cgroup: fix cgroup_add_cftypes() error handling
[deliverable/linux.git] / kernel / cgroup.c
1 /*
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29 #include <linux/cgroup.h>
30 #include <linux/cred.h>
31 #include <linux/ctype.h>
32 #include <linux/errno.h>
33 #include <linux/init_task.h>
34 #include <linux/kernel.h>
35 #include <linux/list.h>
36 #include <linux/mm.h>
37 #include <linux/mutex.h>
38 #include <linux/mount.h>
39 #include <linux/pagemap.h>
40 #include <linux/proc_fs.h>
41 #include <linux/rcupdate.h>
42 #include <linux/sched.h>
43 #include <linux/backing-dev.h>
44 #include <linux/seq_file.h>
45 #include <linux/slab.h>
46 #include <linux/magic.h>
47 #include <linux/spinlock.h>
48 #include <linux/string.h>
49 #include <linux/sort.h>
50 #include <linux/kmod.h>
51 #include <linux/module.h>
52 #include <linux/delayacct.h>
53 #include <linux/cgroupstats.h>
54 #include <linux/hashtable.h>
55 #include <linux/namei.h>
56 #include <linux/pid_namespace.h>
57 #include <linux/idr.h>
58 #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
59 #include <linux/eventfd.h>
60 #include <linux/poll.h>
61 #include <linux/flex_array.h> /* used in cgroup_attach_task */
62 #include <linux/kthread.h>
63
64 #include <linux/atomic.h>
65
66 /*
67 * cgroup_mutex is the master lock. Any modification to cgroup or its
68 * hierarchy must be performed while holding it.
69 *
70 * cgroup_root_mutex nests inside cgroup_mutex and should be held to modify
71 * cgroupfs_root of any cgroup hierarchy - subsys list, flags,
72 * release_agent_path and so on. Modifying requires both cgroup_mutex and
73 * cgroup_root_mutex. Readers can acquire either of the two. This is to
74 * break the following locking order cycle.
75 *
76 * A. cgroup_mutex -> cred_guard_mutex -> s_type->i_mutex_key -> namespace_sem
77 * B. namespace_sem -> cgroup_mutex
78 *
79 * B happens only through cgroup_show_options() and using cgroup_root_mutex
80 * breaks it.
81 */
82 #ifdef CONFIG_PROVE_RCU
83 DEFINE_MUTEX(cgroup_mutex);
84 EXPORT_SYMBOL_GPL(cgroup_mutex); /* only for task_subsys_state_check() */
85 #else
86 static DEFINE_MUTEX(cgroup_mutex);
87 #endif
88
89 static DEFINE_MUTEX(cgroup_root_mutex);
90
91 /*
92 * Generate an array of cgroup subsystem pointers. At boot time, this is
93 * populated with the built in subsystems, and modular subsystems are
94 * registered after that. The mutable section of this array is protected by
95 * cgroup_mutex.
96 */
97 #define SUBSYS(_x) [_x ## _subsys_id] = &_x ## _subsys,
98 #define IS_SUBSYS_ENABLED(option) IS_BUILTIN(option)
99 static struct cgroup_subsys *cgroup_subsys[CGROUP_SUBSYS_COUNT] = {
100 #include <linux/cgroup_subsys.h>
101 };
102
103 /*
104 * The dummy hierarchy, reserved for the subsystems that are otherwise
105 * unattached - it never has more than a single cgroup, and all tasks are
106 * part of that cgroup.
107 */
108 static struct cgroupfs_root cgroup_dummy_root;
109
110 /* dummy_top is a shorthand for the dummy hierarchy's top cgroup */
111 static struct cgroup * const cgroup_dummy_top = &cgroup_dummy_root.top_cgroup;
112
113 /*
114 * cgroupfs file entry, pointed to from leaf dentry->d_fsdata.
115 */
116 struct cfent {
117 struct list_head node;
118 struct dentry *dentry;
119 struct cftype *type;
120
121 /* file xattrs */
122 struct simple_xattrs xattrs;
123 };
124
125 /*
126 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
127 * cgroup_subsys->use_id != 0.
128 */
129 #define CSS_ID_MAX (65535)
130 struct css_id {
131 /*
132 * The css to which this ID points. This pointer is set to valid value
133 * after cgroup is populated. If cgroup is removed, this will be NULL.
134 * This pointer is expected to be RCU-safe because destroy()
135 * is called after synchronize_rcu(). But for safe use, css_tryget()
136 * should be used for avoiding race.
137 */
138 struct cgroup_subsys_state __rcu *css;
139 /*
140 * ID of this css.
141 */
142 unsigned short id;
143 /*
144 * Depth in hierarchy which this ID belongs to.
145 */
146 unsigned short depth;
147 /*
148 * ID is freed by RCU. (and lookup routine is RCU safe.)
149 */
150 struct rcu_head rcu_head;
151 /*
152 * Hierarchy of CSS ID belongs to.
153 */
154 unsigned short stack[0]; /* Array of Length (depth+1) */
155 };
156
157 /*
158 * cgroup_event represents events which userspace want to receive.
159 */
160 struct cgroup_event {
161 /*
162 * Cgroup which the event belongs to.
163 */
164 struct cgroup *cgrp;
165 /*
166 * Control file which the event associated.
167 */
168 struct cftype *cft;
169 /*
170 * eventfd to signal userspace about the event.
171 */
172 struct eventfd_ctx *eventfd;
173 /*
174 * Each of these stored in a list by the cgroup.
175 */
176 struct list_head list;
177 /*
178 * All fields below needed to unregister event when
179 * userspace closes eventfd.
180 */
181 poll_table pt;
182 wait_queue_head_t *wqh;
183 wait_queue_t wait;
184 struct work_struct remove;
185 };
186
187 /* The list of hierarchy roots */
188
189 static LIST_HEAD(cgroup_roots);
190 static int cgroup_root_count;
191
192 /*
193 * Hierarchy ID allocation and mapping. It follows the same exclusion
194 * rules as other root ops - both cgroup_mutex and cgroup_root_mutex for
195 * writes, either for reads.
196 */
197 static DEFINE_IDR(cgroup_hierarchy_idr);
198
199 static struct cgroup_name root_cgroup_name = { .name = "/" };
200
201 /*
202 * Assign a monotonically increasing serial number to cgroups. It
203 * guarantees cgroups with bigger numbers are newer than those with smaller
204 * numbers. Also, as cgroups are always appended to the parent's
205 * ->children list, it guarantees that sibling cgroups are always sorted in
206 * the ascending serial number order on the list. Protected by
207 * cgroup_mutex.
208 */
209 static u64 cgroup_serial_nr_next = 1;
210
211 /* This flag indicates whether tasks in the fork and exit paths should
212 * check for fork/exit handlers to call. This avoids us having to do
213 * extra work in the fork/exit path if none of the subsystems need to
214 * be called.
215 */
216 static int need_forkexit_callback __read_mostly;
217
218 static void cgroup_offline_fn(struct work_struct *work);
219 static int cgroup_destroy_locked(struct cgroup *cgrp);
220 static int cgroup_addrm_files(struct cgroup *cgrp, struct cgroup_subsys *subsys,
221 struct cftype cfts[], bool is_add);
222
223 /* convenient tests for these bits */
224 static inline bool cgroup_is_dead(const struct cgroup *cgrp)
225 {
226 return test_bit(CGRP_DEAD, &cgrp->flags);
227 }
228
229 /**
230 * cgroup_is_descendant - test ancestry
231 * @cgrp: the cgroup to be tested
232 * @ancestor: possible ancestor of @cgrp
233 *
234 * Test whether @cgrp is a descendant of @ancestor. It also returns %true
235 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
236 * and @ancestor are accessible.
237 */
238 bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
239 {
240 while (cgrp) {
241 if (cgrp == ancestor)
242 return true;
243 cgrp = cgrp->parent;
244 }
245 return false;
246 }
247 EXPORT_SYMBOL_GPL(cgroup_is_descendant);
248
249 static int cgroup_is_releasable(const struct cgroup *cgrp)
250 {
251 const int bits =
252 (1 << CGRP_RELEASABLE) |
253 (1 << CGRP_NOTIFY_ON_RELEASE);
254 return (cgrp->flags & bits) == bits;
255 }
256
257 static int notify_on_release(const struct cgroup *cgrp)
258 {
259 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
260 }
261
262 /**
263 * for_each_subsys - iterate all loaded cgroup subsystems
264 * @ss: the iteration cursor
265 * @i: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
266 *
267 * Should be called under cgroup_mutex.
268 */
269 #define for_each_subsys(ss, i) \
270 for ((i) = 0; (i) < CGROUP_SUBSYS_COUNT; (i)++) \
271 if (({ lockdep_assert_held(&cgroup_mutex); \
272 !((ss) = cgroup_subsys[i]); })) { } \
273 else
274
275 /**
276 * for_each_builtin_subsys - iterate all built-in cgroup subsystems
277 * @ss: the iteration cursor
278 * @i: the index of @ss, CGROUP_BUILTIN_SUBSYS_COUNT after reaching the end
279 *
280 * Bulit-in subsystems are always present and iteration itself doesn't
281 * require any synchronization.
282 */
283 #define for_each_builtin_subsys(ss, i) \
284 for ((i) = 0; (i) < CGROUP_BUILTIN_SUBSYS_COUNT && \
285 (((ss) = cgroup_subsys[i]) || true); (i)++)
286
287 /* iterate each subsystem attached to a hierarchy */
288 #define for_each_root_subsys(root, ss) \
289 list_for_each_entry((ss), &(root)->subsys_list, sibling)
290
291 /* iterate across the active hierarchies */
292 #define for_each_active_root(root) \
293 list_for_each_entry((root), &cgroup_roots, root_list)
294
295 static inline struct cgroup *__d_cgrp(struct dentry *dentry)
296 {
297 return dentry->d_fsdata;
298 }
299
300 static inline struct cfent *__d_cfe(struct dentry *dentry)
301 {
302 return dentry->d_fsdata;
303 }
304
305 static inline struct cftype *__d_cft(struct dentry *dentry)
306 {
307 return __d_cfe(dentry)->type;
308 }
309
310 /**
311 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
312 * @cgrp: the cgroup to be checked for liveness
313 *
314 * On success, returns true; the mutex should be later unlocked. On
315 * failure returns false with no lock held.
316 */
317 static bool cgroup_lock_live_group(struct cgroup *cgrp)
318 {
319 mutex_lock(&cgroup_mutex);
320 if (cgroup_is_dead(cgrp)) {
321 mutex_unlock(&cgroup_mutex);
322 return false;
323 }
324 return true;
325 }
326
327 /* the list of cgroups eligible for automatic release. Protected by
328 * release_list_lock */
329 static LIST_HEAD(release_list);
330 static DEFINE_RAW_SPINLOCK(release_list_lock);
331 static void cgroup_release_agent(struct work_struct *work);
332 static DECLARE_WORK(release_agent_work, cgroup_release_agent);
333 static void check_for_release(struct cgroup *cgrp);
334
335 /*
336 * A cgroup can be associated with multiple css_sets as different tasks may
337 * belong to different cgroups on different hierarchies. In the other
338 * direction, a css_set is naturally associated with multiple cgroups.
339 * This M:N relationship is represented by the following link structure
340 * which exists for each association and allows traversing the associations
341 * from both sides.
342 */
343 struct cgrp_cset_link {
344 /* the cgroup and css_set this link associates */
345 struct cgroup *cgrp;
346 struct css_set *cset;
347
348 /* list of cgrp_cset_links anchored at cgrp->cset_links */
349 struct list_head cset_link;
350
351 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
352 struct list_head cgrp_link;
353 };
354
355 /* The default css_set - used by init and its children prior to any
356 * hierarchies being mounted. It contains a pointer to the root state
357 * for each subsystem. Also used to anchor the list of css_sets. Not
358 * reference-counted, to improve performance when child cgroups
359 * haven't been created.
360 */
361
362 static struct css_set init_css_set;
363 static struct cgrp_cset_link init_cgrp_cset_link;
364
365 static int cgroup_init_idr(struct cgroup_subsys *ss,
366 struct cgroup_subsys_state *css);
367
368 /* css_set_lock protects the list of css_set objects, and the
369 * chain of tasks off each css_set. Nests outside task->alloc_lock
370 * due to cgroup_iter_start() */
371 static DEFINE_RWLOCK(css_set_lock);
372 static int css_set_count;
373
374 /*
375 * hash table for cgroup groups. This improves the performance to find
376 * an existing css_set. This hash doesn't (currently) take into
377 * account cgroups in empty hierarchies.
378 */
379 #define CSS_SET_HASH_BITS 7
380 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
381
382 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
383 {
384 unsigned long key = 0UL;
385 struct cgroup_subsys *ss;
386 int i;
387
388 for_each_subsys(ss, i)
389 key += (unsigned long)css[i];
390 key = (key >> 16) ^ key;
391
392 return key;
393 }
394
395 /* We don't maintain the lists running through each css_set to its
396 * task until after the first call to cgroup_iter_start(). This
397 * reduces the fork()/exit() overhead for people who have cgroups
398 * compiled into their kernel but not actually in use */
399 static int use_task_css_set_links __read_mostly;
400
401 static void __put_css_set(struct css_set *cset, int taskexit)
402 {
403 struct cgrp_cset_link *link, *tmp_link;
404
405 /*
406 * Ensure that the refcount doesn't hit zero while any readers
407 * can see it. Similar to atomic_dec_and_lock(), but for an
408 * rwlock
409 */
410 if (atomic_add_unless(&cset->refcount, -1, 1))
411 return;
412 write_lock(&css_set_lock);
413 if (!atomic_dec_and_test(&cset->refcount)) {
414 write_unlock(&css_set_lock);
415 return;
416 }
417
418 /* This css_set is dead. unlink it and release cgroup refcounts */
419 hash_del(&cset->hlist);
420 css_set_count--;
421
422 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
423 struct cgroup *cgrp = link->cgrp;
424
425 list_del(&link->cset_link);
426 list_del(&link->cgrp_link);
427
428 /* @cgrp can't go away while we're holding css_set_lock */
429 if (list_empty(&cgrp->cset_links) && notify_on_release(cgrp)) {
430 if (taskexit)
431 set_bit(CGRP_RELEASABLE, &cgrp->flags);
432 check_for_release(cgrp);
433 }
434
435 kfree(link);
436 }
437
438 write_unlock(&css_set_lock);
439 kfree_rcu(cset, rcu_head);
440 }
441
442 /*
443 * refcounted get/put for css_set objects
444 */
445 static inline void get_css_set(struct css_set *cset)
446 {
447 atomic_inc(&cset->refcount);
448 }
449
450 static inline void put_css_set(struct css_set *cset)
451 {
452 __put_css_set(cset, 0);
453 }
454
455 static inline void put_css_set_taskexit(struct css_set *cset)
456 {
457 __put_css_set(cset, 1);
458 }
459
460 /**
461 * compare_css_sets - helper function for find_existing_css_set().
462 * @cset: candidate css_set being tested
463 * @old_cset: existing css_set for a task
464 * @new_cgrp: cgroup that's being entered by the task
465 * @template: desired set of css pointers in css_set (pre-calculated)
466 *
467 * Returns true if "cg" matches "old_cg" except for the hierarchy
468 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
469 */
470 static bool compare_css_sets(struct css_set *cset,
471 struct css_set *old_cset,
472 struct cgroup *new_cgrp,
473 struct cgroup_subsys_state *template[])
474 {
475 struct list_head *l1, *l2;
476
477 if (memcmp(template, cset->subsys, sizeof(cset->subsys))) {
478 /* Not all subsystems matched */
479 return false;
480 }
481
482 /*
483 * Compare cgroup pointers in order to distinguish between
484 * different cgroups in heirarchies with no subsystems. We
485 * could get by with just this check alone (and skip the
486 * memcmp above) but on most setups the memcmp check will
487 * avoid the need for this more expensive check on almost all
488 * candidates.
489 */
490
491 l1 = &cset->cgrp_links;
492 l2 = &old_cset->cgrp_links;
493 while (1) {
494 struct cgrp_cset_link *link1, *link2;
495 struct cgroup *cgrp1, *cgrp2;
496
497 l1 = l1->next;
498 l2 = l2->next;
499 /* See if we reached the end - both lists are equal length. */
500 if (l1 == &cset->cgrp_links) {
501 BUG_ON(l2 != &old_cset->cgrp_links);
502 break;
503 } else {
504 BUG_ON(l2 == &old_cset->cgrp_links);
505 }
506 /* Locate the cgroups associated with these links. */
507 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
508 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
509 cgrp1 = link1->cgrp;
510 cgrp2 = link2->cgrp;
511 /* Hierarchies should be linked in the same order. */
512 BUG_ON(cgrp1->root != cgrp2->root);
513
514 /*
515 * If this hierarchy is the hierarchy of the cgroup
516 * that's changing, then we need to check that this
517 * css_set points to the new cgroup; if it's any other
518 * hierarchy, then this css_set should point to the
519 * same cgroup as the old css_set.
520 */
521 if (cgrp1->root == new_cgrp->root) {
522 if (cgrp1 != new_cgrp)
523 return false;
524 } else {
525 if (cgrp1 != cgrp2)
526 return false;
527 }
528 }
529 return true;
530 }
531
532 /**
533 * find_existing_css_set - init css array and find the matching css_set
534 * @old_cset: the css_set that we're using before the cgroup transition
535 * @cgrp: the cgroup that we're moving into
536 * @template: out param for the new set of csses, should be clear on entry
537 */
538 static struct css_set *find_existing_css_set(struct css_set *old_cset,
539 struct cgroup *cgrp,
540 struct cgroup_subsys_state *template[])
541 {
542 struct cgroupfs_root *root = cgrp->root;
543 struct cgroup_subsys *ss;
544 struct css_set *cset;
545 unsigned long key;
546 int i;
547
548 /*
549 * Build the set of subsystem state objects that we want to see in the
550 * new css_set. while subsystems can change globally, the entries here
551 * won't change, so no need for locking.
552 */
553 for_each_subsys(ss, i) {
554 if (root->subsys_mask & (1UL << i)) {
555 /* Subsystem is in this hierarchy. So we want
556 * the subsystem state from the new
557 * cgroup */
558 template[i] = cgrp->subsys[i];
559 } else {
560 /* Subsystem is not in this hierarchy, so we
561 * don't want to change the subsystem state */
562 template[i] = old_cset->subsys[i];
563 }
564 }
565
566 key = css_set_hash(template);
567 hash_for_each_possible(css_set_table, cset, hlist, key) {
568 if (!compare_css_sets(cset, old_cset, cgrp, template))
569 continue;
570
571 /* This css_set matches what we need */
572 return cset;
573 }
574
575 /* No existing cgroup group matched */
576 return NULL;
577 }
578
579 static void free_cgrp_cset_links(struct list_head *links_to_free)
580 {
581 struct cgrp_cset_link *link, *tmp_link;
582
583 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
584 list_del(&link->cset_link);
585 kfree(link);
586 }
587 }
588
589 /**
590 * allocate_cgrp_cset_links - allocate cgrp_cset_links
591 * @count: the number of links to allocate
592 * @tmp_links: list_head the allocated links are put on
593 *
594 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
595 * through ->cset_link. Returns 0 on success or -errno.
596 */
597 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
598 {
599 struct cgrp_cset_link *link;
600 int i;
601
602 INIT_LIST_HEAD(tmp_links);
603
604 for (i = 0; i < count; i++) {
605 link = kzalloc(sizeof(*link), GFP_KERNEL);
606 if (!link) {
607 free_cgrp_cset_links(tmp_links);
608 return -ENOMEM;
609 }
610 list_add(&link->cset_link, tmp_links);
611 }
612 return 0;
613 }
614
615 /**
616 * link_css_set - a helper function to link a css_set to a cgroup
617 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
618 * @cset: the css_set to be linked
619 * @cgrp: the destination cgroup
620 */
621 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
622 struct cgroup *cgrp)
623 {
624 struct cgrp_cset_link *link;
625
626 BUG_ON(list_empty(tmp_links));
627 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
628 link->cset = cset;
629 link->cgrp = cgrp;
630 list_move(&link->cset_link, &cgrp->cset_links);
631 /*
632 * Always add links to the tail of the list so that the list
633 * is sorted by order of hierarchy creation
634 */
635 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
636 }
637
638 /**
639 * find_css_set - return a new css_set with one cgroup updated
640 * @old_cset: the baseline css_set
641 * @cgrp: the cgroup to be updated
642 *
643 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
644 * substituted into the appropriate hierarchy.
645 */
646 static struct css_set *find_css_set(struct css_set *old_cset,
647 struct cgroup *cgrp)
648 {
649 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
650 struct css_set *cset;
651 struct list_head tmp_links;
652 struct cgrp_cset_link *link;
653 unsigned long key;
654
655 lockdep_assert_held(&cgroup_mutex);
656
657 /* First see if we already have a cgroup group that matches
658 * the desired set */
659 read_lock(&css_set_lock);
660 cset = find_existing_css_set(old_cset, cgrp, template);
661 if (cset)
662 get_css_set(cset);
663 read_unlock(&css_set_lock);
664
665 if (cset)
666 return cset;
667
668 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
669 if (!cset)
670 return NULL;
671
672 /* Allocate all the cgrp_cset_link objects that we'll need */
673 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
674 kfree(cset);
675 return NULL;
676 }
677
678 atomic_set(&cset->refcount, 1);
679 INIT_LIST_HEAD(&cset->cgrp_links);
680 INIT_LIST_HEAD(&cset->tasks);
681 INIT_HLIST_NODE(&cset->hlist);
682
683 /* Copy the set of subsystem state objects generated in
684 * find_existing_css_set() */
685 memcpy(cset->subsys, template, sizeof(cset->subsys));
686
687 write_lock(&css_set_lock);
688 /* Add reference counts and links from the new css_set. */
689 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
690 struct cgroup *c = link->cgrp;
691
692 if (c->root == cgrp->root)
693 c = cgrp;
694 link_css_set(&tmp_links, cset, c);
695 }
696
697 BUG_ON(!list_empty(&tmp_links));
698
699 css_set_count++;
700
701 /* Add this cgroup group to the hash table */
702 key = css_set_hash(cset->subsys);
703 hash_add(css_set_table, &cset->hlist, key);
704
705 write_unlock(&css_set_lock);
706
707 return cset;
708 }
709
710 /*
711 * Return the cgroup for "task" from the given hierarchy. Must be
712 * called with cgroup_mutex held.
713 */
714 static struct cgroup *task_cgroup_from_root(struct task_struct *task,
715 struct cgroupfs_root *root)
716 {
717 struct css_set *cset;
718 struct cgroup *res = NULL;
719
720 BUG_ON(!mutex_is_locked(&cgroup_mutex));
721 read_lock(&css_set_lock);
722 /*
723 * No need to lock the task - since we hold cgroup_mutex the
724 * task can't change groups, so the only thing that can happen
725 * is that it exits and its css is set back to init_css_set.
726 */
727 cset = task_css_set(task);
728 if (cset == &init_css_set) {
729 res = &root->top_cgroup;
730 } else {
731 struct cgrp_cset_link *link;
732
733 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
734 struct cgroup *c = link->cgrp;
735
736 if (c->root == root) {
737 res = c;
738 break;
739 }
740 }
741 }
742 read_unlock(&css_set_lock);
743 BUG_ON(!res);
744 return res;
745 }
746
747 /*
748 * There is one global cgroup mutex. We also require taking
749 * task_lock() when dereferencing a task's cgroup subsys pointers.
750 * See "The task_lock() exception", at the end of this comment.
751 *
752 * A task must hold cgroup_mutex to modify cgroups.
753 *
754 * Any task can increment and decrement the count field without lock.
755 * So in general, code holding cgroup_mutex can't rely on the count
756 * field not changing. However, if the count goes to zero, then only
757 * cgroup_attach_task() can increment it again. Because a count of zero
758 * means that no tasks are currently attached, therefore there is no
759 * way a task attached to that cgroup can fork (the other way to
760 * increment the count). So code holding cgroup_mutex can safely
761 * assume that if the count is zero, it will stay zero. Similarly, if
762 * a task holds cgroup_mutex on a cgroup with zero count, it
763 * knows that the cgroup won't be removed, as cgroup_rmdir()
764 * needs that mutex.
