cgroups: add the trigger callback to struct cftype
[deliverable/linux.git] / kernel / cgroup.c
1 /*
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
7 * Copyright notices from the original cpuset code:
8 * --------------------------------------------------
9 * Copyright (C) 2003 BULL SA.
10 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
11 *
12 * Portions derived from Patrick Mochel's sysfs code.
13 * sysfs is Copyright (c) 2001-3 Patrick Mochel
14 *
15 * 2003-10-10 Written by Simon Derr.
16 * 2003-10-22 Updates by Stephen Hemminger.
17 * 2004 May-July Rework by Paul Jackson.
18 * ---------------------------------------------------
19 *
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
23 */
24
25 #include <linux/cgroup.h>
26 #include <linux/errno.h>
27 #include <linux/fs.h>
28 #include <linux/kernel.h>
29 #include <linux/list.h>
30 #include <linux/mm.h>
31 #include <linux/mutex.h>
32 #include <linux/mount.h>
33 #include <linux/pagemap.h>
34 #include <linux/proc_fs.h>
35 #include <linux/rcupdate.h>
36 #include <linux/sched.h>
37 #include <linux/backing-dev.h>
38 #include <linux/seq_file.h>
39 #include <linux/slab.h>
40 #include <linux/magic.h>
41 #include <linux/spinlock.h>
42 #include <linux/string.h>
43 #include <linux/sort.h>
44 #include <linux/kmod.h>
45 #include <linux/delayacct.h>
46 #include <linux/cgroupstats.h>
47
48 #include <asm/atomic.h>
49
50 static DEFINE_MUTEX(cgroup_mutex);
51
52 /* Generate an array of cgroup subsystem pointers */
53 #define SUBSYS(_x) &_x ## _subsys,
54
55 static struct cgroup_subsys *subsys[] = {
56 #include <linux/cgroup_subsys.h>
57 };
58
59 /*
60 * A cgroupfs_root represents the root of a cgroup hierarchy,
61 * and may be associated with a superblock to form an active
62 * hierarchy
63 */
64 struct cgroupfs_root {
65 struct super_block *sb;
66
67 /*
68 * The bitmask of subsystems intended to be attached to this
69 * hierarchy
70 */
71 unsigned long subsys_bits;
72
73 /* The bitmask of subsystems currently attached to this hierarchy */
74 unsigned long actual_subsys_bits;
75
76 /* A list running through the attached subsystems */
77 struct list_head subsys_list;
78
79 /* The root cgroup for this hierarchy */
80 struct cgroup top_cgroup;
81
82 /* Tracks how many cgroups are currently defined in hierarchy.*/
83 int number_of_cgroups;
84
85 /* A list running through the mounted hierarchies */
86 struct list_head root_list;
87
88 /* Hierarchy-specific flags */
89 unsigned long flags;
90
91 /* The path to use for release notifications. No locking
92 * between setting and use - so if userspace updates this
93 * while child cgroups exist, you could miss a
94 * notification. We ensure that it's always a valid
95 * NUL-terminated string */
96 char release_agent_path[PATH_MAX];
97 };
98
99
100 /*
101 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
102 * subsystems that are otherwise unattached - it never has more than a
103 * single cgroup, and all tasks are part of that cgroup.
104 */
105 static struct cgroupfs_root rootnode;
106
107 /* The list of hierarchy roots */
108
109 static LIST_HEAD(roots);
110 static int root_count;
111
112 /* dummytop is a shorthand for the dummy hierarchy's top cgroup */
113 #define dummytop (&rootnode.top_cgroup)
114
115 /* This flag indicates whether tasks in the fork and exit paths should
116 * check for fork/exit handlers to call. This avoids us having to do
117 * extra work in the fork/exit path if none of the subsystems need to
118 * be called.
119 */
120 static int need_forkexit_callback;
121
122 /* convenient tests for these bits */
123 inline int cgroup_is_removed(const struct cgroup *cgrp)
124 {
125 return test_bit(CGRP_REMOVED, &cgrp->flags);
126 }
127
128 /* bits in struct cgroupfs_root flags field */
129 enum {
130 ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
131 };
132
133 static int cgroup_is_releasable(const struct cgroup *cgrp)
134 {
135 const int bits =
136 (1 << CGRP_RELEASABLE) |
137 (1 << CGRP_NOTIFY_ON_RELEASE);
138 return (cgrp->flags & bits) == bits;
139 }
140
141 static int notify_on_release(const struct cgroup *cgrp)
142 {
143 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
144 }
145
146 /*
147 * for_each_subsys() allows you to iterate on each subsystem attached to
148 * an active hierarchy
149 */
150 #define for_each_subsys(_root, _ss) \
151 list_for_each_entry(_ss, &_root->subsys_list, sibling)
152
153 /* for_each_root() allows you to iterate across the active hierarchies */
154 #define for_each_root(_root) \
155 list_for_each_entry(_root, &roots, root_list)
156
157 /* the list of cgroups eligible for automatic release. Protected by
158 * release_list_lock */
159 static LIST_HEAD(release_list);
160 static DEFINE_SPINLOCK(release_list_lock);
161 static void cgroup_release_agent(struct work_struct *work);
162 static DECLARE_WORK(release_agent_work, cgroup_release_agent);
163 static void check_for_release(struct cgroup *cgrp);
164
165 /* Link structure for associating css_set objects with cgroups */
166 struct cg_cgroup_link {
167 /*
168 * List running through cg_cgroup_links associated with a
169 * cgroup, anchored on cgroup->css_sets
170 */
171 struct list_head cgrp_link_list;
172 /*
173 * List running through cg_cgroup_links pointing at a
174 * single css_set object, anchored on css_set->cg_links
175 */
176 struct list_head cg_link_list;
177 struct css_set *cg;
178 };
179
180 /* The default css_set - used by init and its children prior to any
181 * hierarchies being mounted. It contains a pointer to the root state
182 * for each subsystem. Also used to anchor the list of css_sets. Not
183 * reference-counted, to improve performance when child cgroups
184 * haven't been created.
185 */
186
187 static struct css_set init_css_set;
188 static struct cg_cgroup_link init_css_set_link;
189
190 /* css_set_lock protects the list of css_set objects, and the
191 * chain of tasks off each css_set. Nests outside task->alloc_lock
192 * due to cgroup_iter_start() */
193 static DEFINE_RWLOCK(css_set_lock);
194 static int css_set_count;
195
196 /* We don't maintain the lists running through each css_set to its
197 * task until after the first call to cgroup_iter_start(). This
198 * reduces the fork()/exit() overhead for people who have cgroups
199 * compiled into their kernel but not actually in use */
200 static int use_task_css_set_links;
201
202 /* When we create or destroy a css_set, the operation simply
203 * takes/releases a reference count on all the cgroups referenced
204 * by subsystems in this css_set. This can end up multiple-counting
205 * some cgroups, but that's OK - the ref-count is just a
206 * busy/not-busy indicator; ensuring that we only count each cgroup
207 * once would require taking a global lock to ensure that no
208 * subsystems moved between hierarchies while we were doing so.
209 *
210 * Possible TODO: decide at boot time based on the number of
211 * registered subsystems and the number of CPUs or NUMA nodes whether
212 * it's better for performance to ref-count every subsystem, or to
213 * take a global lock and only add one ref count to each hierarchy.
214 */
215
216 /*
217 * unlink a css_set from the list and free it
218 */
219 static void unlink_css_set(struct css_set *cg)
220 {
221 write_lock(&css_set_lock);
222 list_del(&cg->list);
223 css_set_count--;
224 while (!list_empty(&cg->cg_links)) {
225 struct cg_cgroup_link *link;
226 link = list_entry(cg->cg_links.next,
227 struct cg_cgroup_link, cg_link_list);
228 list_del(&link->cg_link_list);
229 list_del(&link->cgrp_link_list);
230 kfree(link);
231 }
232 write_unlock(&css_set_lock);
233 }
234
235 static void __release_css_set(struct kref *k, int taskexit)
236 {
237 int i;
238 struct css_set *cg = container_of(k, struct css_set, ref);
239
240 unlink_css_set(cg);
241
242 rcu_read_lock();
243 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
244 struct cgroup *cgrp = cg->subsys[i]->cgroup;
245 if (atomic_dec_and_test(&cgrp->count) &&
246 notify_on_release(cgrp)) {
247 if (taskexit)
248 set_bit(CGRP_RELEASABLE, &cgrp->flags);
249 check_for_release(cgrp);
250 }
251 }
252 rcu_read_unlock();
253 kfree(cg);
254 }
255
256 static void release_css_set(struct kref *k)
257 {
258 __release_css_set(k, 0);
259 }
260
261 static void release_css_set_taskexit(struct kref *k)
262 {
263 __release_css_set(k, 1);
264 }
265
266 /*
267 * refcounted get/put for css_set objects
268 */
269 static inline void get_css_set(struct css_set *cg)
270 {
271 kref_get(&cg->ref);
272 }
273
274 static inline void put_css_set(struct css_set *cg)
275 {
276 kref_put(&cg->ref, release_css_set);
277 }
278
279 static inline void put_css_set_taskexit(struct css_set *cg)
280 {
281 kref_put(&cg->ref, release_css_set_taskexit);
282 }
283
284 /*
285 * find_existing_css_set() is a helper for
286 * find_css_set(), and checks to see whether an existing
287 * css_set is suitable. This currently walks a linked-list for
288 * simplicity; a later patch will use a hash table for better
289 * performance
290 *
291 * oldcg: the cgroup group that we're using before the cgroup
292 * transition
293 *
294 * cgrp: the cgroup that we're moving into
295 *
296 * template: location in which to build the desired set of subsystem
297 * state objects for the new cgroup group
298 */
299 static struct css_set *find_existing_css_set(
300 struct css_set *oldcg,
301 struct cgroup *cgrp,
302 struct cgroup_subsys_state *template[])
303 {
304 int i;
305 struct cgroupfs_root *root = cgrp->root;
306 struct list_head *l = &init_css_set.list;
307
308 /* Built the set of subsystem state objects that we want to
309 * see in the new css_set */
310 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
311 if (root->subsys_bits & (1UL << i)) {
312 /* Subsystem is in this hierarchy. So we want
313 * the subsystem state from the new
314 * cgroup */
315 template[i] = cgrp->subsys[i];
316 } else {
317 /* Subsystem is not in this hierarchy, so we
318 * don't want to change the subsystem state */
319 template[i] = oldcg->subsys[i];
320 }
321 }
322
323 /* Look through existing cgroup groups to find one to reuse */
324 do {
325 struct css_set *cg =
326 list_entry(l, struct css_set, list);
327
328 if (!memcmp(template, cg->subsys, sizeof(cg->subsys))) {
329 /* All subsystems matched */
330 return cg;
331 }
332 /* Try the next cgroup group */
333 l = l->next;
334 } while (l != &init_css_set.list);
335
336 /* No existing cgroup group matched */
337 return NULL;
338 }
339
340 /*
341 * allocate_cg_links() allocates "count" cg_cgroup_link structures
342 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
343 * success or a negative error
344 */
345 static int allocate_cg_links(int count, struct list_head *tmp)
346 {
347 struct cg_cgroup_link *link;
348 int i;
349 INIT_LIST_HEAD(tmp);
350 for (i = 0; i < count; i++) {
351 link = kmalloc(sizeof(*link), GFP_KERNEL);
352 if (!link) {
353 while (!list_empty(tmp)) {
354 link = list_entry(tmp->next,
355 struct cg_cgroup_link,
356 cgrp_link_list);
357 list_del(&link->cgrp_link_list);
358 kfree(link);
359 }
360 return -ENOMEM;
361 }
362 list_add(&link->cgrp_link_list, tmp);
363 }
364 return 0;
365 }
366
367 static void free_cg_links(struct list_head *tmp)
368 {
369 while (!list_empty(tmp)) {
370 struct cg_cgroup_link *link;
371 link = list_entry(tmp->next,
372 struct cg_cgroup_link,
373 cgrp_link_list);
374 list_del(&link->cgrp_link_list);
375 kfree(link);
376 }
377 }
378
379 /*
380 * find_css_set() takes an existing cgroup group and a
381 * cgroup object, and returns a css_set object that's
382 * equivalent to the old group, but with the given cgroup
383 * substituted into the appropriate hierarchy. Must be called with
384 * cgroup_mutex held
385 */
386 static struct css_set *find_css_set(
387 struct css_set *oldcg, struct cgroup *cgrp)
388 {
389 struct css_set *res;
390 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
391 int i;
392
393 struct list_head tmp_cg_links;
394 struct cg_cgroup_link *link;
395
396 /* First see if we already have a cgroup group that matches
397 * the desired set */
398 write_lock(&css_set_lock);
399 res = find_existing_css_set(oldcg, cgrp, template);
400 if (res)
401 get_css_set(res);
402 write_unlock(&css_set_lock);
403
404 if (res)
405 return res;
406
407 res = kmalloc(sizeof(*res), GFP_KERNEL);
408 if (!res)
409 return NULL;
410
411 /* Allocate all the cg_cgroup_link objects that we'll need */
412 if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
413 kfree(res);
414 return NULL;
415 }
416
417 kref_init(&res->ref);
418 INIT_LIST_HEAD(&res->cg_links);
419 INIT_LIST_HEAD(&res->tasks);
420
421 /* Copy the set of subsystem state objects generated in
422 * find_existing_css_set() */
423 memcpy(res->subsys, template, sizeof(res->subsys));
424
425 write_lock(&css_set_lock);
426 /* Add reference counts and links from the new css_set. */
427 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
428 struct cgroup *cgrp = res->subsys[i]->cgroup;
429 struct cgroup_subsys *ss = subsys[i];
430 atomic_inc(&cgrp->count);
431 /*
432 * We want to add a link once per cgroup, so we
433 * only do it for the first subsystem in each
434 * hierarchy
435 */
436 if (ss->root->subsys_list.next == &ss->sibling) {
437 BUG_ON(list_empty(&tmp_cg_links));
438 link = list_entry(tmp_cg_links.next,
439 struct cg_cgroup_link,
440 cgrp_link_list);
441 list_del(&link->cgrp_link_list);
442 list_add(&link->cgrp_link_list, &cgrp->css_sets);
443 link->cg = res;
444 list_add(&link->cg_link_list, &res->cg_links);
445 }
446 }
447 if (list_empty(&rootnode.subsys_list)) {
448 link = list_entry(tmp_cg_links.next,
449 struct cg_cgroup_link,
450 cgrp_link_list);
451 list_del(&link->cgrp_link_list);
452 list_add(&link->cgrp_link_list, &dummytop->css_sets);
453 link->cg = res;
454 list_add(&link->cg_link_list, &res->cg_links);
455 }
456
457 BUG_ON(!list_empty(&tmp_cg_links));
458
459 /* Link this cgroup group into the list */
460 list_add(&res->list, &init_css_set.list);
461 css_set_count++;
462 write_unlock(&css_set_lock);
463
464 return res;
465 }
466
467 /*
468 * There is one global cgroup mutex. We also require taking
469 * task_lock() when dereferencing a task's cgroup subsys pointers.
