308 * state objects for the new cgroup group
309 */
310 static struct css_set *find_existing_css_set(
311 struct css_set *oldcg,
312 struct cgroup *cgrp,
313 struct cgroup_subsys_state *template[])
314 {
315 int i;
316 struct cgroupfs_root *root = cgrp->root;
317 struct list_head *l = &init_css_set.list;
318
319 /* Built the set of subsystem state objects that we want to
320 * see in the new css_set */
321 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
322 if (root->subsys_bits & (1UL << i)) {
323 /* Subsystem is in this hierarchy. So we want
324 * the subsystem state from the new
325 * cgroup */
326 template[i] = cgrp->subsys[i];
327 } else {
328 /* Subsystem is not in this hierarchy, so we
329 * don't want to change the subsystem state */
330 template[i] = oldcg->subsys[i];
331 }
332 }
333
334 /* Look through existing cgroup groups to find one to reuse */
335 do {
336 struct css_set *cg =
337 list_entry(l, struct css_set, list);
338
339 if (!memcmp(template, cg->subsys, sizeof(cg->subsys))) {
340 /* All subsystems matched */
341 return cg;
342 }
343 /* Try the next cgroup group */
344 l = l->next;
345 } while (l != &init_css_set.list);
346
347 /* No existing cgroup group matched */
348 return NULL;
349 }
350
351 /*
352 * allocate_cg_links() allocates "count" cg_cgroup_link structures
353 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
354 * success or a negative error
355 */
356 static int allocate_cg_links(int count, struct list_head *tmp)
357 {
358 struct cg_cgroup_link *link;
359 int i;
360 INIT_LIST_HEAD(tmp);
361 for (i = 0; i < count; i++) {
362 link = kmalloc(sizeof(*link), GFP_KERNEL);
363 if (!link) {
364 while (!list_empty(tmp)) {
365 link = list_entry(tmp->next,
366 struct cg_cgroup_link,
367 cgrp_link_list);
368 list_del(&link->cgrp_link_list);
369 kfree(link);
370 }
371 return -ENOMEM;
372 }
373 list_add(&link->cgrp_link_list, tmp);
374 }
375 return 0;
376 }
377
378 static void free_cg_links(struct list_head *tmp)
379 {
380 while (!list_empty(tmp)) {
381 struct cg_cgroup_link *link;
382 link = list_entry(tmp->next,
383 struct cg_cgroup_link,
384 cgrp_link_list);
385 list_del(&link->cgrp_link_list);
386 kfree(link);
387 }
388 }
389
390 /*
391 * find_css_set() takes an existing cgroup group and a
392 * cgroup object, and returns a css_set object that's
393 * equivalent to the old group, but with the given cgroup
394 * substituted into the appropriate hierarchy. Must be called with
395 * cgroup_mutex held
396 */
397 static struct css_set *find_css_set(
398 struct css_set *oldcg, struct cgroup *cgrp)
399 {
400 struct css_set *res;
401 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
402 int i;
403
404 struct list_head tmp_cg_links;
405 struct cg_cgroup_link *link;
406
407 /* First see if we already have a cgroup group that matches
408 * the desired set */
409 write_lock(&css_set_lock);
410 res = find_existing_css_set(oldcg, cgrp, template);
411 if (res)
412 get_css_set(res);
413 write_unlock(&css_set_lock);
414
415 if (res)
416 return res;
417
418 res = kmalloc(sizeof(*res), GFP_KERNEL);
419 if (!res)
420 return NULL;
421
422 /* Allocate all the cg_cgroup_link objects that we'll need */
423 if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
424 kfree(res);
425 return NULL;
426 }
427
428 kref_init(&res->ref);
429 INIT_LIST_HEAD(&res->cg_links);
430 INIT_LIST_HEAD(&res->tasks);
431
432 /* Copy the set of subsystem state objects generated in
433 * find_existing_css_set() */
434 memcpy(res->subsys, template, sizeof(res->subsys));
435
436 write_lock(&css_set_lock);
437 /* Add reference counts and links from the new css_set. */
438 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
439 struct cgroup *cgrp = res->subsys[i]->cgroup;
440 struct cgroup_subsys *ss = subsys[i];
441 atomic_inc(&cgrp->count);
442 /*
443 * We want to add a link once per cgroup, so we
444 * only do it for the first subsystem in each
445 * hierarchy
446 */
447 if (ss->root->subsys_list.next == &ss->sibling) {
448 BUG_ON(list_empty(&tmp_cg_links));
449 link = list_entry(tmp_cg_links.next,
450 struct cg_cgroup_link,
451 cgrp_link_list);
452 list_del(&link->cgrp_link_list);
453 list_add(&link->cgrp_link_list, &cgrp->css_sets);
454 link->cg = res;
455 list_add(&link->cg_link_list, &res->cg_links);
456 }
457 }
458 if (list_empty(&rootnode.subsys_list)) {
459 link = list_entry(tmp_cg_links.next,
460 struct cg_cgroup_link,
461 cgrp_link_list);
462 list_del(&link->cgrp_link_list);
463 list_add(&link->cgrp_link_list, &dummytop->css_sets);
464 link->cg = res;
465 list_add(&link->cg_link_list, &res->cg_links);
466 }
467
468 BUG_ON(!list_empty(&tmp_cg_links));
469
470 /* Link this cgroup group into the list */
471 list_add(&res->list, &init_css_set.list);
472 css_set_count++;
473 write_unlock(&css_set_lock);
474
475 return res;
476 }
477
478 /*
479 * There is one global cgroup mutex. We also require taking
480 * task_lock() when dereferencing a task's cgroup subsys pointers.
481 * See "The task_lock() exception", at the end of this comment.
482 *
483 * A task must hold cgroup_mutex to modify cgroups.
484 *
485 * Any task can increment and decrement the count field without lock.
486 * So in general, code holding cgroup_mutex can't rely on the count
487 * field not changing. However, if the count goes to zero, then only
488 * cgroup_attach_task() can increment it again. Because a count of zero
489 * means that no tasks are currently attached, therefore there is no
490 * way a task attached to that cgroup can fork (the other way to
491 * increment the count). So code holding cgroup_mutex can safely
492 * assume that if the count is zero, it will stay zero. Similarly, if
493 * a task holds cgroup_mutex on a cgroup with zero count, it
494 * knows that the cgroup won't be removed, as cgroup_rmdir()
495 * needs that mutex.
496 *
497 * The cgroup_common_file_write handler for operations that modify
498 * the cgroup hierarchy holds cgroup_mutex across the entire operation,
499 * single threading all such cgroup modifications across the system.
500 *
501 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
502 * (usually) take cgroup_mutex. These are the two most performance
503 * critical pieces of code here. The exception occurs on cgroup_exit(),
504 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
505 * is taken, and if the cgroup count is zero, a usermode call made
506 * to the release agent with the name of the cgroup (path relative to
507 * the root of cgroup file system) as the argument.
508 *
509 * A cgroup can only be deleted if both its 'count' of using tasks
510 * is zero, and its list of 'children' cgroups is empty. Since all
511 * tasks in the system use _some_ cgroup, and since there is always at
512 * least one task in the system (init, pid == 1), therefore, top_cgroup
513 * always has either children cgroups and/or using tasks. So we don't
514 * need a special hack to ensure that top_cgroup cannot be deleted.
515 *
516 * The task_lock() exception
517 *
518 * The need for this exception arises from the action of
519 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
520 * another. It does so using cgroup_mutex, however there are
521 * several performance critical places that need to reference
522 * task->cgroup without the expense of grabbing a system global
523 * mutex. Therefore except as noted below, when dereferencing or, as
524 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
525 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
526 * the task_struct routinely used for such matters.
527 *
528 * P.S. One more locking exception. RCU is used to guard the
529 * update of a tasks cgroup pointer by cgroup_attach_task()
530 */
531
532 /**
533 * cgroup_lock - lock out any changes to cgroup structures
534 *
535 */
536 void cgroup_lock(void)
537 {
538 mutex_lock(&cgroup_mutex);
539 }
540
541 /**
542 * cgroup_unlock - release lock on cgroup changes
543 *
544 * Undo the lock taken in a previous cgroup_lock() call.
545 */
546 void cgroup_unlock(void)
547 {
548 mutex_unlock(&cgroup_mutex);
549 }
550
551 /*
552 * A couple of forward declarations required, due to cyclic reference loop:
553 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
554 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
555 * -> cgroup_mkdir.
556 */
557
558 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode);
559 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
560 static int cgroup_populate_dir(struct cgroup *cgrp);
561 static struct inode_operations cgroup_dir_inode_operations;
562 static struct file_operations proc_cgroupstats_operations;
563
564 static struct backing_dev_info cgroup_backing_dev_info = {
565 .capabilities = BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK,
566 };
567
568 static struct inode *cgroup_new_inode(mode_t mode, struct super_block *sb)
569 {
570 struct inode *inode = new_inode(sb);
571
572 if (inode) {
573 inode->i_mode = mode;
574 inode->i_uid = current->fsuid;
575 inode->i_gid = current->fsgid;
576 inode->i_blocks = 0;
577 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
578 inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
579 }
580 return inode;
581 }
582
583 /*
584 * Call subsys's pre_destroy handler.
585 * This is called before css refcnt check.
586 */
587 static void cgroup_call_pre_destroy(struct cgroup *cgrp)
588 {
589 struct cgroup_subsys *ss;
590 for_each_subsys(cgrp->root, ss)
591 if (ss->pre_destroy && cgrp->subsys[ss->subsys_id])
592 ss->pre_destroy(ss, cgrp);
593 return;
594 }
595
596 static void cgroup_diput(struct dentry *dentry, struct inode *inode)
597 {
598 /* is dentry a directory ? if so, kfree() associated cgroup */
599 if (S_ISDIR(inode->i_mode)) {
600 struct cgroup *cgrp = dentry->d_fsdata;
601 struct cgroup_subsys *ss;
602 BUG_ON(!(cgroup_is_removed(cgrp)));
603 /* It's possible for external users to be holding css
604 * reference counts on a cgroup; css_put() needs to
605 * be able to access the cgroup after decrementing
606 * the reference count in order to know if it needs to
607 * queue the cgroup to be handled by the release
608 * agent */
609 synchronize_rcu();
610
611 mutex_lock(&cgroup_mutex);
612 /*
613 * Release the subsystem state objects.