765 *
766 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
767 * (usually) take cgroup_mutex. These are the two most performance
768 * critical pieces of code here. The exception occurs on cgroup_exit(),
769 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
770 * is taken, and if the cgroup count is zero, a usermode call made
771 * to the release agent with the name of the cgroup (path relative to
772 * the root of cgroup file system) as the argument.
773 *
774 * A cgroup can only be deleted if both its 'count' of using tasks
775 * is zero, and its list of 'children' cgroups is empty. Since all
776 * tasks in the system use _some_ cgroup, and since there is always at
777 * least one task in the system (init, pid == 1), therefore, top_cgroup
778 * always has either children cgroups and/or using tasks. So we don't
779 * need a special hack to ensure that top_cgroup cannot be deleted.
780 *
781 * The task_lock() exception
782 *
783 * The need for this exception arises from the action of
784 * cgroup_attach_task(), which overwrites one task's cgroup pointer with
785 * another. It does so using cgroup_mutex, however there are
786 * several performance critical places that need to reference
787 * task->cgroup without the expense of grabbing a system global
788 * mutex. Therefore except as noted below, when dereferencing or, as
789 * in cgroup_attach_task(), modifying a task's cgroup pointer we use
790 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
791 * the task_struct routinely used for such matters.
792 *
793 * P.S. One more locking exception. RCU is used to guard the
794 * update of a tasks cgroup pointer by cgroup_attach_task()
795 */
796
797 /*
798 * A couple of forward declarations required, due to cyclic reference loop:
799 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
800 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
801 * -> cgroup_mkdir.
802 */
803
804 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode);
805 static struct dentry *cgroup_lookup(struct inode *, struct dentry *, unsigned int);
806 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
807 static int cgroup_populate_dir(struct cgroup *cgrp, bool base_files,
808 unsigned long subsys_mask);
809 static const struct inode_operations cgroup_dir_inode_operations;
810 static const struct file_operations proc_cgroupstats_operations;
811
812 static struct backing_dev_info cgroup_backing_dev_info = {
813 .name = "cgroup",
814 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
815 };
816
817 static int alloc_css_id(struct cgroup_subsys *ss,
818 struct cgroup *parent, struct cgroup *child);
819
820 static struct inode *cgroup_new_inode(umode_t mode, struct super_block *sb)
821 {
822 struct inode *inode = new_inode(sb);
823
824 if (inode) {
825 inode->i_ino = get_next_ino();
826 inode->i_mode = mode;
827 inode->i_uid = current_fsuid();
828 inode->i_gid = current_fsgid();
829 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
830 inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
831 }
832 return inode;
833 }
834
835 static struct cgroup_name *cgroup_alloc_name(struct dentry *dentry)
836 {
837 struct cgroup_name *name;
838
839 name = kmalloc(sizeof(*name) + dentry->d_name.len + 1, GFP_KERNEL);
840 if (!name)
841 return NULL;
842 strcpy(name->name, dentry->d_name.name);
843 return name;
844 }
845
846 static void cgroup_free_fn(struct work_struct *work)
847 {
848 struct cgroup *cgrp = container_of(work, struct cgroup, destroy_work);
849 struct cgroup_subsys *ss;
850
851 mutex_lock(&cgroup_mutex);
852 /*
853 * Release the subsystem state objects.
854 */
855 for_each_root_subsys(cgrp->root, ss)
856 ss->css_free(cgrp);
857
858 cgrp->root->number_of_cgroups--;
859 mutex_unlock(&cgroup_mutex);
860
861 /*
862 * We get a ref to the parent's dentry, and put the ref when
863 * this cgroup is being freed, so it's guaranteed that the
864 * parent won't be destroyed before its children.
865 */
866 dput(cgrp->parent->dentry);
867
868 ida_simple_remove(&cgrp->root->cgroup_ida, cgrp->id);
869
870 /*
871 * Drop the active superblock reference that we took when we
872 * created the cgroup. This will free cgrp->root, if we are
873 * holding the last reference to @sb.
874 */
875 deactivate_super(cgrp->root->sb);
876
877 /*
878 * if we're getting rid of the cgroup, refcount should ensure
879 * that there are no pidlists left.
880 */
881 BUG_ON(!list_empty(&cgrp->pidlists));
882
883 simple_xattrs_free(&cgrp->xattrs);
884
885 kfree(rcu_dereference_raw(cgrp->name));
886 kfree(cgrp);
887 }
888
889 static void cgroup_free_rcu(struct rcu_head *head)
890 {
891 struct cgroup *cgrp = container_of(head, struct cgroup, rcu_head);
892
893 INIT_WORK(&cgrp->destroy_work, cgroup_free_fn);
894 schedule_work(&cgrp->destroy_work);
895 }
896
897 static void cgroup_diput(struct dentry *dentry, struct inode *inode)
898 {
899 /* is dentry a directory ? if so, kfree() associated cgroup */
900 if (S_ISDIR(inode->i_mode)) {
901 struct cgroup *cgrp = dentry->d_fsdata;
902
903 BUG_ON(!(cgroup_is_dead(cgrp)));
904 call_rcu(&cgrp->rcu_head, cgroup_free_rcu);
905 } else {
906 struct cfent *cfe = __d_cfe(dentry);
907 struct cgroup *cgrp = dentry->d_parent->d_fsdata;
908
909 WARN_ONCE(!list_empty(&cfe->node) &&
910 cgrp != &cgrp->root->top_cgroup,
911 "cfe still linked for %s\n", cfe->type->name);
912 simple_xattrs_free(&cfe->xattrs);
913 kfree(cfe);
914 }
915 iput(inode);
916 }
917
918 static int cgroup_delete(const struct dentry *d)
919 {
920 return 1;
921 }
922
923 static void remove_dir(struct dentry *d)
924 {
925 struct dentry *parent = dget(d->d_parent);
926
927 d_delete(d);
928 simple_rmdir(parent->d_inode, d);
929 dput(parent);
930 }
931
932 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
933 {
934 struct cfent *cfe;
935
936 lockdep_assert_held(&cgrp->dentry->d_inode->i_mutex);
937 lockdep_assert_held(&cgroup_mutex);
938
939 /*
940 * If we're doing cleanup due to failure of cgroup_create(),
941 * the corresponding @cfe may not exist.
942 */
943 list_for_each_entry(cfe, &cgrp->files, node) {
944 struct dentry *d = cfe->dentry;
945
946 if (cft && cfe->type != cft)
947 continue;
948
949 dget(d);
950 d_delete(d);
951 simple_unlink(cgrp->dentry->d_inode, d);
952 list_del_init(&cfe->node);
953 dput(d);
954
955 break;
956 }
957 }
958
959 /**
960 * cgroup_clear_dir - selective removal of base and subsystem files
961 * @cgrp: target cgroup
962 * @base_files: true if the base files should be removed
963 * @subsys_mask: mask of the subsystem ids whose files should be removed
964 */
965 static void cgroup_clear_dir(struct cgroup *cgrp, bool base_files,
966 unsigned long subsys_mask)
967 {
968 struct cgroup_subsys *ss;
969
970 for_each_root_subsys(cgrp->root, ss) {
971 struct cftype_set *set;
972 if (!test_bit(ss->subsys_id, &subsys_mask))
973 continue;
974 list_for_each_entry(set, &ss->cftsets, node)
975 cgroup_addrm_files(cgrp, NULL, set->cfts, false);
976 }
977 if (base_files) {
978 while (!list_empty(&cgrp->files))
979 cgroup_rm_file(cgrp, NULL);
980 }
981 }
982
983 /*
984 * NOTE : the dentry must have been dget()'ed
985 */
986 static void cgroup_d_remove_dir(struct dentry *dentry)
987 {
988 struct dentry *parent;
989
990 parent = dentry->d_parent;
991 spin_lock(&parent->d_lock);
992 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
993 list_del_init(&dentry->d_u.d_child);
994 spin_unlock(&dentry->d_lock);
995 spin_unlock(&parent->d_lock);
996 remove_dir(dentry);
997 }
998
999 /*
1000 * Call with cgroup_mutex held. Drops reference counts on modules, including
1001 * any duplicate ones that parse_cgroupfs_options took. If this function
1002 * returns an error, no reference counts are touched.
1003 */
1004 static int rebind_subsystems(struct cgroupfs_root *root,
1005 unsigned long added_mask, unsigned removed_mask)
1006 {
1007 struct cgroup *cgrp = &root->top_cgroup;
1008 struct cgroup_subsys *ss;
1009 int i;
1010
1011 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1012 BUG_ON(!mutex_is_locked(&cgroup_root_mutex));
1013
1014 /* Check that any added subsystems are currently free */
1015 for_each_subsys(ss, i) {
1016 unsigned long bit = 1UL << i;
1017
1018 if (!(bit & added_mask))
1019 continue;
1020
1021 if (ss->root != &cgroup_dummy_root) {
1022 /* Subsystem isn't free */
1023 return -EBUSY;
1024 }
1025 }
1026
1027 /* Currently we don't handle adding/removing subsystems when
1028 * any child cgroups exist. This is theoretically supportable
1029 * but involves complex error handling, so it's being left until
1030 * later */
1031 if (root->number_of_cgroups > 1)
1032 return -EBUSY;
1033
1034 /* Process each subsystem */
1035 for_each_subsys(ss, i) {
1036 unsigned long bit = 1UL << i;
1037
1038 if (bit & added_mask) {
1039 /* We're binding this subsystem to this hierarchy */
1040 BUG_ON(cgrp->subsys[i]);
1041 BUG_ON(!cgroup_dummy_top->subsys[i]);
1042 BUG_ON(cgroup_dummy_top->subsys[i]->cgroup != cgroup_dummy_top);
1043
1044 cgrp->subsys[i] = cgroup_dummy_top->subsys[i];
1045 cgrp->subsys[i]->cgroup = cgrp;
1046 list_move(&ss->sibling, &root->subsys_list);
1047 ss->root = root;
1048 if (ss->bind)
1049 ss->bind(cgrp);
1050
1051 /* refcount was already taken, and we're keeping it */
1052 root->subsys_mask |= bit;
1053 } else if (bit & removed_mask) {
1054 /* We're removing this subsystem */
1055 BUG_ON(cgrp->subsys[i] != cgroup_dummy_top->subsys[i]);
1056 BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
1057
1058 if (ss->bind)
1059 ss->bind(cgroup_dummy_top);
1060 cgroup_dummy_top->subsys[i]->cgroup = cgroup_dummy_top;
1061 cgrp->subsys[i] = NULL;
1062 cgroup_subsys[i]->root = &cgroup_dummy_root;
1063 list_move(&ss->sibling, &cgroup_dummy_root.subsys_list);
1064
1065 /* subsystem is now free - drop reference on module */
1066 module_put(ss->module);
1067 root->subsys_mask &= ~bit;
1068 } else if (bit & root->subsys_mask) {
1069 /* Subsystem state should already exist */
1070 BUG_ON(!cgrp->subsys[i]);
1071 /*
1072 * a refcount was taken, but we already had one, so
1073 * drop the extra reference.
1074 */
1075 module_put(ss->module);
1076 #ifdef CONFIG_MODULE_UNLOAD
1077 BUG_ON(ss->module && !module_refcount(ss->module));
1078 #endif
1079 } else {
1080 /* Subsystem state shouldn't exist */
1081 BUG_ON(cgrp->subsys[i]);
1082 }
1083 }
1084
1085 /*
1086 * Mark @root has finished binding subsystems. @root->subsys_mask
1087 * now matches the bound subsystems.
1088 */
1089 root->flags |= CGRP_ROOT_SUBSYS_BOUND;
1090
1091 return 0;
1092 }
1093
1094 static int cgroup_show_options(struct seq_file *seq, struct dentry *dentry)
1095 {
1096 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
1097 struct cgroup_subsys *ss;
1098
1099 mutex_lock(&cgroup_root_mutex);
1100 for_each_root_subsys(root, ss)
1101 seq_printf(seq, ",%s", ss->name);
1102 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR)
1103 seq_puts(seq, ",sane_behavior");
1104 if (root->flags & CGRP_ROOT_NOPREFIX)
1105 seq_puts(seq, ",noprefix");
1106 if (root->flags & CGRP_ROOT_XATTR)
1107 seq_puts(seq, ",xattr");
1108 if (strlen(root->release_agent_path))
1109 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
1110 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags))
1111 seq_puts(seq, ",clone_children");
1112 if (strlen(root->name))
1113 seq_printf(seq, ",name=%s", root->name);
1114 mutex_unlock(&cgroup_root_mutex);
1115 return 0;
1116 }
1117
1118 struct cgroup_sb_opts {
1119 unsigned long subsys_mask;
1120 unsigned long flags;
1121 char *release_agent;
1122 bool cpuset_clone_children;
1123 char *name;
1124 /* User explicitly requested empty subsystem */
1125 bool none;
1126
1127 struct cgroupfs_root *new_root;
1128
1129 };
1130
1131 /*
1132 * Convert a hierarchy specifier into a bitmask of subsystems and
1133 * flags. Call with cgroup_mutex held to protect the cgroup_subsys[]
1134 * array. This function takes refcounts on subsystems to be used, unless it
1135 * returns error, in which case no refcounts are taken.
1136 */
1137 static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
1138 {
1139 char *token, *o = data;
1140 bool all_ss = false, one_ss = false;
1141 unsigned long mask = (unsigned long)-1;
1142 bool module_pin_failed = false;
1143 struct cgroup_subsys *ss;
1144 int i;
1145
1146 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1147
1148 #ifdef CONFIG_CPUSETS
1149 mask = ~(1UL << cpuset_subsys_id);
1150 #endif
1151
1152 memset(opts, 0, sizeof(*opts));
1153
1154 while ((token = strsep(&o, ",")) != NULL) {
1155 if (!*token)
1156 return -EINVAL;
1157 if (!strcmp(token, "none")) {
1158 /* Explicitly have no subsystems */
1159 opts->none = true;
1160 continue;
1161 }
1162 if (!strcmp(token, "all")) {
1163 /* Mutually exclusive option 'all' + subsystem name */
1164 if (one_ss)
1165 return -EINVAL;
1166 all_ss = true;
1167 continue;
1168 }
1169 if (!strcmp(token, "__DEVEL__sane_behavior")) {
1170 opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
1171 continue;
1172 }
1173 if (!strcmp(token, "noprefix")) {
1174 opts->flags |= CGRP_ROOT_NOPREFIX;
1175 continue;
1176 }
1177 if (!strcmp(token, "clone_children")) {
1178 opts->cpuset_clone_children = true;
1179 continue;
1180 }
1181 if (!strcmp(token, "xattr")) {
1182 opts->flags |= CGRP_ROOT_XATTR;
1183 continue;
1184 }
1185 if (!strncmp(token, "release_agent=", 14)) {
1186 /* Specifying two release agents is forbidden */
1187 if (opts->release_agent)
1188 return -EINVAL;
1189 opts->release_agent =
1190 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
1191 if (!opts->release_agent)
1192 return -ENOMEM;
1193 continue;
1194 }
1195 if (!strncmp(token, "name=", 5)) {
1196 const char *name = token + 5;
1197 /* Can't specify an empty name */
1198 if (!strlen(name))
1199 return -EINVAL;
1200 /* Must match [\w.-]+ */
1201 for (i = 0; i < strlen(name); i++) {
1202 char c = name[i];
1203 if (isalnum(c))
1204 continue;
1205 if ((c == '.') || (c == '-') || (c == '_'))
1206 continue;
1207 return -EINVAL;
1208 }
1209 /* Specifying two names is forbidden */
1210 if (opts->name)
1211 return -EINVAL;
1212 opts->name = kstrndup(name,
1213 MAX_CGROUP_ROOT_NAMELEN - 1,
1214 GFP_KERNEL);
1215 if (!opts->name)
1216 return -ENOMEM;
1217
1218 continue;
1219 }
1220
1221 for_each_subsys(ss, i) {
1222 if (strcmp(token, ss->name))
1223 continue;
1224 if (ss->disabled)
1225 continue;
1226
1227 /* Mutually exclusive option 'all' + subsystem name */
1228 if (all_ss)
1229 return -EINVAL;
1230 set_bit(i, &opts->subsys_mask);
1231 one_ss = true;
1232
1233 break;
1234 }
1235 if (i == CGROUP_SUBSYS_COUNT)
1236 return -ENOENT;
1237 }
1238
1239 /*
1240 * If the 'all' option was specified select all the subsystems,
1241 * otherwise if 'none', 'name=' and a subsystem name options
1242 * were not specified, let's default to 'all'
1243 */
1244 if (all_ss || (!one_ss && !opts->none && !opts->name))
1245 for_each_subsys(ss, i)
1246 if (!ss->disabled)
1247 set_bit(i, &opts->subsys_mask);
1248
1249 /* Consistency checks */
1250
1251 if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1252 pr_warning("cgroup: sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
1253
1254 if (opts->flags & CGRP_ROOT_NOPREFIX) {
1255 pr_err("cgroup: sane_behavior: noprefix is not allowed\n");
1256 return -EINVAL;
1257 }
1258
1259 if (opts->cpuset_clone_children) {
1260 pr_err("cgroup: sane_behavior: clone_children is not allowed\n");
1261 return -EINVAL;
1262 }
1263 }
1264
1265 /*
1266 * Option noprefix was introduced just for backward compatibility
1267 * with the old cpuset, so we allow noprefix only if mounting just
1268 * the cpuset subsystem.
1269 */
1270 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
1271 return -EINVAL;
1272
1273
1274 /* Can't specify "none" and some subsystems */
1275 if (opts->subsys_mask && opts->none)
1276 return -EINVAL;
1277
1278 /*
1279 * We either have to specify by name or by subsystems. (So all
1280 * empty hierarchies must have a name).
1281 */
1282 if (!opts->subsys_mask && !opts->name)
1283 return -EINVAL;
1284
1285 /*
1286 * Grab references on all the modules we'll need, so the subsystems
1287 * don't dance around before rebind_subsystems attaches them. This may
1288 * take duplicate reference counts on a subsystem that's already used,
1289 * but rebind_subsystems handles this case.
1290 */
1291 for_each_subsys(ss, i) {
1292 if (!(opts->subsys_mask & (1UL << i)))
1293 continue;
1294 if (!try_module_get(cgroup_subsys[i]->module)) {
1295 module_pin_failed = true;
1296 break;
1297 }
1298 }
1299 if (module_pin_failed) {
1300 /*
1301 * oops, one of the modules was going away. this means that we
1302 * raced with a module_delete call, and to the user this is
1303 * essentially a "subsystem doesn't exist" case.
1304 */
1305 for (i--; i >= 0; i--) {
1306 /* drop refcounts only on the ones we took */
1307 unsigned long bit = 1UL << i;
1308
1309 if (!(bit & opts->subsys_mask))
1310 continue;
1311 module_put(cgroup_subsys[i]->module);
1312 }
1313 return -ENOENT;
1314 }
1315
1316 return 0;
1317 }
1318
1319 static void drop_parsed_module_refcounts(unsigned long subsys_mask)
1320 {
1321 struct cgroup_subsys *ss;
1322 int i;
1323
1324 mutex_lock(&cgroup_mutex);
1325 for_each_subsys(ss, i)
1326 if (subsys_mask & (1UL << i))
1327 module_put(cgroup_subsys[i]->module);
1328 mutex_unlock(&cgroup_mutex);
1329 }
1330
1331 static int cgroup_remount(struct super_block *sb, int *flags, char *data)
1332 {
1333 int ret = 0;
1334 struct cgroupfs_root *root = sb->s_fs_info;
1335 struct cgroup *cgrp = &root->top_cgroup;
1336 struct cgroup_sb_opts opts;
1337 unsigned long added_mask, removed_mask;
1338
1339 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1340 pr_err("cgroup: sane_behavior: remount is not allowed\n");
1341 return -EINVAL;
1342 }
1343
1344 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
1345 mutex_lock(&cgroup_mutex);
1346 mutex_lock(&cgroup_root_mutex);
1347
1348 /* See what subsystems are wanted */
1349 ret = parse_cgroupfs_options(data, &opts);
1350 if (ret)
1351 goto out_unlock;
1352
1353 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
1354 pr_warning("cgroup: option changes via remount are deprecated (pid=%d comm=%s)\n",
1355 task_tgid_nr(current), current->comm);
1356
1357 added_mask = opts.subsys_mask & ~root->subsys_mask;
1358 removed_mask = root->subsys_mask & ~opts.subsys_mask;
1359
1360 /* Don't allow flags or name to change at remount */
1361 if (((opts.flags ^ root->flags) & CGRP_ROOT_OPTION_MASK) ||
1362 (opts.name && strcmp(opts.name, root->name))) {
1363 pr_err("cgroup: option or name mismatch, new: 0x%lx \"%s\", old: 0x%lx \"%s\"\n",
1364 opts.flags & CGRP_ROOT_OPTION_MASK, opts.name ?: "",
1365 root->flags & CGRP_ROOT_OPTION_MASK, root->name);
1366 ret = -EINVAL;
1367 goto out_unlock;
1368 }
1369
1370 /*
1371 * Clear out the files of subsystems that should be removed, do
1372 * this before rebind_subsystems, since rebind_subsystems may
1373 * change this hierarchy's subsys_list.
1374 */
1375 cgroup_clear_dir(cgrp, false, removed_mask);
1376
1377 ret = rebind_subsystems(root, added_mask, removed_mask);
1378 if (ret) {
1379 /* rebind_subsystems failed, re-populate the removed files */
1380 cgroup_populate_dir(cgrp, false, removed_mask);
1381 goto out_unlock;
1382 }
1383
1384 /* re-populate subsystem files */
1385 cgroup_populate_dir(cgrp, false, added_mask);
1386
1387 if (opts.release_agent)
1388 strcpy(root->release_agent_path, opts.release_agent);
1389 out_unlock:
1390 kfree(opts.release_agent);
1391 kfree(opts.name);
1392 mutex_unlock(&cgroup_root_mutex);
1393 mutex_unlock(&cgroup_mutex);
1394 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
1395 if (ret)
1396 drop_parsed_module_refcounts(opts.subsys_mask);
1397 return ret;
1398 }
1399
1400 static const struct super_operations cgroup_ops = {
1401 .statfs = simple_statfs,
1402 .drop_inode = generic_delete_inode,
1403 .show_options = cgroup_show_options,
1404 .remount_fs = cgroup_remount,
1405 };
1406
1407 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1408 {
1409 INIT_LIST_HEAD(&cgrp->sibling);
1410 INIT_LIST_HEAD(&cgrp->children);
1411 INIT_LIST_HEAD(&cgrp->files);
1412 INIT_LIST_HEAD(&cgrp->cset_links);
1413 INIT_LIST_HEAD(&cgrp->release_list);
1414 INIT_LIST_HEAD(&cgrp->pidlists);
1415 mutex_init(&cgrp->pidlist_mutex);
1416 INIT_LIST_HEAD(&cgrp->event_list);
1417 spin_lock_init(&cgrp->event_list_lock);
1418 simple_xattrs_init(&cgrp->xattrs);
1419 }
1420
1421 static void init_cgroup_root(struct cgroupfs_root *root)
1422 {
1423 struct cgroup *cgrp = &root->top_cgroup;
1424
1425 INIT_LIST_HEAD(&root->subsys_list);
1426 INIT_LIST_HEAD(&root->root_list);
1427 root->number_of_cgroups = 1;
1428 cgrp->root = root;
1429 RCU_INIT_POINTER(cgrp->name, &root_cgroup_name);
1430 init_cgroup_housekeeping(cgrp);
1431 }
1432
1433 static int cgroup_init_root_id(struct cgroupfs_root *root, int start, int end)
1434 {
1435 int id;
1436
1437 lockdep_assert_held(&cgroup_mutex);
1438 lockdep_assert_held(&cgroup_root_mutex);
1439
1440 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, start, end,
1441 GFP_KERNEL);
1442 if (id < 0)
1443 return id;
1444
1445 root->hierarchy_id = id;
1446 return 0;
1447 }
1448
1449 static void cgroup_exit_root_id(struct cgroupfs_root *root)
1450 {
1451 lockdep_assert_held(&cgroup_mutex);
1452 lockdep_assert_held(&cgroup_root_mutex);
1453
1454 if (root->hierarchy_id) {
1455 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1456 root->hierarchy_id = 0;
1457 }
1458 }
1459
1460 static int cgroup_test_super(struct super_block *sb, void *data)
1461 {
1462 struct cgroup_sb_opts *opts = data;
1463 struct cgroupfs_root *root = sb->s_fs_info;
1464
1465 /* If we asked for a name then it must match */
1466 if (opts->name && strcmp(opts->name, root->name))
1467 return 0;
1468
1469 /*
1470 * If we asked for subsystems (or explicitly for no
1471 * subsystems) then they must match
1472 */
1473 if ((opts->subsys_mask || opts->none)
1474 && (opts->subsys_mask != root->subsys_mask))
1475 return 0;
1476
1477 return 1;
1478 }
1479
1480 static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
1481 {
1482 struct cgroupfs_root *root;
1483
1484 if (!opts->subsys_mask && !opts->none)
1485 return NULL;
1486
1487 root = kzalloc(sizeof(*root), GFP_KERNEL);
1488 if (!root)
1489 return ERR_PTR(-ENOMEM);
1490
1491 init_cgroup_root(root);
1492
1493 /*
1494 * We need to set @root->subsys_mask now so that @root can be
1495 * matched by cgroup_test_super() before it finishes
1496 * initialization; otherwise, competing mounts with the same
1497 * options may try to bind the same subsystems instead of waiting
1498 * for the first one leading to unexpected mount errors.