470 * See "The task_lock() exception", at the end of this comment.
471 *
472 * A task must hold cgroup_mutex to modify cgroups.
473 *
474 * Any task can increment and decrement the count field without lock.
475 * So in general, code holding cgroup_mutex can't rely on the count
476 * field not changing. However, if the count goes to zero, then only
477 * cgroup_attach_task() can increment it again. Because a count of zero
478 * means that no tasks are currently attached, therefore there is no
479 * way a task attached to that cgroup can fork (the other way to
480 * increment the count). So code holding cgroup_mutex can safely
481 * assume that if the count is zero, it will stay zero. Similarly, if
482 * a task holds cgroup_mutex on a cgroup with zero count, it
483 * knows that the cgroup won't be removed, as cgroup_rmdir()
484 * needs that mutex.
485 *
486 * The cgroup_common_file_write handler for operations that modify
487 * the cgroup hierarchy holds cgroup_mutex across the entire operation,
488 * single threading all such cgroup modifications across the system.
489 *
490 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
491 * (usually) take cgroup_mutex. These are the two most performance
492 * critical pieces of code here. The exception occurs on cgroup_exit(),
493 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
494 * is taken, and if the cgroup count is zero, a usermode call made
495 * to the release agent with the name of the cgroup (path relative to
496 * the root of cgroup file system) as the argument.
497 *
498 * A cgroup can only be deleted if both its 'count' of using tasks
499 * is zero, and its list of 'children' cgroups is empty. Since all
500 * tasks in the system use _some_ cgroup, and since there is always at
501 * least one task in the system (init, pid == 1), therefore, top_cgroup
502 * always has either children cgroups and/or using tasks. So we don't
503 * need a special hack to ensure that top_cgroup cannot be deleted.
504 *
505 * The task_lock() exception
506 *
507 * The need for this exception arises from the action of
508 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
509 * another. It does so using cgroup_mutex, however there are
510 * several performance critical places that need to reference
511 * task->cgroup without the expense of grabbing a system global
512 * mutex. Therefore except as noted below, when dereferencing or, as
513 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
514 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
515 * the task_struct routinely used for such matters.
516 *
517 * P.S. One more locking exception. RCU is used to guard the
518 * update of a tasks cgroup pointer by cgroup_attach_task()
519 */
520
521 /**
522 * cgroup_lock - lock out any changes to cgroup structures
523 *
524 */
525 void cgroup_lock(void)
526 {
527 mutex_lock(&cgroup_mutex);
528 }
529
530 /**
531 * cgroup_unlock - release lock on cgroup changes
532 *
533 * Undo the lock taken in a previous cgroup_lock() call.
534 */
535 void cgroup_unlock(void)
536 {
537 mutex_unlock(&cgroup_mutex);
538 }
539
540 /*
541 * A couple of forward declarations required, due to cyclic reference loop:
542 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
543 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
544 * -> cgroup_mkdir.
545 */
546
547 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode);
548 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
549 static int cgroup_populate_dir(struct cgroup *cgrp);
550 static struct inode_operations cgroup_dir_inode_operations;
551 static struct file_operations proc_cgroupstats_operations;
552
553 static struct backing_dev_info cgroup_backing_dev_info = {
554 .capabilities = BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK,
555 };
556
557 static struct inode *cgroup_new_inode(mode_t mode, struct super_block *sb)
558 {
559 struct inode *inode = new_inode(sb);
560
561 if (inode) {
562 inode->i_mode = mode;
563 inode->i_uid = current->fsuid;
564 inode->i_gid = current->fsgid;
565 inode->i_blocks = 0;
566 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
567 inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
568 }
569 return inode;
570 }
571
572 /*
573 * Call subsys's pre_destroy handler.
574 * This is called before css refcnt check.
575 */
576 static void cgroup_call_pre_destroy(struct cgroup *cgrp)
577 {
578 struct cgroup_subsys *ss;
579 for_each_subsys(cgrp->root, ss)
580 if (ss->pre_destroy && cgrp->subsys[ss->subsys_id])
581 ss->pre_destroy(ss, cgrp);
582 return;
583 }
584
585 static void cgroup_diput(struct dentry *dentry, struct inode *inode)
586 {
587 /* is dentry a directory ? if so, kfree() associated cgroup */
588 if (S_ISDIR(inode->i_mode)) {
589 struct cgroup *cgrp = dentry->d_fsdata;
590 struct cgroup_subsys *ss;
591 BUG_ON(!(cgroup_is_removed(cgrp)));
592 /* It's possible for external users to be holding css
593 * reference counts on a cgroup; css_put() needs to
594 * be able to access the cgroup after decrementing
595 * the reference count in order to know if it needs to
596 * queue the cgroup to be handled by the release
597 * agent */
598 synchronize_rcu();
599
600 mutex_lock(&cgroup_mutex);
601 /*
602 * Release the subsystem state objects.
603 */
604 for_each_subsys(cgrp->root, ss) {
605 if (cgrp->subsys[ss->subsys_id])
606 ss->destroy(ss, cgrp);
607 }
608
609 cgrp->root->number_of_cgroups--;
610 mutex_unlock(&cgroup_mutex);
611
612 /* Drop the active superblock reference that we took when we
613 * created the cgroup */
614 deactivate_super(cgrp->root->sb);
615
616 kfree(cgrp);
617 }
618 iput(inode);
619 }
620
621 static void remove_dir(struct dentry *d)
622 {
623 struct dentry *parent = dget(d->d_parent);
624
625 d_delete(d);
626 simple_rmdir(parent->d_inode, d);
627 dput(parent);
628 }
629
630 static void cgroup_clear_directory(struct dentry *dentry)
631 {
632 struct list_head *node;
633
634 BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
635 spin_lock(&dcache_lock);
636 node = dentry->d_subdirs.next;
637 while (node != &dentry->d_subdirs) {
638 struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
639 list_del_init(node);
640 if (d->d_inode) {
641 /* This should never be called on a cgroup
642 * directory with child cgroups */
643 BUG_ON(d->d_inode->i_mode & S_IFDIR);
644 d = dget_locked(d);
645 spin_unlock(&dcache_lock);
646 d_delete(d);
647 simple_unlink(dentry->d_inode, d);
648 dput(d);
649 spin_lock(&dcache_lock);
650 }
651 node = dentry->d_subdirs.next;
652 }
653 spin_unlock(&dcache_lock);
654 }
655
656 /*
657 * NOTE : the dentry must have been dget()'ed
658 */
659 static void cgroup_d_remove_dir(struct dentry *dentry)
660 {
661 cgroup_clear_directory(dentry);
662
663 spin_lock(&dcache_lock);
664 list_del_init(&dentry->d_u.d_child);
665 spin_unlock(&dcache_lock);
666 remove_dir(dentry);
667 }
668
669 static int rebind_subsystems(struct cgroupfs_root *root,
670 unsigned long final_bits)
671 {
672 unsigned long added_bits, removed_bits;
673 struct cgroup *cgrp = &root->top_cgroup;
674 int i;
675
676 removed_bits = root->actual_subsys_bits & ~final_bits;
677 added_bits = final_bits & ~root->actual_subsys_bits;
678 /* Check that any added subsystems are currently free */
679 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
680 unsigned long bit = 1UL << i;
681 struct cgroup_subsys *ss = subsys[i];
682 if (!(bit & added_bits))
683 continue;
684 if (ss->root != &rootnode) {
685 /* Subsystem isn't free */
686 return -EBUSY;
687 }
688 }
689
690 /* Currently we don't handle adding/removing subsystems when
691 * any child cgroups exist. This is theoretically supportable
692 * but involves complex error handling, so it's being left until
693 * later */
694 if (!list_empty(&cgrp->children))
695 return -EBUSY;
696
697 /* Process each subsystem */
698 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
699 struct cgroup_subsys *ss = subsys[i];
700 unsigned long bit = 1UL << i;
701 if (bit & added_bits) {
702 /* We're binding this subsystem to this hierarchy */
703 BUG_ON(cgrp->subsys[i]);
704 BUG_ON(!dummytop->subsys[i]);
705 BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
706 cgrp->subsys[i] = dummytop->subsys[i];
707 cgrp->subsys[i]->cgroup = cgrp;
708 list_add(&ss->sibling, &root->subsys_list);
709 rcu_assign_pointer(ss->root, root);
710 if (ss->bind)
711 ss->bind(ss, cgrp);
712
713 } else if (bit & removed_bits) {
714 /* We're removing this subsystem */
715 BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
716 BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
717 if (ss->bind)
718 ss->bind(ss, dummytop);
719 dummytop->subsys[i]->cgroup = dummytop;
720 cgrp->subsys[i] = NULL;
721 rcu_assign_pointer(subsys[i]->root, &rootnode);
722 list_del(&ss->sibling);
723 } else if (bit & final_bits) {
724 /* Subsystem state should already exist */
725 BUG_ON(!cgrp->subsys[i]);
726 } else {
727 /* Subsystem state shouldn't exist */
728 BUG_ON(cgrp->subsys[i]);
729 }
730 }
731 root->subsys_bits = root->actual_subsys_bits = final_bits;
732 synchronize_rcu();
733
734 return 0;
735 }
736
737 static int cgroup_show_options(struct seq_file *seq, struct vfsmount *vfs)
738 {
739 struct cgroupfs_root *root = vfs->mnt_sb->s_fs_info;
740 struct cgroup_subsys *ss;
741
742 mutex_lock(&cgroup_mutex);
743 for_each_subsys(root, ss)
744 seq_printf(seq, ",%s", ss->name);
745 if (test_bit(ROOT_NOPREFIX, &root->flags))
746 seq_puts(seq, ",noprefix");
747 if (strlen(root->release_agent_path))
748 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
749 mutex_unlock(&cgroup_mutex);
750 return 0;
751 }
752
753 struct cgroup_sb_opts {
754 unsigned long subsys_bits;
755 unsigned long flags;
756 char *release_agent;
757 };
758
759 /* Convert a hierarchy specifier into a bitmask of subsystems and
760 * flags. */
761 static int parse_cgroupfs_options(char *data,
762 struct cgroup_sb_opts *opts)
763 {
764 char *token, *o = data ?: "all";
765
766 opts->subsys_bits = 0;
767 opts->flags = 0;
768 opts->release_agent = NULL;
769
770 while ((token = strsep(&o, ",")) != NULL) {
771 if (!*token)
772 return -EINVAL;
773 if (!strcmp(token, "all")) {
774 /* Add all non-disabled subsystems */
775 int i;
776 opts->subsys_bits = 0;
777 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