614 */
615 for_each_subsys(cgrp->root, ss) {
616 if (cgrp->subsys[ss->subsys_id])
617 ss->destroy(ss, cgrp);
618 }
619
620 cgrp->root->number_of_cgroups--;
621 mutex_unlock(&cgroup_mutex);
622
623 /* Drop the active superblock reference that we took when we
624 * created the cgroup */
625 deactivate_super(cgrp->root->sb);
626
627 kfree(cgrp);
628 }
629 iput(inode);
630 }
631
632 static void remove_dir(struct dentry *d)
633 {
634 struct dentry *parent = dget(d->d_parent);
635
636 d_delete(d);
637 simple_rmdir(parent->d_inode, d);
638 dput(parent);
639 }
640
641 static void cgroup_clear_directory(struct dentry *dentry)
642 {
643 struct list_head *node;
644
645 BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
646 spin_lock(&dcache_lock);
647 node = dentry->d_subdirs.next;
648 while (node != &dentry->d_subdirs) {
649 struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
650 list_del_init(node);
651 if (d->d_inode) {
652 /* This should never be called on a cgroup
653 * directory with child cgroups */
654 BUG_ON(d->d_inode->i_mode & S_IFDIR);
655 d = dget_locked(d);
656 spin_unlock(&dcache_lock);
657 d_delete(d);
658 simple_unlink(dentry->d_inode, d);
659 dput(d);
660 spin_lock(&dcache_lock);
661 }
662 node = dentry->d_subdirs.next;
663 }
664 spin_unlock(&dcache_lock);
665 }
666
667 /*
668 * NOTE : the dentry must have been dget()'ed
669 */
670 static void cgroup_d_remove_dir(struct dentry *dentry)
671 {
672 cgroup_clear_directory(dentry);
673
674 spin_lock(&dcache_lock);
675 list_del_init(&dentry->d_u.d_child);
676 spin_unlock(&dcache_lock);
677 remove_dir(dentry);
678 }
679
680 static int rebind_subsystems(struct cgroupfs_root *root,
681 unsigned long final_bits)
682 {
683 unsigned long added_bits, removed_bits;
684 struct cgroup *cgrp = &root->top_cgroup;
685 int i;
686
687 removed_bits = root->actual_subsys_bits & ~final_bits;
688 added_bits = final_bits & ~root->actual_subsys_bits;
689 /* Check that any added subsystems are currently free */
690 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
691 unsigned long bit = 1UL << i;
692 struct cgroup_subsys *ss = subsys[i];
693 if (!(bit & added_bits))
694 continue;
695 if (ss->root != &rootnode) {
696 /* Subsystem isn't free */
697 return -EBUSY;
698 }
699 }
700
701 /* Currently we don't handle adding/removing subsystems when
702 * any child cgroups exist. This is theoretically supportable
703 * but involves complex error handling, so it's being left until
704 * later */
705 if (!list_empty(&cgrp->children))
706 return -EBUSY;
707
708 /* Process each subsystem */
709 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
710 struct cgroup_subsys *ss = subsys[i];
711 unsigned long bit = 1UL << i;
712 if (bit & added_bits) {
713 /* We're binding this subsystem to this hierarchy */
714 BUG_ON(cgrp->subsys[i]);
715 BUG_ON(!dummytop->subsys[i]);
716 BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
717 cgrp->subsys[i] = dummytop->subsys[i];
718 cgrp->subsys[i]->cgroup = cgrp;
719 list_add(&ss->sibling, &root->subsys_list);
720 rcu_assign_pointer(ss->root, root);
721 if (ss->bind)
722 ss->bind(ss, cgrp);
723
724 } else if (bit & removed_bits) {
725 /* We're removing this subsystem */
726 BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
727 BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
728 if (ss->bind)
729 ss->bind(ss, dummytop);
730 dummytop->subsys[i]->cgroup = dummytop;
731 cgrp->subsys[i] = NULL;
732 rcu_assign_pointer(subsys[i]->root, &rootnode);
733 list_del(&ss->sibling);
734 } else if (bit & final_bits) {
735 /* Subsystem state should already exist */
736 BUG_ON(!cgrp->subsys[i]);
737 } else {
738 /* Subsystem state shouldn't exist */
739 BUG_ON(cgrp->subsys[i]);
740 }
741 }
742 root->subsys_bits = root->actual_subsys_bits = final_bits;
743 synchronize_rcu();
744
745 return 0;
746 }
747
748 static int cgroup_show_options(struct seq_file *seq, struct vfsmount *vfs)
749 {
750 struct cgroupfs_root *root = vfs->mnt_sb->s_fs_info;
751 struct cgroup_subsys *ss;
752
753 mutex_lock(&cgroup_mutex);
754 for_each_subsys(root, ss)
755 seq_printf(seq, ",%s", ss->name);
756 if (test_bit(ROOT_NOPREFIX, &root->flags))
757 seq_puts(seq, ",noprefix");
758 if (strlen(root->release_agent_path))
759 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
760 mutex_unlock(&cgroup_mutex);
761 return 0;
762 }
763
764 struct cgroup_sb_opts {
765 unsigned long subsys_bits;
766 unsigned long flags;
767 char *release_agent;
768 };
769
770 /* Convert a hierarchy specifier into a bitmask of subsystems and
771 * flags. */
772 static int parse_cgroupfs_options(char *data,
773 struct cgroup_sb_opts *opts)
774 {
775 char *token, *o = data ?: "all";
776
777 opts->subsys_bits = 0;
778 opts->flags = 0;
779 opts->release_agent = NULL;
780
781 while ((token = strsep(&o, ",")) != NULL) {
782 if (!*token)
783 return -EINVAL;
784 if (!strcmp(token, "all")) {
785 /* Add all non-disabled subsystems */
786 int i;
787 opts->subsys_bits = 0;
788 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
789 struct cgroup_subsys *ss = subsys[i];
790 if (!ss->disabled)
791 opts->subsys_bits |= 1ul << i;
792 }
793 } else if (!strcmp(token, "noprefix")) {
794 set_bit(ROOT_NOPREFIX, &opts->flags);
795 } else if (!strncmp(token, "release_agent=", 14)) {
796 /* Specifying two release agents is forbidden */
797 if (opts->release_agent)
798 return -EINVAL;
799 opts->release_agent = kzalloc(PATH_MAX, GFP_KERNEL);
800 if (!opts->release_agent)
801 return -ENOMEM;
802 strncpy(opts->release_agent, token + 14, PATH_MAX - 1);
803 opts->release_agent[PATH_MAX - 1] = 0;
804 } else {
805 struct cgroup_subsys *ss;
806 int i;
807 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
808 ss = subsys[i];
809 if (!strcmp(token, ss->name)) {
810 if (!ss->disabled)
811 set_bit(i, &opts->subsys_bits);
812 break;
813 }
814 }
815 if (i == CGROUP_SUBSYS_COUNT)
816 return -ENOENT;
817 }
818 }
819
820 /* We can't have an empty hierarchy */
821 if (!opts->subsys_bits)
822 return -EINVAL;
823
824 return 0;
825 }
826
827 static int cgroup_remount(struct super_block *sb, int *flags, char *data)
828 {
829 int ret = 0;
830 struct cgroupfs_root *root = sb->s_fs_info;
831 struct cgroup *cgrp = &root->top_cgroup;
832 struct cgroup_sb_opts opts;
833
834 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
835 mutex_lock(&cgroup_mutex);
836
837 /* See what subsystems are wanted */
838 ret = parse_cgroupfs_options(data, &opts);
839 if (ret)
840 goto out_unlock;
841
842 /* Don't allow flags to change at remount */
843 if (opts.flags != root->flags) {
844 ret = -EINVAL;
845 goto out_unlock;
846 }
847
848 ret = rebind_subsystems(root, opts.subsys_bits);
849
850 /* (re)populate subsystem files */
851 if (!ret)
852 cgroup_populate_dir(cgrp);
853
854 if (opts.release_agent)
855 strcpy(root->release_agent_path, opts.release_agent);
856 out_unlock:
857 if (opts.release_agent)
858 kfree(opts.release_agent);
859 mutex_unlock(&cgroup_mutex);
860 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
861 return ret;
862 }
863
864 static struct super_operations cgroup_ops = {
865 .statfs = simple_statfs,
866 .drop_inode = generic_delete_inode,
867 .show_options = cgroup_show_options,
868 .remount_fs = cgroup_remount,
869 };
870
871 static void init_cgroup_root(struct cgroupfs_root *root)
872 {
873 struct cgroup *cgrp = &root->top_cgroup;
874 INIT_LIST_HEAD(&root->subsys_list);
875 INIT_LIST_HEAD(&root->root_list);
876 root->number_of_cgroups = 1;
877 cgrp->root = root;
878 cgrp->top_cgroup = cgrp;
879 INIT_LIST_HEAD(&cgrp->sibling);
880 INIT_LIST_HEAD(&cgrp->children);
881 INIT_LIST_HEAD(&cgrp->css_sets);
882 INIT_LIST_HEAD(&cgrp->release_list);
883 }
884
885 static int cgroup_test_super(struct super_block *sb, void *data)
886 {
887 struct cgroupfs_root *new = data;
888 struct cgroupfs_root *root = sb->s_fs_info;
889
890 /* First check subsystems */
891 if (new->subsys_bits != root->subsys_bits)
892 return 0;
893
894 /* Next check flags */
895 if (new->flags != root->flags)
896 return 0;
897
898 return 1;
899 }
900
901 static int cgroup_set_super(struct super_block *sb, void *data)
902 {
903 int ret;
904 struct cgroupfs_root *root = data;
905
906 ret = set_anon_super(sb, NULL);
907 if (ret)
908 return ret;
909
910 sb->s_fs_info = root;
911 root->sb = sb;
912
913 sb->s_blocksize = PAGE_CACHE_SIZE;
914 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
915 sb->s_magic = CGROUP_SUPER_MAGIC;
916 sb->s_op = &cgroup_ops;
917
918 return 0;
919 }
920
921 static int cgroup_get_rootdir(struct super_block *sb)
922 {
923 struct inode *inode =
924 cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
925 struct dentry *dentry;
926
927 if (!inode)
928 return -ENOMEM;
929
930 inode->i_fop = &simple_dir_operations;
931 inode->i_op = &cgroup_dir_inode_operations;
932 /* directories start off with i_nlink == 2 (for "." entry) */
933 inc_nlink(inode);
934 dentry = d_alloc_root(inode);
935 if (!dentry) {
936 iput(inode);
937 return -ENOMEM;
938 }
939 sb->s_root = dentry;
940 return 0;
941 }
942
943 static int cgroup_get_sb(struct file_system_type *fs_type,
944 int flags, const char *unused_dev_name,
945 void *data, struct vfsmount *mnt)
946 {
947 struct cgroup_sb_opts opts;
948 int ret = 0;
949 struct super_block *sb;
950 struct cgroupfs_root *root;
951 struct list_head tmp_cg_links, *l;
952 INIT_LIST_HEAD(&tmp_cg_links);
953
954 /* First find the desired set of subsystems */
955 ret = parse_cgroupfs_options(data, &opts);
956 if (ret) {
957 if (opts.release_agent)
958 kfree(opts.release_agent);
959 return ret;
960 }
961
962 root = kzalloc(sizeof(*root), GFP_KERNEL);
963 if (!root) {
964 if (opts.release_agent)
965 kfree(opts.release_agent);
966 return -ENOMEM;
967 }
968
969 init_cgroup_root(root);
970 root->subsys_bits = opts.subsys_bits;
971 root->flags = opts.flags;
972 if (opts.release_agent) {
973 strcpy(root->release_agent_path, opts.release_agent);
974 kfree(opts.release_agent);
975 }
976
977 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, root);
978
979 if (IS_ERR(sb)) {
980 kfree(root);
981 return PTR_ERR(sb);
982 }
983
984 if (sb->s_fs_info != root) {
985 /* Reusing an existing superblock */