1499 * SUBSYS_BOUND will be set once actual binding is complete.
1500 */
1501 root->subsys_mask = opts->subsys_mask;
1502 root->flags = opts->flags;
1503 ida_init(&root->cgroup_ida);
1504 if (opts->release_agent)
1505 strcpy(root->release_agent_path, opts->release_agent);
1506 if (opts->name)
1507 strcpy(root->name, opts->name);
1508 if (opts->cpuset_clone_children)
1509 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags);
1510 return root;
1511 }
1512
1513 static void cgroup_free_root(struct cgroupfs_root *root)
1514 {
1515 if (root) {
1516 /* hierarhcy ID shoulid already have been released */
1517 WARN_ON_ONCE(root->hierarchy_id);
1518
1519 ida_destroy(&root->cgroup_ida);
1520 kfree(root);
1521 }
1522 }
1523
1524 static int cgroup_set_super(struct super_block *sb, void *data)
1525 {
1526 int ret;
1527 struct cgroup_sb_opts *opts = data;
1528
1529 /* If we don't have a new root, we can't set up a new sb */
1530 if (!opts->new_root)
1531 return -EINVAL;
1532
1533 BUG_ON(!opts->subsys_mask && !opts->none);
1534
1535 ret = set_anon_super(sb, NULL);
1536 if (ret)
1537 return ret;
1538
1539 sb->s_fs_info = opts->new_root;
1540 opts->new_root->sb = sb;
1541
1542 sb->s_blocksize = PAGE_CACHE_SIZE;
1543 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
1544 sb->s_magic = CGROUP_SUPER_MAGIC;
1545 sb->s_op = &cgroup_ops;
1546
1547 return 0;
1548 }
1549
1550 static int cgroup_get_rootdir(struct super_block *sb)
1551 {
1552 static const struct dentry_operations cgroup_dops = {
1553 .d_iput = cgroup_diput,
1554 .d_delete = cgroup_delete,
1555 };
1556
1557 struct inode *inode =
1558 cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
1559
1560 if (!inode)
1561 return -ENOMEM;
1562
1563 inode->i_fop = &simple_dir_operations;
1564 inode->i_op = &cgroup_dir_inode_operations;
1565 /* directories start off with i_nlink == 2 (for "." entry) */
1566 inc_nlink(inode);
1567 sb->s_root = d_make_root(inode);
1568 if (!sb->s_root)
1569 return -ENOMEM;
1570 /* for everything else we want ->d_op set */
1571 sb->s_d_op = &cgroup_dops;
1572 return 0;
1573 }
1574
1575 static struct dentry *cgroup_mount(struct file_system_type *fs_type,
1576 int flags, const char *unused_dev_name,
1577 void *data)
1578 {
1579 struct cgroup_sb_opts opts;
1580 struct cgroupfs_root *root;
1581 int ret = 0;
1582 struct super_block *sb;
1583 struct cgroupfs_root *new_root;
1584 struct inode *inode;
1585
1586 /* First find the desired set of subsystems */
1587 mutex_lock(&cgroup_mutex);
1588 ret = parse_cgroupfs_options(data, &opts);
1589 mutex_unlock(&cgroup_mutex);
1590 if (ret)
1591 goto out_err;
1592
1593 /*
1594 * Allocate a new cgroup root. We may not need it if we're
1595 * reusing an existing hierarchy.
1596 */
1597 new_root = cgroup_root_from_opts(&opts);
1598 if (IS_ERR(new_root)) {
1599 ret = PTR_ERR(new_root);
1600 goto drop_modules;
1601 }
1602 opts.new_root = new_root;
1603
1604 /* Locate an existing or new sb for this hierarchy */
1605 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, 0, &opts);
1606 if (IS_ERR(sb)) {
1607 ret = PTR_ERR(sb);
1608 cgroup_free_root(opts.new_root);
1609 goto drop_modules;
1610 }
1611
1612 root = sb->s_fs_info;
1613 BUG_ON(!root);
1614 if (root == opts.new_root) {
1615 /* We used the new root structure, so this is a new hierarchy */
1616 struct list_head tmp_links;
1617 struct cgroup *root_cgrp = &root->top_cgroup;
1618 struct cgroupfs_root *existing_root;
1619 const struct cred *cred;
1620 int i;
1621 struct css_set *cset;
1622
1623 BUG_ON(sb->s_root != NULL);
1624
1625 ret = cgroup_get_rootdir(sb);
1626 if (ret)
1627 goto drop_new_super;
1628 inode = sb->s_root->d_inode;
1629
1630 mutex_lock(&inode->i_mutex);
1631 mutex_lock(&cgroup_mutex);
1632 mutex_lock(&cgroup_root_mutex);
1633
1634 /* Check for name clashes with existing mounts */
1635 ret = -EBUSY;
1636 if (strlen(root->name))
1637 for_each_active_root(existing_root)
1638 if (!strcmp(existing_root->name, root->name))
1639 goto unlock_drop;
1640
1641 /*
1642 * We're accessing css_set_count without locking
1643 * css_set_lock here, but that's OK - it can only be
1644 * increased by someone holding cgroup_lock, and
1645 * that's us. The worst that can happen is that we
1646 * have some link structures left over
1647 */
1648 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
1649 if (ret)
1650 goto unlock_drop;
1651
1652 /* ID 0 is reserved for dummy root, 1 for unified hierarchy */
1653 ret = cgroup_init_root_id(root, 2, 0);
1654 if (ret)
1655 goto unlock_drop;
1656
1657 ret = rebind_subsystems(root, root->subsys_mask, 0);
1658 if (ret == -EBUSY) {
1659 free_cgrp_cset_links(&tmp_links);
1660 goto unlock_drop;
1661 }
1662 /*
1663 * There must be no failure case after here, since rebinding
1664 * takes care of subsystems' refcounts, which are explicitly
1665 * dropped in the failure exit path.
1666 */
1667
1668 /* EBUSY should be the only error here */
1669 BUG_ON(ret);
1670
1671 list_add(&root->root_list, &cgroup_roots);
1672 cgroup_root_count++;
1673
1674 sb->s_root->d_fsdata = root_cgrp;
1675 root->top_cgroup.dentry = sb->s_root;
1676
1677 /* Link the top cgroup in this hierarchy into all
1678 * the css_set objects */
1679 write_lock(&css_set_lock);
1680 hash_for_each(css_set_table, i, cset, hlist)
1681 link_css_set(&tmp_links, cset, root_cgrp);
1682 write_unlock(&css_set_lock);
1683
1684 free_cgrp_cset_links(&tmp_links);
1685
1686 BUG_ON(!list_empty(&root_cgrp->children));
1687 BUG_ON(root->number_of_cgroups != 1);
1688
1689 cred = override_creds(&init_cred);
1690 cgroup_populate_dir(root_cgrp, true, root->subsys_mask);
1691 revert_creds(cred);
1692 mutex_unlock(&cgroup_root_mutex);
1693 mutex_unlock(&cgroup_mutex);
1694 mutex_unlock(&inode->i_mutex);
1695 } else {
1696 /*
1697 * We re-used an existing hierarchy - the new root (if
1698 * any) is not needed
1699 */
1700 cgroup_free_root(opts.new_root);
1701
1702 if ((root->flags ^ opts.flags) & CGRP_ROOT_OPTION_MASK) {
1703 if ((root->flags | opts.flags) & CGRP_ROOT_SANE_BEHAVIOR) {
1704 pr_err("cgroup: sane_behavior: new mount options should match the existing superblock\n");
1705 ret = -EINVAL;
1706 goto drop_new_super;
1707 } else {
1708 pr_warning("cgroup: new mount options do not match the existing superblock, will be ignored\n");
1709 }
1710 }
1711
1712 /* no subsys rebinding, so refcounts don't change */
1713 drop_parsed_module_refcounts(opts.subsys_mask);
1714 }
1715
1716 kfree(opts.release_agent);
1717 kfree(opts.name);
1718 return dget(sb->s_root);
1719
1720 unlock_drop:
1721 cgroup_exit_root_id(root);
1722 mutex_unlock(&cgroup_root_mutex);
1723 mutex_unlock(&cgroup_mutex);
1724 mutex_unlock(&inode->i_mutex);
1725 drop_new_super:
1726 deactivate_locked_super(sb);
1727 drop_modules:
1728 drop_parsed_module_refcounts(opts.subsys_mask);
1729 out_err:
1730 kfree(opts.release_agent);
1731 kfree(opts.name);
1732 return ERR_PTR(ret);
1733 }
1734
1735 static void cgroup_kill_sb(struct super_block *sb) {
1736 struct cgroupfs_root *root = sb->s_fs_info;
1737 struct cgroup *cgrp = &root->top_cgroup;
1738 struct cgrp_cset_link *link, *tmp_link;
1739 int ret;
1740
1741 BUG_ON(!root);
1742
1743 BUG_ON(root->number_of_cgroups != 1);
1744 BUG_ON(!list_empty(&cgrp->children));
1745
1746 mutex_lock(&cgroup_mutex);
1747 mutex_lock(&cgroup_root_mutex);
1748
1749 /* Rebind all subsystems back to the default hierarchy */
1750 if (root->flags & CGRP_ROOT_SUBSYS_BOUND) {
1751 ret = rebind_subsystems(root, 0, root->subsys_mask);
1752 /* Shouldn't be able to fail ... */
1753 BUG_ON(ret);
1754 }
1755
1756 /*
1757 * Release all the links from cset_links to this hierarchy's
1758 * root cgroup
1759 */
1760 write_lock(&css_set_lock);
1761
1762 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1763 list_del(&link->cset_link);
1764 list_del(&link->cgrp_link);
1765 kfree(link);
1766 }
1767 write_unlock(&css_set_lock);
1768
1769 if (!list_empty(&root->root_list)) {
1770 list_del(&root->root_list);
1771 cgroup_root_count--;
1772 }
1773
1774 cgroup_exit_root_id(root);
1775
1776 mutex_unlock(&cgroup_root_mutex);
1777 mutex_unlock(&cgroup_mutex);
1778
1779 simple_xattrs_free(&cgrp->xattrs);
1780
1781 kill_litter_super(sb);
1782 cgroup_free_root(root);
1783 }
1784
1785 static struct file_system_type cgroup_fs_type = {
1786 .name = "cgroup",
1787 .mount = cgroup_mount,
1788 .kill_sb = cgroup_kill_sb,
1789 };
1790
1791 static struct kobject *cgroup_kobj;
1792
1793 /**
1794 * cgroup_path - generate the path of a cgroup
1795 * @cgrp: the cgroup in question
1796 * @buf: the buffer to write the path into
1797 * @buflen: the length of the buffer
1798 *
1799 * Writes path of cgroup into buf. Returns 0 on success, -errno on error.
1800 *
1801 * We can't generate cgroup path using dentry->d_name, as accessing
1802 * dentry->name must be protected by irq-unsafe dentry->d_lock or parent
1803 * inode's i_mutex, while on the other hand cgroup_path() can be called
1804 * with some irq-safe spinlocks held.
1805 */
1806 int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1807 {
1808 int ret = -ENAMETOOLONG;
1809 char *start;
1810
1811 if (!cgrp->parent) {
1812 if (strlcpy(buf, "/", buflen) >= buflen)
1813 return -ENAMETOOLONG;
1814 return 0;
1815 }
1816
1817 start = buf + buflen - 1;
1818 *start = '\0';
1819
1820 rcu_read_lock();
1821 do {
1822 const char *name = cgroup_name(cgrp);
1823 int len;
1824
1825 len = strlen(name);
1826 if ((start -= len) < buf)
1827 goto out;
1828 memcpy(start, name, len);
1829
1830 if (--start < buf)
1831 goto out;
1832 *start = '/';
1833
1834 cgrp = cgrp->parent;
1835 } while (cgrp->parent);
1836 ret = 0;
1837 memmove(buf, start, buf + buflen - start);
1838 out:
1839 rcu_read_unlock();
1840 return ret;
1841 }
1842 EXPORT_SYMBOL_GPL(cgroup_path);
1843
1844 /**
1845 * task_cgroup_path_from_hierarchy - cgroup path of a task on a hierarchy
1846 * @task: target task
1847 * @hierarchy_id: the hierarchy to look up @task's cgroup from
1848 * @buf: the buffer to write the path into
1849 * @buflen: the length of the buffer
1850 *
1851 * Determine @task's cgroup on the hierarchy specified by @hierarchy_id and
1852 * copy its path into @buf. This function grabs cgroup_mutex and shouldn't
1853 * be used inside locks used by cgroup controller callbacks.
1854 */
1855 int task_cgroup_path_from_hierarchy(struct task_struct *task, int hierarchy_id,
1856 char *buf, size_t buflen)
1857 {
1858 struct cgroupfs_root *root;
1859 struct cgroup *cgrp = NULL;
1860 int ret = -ENOENT;
1861
1862 mutex_lock(&cgroup_mutex);
1863
1864 root = idr_find(&cgroup_hierarchy_idr, hierarchy_id);
1865 if (root) {
1866 cgrp = task_cgroup_from_root(task, root);
1867 ret = cgroup_path(cgrp, buf, buflen);
1868 }
1869
1870 mutex_unlock(&cgroup_mutex);
1871
1872 return ret;
1873 }
1874 EXPORT_SYMBOL_GPL(task_cgroup_path_from_hierarchy);
1875
1876 /*
1877 * Control Group taskset
1878 */
1879 struct task_and_cgroup {
1880 struct task_struct *task;
1881 struct cgroup *cgrp;
1882 struct css_set *cg;
1883 };
1884
1885 struct cgroup_taskset {
1886 struct task_and_cgroup single;
1887 struct flex_array *tc_array;
1888 int tc_array_len;
1889 int idx;
1890 struct cgroup *cur_cgrp;
1891 };
1892
1893 /**
1894 * cgroup_taskset_first - reset taskset and return the first task
1895 * @tset: taskset of interest
1896 *
1897 * @tset iteration is initialized and the first task is returned.
1898 */
1899 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
1900 {
1901 if (tset->tc_array) {
1902 tset->idx = 0;
1903 return cgroup_taskset_next(tset);
1904 } else {
1905 tset->cur_cgrp = tset->single.cgrp;
1906 return tset->single.task;
1907 }
1908 }
1909 EXPORT_SYMBOL_GPL(cgroup_taskset_first);
1910
1911 /**
1912 * cgroup_taskset_next - iterate to the next task in taskset
1913 * @tset: taskset of interest
1914 *
1915 * Return the next task in @tset. Iteration must have been initialized
1916 * with cgroup_taskset_first().
1917 */
1918 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
1919 {
1920 struct task_and_cgroup *tc;
1921
1922 if (!tset->tc_array || tset->idx >= tset->tc_array_len)
1923 return NULL;
1924
1925 tc = flex_array_get(tset->tc_array, tset->idx++);
1926 tset->cur_cgrp = tc->cgrp;
1927 return tc->task;
1928 }
1929 EXPORT_SYMBOL_GPL(cgroup_taskset_next);
1930
1931 /**
1932 * cgroup_taskset_cur_cgroup - return the matching cgroup for the current task
1933 * @tset: taskset of interest
1934 *
1935 * Return the cgroup for the current (last returned) task of @tset. This
1936 * function must be preceded by either cgroup_taskset_first() or
1937 * cgroup_taskset_next().
1938 */
1939 struct cgroup *cgroup_taskset_cur_cgroup(struct cgroup_taskset *tset)
1940 {
1941 return tset->cur_cgrp;
1942 }
1943 EXPORT_SYMBOL_GPL(cgroup_taskset_cur_cgroup);
1944
1945 /**
1946 * cgroup_taskset_size - return the number of tasks in taskset
1947 * @tset: taskset of interest
1948 */
1949 int cgroup_taskset_size(struct cgroup_taskset *tset)
1950 {
1951 return tset->tc_array ? tset->tc_array_len : 1;
1952 }
1953 EXPORT_SYMBOL_GPL(cgroup_taskset_size);
1954
1955
1956 /*
1957 * cgroup_task_migrate - move a task from one cgroup to another.
1958 *
1959 * Must be called with cgroup_mutex and threadgroup locked.
1960 */
1961 static void cgroup_task_migrate(struct cgroup *old_cgrp,
1962 struct task_struct *tsk,
1963 struct css_set *new_cset)
1964 {
1965 struct css_set *old_cset;
1966
1967 /*
1968 * We are synchronized through threadgroup_lock() against PF_EXITING
1969 * setting such that we can't race against cgroup_exit() changing the
1970 * css_set to init_css_set and dropping the old one.
1971 */
1972 WARN_ON_ONCE(tsk->flags & PF_EXITING);
1973 old_cset = task_css_set(tsk);
1974
1975 task_lock(tsk);
1976 rcu_assign_pointer(tsk->cgroups, new_cset);
1977 task_unlock(tsk);
1978
1979 /* Update the css_set linked lists if we're using them */
1980 write_lock(&css_set_lock);
1981 if (!list_empty(&tsk->cg_list))
1982 list_move(&tsk->cg_list, &new_cset->tasks);
1983 write_unlock(&css_set_lock);
1984
1985 /*
1986 * We just gained a reference on old_cset by taking it from the
1987 * task. As trading it for new_cset is protected by cgroup_mutex,
1988 * we're safe to drop it here; it will be freed under RCU.
1989 */
1990 set_bit(CGRP_RELEASABLE, &old_cgrp->flags);
1991 put_css_set(old_cset);
1992 }
1993
1994 /**
1995 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
1996 * @cgrp: the cgroup to attach to
1997 * @tsk: the task or the leader of the threadgroup to be attached
1998 * @threadgroup: attach the whole threadgroup?
1999 *
2000 * Call holding cgroup_mutex and the group_rwsem of the leader. Will take
2001 * task_lock of @tsk or each thread in the threadgroup individually in turn.
2002 */
2003 static int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk,
2004 bool threadgroup)
2005 {
2006 int retval, i, group_size;
2007 struct cgroup_subsys *ss, *failed_ss = NULL;
2008 struct cgroupfs_root *root = cgrp->root;
2009 /* threadgroup list cursor and array */
2010 struct task_struct *leader = tsk;
2011 struct task_and_cgroup *tc;
2012 struct flex_array *group;
2013 struct cgroup_taskset tset = { };
2014
2015 /*
2016 * step 0: in order to do expensive, possibly blocking operations for
2017 * every thread, we cannot iterate the thread group list, since it needs
2018 * rcu or tasklist locked. instead, build an array of all threads in the
2019 * group - group_rwsem prevents new threads from appearing, and if
2020 * threads exit, this will just be an over-estimate.
2021 */
2022 if (threadgroup)
2023 group_size = get_nr_threads(tsk);
2024 else
2025 group_size = 1;
2026 /* flex_array supports very large thread-groups better than kmalloc. */
2027 group = flex_array_alloc(sizeof(*tc), group_size, GFP_KERNEL);
2028 if (!group)
2029 return -ENOMEM;
2030 /* pre-allocate to guarantee space while iterating in rcu read-side. */
2031 retval = flex_array_prealloc(group, 0, group_size, GFP_KERNEL);
2032 if (retval)
2033 goto out_free_group_list;
2034
2035 i = 0;
2036 /*
2037 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2038 * already PF_EXITING could be freed from underneath us unless we
2039 * take an rcu_read_lock.
2040 */
2041 rcu_read_lock();
2042 do {
2043 struct task_and_cgroup ent;
2044
2045 /* @tsk either already exited or can't exit until the end */
2046 if (tsk->flags & PF_EXITING)
2047 continue;
2048
2049 /* as per above, nr_threads may decrease, but not increase. */
2050 BUG_ON(i >= group_size);
2051 ent.task = tsk;
2052 ent.cgrp = task_cgroup_from_root(tsk, root);
2053 /* nothing to do if this task is already in the cgroup */
2054 if (ent.cgrp == cgrp)
2055 continue;
2056 /*
2057 * saying GFP_ATOMIC has no effect here because we did prealloc
2058 * earlier, but it's good form to communicate our expectations.
2059 */
2060 retval = flex_array_put(group, i, &ent, GFP_ATOMIC);
2061 BUG_ON(retval != 0);
2062 i++;
2063
2064 if (!threadgroup)
2065 break;
2066 } while_each_thread(leader, tsk);
2067 rcu_read_unlock();
2068 /* remember the number of threads in the array for later. */
2069 group_size = i;
2070 tset.tc_array = group;
2071 tset.tc_array_len = group_size;
2072
2073 /* methods shouldn't be called if no task is actually migrating */
2074 retval = 0;
2075 if (!group_size)
2076 goto out_free_group_list;
2077
2078 /*
2079 * step 1: check that we can legitimately attach to the cgroup.
2080 */
2081 for_each_root_subsys(root, ss) {
2082 if (ss->can_attach) {
2083 retval = ss->can_attach(cgrp, &tset);
2084 if (retval) {
2085 failed_ss = ss;
2086 goto out_cancel_attach;
2087 }
2088 }
2089 }
2090
2091 /*
2092 * step 2: make sure css_sets exist for all threads to be migrated.
2093 * we use find_css_set, which allocates a new one if necessary.
2094 */
2095 for (i = 0; i < group_size; i++) {
2096 struct css_set *old_cset;
2097
2098 tc = flex_array_get(group, i);
2099 old_cset = task_css_set(tc->task);
2100 tc->cg = find_css_set(old_cset, cgrp);
2101 if (!tc->cg) {
2102 retval = -ENOMEM;
2103 goto out_put_css_set_refs;
2104 }
2105 }
2106
2107 /*
2108 * step 3: now that we're guaranteed success wrt the css_sets,
2109 * proceed to move all tasks to the new cgroup. There are no
2110 * failure cases after here, so this is the commit point.
2111 */
2112 for (i = 0; i < group_size; i++) {
2113 tc = flex_array_get(group, i);
2114 cgroup_task_migrate(tc->cgrp, tc->task, tc->cg);
2115 }
2116 /* nothing is sensitive to fork() after this point. */
2117
2118 /*
2119 * step 4: do subsystem attach callbacks.
2120 */
2121 for_each_root_subsys(root, ss) {
2122 if (ss->attach)
2123 ss->attach(cgrp, &tset);
2124 }
2125
2126 /*
2127 * step 5: success! and cleanup
2128 */
2129 retval = 0;
2130 out_put_css_set_refs:
2131 if (retval) {
2132 for (i = 0; i < group_size; i++) {
2133 tc = flex_array_get(group, i);
2134 if (!tc->cg)
2135 break;
2136 put_css_set(tc->cg);
2137 }
2138 }
2139 out_cancel_attach:
2140 if (retval) {
2141 for_each_root_subsys(root, ss) {
2142 if (ss == failed_ss)
2143 break;
2144 if (ss->cancel_attach)
2145 ss->cancel_attach(cgrp, &tset);
2146 }
2147 }
2148 out_free_group_list:
2149 flex_array_free(group);
2150 return retval;
2151 }
2152
2153 /*
2154 * Find the task_struct of the task to attach by vpid and pass it along to the
2155 * function to attach either it or all tasks in its threadgroup. Will lock
2156 * cgroup_mutex and threadgroup; may take task_lock of task.