778 struct cgroup_subsys *ss = subsys[i];
779 if (!ss->disabled)
780 opts->subsys_bits |= 1ul << i;
781 }
782 } else if (!strcmp(token, "noprefix")) {
783 set_bit(ROOT_NOPREFIX, &opts->flags);
784 } else if (!strncmp(token, "release_agent=", 14)) {
785 /* Specifying two release agents is forbidden */
786 if (opts->release_agent)
787 return -EINVAL;
788 opts->release_agent = kzalloc(PATH_MAX, GFP_KERNEL);
789 if (!opts->release_agent)
790 return -ENOMEM;
791 strncpy(opts->release_agent, token + 14, PATH_MAX - 1);
792 opts->release_agent[PATH_MAX - 1] = 0;
793 } else {
794 struct cgroup_subsys *ss;
795 int i;
796 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
797 ss = subsys[i];
798 if (!strcmp(token, ss->name)) {
799 if (!ss->disabled)
800 set_bit(i, &opts->subsys_bits);
801 break;
802 }
803 }
804 if (i == CGROUP_SUBSYS_COUNT)
805 return -ENOENT;
806 }
807 }
808
809 /* We can't have an empty hierarchy */
810 if (!opts->subsys_bits)
811 return -EINVAL;
812
813 return 0;
814 }
815
816 static int cgroup_remount(struct super_block *sb, int *flags, char *data)
817 {
818 int ret = 0;
819 struct cgroupfs_root *root = sb->s_fs_info;
820 struct cgroup *cgrp = &root->top_cgroup;
821 struct cgroup_sb_opts opts;
822
823 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
824 mutex_lock(&cgroup_mutex);
825
826 /* See what subsystems are wanted */
827 ret = parse_cgroupfs_options(data, &opts);
828 if (ret)
829 goto out_unlock;
830
831 /* Don't allow flags to change at remount */
832 if (opts.flags != root->flags) {
833 ret = -EINVAL;
834 goto out_unlock;
835 }
836
837 ret = rebind_subsystems(root, opts.subsys_bits);
838
839 /* (re)populate subsystem files */
840 if (!ret)
841 cgroup_populate_dir(cgrp);
842
843 if (opts.release_agent)
844 strcpy(root->release_agent_path, opts.release_agent);
845 out_unlock:
846 if (opts.release_agent)
847 kfree(opts.release_agent);
848 mutex_unlock(&cgroup_mutex);
849 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
850 return ret;
851 }
852
853 static struct super_operations cgroup_ops = {
854 .statfs = simple_statfs,
855 .drop_inode = generic_delete_inode,
856 .show_options = cgroup_show_options,
857 .remount_fs = cgroup_remount,
858 };
859
860 static void init_cgroup_root(struct cgroupfs_root *root)
861 {
862 struct cgroup *cgrp = &root->top_cgroup;
863 INIT_LIST_HEAD(&root->subsys_list);
864 INIT_LIST_HEAD(&root->root_list);
865 root->number_of_cgroups = 1;
866 cgrp->root = root;
867 cgrp->top_cgroup = cgrp;
868 INIT_LIST_HEAD(&cgrp->sibling);
869 INIT_LIST_HEAD(&cgrp->children);
870 INIT_LIST_HEAD(&cgrp->css_sets);
871 INIT_LIST_HEAD(&cgrp->release_list);
872 }
873
874 static int cgroup_test_super(struct super_block *sb, void *data)
875 {
876 struct cgroupfs_root *new = data;
877 struct cgroupfs_root *root = sb->s_fs_info;
878
879 /* First check subsystems */
880 if (new->subsys_bits != root->subsys_bits)
881 return 0;
882
883 /* Next check flags */
884 if (new->flags != root->flags)
885 return 0;
886
887 return 1;
888 }
889
890 static int cgroup_set_super(struct super_block *sb, void *data)
891 {
892 int ret;
893 struct cgroupfs_root *root = data;
894
895 ret = set_anon_super(sb, NULL);
896 if (ret)
897 return ret;
898
899 sb->s_fs_info = root;
900 root->sb = sb;
901
902 sb->s_blocksize = PAGE_CACHE_SIZE;
903 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
904 sb->s_magic = CGROUP_SUPER_MAGIC;
905 sb->s_op = &cgroup_ops;
906
907 return 0;
908 }
909
910 static int cgroup_get_rootdir(struct super_block *sb)
911 {
912 struct inode *inode =
913 cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
914 struct dentry *dentry;
915
916 if (!inode)
917 return -ENOMEM;
918
919 inode->i_fop = &simple_dir_operations;
920 inode->i_op = &cgroup_dir_inode_operations;
921 /* directories start off with i_nlink == 2 (for "." entry) */
922 inc_nlink(inode);
923 dentry = d_alloc_root(inode);
924 if (!dentry) {
925 iput(inode);
926 return -ENOMEM;
927 }
928 sb->s_root = dentry;
929 return 0;
930 }
931
932 static int cgroup_get_sb(struct file_system_type *fs_type,
933 int flags, const char *unused_dev_name,
934 void *data, struct vfsmount *mnt)
935 {
936 struct cgroup_sb_opts opts;
937 int ret = 0;
938 struct super_block *sb;
939 struct cgroupfs_root *root;
940 struct list_head tmp_cg_links, *l;
941 INIT_LIST_HEAD(&tmp_cg_links);
942
943 /* First find the desired set of subsystems */
944 ret = parse_cgroupfs_options(data, &opts);
945 if (ret) {
946 if (opts.release_agent)
947 kfree(opts.release_agent);
948 return ret;
949 }
950
951 root = kzalloc(sizeof(*root), GFP_KERNEL);
952 if (!root) {
953 if (opts.release_agent)
954 kfree(opts.release_agent);
955 return -ENOMEM;
956 }
957
958 init_cgroup_root(root);
959 root->subsys_bits = opts.subsys_bits;
960 root->flags = opts.flags;
961 if (opts.release_agent) {
962 strcpy(root->release_agent_path, opts.release_agent);
963 kfree(opts.release_agent);
964 }
965
966 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, root);
967
968 if (IS_ERR(sb)) {
969 kfree(root);
970 return PTR_ERR(sb);
971 }
972
973 if (sb->s_fs_info != root) {
974 /* Reusing an existing superblock */
975 BUG_ON(sb->s_root == NULL);
976 kfree(root);
977 root = NULL;
978 } else {
979 /* New superblock */
980 struct cgroup *cgrp = &root->top_cgroup;
981 struct inode *inode;
982
983 BUG_ON(sb->s_root != NULL);
984
985 ret = cgroup_get_rootdir(sb);
986 if (ret)
987 goto drop_new_super;
988 inode = sb->s_root->d_inode;
989
990 mutex_lock(&inode->i_mutex);
991 mutex_lock(&cgroup_mutex);
992
993 /*
994 * We're accessing css_set_count without locking
995 * css_set_lock here, but that's OK - it can only be
996 * increased by someone holding cgroup_lock, and
997 * that's us. The worst that can happen is that we
998 * have some link structures left over
999 */
1000 ret = allocate_cg_links(css_set_count, &tmp_cg_links);
1001 if (ret) {
1002 mutex_unlock(&cgroup_mutex);
1003 mutex_unlock(&inode->i_mutex);
1004 goto drop_new_super;
1005 }
1006
1007 ret = rebind_subsystems(root, root->subsys_bits);
1008 if (ret == -EBUSY) {
1009 mutex_unlock(&cgroup_mutex);
1010 mutex_unlock(&inode->i_mutex);
1011 goto drop_new_super;
1012 }
1013
1014 /* EBUSY should be the only error here */
1015 BUG_ON(ret);
1016
1017 list_add(&root->root_list, &roots);
1018 root_count++;
1019
1020 sb->s_root->d_fsdata = &root->top_cgroup;
1021 root->top_cgroup.dentry = sb->s_root;
1022
1023 /* Link the top cgroup in this hierarchy into all
1024 * the css_set objects */
1025 write_lock(&css_set_lock);
1026 l = &init_css_set.list;
1027 do {
1028 struct css_set *cg;
1029 struct cg_cgroup_link *link;
1030 cg = list_entry(l, struct css_set, list);
1031 BUG_ON(list_empty(&tmp_cg_links));
1032 link = list_entry(tmp_cg_links.next,
1033 struct cg_cgroup_link,
1034 cgrp_link_list);
1035 list_del(&link->cgrp_link_list);
1036 link->cg = cg;
1037 list_add(&link->cgrp_link_list,
1038 &root->top_cgroup.css_sets);
1039 list_add(&link->cg_link_list, &cg->cg_links);
1040 l = l->next;
1041 } while (l != &init_css_set.list);
1042 write_unlock(&css_set_lock);
1043
1044 free_cg_links(&tmp_cg_links);
1045
1046 BUG_ON(!list_empty(&cgrp->sibling));
1047 BUG_ON(!list_empty(&cgrp->children));
1048 BUG_ON(root->number_of_cgroups != 1);
1049
1050 cgroup_populate_dir(cgrp);
1051 mutex_unlock(&inode->i_mutex);
1052 mutex_unlock(&cgroup_mutex);
1053 }
1054
1055 return simple_set_mnt(mnt, sb);
1056
1057 drop_new_super:
1058 up_write(&sb->s_umount);
1059 deactivate_super(sb);
1060 free_cg_links(&tmp_cg_links);
1061 return ret;
1062 }
1063
1064 static void cgroup_kill_sb(struct super_block *sb) {
1065 struct cgroupfs_root *root = sb->s_fs_info;
1066 struct cgroup *cgrp = &root->top_cgroup;
1067 int ret;
1068
1069 BUG_ON(!root);
1070
1071 BUG_ON(root->number_of_cgroups != 1);
1072 BUG_ON(!list_empty(&cgrp->children));
1073 BUG_ON(!list_empty(&cgrp->sibling));
1074
1075 mutex_lock(&cgroup_mutex);
1076
1077 /* Rebind all subsystems back to the default hierarchy */
1078 ret = rebind_subsystems(root, 0);
1079 /* Shouldn't be able to fail ... */
1080 BUG_ON(ret);
1081
1082 /*
1083 * Release all the links from css_sets to this hierarchy's
1084 * root cgroup
1085 */
1086 write_lock(&css_set_lock);
1087 while (!list_empty(&cgrp->css_sets)) {
1088 struct cg_cgroup_link *link;
1089 link = list_entry(cgrp->css_sets.next,
1090 struct cg_cgroup_link, cgrp_link_list);
1091 list_del(&link->cg_link_list);
1092 list_del(&link->cgrp_link_list);
1093 kfree(link);
1094 }
1095 write_unlock(&css_set_lock);
1096
1097 if (!list_empty(&root->root_list)) {
1098 list_del(&root->root_list);
1099 root_count--;
1100 }
1101 mutex_unlock(&cgroup_mutex);
1102
1103 kfree(root);
1104 kill_litter_super(sb);
1105 }
1106
1107 static struct file_system_type cgroup_fs_type = {
1108 .name = "cgroup",
1109 .get_sb = cgroup_get_sb,
1110 .kill_sb = cgroup_kill_sb,
1111 };
1112
1113 static inline struct cgroup *__d_cgrp(struct dentry *dentry)
1114 {
1115 return dentry->d_fsdata;
1116 }
1117
1118 static inline struct cftype *__d_cft(struct dentry *dentry)
1119 {
1120 return dentry->d_fsdata;
1121 }
1122
1123 /**
1124 * cgroup_path - generate the path of a cgroup
1125 * @cgrp: the cgroup in question
1126 * @buf: the buffer to write the path into
1127 * @buflen: the length of the buffer
1128 *
1129 * Called with cgroup_mutex held. Writes path of cgroup into buf.
1130 * Returns 0 on success, -errno on error.
1131 */
1132 int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1133 {
1134 char *start;
1135
1136 if (cgrp == dummytop) {
1137 /*
1138 * Inactive subsystems have no dentry for their root
1139 * cgroup
1140 */
1141 strcpy(buf, "/");
1142 return 0;
1143 }
1144
1145 start = buf + buflen;
1146
1147 *--start = '\0';
1148 for (;;) {
1149 int len = cgrp->dentry->d_name.len;
1150 if ((start -= len) < buf)
1151 return -ENAMETOOLONG;
1152 memcpy(start, cgrp->dentry->d_name.name, len);
1153 cgrp = cgrp->parent;
1154 if (!cgrp)
1155 break;
1156 if (!cgrp->parent)
1157 continue;
1158 if (--start < buf)
1159 return -ENAMETOOLONG;
1160 *start = '/';
1161 }
1162 memmove(buf, start, buf + buflen - start);
1163 return 0;
1164 }
1165
1166 /*
1167 * Return the first subsystem attached to a cgroup's hierarchy, and
1168 * its subsystem id.
