cgroup: separate out cgroup_procs_write_permission() from __cgroup_procs_write()
[deliverable/linux.git] / kernel / cgroup.c
1 /*
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/cgroup.h>
32 #include <linux/cred.h>
33 #include <linux/ctype.h>
34 #include <linux/errno.h>
35 #include <linux/init_task.h>
36 #include <linux/kernel.h>
37 #include <linux/list.h>
38 #include <linux/magic.h>
39 #include <linux/mm.h>
40 #include <linux/mutex.h>
41 #include <linux/mount.h>
42 #include <linux/pagemap.h>
43 #include <linux/proc_fs.h>
44 #include <linux/rcupdate.h>
45 #include <linux/sched.h>
46 #include <linux/slab.h>
47 #include <linux/spinlock.h>
48 #include <linux/rwsem.h>
49 #include <linux/percpu-rwsem.h>
50 #include <linux/string.h>
51 #include <linux/sort.h>
52 #include <linux/kmod.h>
53 #include <linux/delayacct.h>
54 #include <linux/cgroupstats.h>
55 #include <linux/hashtable.h>
56 #include <linux/pid_namespace.h>
57 #include <linux/idr.h>
58 #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
59 #include <linux/kthread.h>
60 #include <linux/delay.h>
61
62 #include <linux/atomic.h>
63
64 /*
65 * pidlists linger the following amount before being destroyed. The goal
66 * is avoiding frequent destruction in the middle of consecutive read calls
67 * Expiring in the middle is a performance problem not a correctness one.
68 * 1 sec should be enough.
69 */
70 #define CGROUP_PIDLIST_DESTROY_DELAY HZ
71
72 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
73 MAX_CFTYPE_NAME + 2)
74
75 /*
76 * cgroup_mutex is the master lock. Any modification to cgroup or its
77 * hierarchy must be performed while holding it.
78 *
79 * css_set_rwsem protects task->cgroups pointer, the list of css_set
80 * objects, and the chain of tasks off each css_set.
81 *
82 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
83 * cgroup.h can use them for lockdep annotations.
84 */
85 #ifdef CONFIG_PROVE_RCU
86 DEFINE_MUTEX(cgroup_mutex);
87 DECLARE_RWSEM(css_set_rwsem);
88 EXPORT_SYMBOL_GPL(cgroup_mutex);
89 EXPORT_SYMBOL_GPL(css_set_rwsem);
90 #else
91 static DEFINE_MUTEX(cgroup_mutex);
92 static DECLARE_RWSEM(css_set_rwsem);
93 #endif
94
95 /*
96 * Protects cgroup_idr and css_idr so that IDs can be released without
97 * grabbing cgroup_mutex.
98 */
99 static DEFINE_SPINLOCK(cgroup_idr_lock);
100
101 /*
102 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
103 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
104 */
105 static DEFINE_SPINLOCK(release_agent_path_lock);
106
107 struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
108
109 #define cgroup_assert_mutex_or_rcu_locked() \
110 rcu_lockdep_assert(rcu_read_lock_held() || \
111 lockdep_is_held(&cgroup_mutex), \
112 "cgroup_mutex or RCU read lock required");
113
114 /*
115 * cgroup destruction makes heavy use of work items and there can be a lot
116 * of concurrent destructions. Use a separate workqueue so that cgroup
117 * destruction work items don't end up filling up max_active of system_wq
118 * which may lead to deadlock.
119 */
120 static struct workqueue_struct *cgroup_destroy_wq;
121
122 /*
123 * pidlist destructions need to be flushed on cgroup destruction. Use a
124 * separate workqueue as flush domain.
125 */
126 static struct workqueue_struct *cgroup_pidlist_destroy_wq;
127
128 /* generate an array of cgroup subsystem pointers */
129 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
130 static struct cgroup_subsys *cgroup_subsys[] = {
131 #include <linux/cgroup_subsys.h>
132 };
133 #undef SUBSYS
134
135 /* array of cgroup subsystem names */
136 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
137 static const char *cgroup_subsys_name[] = {
138 #include <linux/cgroup_subsys.h>
139 };
140 #undef SUBSYS
141
142 /*
143 * The default hierarchy, reserved for the subsystems that are otherwise
144 * unattached - it never has more than a single cgroup, and all tasks are
145 * part of that cgroup.
146 */
147 struct cgroup_root cgrp_dfl_root;
148
149 /*
150 * The default hierarchy always exists but is hidden until mounted for the
151 * first time. This is for backward compatibility.
152 */
153 static bool cgrp_dfl_root_visible;
154
155 /*
156 * Set by the boot param of the same name and makes subsystems with NULL
157 * ->dfl_files to use ->legacy_files on the default hierarchy.
158 */
159 static bool cgroup_legacy_files_on_dfl;
160
161 /* some controllers are not supported in the default hierarchy */
162 static unsigned long cgrp_dfl_root_inhibit_ss_mask;
163
164 /* The list of hierarchy roots */
165
166 static LIST_HEAD(cgroup_roots);
167 static int cgroup_root_count;
168
169 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
170 static DEFINE_IDR(cgroup_hierarchy_idr);
171
172 /*
173 * Assign a monotonically increasing serial number to csses. It guarantees
174 * cgroups with bigger numbers are newer than those with smaller numbers.
175 * Also, as csses are always appended to the parent's ->children list, it
176 * guarantees that sibling csses are always sorted in the ascending serial
177 * number order on the list. Protected by cgroup_mutex.
178 */
179 static u64 css_serial_nr_next = 1;
180
181 /*
182 * These bitmask flags indicate whether tasks in the fork and exit paths have
183 * fork/exit handlers to call. This avoids us having to do extra work in the
184 * fork/exit path to check which subsystems have fork/exit callbacks.
185 */
186 static unsigned long have_fork_callback __read_mostly;
187 static unsigned long have_exit_callback __read_mostly;
188
189 static struct cftype cgroup_dfl_base_files[];
190 static struct cftype cgroup_legacy_base_files[];
191
192 static int rebind_subsystems(struct cgroup_root *dst_root,
193 unsigned long ss_mask);
194 static int cgroup_destroy_locked(struct cgroup *cgrp);
195 static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
196 bool visible);
197 static void css_release(struct percpu_ref *ref);
198 static void kill_css(struct cgroup_subsys_state *css);
199 static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
200 bool is_add);
201
202 /* IDR wrappers which synchronize using cgroup_idr_lock */
203 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
204 gfp_t gfp_mask)
205 {
206 int ret;
207
208 idr_preload(gfp_mask);
209 spin_lock_bh(&cgroup_idr_lock);
210 ret = idr_alloc(idr, ptr, start, end, gfp_mask);
211 spin_unlock_bh(&cgroup_idr_lock);
212 idr_preload_end();
213 return ret;
214 }
215
216 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
217 {
218 void *ret;
219
220 spin_lock_bh(&cgroup_idr_lock);
221 ret = idr_replace(idr, ptr, id);
222 spin_unlock_bh(&cgroup_idr_lock);
223 return ret;
224 }
225
226 static void cgroup_idr_remove(struct idr *idr, int id)
227 {
228 spin_lock_bh(&cgroup_idr_lock);
229 idr_remove(idr, id);
230 spin_unlock_bh(&cgroup_idr_lock);
231 }
232
233 static struct cgroup *cgroup_parent(struct cgroup *cgrp)
234 {
235 struct cgroup_subsys_state *parent_css = cgrp->self.parent;
236
237 if (parent_css)
238 return container_of(parent_css, struct cgroup, self);
239 return NULL;
240 }
241
242 /**
243 * cgroup_css - obtain a cgroup's css for the specified subsystem
244 * @cgrp: the cgroup of interest
245 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
246 *
247 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
248 * function must be called either under cgroup_mutex or rcu_read_lock() and
249 * the caller is responsible for pinning the returned css if it wants to
250 * keep accessing it outside the said locks. This function may return
251 * %NULL if @cgrp doesn't have @subsys_id enabled.
252 */
253 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
254 struct cgroup_subsys *ss)
255 {
256 if (ss)
257 return rcu_dereference_check(cgrp->subsys[ss->id],
258 lockdep_is_held(&cgroup_mutex));
259 else
260 return &cgrp->self;
261 }
262
263 /**
264 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
265 * @cgrp: the cgroup of interest
266 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
267 *
268 * Similar to cgroup_css() but returns the effective css, which is defined
269 * as the matching css of the nearest ancestor including self which has @ss
270 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
271 * function is guaranteed to return non-NULL css.
272 */
273 static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
274 struct cgroup_subsys *ss)
275 {
276 lockdep_assert_held(&cgroup_mutex);
277
278 if (!ss)
279 return &cgrp->self;
280
281 if (!(cgrp->root->subsys_mask & (1 << ss->id)))
282 return NULL;
283
284 /*
285 * This function is used while updating css associations and thus
286 * can't test the csses directly. Use ->child_subsys_mask.
287 */
288 while (cgroup_parent(cgrp) &&
289 !(cgroup_parent(cgrp)->child_subsys_mask & (1 << ss->id)))
290 cgrp = cgroup_parent(cgrp);
291
292 return cgroup_css(cgrp, ss);
293 }
294
295 /**
296 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
297 * @cgrp: the cgroup of interest
298 * @ss: the subsystem of interest
299 *
300 * Find and get the effective css of @cgrp for @ss. The effective css is
301 * defined as the matching css of the nearest ancestor including self which
302 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
303 * the root css is returned, so this function always returns a valid css.
304 * The returned css must be put using css_put().
305 */
306 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
307 struct cgroup_subsys *ss)
308 {
309 struct cgroup_subsys_state *css;
310
311 rcu_read_lock();
312
313 do {
314 css = cgroup_css(cgrp, ss);
315
316 if (css && css_tryget_online(css))
317 goto out_unlock;
318 cgrp = cgroup_parent(cgrp);
319 } while (cgrp);
320
321 css = init_css_set.subsys[ss->id];
322 css_get(css);
323 out_unlock:
324 rcu_read_unlock();
325 return css;
326 }
327
328 /* convenient tests for these bits */
329 static inline bool cgroup_is_dead(const struct cgroup *cgrp)
330 {
331 return !(cgrp->self.flags & CSS_ONLINE);
332 }
333
334 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
335 {
336 struct cgroup *cgrp = of->kn->parent->priv;
337 struct cftype *cft = of_cft(of);
338
339 /*
340 * This is open and unprotected implementation of cgroup_css().
341 * seq_css() is only called from a kernfs file operation which has
342 * an active reference on the file. Because all the subsystem
343 * files are drained before a css is disassociated with a cgroup,
344 * the matching css from the cgroup's subsys table is guaranteed to
345 * be and stay valid until the enclosing operation is complete.
346 */
347 if (cft->ss)
348 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
349 else
350 return &cgrp->self;
351 }
352 EXPORT_SYMBOL_GPL(of_css);
353
354 /**
355 * cgroup_is_descendant - test ancestry
356 * @cgrp: the cgroup to be tested
357 * @ancestor: possible ancestor of @cgrp
358 *
359 * Test whether @cgrp is a descendant of @ancestor. It also returns %true
360 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
361 * and @ancestor are accessible.
362 */
363 bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
364 {
365 while (cgrp) {
366 if (cgrp == ancestor)
367 return true;
368 cgrp = cgroup_parent(cgrp);
369 }
370 return false;
371 }
372
373 static int notify_on_release(const struct cgroup *cgrp)
374 {
375 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
376 }
377
378 /**
379 * for_each_css - iterate all css's of a cgroup
380 * @css: the iteration cursor
381 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
382 * @cgrp: the target cgroup to iterate css's of
383 *
384 * Should be called under cgroup_[tree_]mutex.
385 */
386 #define for_each_css(css, ssid, cgrp) \
387 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
388 if (!((css) = rcu_dereference_check( \
389 (cgrp)->subsys[(ssid)], \
390 lockdep_is_held(&cgroup_mutex)))) { } \
391 else
392
393 /**
394 * for_each_e_css - iterate all effective css's of a cgroup
395 * @css: the iteration cursor
396 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
397 * @cgrp: the target cgroup to iterate css's of
398 *
399 * Should be called under cgroup_[tree_]mutex.
400 */
401 #define for_each_e_css(css, ssid, cgrp) \
402 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
403 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
404 ; \
405 else
406
407 /**
408 * for_each_subsys - iterate all enabled cgroup subsystems
409 * @ss: the iteration cursor
410 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
411 */
412 #define for_each_subsys(ss, ssid) \
413 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
414 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
415
416 /**
417 * for_each_subsys_which - filter for_each_subsys with a bitmask
418 * @ss: the iteration cursor
419 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
420 * @ss_maskp: a pointer to the bitmask
421 *
422 * The block will only run for cases where the ssid-th bit (1 << ssid) of
423 * mask is set to 1.
424 */
425 #define for_each_subsys_which(ss, ssid, ss_maskp) \
426 if (!CGROUP_SUBSYS_COUNT) /* to avoid spurious gcc warning */ \
427 (ssid) = 0; \
428 else \
429 for_each_set_bit(ssid, ss_maskp, CGROUP_SUBSYS_COUNT) \
430 if (((ss) = cgroup_subsys[ssid]) && false) \
431 break; \
432 else
433
434 /* iterate across the hierarchies */
435 #define for_each_root(root) \
436 list_for_each_entry((root), &cgroup_roots, root_list)
437
438 /* iterate over child cgrps, lock should be held throughout iteration */
439 #define cgroup_for_each_live_child(child, cgrp) \
440 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
441 if (({ lockdep_assert_held(&cgroup_mutex); \
442 cgroup_is_dead(child); })) \
443 ; \
444 else
445
446 static void cgroup_release_agent(struct work_struct *work);
447 static void check_for_release(struct cgroup *cgrp);
448
449 /*
450 * A cgroup can be associated with multiple css_sets as different tasks may
451 * belong to different cgroups on different hierarchies. In the other
452 * direction, a css_set is naturally associated with multiple cgroups.