2157 */
2158 static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
2159 {
2160 struct task_struct *tsk;
2161 const struct cred *cred = current_cred(), *tcred;
2162 int ret;
2163
2164 if (!cgroup_lock_live_group(cgrp))
2165 return -ENODEV;
2166
2167 retry_find_task:
2168 rcu_read_lock();
2169 if (pid) {
2170 tsk = find_task_by_vpid(pid);
2171 if (!tsk) {
2172 rcu_read_unlock();
2173 ret= -ESRCH;
2174 goto out_unlock_cgroup;
2175 }
2176 /*
2177 * even if we're attaching all tasks in the thread group, we
2178 * only need to check permissions on one of them.
2179 */
2180 tcred = __task_cred(tsk);
2181 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2182 !uid_eq(cred->euid, tcred->uid) &&
2183 !uid_eq(cred->euid, tcred->suid)) {
2184 rcu_read_unlock();
2185 ret = -EACCES;
2186 goto out_unlock_cgroup;
2187 }
2188 } else
2189 tsk = current;
2190
2191 if (threadgroup)
2192 tsk = tsk->group_leader;
2193
2194 /*
2195 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
2196 * trapped in a cpuset, or RT worker may be born in a cgroup
2197 * with no rt_runtime allocated. Just say no.
2198 */
2199 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
2200 ret = -EINVAL;
2201 rcu_read_unlock();
2202 goto out_unlock_cgroup;
2203 }
2204
2205 get_task_struct(tsk);
2206 rcu_read_unlock();
2207
2208 threadgroup_lock(tsk);
2209 if (threadgroup) {
2210 if (!thread_group_leader(tsk)) {
2211 /*
2212 * a race with de_thread from another thread's exec()
2213 * may strip us of our leadership, if this happens,
2214 * there is no choice but to throw this task away and
2215 * try again; this is
2216 * "double-double-toil-and-trouble-check locking".
2217 */
2218 threadgroup_unlock(tsk);
2219 put_task_struct(tsk);
2220 goto retry_find_task;
2221 }
2222 }
2223
2224 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
2225
2226 threadgroup_unlock(tsk);
2227
2228 put_task_struct(tsk);
2229 out_unlock_cgroup:
2230 mutex_unlock(&cgroup_mutex);
2231 return ret;
2232 }
2233
2234 /**
2235 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2236 * @from: attach to all cgroups of a given task
2237 * @tsk: the task to be attached
2238 */
2239 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2240 {
2241 struct cgroupfs_root *root;
2242 int retval = 0;
2243
2244 mutex_lock(&cgroup_mutex);
2245 for_each_active_root(root) {
2246 struct cgroup *from_cg = task_cgroup_from_root(from, root);
2247
2248 retval = cgroup_attach_task(from_cg, tsk, false);
2249 if (retval)
2250 break;
2251 }
2252 mutex_unlock(&cgroup_mutex);
2253
2254 return retval;
2255 }
2256 EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2257
2258 static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
2259 {
2260 return attach_task_by_pid(cgrp, pid, false);
2261 }
2262
2263 static int cgroup_procs_write(struct cgroup *cgrp, struct cftype *cft, u64 tgid)
2264 {
2265 return attach_task_by_pid(cgrp, tgid, true);
2266 }
2267
2268 static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
2269 const char *buffer)
2270 {
2271 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
2272 if (strlen(buffer) >= PATH_MAX)
2273 return -EINVAL;
2274 if (!cgroup_lock_live_group(cgrp))
2275 return -ENODEV;
2276 mutex_lock(&cgroup_root_mutex);
2277 strcpy(cgrp->root->release_agent_path, buffer);
2278 mutex_unlock(&cgroup_root_mutex);
2279 mutex_unlock(&cgroup_mutex);
2280 return 0;
2281 }
2282
2283 static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
2284 struct seq_file *seq)
2285 {
2286 if (!cgroup_lock_live_group(cgrp))
2287 return -ENODEV;
2288 seq_puts(seq, cgrp->root->release_agent_path);
2289 seq_putc(seq, '\n');
2290 mutex_unlock(&cgroup_mutex);
2291 return 0;
2292 }
2293
2294 static int cgroup_sane_behavior_show(struct cgroup *cgrp, struct cftype *cft,
2295 struct seq_file *seq)
2296 {
2297 seq_printf(seq, "%d\n", cgroup_sane_behavior(cgrp));
2298 return 0;
2299 }
2300
2301 /* A buffer size big enough for numbers or short strings */
2302 #define CGROUP_LOCAL_BUFFER_SIZE 64
2303
2304 static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
2305 struct file *file,
2306 const char __user *userbuf,
2307 size_t nbytes, loff_t *unused_ppos)
2308 {
2309 char buffer[CGROUP_LOCAL_BUFFER_SIZE];
2310 int retval = 0;
2311 char *end;
2312
2313 if (!nbytes)
2314 return -EINVAL;
2315 if (nbytes >= sizeof(buffer))
2316 return -E2BIG;
2317 if (copy_from_user(buffer, userbuf, nbytes))
2318 return -EFAULT;
2319
2320 buffer[nbytes] = 0; /* nul-terminate */
2321 if (cft->write_u64) {
2322 u64 val = simple_strtoull(strstrip(buffer), &end, 0);
2323 if (*end)
2324 return -EINVAL;
2325 retval = cft->write_u64(cgrp, cft, val);
2326 } else {
2327 s64 val = simple_strtoll(strstrip(buffer), &end, 0);
2328 if (*end)
2329 return -EINVAL;
2330 retval = cft->write_s64(cgrp, cft, val);
2331 }
2332 if (!retval)
2333 retval = nbytes;
2334 return retval;
2335 }
2336
2337 static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
2338 struct file *file,
2339 const char __user *userbuf,
2340 size_t nbytes, loff_t *unused_ppos)
2341 {
2342 char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
2343 int retval = 0;
2344 size_t max_bytes = cft->max_write_len;
2345 char *buffer = local_buffer;
2346
2347 if (!max_bytes)
2348 max_bytes = sizeof(local_buffer) - 1;
2349 if (nbytes >= max_bytes)
2350 return -E2BIG;
2351 /* Allocate a dynamic buffer if we need one */
2352 if (nbytes >= sizeof(local_buffer)) {
2353 buffer = kmalloc(nbytes + 1, GFP_KERNEL);
2354 if (buffer == NULL)
2355 return -ENOMEM;
2356 }
2357 if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
2358 retval = -EFAULT;
2359 goto out;
2360 }
2361
2362 buffer[nbytes] = 0; /* nul-terminate */
2363 retval = cft->write_string(cgrp, cft, strstrip(buffer));
2364 if (!retval)
2365 retval = nbytes;
2366 out:
2367 if (buffer != local_buffer)
2368 kfree(buffer);
2369 return retval;
2370 }
2371
2372 static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
2373 size_t nbytes, loff_t *ppos)
2374 {
2375 struct cftype *cft = __d_cft(file->f_dentry);
2376 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2377
2378 if (cgroup_is_dead(cgrp))
2379 return -ENODEV;
2380 if (cft->write)
2381 return cft->write(cgrp, cft, file, buf, nbytes, ppos);
2382 if (cft->write_u64 || cft->write_s64)
2383 return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
2384 if (cft->write_string)
2385 return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
2386 if (cft->trigger) {
2387 int ret = cft->trigger(cgrp, (unsigned int)cft->private);
2388 return ret ? ret : nbytes;
2389 }
2390 return -EINVAL;
2391 }
2392
2393 static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
2394 struct file *file,
2395 char __user *buf, size_t nbytes,
2396 loff_t *ppos)
2397 {
2398 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2399 u64 val = cft->read_u64(cgrp, cft);
2400 int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
2401
2402 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2403 }
2404
2405 static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
2406 struct file *file,
2407 char __user *buf, size_t nbytes,
2408 loff_t *ppos)
2409 {
2410 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2411 s64 val = cft->read_s64(cgrp, cft);
2412 int len = sprintf(tmp, "%lld\n", (long long) val);
2413
2414 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2415 }
2416
2417 static ssize_t cgroup_file_read(struct file *file, char __user *buf,
2418 size_t nbytes, loff_t *ppos)
2419 {
2420 struct cftype *cft = __d_cft(file->f_dentry);
2421 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2422
2423 if (cgroup_is_dead(cgrp))
2424 return -ENODEV;
2425
2426 if (cft->read)
2427 return cft->read(cgrp, cft, file, buf, nbytes, ppos);
2428 if (cft->read_u64)
2429 return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
2430 if (cft->read_s64)
2431 return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
2432 return -EINVAL;
2433 }
2434
2435 /*
2436 * seqfile ops/methods for returning structured data. Currently just
2437 * supports string->u64 maps, but can be extended in future.
2438 */
2439
2440 struct cgroup_seqfile_state {
2441 struct cftype *cft;
2442 struct cgroup *cgroup;
2443 };
2444
2445 static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
2446 {
2447 struct seq_file *sf = cb->state;
2448 return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
2449 }
2450
2451 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
2452 {
2453 struct cgroup_seqfile_state *state = m->private;
2454 struct cftype *cft = state->cft;
2455 if (cft->read_map) {
2456 struct cgroup_map_cb cb = {
2457 .fill = cgroup_map_add,
2458 .state = m,
2459 };
2460 return cft->read_map(state->cgroup, cft, &cb);
2461 }
2462 return cft->read_seq_string(state->cgroup, cft, m);
2463 }
2464
2465 static int cgroup_seqfile_release(struct inode *inode, struct file *file)
2466 {
2467 struct seq_file *seq = file->private_data;
2468 kfree(seq->private);
2469 return single_release(inode, file);
2470 }
2471
2472 static const struct file_operations cgroup_seqfile_operations = {
2473 .read = seq_read,
2474 .write = cgroup_file_write,
2475 .llseek = seq_lseek,
2476 .release = cgroup_seqfile_release,
2477 };
2478
2479 static int cgroup_file_open(struct inode *inode, struct file *file)
2480 {
2481 int err;
2482 struct cftype *cft;
2483
2484 err = generic_file_open(inode, file);
2485 if (err)
2486 return err;
2487 cft = __d_cft(file->f_dentry);
2488
2489 if (cft->read_map || cft->read_seq_string) {
2490 struct cgroup_seqfile_state *state;
2491
2492 state = kzalloc(sizeof(*state), GFP_USER);
2493 if (!state)
2494 return -ENOMEM;
2495
2496 state->cft = cft;
2497 state->cgroup = __d_cgrp(file->f_dentry->d_parent);
2498 file->f_op = &cgroup_seqfile_operations;
2499 err = single_open(file, cgroup_seqfile_show, state);
2500 if (err < 0)
2501 kfree(state);
2502 } else if (cft->open)
2503 err = cft->open(inode, file);
2504 else
2505 err = 0;
2506
2507 return err;
2508 }
2509
2510 static int cgroup_file_release(struct inode *inode, struct file *file)
2511 {
2512 struct cftype *cft = __d_cft(file->f_dentry);
2513 if (cft->release)
2514 return cft->release(inode, file);
2515 return 0;
2516 }
2517
2518 /*
2519 * cgroup_rename - Only allow simple rename of directories in place.
2520 */
2521 static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
2522 struct inode *new_dir, struct dentry *new_dentry)
2523 {
2524 int ret;
2525 struct cgroup_name *name, *old_name;
2526 struct cgroup *cgrp;
2527
2528 /*
2529 * It's convinient to use parent dir's i_mutex to protected
2530 * cgrp->name.
2531 */
2532 lockdep_assert_held(&old_dir->i_mutex);
2533
2534 if (!S_ISDIR(old_dentry->d_inode->i_mode))
2535 return -ENOTDIR;
2536 if (new_dentry->d_inode)
2537 return -EEXIST;
2538 if (old_dir != new_dir)
2539 return -EIO;
2540
2541 cgrp = __d_cgrp(old_dentry);
2542
2543 /*
2544 * This isn't a proper migration and its usefulness is very
2545 * limited. Disallow if sane_behavior.
2546 */
2547 if (cgroup_sane_behavior(cgrp))
2548 return -EPERM;
2549
2550 name = cgroup_alloc_name(new_dentry);
2551 if (!name)
2552 return -ENOMEM;
2553
2554 ret = simple_rename(old_dir, old_dentry, new_dir, new_dentry);
2555 if (ret) {
2556 kfree(name);
2557 return ret;
2558 }
2559
2560 old_name = rcu_dereference_protected(cgrp->name, true);
2561 rcu_assign_pointer(cgrp->name, name);
2562
2563 kfree_rcu(old_name, rcu_head);
2564 return 0;
2565 }
2566
2567 static struct simple_xattrs *__d_xattrs(struct dentry *dentry)
2568 {
2569 if (S_ISDIR(dentry->d_inode->i_mode))
2570 return &__d_cgrp(dentry)->xattrs;
2571 else
2572 return &__d_cfe(dentry)->xattrs;
2573 }
2574
2575 static inline int xattr_enabled(struct dentry *dentry)
2576 {
2577 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
2578 return root->flags & CGRP_ROOT_XATTR;
2579 }
2580
2581 static bool is_valid_xattr(const char *name)
2582 {
2583 if (!strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN) ||
2584 !strncmp(name, XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN))
2585 return true;
2586 return false;
2587 }
2588
2589 static int cgroup_setxattr(struct dentry *dentry, const char *name,
2590 const void *val, size_t size, int flags)
2591 {
2592 if (!xattr_enabled(dentry))
2593 return -EOPNOTSUPP;
2594 if (!is_valid_xattr(name))
2595 return -EINVAL;
2596 return simple_xattr_set(__d_xattrs(dentry), name, val, size, flags);
2597 }
2598
2599 static int cgroup_removexattr(struct dentry *dentry, const char *name)
2600 {
2601 if (!xattr_enabled(dentry))
2602 return -EOPNOTSUPP;
2603 if (!is_valid_xattr(name))
2604 return -EINVAL;
2605 return simple_xattr_remove(__d_xattrs(dentry), name);
2606 }
2607
2608 static ssize_t cgroup_getxattr(struct dentry *dentry, const char *name,
2609 void *buf, size_t size)
2610 {
2611 if (!xattr_enabled(dentry))
2612 return -EOPNOTSUPP;
2613 if (!is_valid_xattr(name))
2614 return -EINVAL;
2615 return simple_xattr_get(__d_xattrs(dentry), name, buf, size);
2616 }
2617
2618 static ssize_t cgroup_listxattr(struct dentry *dentry, char *buf, size_t size)
2619 {
2620 if (!xattr_enabled(dentry))
2621 return -EOPNOTSUPP;
2622 return simple_xattr_list(__d_xattrs(dentry), buf, size);
2623 }
2624
2625 static const struct file_operations cgroup_file_operations = {
2626 .read = cgroup_file_read,
2627 .write = cgroup_file_write,
2628 .llseek = generic_file_llseek,
2629 .open = cgroup_file_open,
2630 .release = cgroup_file_release,
2631 };
2632
2633 static const struct inode_operations cgroup_file_inode_operations = {
2634 .setxattr = cgroup_setxattr,
2635 .getxattr = cgroup_getxattr,
2636 .listxattr = cgroup_listxattr,
2637 .removexattr = cgroup_removexattr,
2638 };
2639
2640 static const struct inode_operations cgroup_dir_inode_operations = {
2641 .lookup = cgroup_lookup,
2642 .mkdir = cgroup_mkdir,
2643 .rmdir = cgroup_rmdir,
2644 .rename = cgroup_rename,
2645 .setxattr = cgroup_setxattr,
2646 .getxattr = cgroup_getxattr,
2647 .listxattr = cgroup_listxattr,
2648 .removexattr = cgroup_removexattr,
2649 };
2650
2651 static struct dentry *cgroup_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
2652 {
2653 if (dentry->d_name.len > NAME_MAX)
2654 return ERR_PTR(-ENAMETOOLONG);
2655 d_add(dentry, NULL);
2656 return NULL;
2657 }
2658
2659 /*
2660 * Check if a file is a control file
2661 */
2662 static inline struct cftype *__file_cft(struct file *file)
2663 {
2664 if (file_inode(file)->i_fop != &cgroup_file_operations)
2665 return ERR_PTR(-EINVAL);
2666 return __d_cft(file->f_dentry);
2667 }
2668
2669 static int cgroup_create_file(struct dentry *dentry, umode_t mode,
2670 struct super_block *sb)
2671 {
2672 struct inode *inode;
2673
2674 if (!dentry)
2675 return -ENOENT;
2676 if (dentry->d_inode)
2677 return -EEXIST;
2678
2679 inode = cgroup_new_inode(mode, sb);
2680 if (!inode)
2681 return -ENOMEM;
2682
2683 if (S_ISDIR(mode)) {
2684 inode->i_op = &cgroup_dir_inode_operations;
2685 inode->i_fop = &simple_dir_operations;
2686
2687 /* start off with i_nlink == 2 (for "." entry) */
2688 inc_nlink(inode);
2689 inc_nlink(dentry->d_parent->d_inode);
2690
2691 /*
2692 * Control reaches here with cgroup_mutex held.
2693 * @inode->i_mutex should nest outside cgroup_mutex but we
2694 * want to populate it immediately without releasing
2695 * cgroup_mutex. As @inode isn't visible to anyone else
2696 * yet, trylock will always succeed without affecting
2697 * lockdep checks.
2698 */
2699 WARN_ON_ONCE(!mutex_trylock(&inode->i_mutex));
2700 } else if (S_ISREG(mode)) {
2701 inode->i_size = 0;
2702 inode->i_fop = &cgroup_file_operations;
2703 inode->i_op = &cgroup_file_inode_operations;
2704 }
2705 d_instantiate(dentry, inode);
2706 dget(dentry); /* Extra count - pin the dentry in core */
2707 return 0;
2708 }
2709
2710 /**
2711 * cgroup_file_mode - deduce file mode of a control file
2712 * @cft: the control file in question
2713 *
2714 * returns cft->mode if ->mode is not 0
2715 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
2716 * returns S_IRUGO if it has only a read handler
2717 * returns S_IWUSR if it has only a write hander
2718 */
2719 static umode_t cgroup_file_mode(const struct cftype *cft)
2720 {
2721 umode_t mode = 0;
2722
2723 if (cft->mode)
2724 return cft->mode;
2725
2726 if (cft->read || cft->read_u64 || cft->read_s64 ||
2727 cft->read_map || cft->read_seq_string)
2728 mode |= S_IRUGO;
2729
2730 if (cft->write || cft->write_u64 || cft->write_s64 ||
2731 cft->write_string || cft->trigger)
2732 mode |= S_IWUSR;
2733
2734 return mode;
2735 }
2736
2737 static int cgroup_add_file(struct cgroup *cgrp, struct cgroup_subsys *subsys,
2738 struct cftype *cft)
2739 {
2740 struct dentry *dir = cgrp->dentry;
2741 struct cgroup *parent = __d_cgrp(dir);
2742 struct dentry *dentry;
2743 struct cfent *cfe;
2744 int error;
2745 umode_t mode;
2746 char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
2747
2748 if (subsys && !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) {
2749 strcpy(name, subsys->name);
2750 strcat(name, ".");
2751 }
2752 strcat(name, cft->name);
2753
2754 BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
2755
2756 cfe = kzalloc(sizeof(*cfe), GFP_KERNEL);
2757 if (!cfe)
2758 return -ENOMEM;
2759
2760 dentry = lookup_one_len(name, dir, strlen(name));
2761 if (IS_ERR(dentry)) {
2762 error = PTR_ERR(dentry);
2763 goto out;
2764 }
2765
2766 cfe->type = (void *)cft;
2767 cfe->dentry = dentry;
2768 dentry->d_fsdata = cfe;
2769 simple_xattrs_init(&cfe->xattrs);
2770
2771 mode = cgroup_file_mode(cft);
2772 error = cgroup_create_file(dentry, mode | S_IFREG, cgrp->root->sb);
2773 if (!error) {
2774 list_add_tail(&cfe->node, &parent->files);
2775 cfe = NULL;
2776 }
2777 dput(dentry);
2778 out:
2779 kfree(cfe);
2780 return error;
2781 }
2782
2783 /**
2784 * cgroup_addrm_files - add or remove files to a cgroup directory
2785 * @cgrp: the target cgroup
2786 * @subsys: the subsystem of files to be added
2787 * @cfts: array of cftypes to be added
2788 * @is_add: whether to add or remove
2789 *
2790 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
2791 * All @cfts should belong to @subsys. For removals, this function never
2792 * fails. If addition fails, this function doesn't remove files already
2793 * added. The caller is responsible for cleaning up.
2794 */
2795 static int cgroup_addrm_files(struct cgroup *cgrp, struct cgroup_subsys *subsys,
2796 struct cftype cfts[], bool is_add)
2797 {
2798 struct cftype *cft;
2799 int ret;
2800
2801 lockdep_assert_held(&cgrp->dentry->d_inode->i_mutex);
2802 lockdep_assert_held(&cgroup_mutex);
2803
2804 for (cft = cfts; cft->name[0] != '\0'; cft++) {
2805 /* does cft->flags tell us to skip this file on @cgrp? */
2806 if ((cft->flags & CFTYPE_INSANE) && cgroup_sane_behavior(cgrp))
2807 continue;
2808 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgrp->parent)
2809 continue;
2810 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgrp->parent)
2811 continue;
2812
2813 if (is_add) {
2814 ret = cgroup_add_file(cgrp, subsys, cft);
2815 if (ret) {
2816 pr_warn("cgroup_addrm_files: failed to add %s, err=%d\n",
2817 cft->name, ret);
2818 return ret;
2819 }
2820 } else {
2821 cgroup_rm_file(cgrp, cft);
2822 }
2823 }
2824 return 0;
2825 }
2826
2827 static void cgroup_cfts_prepare(void)
2828 __acquires(&cgroup_mutex)
2829 {
2830 /*
2831 * Thanks to the entanglement with vfs inode locking, we can't walk
2832 * the existing cgroups under cgroup_mutex and create files.
2833 * Instead, we use cgroup_for_each_descendant_pre() and drop RCU
2834 * read lock before calling cgroup_addrm_files().
2835 */
2836 mutex_lock(&cgroup_mutex);
2837 }
2838
2839 static int cgroup_cfts_commit(struct cgroup_subsys *ss,
2840 struct cftype *cfts, bool is_add)
2841 __releases(&cgroup_mutex)
2842 {
2843 LIST_HEAD(pending);
2844 struct cgroup *cgrp, *root = &ss->root->top_cgroup;
2845 struct super_block *sb = ss->root->sb;
2846 struct dentry *prev = NULL;
2847 struct inode *inode;
2848 u64 update_before;
2849 int ret = 0;
2850
2851 /* %NULL @cfts indicates abort and don't bother if @ss isn't attached */
2852 if (!cfts || ss->root == &cgroup_dummy_root ||
2853 !atomic_inc_not_zero(&sb->s_active)) {
2854 mutex_unlock(&cgroup_mutex);
2855 return 0;
2856 }
2857
2858 /*
2859 * All cgroups which are created after we drop cgroup_mutex will
2860 * have the updated set of files, so we only need to update the
2861 * cgroups created before the current @cgroup_serial_nr_next.