1169 */
1170
1171 static void get_first_subsys(const struct cgroup *cgrp,
1172 struct cgroup_subsys_state **css, int *subsys_id)
1173 {
1174 const struct cgroupfs_root *root = cgrp->root;
1175 const struct cgroup_subsys *test_ss;
1176 BUG_ON(list_empty(&root->subsys_list));
1177 test_ss = list_entry(root->subsys_list.next,
1178 struct cgroup_subsys, sibling);
1179 if (css) {
1180 *css = cgrp->subsys[test_ss->subsys_id];
1181 BUG_ON(!*css);
1182 }
1183 if (subsys_id)
1184 *subsys_id = test_ss->subsys_id;
1185 }
1186
1187 /**
1188 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
1189 * @cgrp: the cgroup the task is attaching to
1190 * @tsk: the task to be attached
1191 *
1192 * Call holding cgroup_mutex. May take task_lock of
1193 * the task 'tsk' during call.
1194 */
1195 int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
1196 {
1197 int retval = 0;
1198 struct cgroup_subsys *ss;
1199 struct cgroup *oldcgrp;
1200 struct css_set *cg = tsk->cgroups;
1201 struct css_set *newcg;
1202 struct cgroupfs_root *root = cgrp->root;
1203 int subsys_id;
1204
1205 get_first_subsys(cgrp, NULL, &subsys_id);
1206
1207 /* Nothing to do if the task is already in that cgroup */
1208 oldcgrp = task_cgroup(tsk, subsys_id);
1209 if (cgrp == oldcgrp)
1210 return 0;
1211
1212 for_each_subsys(root, ss) {
1213 if (ss->can_attach) {
1214 retval = ss->can_attach(ss, cgrp, tsk);
1215 if (retval)
1216 return retval;
1217 }
1218 }
1219
1220 /*
1221 * Locate or allocate a new css_set for this task,
1222 * based on its final set of cgroups
1223 */
1224 newcg = find_css_set(cg, cgrp);
1225 if (!newcg)
1226 return -ENOMEM;
1227
1228 task_lock(tsk);
1229 if (tsk->flags & PF_EXITING) {
1230 task_unlock(tsk);
1231 put_css_set(newcg);
1232 return -ESRCH;
1233 }
1234 rcu_assign_pointer(tsk->cgroups, newcg);
1235 task_unlock(tsk);
1236
1237 /* Update the css_set linked lists if we're using them */
1238 write_lock(&css_set_lock);
1239 if (!list_empty(&tsk->cg_list)) {
1240 list_del(&tsk->cg_list);
1241 list_add(&tsk->cg_list, &newcg->tasks);
1242 }
1243 write_unlock(&css_set_lock);
1244
1245 for_each_subsys(root, ss) {
1246 if (ss->attach)
1247 ss->attach(ss, cgrp, oldcgrp, tsk);
1248 }
1249 set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
1250 synchronize_rcu();
1251 put_css_set(cg);
1252 return 0;
1253 }
1254
1255 /*
1256 * Attach task with pid 'pid' to cgroup 'cgrp'. Call with
1257 * cgroup_mutex, may take task_lock of task
1258 */
1259 static int attach_task_by_pid(struct cgroup *cgrp, char *pidbuf)
1260 {
1261 pid_t pid;
1262 struct task_struct *tsk;
1263 int ret;
1264
1265 if (sscanf(pidbuf, "%d", &pid) != 1)
1266 return -EIO;
1267
1268 if (pid) {
1269 rcu_read_lock();
1270 tsk = find_task_by_vpid(pid);
1271 if (!tsk || tsk->flags & PF_EXITING) {
1272 rcu_read_unlock();
1273 return -ESRCH;
1274 }
1275 get_task_struct(tsk);
1276 rcu_read_unlock();
1277
1278 if ((current->euid) && (current->euid != tsk->uid)
1279 && (current->euid != tsk->suid)) {
1280 put_task_struct(tsk);
1281 return -EACCES;
1282 }
1283 } else {
1284 tsk = current;
1285 get_task_struct(tsk);
1286 }
1287
1288 ret = cgroup_attach_task(cgrp, tsk);
1289 put_task_struct(tsk);
1290 return ret;
1291 }
1292
1293 /* The various types of files and directories in a cgroup file system */
1294 enum cgroup_filetype {
1295 FILE_ROOT,
1296 FILE_DIR,
1297 FILE_TASKLIST,
1298 FILE_NOTIFY_ON_RELEASE,
1299 FILE_RELEASE_AGENT,
1300 };
1301
1302 static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
1303 struct file *file,
1304 const char __user *userbuf,
1305 size_t nbytes, loff_t *unused_ppos)
1306 {
1307 char buffer[64];
1308 int retval = 0;
1309 char *end;
1310
1311 if (!nbytes)
1312 return -EINVAL;
1313 if (nbytes >= sizeof(buffer))
1314 return -E2BIG;
1315 if (copy_from_user(buffer, userbuf, nbytes))
1316 return -EFAULT;
1317
1318 buffer[nbytes] = 0; /* nul-terminate */
1319 strstrip(buffer);
1320 if (cft->write_u64) {
1321 u64 val = simple_strtoull(buffer, &end, 0);
1322 if (*end)
1323 return -EINVAL;
1324 retval = cft->write_u64(cgrp, cft, val);
1325 } else {
1326 s64 val = simple_strtoll(buffer, &end, 0);
1327 if (*end)
1328 return -EINVAL;
1329 retval = cft->write_s64(cgrp, cft, val);
1330 }
1331 if (!retval)
1332 retval = nbytes;
1333 return retval;
1334 }
1335
1336 static ssize_t cgroup_common_file_write(struct cgroup *cgrp,
1337 struct cftype *cft,
1338 struct file *file,
1339 const char __user *userbuf,
1340 size_t nbytes, loff_t *unused_ppos)
1341 {
1342 enum cgroup_filetype type = cft->private;
1343 char *buffer;
1344 int retval = 0;
1345
1346 if (nbytes >= PATH_MAX)
1347 return -E2BIG;
1348
1349 /* +1 for nul-terminator */
1350 buffer = kmalloc(nbytes + 1, GFP_KERNEL);
1351 if (buffer == NULL)
1352 return -ENOMEM;
1353
1354 if (copy_from_user(buffer, userbuf, nbytes)) {
1355 retval = -EFAULT;
1356 goto out1;
1357 }
1358 buffer[nbytes] = 0; /* nul-terminate */
1359 strstrip(buffer); /* strip -just- trailing whitespace */
1360
1361 mutex_lock(&cgroup_mutex);
1362
1363 /*
1364 * This was already checked for in cgroup_file_write(), but
1365 * check again now we're holding cgroup_mutex.
1366 */
1367 if (cgroup_is_removed(cgrp)) {
1368 retval = -ENODEV;
1369 goto out2;
1370 }
1371
1372 switch (type) {
1373 case FILE_TASKLIST:
1374 retval = attach_task_by_pid(cgrp, buffer);
1375 break;
1376 case FILE_NOTIFY_ON_RELEASE:
1377 clear_bit(CGRP_RELEASABLE, &cgrp->flags);
1378 if (simple_strtoul(buffer, NULL, 10) != 0)
1379 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
1380 else
1381 clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
1382 break;
1383 case FILE_RELEASE_AGENT:
1384 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
1385 strcpy(cgrp->root->release_agent_path, buffer);
1386 break;
1387 default:
1388 retval = -EINVAL;
1389 goto out2;
1390 }
1391
1392 if (retval == 0)
1393 retval = nbytes;
1394 out2:
1395 mutex_unlock(&cgroup_mutex);
1396 out1:
1397 kfree(buffer);
1398 return retval;
1399 }
1400
1401 static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
1402 size_t nbytes, loff_t *ppos)
1403 {
1404 struct cftype *cft = __d_cft(file->f_dentry);
1405 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
1406
1407 if (!cft || cgroup_is_removed(cgrp))
1408 return -ENODEV;
1409 if (cft->write)
1410 return cft->write(cgrp, cft, file, buf, nbytes, ppos);
1411 if (cft->write_u64 || cft->write_s64)
1412 return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
1413 if (cft->trigger) {
1414 int ret = cft->trigger(cgrp, (unsigned int)cft->private);
1415 return ret ? ret : nbytes;
1416 }
1417 return -EINVAL;
1418 }
1419
1420 static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
1421 struct file *file,
1422 char __user *buf, size_t nbytes,
1423 loff_t *ppos)
1424 {
1425 char tmp[64];
1426 u64 val = cft->read_u64(cgrp, cft);
1427 int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
1428
1429 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
1430 }
1431
1432 static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
1433 struct file *file,
1434 char __user *buf, size_t nbytes,
1435 loff_t *ppos)
1436 {
1437 char tmp[64];
1438 s64 val = cft->read_s64(cgrp, cft);
1439 int len = sprintf(tmp, "%lld\n", (long long) val);
1440
1441 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
1442 }
1443
1444 static ssize_t cgroup_common_file_read(struct cgroup *cgrp,
1445 struct cftype *cft,
1446 struct file *file,
1447 char __user *buf,
1448 size_t nbytes, loff_t *ppos)
1449 {
1450 enum cgroup_filetype type = cft->private;
1451 char *page;
1452 ssize_t retval = 0;
1453 char *s;
1454
1455 if (!(page = (char *)__get_free_page(GFP_KERNEL)))
1456 return -ENOMEM;
1457
1458 s = page;
1459
1460 switch (type) {
1461 case FILE_RELEASE_AGENT:
1462 {
1463 struct cgroupfs_root *root;
1464 size_t n;
1465 mutex_lock(&cgroup_mutex);
1466 root = cgrp->root;
1467 n = strnlen(root->release_agent_path,
1468 sizeof(root->release_agent_path));
1469 n = min(n, (size_t) PAGE_SIZE);
1470 strncpy(s, root->release_agent_path, n);
1471 mutex_unlock(&cgroup_mutex);
1472 s += n;
1473 break;
1474 }
1475 default:
1476 retval = -EINVAL;
1477 goto out;
1478 }
1479 *s++ = '\n';
1480
1481 retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
1482 out:
1483 free_page((unsigned long)page);
1484 return retval;
1485 }
1486
1487 static ssize_t cgroup_file_read(struct file *file, char __user *buf,
1488 size_t nbytes, loff_t *ppos)
1489 {
1490 struct cftype *cft = __d_cft(file->f_dentry);
1491 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
1492
1493 if (!cft || cgroup_is_removed(cgrp))
1494 return -ENODEV;
1495
1496 if (cft->read)
1497 return cft->read(cgrp, cft, file, buf, nbytes, ppos);
1498 if (cft->read_u64)
1499 return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
1500 if (cft->read_s64)
1501 return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
1502 return -EINVAL;
1503 }
1504
1505 /*
1506 * seqfile ops/methods for returning structured data. Currently just
1507 * supports string->u64 maps, but can be extended in future.
1508 */
1509
1510 struct cgroup_seqfile_state {
1511 struct cftype *cft;
1512 struct cgroup *cgroup;
1513 };
1514
1515 static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
1516 {
1517 struct seq_file *sf = cb->state;
1518 return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
1519 }
1520
1521 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
1522 {
1523 struct cgroup_seqfile_state *state = m->private;
1524 struct cftype *cft = state->cft;
1525 struct cgroup_map_cb cb = {
1526 .fill = cgroup_map_add,
1527 .state = m,
1528 };
1529 return cft->read_map(state->cgroup, cft, &cb);
1530 }
1531
1532 int cgroup_seqfile_release(struct inode *inode, struct file *file)
1533 {
1534 struct seq_file *seq = file->private_data;
1535 kfree(seq->private);
1536 return single_release(inode, file);
1537 }
1538
1539 static struct file_operations cgroup_seqfile_operations = {
1540 .read = seq_read,
1541 .llseek = seq_lseek,
1542 .release = cgroup_seqfile_release,
1543 };
1544
1545 static int cgroup_file_open(struct inode *inode, struct file *file)
1546 {
1547 int err;
1548 struct cftype *cft;
1549
1550 err = generic_file_open(inode, file);
1551 if (err)
1552 return err;
1553
1554 cft = __d_cft(file->f_dentry);
1555 if (!cft)
1556 return -ENODEV;
1557 if (cft->read_map) {
1558 struct cgroup_seqfile_state *state =
1559 kzalloc(sizeof(*state), GFP_USER);
1560 if (!state)
1561 return -ENOMEM;
1562 state->cft = cft;
1563 state->cgroup = __d_cgrp(file->f_dentry->d_parent);
1564 file->f_op = &cgroup_seqfile_operations;
1565 err = single_open(file, cgroup_seqfile_show, state);
1566 if (err < 0)
1567 kfree(state);
1568 } else if (cft->open)
1569 err = cft->open(inode, file);
1570 else
1571 err = 0;
1572
1573 return err;
1574 }
1575
1576 static int cgroup_file_release(struct inode *inode, struct file *file)
1577 {
1578 struct cftype *cft = __d_cft(file->f_dentry);
1579 if (cft->release)
1580 return cft->release(inode, file);
1581 return 0;
1582 }
1583
1584 /*
1585 * cgroup_rename - Only allow simple rename of directories in place.