453 * This M:N relationship is represented by the following link structure
454 * which exists for each association and allows traversing the associations
455 * from both sides.
456 */
457 struct cgrp_cset_link {
458 /* the cgroup and css_set this link associates */
459 struct cgroup *cgrp;
460 struct css_set *cset;
461
462 /* list of cgrp_cset_links anchored at cgrp->cset_links */
463 struct list_head cset_link;
464
465 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
466 struct list_head cgrp_link;
467 };
468
469 /*
470 * The default css_set - used by init and its children prior to any
471 * hierarchies being mounted. It contains a pointer to the root state
472 * for each subsystem. Also used to anchor the list of css_sets. Not
473 * reference-counted, to improve performance when child cgroups
474 * haven't been created.
475 */
476 struct css_set init_css_set = {
477 .refcount = ATOMIC_INIT(1),
478 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
479 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
480 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
481 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
482 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
483 };
484
485 static int css_set_count = 1; /* 1 for init_css_set */
486
487 /**
488 * cgroup_update_populated - updated populated count of a cgroup
489 * @cgrp: the target cgroup
490 * @populated: inc or dec populated count
491 *
492 * @cgrp is either getting the first task (css_set) or losing the last.
493 * Update @cgrp->populated_cnt accordingly. The count is propagated
494 * towards root so that a given cgroup's populated_cnt is zero iff the
495 * cgroup and all its descendants are empty.
496 *
497 * @cgrp's interface file "cgroup.populated" is zero if
498 * @cgrp->populated_cnt is zero and 1 otherwise. When @cgrp->populated_cnt
499 * changes from or to zero, userland is notified that the content of the
500 * interface file has changed. This can be used to detect when @cgrp and
501 * its descendants become populated or empty.
502 */
503 static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
504 {
505 lockdep_assert_held(&css_set_rwsem);
506
507 do {
508 bool trigger;
509
510 if (populated)
511 trigger = !cgrp->populated_cnt++;
512 else
513 trigger = !--cgrp->populated_cnt;
514
515 if (!trigger)
516 break;
517
518 if (cgrp->populated_kn)
519 kernfs_notify(cgrp->populated_kn);
520 cgrp = cgroup_parent(cgrp);
521 } while (cgrp);
522 }
523
524 /*
525 * hash table for cgroup groups. This improves the performance to find
526 * an existing css_set. This hash doesn't (currently) take into
527 * account cgroups in empty hierarchies.
528 */
529 #define CSS_SET_HASH_BITS 7
530 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
531
532 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
533 {
534 unsigned long key = 0UL;
535 struct cgroup_subsys *ss;
536 int i;
537
538 for_each_subsys(ss, i)
539 key += (unsigned long)css[i];
540 key = (key >> 16) ^ key;
541
542 return key;
543 }
544
545 static void put_css_set_locked(struct css_set *cset)
546 {
547 struct cgrp_cset_link *link, *tmp_link;
548 struct cgroup_subsys *ss;
549 int ssid;
550
551 lockdep_assert_held(&css_set_rwsem);
552
553 if (!atomic_dec_and_test(&cset->refcount))
554 return;
555
556 /* This css_set is dead. unlink it and release cgroup refcounts */
557 for_each_subsys(ss, ssid)
558 list_del(&cset->e_cset_node[ssid]);
559 hash_del(&cset->hlist);
560 css_set_count--;
561
562 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
563 struct cgroup *cgrp = link->cgrp;
564
565 list_del(&link->cset_link);
566 list_del(&link->cgrp_link);
567
568 /* @cgrp can't go away while we're holding css_set_rwsem */
569 if (list_empty(&cgrp->cset_links)) {
570 cgroup_update_populated(cgrp, false);
571 check_for_release(cgrp);
572 }
573
574 kfree(link);
575 }
576
577 kfree_rcu(cset, rcu_head);
578 }
579
580 static void put_css_set(struct css_set *cset)
581 {
582 /*
583 * Ensure that the refcount doesn't hit zero while any readers
584 * can see it. Similar to atomic_dec_and_lock(), but for an
585 * rwlock
586 */
587 if (atomic_add_unless(&cset->refcount, -1, 1))
588 return;
589
590 down_write(&css_set_rwsem);
591 put_css_set_locked(cset);
592 up_write(&css_set_rwsem);
593 }
594
595 /*
596 * refcounted get/put for css_set objects
597 */
598 static inline void get_css_set(struct css_set *cset)
599 {
600 atomic_inc(&cset->refcount);
601 }
602
603 /**
604 * compare_css_sets - helper function for find_existing_css_set().
605 * @cset: candidate css_set being tested
606 * @old_cset: existing css_set for a task
607 * @new_cgrp: cgroup that's being entered by the task
608 * @template: desired set of css pointers in css_set (pre-calculated)
609 *
610 * Returns true if "cset" matches "old_cset" except for the hierarchy
611 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
612 */
613 static bool compare_css_sets(struct css_set *cset,
614 struct css_set *old_cset,
615 struct cgroup *new_cgrp,
616 struct cgroup_subsys_state *template[])
617 {
618 struct list_head *l1, *l2;
619
620 /*
621 * On the default hierarchy, there can be csets which are
622 * associated with the same set of cgroups but different csses.
623 * Let's first ensure that csses match.
624 */
625 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
626 return false;
627
628 /*
629 * Compare cgroup pointers in order to distinguish between
630 * different cgroups in hierarchies. As different cgroups may
631 * share the same effective css, this comparison is always
632 * necessary.
633 */
634 l1 = &cset->cgrp_links;
635 l2 = &old_cset->cgrp_links;
636 while (1) {
637 struct cgrp_cset_link *link1, *link2;
638 struct cgroup *cgrp1, *cgrp2;
639
640 l1 = l1->next;
641 l2 = l2->next;
642 /* See if we reached the end - both lists are equal length. */
643 if (l1 == &cset->cgrp_links) {
644 BUG_ON(l2 != &old_cset->cgrp_links);
645 break;
646 } else {
647 BUG_ON(l2 == &old_cset->cgrp_links);
648 }
649 /* Locate the cgroups associated with these links. */
650 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
651 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
652 cgrp1 = link1->cgrp;
653 cgrp2 = link2->cgrp;
654 /* Hierarchies should be linked in the same order. */
655 BUG_ON(cgrp1->root != cgrp2->root);
656
657 /*
658 * If this hierarchy is the hierarchy of the cgroup
659 * that's changing, then we need to check that this
660 * css_set points to the new cgroup; if it's any other
661 * hierarchy, then this css_set should point to the
662 * same cgroup as the old css_set.
663 */
664 if (cgrp1->root == new_cgrp->root) {
665 if (cgrp1 != new_cgrp)
666 return false;
667 } else {
668 if (cgrp1 != cgrp2)
669 return false;
670 }
671 }
672 return true;
673 }
674
675 /**
676 * find_existing_css_set - init css array and find the matching css_set
677 * @old_cset: the css_set that we're using before the cgroup transition
678 * @cgrp: the cgroup that we're moving into
679 * @template: out param for the new set of csses, should be clear on entry
680 */
681 static struct css_set *find_existing_css_set(struct css_set *old_cset,
682 struct cgroup *cgrp,
683 struct cgroup_subsys_state *template[])
684 {
685 struct cgroup_root *root = cgrp->root;
686 struct cgroup_subsys *ss;
687 struct css_set *cset;
688 unsigned long key;
689 int i;
690
691 /*
692 * Build the set of subsystem state objects that we want to see in the
693 * new css_set. while subsystems can change globally, the entries here
694 * won't change, so no need for locking.
695 */
696 for_each_subsys(ss, i) {
697 if (root->subsys_mask & (1UL << i)) {
698 /*
699 * @ss is in this hierarchy, so we want the
700 * effective css from @cgrp.
701 */
702 template[i] = cgroup_e_css(cgrp, ss);
703 } else {
704 /*
705 * @ss is not in this hierarchy, so we don't want
706 * to change the css.
707 */
708 template[i] = old_cset->subsys[i];
709 }
710 }
711
712 key = css_set_hash(template);
713 hash_for_each_possible(css_set_table, cset, hlist, key) {
714 if (!compare_css_sets(cset, old_cset, cgrp, template))
715 continue;
716
717 /* This css_set matches what we need */
718 return cset;
719 }
720
721 /* No existing cgroup group matched */
722 return NULL;
723 }
724
725 static void free_cgrp_cset_links(struct list_head *links_to_free)
726 {
727 struct cgrp_cset_link *link, *tmp_link;
728
729 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
730 list_del(&link->cset_link);
731 kfree(link);
732 }
733 }
734
735 /**
736 * allocate_cgrp_cset_links - allocate cgrp_cset_links
737 * @count: the number of links to allocate
738 * @tmp_links: list_head the allocated links are put on
739 *
740 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
741 * through ->cset_link. Returns 0 on success or -errno.
742 */
743 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
744 {
745 struct cgrp_cset_link *link;
746 int i;
747
748 INIT_LIST_HEAD(tmp_links);
749
750 for (i = 0; i < count; i++) {
751 link = kzalloc(sizeof(*link), GFP_KERNEL);
752 if (!link) {
753 free_cgrp_cset_links(tmp_links);
754 return -ENOMEM;
755 }
756 list_add(&link->cset_link, tmp_links);
757 }
758 return 0;
759 }
760
761 /**
762 * link_css_set - a helper function to link a css_set to a cgroup
763 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
764 * @cset: the css_set to be linked
765 * @cgrp: the destination cgroup
766 */
767 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
768 struct cgroup *cgrp)
769 {
770 struct cgrp_cset_link *link;
771
772 BUG_ON(list_empty(tmp_links));
773
774 if (cgroup_on_dfl(cgrp))
775 cset->dfl_cgrp = cgrp;
776
777 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
778 link->cset = cset;
779 link->cgrp = cgrp;
780
781 if (list_empty(&cgrp->cset_links))
782 cgroup_update_populated(cgrp, true);
783 list_move(&link->cset_link, &cgrp->cset_links);
784
785 /*
786 * Always add links to the tail of the list so that the list
787 * is sorted by order of hierarchy creation
788 */
789 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
790 }
791
792 /**
793 * find_css_set - return a new css_set with one cgroup updated
794 * @old_cset: the baseline css_set
795 * @cgrp: the cgroup to be updated
796 *
797 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
798 * substituted into the appropriate hierarchy.
799 */
800 static struct css_set *find_css_set(struct css_set *old_cset,
801 struct cgroup *cgrp)
802 {
803 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
804 struct css_set *cset;
805 struct list_head tmp_links;
806 struct cgrp_cset_link *link;
807 struct cgroup_subsys *ss;
808 unsigned long key;
809 int ssid;
810
811 lockdep_assert_held(&cgroup_mutex);
812
813 /* First see if we already have a cgroup group that matches
814 * the desired set */
815 down_read(&css_set_rwsem);
816 cset = find_existing_css_set(old_cset, cgrp, template);
817 if (cset)
818 get_css_set(cset);
819 up_read(&css_set_rwsem);
820
821 if (cset)
822 return cset;
823
824 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
825 if (!cset)
826 return NULL;
827
828 /* Allocate all the cgrp_cset_link objects that we'll need */
829 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
830 kfree(cset);
831 return NULL;
832 }
833
834 atomic_set(&cset->refcount, 1);
835 INIT_LIST_HEAD(&cset->cgrp_links);
836 INIT_LIST_HEAD(&cset->tasks);
837 INIT_LIST_HEAD(&cset->mg_tasks);
838 INIT_LIST_HEAD(&cset->mg_preload_node);
839 INIT_LIST_HEAD(&cset->mg_node);
840 INIT_HLIST_NODE(&cset->hlist);
841
842 /* Copy the set of subsystem state objects generated in
843 * find_existing_css_set() */
844 memcpy(cset->subsys, template, sizeof(cset->subsys));
845
846 down_write(&css_set_rwsem);
847 /* Add reference counts and links from the new css_set. */
848 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
849 struct cgroup *c = link->cgrp;
850
851 if (c->root == cgrp->root)
852 c = cgrp;
853 link_css_set(&tmp_links, cset, c);
854 }
855
856 BUG_ON(!list_empty(&tmp_links));
857
858 css_set_count++;
859
860 /* Add @cset to the hash table */
861 key = css_set_hash(cset->subsys);
862 hash_add(css_set_table, &cset->hlist, key);
863
864 for_each_subsys(ss, ssid)
865 list_add_tail(&cset->e_cset_node[ssid],
866 &cset->subsys[ssid]->cgroup->e_csets[ssid]);
867
868 up_write(&css_set_rwsem);
869
870 return cset;
871 }
872
873 static struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
874 {
875 struct cgroup *root_cgrp = kf_root->kn->priv;
876
877 return root_cgrp->root;
878 }
879
880 static int cgroup_init_root_id(struct cgroup_root *root)
881 {
882 int id;
883
884 lockdep_assert_held(&cgroup_mutex);
885
886 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
887 if (id < 0)
888 return id;
889
890 root->hierarchy_id = id;
891 return 0;
892 }
893
894 static void cgroup_exit_root_id(struct cgroup_root *root)
895 {
896 lockdep_assert_held(&cgroup_mutex);
897
898 if (root->hierarchy_id) {
899 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
900 root->hierarchy_id = 0;
901 }
902 }
903
904 static void cgroup_free_root(struct cgroup_root *root)
905 {
906 if (root) {
907 /* hierarchy ID should already have been released */
908 WARN_ON_ONCE(root->hierarchy_id);
909
910 idr_destroy(&root->cgroup_idr);
911 kfree(root);
912 }
913 }
914
915 static void cgroup_destroy_root(struct cgroup_root *root)
916 {
917 struct cgroup *cgrp = &root->cgrp;
918 struct cgrp_cset_link *link, *tmp_link;
919
920 mutex_lock(&cgroup_mutex);
921
922 BUG_ON(atomic_read(&root->nr_cgrps));
923 BUG_ON(!list_empty(&cgrp->self.children));
924
925 /* Rebind all subsystems back to the default hierarchy */
926 rebind_subsystems(&cgrp_dfl_root, root->subsys_mask);
927
928 /*
929 * Release all the links from cset_links to this hierarchy's
930 * root cgroup
931 */
932 down_write(&css_set_rwsem);
933
934 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
935 list_del(&link->cset_link);
936 list_del(&link->cgrp_link);
937 kfree(link);
938 }
939 up_write(&css_set_rwsem);
940
941 if (!list_empty(&root->root_list)) {
942 list_del(&root->root_list);
943 cgroup_root_count--;
944 }
945
946 cgroup_exit_root_id(root);
947
948 mutex_unlock(&cgroup_mutex);
949
950 kernfs_destroy_root(root->kf_root);
951 cgroup_free_root(root);
952 }
953
954 /* look up cgroup associated with given css_set on the specified hierarchy */
955 static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
956 struct cgroup_root *root)
957 {
958 struct cgroup *res = NULL;
959
960 lockdep_assert_held(&cgroup_mutex);
961 lockdep_assert_held(&css_set_rwsem);
962
963 if (cset == &init_css_set) {
964 res = &root->cgrp;
965 } else {
966 struct cgrp_cset_link *link;
967
968 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
969 struct cgroup *c = link->cgrp;
970
971 if (c->root == root) {
972 res = c;
973 break;
974 }
975 }
976 }
977
978 BUG_ON(!res);
979 return res;
980 }
981
982 /*
983 * Return the cgroup for "task" from the given hierarchy. Must be
984 * called with cgroup_mutex and css_set_rwsem held.