2862 */
2863 update_before = cgroup_serial_nr_next;
2864
2865 mutex_unlock(&cgroup_mutex);
2866
2867 /* @root always needs to be updated */
2868 inode = root->dentry->d_inode;
2869 mutex_lock(&inode->i_mutex);
2870 mutex_lock(&cgroup_mutex);
2871 ret = cgroup_addrm_files(root, ss, cfts, is_add);
2872 mutex_unlock(&cgroup_mutex);
2873 mutex_unlock(&inode->i_mutex);
2874
2875 if (ret)
2876 goto out_deact;
2877
2878 /* add/rm files for all cgroups created before */
2879 rcu_read_lock();
2880 cgroup_for_each_descendant_pre(cgrp, root) {
2881 if (cgroup_is_dead(cgrp))
2882 continue;
2883
2884 inode = cgrp->dentry->d_inode;
2885 dget(cgrp->dentry);
2886 rcu_read_unlock();
2887
2888 dput(prev);
2889 prev = cgrp->dentry;
2890
2891 mutex_lock(&inode->i_mutex);
2892 mutex_lock(&cgroup_mutex);
2893 if (cgrp->serial_nr < update_before && !cgroup_is_dead(cgrp))
2894 ret = cgroup_addrm_files(cgrp, ss, cfts, is_add);
2895 mutex_unlock(&cgroup_mutex);
2896 mutex_unlock(&inode->i_mutex);
2897
2898 rcu_read_lock();
2899 if (ret)
2900 break;
2901 }
2902 rcu_read_unlock();
2903 dput(prev);
2904 out_deact:
2905 deactivate_super(sb);
2906 return ret;
2907 }
2908
2909 /**
2910 * cgroup_add_cftypes - add an array of cftypes to a subsystem
2911 * @ss: target cgroup subsystem
2912 * @cfts: zero-length name terminated array of cftypes
2913 *
2914 * Register @cfts to @ss. Files described by @cfts are created for all
2915 * existing cgroups to which @ss is attached and all future cgroups will
2916 * have them too. This function can be called anytime whether @ss is
2917 * attached or not.
2918 *
2919 * Returns 0 on successful registration, -errno on failure. Note that this
2920 * function currently returns 0 as long as @cfts registration is successful
2921 * even if some file creation attempts on existing cgroups fail.
2922 */
2923 int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2924 {
2925 struct cftype_set *set;
2926 int ret;
2927
2928 set = kzalloc(sizeof(*set), GFP_KERNEL);
2929 if (!set)
2930 return -ENOMEM;
2931
2932 cgroup_cfts_prepare();
2933 set->cfts = cfts;
2934 list_add_tail(&set->node, &ss->cftsets);
2935 ret = cgroup_cfts_commit(ss, cfts, true);
2936 if (ret)
2937 cgroup_rm_cftypes(ss, cfts);
2938 return ret;
2939 }
2940 EXPORT_SYMBOL_GPL(cgroup_add_cftypes);
2941
2942 /**
2943 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
2944 * @ss: target cgroup subsystem
2945 * @cfts: zero-length name terminated array of cftypes
2946 *
2947 * Unregister @cfts from @ss. Files described by @cfts are removed from
2948 * all existing cgroups to which @ss is attached and all future cgroups
2949 * won't have them either. This function can be called anytime whether @ss
2950 * is attached or not.
2951 *
2952 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2953 * registered with @ss.
2954 */
2955 int cgroup_rm_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2956 {
2957 struct cftype_set *set;
2958
2959 cgroup_cfts_prepare();
2960
2961 list_for_each_entry(set, &ss->cftsets, node) {
2962 if (set->cfts == cfts) {
2963 list_del(&set->node);
2964 kfree(set);
2965 cgroup_cfts_commit(ss, cfts, false);
2966 return 0;
2967 }
2968 }
2969
2970 cgroup_cfts_commit(ss, NULL, false);
2971 return -ENOENT;
2972 }
2973
2974 /**
2975 * cgroup_task_count - count the number of tasks in a cgroup.
2976 * @cgrp: the cgroup in question
2977 *
2978 * Return the number of tasks in the cgroup.
2979 */
2980 int cgroup_task_count(const struct cgroup *cgrp)
2981 {
2982 int count = 0;
2983 struct cgrp_cset_link *link;
2984
2985 read_lock(&css_set_lock);
2986 list_for_each_entry(link, &cgrp->cset_links, cset_link)
2987 count += atomic_read(&link->cset->refcount);
2988 read_unlock(&css_set_lock);
2989 return count;
2990 }
2991
2992 /*
2993 * Advance a list_head iterator. The iterator should be positioned at
2994 * the start of a css_set
2995 */
2996 static void cgroup_advance_iter(struct cgroup *cgrp, struct cgroup_iter *it)
2997 {
2998 struct list_head *l = it->cset_link;
2999 struct cgrp_cset_link *link;
3000 struct css_set *cset;
3001
3002 /* Advance to the next non-empty css_set */
3003 do {
3004 l = l->next;
3005 if (l == &cgrp->cset_links) {
3006 it->cset_link = NULL;
3007 return;
3008 }
3009 link = list_entry(l, struct cgrp_cset_link, cset_link);
3010 cset = link->cset;
3011 } while (list_empty(&cset->tasks));
3012 it->cset_link = l;
3013 it->task = cset->tasks.next;
3014 }
3015
3016 /*
3017 * To reduce the fork() overhead for systems that are not actually
3018 * using their cgroups capability, we don't maintain the lists running
3019 * through each css_set to its tasks until we see the list actually
3020 * used - in other words after the first call to cgroup_iter_start().
3021 */
3022 static void cgroup_enable_task_cg_lists(void)
3023 {
3024 struct task_struct *p, *g;
3025 write_lock(&css_set_lock);
3026 use_task_css_set_links = 1;
3027 /*
3028 * We need tasklist_lock because RCU is not safe against
3029 * while_each_thread(). Besides, a forking task that has passed
3030 * cgroup_post_fork() without seeing use_task_css_set_links = 1
3031 * is not guaranteed to have its child immediately visible in the
3032 * tasklist if we walk through it with RCU.
3033 */
3034 read_lock(&tasklist_lock);
3035 do_each_thread(g, p) {
3036 task_lock(p);
3037 /*
3038 * We should check if the process is exiting, otherwise
3039 * it will race with cgroup_exit() in that the list
3040 * entry won't be deleted though the process has exited.
3041 */
3042 if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
3043 list_add(&p->cg_list, &task_css_set(p)->tasks);
3044 task_unlock(p);
3045 } while_each_thread(g, p);
3046 read_unlock(&tasklist_lock);
3047 write_unlock(&css_set_lock);
3048 }
3049
3050 /**
3051 * cgroup_next_sibling - find the next sibling of a given cgroup
3052 * @pos: the current cgroup
3053 *
3054 * This function returns the next sibling of @pos and should be called
3055 * under RCU read lock. The only requirement is that @pos is accessible.
3056 * The next sibling is guaranteed to be returned regardless of @pos's
3057 * state.
3058 */
3059 struct cgroup *cgroup_next_sibling(struct cgroup *pos)
3060 {
3061 struct cgroup *next;
3062
3063 WARN_ON_ONCE(!rcu_read_lock_held());
3064
3065 /*
3066 * @pos could already have been removed. Once a cgroup is removed,
3067 * its ->sibling.next is no longer updated when its next sibling
3068 * changes. As CGRP_DEAD assertion is serialized and happens
3069 * before the cgroup is taken off the ->sibling list, if we see it
3070 * unasserted, it's guaranteed that the next sibling hasn't
3071 * finished its grace period even if it's already removed, and thus
3072 * safe to dereference from this RCU critical section. If
3073 * ->sibling.next is inaccessible, cgroup_is_dead() is guaranteed
3074 * to be visible as %true here.
3075 */
3076 if (likely(!cgroup_is_dead(pos))) {
3077 next = list_entry_rcu(pos->sibling.next, struct cgroup, sibling);
3078 if (&next->sibling != &pos->parent->children)
3079 return next;
3080 return NULL;
3081 }
3082
3083 /*
3084 * Can't dereference the next pointer. Each cgroup is given a
3085 * monotonically increasing unique serial number and always
3086 * appended to the sibling list, so the next one can be found by
3087 * walking the parent's children until we see a cgroup with higher
3088 * serial number than @pos's.
3089 *
3090 * While this path can be slow, it's taken only when either the
3091 * current cgroup is removed or iteration and removal race.
3092 */
3093 list_for_each_entry_rcu(next, &pos->parent->children, sibling)
3094 if (next->serial_nr > pos->serial_nr)
3095 return next;
3096 return NULL;
3097 }
3098 EXPORT_SYMBOL_GPL(cgroup_next_sibling);
3099
3100 /**
3101 * cgroup_next_descendant_pre - find the next descendant for pre-order walk
3102 * @pos: the current position (%NULL to initiate traversal)
3103 * @cgroup: cgroup whose descendants to walk
3104 *
3105 * To be used by cgroup_for_each_descendant_pre(). Find the next
3106 * descendant to visit for pre-order traversal of @cgroup's descendants.
3107 *
3108 * While this function requires RCU read locking, it doesn't require the
3109 * whole traversal to be contained in a single RCU critical section. This
3110 * function will return the correct next descendant as long as both @pos
3111 * and @cgroup are accessible and @pos is a descendant of @cgroup.
3112 */
3113 struct cgroup *cgroup_next_descendant_pre(struct cgroup *pos,
3114 struct cgroup *cgroup)
3115 {
3116 struct cgroup *next;
3117
3118 WARN_ON_ONCE(!rcu_read_lock_held());
3119
3120 /* if first iteration, pretend we just visited @cgroup */
3121 if (!pos)
3122 pos = cgroup;
3123
3124 /* visit the first child if exists */
3125 next = list_first_or_null_rcu(&pos->children, struct cgroup, sibling);
3126 if (next)
3127 return next;
3128
3129 /* no child, visit my or the closest ancestor's next sibling */
3130 while (pos != cgroup) {
3131 next = cgroup_next_sibling(pos);
3132 if (next)
3133 return next;
3134 pos = pos->parent;
3135 }
3136
3137 return NULL;
3138 }
3139 EXPORT_SYMBOL_GPL(cgroup_next_descendant_pre);
3140
3141 /**
3142 * cgroup_rightmost_descendant - return the rightmost descendant of a cgroup
3143 * @pos: cgroup of interest
3144 *
3145 * Return the rightmost descendant of @pos. If there's no descendant,
3146 * @pos is returned. This can be used during pre-order traversal to skip
3147 * subtree of @pos.
3148 *
3149 * While this function requires RCU read locking, it doesn't require the
3150 * whole traversal to be contained in a single RCU critical section. This
3151 * function will return the correct rightmost descendant as long as @pos is
3152 * accessible.
3153 */
3154 struct cgroup *cgroup_rightmost_descendant(struct cgroup *pos)
3155 {
3156 struct cgroup *last, *tmp;
3157
3158 WARN_ON_ONCE(!rcu_read_lock_held());
3159
3160 do {
3161 last = pos;
3162 /* ->prev isn't RCU safe, walk ->next till the end */
3163 pos = NULL;
3164 list_for_each_entry_rcu(tmp, &last->children, sibling)
3165 pos = tmp;
3166 } while (pos);
3167
3168 return last;
3169 }
3170 EXPORT_SYMBOL_GPL(cgroup_rightmost_descendant);
3171
3172 static struct cgroup *cgroup_leftmost_descendant(struct cgroup *pos)
3173 {
3174 struct cgroup *last;
3175
3176 do {
3177 last = pos;
3178 pos = list_first_or_null_rcu(&pos->children, struct cgroup,
3179 sibling);
3180 } while (pos);
3181
3182 return last;
3183 }
3184
3185 /**
3186 * cgroup_next_descendant_post - find the next descendant for post-order walk
3187 * @pos: the current position (%NULL to initiate traversal)
3188 * @cgroup: cgroup whose descendants to walk
3189 *
3190 * To be used by cgroup_for_each_descendant_post(). Find the next
3191 * descendant to visit for post-order traversal of @cgroup's descendants.
3192 *
3193 * While this function requires RCU read locking, it doesn't require the
3194 * whole traversal to be contained in a single RCU critical section. This
3195 * function will return the correct next descendant as long as both @pos
3196 * and @cgroup are accessible and @pos is a descendant of @cgroup.
3197 */
3198 struct cgroup *cgroup_next_descendant_post(struct cgroup *pos,
3199 struct cgroup *cgroup)
3200 {
3201 struct cgroup *next;
3202
3203 WARN_ON_ONCE(!rcu_read_lock_held());
3204
3205 /* if first iteration, visit the leftmost descendant */
3206 if (!pos) {
3207 next = cgroup_leftmost_descendant(cgroup);
3208 return next != cgroup ? next : NULL;
3209 }
3210
3211 /* if there's an unvisited sibling, visit its leftmost descendant */
3212 next = cgroup_next_sibling(pos);
3213 if (next)
3214 return cgroup_leftmost_descendant(next);
3215
3216 /* no sibling left, visit parent */
3217 next = pos->parent;
3218 return next != cgroup ? next : NULL;
3219 }
3220 EXPORT_SYMBOL_GPL(cgroup_next_descendant_post);
3221
3222 void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
3223 __acquires(css_set_lock)
3224 {
3225 /*
3226 * The first time anyone tries to iterate across a cgroup,
3227 * we need to enable the list linking each css_set to its
3228 * tasks, and fix up all existing tasks.
3229 */
3230 if (!use_task_css_set_links)
3231 cgroup_enable_task_cg_lists();
3232
3233 read_lock(&css_set_lock);
3234 it->cset_link = &cgrp->cset_links;
3235 cgroup_advance_iter(cgrp, it);
3236 }
3237
3238 struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
3239 struct cgroup_iter *it)
3240 {
3241 struct task_struct *res;
3242 struct list_head *l = it->task;
3243 struct cgrp_cset_link *link;
3244
3245 /* If the iterator cg is NULL, we have no tasks */
3246 if (!it->cset_link)
3247 return NULL;
3248 res = list_entry(l, struct task_struct, cg_list);
3249 /* Advance iterator to find next entry */
3250 l = l->next;
3251 link = list_entry(it->cset_link, struct cgrp_cset_link, cset_link);
3252 if (l == &link->cset->tasks) {
3253 /* We reached the end of this task list - move on to
3254 * the next cg_cgroup_link */
3255 cgroup_advance_iter(cgrp, it);
3256 } else {
3257 it->task = l;
3258 }
3259 return res;
3260 }
3261
3262 void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
3263 __releases(css_set_lock)
3264 {
3265 read_unlock(&css_set_lock);
3266 }
3267
3268 static inline int started_after_time(struct task_struct *t1,
3269 struct timespec *time,
3270 struct task_struct *t2)
3271 {
3272 int start_diff = timespec_compare(&t1->start_time, time);
3273 if (start_diff > 0) {
3274 return 1;
3275 } else if (start_diff < 0) {
3276 return 0;
3277 } else {
3278 /*
3279 * Arbitrarily, if two processes started at the same
3280 * time, we'll say that the lower pointer value
3281 * started first. Note that t2 may have exited by now
3282 * so this may not be a valid pointer any longer, but
3283 * that's fine - it still serves to distinguish
3284 * between two tasks started (effectively) simultaneously.
3285 */
3286 return t1 > t2;
3287 }
3288 }
3289
3290 /*
3291 * This function is a callback from heap_insert() and is used to order
3292 * the heap.
3293 * In this case we order the heap in descending task start time.
3294 */
3295 static inline int started_after(void *p1, void *p2)
3296 {
3297 struct task_struct *t1 = p1;
3298 struct task_struct *t2 = p2;
3299 return started_after_time(t1, &t2->start_time, t2);
3300 }
3301
3302 /**
3303 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
3304 * @scan: struct cgroup_scanner containing arguments for the scan
3305 *
3306 * Arguments include pointers to callback functions test_task() and
3307 * process_task().
3308 * Iterate through all the tasks in a cgroup, calling test_task() for each,
3309 * and if it returns true, call process_task() for it also.
3310 * The test_task pointer may be NULL, meaning always true (select all tasks).
3311 * Effectively duplicates cgroup_iter_{start,next,end}()
3312 * but does not lock css_set_lock for the call to process_task().
3313 * The struct cgroup_scanner may be embedded in any structure of the caller's
3314 * creation.
3315 * It is guaranteed that process_task() will act on every task that
3316 * is a member of the cgroup for the duration of this call. This
3317 * function may or may not call process_task() for tasks that exit
3318 * or move to a different cgroup during the call, or are forked or
3319 * move into the cgroup during the call.
3320 *
3321 * Note that test_task() may be called with locks held, and may in some
3322 * situations be called multiple times for the same task, so it should
3323 * be cheap.
3324 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
3325 * pre-allocated and will be used for heap operations (and its "gt" member will
3326 * be overwritten), else a temporary heap will be used (allocation of which
3327 * may cause this function to fail).
3328 */
3329 int cgroup_scan_tasks(struct cgroup_scanner *scan)
3330 {
3331 int retval, i;
3332 struct cgroup_iter it;
3333 struct task_struct *p, *dropped;
3334 /* Never dereference latest_task, since it's not refcounted */
3335 struct task_struct *latest_task = NULL;
3336 struct ptr_heap tmp_heap;
3337 struct ptr_heap *heap;
3338 struct timespec latest_time = { 0, 0 };
3339
3340 if (scan->heap) {
3341 /* The caller supplied our heap and pre-allocated its memory */
3342 heap = scan->heap;
3343 heap->gt = &started_after;
3344 } else {
3345 /* We need to allocate our own heap memory */
3346 heap = &tmp_heap;
3347 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
3348 if (retval)
3349 /* cannot allocate the heap */
3350 return retval;
3351 }
3352
3353 again:
3354 /*
3355 * Scan tasks in the cgroup, using the scanner's "test_task" callback
3356 * to determine which are of interest, and using the scanner's
3357 * "process_task" callback to process any of them that need an update.
3358 * Since we don't want to hold any locks during the task updates,
3359 * gather tasks to be processed in a heap structure.
3360 * The heap is sorted by descending task start time.
3361 * If the statically-sized heap fills up, we overflow tasks that
3362 * started later, and in future iterations only consider tasks that
3363 * started after the latest task in the previous pass. This
3364 * guarantees forward progress and that we don't miss any tasks.
3365 */
3366 heap->size = 0;
3367 cgroup_iter_start(scan->cg, &it);
3368 while ((p = cgroup_iter_next(scan->cg, &it))) {
3369 /*
3370 * Only affect tasks that qualify per the caller's callback,
3371 * if he provided one
3372 */
3373 if (scan->test_task && !scan->test_task(p, scan))
3374 continue;
3375 /*
3376 * Only process tasks that started after the last task
3377 * we processed
3378 */
3379 if (!started_after_time(p, &latest_time, latest_task))
3380 continue;
3381 dropped = heap_insert(heap, p);
3382 if (dropped == NULL) {
3383 /*
3384 * The new task was inserted; the heap wasn't
3385 * previously full
3386 */
3387 get_task_struct(p);
3388 } else if (dropped != p) {
3389 /*
3390 * The new task was inserted, and pushed out a
3391 * different task
3392 */
3393 get_task_struct(p);
3394 put_task_struct(dropped);
3395 }
3396 /*
3397 * Else the new task was newer than anything already in
3398 * the heap and wasn't inserted
3399 */
3400 }
3401 cgroup_iter_end(scan->cg, &it);
3402
3403 if (heap->size) {
3404 for (i = 0; i < heap->size; i++) {
3405 struct task_struct *q = heap->ptrs[i];
3406 if (i == 0) {
3407 latest_time = q->start_time;
3408 latest_task = q;
3409 }
3410 /* Process the task per the caller's callback */
3411 scan->process_task(q, scan);
3412 put_task_struct(q);
3413 }
3414 /*
3415 * If we had to process any tasks at all, scan again
3416 * in case some of them were in the middle of forking
3417 * children that didn't get processed.
3418 * Not the most efficient way to do it, but it avoids
3419 * having to take callback_mutex in the fork path
3420 */
3421 goto again;
3422 }
3423 if (heap == &tmp_heap)
3424 heap_free(&tmp_heap);
3425 return 0;
3426 }
3427
3428 static void cgroup_transfer_one_task(struct task_struct *task,
3429 struct cgroup_scanner *scan)
3430 {
3431 struct cgroup *new_cgroup = scan->data;
3432
3433 mutex_lock(&cgroup_mutex);
3434 cgroup_attach_task(new_cgroup, task, false);
3435 mutex_unlock(&cgroup_mutex);
3436 }
3437
3438 /**
3439 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
3440 * @to: cgroup to which the tasks will be moved
3441 * @from: cgroup in which the tasks currently reside
3442 */
3443 int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
3444 {
3445 struct cgroup_scanner scan;
3446
3447 scan.cg = from;
3448 scan.test_task = NULL; /* select all tasks in cgroup */
3449 scan.process_task = cgroup_transfer_one_task;
3450 scan.heap = NULL;
3451 scan.data = to;
3452
3453 return cgroup_scan_tasks(&scan);
3454 }
3455
3456 /*
3457 * Stuff for reading the 'tasks'/'procs' files.
3458 *
3459 * Reading this file can return large amounts of data if a cgroup has
3460 * *lots* of attached tasks. So it may need several calls to read(),
3461 * but we cannot guarantee that the information we produce is correct
3462 * unless we produce it entirely atomically.
3463 *
3464 */
3465
3466 /* which pidlist file are we talking about? */
3467 enum cgroup_filetype {
3468 CGROUP_FILE_PROCS,
3469 CGROUP_FILE_TASKS,
3470 };
3471
3472 /*
3473 * A pidlist is a list of pids that virtually represents the contents of one
3474 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
3475 * a pair (one each for procs, tasks) for each pid namespace that's relevant
3476 * to the cgroup.
3477 */
3478 struct cgroup_pidlist {
3479 /*
3480 * used to find which pidlist is wanted. doesn't change as long as
3481 * this particular list stays in the list.
3482 */
3483 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
3484 /* array of xids */
3485 pid_t *list;
3486 /* how many elements the above list has */
3487 int length;
3488 /* how many files are using the current array */
3489 int use_count;
3490 /* each of these stored in a list by its cgroup */
3491 struct list_head links;
3492 /* pointer to the cgroup we belong to, for list removal purposes */
3493 struct cgroup *owner;
3494 /* protects the other fields */
3495 struct rw_semaphore mutex;
3496 };
3497
3498 /*
3499 * The following two functions "fix" the issue where there are more pids
3500 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3501 * TODO: replace with a kernel-wide solution to this problem
3502 */
3503 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
3504 static void *pidlist_allocate(int count)
3505 {
3506 if (PIDLIST_TOO_LARGE(count))
3507 return vmalloc(count * sizeof(pid_t));
3508 else
3509 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
3510 }
3511 static void pidlist_free(void *p)
3512 {
3513 if (is_vmalloc_addr(p))
3514 vfree(p);
3515 else
3516 kfree(p);
3517 }
3518
3519 /*
3520 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
3521 * Returns the number of unique elements.
3522 */
3523 static int pidlist_uniq(pid_t *list, int length)
3524 {
3525 int src, dest = 1;
3526
3527 /*
3528 * we presume the 0th element is unique, so i starts at 1. trivial
3529 * edge cases first; no work needs to be done for either
3530 */
3531 if (length == 0 || length == 1)
3532 return length;
3533 /* src and dest walk down the list; dest counts unique elements */
3534 for (src = 1; src < length; src++) {
3535 /* find next unique element */
3536 while (list[src] == list[src-1]) {
3537 src++;
3538 if (src == length)
3539 goto after;
3540 }
3541 /* dest always points to where the next unique element goes */
3542 list[dest] = list[src];
3543 dest++;
3544 }
3545 after:
3546 return dest;
3547 }
3548
3549 static int cmppid(const void *a, const void *b)
3550 {
3551 return *(pid_t *)a - *(pid_t *)b;
3552 }
3553
3554 /*
3555 * find the appropriate pidlist for our purpose (given procs vs tasks)
3556 * returns with the lock on that pidlist already held, and takes care
3557 * of the use count, or returns NULL with no locks held if we're out of
3558 * memory.
3559 */
3560 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3561 enum cgroup_filetype type)
3562 {
3563 struct cgroup_pidlist *l;
3564 /* don't need task_nsproxy() if we're looking at ourself */
3565 struct pid_namespace *ns = task_active_pid_ns(current);
3566
3567 /*
3568 * We can't drop the pidlist_mutex before taking the l->mutex in case
3569 * the last ref-holder is trying to remove l from the list at the same
3570 * time. Holding the pidlist_mutex precludes somebody taking whichever
3571 * list we find out from under us - compare release_pid_array().