986 BUG_ON(sb->s_root == NULL);
987 kfree(root);
988 root = NULL;
989 } else {
990 /* New superblock */
991 struct cgroup *cgrp = &root->top_cgroup;
992 struct inode *inode;
993
994 BUG_ON(sb->s_root != NULL);
995
996 ret = cgroup_get_rootdir(sb);
997 if (ret)
998 goto drop_new_super;
999 inode = sb->s_root->d_inode;
1000
1001 mutex_lock(&inode->i_mutex);
1002 mutex_lock(&cgroup_mutex);
1003
1004 /*
1005 * We're accessing css_set_count without locking
1006 * css_set_lock here, but that's OK - it can only be
1007 * increased by someone holding cgroup_lock, and
1008 * that's us. The worst that can happen is that we
1009 * have some link structures left over
1010 */
1011 ret = allocate_cg_links(css_set_count, &tmp_cg_links);
1012 if (ret) {
1013 mutex_unlock(&cgroup_mutex);
1014 mutex_unlock(&inode->i_mutex);
1015 goto drop_new_super;
1016 }
1017
1018 ret = rebind_subsystems(root, root->subsys_bits);
1019 if (ret == -EBUSY) {
1020 mutex_unlock(&cgroup_mutex);
1021 mutex_unlock(&inode->i_mutex);
1022 goto drop_new_super;
1023 }
1024
1025 /* EBUSY should be the only error here */
1026 BUG_ON(ret);
1027
1028 list_add(&root->root_list, &roots);
1029 root_count++;
1030
1031 sb->s_root->d_fsdata = &root->top_cgroup;
1032 root->top_cgroup.dentry = sb->s_root;
1033
1034 /* Link the top cgroup in this hierarchy into all
1035 * the css_set objects */
1036 write_lock(&css_set_lock);
1037 l = &init_css_set.list;
1038 do {
1039 struct css_set *cg;
1040 struct cg_cgroup_link *link;
1041 cg = list_entry(l, struct css_set, list);
1042 BUG_ON(list_empty(&tmp_cg_links));
1043 link = list_entry(tmp_cg_links.next,
1044 struct cg_cgroup_link,
1045 cgrp_link_list);
1046 list_del(&link->cgrp_link_list);
1047 link->cg = cg;
1048 list_add(&link->cgrp_link_list,
1049 &root->top_cgroup.css_sets);
1050 list_add(&link->cg_link_list, &cg->cg_links);
1051 l = l->next;
1052 } while (l != &init_css_set.list);
1053 write_unlock(&css_set_lock);
1054
1055 free_cg_links(&tmp_cg_links);
1056
1057 BUG_ON(!list_empty(&cgrp->sibling));
1058 BUG_ON(!list_empty(&cgrp->children));
1059 BUG_ON(root->number_of_cgroups != 1);
1060
1061 cgroup_populate_dir(cgrp);
1062 mutex_unlock(&inode->i_mutex);
1063 mutex_unlock(&cgroup_mutex);
1064 }
1065
1066 return simple_set_mnt(mnt, sb);
1067
1068 drop_new_super:
1069 up_write(&sb->s_umount);
1070 deactivate_super(sb);
1071 free_cg_links(&tmp_cg_links);
1072 return ret;
1073 }
1074
1075 static void cgroup_kill_sb(struct super_block *sb) {
1076 struct cgroupfs_root *root = sb->s_fs_info;
1077 struct cgroup *cgrp = &root->top_cgroup;
1078 int ret;
1079
1080 BUG_ON(!root);
1081
1082 BUG_ON(root->number_of_cgroups != 1);
1083 BUG_ON(!list_empty(&cgrp->children));
1084 BUG_ON(!list_empty(&cgrp->sibling));
1085
1086 mutex_lock(&cgroup_mutex);
1087
1088 /* Rebind all subsystems back to the default hierarchy */
1089 ret = rebind_subsystems(root, 0);
1090 /* Shouldn't be able to fail ... */
1091 BUG_ON(ret);
1092
1093 /*
1094 * Release all the links from css_sets to this hierarchy's
1095 * root cgroup
1096 */
1097 write_lock(&css_set_lock);
1098 while (!list_empty(&cgrp->css_sets)) {
1099 struct cg_cgroup_link *link;
1100 link = list_entry(cgrp->css_sets.next,
1101 struct cg_cgroup_link, cgrp_link_list);
1102 list_del(&link->cg_link_list);
1103 list_del(&link->cgrp_link_list);
1104 kfree(link);
1105 }
1106 write_unlock(&css_set_lock);
1107
1108 if (!list_empty(&root->root_list)) {
1109 list_del(&root->root_list);
1110 root_count--;
1111 }
1112 mutex_unlock(&cgroup_mutex);
1113
1114 kfree(root);
1115 kill_litter_super(sb);
1116 }
1117
1118 static struct file_system_type cgroup_fs_type = {
1119 .name = "cgroup",
1120 .get_sb = cgroup_get_sb,
1121 .kill_sb = cgroup_kill_sb,
1122 };
1123
1124 static inline struct cgroup *__d_cgrp(struct dentry *dentry)
1125 {
1126 return dentry->d_fsdata;
1127 }
1128
1129 static inline struct cftype *__d_cft(struct dentry *dentry)
1130 {
1131 return dentry->d_fsdata;
1132 }
1133
1134 /**
1135 * cgroup_path - generate the path of a cgroup
1136 * @cgrp: the cgroup in question
1137 * @buf: the buffer to write the path into
1138 * @buflen: the length of the buffer
1139 *
1140 * Called with cgroup_mutex held. Writes path of cgroup into buf.
1141 * Returns 0 on success, -errno on error.
1142 */
1143 int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1144 {
1145 char *start;
1146
1147 if (cgrp == dummytop) {
1148 /*
1149 * Inactive subsystems have no dentry for their root
1150 * cgroup
1151 */
1152 strcpy(buf, "/");
1153 return 0;
1154 }
1155
1156 start = buf + buflen;
1157
1158 *--start = '\0';
1159 for (;;) {
1160 int len = cgrp->dentry->d_name.len;
1161 if ((start -= len) < buf)
1162 return -ENAMETOOLONG;
1163 memcpy(start, cgrp->dentry->d_name.name, len);
1164 cgrp = cgrp->parent;
1165 if (!cgrp)
1166 break;
1167 if (!cgrp->parent)
1168 continue;
1169 if (--start < buf)
1170 return -ENAMETOOLONG;
1171 *start = '/';
1172 }
1173 memmove(buf, start, buf + buflen - start);
1174 return 0;
1175 }
1176
1177 /*
1178 * Return the first subsystem attached to a cgroup's hierarchy, and
1179 * its subsystem id.
1180 */
1181
1182 static void get_first_subsys(const struct cgroup *cgrp,
1183 struct cgroup_subsys_state **css, int *subsys_id)
1184 {
1185 const struct cgroupfs_root *root = cgrp->root;
1186 const struct cgroup_subsys *test_ss;
1187 BUG_ON(list_empty(&root->subsys_list));
1188 test_ss = list_entry(root->subsys_list.next,
1189 struct cgroup_subsys, sibling);
1190 if (css) {
1191 *css = cgrp->subsys[test_ss->subsys_id];
1192 BUG_ON(!*css);
1193 }
1194 if (subsys_id)
1195 *subsys_id = test_ss->subsys_id;
1196 }
1197
1198 /**
1199 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
1200 * @cgrp: the cgroup the task is attaching to
1201 * @tsk: the task to be attached
1202 *
1203 * Call holding cgroup_mutex. May take task_lock of
1204 * the task 'tsk' during call.
1205 */
1206 int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
1207 {
1208 int retval = 0;
1209 struct cgroup_subsys *ss;
1210 struct cgroup *oldcgrp;
1211 struct css_set *cg = tsk->cgroups;
1212 struct css_set *newcg;
1213 struct cgroupfs_root *root = cgrp->root;
1214 int subsys_id;
1215
1216 get_first_subsys(cgrp, NULL, &subsys_id);
1217
1218 /* Nothing to do if the task is already in that cgroup */
1219 oldcgrp = task_cgroup(tsk, subsys_id);
1220 if (cgrp == oldcgrp)
1221 return 0;
1222
1223 for_each_subsys(root, ss) {
1224 if (ss->can_attach) {
1225 retval = ss->can_attach(ss, cgrp, tsk);
1226 if (retval)
1227 return retval;
1228 }
1229 }
1230
1231 /*
1232 * Locate or allocate a new css_set for this task,
1233 * based on its final set of cgroups
1234 */
1235 newcg = find_css_set(cg, cgrp);
1236 if (!newcg)
1237 return -ENOMEM;
1238
1239 task_lock(tsk);
1240 if (tsk->flags & PF_EXITING) {
1241 task_unlock(tsk);
1242 put_css_set(newcg);
1243 return -ESRCH;
1244 }
1245 rcu_assign_pointer(tsk->cgroups, newcg);
1246 task_unlock(tsk);
1247
1248 /* Update the css_set linked lists if we're using them */
1249 write_lock(&css_set_lock);
1250 if (!list_empty(&tsk->cg_list)) {
1251 list_del(&tsk->cg_list);
1252 list_add(&tsk->cg_list, &newcg->tasks);
1253 }
1254 write_unlock(&css_set_lock);
1255
1256 for_each_subsys(root, ss) {
1257 if (ss->attach)
1258 ss->attach(ss, cgrp, oldcgrp, tsk);
1259 }
1260 set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
1261 synchronize_rcu();
1262 put_css_set(cg);
1263 return 0;
1264 }
1265
1266 /*
1267 * Attach task with pid 'pid' to cgroup 'cgrp'. Call with
1268 * cgroup_mutex, may take task_lock of task
1269 */
1270 static int attach_task_by_pid(struct cgroup *cgrp, char *pidbuf)
1271 {
1272 pid_t pid;
1273 struct task_struct *tsk;
1274 int ret;
1275
1276 if (sscanf(pidbuf, "%d", &pid) != 1)
1277 return -EIO;
1278
1279 if (pid) {
1280 rcu_read_lock();
1281 tsk = find_task_by_vpid(pid);
1282 if (!tsk || tsk->flags & PF_EXITING) {
1283 rcu_read_unlock();
1284 return -ESRCH;
1285 }
1286 get_task_struct(tsk);
1287 rcu_read_unlock();
1288
1289 if ((current->euid) && (current->euid != tsk->uid)
1290 && (current->euid != tsk->suid)) {
1291 put_task_struct(tsk);
1292 return -EACCES;
1293 }
1294 } else {
1295 tsk = current;
1296 get_task_struct(tsk);
1297 }
1298
1299 ret = cgroup_attach_task(cgrp, tsk);
1300 put_task_struct(tsk);
1301 return ret;
1302 }
1303
1304 /* The various types of files and directories in a cgroup file system */
1305 enum cgroup_filetype {
1306 FILE_ROOT,
1307 FILE_DIR,
1308 FILE_TASKLIST,
1309 FILE_NOTIFY_ON_RELEASE,
1310 FILE_RELEASABLE,
1311 FILE_RELEASE_AGENT,
1312 };
1313
1314 static ssize_t cgroup_write_u64(struct cgroup *cgrp, struct cftype *cft,
1315 struct file *file,
1316 const char __user *userbuf,
1317 size_t nbytes, loff_t *unused_ppos)
1318 {
1319 char buffer[64];
1320 int retval = 0;
1321 u64 val;
1322 char *end;
1323
1324 if (!nbytes)
1325 return -EINVAL;
1326 if (nbytes >= sizeof(buffer))
1327 return -E2BIG;
1328 if (copy_from_user(buffer, userbuf, nbytes))
1329 return -EFAULT;
1330
1331 buffer[nbytes] = 0; /* nul-terminate */
1332 strstrip(buffer);
1333 val = simple_strtoull(buffer, &end, 0);
1334 if (*end)
1335 return -EINVAL;
1336
1337 /* Pass to subsystem */
1338 retval = cft->write_u64(cgrp, cft, val);
1339 if (!retval)
1340 retval = nbytes;
1341 return retval;
1342 }
1343
1344 static ssize_t cgroup_common_file_write(struct cgroup *cgrp,
1345 struct cftype *cft,
1346 struct file *file,
1347 const char __user *userbuf,
1348 size_t nbytes, loff_t *unused_ppos)
1349 {
1350 enum cgroup_filetype type = cft->private;
1351 char *buffer;
1352 int retval = 0;
1353
1354 if (nbytes >= PATH_MAX)
1355 return -E2BIG;
1356
1357 /* +1 for nul-terminator */
1358 buffer = kmalloc(nbytes + 1, GFP_KERNEL);
1359 if (buffer == NULL)
1360 return -ENOMEM;
1361
1362 if (copy_from_user(buffer, userbuf, nbytes)) {
1363 retval = -EFAULT;
1364 goto out1;
1365 }
1366 buffer[nbytes] = 0; /* nul-terminate */
1367 strstrip(buffer); /* strip -just- trailing whitespace */
1368
1369 mutex_lock(&cgroup_mutex);
1370
1371 /*
1372 * This was already checked for in cgroup_file_write(), but
1373 * check again now we're holding cgroup_mutex.