985 */
986 static struct cgroup *task_cgroup_from_root(struct task_struct *task,
987 struct cgroup_root *root)
988 {
989 /*
990 * No need to lock the task - since we hold cgroup_mutex the
991 * task can't change groups, so the only thing that can happen
992 * is that it exits and its css is set back to init_css_set.
993 */
994 return cset_cgroup_from_root(task_css_set(task), root);
995 }
996
997 /*
998 * A task must hold cgroup_mutex to modify cgroups.
999 *
1000 * Any task can increment and decrement the count field without lock.
1001 * So in general, code holding cgroup_mutex can't rely on the count
1002 * field not changing. However, if the count goes to zero, then only
1003 * cgroup_attach_task() can increment it again. Because a count of zero
1004 * means that no tasks are currently attached, therefore there is no
1005 * way a task attached to that cgroup can fork (the other way to
1006 * increment the count). So code holding cgroup_mutex can safely
1007 * assume that if the count is zero, it will stay zero. Similarly, if
1008 * a task holds cgroup_mutex on a cgroup with zero count, it
1009 * knows that the cgroup won't be removed, as cgroup_rmdir()
1010 * needs that mutex.
1011 *
1012 * A cgroup can only be deleted if both its 'count' of using tasks
1013 * is zero, and its list of 'children' cgroups is empty. Since all
1014 * tasks in the system use _some_ cgroup, and since there is always at
1015 * least one task in the system (init, pid == 1), therefore, root cgroup
1016 * always has either children cgroups and/or using tasks. So we don't
1017 * need a special hack to ensure that root cgroup cannot be deleted.
1018 *
1019 * P.S. One more locking exception. RCU is used to guard the
1020 * update of a tasks cgroup pointer by cgroup_attach_task()
1021 */
1022
1023 static int cgroup_populate_dir(struct cgroup *cgrp, unsigned long subsys_mask);
1024 static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1025 static const struct file_operations proc_cgroupstats_operations;
1026
1027 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1028 char *buf)
1029 {
1030 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1031 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
1032 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
1033 cft->ss->name, cft->name);
1034 else
1035 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1036 return buf;
1037 }
1038
1039 /**
1040 * cgroup_file_mode - deduce file mode of a control file
1041 * @cft: the control file in question
1042 *
1043 * returns cft->mode if ->mode is not 0
1044 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
1045 * returns S_IRUGO if it has only a read handler
1046 * returns S_IWUSR if it has only a write hander
1047 */
1048 static umode_t cgroup_file_mode(const struct cftype *cft)
1049 {
1050 umode_t mode = 0;
1051
1052 if (cft->mode)
1053 return cft->mode;
1054
1055 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1056 mode |= S_IRUGO;
1057
1058 if (cft->write_u64 || cft->write_s64 || cft->write)
1059 mode |= S_IWUSR;
1060
1061 return mode;
1062 }
1063
1064 static void cgroup_get(struct cgroup *cgrp)
1065 {
1066 WARN_ON_ONCE(cgroup_is_dead(cgrp));
1067 css_get(&cgrp->self);
1068 }
1069
1070 static bool cgroup_tryget(struct cgroup *cgrp)
1071 {
1072 return css_tryget(&cgrp->self);
1073 }
1074
1075 static void cgroup_put(struct cgroup *cgrp)
1076 {
1077 css_put(&cgrp->self);
1078 }
1079
1080 /**
1081 * cgroup_calc_child_subsys_mask - calculate child_subsys_mask
1082 * @cgrp: the target cgroup
1083 * @subtree_control: the new subtree_control mask to consider
1084 *
1085 * On the default hierarchy, a subsystem may request other subsystems to be
1086 * enabled together through its ->depends_on mask. In such cases, more
1087 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1088 *
1089 * This function calculates which subsystems need to be enabled if
1090 * @subtree_control is to be applied to @cgrp. The returned mask is always
1091 * a superset of @subtree_control and follows the usual hierarchy rules.
1092 */
1093 static unsigned long cgroup_calc_child_subsys_mask(struct cgroup *cgrp,
1094 unsigned long subtree_control)
1095 {
1096 struct cgroup *parent = cgroup_parent(cgrp);
1097 unsigned long cur_ss_mask = subtree_control;
1098 struct cgroup_subsys *ss;
1099 int ssid;
1100
1101 lockdep_assert_held(&cgroup_mutex);
1102
1103 if (!cgroup_on_dfl(cgrp))
1104 return cur_ss_mask;
1105
1106 while (true) {
1107 unsigned long new_ss_mask = cur_ss_mask;
1108
1109 for_each_subsys_which(ss, ssid, &cur_ss_mask)
1110 new_ss_mask |= ss->depends_on;
1111
1112 /*
1113 * Mask out subsystems which aren't available. This can
1114 * happen only if some depended-upon subsystems were bound
1115 * to non-default hierarchies.
1116 */
1117 if (parent)
1118 new_ss_mask &= parent->child_subsys_mask;
1119 else
1120 new_ss_mask &= cgrp->root->subsys_mask;
1121
1122 if (new_ss_mask == cur_ss_mask)
1123 break;
1124 cur_ss_mask = new_ss_mask;
1125 }
1126
1127 return cur_ss_mask;
1128 }
1129
1130 /**
1131 * cgroup_refresh_child_subsys_mask - update child_subsys_mask
1132 * @cgrp: the target cgroup
1133 *
1134 * Update @cgrp->child_subsys_mask according to the current
1135 * @cgrp->subtree_control using cgroup_calc_child_subsys_mask().
1136 */
1137 static void cgroup_refresh_child_subsys_mask(struct cgroup *cgrp)
1138 {
1139 cgrp->child_subsys_mask =
1140 cgroup_calc_child_subsys_mask(cgrp, cgrp->subtree_control);
1141 }
1142
1143 /**
1144 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1145 * @kn: the kernfs_node being serviced
1146 *
1147 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1148 * the method finishes if locking succeeded. Note that once this function
1149 * returns the cgroup returned by cgroup_kn_lock_live() may become
1150 * inaccessible any time. If the caller intends to continue to access the
1151 * cgroup, it should pin it before invoking this function.
1152 */
1153 static void cgroup_kn_unlock(struct kernfs_node *kn)
1154 {
1155 struct cgroup *cgrp;
1156
1157 if (kernfs_type(kn) == KERNFS_DIR)
1158 cgrp = kn->priv;
1159 else
1160 cgrp = kn->parent->priv;
1161
1162 mutex_unlock(&cgroup_mutex);
1163
1164 kernfs_unbreak_active_protection(kn);
1165 cgroup_put(cgrp);
1166 }
1167
1168 /**
1169 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1170 * @kn: the kernfs_node being serviced
1171 *
1172 * This helper is to be used by a cgroup kernfs method currently servicing
1173 * @kn. It breaks the active protection, performs cgroup locking and
1174 * verifies that the associated cgroup is alive. Returns the cgroup if
1175 * alive; otherwise, %NULL. A successful return should be undone by a
1176 * matching cgroup_kn_unlock() invocation.
1177 *
1178 * Any cgroup kernfs method implementation which requires locking the
1179 * associated cgroup should use this helper. It avoids nesting cgroup
1180 * locking under kernfs active protection and allows all kernfs operations
1181 * including self-removal.
1182 */
1183 static struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn)
1184 {
1185 struct cgroup *cgrp;
1186
1187 if (kernfs_type(kn) == KERNFS_DIR)
1188 cgrp = kn->priv;
1189 else
1190 cgrp = kn->parent->priv;
1191
1192 /*
1193 * We're gonna grab cgroup_mutex which nests outside kernfs
1194 * active_ref. cgroup liveliness check alone provides enough
1195 * protection against removal. Ensure @cgrp stays accessible and
1196 * break the active_ref protection.
1197 */
1198 if (!cgroup_tryget(cgrp))
1199 return NULL;
1200 kernfs_break_active_protection(kn);
1201
1202 mutex_lock(&cgroup_mutex);
1203
1204 if (!cgroup_is_dead(cgrp))
1205 return cgrp;
1206
1207 cgroup_kn_unlock(kn);
1208 return NULL;
1209 }
1210
1211 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1212 {
1213 char name[CGROUP_FILE_NAME_MAX];
1214
1215 lockdep_assert_held(&cgroup_mutex);
1216 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1217 }
1218
1219 /**
1220 * cgroup_clear_dir - remove subsys files in a cgroup directory
1221 * @cgrp: target cgroup
1222 * @subsys_mask: mask of the subsystem ids whose files should be removed
1223 */
1224 static void cgroup_clear_dir(struct cgroup *cgrp, unsigned long subsys_mask)
1225 {
1226 struct cgroup_subsys *ss;
1227 int i;
1228
1229 for_each_subsys(ss, i) {
1230 struct cftype *cfts;
1231
1232 if (!(subsys_mask & (1 << i)))
1233 continue;
1234 list_for_each_entry(cfts, &ss->cfts, node)
1235 cgroup_addrm_files(cgrp, cfts, false);
1236 }
1237 }
1238
1239 static int rebind_subsystems(struct cgroup_root *dst_root,
1240 unsigned long ss_mask)
1241 {
1242 struct cgroup_subsys *ss;
1243 unsigned long tmp_ss_mask;
1244 int ssid, i, ret;
1245
1246 lockdep_assert_held(&cgroup_mutex);
1247
1248 for_each_subsys_which(ss, ssid, &ss_mask) {
1249 /* if @ss has non-root csses attached to it, can't move */
1250 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)))
1251 return -EBUSY;
1252
1253 /* can't move between two non-dummy roots either */
1254 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1255 return -EBUSY;
1256 }
1257
1258 /* skip creating root files on dfl_root for inhibited subsystems */
1259 tmp_ss_mask = ss_mask;
1260 if (dst_root == &cgrp_dfl_root)
1261 tmp_ss_mask &= ~cgrp_dfl_root_inhibit_ss_mask;
1262
1263 ret = cgroup_populate_dir(&dst_root->cgrp, tmp_ss_mask);
1264 if (ret) {
1265 if (dst_root != &cgrp_dfl_root)
1266 return ret;
1267
1268 /*
1269 * Rebinding back to the default root is not allowed to
1270 * fail. Using both default and non-default roots should
1271 * be rare. Moving subsystems back and forth even more so.
1272 * Just warn about it and continue.
1273 */
1274 if (cgrp_dfl_root_visible) {
1275 pr_warn("failed to create files (%d) while rebinding 0x%lx to default root\n",
1276 ret, ss_mask);
1277 pr_warn("you may retry by moving them to a different hierarchy and unbinding\n");
1278 }
1279 }
1280
1281 /*
1282 * Nothing can fail from this point on. Remove files for the
1283 * removed subsystems and rebind each subsystem.