1586 */
1587 static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
1588 struct inode *new_dir, struct dentry *new_dentry)
1589 {
1590 if (!S_ISDIR(old_dentry->d_inode->i_mode))
1591 return -ENOTDIR;
1592 if (new_dentry->d_inode)
1593 return -EEXIST;
1594 if (old_dir != new_dir)
1595 return -EIO;
1596 return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
1597 }
1598
1599 static struct file_operations cgroup_file_operations = {
1600 .read = cgroup_file_read,
1601 .write = cgroup_file_write,
1602 .llseek = generic_file_llseek,
1603 .open = cgroup_file_open,
1604 .release = cgroup_file_release,
1605 };
1606
1607 static struct inode_operations cgroup_dir_inode_operations = {
1608 .lookup = simple_lookup,
1609 .mkdir = cgroup_mkdir,
1610 .rmdir = cgroup_rmdir,
1611 .rename = cgroup_rename,
1612 };
1613
1614 static int cgroup_create_file(struct dentry *dentry, int mode,
1615 struct super_block *sb)
1616 {
1617 static struct dentry_operations cgroup_dops = {
1618 .d_iput = cgroup_diput,
1619 };
1620
1621 struct inode *inode;
1622
1623 if (!dentry)
1624 return -ENOENT;
1625 if (dentry->d_inode)
1626 return -EEXIST;
1627
1628 inode = cgroup_new_inode(mode, sb);
1629 if (!inode)
1630 return -ENOMEM;
1631
1632 if (S_ISDIR(mode)) {
1633 inode->i_op = &cgroup_dir_inode_operations;
1634 inode->i_fop = &simple_dir_operations;
1635
1636 /* start off with i_nlink == 2 (for "." entry) */
1637 inc_nlink(inode);
1638
1639 /* start with the directory inode held, so that we can
1640 * populate it without racing with another mkdir */
1641 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
1642 } else if (S_ISREG(mode)) {
1643 inode->i_size = 0;
1644 inode->i_fop = &cgroup_file_operations;
1645 }
1646 dentry->d_op = &cgroup_dops;
1647 d_instantiate(dentry, inode);
1648 dget(dentry); /* Extra count - pin the dentry in core */
1649 return 0;
1650 }
1651
1652 /*
1653 * cgroup_create_dir - create a directory for an object.
1654 * @cgrp: the cgroup we create the directory for. It must have a valid
1655 * ->parent field. And we are going to fill its ->dentry field.
1656 * @dentry: dentry of the new cgroup
1657 * @mode: mode to set on new directory.
1658 */
1659 static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
1660 int mode)
1661 {
1662 struct dentry *parent;
1663 int error = 0;
1664
1665 parent = cgrp->parent->dentry;
1666 error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
1667 if (!error) {
1668 dentry->d_fsdata = cgrp;
1669 inc_nlink(parent->d_inode);
1670 cgrp->dentry = dentry;
1671 dget(dentry);
1672 }
1673 dput(dentry);
1674
1675 return error;
1676 }
1677
1678 int cgroup_add_file(struct cgroup *cgrp,
1679 struct cgroup_subsys *subsys,
1680 const struct cftype *cft)
1681 {
1682 struct dentry *dir = cgrp->dentry;
1683 struct dentry *dentry;
1684 int error;
1685
1686 char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
1687 if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
1688 strcpy(name, subsys->name);
1689 strcat(name, ".");
1690 }
1691 strcat(name, cft->name);
1692 BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
1693 dentry = lookup_one_len(name, dir, strlen(name));
1694 if (!IS_ERR(dentry)) {
1695 error = cgroup_create_file(dentry, 0644 | S_IFREG,
1696 cgrp->root->sb);
1697 if (!error)
1698 dentry->d_fsdata = (void *)cft;
1699 dput(dentry);
1700 } else
1701 error = PTR_ERR(dentry);
1702 return error;
1703 }
1704
1705 int cgroup_add_files(struct cgroup *cgrp,
1706 struct cgroup_subsys *subsys,
1707 const struct cftype cft[],
1708 int count)
1709 {
1710 int i, err;
1711 for (i = 0; i < count; i++) {
1712 err = cgroup_add_file(cgrp, subsys, &cft[i]);
1713 if (err)
1714 return err;
1715 }
1716 return 0;
1717 }
1718
1719 /**
1720 * cgroup_task_count - count the number of tasks in a cgroup.
1721 * @cgrp: the cgroup in question
1722 *
1723 * Return the number of tasks in the cgroup.
1724 */
1725 int cgroup_task_count(const struct cgroup *cgrp)
1726 {
1727 int count = 0;
1728 struct list_head *l;
1729
1730 read_lock(&css_set_lock);
1731 l = cgrp->css_sets.next;
1732 while (l != &cgrp->css_sets) {
1733 struct cg_cgroup_link *link =
1734 list_entry(l, struct cg_cgroup_link, cgrp_link_list);
1735 count += atomic_read(&link->cg->ref.refcount);
1736 l = l->next;
1737 }
1738 read_unlock(&css_set_lock);
1739 return count;
1740 }
1741
1742 /*
1743 * Advance a list_head iterator. The iterator should be positioned at
1744 * the start of a css_set
1745 */
1746 static void cgroup_advance_iter(struct cgroup *cgrp,
1747 struct cgroup_iter *it)
1748 {
1749 struct list_head *l = it->cg_link;
1750 struct cg_cgroup_link *link;
1751 struct css_set *cg;
1752
1753 /* Advance to the next non-empty css_set */
1754 do {
1755 l = l->next;
1756 if (l == &cgrp->css_sets) {
1757 it->cg_link = NULL;
1758 return;
1759 }
1760 link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
1761 cg = link->cg;
1762 } while (list_empty(&cg->tasks));
1763 it->cg_link = l;
1764 it->task = cg->tasks.next;
1765 }
1766
1767 /*
1768 * To reduce the fork() overhead for systems that are not actually
1769 * using their cgroups capability, we don't maintain the lists running
1770 * through each css_set to its tasks until we see the list actually
1771 * used - in other words after the first call to cgroup_iter_start().
1772 *
1773 * The tasklist_lock is not held here, as do_each_thread() and
1774 * while_each_thread() are protected by RCU.
1775 */
1776 static void cgroup_enable_task_cg_lists(void)
1777 {
1778 struct task_struct *p, *g;
1779 write_lock(&css_set_lock);
1780 use_task_css_set_links = 1;
1781 do_each_thread(g, p) {
1782 task_lock(p);
1783 /*
1784 * We should check if the process is exiting, otherwise
1785 * it will race with cgroup_exit() in that the list
1786 * entry won't be deleted though the process has exited.
1787 */
1788 if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
1789 list_add(&p->cg_list, &p->cgroups->tasks);
1790 task_unlock(p);
1791 } while_each_thread(g, p);
1792 write_unlock(&css_set_lock);
1793 }
1794
1795 void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
1796 {
1797 /*
1798 * The first time anyone tries to iterate across a cgroup,
1799 * we need to enable the list linking each css_set to its
1800 * tasks, and fix up all existing tasks.
1801 */
1802 if (!use_task_css_set_links)
1803 cgroup_enable_task_cg_lists();
1804
1805 read_lock(&css_set_lock);
1806 it->cg_link = &cgrp->css_sets;
1807 cgroup_advance_iter(cgrp, it);
1808 }
1809
1810 struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
1811 struct cgroup_iter *it)
1812 {
1813 struct task_struct *res;
1814 struct list_head *l = it->task;
1815
1816 /* If the iterator cg is NULL, we have no tasks */
1817 if (!it->cg_link)
1818 return NULL;
1819 res = list_entry(l, struct task_struct, cg_list);
1820 /* Advance iterator to find next entry */
1821 l = l->next;
1822 if (l == &res->cgroups->tasks) {
1823 /* We reached the end of this task list - move on to
1824 * the next cg_cgroup_link */
1825 cgroup_advance_iter(cgrp, it);
1826 } else {
1827 it->task = l;
1828 }
1829 return res;
1830 }
1831
1832 void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
1833 {
1834 read_unlock(&css_set_lock);
1835 }
1836
1837 static inline int started_after_time(struct task_struct *t1,
1838 struct timespec *time,
1839 struct task_struct *t2)
1840 {
1841 int start_diff = timespec_compare(&t1->start_time, time);
1842 if (start_diff > 0) {
1843 return 1;
1844 } else if (start_diff < 0) {
1845 return 0;
1846 } else {
1847 /*
1848 * Arbitrarily, if two processes started at the same
1849 * time, we'll say that the lower pointer value
1850 * started first. Note that t2 may have exited by now
1851 * so this may not be a valid pointer any longer, but
1852 * that's fine - it still serves to distinguish
1853 * between two tasks started (effectively) simultaneously.
1854 */
1855 return t1 > t2;
1856 }
1857 }
1858
1859 /*
1860 * This function is a callback from heap_insert() and is used to order
1861 * the heap.
1862 * In this case we order the heap in descending task start time.
1863 */
1864 static inline int started_after(void *p1, void *p2)
1865 {
1866 struct task_struct *t1 = p1;
1867 struct task_struct *t2 = p2;
1868 return started_after_time(t1, &t2->start_time, t2);
1869 }
1870
1871 /**
1872 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
1873 * @scan: struct cgroup_scanner containing arguments for the scan
1874 *
1875 * Arguments include pointers to callback functions test_task() and
1876 * process_task().
1877 * Iterate through all the tasks in a cgroup, calling test_task() for each,
1878 * and if it returns true, call process_task() for it also.
1879 * The test_task pointer may be NULL, meaning always true (select all tasks).
1880 * Effectively duplicates cgroup_iter_{start,next,end}()
1881 * but does not lock css_set_lock for the call to process_task().
1882 * The struct cgroup_scanner may be embedded in any structure of the caller's
1883 * creation.
1884 * It is guaranteed that process_task() will act on every task that
1885 * is a member of the cgroup for the duration of this call. This
1886 * function may or may not call process_task() for tasks that exit
1887 * or move to a different cgroup during the call, or are forked or
1888 * move into the cgroup during the call.
1889 *
1890 * Note that test_task() may be called with locks held, and may in some
1891 * situations be called multiple times for the same task, so it should
1892 * be cheap.
1893 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
1894 * pre-allocated and will be used for heap operations (and its "gt" member will
1895 * be overwritten), else a temporary heap will be used (allocation of which
1896 * may cause this function to fail).
1897 */
1898 int cgroup_scan_tasks(struct cgroup_scanner *scan)
1899 {
1900 int retval, i;
1901 struct cgroup_iter it;
1902 struct task_struct *p, *dropped;
1903 /* Never dereference latest_task, since it's not refcounted */
1904 struct task_struct *latest_task = NULL;
1905 struct ptr_heap tmp_heap;
1906 struct ptr_heap *heap;
1907 struct timespec latest_time = { 0, 0 };
1908
1909 if (scan->heap) {
1910 /* The caller supplied our heap and pre-allocated its memory */
1911 heap = scan->heap;
1912 heap->gt = &started_after;
1913 } else {
1914 /* We need to allocate our own heap memory */
1915 heap = &tmp_heap;
1916 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
1917 if (retval)
1918 /* cannot allocate the heap */
1919 return retval;
1920 }
1921
1922 again:
1923 /*
1924 * Scan tasks in the cgroup, using the scanner's "test_task" callback
1925 * to determine which are of interest, and using the scanner's
1926 * "process_task" callback to process any of them that need an update.
1927 * Since we don't want to hold any locks during the task updates,
1928 * gather tasks to be processed in a heap structure.
1929 * The heap is sorted by descending task start time.
1930 * If the statically-sized heap fills up, we overflow tasks that
1931 * started later, and in future iterations only consider tasks that
1932 * started after the latest task in the previous pass. This
1933 * guarantees forward progress and that we don't miss any tasks.
1934 */
1935 heap->size = 0;
1936 cgroup_iter_start(scan->cg, &it);
1937 while ((p = cgroup_iter_next(scan->cg, &it))) {
1938 /*
1939 * Only affect tasks that qualify per the caller's callback,
1940 * if he provided one
1941 */
1942 if (scan->test_task && !scan->test_task(p, scan))
1943 continue;
1944 /*
1945 * Only process tasks that started after the last task
1946 * we processed
1947 */
1948 if (!started_after_time(p, &latest_time, latest_task))
1949 continue;
1950 dropped = heap_insert(heap, p);
1951 if (dropped == NULL) {
1952 /*
1953 * The new task was inserted; the heap wasn't
1954 * previously full
1955 */
1956 get_task_struct(p);
1957 } else if (dropped != p) {
1958 /*
1959 * The new task was inserted, and pushed out a
1960 * different task
1961 */
1962 get_task_struct(p);
1963 put_task_struct(dropped);
1964 }
1965 /*
1966 * Else the new task was newer than anything already in
1967 * the heap and wasn't inserted
1968 */
1969 }
1970 cgroup_iter_end(scan->cg, &it);
1971
1972 if (heap->size) {
1973 for (i = 0; i < heap->size; i++) {
1974 struct task_struct *q = heap->ptrs[i];
1975 if (i == 0) {
1976 latest_time = q->start_time;
1977 latest_task = q;
1978 }
1979 /* Process the task per the caller's callback */
1980 scan->process_task(q, scan);
1981 put_task_struct(q);
1982 }
1983 /*
1984 * If we had to process any tasks at all, scan again
1985 * in case some of them were in the middle of forking
1986 * children that didn't get processed.