1374 */
1375 if (cgroup_is_removed(cgrp)) {
1376 retval = -ENODEV;
1377 goto out2;
1378 }
1379
1380 switch (type) {
1381 case FILE_TASKLIST:
1382 retval = attach_task_by_pid(cgrp, buffer);
1383 break;
1384 case FILE_NOTIFY_ON_RELEASE:
1385 clear_bit(CGRP_RELEASABLE, &cgrp->flags);
1386 if (simple_strtoul(buffer, NULL, 10) != 0)
1387 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
1388 else
1389 clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
1390 break;
1391 case FILE_RELEASE_AGENT:
1392 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
1393 strcpy(cgrp->root->release_agent_path, buffer);
1394 break;
1395 default:
1396 retval = -EINVAL;
1397 goto out2;
1398 }
1399
1400 if (retval == 0)
1401 retval = nbytes;
1402 out2:
1403 mutex_unlock(&cgroup_mutex);
1404 out1:
1405 kfree(buffer);
1406 return retval;
1407 }
1408
1409 static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
1410 size_t nbytes, loff_t *ppos)
1411 {
1412 struct cftype *cft = __d_cft(file->f_dentry);
1413 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
1414
1415 if (!cft || cgroup_is_removed(cgrp))
1416 return -ENODEV;
1417 if (cft->write)
1418 return cft->write(cgrp, cft, file, buf, nbytes, ppos);
1419 if (cft->write_u64)
1420 return cgroup_write_u64(cgrp, cft, file, buf, nbytes, ppos);
1421 return -EINVAL;
1422 }
1423
1424 static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
1425 struct file *file,
1426 char __user *buf, size_t nbytes,
1427 loff_t *ppos)
1428 {
1429 char tmp[64];
1430 u64 val = cft->read_u64(cgrp, cft);
1431 int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
1432
1433 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
1434 }
1435
1436 static ssize_t cgroup_common_file_read(struct cgroup *cgrp,
1437 struct cftype *cft,
1438 struct file *file,
1439 char __user *buf,
1440 size_t nbytes, loff_t *ppos)
1441 {
1442 enum cgroup_filetype type = cft->private;
1443 char *page;
1444 ssize_t retval = 0;
1445 char *s;
1446
1447 if (!(page = (char *)__get_free_page(GFP_KERNEL)))
1448 return -ENOMEM;
1449
1450 s = page;
1451
1452 switch (type) {
1453 case FILE_RELEASE_AGENT:
1454 {
1455 struct cgroupfs_root *root;
1456 size_t n;
1457 mutex_lock(&cgroup_mutex);
1458 root = cgrp->root;
1459 n = strnlen(root->release_agent_path,
1460 sizeof(root->release_agent_path));
1461 n = min(n, (size_t) PAGE_SIZE);
1462 strncpy(s, root->release_agent_path, n);
1463 mutex_unlock(&cgroup_mutex);
1464 s += n;
1465 break;
1466 }
1467 default:
1468 retval = -EINVAL;
1469 goto out;
1470 }
1471 *s++ = '\n';
1472
1473 retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
1474 out:
1475 free_page((unsigned long)page);
1476 return retval;
1477 }
1478
1479 static ssize_t cgroup_file_read(struct file *file, char __user *buf,
1480 size_t nbytes, loff_t *ppos)
1481 {
1482 struct cftype *cft = __d_cft(file->f_dentry);
1483 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
1484
1485 if (!cft || cgroup_is_removed(cgrp))
1486 return -ENODEV;
1487
1488 if (cft->read)
1489 return cft->read(cgrp, cft, file, buf, nbytes, ppos);
1490 if (cft->read_u64)
1491 return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
1492 return -EINVAL;
1493 }
1494
1495 /*
1496 * seqfile ops/methods for returning structured data. Currently just
1497 * supports string->u64 maps, but can be extended in future.
1498 */
1499
1500 struct cgroup_seqfile_state {
1501 struct cftype *cft;
1502 struct cgroup *cgroup;
1503 };
1504
1505 static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
1506 {
1507 struct seq_file *sf = cb->state;
1508 return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
1509 }
1510
1511 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
1512 {
1513 struct cgroup_seqfile_state *state = m->private;
1514 struct cftype *cft = state->cft;
1515 struct cgroup_map_cb cb = {
1516 .fill = cgroup_map_add,
1517 .state = m,
1518 };
1519 return cft->read_map(state->cgroup, cft, &cb);
1520 }
1521
1522 int cgroup_seqfile_release(struct inode *inode, struct file *file)
1523 {
1524 struct seq_file *seq = file->private_data;
1525 kfree(seq->private);
1526 return single_release(inode, file);
1527 }
1528
1529 static struct file_operations cgroup_seqfile_operations = {
1530 .read = seq_read,
1531 .llseek = seq_lseek,
1532 .release = cgroup_seqfile_release,
1533 };
1534
1535 static int cgroup_file_open(struct inode *inode, struct file *file)
1536 {
1537 int err;
1538 struct cftype *cft;
1539
1540 err = generic_file_open(inode, file);
1541 if (err)
1542 return err;
1543
1544 cft = __d_cft(file->f_dentry);
1545 if (!cft)
1546 return -ENODEV;
1547 if (cft->read_map) {
1548 struct cgroup_seqfile_state *state =
1549 kzalloc(sizeof(*state), GFP_USER);
1550 if (!state)
1551 return -ENOMEM;
1552 state->cft = cft;
1553 state->cgroup = __d_cgrp(file->f_dentry->d_parent);
1554 file->f_op = &cgroup_seqfile_operations;
1555 err = single_open(file, cgroup_seqfile_show, state);
1556 if (err < 0)
1557 kfree(state);
1558 } else if (cft->open)
1559 err = cft->open(inode, file);
1560 else
1561 err = 0;
1562
1563 return err;
1564 }
1565
1566 static int cgroup_file_release(struct inode *inode, struct file *file)
1567 {
1568 struct cftype *cft = __d_cft(file->f_dentry);
1569 if (cft->release)
1570 return cft->release(inode, file);
1571 return 0;
1572 }
1573
1574 /*
1575 * cgroup_rename - Only allow simple rename of directories in place.
1576 */
1577 static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
1578 struct inode *new_dir, struct dentry *new_dentry)
1579 {
1580 if (!S_ISDIR(old_dentry->d_inode->i_mode))
1581 return -ENOTDIR;
1582 if (new_dentry->d_inode)
1583 return -EEXIST;
1584 if (old_dir != new_dir)
1585 return -EIO;
1586 return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
1587 }
1588
1589 static struct file_operations cgroup_file_operations = {
1590 .read = cgroup_file_read,
1591 .write = cgroup_file_write,
1592 .llseek = generic_file_llseek,
1593 .open = cgroup_file_open,
1594 .release = cgroup_file_release,
1595 };
1596
1597 static struct inode_operations cgroup_dir_inode_operations = {
1598 .lookup = simple_lookup,
1599 .mkdir = cgroup_mkdir,
1600 .rmdir = cgroup_rmdir,
1601 .rename = cgroup_rename,
1602 };
1603
1604 static int cgroup_create_file(struct dentry *dentry, int mode,
1605 struct super_block *sb)
1606 {
1607 static struct dentry_operations cgroup_dops = {
1608 .d_iput = cgroup_diput,
1609 };
1610
1611 struct inode *inode;
1612
1613 if (!dentry)
1614 return -ENOENT;
1615 if (dentry->d_inode)
1616 return -EEXIST;
1617
1618 inode = cgroup_new_inode(mode, sb);
1619 if (!inode)
1620 return -ENOMEM;
1621
1622 if (S_ISDIR(mode)) {
1623 inode->i_op = &cgroup_dir_inode_operations;
1624 inode->i_fop = &simple_dir_operations;
1625
1626 /* start off with i_nlink == 2 (for "." entry) */
1627 inc_nlink(inode);
1628
1629 /* start with the directory inode held, so that we can
1630 * populate it without racing with another mkdir */
1631 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
1632 } else if (S_ISREG(mode)) {
1633 inode->i_size = 0;
1634 inode->i_fop = &cgroup_file_operations;
1635 }
1636 dentry->d_op = &cgroup_dops;
1637 d_instantiate(dentry, inode);
1638 dget(dentry); /* Extra count - pin the dentry in core */
1639 return 0;
1640 }
1641
1642 /*
1643 * cgroup_create_dir - create a directory for an object.
1644 * @cgrp: the cgroup we create the directory for. It must have a valid
1645 * ->parent field. And we are going to fill its ->dentry field.
1646 * @dentry: dentry of the new cgroup
1647 * @mode: mode to set on new directory.
1648 */
1649 static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
1650 int mode)
1651 {
1652 struct dentry *parent;
1653 int error = 0;
1654
1655 parent = cgrp->parent->dentry;
1656 error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
1657 if (!error) {
1658 dentry->d_fsdata = cgrp;
1659 inc_nlink(parent->d_inode);
1660 cgrp->dentry = dentry;
1661 dget(dentry);
1662 }
1663 dput(dentry);
1664
1665 return error;
1666 }
1667
1668 int cgroup_add_file(struct cgroup *cgrp,
1669 struct cgroup_subsys *subsys,
1670 const struct cftype *cft)
1671 {
1672 struct dentry *dir = cgrp->dentry;
1673 struct dentry *dentry;
1674 int error;
1675
1676 char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
1677 if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
1678 strcpy(name, subsys->name);
1679 strcat(name, ".");
1680 }
1681 strcat(name, cft->name);
1682 BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
1683 dentry = lookup_one_len(name, dir, strlen(name));
1684 if (!IS_ERR(dentry)) {
1685 error = cgroup_create_file(dentry, 0644 | S_IFREG,
1686 cgrp->root->sb);
1687 if (!error)
1688 dentry->d_fsdata = (void *)cft;
1689 dput(dentry);
1690 } else
1691 error = PTR_ERR(dentry);
1692 return error;
1693 }
1694
1695 int cgroup_add_files(struct cgroup *cgrp,
1696 struct cgroup_subsys *subsys,
1697 const struct cftype cft[],
1698 int count)
1699 {
1700 int i, err;
1701 for (i = 0; i < count; i++) {
1702 err = cgroup_add_file(cgrp, subsys, &cft[i]);
1703 if (err)
1704 return err;
1705 }
1706 return 0;
1707 }
1708
1709 /**
1710 * cgroup_task_count - count the number of tasks in a cgroup.
1711 * @cgrp: the cgroup in question
1712 *
1713 * Return the number of tasks in the cgroup.
1714 */
1715 int cgroup_task_count(const struct cgroup *cgrp)
1716 {
1717 int count = 0;
1718 struct list_head *l;
1719
1720 read_lock(&css_set_lock);
1721 l = cgrp->css_sets.next;
1722 while (l != &cgrp->css_sets) {
1723 struct cg_cgroup_link *link =
1724 list_entry(l, struct cg_cgroup_link, cgrp_link_list);
1725 count += atomic_read(&link->cg->ref.refcount);
1726 l = l->next;
1727 }
1728 read_unlock(&css_set_lock);
1729 return count;
1730 }
1731
1732 /*
1733 * Advance a list_head iterator. The iterator should be positioned at
1734 * the start of a css_set
1735 */
1736 static void cgroup_advance_iter(struct cgroup *cgrp,
1737 struct cgroup_iter *it)
1738 {
1739 struct list_head *l = it->cg_link;
1740 struct cg_cgroup_link *link;
1741 struct css_set *cg;
1742
1743 /* Advance to the next non-empty css_set */
1744 do {
1745 l = l->next;
1746 if (l == &cgrp->css_sets) {
1747 it->cg_link = NULL;
1748 return;
1749 }
1750 link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
1751 cg = link->cg;
1752 } while (list_empty(&cg->tasks));
1753 it->cg_link = l;
1754 it->task = cg->tasks.next;
1755 }
1756
1757 /*
1758 * To reduce the fork() overhead for systems that are not actually
1759 * using their cgroups capability, we don't maintain the lists running
1760 * through each css_set to its tasks until we see the list actually
1761 * used - in other words after the first call to cgroup_iter_start().