1284 */
1285 for_each_subsys_which(ss, ssid, &ss_mask)
1286 cgroup_clear_dir(&ss->root->cgrp, 1 << ssid);
1287
1288 for_each_subsys_which(ss, ssid, &ss_mask) {
1289 struct cgroup_root *src_root;
1290 struct cgroup_subsys_state *css;
1291 struct css_set *cset;
1292
1293 src_root = ss->root;
1294 css = cgroup_css(&src_root->cgrp, ss);
1295
1296 WARN_ON(!css || cgroup_css(&dst_root->cgrp, ss));
1297
1298 RCU_INIT_POINTER(src_root->cgrp.subsys[ssid], NULL);
1299 rcu_assign_pointer(dst_root->cgrp.subsys[ssid], css);
1300 ss->root = dst_root;
1301 css->cgroup = &dst_root->cgrp;
1302
1303 down_write(&css_set_rwsem);
1304 hash_for_each(css_set_table, i, cset, hlist)
1305 list_move_tail(&cset->e_cset_node[ss->id],
1306 &dst_root->cgrp.e_csets[ss->id]);
1307 up_write(&css_set_rwsem);
1308
1309 src_root->subsys_mask &= ~(1 << ssid);
1310 src_root->cgrp.subtree_control &= ~(1 << ssid);
1311 cgroup_refresh_child_subsys_mask(&src_root->cgrp);
1312
1313 /* default hierarchy doesn't enable controllers by default */
1314 dst_root->subsys_mask |= 1 << ssid;
1315 if (dst_root != &cgrp_dfl_root) {
1316 dst_root->cgrp.subtree_control |= 1 << ssid;
1317 cgroup_refresh_child_subsys_mask(&dst_root->cgrp);
1318 }
1319
1320 if (ss->bind)
1321 ss->bind(css);
1322 }
1323
1324 kernfs_activate(dst_root->cgrp.kn);
1325 return 0;
1326 }
1327
1328 static int cgroup_show_options(struct seq_file *seq,
1329 struct kernfs_root *kf_root)
1330 {
1331 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1332 struct cgroup_subsys *ss;
1333 int ssid;
1334
1335 for_each_subsys(ss, ssid)
1336 if (root->subsys_mask & (1 << ssid))
1337 seq_printf(seq, ",%s", ss->name);
1338 if (root->flags & CGRP_ROOT_NOPREFIX)
1339 seq_puts(seq, ",noprefix");
1340 if (root->flags & CGRP_ROOT_XATTR)
1341 seq_puts(seq, ",xattr");
1342
1343 spin_lock(&release_agent_path_lock);
1344 if (strlen(root->release_agent_path))
1345 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
1346 spin_unlock(&release_agent_path_lock);
1347
1348 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
1349 seq_puts(seq, ",clone_children");
1350 if (strlen(root->name))
1351 seq_printf(seq, ",name=%s", root->name);
1352 return 0;
1353 }
1354
1355 struct cgroup_sb_opts {
1356 unsigned long subsys_mask;
1357 unsigned int flags;
1358 char *release_agent;
1359 bool cpuset_clone_children;
1360 char *name;
1361 /* User explicitly requested empty subsystem */
1362 bool none;
1363 };
1364
1365 static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
1366 {
1367 char *token, *o = data;
1368 bool all_ss = false, one_ss = false;
1369 unsigned long mask = -1UL;
1370 struct cgroup_subsys *ss;
1371 int nr_opts = 0;
1372 int i;
1373
1374 #ifdef CONFIG_CPUSETS
1375 mask = ~(1U << cpuset_cgrp_id);
1376 #endif
1377
1378 memset(opts, 0, sizeof(*opts));
1379
1380 while ((token = strsep(&o, ",")) != NULL) {
1381 nr_opts++;
1382
1383 if (!*token)
1384 return -EINVAL;
1385 if (!strcmp(token, "none")) {
1386 /* Explicitly have no subsystems */
1387 opts->none = true;
1388 continue;
1389 }
1390 if (!strcmp(token, "all")) {
1391 /* Mutually exclusive option 'all' + subsystem name */
1392 if (one_ss)
1393 return -EINVAL;
1394 all_ss = true;
1395 continue;
1396 }
1397 if (!strcmp(token, "__DEVEL__sane_behavior")) {
1398 opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
1399 continue;
1400 }
1401 if (!strcmp(token, "noprefix")) {
1402 opts->flags |= CGRP_ROOT_NOPREFIX;
1403 continue;
1404 }
1405 if (!strcmp(token, "clone_children")) {
1406 opts->cpuset_clone_children = true;
1407 continue;
1408 }
1409 if (!strcmp(token, "xattr")) {
1410 opts->flags |= CGRP_ROOT_XATTR;
1411 continue;
1412 }
1413 if (!strncmp(token, "release_agent=", 14)) {
1414 /* Specifying two release agents is forbidden */
1415 if (opts->release_agent)
1416 return -EINVAL;
1417 opts->release_agent =
1418 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
1419 if (!opts->release_agent)
1420 return -ENOMEM;
1421 continue;
1422 }
1423 if (!strncmp(token, "name=", 5)) {
1424 const char *name = token + 5;
1425 /* Can't specify an empty name */
1426 if (!strlen(name))
1427 return -EINVAL;
1428 /* Must match [\w.-]+ */
1429 for (i = 0; i < strlen(name); i++) {
1430 char c = name[i];
1431 if (isalnum(c))
1432 continue;
1433 if ((c == '.') || (c == '-') || (c == '_'))
1434 continue;
1435 return -EINVAL;
1436 }
1437 /* Specifying two names is forbidden */
1438 if (opts->name)
1439 return -EINVAL;
1440 opts->name = kstrndup(name,
1441 MAX_CGROUP_ROOT_NAMELEN - 1,
1442 GFP_KERNEL);
1443 if (!opts->name)
1444 return -ENOMEM;
1445
1446 continue;
1447 }
1448
1449 for_each_subsys(ss, i) {
1450 if (strcmp(token, ss->name))
1451 continue;
1452 if (ss->disabled)
1453 continue;
1454
1455 /* Mutually exclusive option 'all' + subsystem name */
1456 if (all_ss)
1457 return -EINVAL;
1458 opts->subsys_mask |= (1 << i);
1459 one_ss = true;
1460
1461 break;
1462 }
1463 if (i == CGROUP_SUBSYS_COUNT)
1464 return -ENOENT;
1465 }
1466
1467 if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1468 pr_warn("sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
1469 if (nr_opts != 1) {
1470 pr_err("sane_behavior: no other mount options allowed\n");
1471 return -EINVAL;
1472 }
1473 return 0;
1474 }
1475
1476 /*
1477 * If the 'all' option was specified select all the subsystems,
1478 * otherwise if 'none', 'name=' and a subsystem name options were
1479 * not specified, let's default to 'all'
1480 */
1481 if (all_ss || (!one_ss && !opts->none && !opts->name))
1482 for_each_subsys(ss, i)
1483 if (!ss->disabled)
1484 opts->subsys_mask |= (1 << i);
1485
1486 /*
1487 * We either have to specify by name or by subsystems. (So all
1488 * empty hierarchies must have a name).
1489 */
1490 if (!opts->subsys_mask && !opts->name)
1491 return -EINVAL;
1492
1493 /*
1494 * Option noprefix was introduced just for backward compatibility
1495 * with the old cpuset, so we allow noprefix only if mounting just
1496 * the cpuset subsystem.
1497 */
1498 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
1499 return -EINVAL;
1500
1501 /* Can't specify "none" and some subsystems */
1502 if (opts->subsys_mask && opts->none)
1503 return -EINVAL;
1504
1505 return 0;
1506 }
1507
1508 static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
1509 {
1510 int ret = 0;
1511 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1512 struct cgroup_sb_opts opts;
1513 unsigned long added_mask, removed_mask;
1514
1515 if (root == &cgrp_dfl_root) {
1516 pr_err("remount is not allowed\n");
1517 return -EINVAL;
1518 }
1519
1520 mutex_lock(&cgroup_mutex);
1521
1522 /* See what subsystems are wanted */
1523 ret = parse_cgroupfs_options(data, &opts);
1524 if (ret)
1525 goto out_unlock;
1526
1527 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
1528 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
1529 task_tgid_nr(current), current->comm);
1530
1531 added_mask = opts.subsys_mask & ~root->subsys_mask;
1532 removed_mask = root->subsys_mask & ~opts.subsys_mask;
1533
1534 /* Don't allow flags or name to change at remount */
1535 if ((opts.flags ^ root->flags) ||
1536 (opts.name && strcmp(opts.name, root->name))) {
1537 pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n",
1538 opts.flags, opts.name ?: "", root->flags, root->name);
1539 ret = -EINVAL;
1540 goto out_unlock;
1541 }
1542
1543 /* remounting is not allowed for populated hierarchies */
1544 if (!list_empty(&root->cgrp.self.children)) {
1545 ret = -EBUSY;
1546 goto out_unlock;
1547 }
1548
1549 ret = rebind_subsystems(root, added_mask);
1550 if (ret)
1551 goto out_unlock;
1552
1553 rebind_subsystems(&cgrp_dfl_root, removed_mask);
1554
1555 if (opts.release_agent) {
1556 spin_lock(&release_agent_path_lock);
1557 strcpy(root->release_agent_path, opts.release_agent);
1558 spin_unlock(&release_agent_path_lock);
1559 }
1560 out_unlock:
1561 kfree(opts.release_agent);
1562 kfree(opts.name);
1563 mutex_unlock(&cgroup_mutex);
1564 return ret;
1565 }
1566
1567 /*
1568 * To reduce the fork() overhead for systems that are not actually using
1569 * their cgroups capability, we don't maintain the lists running through
1570 * each css_set to its tasks until we see the list actually used - in other
1571 * words after the first mount.
1572 */
1573 static bool use_task_css_set_links __read_mostly;
1574
1575 static void cgroup_enable_task_cg_lists(void)
1576 {
1577 struct task_struct *p, *g;
1578
1579 down_write(&css_set_rwsem);
1580
1581 if (use_task_css_set_links)
1582 goto out_unlock;
1583
1584 use_task_css_set_links = true;
1585
1586 /*
1587 * We need tasklist_lock because RCU is not safe against
1588 * while_each_thread(). Besides, a forking task that has passed
1589 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1590 * is not guaranteed to have its child immediately visible in the
1591 * tasklist if we walk through it with RCU.
1592 */
1593 read_lock(&tasklist_lock);
1594 do_each_thread(g, p) {
1595 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1596 task_css_set(p) != &init_css_set);
1597
1598 /*
1599 * We should check if the process is exiting, otherwise
1600 * it will race with cgroup_exit() in that the list
1601 * entry won't be deleted though the process has exited.
1602 * Do it while holding siglock so that we don't end up
1603 * racing against cgroup_exit().
1604 */
1605 spin_lock_irq(&p->sighand->siglock);
1606 if (!(p->flags & PF_EXITING)) {
1607 struct css_set *cset = task_css_set(p);
1608
1609 list_add(&p->cg_list, &cset->tasks);
1610 get_css_set(cset);
1611 }
1612 spin_unlock_irq(&p->sighand->siglock);
1613 } while_each_thread(g, p);
1614 read_unlock(&tasklist_lock);
1615 out_unlock:
1616 up_write(&css_set_rwsem);
1617 }
1618
1619 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1620 {
1621 struct cgroup_subsys *ss;
1622 int ssid;
1623
1624 INIT_LIST_HEAD(&cgrp->self.sibling);
1625 INIT_LIST_HEAD(&cgrp->self.children);
1626 INIT_LIST_HEAD(&cgrp->cset_links);
1627 INIT_LIST_HEAD(&cgrp->pidlists);
1628 mutex_init(&cgrp->pidlist_mutex);
1629 cgrp->self.cgroup = cgrp;
1630 cgrp->self.flags |= CSS_ONLINE;
1631
1632 for_each_subsys(ss, ssid)
1633 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
1634
1635 init_waitqueue_head(&cgrp->offline_waitq);
1636 INIT_WORK(&cgrp->release_agent_work, cgroup_release_agent);
1637 }
1638
1639 static void init_cgroup_root(struct cgroup_root *root,
1640 struct cgroup_sb_opts *opts)
1641 {
1642 struct cgroup *cgrp = &root->cgrp;
1643
1644 INIT_LIST_HEAD(&root->root_list);
1645 atomic_set(&root->nr_cgrps, 1);
1646 cgrp->root = root;
1647 init_cgroup_housekeeping(cgrp);
1648 idr_init(&root->cgroup_idr);
1649
1650 root->flags = opts->flags;
1651 if (opts->release_agent)
1652 strcpy(root->release_agent_path, opts->release_agent);
1653 if (opts->name)
1654 strcpy(root->name, opts->name);
1655 if (opts->cpuset_clone_children)
1656 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
1657 }
1658
1659 static int cgroup_setup_root(struct cgroup_root *root, unsigned long ss_mask)
1660 {
1661 LIST_HEAD(tmp_links);
1662 struct cgroup *root_cgrp = &root->cgrp;
1663 struct cftype *base_files;
1664 struct css_set *cset;
1665 int i, ret;
1666
1667 lockdep_assert_held(&cgroup_mutex);
1668
1669 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_NOWAIT);
1670 if (ret < 0)
1671 goto out;
1672 root_cgrp->id = ret;
1673
1674 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 0,
1675 GFP_KERNEL);
1676 if (ret)
1677 goto out;
1678
1679 /*
1680 * We're accessing css_set_count without locking css_set_rwsem here,
1681 * but that's OK - it can only be increased by someone holding
1682 * cgroup_lock, and that's us. The worst that can happen is that we
1683 * have some link structures left over
1684 */
1685 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
1686 if (ret)
1687 goto cancel_ref;
1688
1689 ret = cgroup_init_root_id(root);
1690 if (ret)
1691 goto cancel_ref;
1692
1693 root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops,
1694 KERNFS_ROOT_CREATE_DEACTIVATED,
1695 root_cgrp);
1696 if (IS_ERR(root->kf_root)) {
1697 ret = PTR_ERR(root->kf_root);
1698 goto exit_root_id;
1699 }
1700 root_cgrp->kn = root->kf_root->kn;
1701
1702 if (root == &cgrp_dfl_root)
1703 base_files = cgroup_dfl_base_files;
1704 else
1705 base_files = cgroup_legacy_base_files;
1706
1707 ret = cgroup_addrm_files(root_cgrp, base_files, true);
1708 if (ret)
1709 goto destroy_root;
1710
1711 ret = rebind_subsystems(root, ss_mask);
1712 if (ret)
1713 goto destroy_root;
1714
1715 /*
1716 * There must be no failure case after here, since rebinding takes
1717 * care of subsystems' refcounts, which are explicitly dropped in
1718 * the failure exit path.