1987 * Not the most efficient way to do it, but it avoids
1988 * having to take callback_mutex in the fork path
1989 */
1990 goto again;
1991 }
1992 if (heap == &tmp_heap)
1993 heap_free(&tmp_heap);
1994 return 0;
1995 }
1996
1997 /*
1998 * Stuff for reading the 'tasks' file.
1999 *
2000 * Reading this file can return large amounts of data if a cgroup has
2001 * *lots* of attached tasks. So it may need several calls to read(),
2002 * but we cannot guarantee that the information we produce is correct
2003 * unless we produce it entirely atomically.
2004 *
2005 * Upon tasks file open(), a struct ctr_struct is allocated, that
2006 * will have a pointer to an array (also allocated here). The struct
2007 * ctr_struct * is stored in file->private_data. Its resources will
2008 * be freed by release() when the file is closed. The array is used
2009 * to sprintf the PIDs and then used by read().
2010 */
2011 struct ctr_struct {
2012 char *buf;
2013 int bufsz;
2014 };
2015
2016 /*
2017 * Load into 'pidarray' up to 'npids' of the tasks using cgroup
2018 * 'cgrp'. Return actual number of pids loaded. No need to
2019 * task_lock(p) when reading out p->cgroup, since we're in an RCU
2020 * read section, so the css_set can't go away, and is
2021 * immutable after creation.
2022 */
2023 static int pid_array_load(pid_t *pidarray, int npids, struct cgroup *cgrp)
2024 {
2025 int n = 0;
2026 struct cgroup_iter it;
2027 struct task_struct *tsk;
2028 cgroup_iter_start(cgrp, &it);
2029 while ((tsk = cgroup_iter_next(cgrp, &it))) {
2030 if (unlikely(n == npids))
2031 break;
2032 pidarray[n++] = task_pid_vnr(tsk);
2033 }
2034 cgroup_iter_end(cgrp, &it);
2035 return n;
2036 }
2037
2038 /**
2039 * cgroupstats_build - build and fill cgroupstats
2040 * @stats: cgroupstats to fill information into
2041 * @dentry: A dentry entry belonging to the cgroup for which stats have
2042 * been requested.
2043 *
2044 * Build and fill cgroupstats so that taskstats can export it to user
2045 * space.
2046 */
2047 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
2048 {
2049 int ret = -EINVAL;
2050 struct cgroup *cgrp;
2051 struct cgroup_iter it;
2052 struct task_struct *tsk;
2053 /*
2054 * Validate dentry by checking the superblock operations
2055 */
2056 if (dentry->d_sb->s_op != &cgroup_ops)
2057 goto err;
2058
2059 ret = 0;
2060 cgrp = dentry->d_fsdata;
2061 rcu_read_lock();
2062
2063 cgroup_iter_start(cgrp, &it);
2064 while ((tsk = cgroup_iter_next(cgrp, &it))) {
2065 switch (tsk->state) {
2066 case TASK_RUNNING:
2067 stats->nr_running++;
2068 break;
2069 case TASK_INTERRUPTIBLE:
2070 stats->nr_sleeping++;
2071 break;
2072 case TASK_UNINTERRUPTIBLE:
2073 stats->nr_uninterruptible++;
2074 break;
2075 case TASK_STOPPED:
2076 stats->nr_stopped++;
2077 break;
2078 default:
2079 if (delayacct_is_task_waiting_on_io(tsk))
2080 stats->nr_io_wait++;
2081 break;
2082 }
2083 }
2084 cgroup_iter_end(cgrp, &it);
2085
2086 rcu_read_unlock();
2087 err:
2088 return ret;
2089 }
2090
2091 static int cmppid(const void *a, const void *b)
2092 {
2093 return *(pid_t *)a - *(pid_t *)b;
2094 }
2095
2096 /*
2097 * Convert array 'a' of 'npids' pid_t's to a string of newline separated
2098 * decimal pids in 'buf'. Don't write more than 'sz' chars, but return
2099 * count 'cnt' of how many chars would be written if buf were large enough.
2100 */
2101 static int pid_array_to_buf(char *buf, int sz, pid_t *a, int npids)
2102 {
2103 int cnt = 0;
2104 int i;
2105
2106 for (i = 0; i < npids; i++)
2107 cnt += snprintf(buf + cnt, max(sz - cnt, 0), "%d\n", a[i]);
2108 return cnt;
2109 }
2110
2111 /*
2112 * Handle an open on 'tasks' file. Prepare a buffer listing the
2113 * process id's of tasks currently attached to the cgroup being opened.
2114 *
2115 * Does not require any specific cgroup mutexes, and does not take any.
2116 */
2117 static int cgroup_tasks_open(struct inode *unused, struct file *file)
2118 {
2119 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2120 struct ctr_struct *ctr;
2121 pid_t *pidarray;
2122 int npids;
2123 char c;
2124
2125 if (!(file->f_mode & FMODE_READ))
2126 return 0;
2127
2128 ctr = kmalloc(sizeof(*ctr), GFP_KERNEL);
2129 if (!ctr)
2130 goto err0;
2131
2132 /*
2133 * If cgroup gets more users after we read count, we won't have
2134 * enough space - tough. This race is indistinguishable to the
2135 * caller from the case that the additional cgroup users didn't
2136 * show up until sometime later on.
2137 */
2138 npids = cgroup_task_count(cgrp);
2139 if (npids) {
2140 pidarray = kmalloc(npids * sizeof(pid_t), GFP_KERNEL);
2141 if (!pidarray)
2142 goto err1;
2143
2144 npids = pid_array_load(pidarray, npids, cgrp);
2145 sort(pidarray, npids, sizeof(pid_t), cmppid, NULL);
2146
2147 /* Call pid_array_to_buf() twice, first just to get bufsz */
2148 ctr->bufsz = pid_array_to_buf(&c, sizeof(c), pidarray, npids) + 1;
2149 ctr->buf = kmalloc(ctr->bufsz, GFP_KERNEL);
2150 if (!ctr->buf)
2151 goto err2;
2152 ctr->bufsz = pid_array_to_buf(ctr->buf, ctr->bufsz, pidarray, npids);
2153
2154 kfree(pidarray);
2155 } else {
2156 ctr->buf = NULL;
2157 ctr->bufsz = 0;
2158 }
2159 file->private_data = ctr;
2160 return 0;
2161
2162 err2:
2163 kfree(pidarray);
2164 err1:
2165 kfree(ctr);
2166 err0:
2167 return -ENOMEM;
2168 }
2169
2170 static ssize_t cgroup_tasks_read(struct cgroup *cgrp,
2171 struct cftype *cft,
2172 struct file *file, char __user *buf,
2173 size_t nbytes, loff_t *ppos)
2174 {
2175 struct ctr_struct *ctr = file->private_data;
2176
2177 return simple_read_from_buffer(buf, nbytes, ppos, ctr->buf, ctr->bufsz);
2178 }
2179
2180 static int cgroup_tasks_release(struct inode *unused_inode,
2181 struct file *file)
2182 {
2183 struct ctr_struct *ctr;
2184
2185 if (file->f_mode & FMODE_READ) {
2186 ctr = file->private_data;
2187 kfree(ctr->buf);
2188 kfree(ctr);
2189 }
2190 return 0;
2191 }
2192
2193 static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
2194 struct cftype *cft)
2195 {
2196 return notify_on_release(cgrp);
2197 }
2198
2199 /*
2200 * for the common functions, 'private' gives the type of file
2201 */
2202 static struct cftype files[] = {
2203 {
2204 .name = "tasks",
2205 .open = cgroup_tasks_open,
2206 .read = cgroup_tasks_read,
2207 .write = cgroup_common_file_write,
2208 .release = cgroup_tasks_release,
2209 .private = FILE_TASKLIST,
2210 },
2211
2212 {
2213 .name = "notify_on_release",
2214 .read_u64 = cgroup_read_notify_on_release,
2215 .write = cgroup_common_file_write,
2216 .private = FILE_NOTIFY_ON_RELEASE,
2217 },
2218 };
2219
2220 static struct cftype cft_release_agent = {
2221 .name = "release_agent",
2222 .read = cgroup_common_file_read,
2223 .write = cgroup_common_file_write,
2224 .private = FILE_RELEASE_AGENT,
2225 };
2226
2227 static int cgroup_populate_dir(struct cgroup *cgrp)
2228 {
2229 int err;
2230 struct cgroup_subsys *ss;
2231
2232 /* First clear out any existing files */
2233 cgroup_clear_directory(cgrp->dentry);
2234
2235 err = cgroup_add_files(cgrp, NULL, files, ARRAY_SIZE(files));
2236 if (err < 0)
2237 return err;
2238
2239 if (cgrp == cgrp->top_cgroup) {
2240 if ((err = cgroup_add_file(cgrp, NULL, &cft_release_agent)) < 0)
2241 return err;
2242 }
2243
2244 for_each_subsys(cgrp->root, ss) {
2245 if (ss->populate && (err = ss->populate(ss, cgrp)) < 0)
2246 return err;
2247 }
2248
2249 return 0;
2250 }
2251
2252 static void init_cgroup_css(struct cgroup_subsys_state *css,
2253 struct cgroup_subsys *ss,
2254 struct cgroup *cgrp)
2255 {
2256 css->cgroup = cgrp;
2257 atomic_set(&css->refcnt, 0);
2258 css->flags = 0;
2259 if (cgrp == dummytop)
2260 set_bit(CSS_ROOT, &css->flags);
2261 BUG_ON(cgrp->subsys[ss->subsys_id]);
2262 cgrp->subsys[ss->subsys_id] = css;
2263 }
2264
2265 /*
2266 * cgroup_create - create a cgroup
2267 * @parent: cgroup that will be parent of the new cgroup
2268 * @dentry: dentry of the new cgroup
2269 * @mode: mode to set on new inode
2270 *
2271 * Must be called with the mutex on the parent inode held
2272 */
2273 static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
2274 int mode)
2275 {
2276 struct cgroup *cgrp;
2277 struct cgroupfs_root *root = parent->root;
2278 int err = 0;
2279 struct cgroup_subsys *ss;
2280 struct super_block *sb = root->sb;
2281
2282 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
2283 if (!cgrp)
2284 return -ENOMEM;
2285
2286 /* Grab a reference on the superblock so the hierarchy doesn't
2287 * get deleted on unmount if there are child cgroups. This
2288 * can be done outside cgroup_mutex, since the sb can't
2289 * disappear while someone has an open control file on the
2290 * fs */
2291 atomic_inc(&sb->s_active);
2292
2293 mutex_lock(&cgroup_mutex);
2294
2295 INIT_LIST_HEAD(&cgrp->sibling);
2296 INIT_LIST_HEAD(&cgrp->children);
2297 INIT_LIST_HEAD(&cgrp->css_sets);
2298 INIT_LIST_HEAD(&cgrp->release_list);
2299
2300 cgrp->parent = parent;
2301 cgrp->root = parent->root;
2302 cgrp->top_cgroup = parent->top_cgroup;
2303
2304 if (notify_on_release(parent))
2305 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
2306
2307 for_each_subsys(root, ss) {
2308 struct cgroup_subsys_state *css = ss->create(ss, cgrp);
2309 if (IS_ERR(css)) {
2310 err = PTR_ERR(css);
2311 goto err_destroy;
2312 }
2313 init_cgroup_css(css, ss, cgrp);
2314 }
2315
2316 list_add(&cgrp->sibling, &cgrp->parent->children);
2317 root->number_of_cgroups++;
2318
2319 err = cgroup_create_dir(cgrp, dentry, mode);
2320 if (err < 0)
2321 goto err_remove;
2322
2323 /* The cgroup directory was pre-locked for us */
2324 BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
2325
2326 err = cgroup_populate_dir(cgrp);
2327 /* If err < 0, we have a half-filled directory - oh well ;) */
2328
2329 mutex_unlock(&cgroup_mutex);
2330 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
2331
2332 return 0;
2333
2334 err_remove:
2335
2336 list_del(&cgrp->sibling);
2337 root->number_of_cgroups--;
2338
2339 err_destroy:
2340
2341 for_each_subsys(root, ss) {
2342 if (cgrp->subsys[ss->subsys_id])
2343 ss->destroy(ss, cgrp);
2344 }
2345
2346 mutex_unlock(&cgroup_mutex);
2347
2348 /* Release the reference count that we took on the superblock */
2349 deactivate_super(sb);
2350
2351 kfree(cgrp);
2352 return err;
2353 }
2354
2355 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2356 {
2357 struct cgroup *c_parent = dentry->d_parent->d_fsdata;
2358
2359 /* the vfs holds inode->i_mutex already */
2360 return cgroup_create(c_parent, dentry, mode | S_IFDIR);
2361 }
2362
2363 static inline int cgroup_has_css_refs(struct cgroup *cgrp)
2364 {
2365 /* Check the reference count on each subsystem. Since we
2366 * already established that there are no tasks in the
2367 * cgroup, if the css refcount is also 0, then there should
2368 * be no outstanding references, so the subsystem is safe to
2369 * destroy. We scan across all subsystems rather than using
2370 * the per-hierarchy linked list of mounted subsystems since
2371 * we can be called via check_for_release() with no
2372 * synchronization other than RCU, and the subsystem linked
2373 * list isn't RCU-safe */
2374 int i;
2375 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2376 struct cgroup_subsys *ss = subsys[i];
2377 struct cgroup_subsys_state *css;
2378 /* Skip subsystems not in this hierarchy */
2379 if (ss->root != cgrp->root)
2380 continue;
2381 css = cgrp->subsys[ss->subsys_id];
2382 /* When called from check_for_release() it's possible
2383 * that by this point the cgroup has been removed
2384 * and the css deleted. But a false-positive doesn't
2385 * matter, since it can only happen if the cgroup
2386 * has been deleted and hence no longer needs the
2387 * release agent to be called anyway. */
2388 if (css && atomic_read(&css->refcnt))
2389 return 1;
2390 }
2391 return 0;
2392 }
2393
2394 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
2395 {
2396 struct cgroup *cgrp = dentry->d_fsdata;
2397 struct dentry *d;
2398 struct cgroup *parent;
2399 struct super_block *sb;
2400 struct cgroupfs_root *root;
2401
2402 /* the vfs holds both inode->i_mutex already */
2403
2404 mutex_lock(&cgroup_mutex);
2405 if (atomic_read(&cgrp->count) != 0) {
2406 mutex_unlock(&cgroup_mutex);
2407 return -EBUSY;
2408 }
2409 if (!list_empty(&cgrp->children)) {
2410 mutex_unlock(&cgroup_mutex);
2411 return -EBUSY;
2412 }
2413
2414 parent = cgrp->parent;
2415 root = cgrp->root;
2416 sb = root->sb;
2417
2418 /*
2419 * Call pre_destroy handlers of subsys. Notify subsystems
2420 * that rmdir() request comes.