1762 *
1763 * The tasklist_lock is not held here, as do_each_thread() and
1764 * while_each_thread() are protected by RCU.
1765 */
1766 static void cgroup_enable_task_cg_lists(void)
1767 {
1768 struct task_struct *p, *g;
1769 write_lock(&css_set_lock);
1770 use_task_css_set_links = 1;
1771 do_each_thread(g, p) {
1772 task_lock(p);
1773 /*
1774 * We should check if the process is exiting, otherwise
1775 * it will race with cgroup_exit() in that the list
1776 * entry won't be deleted though the process has exited.
1777 */
1778 if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
1779 list_add(&p->cg_list, &p->cgroups->tasks);
1780 task_unlock(p);
1781 } while_each_thread(g, p);
1782 write_unlock(&css_set_lock);
1783 }
1784
1785 void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
1786 {
1787 /*
1788 * The first time anyone tries to iterate across a cgroup,
1789 * we need to enable the list linking each css_set to its
1790 * tasks, and fix up all existing tasks.
1791 */
1792 if (!use_task_css_set_links)
1793 cgroup_enable_task_cg_lists();
1794
1795 read_lock(&css_set_lock);
1796 it->cg_link = &cgrp->css_sets;
1797 cgroup_advance_iter(cgrp, it);
1798 }
1799
1800 struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
1801 struct cgroup_iter *it)
1802 {
1803 struct task_struct *res;
1804 struct list_head *l = it->task;
1805
1806 /* If the iterator cg is NULL, we have no tasks */
1807 if (!it->cg_link)
1808 return NULL;
1809 res = list_entry(l, struct task_struct, cg_list);
1810 /* Advance iterator to find next entry */
1811 l = l->next;
1812 if (l == &res->cgroups->tasks) {
1813 /* We reached the end of this task list - move on to
1814 * the next cg_cgroup_link */
1815 cgroup_advance_iter(cgrp, it);
1816 } else {
1817 it->task = l;
1818 }
1819 return res;
1820 }
1821
1822 void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
1823 {
1824 read_unlock(&css_set_lock);
1825 }
1826
1827 static inline int started_after_time(struct task_struct *t1,
1828 struct timespec *time,
1829 struct task_struct *t2)
1830 {
1831 int start_diff = timespec_compare(&t1->start_time, time);
1832 if (start_diff > 0) {
1833 return 1;
1834 } else if (start_diff < 0) {
1835 return 0;
1836 } else {
1837 /*
1838 * Arbitrarily, if two processes started at the same
1839 * time, we'll say that the lower pointer value
1840 * started first. Note that t2 may have exited by now
1841 * so this may not be a valid pointer any longer, but
1842 * that's fine - it still serves to distinguish
1843 * between two tasks started (effectively) simultaneously.
1844 */
1845 return t1 > t2;
1846 }
1847 }
1848
1849 /*
1850 * This function is a callback from heap_insert() and is used to order
1851 * the heap.
1852 * In this case we order the heap in descending task start time.
1853 */
1854 static inline int started_after(void *p1, void *p2)
1855 {
1856 struct task_struct *t1 = p1;
1857 struct task_struct *t2 = p2;
1858 return started_after_time(t1, &t2->start_time, t2);
1859 }
1860
1861 /**
1862 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
1863 * @scan: struct cgroup_scanner containing arguments for the scan
1864 *
1865 * Arguments include pointers to callback functions test_task() and
1866 * process_task().
1867 * Iterate through all the tasks in a cgroup, calling test_task() for each,
1868 * and if it returns true, call process_task() for it also.
1869 * The test_task pointer may be NULL, meaning always true (select all tasks).
1870 * Effectively duplicates cgroup_iter_{start,next,end}()
1871 * but does not lock css_set_lock for the call to process_task().
1872 * The struct cgroup_scanner may be embedded in any structure of the caller's
1873 * creation.
1874 * It is guaranteed that process_task() will act on every task that
1875 * is a member of the cgroup for the duration of this call. This
1876 * function may or may not call process_task() for tasks that exit
1877 * or move to a different cgroup during the call, or are forked or
1878 * move into the cgroup during the call.
1879 *
1880 * Note that test_task() may be called with locks held, and may in some
1881 * situations be called multiple times for the same task, so it should
1882 * be cheap.
1883 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
1884 * pre-allocated and will be used for heap operations (and its "gt" member will
1885 * be overwritten), else a temporary heap will be used (allocation of which
1886 * may cause this function to fail).
1887 */
1888 int cgroup_scan_tasks(struct cgroup_scanner *scan)
1889 {
1890 int retval, i;
1891 struct cgroup_iter it;
1892 struct task_struct *p, *dropped;
1893 /* Never dereference latest_task, since it's not refcounted */
1894 struct task_struct *latest_task = NULL;
1895 struct ptr_heap tmp_heap;
1896 struct ptr_heap *heap;
1897 struct timespec latest_time = { 0, 0 };
1898
1899 if (scan->heap) {
1900 /* The caller supplied our heap and pre-allocated its memory */
1901 heap = scan->heap;
1902 heap->gt = &started_after;
1903 } else {
1904 /* We need to allocate our own heap memory */
1905 heap = &tmp_heap;
1906 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
1907 if (retval)
1908 /* cannot allocate the heap */
1909 return retval;
1910 }
1911
1912 again:
1913 /*
1914 * Scan tasks in the cgroup, using the scanner's "test_task" callback
1915 * to determine which are of interest, and using the scanner's
1916 * "process_task" callback to process any of them that need an update.
1917 * Since we don't want to hold any locks during the task updates,
1918 * gather tasks to be processed in a heap structure.
1919 * The heap is sorted by descending task start time.
1920 * If the statically-sized heap fills up, we overflow tasks that
1921 * started later, and in future iterations only consider tasks that
1922 * started after the latest task in the previous pass. This
1923 * guarantees forward progress and that we don't miss any tasks.
1924 */
1925 heap->size = 0;
1926 cgroup_iter_start(scan->cg, &it);
1927 while ((p = cgroup_iter_next(scan->cg, &it))) {
1928 /*
1929 * Only affect tasks that qualify per the caller's callback,
1930 * if he provided one
1931 */
1932 if (scan->test_task && !scan->test_task(p, scan))
1933 continue;
1934 /*
1935 * Only process tasks that started after the last task
1936 * we processed
1937 */
1938 if (!started_after_time(p, &latest_time, latest_task))
1939 continue;
1940 dropped = heap_insert(heap, p);
1941 if (dropped == NULL) {
1942 /*
1943 * The new task was inserted; the heap wasn't
1944 * previously full
1945 */
1946 get_task_struct(p);
1947 } else if (dropped != p) {
1948 /*
1949 * The new task was inserted, and pushed out a
1950 * different task
1951 */
1952 get_task_struct(p);
1953 put_task_struct(dropped);
1954 }
1955 /*
1956 * Else the new task was newer than anything already in
1957 * the heap and wasn't inserted
1958 */
1959 }
1960 cgroup_iter_end(scan->cg, &it);
1961
1962 if (heap->size) {
1963 for (i = 0; i < heap->size; i++) {
1964 struct task_struct *q = heap->ptrs[i];
1965 if (i == 0) {
1966 latest_time = q->start_time;
1967 latest_task = q;
1968 }
1969 /* Process the task per the caller's callback */
1970 scan->process_task(q, scan);
1971 put_task_struct(q);
1972 }
1973 /*
1974 * If we had to process any tasks at all, scan again
1975 * in case some of them were in the middle of forking
1976 * children that didn't get processed.
1977 * Not the most efficient way to do it, but it avoids
1978 * having to take callback_mutex in the fork path
1979 */
1980 goto again;
1981 }
1982 if (heap == &tmp_heap)
1983 heap_free(&tmp_heap);
1984 return 0;
1985 }
1986
1987 /*
1988 * Stuff for reading the 'tasks' file.
1989 *
1990 * Reading this file can return large amounts of data if a cgroup has
1991 * *lots* of attached tasks. So it may need several calls to read(),
1992 * but we cannot guarantee that the information we produce is correct
1993 * unless we produce it entirely atomically.
1994 *
1995 * Upon tasks file open(), a struct ctr_struct is allocated, that
1996 * will have a pointer to an array (also allocated here). The struct
1997 * ctr_struct * is stored in file->private_data. Its resources will
1998 * be freed by release() when the file is closed. The array is used
1999 * to sprintf the PIDs and then used by read().
2000 */
2001 struct ctr_struct {
2002 char *buf;
2003 int bufsz;
2004 };
2005
2006 /*
2007 * Load into 'pidarray' up to 'npids' of the tasks using cgroup
2008 * 'cgrp'. Return actual number of pids loaded. No need to
2009 * task_lock(p) when reading out p->cgroup, since we're in an RCU
2010 * read section, so the css_set can't go away, and is
2011 * immutable after creation.
2012 */
2013 static int pid_array_load(pid_t *pidarray, int npids, struct cgroup *cgrp)
2014 {
2015 int n = 0;
2016 struct cgroup_iter it;
2017 struct task_struct *tsk;
2018 cgroup_iter_start(cgrp, &it);
2019 while ((tsk = cgroup_iter_next(cgrp, &it))) {
2020 if (unlikely(n == npids))
2021 break;
2022 pidarray[n++] = task_pid_vnr(tsk);
2023 }
2024 cgroup_iter_end(cgrp, &it);
2025 return n;
2026 }
2027
2028 /**
2029 * cgroupstats_build - build and fill cgroupstats
2030 * @stats: cgroupstats to fill information into
2031 * @dentry: A dentry entry belonging to the cgroup for which stats have
2032 * been requested.
2033 *
2034 * Build and fill cgroupstats so that taskstats can export it to user
2035 * space.
2036 */
2037 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
2038 {
2039 int ret = -EINVAL;
2040 struct cgroup *cgrp;
2041 struct cgroup_iter it;
2042 struct task_struct *tsk;
2043 /*
2044 * Validate dentry by checking the superblock operations
2045 */
2046 if (dentry->d_sb->s_op != &cgroup_ops)
2047 goto err;
2048
2049 ret = 0;
2050 cgrp = dentry->d_fsdata;
2051 rcu_read_lock();
2052
2053 cgroup_iter_start(cgrp, &it);
2054 while ((tsk = cgroup_iter_next(cgrp, &it))) {
2055 switch (tsk->state) {
2056 case TASK_RUNNING:
2057 stats->nr_running++;
2058 break;
2059 case TASK_INTERRUPTIBLE:
2060 stats->nr_sleeping++;
2061 break;
2062 case TASK_UNINTERRUPTIBLE:
2063 stats->nr_uninterruptible++;
2064 break;
2065 case TASK_STOPPED:
2066 stats->nr_stopped++;
2067 break;
2068 default:
2069 if (delayacct_is_task_waiting_on_io(tsk))
2070 stats->nr_io_wait++;
2071 break;
2072 }
2073 }
2074 cgroup_iter_end(cgrp, &it);
2075
2076 rcu_read_unlock();
2077 err:
2078 return ret;
2079 }
2080
2081 static int cmppid(const void *a, const void *b)
2082 {
2083 return *(pid_t *)a - *(pid_t *)b;
2084 }
2085
2086 /*
2087 * Convert array 'a' of 'npids' pid_t's to a string of newline separated
2088 * decimal pids in 'buf'. Don't write more than 'sz' chars, but return
2089 * count 'cnt' of how many chars would be written if buf were large enough.