1719 */
1720 list_add(&root->root_list, &cgroup_roots);
1721 cgroup_root_count++;
1722
1723 /*
1724 * Link the root cgroup in this hierarchy into all the css_set
1725 * objects.
1726 */
1727 down_write(&css_set_rwsem);
1728 hash_for_each(css_set_table, i, cset, hlist)
1729 link_css_set(&tmp_links, cset, root_cgrp);
1730 up_write(&css_set_rwsem);
1731
1732 BUG_ON(!list_empty(&root_cgrp->self.children));
1733 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
1734
1735 kernfs_activate(root_cgrp->kn);
1736 ret = 0;
1737 goto out;
1738
1739 destroy_root:
1740 kernfs_destroy_root(root->kf_root);
1741 root->kf_root = NULL;
1742 exit_root_id:
1743 cgroup_exit_root_id(root);
1744 cancel_ref:
1745 percpu_ref_exit(&root_cgrp->self.refcnt);
1746 out:
1747 free_cgrp_cset_links(&tmp_links);
1748 return ret;
1749 }
1750
1751 static struct dentry *cgroup_mount(struct file_system_type *fs_type,
1752 int flags, const char *unused_dev_name,
1753 void *data)
1754 {
1755 struct super_block *pinned_sb = NULL;
1756 struct cgroup_subsys *ss;
1757 struct cgroup_root *root;
1758 struct cgroup_sb_opts opts;
1759 struct dentry *dentry;
1760 int ret;
1761 int i;
1762 bool new_sb;
1763
1764 /*
1765 * The first time anyone tries to mount a cgroup, enable the list
1766 * linking each css_set to its tasks and fix up all existing tasks.
1767 */
1768 if (!use_task_css_set_links)
1769 cgroup_enable_task_cg_lists();
1770
1771 mutex_lock(&cgroup_mutex);
1772
1773 /* First find the desired set of subsystems */
1774 ret = parse_cgroupfs_options(data, &opts);
1775 if (ret)
1776 goto out_unlock;
1777
1778 /* look for a matching existing root */
1779 if (opts.flags & CGRP_ROOT_SANE_BEHAVIOR) {
1780 cgrp_dfl_root_visible = true;
1781 root = &cgrp_dfl_root;
1782 cgroup_get(&root->cgrp);
1783 ret = 0;
1784 goto out_unlock;
1785 }
1786
1787 /*
1788 * Destruction of cgroup root is asynchronous, so subsystems may
1789 * still be dying after the previous unmount. Let's drain the
1790 * dying subsystems. We just need to ensure that the ones
1791 * unmounted previously finish dying and don't care about new ones
1792 * starting. Testing ref liveliness is good enough.
1793 */
1794 for_each_subsys(ss, i) {
1795 if (!(opts.subsys_mask & (1 << i)) ||
1796 ss->root == &cgrp_dfl_root)
1797 continue;
1798
1799 if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) {
1800 mutex_unlock(&cgroup_mutex);
1801 msleep(10);
1802 ret = restart_syscall();
1803 goto out_free;
1804 }
1805 cgroup_put(&ss->root->cgrp);
1806 }
1807
1808 for_each_root(root) {
1809 bool name_match = false;
1810
1811 if (root == &cgrp_dfl_root)
1812 continue;
1813
1814 /*
1815 * If we asked for a name then it must match. Also, if
1816 * name matches but sybsys_mask doesn't, we should fail.
1817 * Remember whether name matched.
1818 */
1819 if (opts.name) {
1820 if (strcmp(opts.name, root->name))
1821 continue;
1822 name_match = true;
1823 }
1824
1825 /*
1826 * If we asked for subsystems (or explicitly for no
1827 * subsystems) then they must match.
1828 */
1829 if ((opts.subsys_mask || opts.none) &&
1830 (opts.subsys_mask != root->subsys_mask)) {
1831 if (!name_match)
1832 continue;
1833 ret = -EBUSY;
1834 goto out_unlock;
1835 }
1836
1837 if (root->flags ^ opts.flags)
1838 pr_warn("new mount options do not match the existing superblock, will be ignored\n");
1839
1840 /*
1841 * We want to reuse @root whose lifetime is governed by its
1842 * ->cgrp. Let's check whether @root is alive and keep it
1843 * that way. As cgroup_kill_sb() can happen anytime, we
1844 * want to block it by pinning the sb so that @root doesn't
1845 * get killed before mount is complete.
1846 *
1847 * With the sb pinned, tryget_live can reliably indicate
1848 * whether @root can be reused. If it's being killed,
1849 * drain it. We can use wait_queue for the wait but this
1850 * path is super cold. Let's just sleep a bit and retry.
1851 */
1852 pinned_sb = kernfs_pin_sb(root->kf_root, NULL);
1853 if (IS_ERR(pinned_sb) ||
1854 !percpu_ref_tryget_live(&root->cgrp.self.refcnt)) {
1855 mutex_unlock(&cgroup_mutex);
1856 if (!IS_ERR_OR_NULL(pinned_sb))
1857 deactivate_super(pinned_sb);
1858 msleep(10);
1859 ret = restart_syscall();
1860 goto out_free;
1861 }
1862
1863 ret = 0;
1864 goto out_unlock;
1865 }
1866
1867 /*
1868 * No such thing, create a new one. name= matching without subsys
1869 * specification is allowed for already existing hierarchies but we
1870 * can't create new one without subsys specification.
1871 */
1872 if (!opts.subsys_mask && !opts.none) {
1873 ret = -EINVAL;
1874 goto out_unlock;
1875 }
1876
1877 root = kzalloc(sizeof(*root), GFP_KERNEL);
1878 if (!root) {
1879 ret = -ENOMEM;
1880 goto out_unlock;
1881 }
1882
1883 init_cgroup_root(root, &opts);
1884
1885 ret = cgroup_setup_root(root, opts.subsys_mask);
1886 if (ret)
1887 cgroup_free_root(root);
1888
1889 out_unlock:
1890 mutex_unlock(&cgroup_mutex);
1891 out_free:
1892 kfree(opts.release_agent);
1893 kfree(opts.name);
1894
1895 if (ret)
1896 return ERR_PTR(ret);
1897
1898 dentry = kernfs_mount(fs_type, flags, root->kf_root,
1899 CGROUP_SUPER_MAGIC, &new_sb);
1900 if (IS_ERR(dentry) || !new_sb)
1901 cgroup_put(&root->cgrp);
1902
1903 /*
1904 * If @pinned_sb, we're reusing an existing root and holding an
1905 * extra ref on its sb. Mount is complete. Put the extra ref.
1906 */
1907 if (pinned_sb) {
1908 WARN_ON(new_sb);
1909 deactivate_super(pinned_sb);
1910 }
1911
1912 return dentry;
1913 }
1914
1915 static void cgroup_kill_sb(struct super_block *sb)
1916 {
1917 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
1918 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1919
1920 /*
1921 * If @root doesn't have any mounts or children, start killing it.
1922 * This prevents new mounts by disabling percpu_ref_tryget_live().
1923 * cgroup_mount() may wait for @root's release.
1924 *
1925 * And don't kill the default root.
1926 */
1927 if (!list_empty(&root->cgrp.self.children) ||
1928 root == &cgrp_dfl_root)
1929 cgroup_put(&root->cgrp);
1930 else
1931 percpu_ref_kill(&root->cgrp.self.refcnt);
1932
1933 kernfs_kill_sb(sb);
1934 }
1935
1936 static struct file_system_type cgroup_fs_type = {
1937 .name = "cgroup",
1938 .mount = cgroup_mount,
1939 .kill_sb = cgroup_kill_sb,
1940 };
1941
1942 static struct kobject *cgroup_kobj;
1943
1944 /**
1945 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
1946 * @task: target task
1947 * @buf: the buffer to write the path into
1948 * @buflen: the length of the buffer
1949 *
1950 * Determine @task's cgroup on the first (the one with the lowest non-zero
1951 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
1952 * function grabs cgroup_mutex and shouldn't be used inside locks used by
1953 * cgroup controller callbacks.
1954 *
1955 * Return value is the same as kernfs_path().
1956 */
1957 char *task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
1958 {
1959 struct cgroup_root *root;
1960 struct cgroup *cgrp;
1961 int hierarchy_id = 1;
1962 char *path = NULL;
1963
1964 mutex_lock(&cgroup_mutex);
1965 down_read(&css_set_rwsem);
1966
1967 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
1968
1969 if (root) {
1970 cgrp = task_cgroup_from_root(task, root);
1971 path = cgroup_path(cgrp, buf, buflen);
1972 } else {
1973 /* if no hierarchy exists, everyone is in "/" */
1974 if (strlcpy(buf, "/", buflen) < buflen)
1975 path = buf;
1976 }
1977
1978 up_read(&css_set_rwsem);
1979 mutex_unlock(&cgroup_mutex);
1980 return path;
1981 }
1982 EXPORT_SYMBOL_GPL(task_cgroup_path);
1983
1984 /* used to track tasks and other necessary states during migration */
1985 struct cgroup_taskset {
1986 /* the src and dst cset list running through cset->mg_node */
1987 struct list_head src_csets;
1988 struct list_head dst_csets;
1989
1990 /*
1991 * Fields for cgroup_taskset_*() iteration.
1992 *
1993 * Before migration is committed, the target migration tasks are on
1994 * ->mg_tasks of the csets on ->src_csets. After, on ->mg_tasks of
1995 * the csets on ->dst_csets. ->csets point to either ->src_csets
1996 * or ->dst_csets depending on whether migration is committed.
1997 *
1998 * ->cur_csets and ->cur_task point to the current task position
1999 * during iteration.
2000 */
2001 struct list_head *csets;
2002 struct css_set *cur_cset;
2003 struct task_struct *cur_task;
2004 };
2005
2006 /**
2007 * cgroup_taskset_first - reset taskset and return the first task
2008 * @tset: taskset of interest
2009 *
2010 * @tset iteration is initialized and the first task is returned.
2011 */
2012 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
2013 {
2014 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2015 tset->cur_task = NULL;
2016
2017 return cgroup_taskset_next(tset);
2018 }
2019
2020 /**
2021 * cgroup_taskset_next - iterate to the next task in taskset
2022 * @tset: taskset of interest
2023 *
2024 * Return the next task in @tset. Iteration must have been initialized
2025 * with cgroup_taskset_first().
2026 */
2027 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
2028 {
2029 struct css_set *cset = tset->cur_cset;
2030 struct task_struct *task = tset->cur_task;
2031
2032 while (&cset->mg_node != tset->csets) {
2033 if (!task)
2034 task = list_first_entry(&cset->mg_tasks,
2035 struct task_struct, cg_list);
2036 else
2037 task = list_next_entry(task, cg_list);
2038
2039 if (&task->cg_list != &cset->mg_tasks) {
2040 tset->cur_cset = cset;
2041 tset->cur_task = task;
2042 return task;
2043 }
2044
2045 cset = list_next_entry(cset, mg_node);
2046 task = NULL;
2047 }
2048
2049 return NULL;
2050 }
2051
2052 /**
2053 * cgroup_task_migrate - move a task from one cgroup to another.
2054 * @old_cgrp: the cgroup @tsk is being migrated from
2055 * @tsk: the task being migrated
2056 * @new_cset: the new css_set @tsk is being attached to
2057 *
2058 * Must be called with cgroup_mutex, threadgroup and css_set_rwsem locked.
2059 */
2060 static void cgroup_task_migrate(struct cgroup *old_cgrp,
2061 struct task_struct *tsk,
2062 struct css_set *new_cset)
2063 {
2064 struct css_set *old_cset;
2065
2066 lockdep_assert_held(&cgroup_mutex);
2067 lockdep_assert_held(&css_set_rwsem);
2068
2069 /*
2070 * We are synchronized through cgroup_threadgroup_rwsem against
2071 * PF_EXITING setting such that we can't race against cgroup_exit()
2072 * changing the css_set to init_css_set and dropping the old one.
2073 */
2074 WARN_ON_ONCE(tsk->flags & PF_EXITING);
2075 old_cset = task_css_set(tsk);
2076
2077 get_css_set(new_cset);
2078 rcu_assign_pointer(tsk->cgroups, new_cset);
2079
2080 /*
2081 * Use move_tail so that cgroup_taskset_first() still returns the
2082 * leader after migration. This works because cgroup_migrate()
2083 * ensures that the dst_cset of the leader is the first on the
2084 * tset's dst_csets list.
2085 */
2086 list_move_tail(&tsk->cg_list, &new_cset->mg_tasks);
2087
2088 /*
2089 * We just gained a reference on old_cset by taking it from the
2090 * task. As trading it for new_cset is protected by cgroup_mutex,
2091 * we're safe to drop it here; it will be freed under RCU.