2421 */
2422 cgroup_call_pre_destroy(cgrp);
2423
2424 if (cgroup_has_css_refs(cgrp)) {
2425 mutex_unlock(&cgroup_mutex);
2426 return -EBUSY;
2427 }
2428
2429 spin_lock(&release_list_lock);
2430 set_bit(CGRP_REMOVED, &cgrp->flags);
2431 if (!list_empty(&cgrp->release_list))
2432 list_del(&cgrp->release_list);
2433 spin_unlock(&release_list_lock);
2434 /* delete my sibling from parent->children */
2435 list_del(&cgrp->sibling);
2436 spin_lock(&cgrp->dentry->d_lock);
2437 d = dget(cgrp->dentry);
2438 cgrp->dentry = NULL;
2439 spin_unlock(&d->d_lock);
2440
2441 cgroup_d_remove_dir(d);
2442 dput(d);
2443
2444 set_bit(CGRP_RELEASABLE, &parent->flags);
2445 check_for_release(parent);
2446
2447 mutex_unlock(&cgroup_mutex);
2448 return 0;
2449 }
2450
2451 static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
2452 {
2453 struct cgroup_subsys_state *css;
2454 struct list_head *l;
2455
2456 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
2457
2458 /* Create the top cgroup state for this subsystem */
2459 ss->root = &rootnode;
2460 css = ss->create(ss, dummytop);
2461 /* We don't handle early failures gracefully */
2462 BUG_ON(IS_ERR(css));
2463 init_cgroup_css(css, ss, dummytop);
2464
2465 /* Update all cgroup groups to contain a subsys
2466 * pointer to this state - since the subsystem is
2467 * newly registered, all tasks and hence all cgroup
2468 * groups are in the subsystem's top cgroup. */
2469 write_lock(&css_set_lock);
2470 l = &init_css_set.list;
2471 do {
2472 struct css_set *cg =
2473 list_entry(l, struct css_set, list);
2474 cg->subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
2475 l = l->next;
2476 } while (l != &init_css_set.list);
2477 write_unlock(&css_set_lock);
2478
2479 /* If this subsystem requested that it be notified with fork
2480 * events, we should send it one now for every process in the
2481 * system */
2482 if (ss->fork) {
2483 struct task_struct *g, *p;
2484
2485 read_lock(&tasklist_lock);
2486 do_each_thread(g, p) {
2487 ss->fork(ss, p);
2488 } while_each_thread(g, p);
2489 read_unlock(&tasklist_lock);
2490 }
2491
2492 need_forkexit_callback |= ss->fork || ss->exit;
2493
2494 ss->active = 1;
2495 }
2496
2497 /**
2498 * cgroup_init_early - cgroup initialization at system boot
2499 *
2500 * Initialize cgroups at system boot, and initialize any
2501 * subsystems that request early init.
2502 */
2503 int __init cgroup_init_early(void)
2504 {
2505 int i;
2506 kref_init(&init_css_set.ref);
2507 kref_get(&init_css_set.ref);
2508 INIT_LIST_HEAD(&init_css_set.list);
2509 INIT_LIST_HEAD(&init_css_set.cg_links);
2510 INIT_LIST_HEAD(&init_css_set.tasks);
2511 css_set_count = 1;
2512 init_cgroup_root(&rootnode);
2513 list_add(&rootnode.root_list, &roots);
2514 root_count = 1;
2515 init_task.cgroups = &init_css_set;
2516
2517 init_css_set_link.cg = &init_css_set;
2518 list_add(&init_css_set_link.cgrp_link_list,
2519 &rootnode.top_cgroup.css_sets);
2520 list_add(&init_css_set_link.cg_link_list,
2521 &init_css_set.cg_links);
2522
2523 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2524 struct cgroup_subsys *ss = subsys[i];
2525
2526 BUG_ON(!ss->name);
2527 BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
2528 BUG_ON(!ss->create);
2529 BUG_ON(!ss->destroy);
2530 if (ss->subsys_id != i) {
2531 printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
2532 ss->name, ss->subsys_id);
2533 BUG();
2534 }
2535
2536 if (ss->early_init)
2537 cgroup_init_subsys(ss);
2538 }
2539 return 0;
2540 }
2541
2542 /**
2543 * cgroup_init - cgroup initialization
2544 *
2545 * Register cgroup filesystem and /proc file, and initialize
2546 * any subsystems that didn't request early init.
2547 */
2548 int __init cgroup_init(void)
2549 {
2550 int err;
2551 int i;
2552
2553 err = bdi_init(&cgroup_backing_dev_info);
2554 if (err)
2555 return err;
2556
2557 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2558 struct cgroup_subsys *ss = subsys[i];
2559 if (!ss->early_init)
2560 cgroup_init_subsys(ss);
2561 }
2562
2563 err = register_filesystem(&cgroup_fs_type);
2564 if (err < 0)
2565 goto out;
2566
2567 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
2568
2569 out:
2570 if (err)
2571 bdi_destroy(&cgroup_backing_dev_info);
2572
2573 return err;
2574 }
2575
2576 /*
2577 * proc_cgroup_show()
2578 * - Print task's cgroup paths into seq_file, one line for each hierarchy
2579 * - Used for /proc/<pid>/cgroup.
2580 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
2581 * doesn't really matter if tsk->cgroup changes after we read it,
2582 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
2583 * anyway. No need to check that tsk->cgroup != NULL, thanks to
2584 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
2585 * cgroup to top_cgroup.
2586 */
2587
2588 /* TODO: Use a proper seq_file iterator */
2589 static int proc_cgroup_show(struct seq_file *m, void *v)
2590 {
2591 struct pid *pid;
2592 struct task_struct *tsk;
2593 char *buf;
2594 int retval;
2595 struct cgroupfs_root *root;
2596
2597 retval = -ENOMEM;
2598 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2599 if (!buf)
2600 goto out;
2601
2602 retval = -ESRCH;
2603 pid = m->private;
2604 tsk = get_pid_task(pid, PIDTYPE_PID);
2605 if (!tsk)
2606 goto out_free;
2607
2608 retval = 0;
2609
2610 mutex_lock(&cgroup_mutex);
2611
2612 for_each_root(root) {
2613 struct cgroup_subsys *ss;
2614 struct cgroup *cgrp;
2615 int subsys_id;
2616 int count = 0;
2617
2618 /* Skip this hierarchy if it has no active subsystems */
2619 if (!root->actual_subsys_bits)
2620 continue;
2621 seq_printf(m, "%lu:", root->subsys_bits);
2622 for_each_subsys(root, ss)
2623 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
2624 seq_putc(m, ':');
2625 get_first_subsys(&root->top_cgroup, NULL, &subsys_id);
2626 cgrp = task_cgroup(tsk, subsys_id);
2627 retval = cgroup_path(cgrp, buf, PAGE_SIZE);
2628 if (retval < 0)
2629 goto out_unlock;
2630 seq_puts(m, buf);
2631 seq_putc(m, '\n');
2632 }
2633
2634 out_unlock:
2635 mutex_unlock(&cgroup_mutex);
2636 put_task_struct(tsk);
2637 out_free:
2638 kfree(buf);
2639 out:
2640 return retval;
2641 }
2642
2643 static int cgroup_open(struct inode *inode, struct file *file)
2644 {
2645 struct pid *pid = PROC_I(inode)->pid;
2646 return single_open(file, proc_cgroup_show, pid);
2647 }
2648
2649 struct file_operations proc_cgroup_operations = {
2650 .open = cgroup_open,
2651 .read = seq_read,
2652 .llseek = seq_lseek,
2653 .release = single_release,
2654 };
2655
2656 /* Display information about each subsystem and each hierarchy */
2657 static int proc_cgroupstats_show(struct seq_file *m, void *v)
2658 {
2659 int i;
2660
2661 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
2662 mutex_lock(&cgroup_mutex);
2663 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2664 struct cgroup_subsys *ss = subsys[i];
2665 seq_printf(m, "%s\t%lu\t%d\t%d\n",
2666 ss->name, ss->root->subsys_bits,
2667 ss->root->number_of_cgroups, !ss->disabled);
2668 }
2669 mutex_unlock(&cgroup_mutex);
2670 return 0;
2671 }
2672
2673 static int cgroupstats_open(struct inode *inode, struct file *file)
2674 {
2675 return single_open(file, proc_cgroupstats_show, NULL);
2676 }
2677
2678 static struct file_operations proc_cgroupstats_operations = {
2679 .open = cgroupstats_open,
2680 .read = seq_read,
2681 .llseek = seq_lseek,
2682 .release = single_release,
2683 };
2684
2685 /**
2686 * cgroup_fork - attach newly forked task to its parents cgroup.
2687 * @child: pointer to task_struct of forking parent process.
2688 *
2689 * Description: A task inherits its parent's cgroup at fork().
2690 *
2691 * A pointer to the shared css_set was automatically copied in
2692 * fork.c by dup_task_struct(). However, we ignore that copy, since
2693 * it was not made under the protection of RCU or cgroup_mutex, so
2694 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
2695 * have already changed current->cgroups, allowing the previously
2696 * referenced cgroup group to be removed and freed.
2697 *
2698 * At the point that cgroup_fork() is called, 'current' is the parent
2699 * task, and the passed argument 'child' points to the child task.
2700 */
2701 void cgroup_fork(struct task_struct *child)
2702 {
2703 task_lock(current);
2704 child->cgroups = current->cgroups;
2705 get_css_set(child->cgroups);
2706 task_unlock(current);
2707 INIT_LIST_HEAD(&child->cg_list);
2708 }
2709
2710 /**
2711 * cgroup_fork_callbacks - run fork callbacks
2712 * @child: the new task
2713 *
2714 * Called on a new task very soon before adding it to the
2715 * tasklist. No need to take any locks since no-one can
2716 * be operating on this task.
2717 */
2718 void cgroup_fork_callbacks(struct task_struct *child)
2719 {
2720 if (need_forkexit_callback) {
2721 int i;
2722 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2723 struct cgroup_subsys *ss = subsys[i];
2724 if (ss->fork)
2725 ss->fork(ss, child);
2726 }
2727 }
2728 }
2729
2730 /**
2731 * cgroup_post_fork - called on a new task after adding it to the task list
2732 * @child: the task in question
2733 *
2734 * Adds the task to the list running through its css_set if necessary.
2735 * Has to be after the task is visible on the task list in case we race
2736 * with the first call to cgroup_iter_start() - to guarantee that the
2737 * new task ends up on its list.