2090 */
2091 static int pid_array_to_buf(char *buf, int sz, pid_t *a, int npids)
2092 {
2093 int cnt = 0;
2094 int i;
2095
2096 for (i = 0; i < npids; i++)
2097 cnt += snprintf(buf + cnt, max(sz - cnt, 0), "%d\n", a[i]);
2098 return cnt;
2099 }
2100
2101 /*
2102 * Handle an open on 'tasks' file. Prepare a buffer listing the
2103 * process id's of tasks currently attached to the cgroup being opened.
2104 *
2105 * Does not require any specific cgroup mutexes, and does not take any.
2106 */
2107 static int cgroup_tasks_open(struct inode *unused, struct file *file)
2108 {
2109 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2110 struct ctr_struct *ctr;
2111 pid_t *pidarray;
2112 int npids;
2113 char c;
2114
2115 if (!(file->f_mode & FMODE_READ))
2116 return 0;
2117
2118 ctr = kmalloc(sizeof(*ctr), GFP_KERNEL);
2119 if (!ctr)
2120 goto err0;
2121
2122 /*
2123 * If cgroup gets more users after we read count, we won't have
2124 * enough space - tough. This race is indistinguishable to the
2125 * caller from the case that the additional cgroup users didn't
2126 * show up until sometime later on.
2127 */
2128 npids = cgroup_task_count(cgrp);
2129 if (npids) {
2130 pidarray = kmalloc(npids * sizeof(pid_t), GFP_KERNEL);
2131 if (!pidarray)
2132 goto err1;
2133
2134 npids = pid_array_load(pidarray, npids, cgrp);
2135 sort(pidarray, npids, sizeof(pid_t), cmppid, NULL);
2136
2137 /* Call pid_array_to_buf() twice, first just to get bufsz */
2138 ctr->bufsz = pid_array_to_buf(&c, sizeof(c), pidarray, npids) + 1;
2139 ctr->buf = kmalloc(ctr->bufsz, GFP_KERNEL);
2140 if (!ctr->buf)
2141 goto err2;
2142 ctr->bufsz = pid_array_to_buf(ctr->buf, ctr->bufsz, pidarray, npids);
2143
2144 kfree(pidarray);
2145 } else {
2146 ctr->buf = NULL;
2147 ctr->bufsz = 0;
2148 }
2149 file->private_data = ctr;
2150 return 0;
2151
2152 err2:
2153 kfree(pidarray);
2154 err1:
2155 kfree(ctr);
2156 err0:
2157 return -ENOMEM;
2158 }
2159
2160 static ssize_t cgroup_tasks_read(struct cgroup *cgrp,
2161 struct cftype *cft,
2162 struct file *file, char __user *buf,
2163 size_t nbytes, loff_t *ppos)
2164 {
2165 struct ctr_struct *ctr = file->private_data;
2166
2167 return simple_read_from_buffer(buf, nbytes, ppos, ctr->buf, ctr->bufsz);
2168 }
2169
2170 static int cgroup_tasks_release(struct inode *unused_inode,
2171 struct file *file)
2172 {
2173 struct ctr_struct *ctr;
2174
2175 if (file->f_mode & FMODE_READ) {
2176 ctr = file->private_data;
2177 kfree(ctr->buf);
2178 kfree(ctr);
2179 }
2180 return 0;
2181 }
2182
2183 static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
2184 struct cftype *cft)
2185 {
2186 return notify_on_release(cgrp);
2187 }
2188
2189 static u64 cgroup_read_releasable(struct cgroup *cgrp, struct cftype *cft)
2190 {
2191 return test_bit(CGRP_RELEASABLE, &cgrp->flags);
2192 }
2193
2194 /*
2195 * for the common functions, 'private' gives the type of file
2196 */
2197 static struct cftype files[] = {
2198 {
2199 .name = "tasks",
2200 .open = cgroup_tasks_open,
2201 .read = cgroup_tasks_read,
2202 .write = cgroup_common_file_write,
2203 .release = cgroup_tasks_release,
2204 .private = FILE_TASKLIST,
2205 },
2206
2207 {
2208 .name = "notify_on_release",
2209 .read_u64 = cgroup_read_notify_on_release,
2210 .write = cgroup_common_file_write,
2211 .private = FILE_NOTIFY_ON_RELEASE,
2212 },
2213
2214 {
2215 .name = "releasable",
2216 .read_u64 = cgroup_read_releasable,
2217 .private = FILE_RELEASABLE,
2218 }
2219 };
2220
2221 static struct cftype cft_release_agent = {
2222 .name = "release_agent",
2223 .read = cgroup_common_file_read,
2224 .write = cgroup_common_file_write,
2225 .private = FILE_RELEASE_AGENT,
2226 };
2227
2228 static int cgroup_populate_dir(struct cgroup *cgrp)
2229 {
2230 int err;
2231 struct cgroup_subsys *ss;
2232
2233 /* First clear out any existing files */
2234 cgroup_clear_directory(cgrp->dentry);
2235
2236 err = cgroup_add_files(cgrp, NULL, files, ARRAY_SIZE(files));
2237 if (err < 0)
2238 return err;
2239
2240 if (cgrp == cgrp->top_cgroup) {
2241 if ((err = cgroup_add_file(cgrp, NULL, &cft_release_agent)) < 0)
2242 return err;
2243 }
2244
2245 for_each_subsys(cgrp->root, ss) {
2246 if (ss->populate && (err = ss->populate(ss, cgrp)) < 0)
2247 return err;
2248 }
2249
2250 return 0;
2251 }
2252
2253 static void init_cgroup_css(struct cgroup_subsys_state *css,
2254 struct cgroup_subsys *ss,
2255 struct cgroup *cgrp)
2256 {
2257 css->cgroup = cgrp;
2258 atomic_set(&css->refcnt, 0);
2259 css->flags = 0;
2260 if (cgrp == dummytop)
2261 set_bit(CSS_ROOT, &css->flags);
2262 BUG_ON(cgrp->subsys[ss->subsys_id]);
2263 cgrp->subsys[ss->subsys_id] = css;
2264 }
2265
2266 /*
2267 * cgroup_create - create a cgroup
2268 * @parent: cgroup that will be parent of the new cgroup
2269 * @dentry: dentry of the new cgroup
2270 * @mode: mode to set on new inode
2271 *
2272 * Must be called with the mutex on the parent inode held
2273 */
2274 static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
2275 int mode)
2276 {
2277 struct cgroup *cgrp;
2278 struct cgroupfs_root *root = parent->root;
2279 int err = 0;
2280 struct cgroup_subsys *ss;
2281 struct super_block *sb = root->sb;
2282
2283 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
2284 if (!cgrp)
2285 return -ENOMEM;
2286
2287 /* Grab a reference on the superblock so the hierarchy doesn't
2288 * get deleted on unmount if there are child cgroups. This
2289 * can be done outside cgroup_mutex, since the sb can't
2290 * disappear while someone has an open control file on the
2291 * fs */
2292 atomic_inc(&sb->s_active);
2293
2294 mutex_lock(&cgroup_mutex);
2295
2296 INIT_LIST_HEAD(&cgrp->sibling);
2297 INIT_LIST_HEAD(&cgrp->children);
2298 INIT_LIST_HEAD(&cgrp->css_sets);
2299 INIT_LIST_HEAD(&cgrp->release_list);
2300
2301 cgrp->parent = parent;
2302 cgrp->root = parent->root;
2303 cgrp->top_cgroup = parent->top_cgroup;
2304
2305 if (notify_on_release(parent))
2306 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
2307
2308 for_each_subsys(root, ss) {
2309 struct cgroup_subsys_state *css = ss->create(ss, cgrp);
2310 if (IS_ERR(css)) {
2311 err = PTR_ERR(css);
2312 goto err_destroy;
2313 }
2314 init_cgroup_css(css, ss, cgrp);
2315 }
2316
2317 list_add(&cgrp->sibling, &cgrp->parent->children);
2318 root->number_of_cgroups++;
2319
2320 err = cgroup_create_dir(cgrp, dentry, mode);
2321 if (err < 0)
2322 goto err_remove;
2323
2324 /* The cgroup directory was pre-locked for us */
2325 BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
2326
2327 err = cgroup_populate_dir(cgrp);
2328 /* If err < 0, we have a half-filled directory - oh well ;) */
2329
2330 mutex_unlock(&cgroup_mutex);
2331 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
2332
2333 return 0;
2334
2335 err_remove:
2336
2337 list_del(&cgrp->sibling);
2338 root->number_of_cgroups--;
2339
2340 err_destroy:
2341
2342 for_each_subsys(root, ss) {
2343 if (cgrp->subsys[ss->subsys_id])
2344 ss->destroy(ss, cgrp);
2345 }
2346
2347 mutex_unlock(&cgroup_mutex);
2348
2349 /* Release the reference count that we took on the superblock */
2350 deactivate_super(sb);
2351
2352 kfree(cgrp);
2353 return err;
2354 }
2355
2356 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2357 {
2358 struct cgroup *c_parent = dentry->d_parent->d_fsdata;
2359
2360 /* the vfs holds inode->i_mutex already */
2361 return cgroup_create(c_parent, dentry, mode | S_IFDIR);
2362 }
2363
2364 static inline int cgroup_has_css_refs(struct cgroup *cgrp)
2365 {
2366 /* Check the reference count on each subsystem. Since we
2367 * already established that there are no tasks in the
2368 * cgroup, if the css refcount is also 0, then there should
2369 * be no outstanding references, so the subsystem is safe to
2370 * destroy. We scan across all subsystems rather than using
2371 * the per-hierarchy linked list of mounted subsystems since
2372 * we can be called via check_for_release() with no
2373 * synchronization other than RCU, and the subsystem linked
2374 * list isn't RCU-safe */
2375 int i;
2376 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2377 struct cgroup_subsys *ss = subsys[i];
2378 struct cgroup_subsys_state *css;
2379 /* Skip subsystems not in this hierarchy */
2380 if (ss->root != cgrp->root)
2381 continue;
2382 css = cgrp->subsys[ss->subsys_id];
2383 /* When called from check_for_release() it's possible
2384 * that by this point the cgroup has been removed
2385 * and the css deleted. But a false-positive doesn't
2386 * matter, since it can only happen if the cgroup
2387 * has been deleted and hence no longer needs the
2388 * release agent to be called anyway. */
2389 if (css && atomic_read(&css->refcnt))
2390 return 1;
2391 }
2392 return 0;
2393 }
2394
2395 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
2396 {
2397 struct cgroup *cgrp = dentry->d_fsdata;
2398 struct dentry *d;
2399 struct cgroup *parent;
2400 struct super_block *sb;
2401 struct cgroupfs_root *root;
2402
2403 /* the vfs holds both inode->i_mutex already */
2404
2405 mutex_lock(&cgroup_mutex);
2406 if (atomic_read(&cgrp->count) != 0) {
2407 mutex_unlock(&cgroup_mutex);
2408 return -EBUSY;
2409 }
2410 if (!list_empty(&cgrp->children)) {
2411 mutex_unlock(&cgroup_mutex);
2412 return -EBUSY;
2413 }
2414
2415 parent = cgrp->parent;
2416 root = cgrp->root;
2417 sb = root->sb;
2418
2419 /*
2420 * Call pre_destroy handlers of subsys. Notify subsystems
2421 * that rmdir() request comes.