3572 */
3573 mutex_lock(&cgrp->pidlist_mutex);
3574 list_for_each_entry(l, &cgrp->pidlists, links) {
3575 if (l->key.type == type && l->key.ns == ns) {
3576 /* make sure l doesn't vanish out from under us */
3577 down_write(&l->mutex);
3578 mutex_unlock(&cgrp->pidlist_mutex);
3579 return l;
3580 }
3581 }
3582 /* entry not found; create a new one */
3583 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
3584 if (!l) {
3585 mutex_unlock(&cgrp->pidlist_mutex);
3586 return l;
3587 }
3588 init_rwsem(&l->mutex);
3589 down_write(&l->mutex);
3590 l->key.type = type;
3591 l->key.ns = get_pid_ns(ns);
3592 l->owner = cgrp;
3593 list_add(&l->links, &cgrp->pidlists);
3594 mutex_unlock(&cgrp->pidlist_mutex);
3595 return l;
3596 }
3597
3598 /*
3599 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3600 */
3601 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3602 struct cgroup_pidlist **lp)
3603 {
3604 pid_t *array;
3605 int length;
3606 int pid, n = 0; /* used for populating the array */
3607 struct cgroup_iter it;
3608 struct task_struct *tsk;
3609 struct cgroup_pidlist *l;
3610
3611 /*
3612 * If cgroup gets more users after we read count, we won't have
3613 * enough space - tough. This race is indistinguishable to the
3614 * caller from the case that the additional cgroup users didn't
3615 * show up until sometime later on.
3616 */
3617 length = cgroup_task_count(cgrp);
3618 array = pidlist_allocate(length);
3619 if (!array)
3620 return -ENOMEM;
3621 /* now, populate the array */
3622 cgroup_iter_start(cgrp, &it);
3623 while ((tsk = cgroup_iter_next(cgrp, &it))) {
3624 if (unlikely(n == length))
3625 break;
3626 /* get tgid or pid for procs or tasks file respectively */
3627 if (type == CGROUP_FILE_PROCS)
3628 pid = task_tgid_vnr(tsk);
3629 else
3630 pid = task_pid_vnr(tsk);
3631 if (pid > 0) /* make sure to only use valid results */
3632 array[n++] = pid;
3633 }
3634 cgroup_iter_end(cgrp, &it);
3635 length = n;
3636 /* now sort & (if procs) strip out duplicates */
3637 sort(array, length, sizeof(pid_t), cmppid, NULL);
3638 if (type == CGROUP_FILE_PROCS)
3639 length = pidlist_uniq(array, length);
3640 l = cgroup_pidlist_find(cgrp, type);
3641 if (!l) {
3642 pidlist_free(array);
3643 return -ENOMEM;
3644 }
3645 /* store array, freeing old if necessary - lock already held */
3646 pidlist_free(l->list);
3647 l->list = array;
3648 l->length = length;
3649 l->use_count++;
3650 up_write(&l->mutex);
3651 *lp = l;
3652 return 0;
3653 }
3654
3655 /**
3656 * cgroupstats_build - build and fill cgroupstats
3657 * @stats: cgroupstats to fill information into
3658 * @dentry: A dentry entry belonging to the cgroup for which stats have
3659 * been requested.
3660 *
3661 * Build and fill cgroupstats so that taskstats can export it to user
3662 * space.
3663 */
3664 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
3665 {
3666 int ret = -EINVAL;
3667 struct cgroup *cgrp;
3668 struct cgroup_iter it;
3669 struct task_struct *tsk;
3670
3671 /*
3672 * Validate dentry by checking the superblock operations,
3673 * and make sure it's a directory.
3674 */
3675 if (dentry->d_sb->s_op != &cgroup_ops ||
3676 !S_ISDIR(dentry->d_inode->i_mode))
3677 goto err;
3678
3679 ret = 0;
3680 cgrp = dentry->d_fsdata;
3681
3682 cgroup_iter_start(cgrp, &it);
3683 while ((tsk = cgroup_iter_next(cgrp, &it))) {
3684 switch (tsk->state) {
3685 case TASK_RUNNING:
3686 stats->nr_running++;
3687 break;
3688 case TASK_INTERRUPTIBLE:
3689 stats->nr_sleeping++;
3690 break;
3691 case TASK_UNINTERRUPTIBLE:
3692 stats->nr_uninterruptible++;
3693 break;
3694 case TASK_STOPPED:
3695 stats->nr_stopped++;
3696 break;
3697 default:
3698 if (delayacct_is_task_waiting_on_io(tsk))
3699 stats->nr_io_wait++;
3700 break;
3701 }
3702 }
3703 cgroup_iter_end(cgrp, &it);
3704
3705 err:
3706 return ret;
3707 }
3708
3709
3710 /*
3711 * seq_file methods for the tasks/procs files. The seq_file position is the
3712 * next pid to display; the seq_file iterator is a pointer to the pid
3713 * in the cgroup->l->list array.
3714 */
3715
3716 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
3717 {
3718 /*
3719 * Initially we receive a position value that corresponds to
3720 * one more than the last pid shown (or 0 on the first call or
3721 * after a seek to the start). Use a binary-search to find the
3722 * next pid to display, if any
3723 */
3724 struct cgroup_pidlist *l = s->private;
3725 int index = 0, pid = *pos;
3726 int *iter;
3727
3728 down_read(&l->mutex);
3729 if (pid) {
3730 int end = l->length;
3731
3732 while (index < end) {
3733 int mid = (index + end) / 2;
3734 if (l->list[mid] == pid) {
3735 index = mid;
3736 break;
3737 } else if (l->list[mid] <= pid)
3738 index = mid + 1;
3739 else
3740 end = mid;
3741 }
3742 }
3743 /* If we're off the end of the array, we're done */
3744 if (index >= l->length)
3745 return NULL;
3746 /* Update the abstract position to be the actual pid that we found */
3747 iter = l->list + index;
3748 *pos = *iter;
3749 return iter;
3750 }
3751
3752 static void cgroup_pidlist_stop(struct seq_file *s, void *v)
3753 {
3754 struct cgroup_pidlist *l = s->private;
3755 up_read(&l->mutex);
3756 }
3757
3758 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
3759 {
3760 struct cgroup_pidlist *l = s->private;
3761 pid_t *p = v;
3762 pid_t *end = l->list + l->length;
3763 /*
3764 * Advance to the next pid in the array. If this goes off the
3765 * end, we're done
3766 */
3767 p++;
3768 if (p >= end) {
3769 return NULL;
3770 } else {
3771 *pos = *p;
3772 return p;
3773 }
3774 }
3775
3776 static int cgroup_pidlist_show(struct seq_file *s, void *v)
3777 {
3778 return seq_printf(s, "%d\n", *(int *)v);
3779 }
3780
3781 /*
3782 * seq_operations functions for iterating on pidlists through seq_file -
3783 * independent of whether it's tasks or procs
3784 */
3785 static const struct seq_operations cgroup_pidlist_seq_operations = {
3786 .start = cgroup_pidlist_start,
3787 .stop = cgroup_pidlist_stop,
3788 .next = cgroup_pidlist_next,
3789 .show = cgroup_pidlist_show,
3790 };
3791
3792 static void cgroup_release_pid_array(struct cgroup_pidlist *l)
3793 {
3794 /*
3795 * the case where we're the last user of this particular pidlist will
3796 * have us remove it from the cgroup's list, which entails taking the
3797 * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
3798 * pidlist_mutex, we have to take pidlist_mutex first.
3799 */
3800 mutex_lock(&l->owner->pidlist_mutex);
3801 down_write(&l->mutex);
3802 BUG_ON(!l->use_count);
3803 if (!--l->use_count) {
3804 /* we're the last user if refcount is 0; remove and free */
3805 list_del(&l->links);
3806 mutex_unlock(&l->owner->pidlist_mutex);
3807 pidlist_free(l->list);
3808 put_pid_ns(l->key.ns);
3809 up_write(&l->mutex);
3810 kfree(l);
3811 return;
3812 }
3813 mutex_unlock(&l->owner->pidlist_mutex);
3814 up_write(&l->mutex);
3815 }
3816
3817 static int cgroup_pidlist_release(struct inode *inode, struct file *file)
3818 {
3819 struct cgroup_pidlist *l;
3820 if (!(file->f_mode & FMODE_READ))
3821 return 0;
3822 /*
3823 * the seq_file will only be initialized if the file was opened for
3824 * reading; hence we check if it's not null only in that case.
3825 */
3826 l = ((struct seq_file *)file->private_data)->private;
3827 cgroup_release_pid_array(l);
3828 return seq_release(inode, file);
3829 }
3830
3831 static const struct file_operations cgroup_pidlist_operations = {
3832 .read = seq_read,
3833 .llseek = seq_lseek,
3834 .write = cgroup_file_write,
3835 .release = cgroup_pidlist_release,
3836 };
3837
3838 /*
3839 * The following functions handle opens on a file that displays a pidlist
3840 * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
3841 * in the cgroup.
3842 */
3843 /* helper function for the two below it */
3844 static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type)
3845 {
3846 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
3847 struct cgroup_pidlist *l;
3848 int retval;
3849
3850 /* Nothing to do for write-only files */
3851 if (!(file->f_mode & FMODE_READ))
3852 return 0;
3853
3854 /* have the array populated */
3855 retval = pidlist_array_load(cgrp, type, &l);
3856 if (retval)
3857 return retval;
3858 /* configure file information */
3859 file->f_op = &cgroup_pidlist_operations;
3860
3861 retval = seq_open(file, &cgroup_pidlist_seq_operations);
3862 if (retval) {
3863 cgroup_release_pid_array(l);
3864 return retval;
3865 }
3866 ((struct seq_file *)file->private_data)->private = l;
3867 return 0;
3868 }
3869 static int cgroup_tasks_open(struct inode *unused, struct file *file)
3870 {
3871 return cgroup_pidlist_open(file, CGROUP_FILE_TASKS);
3872 }
3873 static int cgroup_procs_open(struct inode *unused, struct file *file)
3874 {
3875 return cgroup_pidlist_open(file, CGROUP_FILE_PROCS);
3876 }
3877
3878 static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
3879 struct cftype *cft)
3880 {
3881 return notify_on_release(cgrp);
3882 }
3883
3884 static int cgroup_write_notify_on_release(struct cgroup *cgrp,
3885 struct cftype *cft,
3886 u64 val)
3887 {
3888 clear_bit(CGRP_RELEASABLE, &cgrp->flags);
3889 if (val)
3890 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3891 else
3892 clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3893 return 0;
3894 }
3895
3896 /*
3897 * When dput() is called asynchronously, if umount has been done and
3898 * then deactivate_super() in cgroup_free_fn() kills the superblock,
3899 * there's a small window that vfs will see the root dentry with non-zero
3900 * refcnt and trigger BUG().
3901 *
3902 * That's why we hold a reference before dput() and drop it right after.
3903 */
3904 static void cgroup_dput(struct cgroup *cgrp)
3905 {
3906 struct super_block *sb = cgrp->root->sb;
3907
3908 atomic_inc(&sb->s_active);
3909 dput(cgrp->dentry);
3910 deactivate_super(sb);
3911 }
3912
3913 /*
3914 * Unregister event and free resources.
3915 *
3916 * Gets called from workqueue.
3917 */
3918 static void cgroup_event_remove(struct work_struct *work)
3919 {
3920 struct cgroup_event *event = container_of(work, struct cgroup_event,
3921 remove);
3922 struct cgroup *cgrp = event->cgrp;
3923
3924 remove_wait_queue(event->wqh, &event->wait);
3925
3926 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3927
3928 /* Notify userspace the event is going away. */
3929 eventfd_signal(event->eventfd, 1);
3930
3931 eventfd_ctx_put(event->eventfd);
3932 kfree(event);
3933 cgroup_dput(cgrp);
3934 }
3935
3936 /*
3937 * Gets called on POLLHUP on eventfd when user closes it.
3938 *
3939 * Called with wqh->lock held and interrupts disabled.
3940 */
3941 static int cgroup_event_wake(wait_queue_t *wait, unsigned mode,
3942 int sync, void *key)
3943 {
3944 struct cgroup_event *event = container_of(wait,
3945 struct cgroup_event, wait);
3946 struct cgroup *cgrp = event->cgrp;
3947 unsigned long flags = (unsigned long)key;
3948
3949 if (flags & POLLHUP) {
3950 /*
3951 * If the event has been detached at cgroup removal, we
3952 * can simply return knowing the other side will cleanup
3953 * for us.
3954 *
3955 * We can't race against event freeing since the other
3956 * side will require wqh->lock via remove_wait_queue(),
3957 * which we hold.
3958 */
3959 spin_lock(&cgrp->event_list_lock);
3960 if (!list_empty(&event->list)) {
3961 list_del_init(&event->list);
3962 /*
3963 * We are in atomic context, but cgroup_event_remove()
3964 * may sleep, so we have to call it in workqueue.
3965 */
3966 schedule_work(&event->remove);
3967 }
3968 spin_unlock(&cgrp->event_list_lock);
3969 }
3970
3971 return 0;
3972 }
3973
3974 static void cgroup_event_ptable_queue_proc(struct file *file,
3975 wait_queue_head_t *wqh, poll_table *pt)
3976 {
3977 struct cgroup_event *event = container_of(pt,
3978 struct cgroup_event, pt);
3979
3980 event->wqh = wqh;
3981 add_wait_queue(wqh, &event->wait);
3982 }
3983
3984 /*
3985 * Parse input and register new cgroup event handler.
3986 *
3987 * Input must be in format '<event_fd> <control_fd> <args>'.
3988 * Interpretation of args is defined by control file implementation.
3989 */
3990 static int cgroup_write_event_control(struct cgroup *cgrp, struct cftype *cft,
3991 const char *buffer)
3992 {
3993 struct cgroup_event *event = NULL;
3994 struct cgroup *cgrp_cfile;
3995 unsigned int efd, cfd;
3996 struct file *efile = NULL;
3997 struct file *cfile = NULL;
3998 char *endp;
3999 int ret;
4000
4001 efd = simple_strtoul(buffer, &endp, 10);
4002 if (*endp != ' ')
4003 return -EINVAL;
4004 buffer = endp + 1;
4005
4006 cfd = simple_strtoul(buffer, &endp, 10);
4007 if ((*endp != ' ') && (*endp != '\0'))
4008 return -EINVAL;
4009 buffer = endp + 1;
4010
4011 event = kzalloc(sizeof(*event), GFP_KERNEL);
4012 if (!event)
4013 return -ENOMEM;
4014 event->cgrp = cgrp;
4015 INIT_LIST_HEAD(&event->list);
4016 init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc);
4017 init_waitqueue_func_entry(&event->wait, cgroup_event_wake);
4018 INIT_WORK(&event->remove, cgroup_event_remove);
4019
4020 efile = eventfd_fget(efd);
4021 if (IS_ERR(efile)) {
4022 ret = PTR_ERR(efile);
4023 goto fail;
4024 }
4025
4026 event->eventfd = eventfd_ctx_fileget(efile);
4027 if (IS_ERR(event->eventfd)) {
4028 ret = PTR_ERR(event->eventfd);
4029 goto fail;
4030 }
4031
4032 cfile = fget(cfd);
4033 if (!cfile) {
4034 ret = -EBADF;
4035 goto fail;
4036 }
4037
4038 /* the process need read permission on control file */
4039 /* AV: shouldn't we check that it's been opened for read instead? */
4040 ret = inode_permission(file_inode(cfile), MAY_READ);
4041 if (ret < 0)
4042 goto fail;
4043
4044 event->cft = __file_cft(cfile);
4045 if (IS_ERR(event->cft)) {
4046 ret = PTR_ERR(event->cft);
4047 goto fail;
4048 }
4049
4050 /*
4051 * The file to be monitored must be in the same cgroup as
4052 * cgroup.event_control is.
4053 */
4054 cgrp_cfile = __d_cgrp(cfile->f_dentry->d_parent);
4055 if (cgrp_cfile != cgrp) {
4056 ret = -EINVAL;
4057 goto fail;
4058 }
4059
4060 if (!event->cft->register_event || !event->cft->unregister_event) {
4061 ret = -EINVAL;
4062 goto fail;
4063 }
4064
4065 ret = event->cft->register_event(cgrp, event->cft,
4066 event->eventfd, buffer);
4067 if (ret)
4068 goto fail;
4069
4070 efile->f_op->poll(efile, &event->pt);
4071
4072 /*
4073 * Events should be removed after rmdir of cgroup directory, but before
4074 * destroying subsystem state objects. Let's take reference to cgroup
4075 * directory dentry to do that.
4076 */
4077 dget(cgrp->dentry);
4078
4079 spin_lock(&cgrp->event_list_lock);
4080 list_add(&event->list, &cgrp->event_list);
4081 spin_unlock(&cgrp->event_list_lock);
4082
4083 fput(cfile);
4084 fput(efile);
4085
4086 return 0;
4087
4088 fail:
4089 if (cfile)
4090 fput(cfile);
4091
4092 if (event && event->eventfd && !IS_ERR(event->eventfd))
4093 eventfd_ctx_put(event->eventfd);
4094
4095 if (!IS_ERR_OR_NULL(efile))
4096 fput(efile);
4097
4098 kfree(event);
4099
4100 return ret;
4101 }
4102
4103 static u64 cgroup_clone_children_read(struct cgroup *cgrp,
4104 struct cftype *cft)
4105 {
4106 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
4107 }
4108
4109 static int cgroup_clone_children_write(struct cgroup *cgrp,
4110 struct cftype *cft,
4111 u64 val)
4112 {
4113 if (val)
4114 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
4115 else
4116 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
4117 return 0;
4118 }
4119
4120 static struct cftype cgroup_base_files[] = {
4121 {
4122 .name = "cgroup.procs",
4123 .open = cgroup_procs_open,
4124 .write_u64 = cgroup_procs_write,
4125 .release = cgroup_pidlist_release,
4126 .mode = S_IRUGO | S_IWUSR,
4127 },
4128 {
4129 .name = "cgroup.event_control",
4130 .write_string = cgroup_write_event_control,
4131 .mode = S_IWUGO,
4132 },
4133 {
4134 .name = "cgroup.clone_children",
4135 .flags = CFTYPE_INSANE,
4136 .read_u64 = cgroup_clone_children_read,
4137 .write_u64 = cgroup_clone_children_write,
4138 },
4139 {
4140 .name = "cgroup.sane_behavior",
4141 .flags = CFTYPE_ONLY_ON_ROOT,
4142 .read_seq_string = cgroup_sane_behavior_show,
4143 },
4144
4145 /*
4146 * Historical crazy stuff. These don't have "cgroup." prefix and
4147 * don't exist if sane_behavior. If you're depending on these, be
4148 * prepared to be burned.
4149 */
4150 {
4151 .name = "tasks",
4152 .flags = CFTYPE_INSANE, /* use "procs" instead */
4153 .open = cgroup_tasks_open,
4154 .write_u64 = cgroup_tasks_write,
4155 .release = cgroup_pidlist_release,
4156 .mode = S_IRUGO | S_IWUSR,
4157 },
4158 {
4159 .name = "notify_on_release",
4160 .flags = CFTYPE_INSANE,
4161 .read_u64 = cgroup_read_notify_on_release,
4162 .write_u64 = cgroup_write_notify_on_release,
4163 },
4164 {
4165 .name = "release_agent",
4166 .flags = CFTYPE_INSANE | CFTYPE_ONLY_ON_ROOT,
4167 .read_seq_string = cgroup_release_agent_show,
4168 .write_string = cgroup_release_agent_write,
4169 .max_write_len = PATH_MAX,
4170 },
4171 { } /* terminate */
4172 };
4173
4174 /**
4175 * cgroup_populate_dir - selectively creation of files in a directory
4176 * @cgrp: target cgroup
4177 * @base_files: true if the base files should be added
4178 * @subsys_mask: mask of the subsystem ids whose files should be added
4179 */
4180 static int cgroup_populate_dir(struct cgroup *cgrp, bool base_files,
4181 unsigned long subsys_mask)
4182 {
4183 int err;
4184 struct cgroup_subsys *ss;
4185
4186 if (base_files) {
4187 err = cgroup_addrm_files(cgrp, NULL, cgroup_base_files, true);
4188 if (err < 0)
4189 return err;
4190 }
4191
4192 /* process cftsets of each subsystem */
4193 for_each_root_subsys(cgrp->root, ss) {
4194 struct cftype_set *set;
4195 if (!test_bit(ss->subsys_id, &subsys_mask))
4196 continue;
4197
4198 list_for_each_entry(set, &ss->cftsets, node)
4199 cgroup_addrm_files(cgrp, ss, set->cfts, true);
4200 }
4201
4202 /* This cgroup is ready now */
4203 for_each_root_subsys(cgrp->root, ss) {
4204 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
4205 struct css_id *id = rcu_dereference_protected(css->id, true);
4206
4207 /*
4208 * Update id->css pointer and make this css visible from
4209 * CSS ID functions. This pointer will be dereferened
4210 * from RCU-read-side without locks.
4211 */
4212 if (id)
4213 rcu_assign_pointer(id->css, css);
4214 }
4215
4216 return 0;
4217 }
4218
4219 static void css_dput_fn(struct work_struct *work)
4220 {
4221 struct cgroup_subsys_state *css =
4222 container_of(work, struct cgroup_subsys_state, dput_work);
4223
4224 cgroup_dput(css->cgroup);
4225 }
4226
4227 static void css_release(struct percpu_ref *ref)
4228 {
4229 struct cgroup_subsys_state *css =
4230 container_of(ref, struct cgroup_subsys_state, refcnt);
4231
4232 schedule_work(&css->dput_work);
4233 }
4234
4235 static void init_cgroup_css(struct cgroup_subsys_state *css,
4236 struct cgroup_subsys *ss,
4237 struct cgroup *cgrp)
4238 {
4239 css->cgroup = cgrp;
4240 css->flags = 0;
4241 css->id = NULL;
4242 if (cgrp == cgroup_dummy_top)
4243 css->flags |= CSS_ROOT;
4244 BUG_ON(cgrp->subsys[ss->subsys_id]);
4245 cgrp->subsys[ss->subsys_id] = css;
4246
4247 /*
4248 * css holds an extra ref to @cgrp->dentry which is put on the last
4249 * css_put(). dput() requires process context, which css_put() may
4250 * be called without. @css->dput_work will be used to invoke
4251 * dput() asynchronously from css_put().
4252 */
4253 INIT_WORK(&css->dput_work, css_dput_fn);
4254 }
4255
4256 /* invoke ->post_create() on a new CSS and mark it online if successful */
4257 static int online_css(struct cgroup_subsys *ss, struct cgroup *cgrp)
4258 {
4259 int ret = 0;
4260
4261 lockdep_assert_held(&cgroup_mutex);
4262
4263 if (ss->css_online)
4264 ret = ss->css_online(cgrp);
4265 if (!ret)
4266 cgrp->subsys[ss->subsys_id]->flags |= CSS_ONLINE;
4267 return ret;
4268 }
4269
4270 /* if the CSS is online, invoke ->pre_destory() on it and mark it offline */
4271 static void offline_css(struct cgroup_subsys *ss, struct cgroup *cgrp)
4272 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
4273 {
4274 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
4275
4276 lockdep_assert_held(&cgroup_mutex);
4277
4278 if (!(css->flags & CSS_ONLINE))
4279 return;
4280
4281 if (ss->css_offline)
4282 ss->css_offline(cgrp);
4283
4284 cgrp->subsys[ss->subsys_id]->flags &= ~CSS_ONLINE;
4285 }
4286
4287 /*
4288 * cgroup_create - create a cgroup
4289 * @parent: cgroup that will be parent of the new cgroup
4290 * @dentry: dentry of the new cgroup
4291 * @mode: mode to set on new inode
4292 *
4293 * Must be called with the mutex on the parent inode held
4294 */
4295 static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
4296 umode_t mode)
4297 {
4298 struct cgroup *cgrp;
4299 struct cgroup_name *name;
4300 struct cgroupfs_root *root = parent->root;
4301 int err = 0;
4302 struct cgroup_subsys *ss;
4303 struct super_block *sb = root->sb;
4304
4305 /* allocate the cgroup and its ID, 0 is reserved for the root */
4306 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
4307 if (!cgrp)
4308 return -ENOMEM;
4309
4310 name = cgroup_alloc_name(dentry);
4311 if (!name)
4312 goto err_free_cgrp;
4313 rcu_assign_pointer(cgrp->name, name);
4314
4315 cgrp->id = ida_simple_get(&root->cgroup_ida, 1, 0, GFP_KERNEL);
4316 if (cgrp->id < 0)
4317 goto err_free_name;
4318
4319 /*
4320 * Only live parents can have children. Note that the liveliness
4321 * check isn't strictly necessary because cgroup_mkdir() and
4322 * cgroup_rmdir() are fully synchronized by i_mutex; however, do it
4323 * anyway so that locking is contained inside cgroup proper and we
4324 * don't get nasty surprises if we ever grow another caller.