2092 */
2093 put_css_set_locked(old_cset);
2094 }
2095
2096 /**
2097 * cgroup_migrate_finish - cleanup after attach
2098 * @preloaded_csets: list of preloaded css_sets
2099 *
2100 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2101 * those functions for details.
2102 */
2103 static void cgroup_migrate_finish(struct list_head *preloaded_csets)
2104 {
2105 struct css_set *cset, *tmp_cset;
2106
2107 lockdep_assert_held(&cgroup_mutex);
2108
2109 down_write(&css_set_rwsem);
2110 list_for_each_entry_safe(cset, tmp_cset, preloaded_csets, mg_preload_node) {
2111 cset->mg_src_cgrp = NULL;
2112 cset->mg_dst_cset = NULL;
2113 list_del_init(&cset->mg_preload_node);
2114 put_css_set_locked(cset);
2115 }
2116 up_write(&css_set_rwsem);
2117 }
2118
2119 /**
2120 * cgroup_migrate_add_src - add a migration source css_set
2121 * @src_cset: the source css_set to add
2122 * @dst_cgrp: the destination cgroup
2123 * @preloaded_csets: list of preloaded css_sets
2124 *
2125 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2126 * @src_cset and add it to @preloaded_csets, which should later be cleaned
2127 * up by cgroup_migrate_finish().
2128 *
2129 * This function may be called without holding cgroup_threadgroup_rwsem
2130 * even if the target is a process. Threads may be created and destroyed
2131 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2132 * into play and the preloaded css_sets are guaranteed to cover all
2133 * migrations.
2134 */
2135 static void cgroup_migrate_add_src(struct css_set *src_cset,
2136 struct cgroup *dst_cgrp,
2137 struct list_head *preloaded_csets)
2138 {
2139 struct cgroup *src_cgrp;
2140
2141 lockdep_assert_held(&cgroup_mutex);
2142 lockdep_assert_held(&css_set_rwsem);
2143
2144 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2145
2146 if (!list_empty(&src_cset->mg_preload_node))
2147 return;
2148
2149 WARN_ON(src_cset->mg_src_cgrp);
2150 WARN_ON(!list_empty(&src_cset->mg_tasks));
2151 WARN_ON(!list_empty(&src_cset->mg_node));
2152
2153 src_cset->mg_src_cgrp = src_cgrp;
2154 get_css_set(src_cset);
2155 list_add(&src_cset->mg_preload_node, preloaded_csets);
2156 }
2157
2158 /**
2159 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2160 * @dst_cgrp: the destination cgroup (may be %NULL)
2161 * @preloaded_csets: list of preloaded source css_sets
2162 *
2163 * Tasks are about to be moved to @dst_cgrp and all the source css_sets
2164 * have been preloaded to @preloaded_csets. This function looks up and
2165 * pins all destination css_sets, links each to its source, and append them
2166 * to @preloaded_csets. If @dst_cgrp is %NULL, the destination of each
2167 * source css_set is assumed to be its cgroup on the default hierarchy.
2168 *
2169 * This function must be called after cgroup_migrate_add_src() has been
2170 * called on each migration source css_set. After migration is performed
2171 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2172 * @preloaded_csets.
2173 */
2174 static int cgroup_migrate_prepare_dst(struct cgroup *dst_cgrp,
2175 struct list_head *preloaded_csets)
2176 {
2177 LIST_HEAD(csets);
2178 struct css_set *src_cset, *tmp_cset;
2179
2180 lockdep_assert_held(&cgroup_mutex);
2181
2182 /*
2183 * Except for the root, child_subsys_mask must be zero for a cgroup
2184 * with tasks so that child cgroups don't compete against tasks.
2185 */
2186 if (dst_cgrp && cgroup_on_dfl(dst_cgrp) && cgroup_parent(dst_cgrp) &&
2187 dst_cgrp->child_subsys_mask)
2188 return -EBUSY;
2189
2190 /* look up the dst cset for each src cset and link it to src */
2191 list_for_each_entry_safe(src_cset, tmp_cset, preloaded_csets, mg_preload_node) {
2192 struct css_set *dst_cset;
2193
2194 dst_cset = find_css_set(src_cset,
2195 dst_cgrp ?: src_cset->dfl_cgrp);
2196 if (!dst_cset)
2197 goto err;
2198
2199 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2200
2201 /*
2202 * If src cset equals dst, it's noop. Drop the src.
2203 * cgroup_migrate() will skip the cset too. Note that we
2204 * can't handle src == dst as some nodes are used by both.
2205 */
2206 if (src_cset == dst_cset) {
2207 src_cset->mg_src_cgrp = NULL;
2208 list_del_init(&src_cset->mg_preload_node);
2209 put_css_set(src_cset);
2210 put_css_set(dst_cset);
2211 continue;
2212 }
2213
2214 src_cset->mg_dst_cset = dst_cset;
2215
2216 if (list_empty(&dst_cset->mg_preload_node))
2217 list_add(&dst_cset->mg_preload_node, &csets);
2218 else
2219 put_css_set(dst_cset);
2220 }
2221
2222 list_splice_tail(&csets, preloaded_csets);
2223 return 0;
2224 err:
2225 cgroup_migrate_finish(&csets);
2226 return -ENOMEM;
2227 }
2228
2229 /**
2230 * cgroup_migrate - migrate a process or task to a cgroup
2231 * @cgrp: the destination cgroup
2232 * @leader: the leader of the process or the task to migrate
2233 * @threadgroup: whether @leader points to the whole process or a single task
2234 *
2235 * Migrate a process or task denoted by @leader to @cgrp. If migrating a
2236 * process, the caller must be holding cgroup_threadgroup_rwsem. The
2237 * caller is also responsible for invoking cgroup_migrate_add_src() and
2238 * cgroup_migrate_prepare_dst() on the targets before invoking this
2239 * function and following up with cgroup_migrate_finish().
2240 *
2241 * As long as a controller's ->can_attach() doesn't fail, this function is
2242 * guaranteed to succeed. This means that, excluding ->can_attach()
2243 * failure, when migrating multiple targets, the success or failure can be
2244 * decided for all targets by invoking group_migrate_prepare_dst() before
2245 * actually starting migrating.
2246 */
2247 static int cgroup_migrate(struct cgroup *cgrp, struct task_struct *leader,
2248 bool threadgroup)
2249 {
2250 struct cgroup_taskset tset = {
2251 .src_csets = LIST_HEAD_INIT(tset.src_csets),
2252 .dst_csets = LIST_HEAD_INIT(tset.dst_csets),
2253 .csets = &tset.src_csets,
2254 };
2255 struct cgroup_subsys_state *css, *failed_css = NULL;
2256 struct css_set *cset, *tmp_cset;
2257 struct task_struct *task, *tmp_task;
2258 int i, ret;
2259
2260 /*
2261 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2262 * already PF_EXITING could be freed from underneath us unless we
2263 * take an rcu_read_lock.
2264 */
2265 down_write(&css_set_rwsem);
2266 rcu_read_lock();
2267 task = leader;
2268 do {
2269 /* @task either already exited or can't exit until the end */
2270 if (task->flags & PF_EXITING)
2271 goto next;
2272
2273 /* leave @task alone if post_fork() hasn't linked it yet */
2274 if (list_empty(&task->cg_list))
2275 goto next;
2276
2277 cset = task_css_set(task);
2278 if (!cset->mg_src_cgrp)
2279 goto next;
2280
2281 /*
2282 * cgroup_taskset_first() must always return the leader.
2283 * Take care to avoid disturbing the ordering.
2284 */
2285 list_move_tail(&task->cg_list, &cset->mg_tasks);
2286 if (list_empty(&cset->mg_node))
2287 list_add_tail(&cset->mg_node, &tset.src_csets);
2288 if (list_empty(&cset->mg_dst_cset->mg_node))
2289 list_move_tail(&cset->mg_dst_cset->mg_node,
2290 &tset.dst_csets);
2291 next:
2292 if (!threadgroup)
2293 break;
2294 } while_each_thread(leader, task);
2295 rcu_read_unlock();
2296 up_write(&css_set_rwsem);
2297
2298 /* methods shouldn't be called if no task is actually migrating */
2299 if (list_empty(&tset.src_csets))
2300 return 0;
2301
2302 /* check that we can legitimately attach to the cgroup */
2303 for_each_e_css(css, i, cgrp) {
2304 if (css->ss->can_attach) {
2305 ret = css->ss->can_attach(css, &tset);
2306 if (ret) {
2307 failed_css = css;
2308 goto out_cancel_attach;
2309 }
2310 }
2311 }
2312
2313 /*
2314 * Now that we're guaranteed success, proceed to move all tasks to
2315 * the new cgroup. There are no failure cases after here, so this
2316 * is the commit point.
2317 */
2318 down_write(&css_set_rwsem);
2319 list_for_each_entry(cset, &tset.src_csets, mg_node) {
2320 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list)
2321 cgroup_task_migrate(cset->mg_src_cgrp, task,
2322 cset->mg_dst_cset);
2323 }
2324 up_write(&css_set_rwsem);
2325
2326 /*
2327 * Migration is committed, all target tasks are now on dst_csets.
2328 * Nothing is sensitive to fork() after this point. Notify
2329 * controllers that migration is complete.
2330 */
2331 tset.csets = &tset.dst_csets;
2332
2333 for_each_e_css(css, i, cgrp)
2334 if (css->ss->attach)
2335 css->ss->attach(css, &tset);
2336
2337 ret = 0;
2338 goto out_release_tset;
2339
2340 out_cancel_attach:
2341 for_each_e_css(css, i, cgrp) {
2342 if (css == failed_css)
2343 break;
2344 if (css->ss->cancel_attach)
2345 css->ss->cancel_attach(css, &tset);
2346 }
2347 out_release_tset:
2348 down_write(&css_set_rwsem);
2349 list_splice_init(&tset.dst_csets, &tset.src_csets);
2350 list_for_each_entry_safe(cset, tmp_cset, &tset.src_csets, mg_node) {
2351 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2352 list_del_init(&cset->mg_node);
2353 }
2354 up_write(&css_set_rwsem);
2355 return ret;
2356 }
2357
2358 /**
2359 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2360 * @dst_cgrp: the cgroup to attach to
2361 * @leader: the task or the leader of the threadgroup to be attached
2362 * @threadgroup: attach the whole threadgroup?
2363 *
2364 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2365 */
2366 static int cgroup_attach_task(struct cgroup *dst_cgrp,
2367 struct task_struct *leader, bool threadgroup)
2368 {
2369 LIST_HEAD(preloaded_csets);
2370 struct task_struct *task;
2371 int ret;
2372
2373 /* look up all src csets */
2374 down_read(&css_set_rwsem);
2375 rcu_read_lock();
2376 task = leader;
2377 do {
2378 cgroup_migrate_add_src(task_css_set(task), dst_cgrp,
2379 &preloaded_csets);
2380 if (!threadgroup)
2381 break;
2382 } while_each_thread(leader, task);
2383 rcu_read_unlock();
2384 up_read(&css_set_rwsem);
2385
2386 /* prepare dst csets and commit */
2387 ret = cgroup_migrate_prepare_dst(dst_cgrp, &preloaded_csets);
2388 if (!ret)
2389 ret = cgroup_migrate(dst_cgrp, leader, threadgroup);
2390
2391 cgroup_migrate_finish(&preloaded_csets);
2392 return ret;
2393 }
2394
2395 static int cgroup_procs_write_permission(struct task_struct *task)
2396 {
2397 const struct cred *cred = current_cred();
2398 const struct cred *tcred = get_task_cred(task);
2399 int ret = 0;
2400
2401 /*
2402 * even if we're attaching all tasks in the thread group, we only
2403 * need to check permissions on one of them.
2404 */
2405 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2406 !uid_eq(cred->euid, tcred->uid) &&
2407 !uid_eq(cred->euid, tcred->suid))
2408 ret = -EACCES;
2409
2410 put_cred(tcred);
2411 return ret;
2412 }
2413
2414 /*
2415 * Find the task_struct of the task to attach by vpid and pass it along to the
2416 * function to attach either it or all tasks in its threadgroup. Will lock
2417 * cgroup_mutex and threadgroup.
2418 */
2419 static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
2420 size_t nbytes, loff_t off, bool threadgroup)
2421 {
2422 struct task_struct *tsk;
2423 struct cgroup *cgrp;
2424 pid_t pid;
2425 int ret;
2426
2427 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2428 return -EINVAL;
2429
2430 cgrp = cgroup_kn_lock_live(of->kn);
2431 if (!cgrp)
2432 return -ENODEV;
2433
2434 percpu_down_write(&cgroup_threadgroup_rwsem);
2435 rcu_read_lock();
2436 if (pid) {
2437 tsk = find_task_by_vpid(pid);
2438 if (!tsk) {
2439 ret = -ESRCH;
2440 goto out_unlock_rcu;
2441 }
2442 } else {
2443 tsk = current;
2444 }
2445
2446 if (threadgroup)
2447 tsk = tsk->group_leader;
2448
2449 /*
2450 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
2451 * trapped in a cpuset, or RT worker may be born in a cgroup
2452 * with no rt_runtime allocated. Just say no.