2738 */
2739 void cgroup_post_fork(struct task_struct *child)
2740 {
2741 if (use_task_css_set_links) {
2742 write_lock(&css_set_lock);
2743 if (list_empty(&child->cg_list))
2744 list_add(&child->cg_list, &child->cgroups->tasks);
2745 write_unlock(&css_set_lock);
2746 }
2747 }
2748 /**
2749 * cgroup_exit - detach cgroup from exiting task
2750 * @tsk: pointer to task_struct of exiting process
2751 * @run_callback: run exit callbacks?
2752 *
2753 * Description: Detach cgroup from @tsk and release it.
2754 *
2755 * Note that cgroups marked notify_on_release force every task in
2756 * them to take the global cgroup_mutex mutex when exiting.
2757 * This could impact scaling on very large systems. Be reluctant to
2758 * use notify_on_release cgroups where very high task exit scaling
2759 * is required on large systems.
2760 *
2761 * the_top_cgroup_hack:
2762 *
2763 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
2764 *
2765 * We call cgroup_exit() while the task is still competent to
2766 * handle notify_on_release(), then leave the task attached to the
2767 * root cgroup in each hierarchy for the remainder of its exit.
2768 *
2769 * To do this properly, we would increment the reference count on
2770 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
2771 * code we would add a second cgroup function call, to drop that
2772 * reference. This would just create an unnecessary hot spot on
2773 * the top_cgroup reference count, to no avail.
2774 *
2775 * Normally, holding a reference to a cgroup without bumping its
2776 * count is unsafe. The cgroup could go away, or someone could
2777 * attach us to a different cgroup, decrementing the count on
2778 * the first cgroup that we never incremented. But in this case,
2779 * top_cgroup isn't going away, and either task has PF_EXITING set,
2780 * which wards off any cgroup_attach_task() attempts, or task is a failed
2781 * fork, never visible to cgroup_attach_task.
2782 */
2783 void cgroup_exit(struct task_struct *tsk, int run_callbacks)
2784 {
2785 int i;
2786 struct css_set *cg;
2787
2788 if (run_callbacks && need_forkexit_callback) {
2789 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2790 struct cgroup_subsys *ss = subsys[i];
2791 if (ss->exit)
2792 ss->exit(ss, tsk);
2793 }
2794 }
2795
2796 /*
2797 * Unlink from the css_set task list if necessary.
2798 * Optimistically check cg_list before taking
2799 * css_set_lock
2800 */
2801 if (!list_empty(&tsk->cg_list)) {
2802 write_lock(&css_set_lock);
2803 if (!list_empty(&tsk->cg_list))
2804 list_del(&tsk->cg_list);
2805 write_unlock(&css_set_lock);
2806 }
2807
2808 /* Reassign the task to the init_css_set. */
2809 task_lock(tsk);
2810 cg = tsk->cgroups;
2811 tsk->cgroups = &init_css_set;
2812 task_unlock(tsk);
2813 if (cg)
2814 put_css_set_taskexit(cg);
2815 }
2816
2817 /**
2818 * cgroup_clone - clone the cgroup the given subsystem is attached to
2819 * @tsk: the task to be moved
2820 * @subsys: the given subsystem
2821 *
2822 * Duplicate the current cgroup in the hierarchy that the given
2823 * subsystem is attached to, and move this task into the new
2824 * child.
2825 */
2826 int cgroup_clone(struct task_struct *tsk, struct cgroup_subsys *subsys)
2827 {
2828 struct dentry *dentry;
2829 int ret = 0;
2830 char nodename[MAX_CGROUP_TYPE_NAMELEN];
2831 struct cgroup *parent, *child;
2832 struct inode *inode;
2833 struct css_set *cg;
2834 struct cgroupfs_root *root;
2835 struct cgroup_subsys *ss;
2836
2837 /* We shouldn't be called by an unregistered subsystem */
2838 BUG_ON(!subsys->active);
2839
2840 /* First figure out what hierarchy and cgroup we're dealing
2841 * with, and pin them so we can drop cgroup_mutex */
2842 mutex_lock(&cgroup_mutex);
2843 again:
2844 root = subsys->root;
2845 if (root == &rootnode) {
2846 printk(KERN_INFO
2847 "Not cloning cgroup for unused subsystem %s\n",
2848 subsys->name);
2849 mutex_unlock(&cgroup_mutex);
2850 return 0;
2851 }
2852 cg = tsk->cgroups;
2853 parent = task_cgroup(tsk, subsys->subsys_id);
2854
2855 snprintf(nodename, MAX_CGROUP_TYPE_NAMELEN, "node_%d", tsk->pid);
2856
2857 /* Pin the hierarchy */
2858 atomic_inc(&parent->root->sb->s_active);
2859
2860 /* Keep the cgroup alive */
2861 get_css_set(cg);
2862 mutex_unlock(&cgroup_mutex);
2863
2864 /* Now do the VFS work to create a cgroup */
2865 inode = parent->dentry->d_inode;
2866
2867 /* Hold the parent directory mutex across this operation to
2868 * stop anyone else deleting the new cgroup */
2869 mutex_lock(&inode->i_mutex);
2870 dentry = lookup_one_len(nodename, parent->dentry, strlen(nodename));
2871 if (IS_ERR(dentry)) {
2872 printk(KERN_INFO
2873 "cgroup: Couldn't allocate dentry for %s: %ld\n", nodename,
2874 PTR_ERR(dentry));
2875 ret = PTR_ERR(dentry);
2876 goto out_release;
2877 }
2878
2879 /* Create the cgroup directory, which also creates the cgroup */
2880 ret = vfs_mkdir(inode, dentry, S_IFDIR | 0755);
2881 child = __d_cgrp(dentry);
2882 dput(dentry);
2883 if (ret) {
2884 printk(KERN_INFO
2885 "Failed to create cgroup %s: %d\n", nodename,
2886 ret);
2887 goto out_release;
2888 }
2889
2890 if (!child) {
2891 printk(KERN_INFO
2892 "Couldn't find new cgroup %s\n", nodename);
2893 ret = -ENOMEM;
2894 goto out_release;
2895 }
2896
2897 /* The cgroup now exists. Retake cgroup_mutex and check
2898 * that we're still in the same state that we thought we
2899 * were. */
2900 mutex_lock(&cgroup_mutex);
2901 if ((root != subsys->root) ||
2902 (parent != task_cgroup(tsk, subsys->subsys_id))) {
2903 /* Aargh, we raced ... */
2904 mutex_unlock(&inode->i_mutex);
2905 put_css_set(cg);
2906
2907 deactivate_super(parent->root->sb);
2908 /* The cgroup is still accessible in the VFS, but
2909 * we're not going to try to rmdir() it at this
2910 * point. */
2911 printk(KERN_INFO
2912 "Race in cgroup_clone() - leaking cgroup %s\n",
2913 nodename);
2914 goto again;
2915 }
2916
2917 /* do any required auto-setup */
2918 for_each_subsys(root, ss) {
2919 if (ss->post_clone)
2920 ss->post_clone(ss, child);
2921 }
2922
2923 /* All seems fine. Finish by moving the task into the new cgroup */
2924 ret = cgroup_attach_task(child, tsk);
2925 mutex_unlock(&cgroup_mutex);
2926
2927 out_release:
2928 mutex_unlock(&inode->i_mutex);
2929
2930 mutex_lock(&cgroup_mutex);
2931 put_css_set(cg);
2932 mutex_unlock(&cgroup_mutex);
2933 deactivate_super(parent->root->sb);
2934 return ret;
2935 }
2936
2937 /**
2938 * cgroup_is_descendant - see if @cgrp is a descendant of current task's cgrp
2939 * @cgrp: the cgroup in question
2940 *
2941 * See if @cgrp is a descendant of the current task's cgroup in
2942 * the appropriate hierarchy.
2943 *
2944 * If we are sending in dummytop, then presumably we are creating
2945 * the top cgroup in the subsystem.
2946 *
2947 * Called only by the ns (nsproxy) cgroup.
2948 */
2949 int cgroup_is_descendant(const struct cgroup *cgrp)
2950 {
2951 int ret;
2952 struct cgroup *target;
2953 int subsys_id;
2954
2955 if (cgrp == dummytop)
2956 return 1;
2957
2958 get_first_subsys(cgrp, NULL, &subsys_id);
2959 target = task_cgroup(current, subsys_id);
2960 while (cgrp != target && cgrp!= cgrp->top_cgroup)
2961 cgrp = cgrp->parent;
2962 ret = (cgrp == target);
2963 return ret;
2964 }
2965
2966 static void check_for_release(struct cgroup *cgrp)
2967 {
2968 /* All of these checks rely on RCU to keep the cgroup
2969 * structure alive */
2970 if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
2971 && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
2972 /* Control Group is currently removeable. If it's not
2973 * already queued for a userspace notification, queue
2974 * it now */
2975 int need_schedule_work = 0;
2976 spin_lock(&release_list_lock);
2977 if (!cgroup_is_removed(cgrp) &&
2978 list_empty(&cgrp->release_list)) {
2979 list_add(&cgrp->release_list, &release_list);
2980 need_schedule_work = 1;
2981 }
2982 spin_unlock(&release_list_lock);
2983 if (need_schedule_work)
2984 schedule_work(&release_agent_work);
2985 }
2986 }
2987
2988 void __css_put(struct cgroup_subsys_state *css)
2989 {
2990 struct cgroup *cgrp = css->cgroup;
2991 rcu_read_lock();
2992 if (atomic_dec_and_test(&css->refcnt) && notify_on_release(cgrp)) {
2993 set_bit(CGRP_RELEASABLE, &cgrp->flags);
2994 check_for_release(cgrp);
2995 }
2996 rcu_read_unlock();
2997 }
2998
2999 /*
3000 * Notify userspace when a cgroup is released, by running the
3001 * configured release agent with the name of the cgroup (path
3002 * relative to the root of cgroup file system) as the argument.
3003 *
3004 * Most likely, this user command will try to rmdir this cgroup.
3005 *
3006 * This races with the possibility that some other task will be
3007 * attached to this cgroup before it is removed, or that some other
3008 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
3009 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
3010 * unused, and this cgroup will be reprieved from its death sentence,
3011 * to continue to serve a useful existence. Next time it's released,
3012 * we will get notified again, if it still has 'notify_on_release' set.
3013 *
3014 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
3015 * means only wait until the task is successfully execve()'d. The
3016 * separate release agent task is forked by call_usermodehelper(),
3017 * then control in this thread returns here, without waiting for the
3018 * release agent task. We don't bother to wait because the caller of
3019 * this routine has no use for the exit status of the release agent
3020 * task, so no sense holding our caller up for that.
3021 */
3022 static void cgroup_release_agent(struct work_struct *work)
3023 {
3024 BUG_ON(work != &release_agent_work);
3025 mutex_lock(&cgroup_mutex);
3026 spin_lock(&release_list_lock);
3027 while (!list_empty(&release_list)) {
3028 char *argv[3], *envp[3];
3029 int i;
3030 char *pathbuf;
3031 struct cgroup *cgrp = list_entry(release_list.next,
3032 struct cgroup,
3033 release_list);
3034 list_del_init(&cgrp->release_list);
3035 spin_unlock(&release_list_lock);
3036 pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3037 if (!pathbuf) {
3038 spin_lock(&release_list_lock);
3039 continue;
3040 }
3041
3042 if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0) {
3043 kfree(pathbuf);
3044 spin_lock(&release_list_lock);
3045 continue;
3046 }
3047
3048 i = 0;
3049 argv[i++] = cgrp->root->release_agent_path;
3050 argv[i++] = (char *)pathbuf;
3051 argv[i] = NULL;
3052
3053 i = 0;
3054 /* minimal command environment */
3055 envp[i++] = "HOME=/";
3056 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
3057 envp[i] = NULL;
3058
3059 /* Drop the lock while we invoke the usermode helper,
3060 * since the exec could involve hitting disk and hence
3061 * be a slow process */
3062 mutex_unlock(&cgroup_mutex);
3063 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
3064 kfree(pathbuf);
3065 mutex_lock(&cgroup_mutex);
3066 spin_lock(&release_list_lock);
3067 }
3068 spin_unlock(&release_list_lock);
3069 mutex_unlock(&cgroup_mutex);
3070 }
3071
3072 static int __init cgroup_disable(char *str)
3073 {
3074 int i;
3075 char *token;
3076
3077 while ((token = strsep(&str, ",")) != NULL) {
3078 if (!*token)
3079 continue;
3080
3081 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3082 struct cgroup_subsys *ss = subsys[i];
3083
3084 if (!strcmp(token, ss->name)) {
3085 ss->disabled = 1;
3086 printk(KERN_INFO "Disabling %s control group"
3087 " subsystem\n", ss->name);
3088 break;
3089 }
3090 }
3091 }
3092 return 1;
3093 }
3094 __setup("cgroup_disable=", cgroup_disable);
This page took 0.093226 seconds and 6 git commands to generate.