4325 */
4326 if (!cgroup_lock_live_group(parent)) {
4327 err = -ENODEV;
4328 goto err_free_id;
4329 }
4330
4331 /* Grab a reference on the superblock so the hierarchy doesn't
4332 * get deleted on unmount if there are child cgroups. This
4333 * can be done outside cgroup_mutex, since the sb can't
4334 * disappear while someone has an open control file on the
4335 * fs */
4336 atomic_inc(&sb->s_active);
4337
4338 init_cgroup_housekeeping(cgrp);
4339
4340 dentry->d_fsdata = cgrp;
4341 cgrp->dentry = dentry;
4342
4343 cgrp->parent = parent;
4344 cgrp->root = parent->root;
4345
4346 if (notify_on_release(parent))
4347 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4348
4349 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4350 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
4351
4352 for_each_root_subsys(root, ss) {
4353 struct cgroup_subsys_state *css;
4354
4355 css = ss->css_alloc(cgrp);
4356 if (IS_ERR(css)) {
4357 err = PTR_ERR(css);
4358 goto err_free_all;
4359 }
4360
4361 err = percpu_ref_init(&css->refcnt, css_release);
4362 if (err)
4363 goto err_free_all;
4364
4365 init_cgroup_css(css, ss, cgrp);
4366
4367 if (ss->use_id) {
4368 err = alloc_css_id(ss, parent, cgrp);
4369 if (err)
4370 goto err_free_all;
4371 }
4372 }
4373
4374 /*
4375 * Create directory. cgroup_create_file() returns with the new
4376 * directory locked on success so that it can be populated without
4377 * dropping cgroup_mutex.
4378 */
4379 err = cgroup_create_file(dentry, S_IFDIR | mode, sb);
4380 if (err < 0)
4381 goto err_free_all;
4382 lockdep_assert_held(&dentry->d_inode->i_mutex);
4383
4384 cgrp->serial_nr = cgroup_serial_nr_next++;
4385
4386 /* allocation complete, commit to creation */
4387 list_add_tail_rcu(&cgrp->sibling, &cgrp->parent->children);
4388 root->number_of_cgroups++;
4389
4390 /* each css holds a ref to the cgroup's dentry */
4391 for_each_root_subsys(root, ss)
4392 dget(dentry);
4393
4394 /* hold a ref to the parent's dentry */
4395 dget(parent->dentry);
4396
4397 /* creation succeeded, notify subsystems */
4398 for_each_root_subsys(root, ss) {
4399 err = online_css(ss, cgrp);
4400 if (err)
4401 goto err_destroy;
4402
4403 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
4404 parent->parent) {
4405 pr_warning("cgroup: %s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4406 current->comm, current->pid, ss->name);
4407 if (!strcmp(ss->name, "memory"))
4408 pr_warning("cgroup: \"memory\" requires setting use_hierarchy to 1 on the root.\n");
4409 ss->warned_broken_hierarchy = true;
4410 }
4411 }
4412
4413 err = cgroup_populate_dir(cgrp, true, root->subsys_mask);
4414 if (err)
4415 goto err_destroy;
4416
4417 mutex_unlock(&cgroup_mutex);
4418 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
4419
4420 return 0;
4421
4422 err_free_all:
4423 for_each_root_subsys(root, ss) {
4424 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
4425
4426 if (css) {
4427 percpu_ref_cancel_init(&css->refcnt);
4428 ss->css_free(cgrp);
4429 }
4430 }
4431 mutex_unlock(&cgroup_mutex);
4432 /* Release the reference count that we took on the superblock */
4433 deactivate_super(sb);
4434 err_free_id:
4435 ida_simple_remove(&root->cgroup_ida, cgrp->id);
4436 err_free_name:
4437 kfree(rcu_dereference_raw(cgrp->name));
4438 err_free_cgrp:
4439 kfree(cgrp);
4440 return err;
4441
4442 err_destroy:
4443 cgroup_destroy_locked(cgrp);
4444 mutex_unlock(&cgroup_mutex);
4445 mutex_unlock(&dentry->d_inode->i_mutex);
4446 return err;
4447 }
4448
4449 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
4450 {
4451 struct cgroup *c_parent = dentry->d_parent->d_fsdata;
4452
4453 /* the vfs holds inode->i_mutex already */
4454 return cgroup_create(c_parent, dentry, mode | S_IFDIR);
4455 }
4456
4457 static void cgroup_css_killed(struct cgroup *cgrp)
4458 {
4459 if (!atomic_dec_and_test(&cgrp->css_kill_cnt))
4460 return;
4461
4462 /* percpu ref's of all css's are killed, kick off the next step */
4463 INIT_WORK(&cgrp->destroy_work, cgroup_offline_fn);
4464 schedule_work(&cgrp->destroy_work);
4465 }
4466
4467 static void css_ref_killed_fn(struct percpu_ref *ref)
4468 {
4469 struct cgroup_subsys_state *css =
4470 container_of(ref, struct cgroup_subsys_state, refcnt);
4471
4472 cgroup_css_killed(css->cgroup);
4473 }
4474
4475 /**
4476 * cgroup_destroy_locked - the first stage of cgroup destruction
4477 * @cgrp: cgroup to be destroyed
4478 *
4479 * css's make use of percpu refcnts whose killing latency shouldn't be
4480 * exposed to userland and are RCU protected. Also, cgroup core needs to
4481 * guarantee that css_tryget() won't succeed by the time ->css_offline() is
4482 * invoked. To satisfy all the requirements, destruction is implemented in
4483 * the following two steps.
4484 *
4485 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
4486 * userland visible parts and start killing the percpu refcnts of
4487 * css's. Set up so that the next stage will be kicked off once all
4488 * the percpu refcnts are confirmed to be killed.
4489 *
4490 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
4491 * rest of destruction. Once all cgroup references are gone, the
4492 * cgroup is RCU-freed.
4493 *
4494 * This function implements s1. After this step, @cgrp is gone as far as
4495 * the userland is concerned and a new cgroup with the same name may be
4496 * created. As cgroup doesn't care about the names internally, this
4497 * doesn't cause any problem.
4498 */
4499 static int cgroup_destroy_locked(struct cgroup *cgrp)
4500 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
4501 {
4502 struct dentry *d = cgrp->dentry;
4503 struct cgroup_event *event, *tmp;
4504 struct cgroup_subsys *ss;
4505 bool empty;
4506
4507 lockdep_assert_held(&d->d_inode->i_mutex);
4508 lockdep_assert_held(&cgroup_mutex);
4509
4510 /*
4511 * css_set_lock synchronizes access to ->cset_links and prevents
4512 * @cgrp from being removed while __put_css_set() is in progress.
4513 */
4514 read_lock(&css_set_lock);
4515 empty = list_empty(&cgrp->cset_links) && list_empty(&cgrp->children);
4516 read_unlock(&css_set_lock);
4517 if (!empty)
4518 return -EBUSY;
4519
4520 /*
4521 * Block new css_tryget() by killing css refcnts. cgroup core
4522 * guarantees that, by the time ->css_offline() is invoked, no new
4523 * css reference will be given out via css_tryget(). We can't
4524 * simply call percpu_ref_kill() and proceed to offlining css's
4525 * because percpu_ref_kill() doesn't guarantee that the ref is seen
4526 * as killed on all CPUs on return.
4527 *
4528 * Use percpu_ref_kill_and_confirm() to get notifications as each
4529 * css is confirmed to be seen as killed on all CPUs. The
4530 * notification callback keeps track of the number of css's to be
4531 * killed and schedules cgroup_offline_fn() to perform the rest of
4532 * destruction once the percpu refs of all css's are confirmed to
4533 * be killed.
4534 */
4535 atomic_set(&cgrp->css_kill_cnt, 1);
4536 for_each_root_subsys(cgrp->root, ss) {
4537 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
4538
4539 /*
4540 * Killing would put the base ref, but we need to keep it
4541 * alive until after ->css_offline.
4542 */
4543 percpu_ref_get(&css->refcnt);
4544
4545 atomic_inc(&cgrp->css_kill_cnt);
4546 percpu_ref_kill_and_confirm(&css->refcnt, css_ref_killed_fn);
4547 }
4548 cgroup_css_killed(cgrp);
4549
4550 /*
4551 * Mark @cgrp dead. This prevents further task migration and child
4552 * creation by disabling cgroup_lock_live_group(). Note that
4553 * CGRP_DEAD assertion is depended upon by cgroup_next_sibling() to
4554 * resume iteration after dropping RCU read lock. See
4555 * cgroup_next_sibling() for details.
4556 */
4557 set_bit(CGRP_DEAD, &cgrp->flags);
4558
4559 /* CGRP_DEAD is set, remove from ->release_list for the last time */
4560 raw_spin_lock(&release_list_lock);
4561 if (!list_empty(&cgrp->release_list))
4562 list_del_init(&cgrp->release_list);
4563 raw_spin_unlock(&release_list_lock);
4564
4565 /*
4566 * Clear and remove @cgrp directory. The removal puts the base ref
4567 * but we aren't quite done with @cgrp yet, so hold onto it.
4568 */
4569 cgroup_clear_dir(cgrp, true, cgrp->root->subsys_mask);
4570 dget(d);
4571 cgroup_d_remove_dir(d);
4572
4573 /*
4574 * Unregister events and notify userspace.
4575 * Notify userspace about cgroup removing only after rmdir of cgroup
4576 * directory to avoid race between userspace and kernelspace.
4577 */
4578 spin_lock(&cgrp->event_list_lock);
4579 list_for_each_entry_safe(event, tmp, &cgrp->event_list, list) {
4580 list_del_init(&event->list);
4581 schedule_work(&event->remove);
4582 }
4583 spin_unlock(&cgrp->event_list_lock);
4584
4585 return 0;
4586 };
4587
4588 /**
4589 * cgroup_offline_fn - the second step of cgroup destruction
4590 * @work: cgroup->destroy_free_work
4591 *
4592 * This function is invoked from a work item for a cgroup which is being
4593 * destroyed after the percpu refcnts of all css's are guaranteed to be
4594 * seen as killed on all CPUs, and performs the rest of destruction. This
4595 * is the second step of destruction described in the comment above
4596 * cgroup_destroy_locked().
4597 */
4598 static void cgroup_offline_fn(struct work_struct *work)
4599 {
4600 struct cgroup *cgrp = container_of(work, struct cgroup, destroy_work);
4601 struct cgroup *parent = cgrp->parent;
4602 struct dentry *d = cgrp->dentry;
4603 struct cgroup_subsys *ss;
4604
4605 mutex_lock(&cgroup_mutex);
4606
4607 /*
4608 * css_tryget() is guaranteed to fail now. Tell subsystems to
4609 * initate destruction.
4610 */
4611 for_each_root_subsys(cgrp->root, ss)
4612 offline_css(ss, cgrp);
4613
4614 /*
4615 * Put the css refs from cgroup_destroy_locked(). Each css holds
4616 * an extra reference to the cgroup's dentry and cgroup removal
4617 * proceeds regardless of css refs. On the last put of each css,
4618 * whenever that may be, the extra dentry ref is put so that dentry
4619 * destruction happens only after all css's are released.
4620 */
4621 for_each_root_subsys(cgrp->root, ss)
4622 css_put(cgrp->subsys[ss->subsys_id]);
4623
4624 /* delete this cgroup from parent->children */
4625 list_del_rcu(&cgrp->sibling);
4626
4627 dput(d);
4628
4629 set_bit(CGRP_RELEASABLE, &parent->flags);
4630 check_for_release(parent);
4631
4632 mutex_unlock(&cgroup_mutex);
4633 }
4634
4635 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
4636 {
4637 int ret;
4638
4639 mutex_lock(&cgroup_mutex);
4640 ret = cgroup_destroy_locked(dentry->d_fsdata);
4641 mutex_unlock(&cgroup_mutex);
4642
4643 return ret;
4644 }
4645
4646 static void __init_or_module cgroup_init_cftsets(struct cgroup_subsys *ss)
4647 {
4648 INIT_LIST_HEAD(&ss->cftsets);
4649
4650 /*
4651 * base_cftset is embedded in subsys itself, no need to worry about
4652 * deregistration.
4653 */
4654 if (ss->base_cftypes) {
4655 ss->base_cftset.cfts = ss->base_cftypes;
4656 list_add_tail(&ss->base_cftset.node, &ss->cftsets);
4657 }
4658 }
4659
4660 static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
4661 {
4662 struct cgroup_subsys_state *css;
4663
4664 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
4665
4666 mutex_lock(&cgroup_mutex);
4667
4668 /* init base cftset */
4669 cgroup_init_cftsets(ss);
4670
4671 /* Create the top cgroup state for this subsystem */
4672 list_add(&ss->sibling, &cgroup_dummy_root.subsys_list);
4673 ss->root = &cgroup_dummy_root;
4674 css = ss->css_alloc(cgroup_dummy_top);
4675 /* We don't handle early failures gracefully */
4676 BUG_ON(IS_ERR(css));
4677 init_cgroup_css(css, ss, cgroup_dummy_top);
4678
4679 /* Update the init_css_set to contain a subsys
4680 * pointer to this state - since the subsystem is
4681 * newly registered, all tasks and hence the
4682 * init_css_set is in the subsystem's top cgroup. */
4683 init_css_set.subsys[ss->subsys_id] = css;
4684
4685 need_forkexit_callback |= ss->fork || ss->exit;
4686
4687 /* At system boot, before all subsystems have been
4688 * registered, no tasks have been forked, so we don't
4689 * need to invoke fork callbacks here. */
4690 BUG_ON(!list_empty(&init_task.tasks));
4691
4692 BUG_ON(online_css(ss, cgroup_dummy_top));
4693
4694 mutex_unlock(&cgroup_mutex);
4695
4696 /* this function shouldn't be used with modular subsystems, since they
4697 * need to register a subsys_id, among other things */
4698 BUG_ON(ss->module);
4699 }
4700
4701 /**
4702 * cgroup_load_subsys: load and register a modular subsystem at runtime
4703 * @ss: the subsystem to load
4704 *
4705 * This function should be called in a modular subsystem's initcall. If the
4706 * subsystem is built as a module, it will be assigned a new subsys_id and set
4707 * up for use. If the subsystem is built-in anyway, work is delegated to the
4708 * simpler cgroup_init_subsys.
4709 */
4710 int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss)
4711 {
4712 struct cgroup_subsys_state *css;
4713 int i, ret;
4714 struct hlist_node *tmp;
4715 struct css_set *cset;
4716 unsigned long key;
4717
4718 /* check name and function validity */
4719 if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN ||
4720 ss->css_alloc == NULL || ss->css_free == NULL)
4721 return -EINVAL;
4722
4723 /*
4724 * we don't support callbacks in modular subsystems. this check is
4725 * before the ss->module check for consistency; a subsystem that could
4726 * be a module should still have no callbacks even if the user isn't
4727 * compiling it as one.
4728 */
4729 if (ss->fork || ss->exit)
4730 return -EINVAL;
4731
4732 /*
4733 * an optionally modular subsystem is built-in: we want to do nothing,
4734 * since cgroup_init_subsys will have already taken care of it.
4735 */
4736 if (ss->module == NULL) {
4737 /* a sanity check */
4738 BUG_ON(cgroup_subsys[ss->subsys_id] != ss);
4739 return 0;
4740 }
4741
4742 /* init base cftset */
4743 cgroup_init_cftsets(ss);
4744
4745 mutex_lock(&cgroup_mutex);
4746 cgroup_subsys[ss->subsys_id] = ss;
4747
4748 /*
4749 * no ss->css_alloc seems to need anything important in the ss
4750 * struct, so this can happen first (i.e. before the dummy root
4751 * attachment).
4752 */
4753 css = ss->css_alloc(cgroup_dummy_top);
4754 if (IS_ERR(css)) {
4755 /* failure case - need to deassign the cgroup_subsys[] slot. */
4756 cgroup_subsys[ss->subsys_id] = NULL;
4757 mutex_unlock(&cgroup_mutex);
4758 return PTR_ERR(css);
4759 }
4760
4761 list_add(&ss->sibling, &cgroup_dummy_root.subsys_list);
4762 ss->root = &cgroup_dummy_root;
4763
4764 /* our new subsystem will be attached to the dummy hierarchy. */
4765 init_cgroup_css(css, ss, cgroup_dummy_top);
4766 /* init_idr must be after init_cgroup_css because it sets css->id. */
4767 if (ss->use_id) {
4768 ret = cgroup_init_idr(ss, css);
4769 if (ret)
4770 goto err_unload;
4771 }
4772
4773 /*
4774 * Now we need to entangle the css into the existing css_sets. unlike
4775 * in cgroup_init_subsys, there are now multiple css_sets, so each one
4776 * will need a new pointer to it; done by iterating the css_set_table.
4777 * furthermore, modifying the existing css_sets will corrupt the hash
4778 * table state, so each changed css_set will need its hash recomputed.
4779 * this is all done under the css_set_lock.
4780 */
4781 write_lock(&css_set_lock);
4782 hash_for_each_safe(css_set_table, i, tmp, cset, hlist) {
4783 /* skip entries that we already rehashed */
4784 if (cset->subsys[ss->subsys_id])
4785 continue;
4786 /* remove existing entry */
4787 hash_del(&cset->hlist);
4788 /* set new value */
4789 cset->subsys[ss->subsys_id] = css;
4790 /* recompute hash and restore entry */
4791 key = css_set_hash(cset->subsys);
4792 hash_add(css_set_table, &cset->hlist, key);
4793 }
4794 write_unlock(&css_set_lock);
4795
4796 ret = online_css(ss, cgroup_dummy_top);
4797 if (ret)
4798 goto err_unload;
4799
4800 /* success! */
4801 mutex_unlock(&cgroup_mutex);
4802 return 0;
4803
4804 err_unload:
4805 mutex_unlock(&cgroup_mutex);
4806 /* @ss can't be mounted here as try_module_get() would fail */
4807 cgroup_unload_subsys(ss);
4808 return ret;
4809 }
4810 EXPORT_SYMBOL_GPL(cgroup_load_subsys);
4811
4812 /**
4813 * cgroup_unload_subsys: unload a modular subsystem
4814 * @ss: the subsystem to unload
4815 *
4816 * This function should be called in a modular subsystem's exitcall. When this
4817 * function is invoked, the refcount on the subsystem's module will be 0, so
4818 * the subsystem will not be attached to any hierarchy.
4819 */
4820 void cgroup_unload_subsys(struct cgroup_subsys *ss)
4821 {
4822 struct cgrp_cset_link *link;
4823
4824 BUG_ON(ss->module == NULL);
4825
4826 /*
4827 * we shouldn't be called if the subsystem is in use, and the use of
4828 * try_module_get in parse_cgroupfs_options should ensure that it
4829 * doesn't start being used while we're killing it off.
4830 */
4831 BUG_ON(ss->root != &cgroup_dummy_root);
4832
4833 mutex_lock(&cgroup_mutex);
4834
4835 offline_css(ss, cgroup_dummy_top);
4836
4837 if (ss->use_id)
4838 idr_destroy(&ss->idr);
4839
4840 /* deassign the subsys_id */
4841 cgroup_subsys[ss->subsys_id] = NULL;
4842
4843 /* remove subsystem from the dummy root's list of subsystems */
4844 list_del_init(&ss->sibling);
4845
4846 /*
4847 * disentangle the css from all css_sets attached to the dummy
4848 * top. as in loading, we need to pay our respects to the hashtable
4849 * gods.
4850 */
4851 write_lock(&css_set_lock);
4852 list_for_each_entry(link, &cgroup_dummy_top->cset_links, cset_link) {
4853 struct css_set *cset = link->cset;
4854 unsigned long key;
4855
4856 hash_del(&cset->hlist);
4857 cset->subsys[ss->subsys_id] = NULL;
4858 key = css_set_hash(cset->subsys);
4859 hash_add(css_set_table, &cset->hlist, key);
4860 }
4861 write_unlock(&css_set_lock);
4862
4863 /*
4864 * remove subsystem's css from the cgroup_dummy_top and free it -
4865 * need to free before marking as null because ss->css_free needs
4866 * the cgrp->subsys pointer to find their state. note that this
4867 * also takes care of freeing the css_id.
4868 */
4869 ss->css_free(cgroup_dummy_top);
4870 cgroup_dummy_top->subsys[ss->subsys_id] = NULL;
4871
4872 mutex_unlock(&cgroup_mutex);
4873 }
4874 EXPORT_SYMBOL_GPL(cgroup_unload_subsys);
4875
4876 /**
4877 * cgroup_init_early - cgroup initialization at system boot
4878 *
4879 * Initialize cgroups at system boot, and initialize any
4880 * subsystems that request early init.
4881 */
4882 int __init cgroup_init_early(void)
4883 {
4884 struct cgroup_subsys *ss;
4885 int i;
4886
4887 atomic_set(&init_css_set.refcount, 1);
4888 INIT_LIST_HEAD(&init_css_set.cgrp_links);
4889 INIT_LIST_HEAD(&init_css_set.tasks);
4890 INIT_HLIST_NODE(&init_css_set.hlist);
4891 css_set_count = 1;
4892 init_cgroup_root(&cgroup_dummy_root);
4893 cgroup_root_count = 1;
4894 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
4895
4896 init_cgrp_cset_link.cset = &init_css_set;
4897 init_cgrp_cset_link.cgrp = cgroup_dummy_top;
4898 list_add(&init_cgrp_cset_link.cset_link, &cgroup_dummy_top->cset_links);
4899 list_add(&init_cgrp_cset_link.cgrp_link, &init_css_set.cgrp_links);
4900
4901 /* at bootup time, we don't worry about modular subsystems */
4902 for_each_builtin_subsys(ss, i) {
4903 BUG_ON(!ss->name);
4904 BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
4905 BUG_ON(!ss->css_alloc);
4906 BUG_ON(!ss->css_free);
4907 if (ss->subsys_id != i) {
4908 printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
4909 ss->name, ss->subsys_id);
4910 BUG();
4911 }
4912
4913 if (ss->early_init)
4914 cgroup_init_subsys(ss);
4915 }
4916 return 0;
4917 }
4918
4919 /**
4920 * cgroup_init - cgroup initialization
4921 *
4922 * Register cgroup filesystem and /proc file, and initialize
4923 * any subsystems that didn't request early init.
4924 */
4925 int __init cgroup_init(void)
4926 {
4927 struct cgroup_subsys *ss;
4928 unsigned long key;
4929 int i, err;
4930
4931 err = bdi_init(&cgroup_backing_dev_info);
4932 if (err)
4933 return err;
4934
4935 for_each_builtin_subsys(ss, i) {
4936 if (!ss->early_init)
4937 cgroup_init_subsys(ss);
4938 if (ss->use_id)
4939 cgroup_init_idr(ss, init_css_set.subsys[ss->subsys_id]);
4940 }
4941
4942 /* allocate id for the dummy hierarchy */
4943 mutex_lock(&cgroup_mutex);
4944 mutex_lock(&cgroup_root_mutex);
4945
4946 /* Add init_css_set to the hash table */
4947 key = css_set_hash(init_css_set.subsys);
4948 hash_add(css_set_table, &init_css_set.hlist, key);
4949
4950 BUG_ON(cgroup_init_root_id(&cgroup_dummy_root, 0, 1));
4951
4952 mutex_unlock(&cgroup_root_mutex);
4953 mutex_unlock(&cgroup_mutex);
4954
4955 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
4956 if (!cgroup_kobj) {
4957 err = -ENOMEM;
4958 goto out;
4959 }
4960
4961 err = register_filesystem(&cgroup_fs_type);
4962 if (err < 0) {
4963 kobject_put(cgroup_kobj);
4964 goto out;
4965 }
4966
4967 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
4968
4969 out:
4970 if (err)
4971 bdi_destroy(&cgroup_backing_dev_info);
4972
4973 return err;
4974 }
4975
4976 /*
4977 * proc_cgroup_show()
4978 * - Print task's cgroup paths into seq_file, one line for each hierarchy
4979 * - Used for /proc/<pid>/cgroup.