2453 */
2454 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
2455 ret = -EINVAL;
2456 goto out_unlock_rcu;
2457 }
2458
2459 get_task_struct(tsk);
2460 rcu_read_unlock();
2461
2462 ret = cgroup_procs_write_permission(tsk);
2463 if (!ret)
2464 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
2465
2466 put_task_struct(tsk);
2467 goto out_unlock_threadgroup;
2468
2469 out_unlock_rcu:
2470 rcu_read_unlock();
2471 out_unlock_threadgroup:
2472 percpu_up_write(&cgroup_threadgroup_rwsem);
2473 cgroup_kn_unlock(of->kn);
2474 return ret ?: nbytes;
2475 }
2476
2477 /**
2478 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2479 * @from: attach to all cgroups of a given task
2480 * @tsk: the task to be attached
2481 */
2482 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2483 {
2484 struct cgroup_root *root;
2485 int retval = 0;
2486
2487 mutex_lock(&cgroup_mutex);
2488 for_each_root(root) {
2489 struct cgroup *from_cgrp;
2490
2491 if (root == &cgrp_dfl_root)
2492 continue;
2493
2494 down_read(&css_set_rwsem);
2495 from_cgrp = task_cgroup_from_root(from, root);
2496 up_read(&css_set_rwsem);
2497
2498 retval = cgroup_attach_task(from_cgrp, tsk, false);
2499 if (retval)
2500 break;
2501 }
2502 mutex_unlock(&cgroup_mutex);
2503
2504 return retval;
2505 }
2506 EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2507
2508 static ssize_t cgroup_tasks_write(struct kernfs_open_file *of,
2509 char *buf, size_t nbytes, loff_t off)
2510 {
2511 return __cgroup_procs_write(of, buf, nbytes, off, false);
2512 }
2513
2514 static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
2515 char *buf, size_t nbytes, loff_t off)
2516 {
2517 return __cgroup_procs_write(of, buf, nbytes, off, true);
2518 }
2519
2520 static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
2521 char *buf, size_t nbytes, loff_t off)
2522 {
2523 struct cgroup *cgrp;
2524
2525 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
2526
2527 cgrp = cgroup_kn_lock_live(of->kn);
2528 if (!cgrp)
2529 return -ENODEV;
2530 spin_lock(&release_agent_path_lock);
2531 strlcpy(cgrp->root->release_agent_path, strstrip(buf),
2532 sizeof(cgrp->root->release_agent_path));
2533 spin_unlock(&release_agent_path_lock);
2534 cgroup_kn_unlock(of->kn);
2535 return nbytes;
2536 }
2537
2538 static int cgroup_release_agent_show(struct seq_file *seq, void *v)
2539 {
2540 struct cgroup *cgrp = seq_css(seq)->cgroup;
2541
2542 spin_lock(&release_agent_path_lock);
2543 seq_puts(seq, cgrp->root->release_agent_path);
2544 spin_unlock(&release_agent_path_lock);
2545 seq_putc(seq, '\n');
2546 return 0;
2547 }
2548
2549 static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
2550 {
2551 seq_puts(seq, "0\n");
2552 return 0;
2553 }
2554
2555 static void cgroup_print_ss_mask(struct seq_file *seq, unsigned long ss_mask)
2556 {
2557 struct cgroup_subsys *ss;
2558 bool printed = false;
2559 int ssid;
2560
2561 for_each_subsys_which(ss, ssid, &ss_mask) {
2562 if (printed)
2563 seq_putc(seq, ' ');
2564 seq_printf(seq, "%s", ss->name);
2565 printed = true;
2566 }
2567 if (printed)
2568 seq_putc(seq, '\n');
2569 }
2570
2571 /* show controllers which are currently attached to the default hierarchy */
2572 static int cgroup_root_controllers_show(struct seq_file *seq, void *v)
2573 {
2574 struct cgroup *cgrp = seq_css(seq)->cgroup;
2575
2576 cgroup_print_ss_mask(seq, cgrp->root->subsys_mask &
2577 ~cgrp_dfl_root_inhibit_ss_mask);
2578 return 0;
2579 }
2580
2581 /* show controllers which are enabled from the parent */
2582 static int cgroup_controllers_show(struct seq_file *seq, void *v)
2583 {
2584 struct cgroup *cgrp = seq_css(seq)->cgroup;
2585
2586 cgroup_print_ss_mask(seq, cgroup_parent(cgrp)->subtree_control);
2587 return 0;
2588 }
2589
2590 /* show controllers which are enabled for a given cgroup's children */
2591 static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
2592 {
2593 struct cgroup *cgrp = seq_css(seq)->cgroup;
2594
2595 cgroup_print_ss_mask(seq, cgrp->subtree_control);
2596 return 0;
2597 }
2598
2599 /**
2600 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2601 * @cgrp: root of the subtree to update csses for
2602 *
2603 * @cgrp's child_subsys_mask has changed and its subtree's (self excluded)
2604 * css associations need to be updated accordingly. This function looks up
2605 * all css_sets which are attached to the subtree, creates the matching
2606 * updated css_sets and migrates the tasks to the new ones.
2607 */
2608 static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2609 {
2610 LIST_HEAD(preloaded_csets);
2611 struct cgroup_subsys_state *css;
2612 struct css_set *src_cset;
2613 int ret;
2614
2615 lockdep_assert_held(&cgroup_mutex);
2616
2617 percpu_down_write(&cgroup_threadgroup_rwsem);
2618
2619 /* look up all csses currently attached to @cgrp's subtree */
2620 down_read(&css_set_rwsem);
2621 css_for_each_descendant_pre(css, cgroup_css(cgrp, NULL)) {
2622 struct cgrp_cset_link *link;
2623
2624 /* self is not affected by child_subsys_mask change */
2625 if (css->cgroup == cgrp)
2626 continue;
2627
2628 list_for_each_entry(link, &css->cgroup->cset_links, cset_link)
2629 cgroup_migrate_add_src(link->cset, cgrp,
2630 &preloaded_csets);
2631 }
2632 up_read(&css_set_rwsem);
2633
2634 /* NULL dst indicates self on default hierarchy */
2635 ret = cgroup_migrate_prepare_dst(NULL, &preloaded_csets);
2636 if (ret)
2637 goto out_finish;
2638
2639 list_for_each_entry(src_cset, &preloaded_csets, mg_preload_node) {
2640 struct task_struct *last_task = NULL, *task;
2641
2642 /* src_csets precede dst_csets, break on the first dst_cset */
2643 if (!src_cset->mg_src_cgrp)
2644 break;
2645
2646 /*
2647 * All tasks in src_cset need to be migrated to the
2648 * matching dst_cset. Empty it process by process. We
2649 * walk tasks but migrate processes. The leader might even
2650 * belong to a different cset but such src_cset would also
2651 * be among the target src_csets because the default
2652 * hierarchy enforces per-process membership.
2653 */
2654 while (true) {
2655 down_read(&css_set_rwsem);
2656 task = list_first_entry_or_null(&src_cset->tasks,
2657 struct task_struct, cg_list);
2658 if (task) {
2659 task = task->group_leader;
2660 WARN_ON_ONCE(!task_css_set(task)->mg_src_cgrp);
2661 get_task_struct(task);
2662 }
2663 up_read(&css_set_rwsem);
2664
2665 if (!task)
2666 break;
2667
2668 /* guard against possible infinite loop */
2669 if (WARN(last_task == task,
2670 "cgroup: update_dfl_csses failed to make progress, aborting in inconsistent state\n"))
2671 goto out_finish;
2672 last_task = task;
2673
2674 ret = cgroup_migrate(src_cset->dfl_cgrp, task, true);
2675
2676 put_task_struct(task);
2677
2678 if (WARN(ret, "cgroup: failed to update controllers for the default hierarchy (%d), further operations may crash or hang\n", ret))
2679 goto out_finish;
2680 }
2681 }
2682
2683 out_finish:
2684 cgroup_migrate_finish(&preloaded_csets);
2685 percpu_up_write(&cgroup_threadgroup_rwsem);
2686 return ret;
2687 }
2688
2689 /* change the enabled child controllers for a cgroup in the default hierarchy */
2690 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
2691 char *buf, size_t nbytes,
2692 loff_t off)
2693 {
2694 unsigned long enable = 0, disable = 0;
2695 unsigned long css_enable, css_disable, old_sc, new_sc, old_ss, new_ss;
2696 struct cgroup *cgrp, *child;
2697 struct cgroup_subsys *ss;
2698 char *tok;
2699 int ssid, ret;
2700
2701 /*
2702 * Parse input - space separated list of subsystem names prefixed
2703 * with either + or -.
2704 */
2705 buf = strstrip(buf);
2706 while ((tok = strsep(&buf, " "))) {
2707 unsigned long tmp_ss_mask = ~cgrp_dfl_root_inhibit_ss_mask;
2708
2709 if (tok[0] == '\0')
2710 continue;
2711 for_each_subsys_which(ss, ssid, &tmp_ss_mask) {
2712 if (ss->disabled || strcmp(tok + 1, ss->name))
2713 continue;
2714
2715 if (*tok == '+') {
2716 enable |= 1 << ssid;
2717 disable &= ~(1 << ssid);
2718 } else if (*tok == '-') {
2719 disable |= 1 << ssid;
2720 enable &= ~(1 << ssid);
2721 } else {
2722 return -EINVAL;
2723 }
2724 break;
2725 }
2726 if (ssid == CGROUP_SUBSYS_COUNT)
2727 return -EINVAL;
2728 }
2729
2730 cgrp = cgroup_kn_lock_live(of->kn);
2731 if (!cgrp)
2732 return -ENODEV;
2733
2734 for_each_subsys(ss, ssid) {
2735 if (enable & (1 << ssid)) {
2736 if (cgrp->subtree_control & (1 << ssid)) {
2737 enable &= ~(1 << ssid);
2738 continue;
2739 }
2740
2741 /* unavailable or not enabled on the parent? */
2742 if (!(cgrp_dfl_root.subsys_mask & (1 << ssid)) ||
2743 (cgroup_parent(cgrp) &&
2744 !(cgroup_parent(cgrp)->subtree_control & (1 << ssid)))) {
2745 ret = -ENOENT;
2746 goto out_unlock;
2747 }
2748 } else if (disable & (1 << ssid)) {
2749 if (!(cgrp->subtree_control & (1 << ssid))) {
2750 disable &= ~(1 << ssid);
2751 continue;
2752 }
2753
2754 /* a child has it enabled? */
2755 cgroup_for_each_live_child(child, cgrp) {
2756 if (child->subtree_control & (1 << ssid)) {
2757 ret = -EBUSY;
2758 goto out_unlock;
2759 }
2760 }
2761 }
2762 }
2763
2764 if (!enable && !disable) {
2765 ret = 0;
2766 goto out_unlock;
2767 }
2768
2769 /*
2770 * Except for the root, subtree_control must be zero for a cgroup
2771 * with tasks so that child cgroups don't compete against tasks.
2772 */
2773 if (enable && cgroup_parent(cgrp) && !list_empty(&cgrp->cset_links)) {
2774 ret = -EBUSY;
2775 goto out_unlock;
2776 }
2777
2778 /*
2779 * Update subsys masks and calculate what needs to be done. More
2780 * subsystems than specified may need to be enabled or disabled
2781 * depending on subsystem dependencies.
2782 */
2783 old_sc = cgrp->subtree_control;
2784 old_ss = cgrp->child_subsys_mask;
2785 new_sc = (old_sc | enable) & ~disable;
2786 new_ss = cgroup_calc_child_subsys_mask(cgrp, new_sc);
2787
2788 css_enable = ~old_ss & new_ss;
2789 css_disable = old_ss & ~new_ss;
2790 enable |= css_enable;
2791 disable |= css_disable;
2792
2793 /*
2794 * Because css offlining is asynchronous, userland might try to
2795 * re-enable the same controller while the previous instance is
2796 * still around. In such cases, wait till it's gone using
2797 * offline_waitq.
2798 */
2799 for_each_subsys_which(ss, ssid, &css_enable) {
2800 cgroup_for_each_live_child(child, cgrp) {
2801 DEFINE_WAIT(wait);
2802
2803 if (!cgroup_css(child, ss))
2804 continue;
2805
2806 cgroup_get(child);
2807 prepare_to_wait(&child->offline_waitq, &wait,
2808 TASK_UNINTERRUPTIBLE);
2809 cgroup_kn_unlock(of->kn);
2810 schedule();
2811 finish_wait(&child->offline_waitq, &wait);
2812 cgroup_put(child);
2813
2814 return restart_syscall();
2815 }
2816 }
2817
2818 cgrp->subtree_control = new_sc;
2819 cgrp->child_subsys_mask = new_ss;
2820
2821 /*
2822 * Create new csses or make the existing ones visible. A css is
2823 * created invisible if it's being implicitly enabled through
2824 * dependency. An invisible css is made visible when the userland
2825 * explicitly enables it.
2826 */
2827 for_each_subsys(ss, ssid) {
2828 if (!(enable & (1 << ssid)))
2829 continue;
2830
2831 cgroup_for_each_live_child(child, cgrp) {
2832 if (css_enable & (1 << ssid))
2833 ret = create_css(child, ss,
2834 cgrp->subtree_control & (1 << ssid));
2835 else
2836 ret = cgroup_populate_dir(child, 1 << ssid);
2837 if (ret)
2838 goto err_undo_css;
2839 }
2840 }
2841
2842 /*
2843 * At this point, cgroup_e_css() results reflect the new csses
2844 * making the following cgroup_update_dfl_csses() properly update
2845 * css associations of all tasks in the subtree.