2422 */
2423 cgroup_call_pre_destroy(cgrp);
2424
2425 if (cgroup_has_css_refs(cgrp)) {
2426 mutex_unlock(&cgroup_mutex);
2427 return -EBUSY;
2428 }
2429
2430 spin_lock(&release_list_lock);
2431 set_bit(CGRP_REMOVED, &cgrp->flags);
2432 if (!list_empty(&cgrp->release_list))
2433 list_del(&cgrp->release_list);
2434 spin_unlock(&release_list_lock);
2435 /* delete my sibling from parent->children */
2436 list_del(&cgrp->sibling);
2437 spin_lock(&cgrp->dentry->d_lock);
2438 d = dget(cgrp->dentry);
2439 cgrp->dentry = NULL;
2440 spin_unlock(&d->d_lock);
2441
2442 cgroup_d_remove_dir(d);
2443 dput(d);
2444
2445 set_bit(CGRP_RELEASABLE, &parent->flags);
2446 check_for_release(parent);
2447
2448 mutex_unlock(&cgroup_mutex);
2449 return 0;
2450 }
2451
2452 static void cgroup_init_subsys(struct cgroup_subsys *ss)
2453 {
2454 struct cgroup_subsys_state *css;
2455 struct list_head *l;
2456
2457 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
2458
2459 /* Create the top cgroup state for this subsystem */
2460 ss->root = &rootnode;
2461 css = ss->create(ss, dummytop);
2462 /* We don't handle early failures gracefully */
2463 BUG_ON(IS_ERR(css));
2464 init_cgroup_css(css, ss, dummytop);
2465
2466 /* Update all cgroup groups to contain a subsys
2467 * pointer to this state - since the subsystem is
2468 * newly registered, all tasks and hence all cgroup
2469 * groups are in the subsystem's top cgroup. */
2470 write_lock(&css_set_lock);
2471 l = &init_css_set.list;
2472 do {
2473 struct css_set *cg =
2474 list_entry(l, struct css_set, list);
2475 cg->subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
2476 l = l->next;
2477 } while (l != &init_css_set.list);
2478 write_unlock(&css_set_lock);
2479
2480 /* If this subsystem requested that it be notified with fork
2481 * events, we should send it one now for every process in the
2482 * system */
2483 if (ss->fork) {
2484 struct task_struct *g, *p;
2485
2486 read_lock(&tasklist_lock);
2487 do_each_thread(g, p) {
2488 ss->fork(ss, p);
2489 } while_each_thread(g, p);
2490 read_unlock(&tasklist_lock);
2491 }
2492
2493 need_forkexit_callback |= ss->fork || ss->exit;
2494
2495 ss->active = 1;
2496 }
2497
2498 /**
2499 * cgroup_init_early - cgroup initialization at system boot
2500 *
2501 * Initialize cgroups at system boot, and initialize any
2502 * subsystems that request early init.
2503 */
2504 int __init cgroup_init_early(void)
2505 {
2506 int i;
2507 kref_init(&init_css_set.ref);
2508 kref_get(&init_css_set.ref);
2509 INIT_LIST_HEAD(&init_css_set.list);
2510 INIT_LIST_HEAD(&init_css_set.cg_links);
2511 INIT_LIST_HEAD(&init_css_set.tasks);
2512 css_set_count = 1;
2513 init_cgroup_root(&rootnode);
2514 list_add(&rootnode.root_list, &roots);
2515 root_count = 1;
2516 init_task.cgroups = &init_css_set;
2517
2518 init_css_set_link.cg = &init_css_set;
2519 list_add(&init_css_set_link.cgrp_link_list,
2520 &rootnode.top_cgroup.css_sets);
2521 list_add(&init_css_set_link.cg_link_list,
2522 &init_css_set.cg_links);
2523
2524 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2525 struct cgroup_subsys *ss = subsys[i];
2526
2527 BUG_ON(!ss->name);
2528 BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
2529 BUG_ON(!ss->create);
2530 BUG_ON(!ss->destroy);
2531 if (ss->subsys_id != i) {
2532 printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
2533 ss->name, ss->subsys_id);
2534 BUG();
2535 }
2536
2537 if (ss->early_init)
2538 cgroup_init_subsys(ss);
2539 }
2540 return 0;
2541 }
2542
2543 /**
2544 * cgroup_init - cgroup initialization
2545 *
2546 * Register cgroup filesystem and /proc file, and initialize
2547 * any subsystems that didn't request early init.
2548 */
2549 int __init cgroup_init(void)
2550 {
2551 int err;
2552 int i;
2553 struct proc_dir_entry *entry;
2554
2555 err = bdi_init(&cgroup_backing_dev_info);
2556 if (err)
2557 return err;
2558
2559 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2560 struct cgroup_subsys *ss = subsys[i];
2561 if (!ss->early_init)
2562 cgroup_init_subsys(ss);
2563 }
2564
2565 err = register_filesystem(&cgroup_fs_type);
2566 if (err < 0)
2567 goto out;
2568
2569 entry = create_proc_entry("cgroups", 0, NULL);
2570 if (entry)
2571 entry->proc_fops = &proc_cgroupstats_operations;
2572
2573 out:
2574 if (err)
2575 bdi_destroy(&cgroup_backing_dev_info);
2576
2577 return err;
2578 }
2579
2580 /*
2581 * proc_cgroup_show()
2582 * - Print task's cgroup paths into seq_file, one line for each hierarchy
2583 * - Used for /proc/<pid>/cgroup.
2584 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
2585 * doesn't really matter if tsk->cgroup changes after we read it,
2586 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
2587 * anyway. No need to check that tsk->cgroup != NULL, thanks to
2588 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
2589 * cgroup to top_cgroup.
2590 */
2591
2592 /* TODO: Use a proper seq_file iterator */
2593 static int proc_cgroup_show(struct seq_file *m, void *v)
2594 {
2595 struct pid *pid;
2596 struct task_struct *tsk;
2597 char *buf;
2598 int retval;
2599 struct cgroupfs_root *root;
2600
2601 retval = -ENOMEM;
2602 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2603 if (!buf)
2604 goto out;
2605
2606 retval = -ESRCH;
2607 pid = m->private;
2608 tsk = get_pid_task(pid, PIDTYPE_PID);
2609 if (!tsk)
2610 goto out_free;
2611
2612 retval = 0;
2613
2614 mutex_lock(&cgroup_mutex);
2615
2616 for_each_root(root) {
2617 struct cgroup_subsys *ss;
2618 struct cgroup *cgrp;
2619 int subsys_id;
2620 int count = 0;
2621
2622 /* Skip this hierarchy if it has no active subsystems */
2623 if (!root->actual_subsys_bits)
2624 continue;
2625 seq_printf(m, "%lu:", root->subsys_bits);
2626 for_each_subsys(root, ss)
2627 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
2628 seq_putc(m, ':');
2629 get_first_subsys(&root->top_cgroup, NULL, &subsys_id);
2630 cgrp = task_cgroup(tsk, subsys_id);
2631 retval = cgroup_path(cgrp, buf, PAGE_SIZE);
2632 if (retval < 0)
2633 goto out_unlock;
2634 seq_puts(m, buf);
2635 seq_putc(m, '\n');
2636 }
2637
2638 out_unlock:
2639 mutex_unlock(&cgroup_mutex);
2640 put_task_struct(tsk);
2641 out_free:
2642 kfree(buf);
2643 out:
2644 return retval;
2645 }
2646
2647 static int cgroup_open(struct inode *inode, struct file *file)
2648 {
2649 struct pid *pid = PROC_I(inode)->pid;
2650 return single_open(file, proc_cgroup_show, pid);
2651 }
2652
2653 struct file_operations proc_cgroup_operations = {
2654 .open = cgroup_open,
2655 .read = seq_read,
2656 .llseek = seq_lseek,
2657 .release = single_release,
2658 };
2659
2660 /* Display information about each subsystem and each hierarchy */
2661 static int proc_cgroupstats_show(struct seq_file *m, void *v)
2662 {
2663 int i;
2664
2665 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
2666 mutex_lock(&cgroup_mutex);
2667 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2668 struct cgroup_subsys *ss = subsys[i];
2669 seq_printf(m, "%s\t%lu\t%d\t%d\n",
2670 ss->name, ss->root->subsys_bits,
2671 ss->root->number_of_cgroups, !ss->disabled);
2672 }
2673 mutex_unlock(&cgroup_mutex);
2674 return 0;
2675 }
2676
2677 static int cgroupstats_open(struct inode *inode, struct file *file)
2678 {
2679 return single_open(file, proc_cgroupstats_show, NULL);
2680 }
2681
2682 static struct file_operations proc_cgroupstats_operations = {
2683 .open = cgroupstats_open,
2684 .read = seq_read,
2685 .llseek = seq_lseek,
2686 .release = single_release,
2687 };
2688
2689 /**
2690 * cgroup_fork - attach newly forked task to its parents cgroup.
2691 * @child: pointer to task_struct of forking parent process.
2692 *
2693 * Description: A task inherits its parent's cgroup at fork().
2694 *
2695 * A pointer to the shared css_set was automatically copied in
2696 * fork.c by dup_task_struct(). However, we ignore that copy, since
2697 * it was not made under the protection of RCU or cgroup_mutex, so
2698 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
2699 * have already changed current->cgroups, allowing the previously
2700 * referenced cgroup group to be removed and freed.
2701 *
2702 * At the point that cgroup_fork() is called, 'current' is the parent
2703 * task, and the passed argument 'child' points to the child task.
2704 */
2705 void cgroup_fork(struct task_struct *child)
2706 {
2707 task_lock(current);
2708 child->cgroups = current->cgroups;
2709 get_css_set(child->cgroups);
2710 task_unlock(current);
2711 INIT_LIST_HEAD(&child->cg_list);
2712 }
2713
2714 /**
2715 * cgroup_fork_callbacks - run fork callbacks
2716 * @child: the new task
2717 *
2718 * Called on a new task very soon before adding it to the
2719 * tasklist. No need to take any locks since no-one can
2720 * be operating on this task.
2721 */
2722 void cgroup_fork_callbacks(struct task_struct *child)
2723 {
2724 if (need_forkexit_callback) {
2725 int i;
2726 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2727 struct cgroup_subsys *ss = subsys[i];
2728 if (ss->fork)
2729 ss->fork(ss, child);
2730 }
2731 }
2732 }
2733
2734 /**
2735 * cgroup_post_fork - called on a new task after adding it to the task list
2736 * @child: the task in question
2737 *
2738 * Adds the task to the list running through its css_set if necessary.
2739 * Has to be after the task is visible on the task list in case we race
2740 * with the first call to cgroup_iter_start() - to guarantee that the
2741 * new task ends up on its list.
2742 */
2743 void cgroup_post_fork(struct task_struct *child)
2744 {
2745 if (use_task_css_set_links) {
2746 write_lock(&css_set_lock);
2747 if (list_empty(&child->cg_list))
2748 list_add(&child->cg_list, &child->cgroups->tasks);
2749 write_unlock(&css_set_lock);
2750 }
2751 }
2752 /**
2753 * cgroup_exit - detach cgroup from exiting task
2754 * @tsk: pointer to task_struct of exiting process
2755 * @run_callback: run exit callbacks?
2756 *
2757 * Description: Detach cgroup from @tsk and release it.
2758 *
2759 * Note that cgroups marked notify_on_release force every task in
2760 * them to take the global cgroup_mutex mutex when exiting.
2761 * This could impact scaling on very large systems. Be reluctant to
2762 * use notify_on_release cgroups where very high task exit scaling
2763 * is required on large systems.
2764 *
2765 * the_top_cgroup_hack:
2766 *
2767 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
2768 *
2769 * We call cgroup_exit() while the task is still competent to
2770 * handle notify_on_release(), then leave the task attached to the
2771 * root cgroup in each hierarchy for the remainder of its exit.