4980 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
4981 * doesn't really matter if tsk->cgroup changes after we read it,
4982 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
4983 * anyway. No need to check that tsk->cgroup != NULL, thanks to
4984 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
4985 * cgroup to top_cgroup.
4986 */
4987
4988 /* TODO: Use a proper seq_file iterator */
4989 int proc_cgroup_show(struct seq_file *m, void *v)
4990 {
4991 struct pid *pid;
4992 struct task_struct *tsk;
4993 char *buf;
4994 int retval;
4995 struct cgroupfs_root *root;
4996
4997 retval = -ENOMEM;
4998 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4999 if (!buf)
5000 goto out;
5001
5002 retval = -ESRCH;
5003 pid = m->private;
5004 tsk = get_pid_task(pid, PIDTYPE_PID);
5005 if (!tsk)
5006 goto out_free;
5007
5008 retval = 0;
5009
5010 mutex_lock(&cgroup_mutex);
5011
5012 for_each_active_root(root) {
5013 struct cgroup_subsys *ss;
5014 struct cgroup *cgrp;
5015 int count = 0;
5016
5017 seq_printf(m, "%d:", root->hierarchy_id);
5018 for_each_root_subsys(root, ss)
5019 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
5020 if (strlen(root->name))
5021 seq_printf(m, "%sname=%s", count ? "," : "",
5022 root->name);
5023 seq_putc(m, ':');
5024 cgrp = task_cgroup_from_root(tsk, root);
5025 retval = cgroup_path(cgrp, buf, PAGE_SIZE);
5026 if (retval < 0)
5027 goto out_unlock;
5028 seq_puts(m, buf);
5029 seq_putc(m, '\n');
5030 }
5031
5032 out_unlock:
5033 mutex_unlock(&cgroup_mutex);
5034 put_task_struct(tsk);
5035 out_free:
5036 kfree(buf);
5037 out:
5038 return retval;
5039 }
5040
5041 /* Display information about each subsystem and each hierarchy */
5042 static int proc_cgroupstats_show(struct seq_file *m, void *v)
5043 {
5044 struct cgroup_subsys *ss;
5045 int i;
5046
5047 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
5048 /*
5049 * ideally we don't want subsystems moving around while we do this.
5050 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
5051 * subsys/hierarchy state.
5052 */
5053 mutex_lock(&cgroup_mutex);
5054
5055 for_each_subsys(ss, i)
5056 seq_printf(m, "%s\t%d\t%d\t%d\n",
5057 ss->name, ss->root->hierarchy_id,
5058 ss->root->number_of_cgroups, !ss->disabled);
5059
5060 mutex_unlock(&cgroup_mutex);
5061 return 0;
5062 }
5063
5064 static int cgroupstats_open(struct inode *inode, struct file *file)
5065 {
5066 return single_open(file, proc_cgroupstats_show, NULL);
5067 }
5068
5069 static const struct file_operations proc_cgroupstats_operations = {
5070 .open = cgroupstats_open,
5071 .read = seq_read,
5072 .llseek = seq_lseek,
5073 .release = single_release,
5074 };
5075
5076 /**
5077 * cgroup_fork - attach newly forked task to its parents cgroup.
5078 * @child: pointer to task_struct of forking parent process.
5079 *
5080 * Description: A task inherits its parent's cgroup at fork().
5081 *
5082 * A pointer to the shared css_set was automatically copied in
5083 * fork.c by dup_task_struct(). However, we ignore that copy, since
5084 * it was not made under the protection of RCU or cgroup_mutex, so
5085 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
5086 * have already changed current->cgroups, allowing the previously
5087 * referenced cgroup group to be removed and freed.
5088 *
5089 * At the point that cgroup_fork() is called, 'current' is the parent
5090 * task, and the passed argument 'child' points to the child task.
5091 */
5092 void cgroup_fork(struct task_struct *child)
5093 {
5094 task_lock(current);
5095 get_css_set(task_css_set(current));
5096 child->cgroups = current->cgroups;
5097 task_unlock(current);
5098 INIT_LIST_HEAD(&child->cg_list);
5099 }
5100
5101 /**
5102 * cgroup_post_fork - called on a new task after adding it to the task list
5103 * @child: the task in question
5104 *
5105 * Adds the task to the list running through its css_set if necessary and
5106 * call the subsystem fork() callbacks. Has to be after the task is
5107 * visible on the task list in case we race with the first call to
5108 * cgroup_iter_start() - to guarantee that the new task ends up on its
5109 * list.
5110 */
5111 void cgroup_post_fork(struct task_struct *child)
5112 {
5113 struct cgroup_subsys *ss;
5114 int i;
5115
5116 /*
5117 * use_task_css_set_links is set to 1 before we walk the tasklist
5118 * under the tasklist_lock and we read it here after we added the child
5119 * to the tasklist under the tasklist_lock as well. If the child wasn't
5120 * yet in the tasklist when we walked through it from
5121 * cgroup_enable_task_cg_lists(), then use_task_css_set_links value
5122 * should be visible now due to the paired locking and barriers implied
5123 * by LOCK/UNLOCK: it is written before the tasklist_lock unlock
5124 * in cgroup_enable_task_cg_lists() and read here after the tasklist_lock
5125 * lock on fork.
5126 */
5127 if (use_task_css_set_links) {
5128 write_lock(&css_set_lock);
5129 task_lock(child);
5130 if (list_empty(&child->cg_list))
5131 list_add(&child->cg_list, &task_css_set(child)->tasks);
5132 task_unlock(child);
5133 write_unlock(&css_set_lock);
5134 }
5135
5136 /*
5137 * Call ss->fork(). This must happen after @child is linked on
5138 * css_set; otherwise, @child might change state between ->fork()
5139 * and addition to css_set.
5140 */
5141 if (need_forkexit_callback) {
5142 /*
5143 * fork/exit callbacks are supported only for builtin
5144 * subsystems, and the builtin section of the subsys
5145 * array is immutable, so we don't need to lock the
5146 * subsys array here. On the other hand, modular section
5147 * of the array can be freed at module unload, so we
5148 * can't touch that.
5149 */
5150 for_each_builtin_subsys(ss, i)
5151 if (ss->fork)
5152 ss->fork(child);
5153 }
5154 }
5155
5156 /**
5157 * cgroup_exit - detach cgroup from exiting task
5158 * @tsk: pointer to task_struct of exiting process
5159 * @run_callback: run exit callbacks?
5160 *
5161 * Description: Detach cgroup from @tsk and release it.
5162 *
5163 * Note that cgroups marked notify_on_release force every task in
5164 * them to take the global cgroup_mutex mutex when exiting.
5165 * This could impact scaling on very large systems. Be reluctant to
5166 * use notify_on_release cgroups where very high task exit scaling
5167 * is required on large systems.
5168 *
5169 * the_top_cgroup_hack:
5170 *
5171 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
5172 *
5173 * We call cgroup_exit() while the task is still competent to
5174 * handle notify_on_release(), then leave the task attached to the
5175 * root cgroup in each hierarchy for the remainder of its exit.
5176 *
5177 * To do this properly, we would increment the reference count on
5178 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
5179 * code we would add a second cgroup function call, to drop that
5180 * reference. This would just create an unnecessary hot spot on
5181 * the top_cgroup reference count, to no avail.
5182 *
5183 * Normally, holding a reference to a cgroup without bumping its
5184 * count is unsafe. The cgroup could go away, or someone could
5185 * attach us to a different cgroup, decrementing the count on
5186 * the first cgroup that we never incremented. But in this case,
5187 * top_cgroup isn't going away, and either task has PF_EXITING set,
5188 * which wards off any cgroup_attach_task() attempts, or task is a failed
5189 * fork, never visible to cgroup_attach_task.
5190 */
5191 void cgroup_exit(struct task_struct *tsk, int run_callbacks)
5192 {
5193 struct cgroup_subsys *ss;
5194 struct css_set *cset;
5195 int i;
5196
5197 /*
5198 * Unlink from the css_set task list if necessary.
5199 * Optimistically check cg_list before taking
5200 * css_set_lock
5201 */
5202 if (!list_empty(&tsk->cg_list)) {
5203 write_lock(&css_set_lock);
5204 if (!list_empty(&tsk->cg_list))
5205 list_del_init(&tsk->cg_list);
5206 write_unlock(&css_set_lock);
5207 }
5208
5209 /* Reassign the task to the init_css_set. */
5210 task_lock(tsk);
5211 cset = task_css_set(tsk);
5212 RCU_INIT_POINTER(tsk->cgroups, &init_css_set);
5213
5214 if (run_callbacks && need_forkexit_callback) {
5215 /*
5216 * fork/exit callbacks are supported only for builtin
5217 * subsystems, see cgroup_post_fork() for details.
5218 */
5219 for_each_builtin_subsys(ss, i) {
5220 if (ss->exit) {
5221 struct cgroup *old_cgrp = cset->subsys[i]->cgroup;
5222 struct cgroup *cgrp = task_cgroup(tsk, i);
5223
5224 ss->exit(cgrp, old_cgrp, tsk);
5225 }
5226 }
5227 }
5228 task_unlock(tsk);
5229
5230 put_css_set_taskexit(cset);
5231 }
5232
5233 static void check_for_release(struct cgroup *cgrp)
5234 {
5235 if (cgroup_is_releasable(cgrp) &&
5236 list_empty(&cgrp->cset_links) && list_empty(&cgrp->children)) {
5237 /*
5238 * Control Group is currently removeable. If it's not
5239 * already queued for a userspace notification, queue
5240 * it now
5241 */
5242 int need_schedule_work = 0;
5243
5244 raw_spin_lock(&release_list_lock);
5245 if (!cgroup_is_dead(cgrp) &&
5246 list_empty(&cgrp->release_list)) {
5247 list_add(&cgrp->release_list, &release_list);
5248 need_schedule_work = 1;
5249 }
5250 raw_spin_unlock(&release_list_lock);
5251 if (need_schedule_work)
5252 schedule_work(&release_agent_work);
5253 }
5254 }
5255
5256 /*
5257 * Notify userspace when a cgroup is released, by running the
5258 * configured release agent with the name of the cgroup (path
5259 * relative to the root of cgroup file system) as the argument.
5260 *
5261 * Most likely, this user command will try to rmdir this cgroup.
5262 *
5263 * This races with the possibility that some other task will be
5264 * attached to this cgroup before it is removed, or that some other
5265 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5266 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5267 * unused, and this cgroup will be reprieved from its death sentence,
5268 * to continue to serve a useful existence. Next time it's released,
5269 * we will get notified again, if it still has 'notify_on_release' set.
5270 *
5271 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5272 * means only wait until the task is successfully execve()'d. The
5273 * separate release agent task is forked by call_usermodehelper(),
5274 * then control in this thread returns here, without waiting for the
5275 * release agent task. We don't bother to wait because the caller of
5276 * this routine has no use for the exit status of the release agent
5277 * task, so no sense holding our caller up for that.
5278 */
5279 static void cgroup_release_agent(struct work_struct *work)
5280 {
5281 BUG_ON(work != &release_agent_work);
5282 mutex_lock(&cgroup_mutex);
5283 raw_spin_lock(&release_list_lock);
5284 while (!list_empty(&release_list)) {
5285 char *argv[3], *envp[3];
5286 int i;
5287 char *pathbuf = NULL, *agentbuf = NULL;
5288 struct cgroup *cgrp = list_entry(release_list.next,
5289 struct cgroup,
5290 release_list);
5291 list_del_init(&cgrp->release_list);
5292 raw_spin_unlock(&release_list_lock);
5293 pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
5294 if (!pathbuf)
5295 goto continue_free;
5296 if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
5297 goto continue_free;
5298 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5299 if (!agentbuf)
5300 goto continue_free;
5301
5302 i = 0;
5303 argv[i++] = agentbuf;
5304 argv[i++] = pathbuf;
5305 argv[i] = NULL;
5306
5307 i = 0;
5308 /* minimal command environment */
5309 envp[i++] = "HOME=/";
5310 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5311 envp[i] = NULL;
5312
5313 /* Drop the lock while we invoke the usermode helper,
5314 * since the exec could involve hitting disk and hence
5315 * be a slow process */
5316 mutex_unlock(&cgroup_mutex);
5317 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
5318 mutex_lock(&cgroup_mutex);
5319 continue_free:
5320 kfree(pathbuf);
5321 kfree(agentbuf);
5322 raw_spin_lock(&release_list_lock);
5323 }
5324 raw_spin_unlock(&release_list_lock);
5325 mutex_unlock(&cgroup_mutex);
5326 }
5327
5328 static int __init cgroup_disable(char *str)
5329 {
5330 struct cgroup_subsys *ss;
5331 char *token;
5332 int i;
5333
5334 while ((token = strsep(&str, ",")) != NULL) {
5335 if (!*token)
5336 continue;
5337
5338 /*
5339 * cgroup_disable, being at boot time, can't know about
5340 * module subsystems, so we don't worry about them.
5341 */
5342 for_each_builtin_subsys(ss, i) {
5343 if (!strcmp(token, ss->name)) {
5344 ss->disabled = 1;
5345 printk(KERN_INFO "Disabling %s control group"
5346 " subsystem\n", ss->name);
5347 break;
5348 }
5349 }
5350 }
5351 return 1;
5352 }
5353 __setup("cgroup_disable=", cgroup_disable);
5354
5355 /*
5356 * Functons for CSS ID.
5357 */
5358
5359 /* to get ID other than 0, this should be called when !cgroup_is_dead() */
5360 unsigned short css_id(struct cgroup_subsys_state *css)
5361 {
5362 struct css_id *cssid;
5363
5364 /*
5365 * This css_id() can return correct value when somone has refcnt
5366 * on this or this is under rcu_read_lock(). Once css->id is allocated,
5367 * it's unchanged until freed.
5368 */
5369 cssid = rcu_dereference_raw(css->id);
5370
5371 if (cssid)
5372 return cssid->id;
5373 return 0;
5374 }
5375 EXPORT_SYMBOL_GPL(css_id);
5376
5377 /**
5378 * css_is_ancestor - test "root" css is an ancestor of "child"
5379 * @child: the css to be tested.
5380 * @root: the css supporsed to be an ancestor of the child.
5381 *
5382 * Returns true if "root" is an ancestor of "child" in its hierarchy. Because
5383 * this function reads css->id, the caller must hold rcu_read_lock().
5384 * But, considering usual usage, the csses should be valid objects after test.
5385 * Assuming that the caller will do some action to the child if this returns
5386 * returns true, the caller must take "child";s reference count.
5387 * If "child" is valid object and this returns true, "root" is valid, too.
5388 */
5389
5390 bool css_is_ancestor(struct cgroup_subsys_state *child,
5391 const struct cgroup_subsys_state *root)
5392 {
5393 struct css_id *child_id;
5394 struct css_id *root_id;
5395
5396 child_id = rcu_dereference(child->id);
5397 if (!child_id)
5398 return false;
5399 root_id = rcu_dereference(root->id);
5400 if (!root_id)
5401 return false;
5402 if (child_id->depth < root_id->depth)
5403 return false;
5404 if (child_id->stack[root_id->depth] != root_id->id)
5405 return false;
5406 return true;
5407 }
5408
5409 void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
5410 {
5411 struct css_id *id = rcu_dereference_protected(css->id, true);
5412
5413 /* When this is called before css_id initialization, id can be NULL */
5414 if (!id)
5415 return;
5416
5417 BUG_ON(!ss->use_id);
5418
5419 rcu_assign_pointer(id->css, NULL);
5420 rcu_assign_pointer(css->id, NULL);
5421 spin_lock(&ss->id_lock);
5422 idr_remove(&ss->idr, id->id);
5423 spin_unlock(&ss->id_lock);
5424 kfree_rcu(id, rcu_head);
5425 }
5426 EXPORT_SYMBOL_GPL(free_css_id);
5427
5428 /*
5429 * This is called by init or create(). Then, calls to this function are
5430 * always serialized (By cgroup_mutex() at create()).
5431 */
5432
5433 static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
5434 {
5435 struct css_id *newid;
5436 int ret, size;
5437
5438 BUG_ON(!ss->use_id);
5439
5440 size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
5441 newid = kzalloc(size, GFP_KERNEL);
5442 if (!newid)
5443 return ERR_PTR(-ENOMEM);
5444
5445 idr_preload(GFP_KERNEL);
5446 spin_lock(&ss->id_lock);
5447 /* Don't use 0. allocates an ID of 1-65535 */
5448 ret = idr_alloc(&ss->idr, newid, 1, CSS_ID_MAX + 1, GFP_NOWAIT);
5449 spin_unlock(&ss->id_lock);
5450 idr_preload_end();
5451
5452 /* Returns error when there are no free spaces for new ID.*/
5453 if (ret < 0)
5454 goto err_out;
5455
5456 newid->id = ret;
5457 newid->depth = depth;
5458 return newid;
5459 err_out:
5460 kfree(newid);
5461 return ERR_PTR(ret);
5462
5463 }
5464
5465 static int __init_or_module cgroup_init_idr(struct cgroup_subsys *ss,
5466 struct cgroup_subsys_state *rootcss)
5467 {
5468 struct css_id *newid;
5469
5470 spin_lock_init(&ss->id_lock);
5471 idr_init(&ss->idr);
5472
5473 newid = get_new_cssid(ss, 0);
5474 if (IS_ERR(newid))
5475 return PTR_ERR(newid);
5476
5477 newid->stack[0] = newid->id;
5478 RCU_INIT_POINTER(newid->css, rootcss);
5479 RCU_INIT_POINTER(rootcss->id, newid);
5480 return 0;
5481 }
5482
5483 static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
5484 struct cgroup *child)
5485 {
5486 int subsys_id, i, depth = 0;
5487 struct cgroup_subsys_state *parent_css, *child_css;
5488 struct css_id *child_id, *parent_id;
5489
5490 subsys_id = ss->subsys_id;
5491 parent_css = parent->subsys[subsys_id];
5492 child_css = child->subsys[subsys_id];
5493 parent_id = rcu_dereference_protected(parent_css->id, true);
5494 depth = parent_id->depth + 1;
5495
5496 child_id = get_new_cssid(ss, depth);
5497 if (IS_ERR(child_id))
5498 return PTR_ERR(child_id);
5499
5500 for (i = 0; i < depth; i++)
5501 child_id->stack[i] = parent_id->stack[i];
5502 child_id->stack[depth] = child_id->id;
5503 /*
5504 * child_id->css pointer will be set after this cgroup is available
5505 * see cgroup_populate_dir()
5506 */
5507 rcu_assign_pointer(child_css->id, child_id);
5508
5509 return 0;
5510 }
5511
5512 /**
5513 * css_lookup - lookup css by id
5514 * @ss: cgroup subsys to be looked into.
5515 * @id: the id
5516 *
5517 * Returns pointer to cgroup_subsys_state if there is valid one with id.
5518 * NULL if not. Should be called under rcu_read_lock()
5519 */
5520 struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
5521 {
5522 struct css_id *cssid = NULL;
5523
5524 BUG_ON(!ss->use_id);
5525 cssid = idr_find(&ss->idr, id);
5526
5527 if (unlikely(!cssid))
5528 return NULL;
5529
5530 return rcu_dereference(cssid->css);
5531 }
5532 EXPORT_SYMBOL_GPL(css_lookup);
5533
5534 /*
5535 * get corresponding css from file open on cgroupfs directory
5536 */
5537 struct cgroup_subsys_state *cgroup_css_from_dir(struct file *f, int id)
5538 {
5539 struct cgroup *cgrp;
5540 struct inode *inode;
5541 struct cgroup_subsys_state *css;
5542
5543 inode = file_inode(f);
5544 /* check in cgroup filesystem dir */
5545 if (inode->i_op != &cgroup_dir_inode_operations)
5546 return ERR_PTR(-EBADF);
5547
5548 if (id < 0 || id >= CGROUP_SUBSYS_COUNT)
5549 return ERR_PTR(-EINVAL);
5550
5551 /* get cgroup */
5552 cgrp = __d_cgrp(f->f_dentry);
5553 css = cgrp->subsys[id];
5554 return css ? css : ERR_PTR(-ENOENT);
5555 }
5556
5557 #ifdef CONFIG_CGROUP_DEBUG
5558 static struct cgroup_subsys_state *debug_css_alloc(struct cgroup *cgrp)
5559 {
5560 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5561
5562 if (!css)
5563 return ERR_PTR(-ENOMEM);
5564
5565 return css;
5566 }
5567
5568 static void debug_css_free(struct cgroup *cgrp)
5569 {
5570 kfree(cgrp->subsys[debug_subsys_id]);
5571 }
5572
5573 static u64 debug_taskcount_read(struct cgroup *cgrp, struct cftype *cft)
5574 {
5575 return cgroup_task_count(cgrp);
5576 }
5577
5578 static u64 current_css_set_read(struct cgroup *cgrp, struct cftype *cft)
5579 {
5580 return (u64)(unsigned long)current->cgroups;
5581 }
5582
5583 static u64 current_css_set_refcount_read(struct cgroup *cgrp,
5584 struct cftype *cft)
5585 {
5586 u64 count;
5587
5588 rcu_read_lock();
5589 count = atomic_read(&task_css_set(current)->refcount);
5590 rcu_read_unlock();
5591 return count;
5592 }
5593
5594 static int current_css_set_cg_links_read(struct cgroup *cgrp,
5595 struct cftype *cft,
5596 struct seq_file *seq)
5597 {
5598 struct cgrp_cset_link *link;
5599 struct css_set *cset;
5600
5601 read_lock(&css_set_lock);
5602 rcu_read_lock();
5603 cset = rcu_dereference(current->cgroups);
5604 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
5605 struct cgroup *c = link->cgrp;
5606 const char *name;
5607
5608 if (c->dentry)
5609 name = c->dentry->d_name.name;
5610 else
5611 name = "?";
5612 seq_printf(seq, "Root %d group %s\n",
5613 c->root->hierarchy_id, name);
5614 }
5615 rcu_read_unlock();
5616 read_unlock(&css_set_lock);
5617 return 0;
5618 }
5619
5620 #define MAX_TASKS_SHOWN_PER_CSS 25
5621 static int cgroup_css_links_read(struct cgroup *cgrp,
5622 struct cftype *cft,
5623 struct seq_file *seq)
5624 {
5625 struct cgrp_cset_link *link;
5626
5627 read_lock(&css_set_lock);
5628 list_for_each_entry(link, &cgrp->cset_links, cset_link) {
5629 struct css_set *cset = link->cset;
5630 struct task_struct *task;
5631 int count = 0;
5632 seq_printf(seq, "css_set %p\n", cset);
5633 list_for_each_entry(task, &cset->tasks, cg_list) {
5634 if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
5635 seq_puts(seq, " ...\n");
5636 break;
5637 } else {
5638 seq_printf(seq, " task %d\n",
5639 task_pid_vnr(task));
5640 }
5641 }
5642 }
5643 read_unlock(&css_set_lock);
5644 return 0;
5645 }
5646
5647 static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft)
5648 {
5649 return test_bit(CGRP_RELEASABLE, &cgrp->flags);
5650 }
5651
5652 static struct cftype debug_files[] = {
5653 {
5654 .name = "taskcount",
5655 .read_u64 = debug_taskcount_read,
5656 },
5657
5658 {
5659 .name = "current_css_set",
5660 .read_u64 = current_css_set_read,
5661 },
5662
5663 {
5664 .name = "current_css_set_refcount",
5665 .read_u64 = current_css_set_refcount_read,
5666 },
5667
5668 {
5669 .name = "current_css_set_cg_links",
5670 .read_seq_string = current_css_set_cg_links_read,
5671 },
5672
5673 {
5674 .name = "cgroup_css_links",
5675 .read_seq_string = cgroup_css_links_read,
5676 },
5677
5678 {
5679 .name = "releasable",
5680 .read_u64 = releasable_read,
5681 },
5682
5683 { } /* terminate */
5684 };
5685
5686 struct cgroup_subsys debug_subsys = {
5687 .name = "debug",
5688 .css_alloc = debug_css_alloc,
5689 .css_free = debug_css_free,
5690 .subsys_id = debug_subsys_id,
5691 .base_cftypes = debug_files,
5692 };
5693 #endif /* CONFIG_CGROUP_DEBUG */
This page took 0.142705 seconds and 6 git commands to generate.