2772 *
2773 * To do this properly, we would increment the reference count on
2774 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
2775 * code we would add a second cgroup function call, to drop that
2776 * reference. This would just create an unnecessary hot spot on
2777 * the top_cgroup reference count, to no avail.
2778 *
2779 * Normally, holding a reference to a cgroup without bumping its
2780 * count is unsafe. The cgroup could go away, or someone could
2781 * attach us to a different cgroup, decrementing the count on
2782 * the first cgroup that we never incremented. But in this case,
2783 * top_cgroup isn't going away, and either task has PF_EXITING set,
2784 * which wards off any cgroup_attach_task() attempts, or task is a failed
2785 * fork, never visible to cgroup_attach_task.
2786 */
2787 void cgroup_exit(struct task_struct *tsk, int run_callbacks)
2788 {
2789 int i;
2790 struct css_set *cg;
2791
2792 if (run_callbacks && need_forkexit_callback) {
2793 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2794 struct cgroup_subsys *ss = subsys[i];
2795 if (ss->exit)
2796 ss->exit(ss, tsk);
2797 }
2798 }
2799
2800 /*
2801 * Unlink from the css_set task list if necessary.
2802 * Optimistically check cg_list before taking
2803 * css_set_lock
2804 */
2805 if (!list_empty(&tsk->cg_list)) {
2806 write_lock(&css_set_lock);
2807 if (!list_empty(&tsk->cg_list))
2808 list_del(&tsk->cg_list);
2809 write_unlock(&css_set_lock);
2810 }
2811
2812 /* Reassign the task to the init_css_set. */
2813 task_lock(tsk);
2814 cg = tsk->cgroups;
2815 tsk->cgroups = &init_css_set;
2816 task_unlock(tsk);
2817 if (cg)
2818 put_css_set_taskexit(cg);
2819 }
2820
2821 /**
2822 * cgroup_clone - clone the cgroup the given subsystem is attached to
2823 * @tsk: the task to be moved
2824 * @subsys: the given subsystem
2825 *
2826 * Duplicate the current cgroup in the hierarchy that the given
2827 * subsystem is attached to, and move this task into the new
2828 * child.
2829 */
2830 int cgroup_clone(struct task_struct *tsk, struct cgroup_subsys *subsys)
2831 {
2832 struct dentry *dentry;
2833 int ret = 0;
2834 char nodename[MAX_CGROUP_TYPE_NAMELEN];
2835 struct cgroup *parent, *child;
2836 struct inode *inode;
2837 struct css_set *cg;
2838 struct cgroupfs_root *root;
2839 struct cgroup_subsys *ss;
2840
2841 /* We shouldn't be called by an unregistered subsystem */
2842 BUG_ON(!subsys->active);
2843
2844 /* First figure out what hierarchy and cgroup we're dealing
2845 * with, and pin them so we can drop cgroup_mutex */
2846 mutex_lock(&cgroup_mutex);
2847 again:
2848 root = subsys->root;
2849 if (root == &rootnode) {
2850 printk(KERN_INFO
2851 "Not cloning cgroup for unused subsystem %s\n",
2852 subsys->name);
2853 mutex_unlock(&cgroup_mutex);
2854 return 0;
2855 }
2856 cg = tsk->cgroups;
2857 parent = task_cgroup(tsk, subsys->subsys_id);
2858
2859 snprintf(nodename, MAX_CGROUP_TYPE_NAMELEN, "node_%d", tsk->pid);
2860
2861 /* Pin the hierarchy */
2862 atomic_inc(&parent->root->sb->s_active);
2863
2864 /* Keep the cgroup alive */
2865 get_css_set(cg);
2866 mutex_unlock(&cgroup_mutex);
2867
2868 /* Now do the VFS work to create a cgroup */
2869 inode = parent->dentry->d_inode;
2870
2871 /* Hold the parent directory mutex across this operation to
2872 * stop anyone else deleting the new cgroup */
2873 mutex_lock(&inode->i_mutex);
2874 dentry = lookup_one_len(nodename, parent->dentry, strlen(nodename));
2875 if (IS_ERR(dentry)) {
2876 printk(KERN_INFO
2877 "cgroup: Couldn't allocate dentry for %s: %ld\n", nodename,
2878 PTR_ERR(dentry));
2879 ret = PTR_ERR(dentry);
2880 goto out_release;
2881 }
2882
2883 /* Create the cgroup directory, which also creates the cgroup */
2884 ret = vfs_mkdir(inode, dentry, S_IFDIR | 0755);
2885 child = __d_cgrp(dentry);
2886 dput(dentry);
2887 if (ret) {
2888 printk(KERN_INFO
2889 "Failed to create cgroup %s: %d\n", nodename,
2890 ret);
2891 goto out_release;
2892 }
2893
2894 if (!child) {
2895 printk(KERN_INFO
2896 "Couldn't find new cgroup %s\n", nodename);
2897 ret = -ENOMEM;
2898 goto out_release;
2899 }
2900
2901 /* The cgroup now exists. Retake cgroup_mutex and check
2902 * that we're still in the same state that we thought we
2903 * were. */
2904 mutex_lock(&cgroup_mutex);
2905 if ((root != subsys->root) ||
2906 (parent != task_cgroup(tsk, subsys->subsys_id))) {
2907 /* Aargh, we raced ... */
2908 mutex_unlock(&inode->i_mutex);
2909 put_css_set(cg);
2910
2911 deactivate_super(parent->root->sb);
2912 /* The cgroup is still accessible in the VFS, but
2913 * we're not going to try to rmdir() it at this
2914 * point. */
2915 printk(KERN_INFO
2916 "Race in cgroup_clone() - leaking cgroup %s\n",
2917 nodename);
2918 goto again;
2919 }
2920
2921 /* do any required auto-setup */
2922 for_each_subsys(root, ss) {
2923 if (ss->post_clone)
2924 ss->post_clone(ss, child);
2925 }
2926
2927 /* All seems fine. Finish by moving the task into the new cgroup */
2928 ret = cgroup_attach_task(child, tsk);
2929 mutex_unlock(&cgroup_mutex);
2930
2931 out_release:
2932 mutex_unlock(&inode->i_mutex);
2933
2934 mutex_lock(&cgroup_mutex);
2935 put_css_set(cg);
2936 mutex_unlock(&cgroup_mutex);
2937 deactivate_super(parent->root->sb);
2938 return ret;
2939 }
2940
2941 /**
2942 * cgroup_is_descendant - see if @cgrp is a descendant of current task's cgrp
2943 * @cgrp: the cgroup in question
2944 *
2945 * See if @cgrp is a descendant of the current task's cgroup in
2946 * the appropriate hierarchy.
2947 *
2948 * If we are sending in dummytop, then presumably we are creating
2949 * the top cgroup in the subsystem.
2950 *
2951 * Called only by the ns (nsproxy) cgroup.
2952 */
2953 int cgroup_is_descendant(const struct cgroup *cgrp)
2954 {
2955 int ret;
2956 struct cgroup *target;
2957 int subsys_id;
2958
2959 if (cgrp == dummytop)
2960 return 1;
2961
2962 get_first_subsys(cgrp, NULL, &subsys_id);
2963 target = task_cgroup(current, subsys_id);
2964 while (cgrp != target && cgrp!= cgrp->top_cgroup)
2965 cgrp = cgrp->parent;
2966 ret = (cgrp == target);
2967 return ret;
2968 }
2969
2970 static void check_for_release(struct cgroup *cgrp)
2971 {
2972 /* All of these checks rely on RCU to keep the cgroup
2973 * structure alive */
2974 if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
2975 && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
2976 /* Control Group is currently removeable. If it's not
2977 * already queued for a userspace notification, queue
2978 * it now */
2979 int need_schedule_work = 0;
2980 spin_lock(&release_list_lock);
2981 if (!cgroup_is_removed(cgrp) &&
2982 list_empty(&cgrp->release_list)) {
2983 list_add(&cgrp->release_list, &release_list);
2984 need_schedule_work = 1;
2985 }
2986 spin_unlock(&release_list_lock);
2987 if (need_schedule_work)
2988 schedule_work(&release_agent_work);
2989 }
2990 }
2991
2992 void __css_put(struct cgroup_subsys_state *css)
2993 {
2994 struct cgroup *cgrp = css->cgroup;
2995 rcu_read_lock();
2996 if (atomic_dec_and_test(&css->refcnt) && notify_on_release(cgrp)) {
2997 set_bit(CGRP_RELEASABLE, &cgrp->flags);
2998 check_for_release(cgrp);
2999 }
3000 rcu_read_unlock();
3001 }
3002
3003 /*
3004 * Notify userspace when a cgroup is released, by running the
3005 * configured release agent with the name of the cgroup (path
3006 * relative to the root of cgroup file system) as the argument.
3007 *
3008 * Most likely, this user command will try to rmdir this cgroup.
3009 *
3010 * This races with the possibility that some other task will be
3011 * attached to this cgroup before it is removed, or that some other
3012 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
3013 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
3014 * unused, and this cgroup will be reprieved from its death sentence,
3015 * to continue to serve a useful existence. Next time it's released,
3016 * we will get notified again, if it still has 'notify_on_release' set.
3017 *
3018 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
3019 * means only wait until the task is successfully execve()'d. The
3020 * separate release agent task is forked by call_usermodehelper(),
3021 * then control in this thread returns here, without waiting for the
3022 * release agent task. We don't bother to wait because the caller of
3023 * this routine has no use for the exit status of the release agent
3024 * task, so no sense holding our caller up for that.
3025 */
3026 static void cgroup_release_agent(struct work_struct *work)
3027 {
3028 BUG_ON(work != &release_agent_work);
3029 mutex_lock(&cgroup_mutex);
3030 spin_lock(&release_list_lock);
3031 while (!list_empty(&release_list)) {
3032 char *argv[3], *envp[3];
3033 int i;
3034 char *pathbuf;
3035 struct cgroup *cgrp = list_entry(release_list.next,
3036 struct cgroup,
3037 release_list);
3038 list_del_init(&cgrp->release_list);
3039 spin_unlock(&release_list_lock);
3040 pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3041 if (!pathbuf) {
3042 spin_lock(&release_list_lock);
3043 continue;
3044 }
3045
3046 if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0) {
3047 kfree(pathbuf);
3048 spin_lock(&release_list_lock);
3049 continue;
3050 }
3051
3052 i = 0;
3053 argv[i++] = cgrp->root->release_agent_path;
3054 argv[i++] = (char *)pathbuf;
3055 argv[i] = NULL;
3056
3057 i = 0;
3058 /* minimal command environment */
3059 envp[i++] = "HOME=/";
3060 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
3061 envp[i] = NULL;
3062
3063 /* Drop the lock while we invoke the usermode helper,
3064 * since the exec could involve hitting disk and hence
3065 * be a slow process */
3066 mutex_unlock(&cgroup_mutex);
3067 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
3068 kfree(pathbuf);
3069 mutex_lock(&cgroup_mutex);
3070 spin_lock(&release_list_lock);
3071 }
3072 spin_unlock(&release_list_lock);
3073 mutex_unlock(&cgroup_mutex);
3074 }
3075
3076 static int __init cgroup_disable(char *str)
3077 {
3078 int i;
3079 char *token;
3080
3081 while ((token = strsep(&str, ",")) != NULL) {
3082 if (!*token)
3083 continue;
3084
3085 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3086 struct cgroup_subsys *ss = subsys[i];
3087
3088 if (!strcmp(token, ss->name)) {
3089 ss->disabled = 1;
3090 printk(KERN_INFO "Disabling %s control group"
3091 " subsystem\n", ss->name);
3092 break;
3093 }
3094 }
3095 }
3096 return 1;
3097 }
3098 __setup("cgroup_disable=", cgroup_disable);
This page took 0.094549 seconds and 6 git commands to generate.