2846 */
2847 ret = cgroup_update_dfl_csses(cgrp);
2848 if (ret)
2849 goto err_undo_css;
2850
2851 /*
2852 * All tasks are migrated out of disabled csses. Kill or hide
2853 * them. A css is hidden when the userland requests it to be
2854 * disabled while other subsystems are still depending on it. The
2855 * css must not actively control resources and be in the vanilla
2856 * state if it's made visible again later. Controllers which may
2857 * be depended upon should provide ->css_reset() for this purpose.
2858 */
2859 for_each_subsys(ss, ssid) {
2860 if (!(disable & (1 << ssid)))
2861 continue;
2862
2863 cgroup_for_each_live_child(child, cgrp) {
2864 struct cgroup_subsys_state *css = cgroup_css(child, ss);
2865
2866 if (css_disable & (1 << ssid)) {
2867 kill_css(css);
2868 } else {
2869 cgroup_clear_dir(child, 1 << ssid);
2870 if (ss->css_reset)
2871 ss->css_reset(css);
2872 }
2873 }
2874 }
2875
2876 /*
2877 * The effective csses of all the descendants (excluding @cgrp) may
2878 * have changed. Subsystems can optionally subscribe to this event
2879 * by implementing ->css_e_css_changed() which is invoked if any of
2880 * the effective csses seen from the css's cgroup may have changed.
2881 */
2882 for_each_subsys(ss, ssid) {
2883 struct cgroup_subsys_state *this_css = cgroup_css(cgrp, ss);
2884 struct cgroup_subsys_state *css;
2885
2886 if (!ss->css_e_css_changed || !this_css)
2887 continue;
2888
2889 css_for_each_descendant_pre(css, this_css)
2890 if (css != this_css)
2891 ss->css_e_css_changed(css);
2892 }
2893
2894 kernfs_activate(cgrp->kn);
2895 ret = 0;
2896 out_unlock:
2897 cgroup_kn_unlock(of->kn);
2898 return ret ?: nbytes;
2899
2900 err_undo_css:
2901 cgrp->subtree_control = old_sc;
2902 cgrp->child_subsys_mask = old_ss;
2903
2904 for_each_subsys(ss, ssid) {
2905 if (!(enable & (1 << ssid)))
2906 continue;
2907
2908 cgroup_for_each_live_child(child, cgrp) {
2909 struct cgroup_subsys_state *css = cgroup_css(child, ss);
2910
2911 if (!css)
2912 continue;
2913
2914 if (css_enable & (1 << ssid))
2915 kill_css(css);
2916 else
2917 cgroup_clear_dir(child, 1 << ssid);
2918 }
2919 }
2920 goto out_unlock;
2921 }
2922
2923 static int cgroup_populated_show(struct seq_file *seq, void *v)
2924 {
2925 seq_printf(seq, "%d\n", (bool)seq_css(seq)->cgroup->populated_cnt);
2926 return 0;
2927 }
2928
2929 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
2930 size_t nbytes, loff_t off)
2931 {
2932 struct cgroup *cgrp = of->kn->parent->priv;
2933 struct cftype *cft = of->kn->priv;
2934 struct cgroup_subsys_state *css;
2935 int ret;
2936
2937 if (cft->write)
2938 return cft->write(of, buf, nbytes, off);
2939
2940 /*
2941 * kernfs guarantees that a file isn't deleted with operations in
2942 * flight, which means that the matching css is and stays alive and
2943 * doesn't need to be pinned. The RCU locking is not necessary
2944 * either. It's just for the convenience of using cgroup_css().
2945 */
2946 rcu_read_lock();
2947 css = cgroup_css(cgrp, cft->ss);
2948 rcu_read_unlock();
2949
2950 if (cft->write_u64) {
2951 unsigned long long v;
2952 ret = kstrtoull(buf, 0, &v);
2953 if (!ret)
2954 ret = cft->write_u64(css, cft, v);
2955 } else if (cft->write_s64) {
2956 long long v;
2957 ret = kstrtoll(buf, 0, &v);
2958 if (!ret)
2959 ret = cft->write_s64(css, cft, v);
2960 } else {
2961 ret = -EINVAL;
2962 }
2963
2964 return ret ?: nbytes;
2965 }
2966
2967 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
2968 {
2969 return seq_cft(seq)->seq_start(seq, ppos);
2970 }
2971
2972 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
2973 {
2974 return seq_cft(seq)->seq_next(seq, v, ppos);
2975 }
2976
2977 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
2978 {
2979 seq_cft(seq)->seq_stop(seq, v);
2980 }
2981
2982 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
2983 {
2984 struct cftype *cft = seq_cft(m);
2985 struct cgroup_subsys_state *css = seq_css(m);
2986
2987 if (cft->seq_show)
2988 return cft->seq_show(m, arg);
2989
2990 if (cft->read_u64)
2991 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
2992 else if (cft->read_s64)
2993 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
2994 else
2995 return -EINVAL;
2996 return 0;
2997 }
2998
2999 static struct kernfs_ops cgroup_kf_single_ops = {
3000 .atomic_write_len = PAGE_SIZE,
3001 .write = cgroup_file_write,
3002 .seq_show = cgroup_seqfile_show,
3003 };
3004
3005 static struct kernfs_ops cgroup_kf_ops = {
3006 .atomic_write_len = PAGE_SIZE,
3007 .write = cgroup_file_write,
3008 .seq_start = cgroup_seqfile_start,
3009 .seq_next = cgroup_seqfile_next,
3010 .seq_stop = cgroup_seqfile_stop,
3011 .seq_show = cgroup_seqfile_show,
3012 };
3013
3014 /*
3015 * cgroup_rename - Only allow simple rename of directories in place.
3016 */
3017 static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
3018 const char *new_name_str)
3019 {
3020 struct cgroup *cgrp = kn->priv;
3021 int ret;
3022
3023 if (kernfs_type(kn) != KERNFS_DIR)
3024 return -ENOTDIR;
3025 if (kn->parent != new_parent)
3026 return -EIO;
3027
3028 /*
3029 * This isn't a proper migration and its usefulness is very
3030 * limited. Disallow on the default hierarchy.
3031 */
3032 if (cgroup_on_dfl(cgrp))
3033 return -EPERM;
3034
3035 /*
3036 * We're gonna grab cgroup_mutex which nests outside kernfs
3037 * active_ref. kernfs_rename() doesn't require active_ref
3038 * protection. Break them before grabbing cgroup_mutex.
3039 */
3040 kernfs_break_active_protection(new_parent);
3041 kernfs_break_active_protection(kn);
3042
3043 mutex_lock(&cgroup_mutex);
3044
3045 ret = kernfs_rename(kn, new_parent, new_name_str);
3046
3047 mutex_unlock(&cgroup_mutex);
3048
3049 kernfs_unbreak_active_protection(kn);
3050 kernfs_unbreak_active_protection(new_parent);
3051 return ret;
3052 }
3053
3054 /* set uid and gid of cgroup dirs and files to that of the creator */
3055 static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3056 {
3057 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3058 .ia_uid = current_fsuid(),
3059 .ia_gid = current_fsgid(), };
3060
3061 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3062 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3063 return 0;
3064
3065 return kernfs_setattr(kn, &iattr);
3066 }
3067
3068 static int cgroup_add_file(struct cgroup *cgrp, struct cftype *cft)
3069 {
3070 char name[CGROUP_FILE_NAME_MAX];
3071 struct kernfs_node *kn;
3072 struct lock_class_key *key = NULL;
3073 int ret;
3074
3075 #ifdef CONFIG_DEBUG_LOCK_ALLOC
3076 key = &cft->lockdep_key;
3077 #endif
3078 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3079 cgroup_file_mode(cft), 0, cft->kf_ops, cft,
3080 NULL, key);
3081 if (IS_ERR(kn))
3082 return PTR_ERR(kn);
3083
3084 ret = cgroup_kn_set_ugid(kn);
3085 if (ret) {
3086 kernfs_remove(kn);
3087 return ret;
3088 }
3089
3090 if (cft->seq_show == cgroup_populated_show)
3091 cgrp->populated_kn = kn;
3092 return 0;
3093 }
3094
3095 /**
3096 * cgroup_addrm_files - add or remove files to a cgroup directory
3097 * @cgrp: the target cgroup
3098 * @cfts: array of cftypes to be added
3099 * @is_add: whether to add or remove
3100 *
3101 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
3102 * For removals, this function never fails. If addition fails, this
3103 * function doesn't remove files already added. The caller is responsible
3104 * for cleaning up.
3105 */
3106 static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
3107 bool is_add)
3108 {
3109 struct cftype *cft;
3110 int ret;
3111
3112 lockdep_assert_held(&cgroup_mutex);
3113
3114 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3115 /* does cft->flags tell us to skip this file on @cgrp? */
3116 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
3117 continue;
3118 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
3119 continue;
3120 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
3121 continue;
3122 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
3123 continue;
3124
3125 if (is_add) {
3126 ret = cgroup_add_file(cgrp, cft);
3127 if (ret) {
3128 pr_warn("%s: failed to add %s, err=%d\n",
3129 __func__, cft->name, ret);
3130 return ret;
3131 }
3132 } else {
3133 cgroup_rm_file(cgrp, cft);
3134 }
3135 }
3136 return 0;
3137 }
3138
3139 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
3140 {
3141 LIST_HEAD(pending);
3142 struct cgroup_subsys *ss = cfts[0].ss;
3143 struct cgroup *root = &ss->root->cgrp;
3144 struct cgroup_subsys_state *css;
3145 int ret = 0;
3146
3147 lockdep_assert_held(&cgroup_mutex);
3148
3149 /* add/rm files for all cgroups created before */
3150 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
3151 struct cgroup *cgrp = css->cgroup;
3152
3153 if (cgroup_is_dead(cgrp))
3154 continue;
3155
3156 ret = cgroup_addrm_files(cgrp, cfts, is_add);
3157 if (ret)
3158 break;
3159 }
3160
3161 if (is_add && !ret)
3162 kernfs_activate(root->kn);
3163 return ret;
3164 }
3165
3166 static void cgroup_exit_cftypes(struct cftype *cfts)
3167 {
3168 struct cftype *cft;
3169
3170 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3171 /* free copy for custom atomic_write_len, see init_cftypes() */
3172 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3173 kfree(cft->kf_ops);
3174 cft->kf_ops = NULL;
3175 cft->ss = NULL;
3176
3177 /* revert flags set by cgroup core while adding @cfts */
3178 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
3179 }
3180 }
3181
3182 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3183 {
3184 struct cftype *cft;
3185
3186 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3187 struct kernfs_ops *kf_ops;
3188
3189 WARN_ON(cft->ss || cft->kf_ops);
3190
3191 if (cft->seq_start)
3192 kf_ops = &cgroup_kf_ops;
3193 else
3194 kf_ops = &cgroup_kf_single_ops;
3195
3196 /*
3197 * Ugh... if @cft wants a custom max_write_len, we need to
3198 * make a copy of kf_ops to set its atomic_write_len.
3199 */
3200 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3201 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3202 if (!kf_ops) {
3203 cgroup_exit_cftypes(cfts);
3204 return -ENOMEM;
3205 }
3206 kf_ops->atomic_write_len = cft->max_write_len;
3207 }
3208
3209 cft->kf_ops = kf_ops;
3210 cft->ss = ss;
3211 }
3212
3213 return 0;
3214 }
3215
3216 static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3217 {
3218 lockdep_assert_held(&cgroup_mutex);
3219
3220 if (!cfts || !cfts[0].ss)
3221 return -ENOENT;
3222
3223 list_del(&cfts->node);
3224 cgroup_apply_cftypes(cfts, false);
3225 cgroup_exit_cftypes(cfts);
3226 return 0;
3227 }
3228
3229 /**
3230 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
3231 * @cfts: zero-length name terminated array of cftypes
3232 *
3233 * Unregister @cfts. Files described by @cfts are removed from all
3234 * existing cgroups and all future cgroups won't have them either. This
3235 * function can be called anytime whether @cfts' subsys is attached or not.
3236 *
3237 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
3238 * registered.
3239 */
3240 int cgroup_rm_cftypes(struct cftype *cfts)
3241 {
3242 int ret;
3243
3244 mutex_lock(&cgroup_mutex);
3245 ret = cgroup_rm_cftypes_locked(cfts);
3246 mutex_unlock(&cgroup_mutex);
3247 return ret;
3248 }
3249
3250 /**
3251 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3252 * @ss: target cgroup subsystem
3253 * @cfts: zero-length name terminated array of cftypes
3254 *
3255 * Register @cfts to @ss. Files described by @cfts are created for all
3256 * existing cgroups to which @ss is attached and all future cgroups will
3257 * have them too. This function can be called anytime whether @ss is
3258 * attached or not.
3259 *
3260 * Returns 0 on successful registration, -errno on failure. Note that this
3261 * function currently returns 0 as long as @cfts registration is successful
3262 * even if some file creation attempts on existing cgroups fail.
3263 */
3264 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3265 {
3266 int ret;
3267
3268 if (ss->disabled)
3269 return 0;
3270
3271 if (!cfts || cfts[0].name[0] == '\0')
3272 return 0;
3273
3274 ret = cgroup_init_cftypes(ss, cfts);
3275 if (ret)
3276 return ret;
3277
3278 mutex_lock(&cgroup_mutex);
3279
3280 list_add_tail(&cfts->node, &ss->cfts);
3281 ret = cgroup_apply_cftypes(cfts, true);
3282 if (ret)
3283 cgroup_rm_cftypes_locked(cfts);
3284
3285 mutex_unlock(&cgroup_mutex);
3286 return ret;
3287 }
3288
3289 /**
3290 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3291 * @ss: target cgroup subsystem
3292 * @cfts: zero-length name terminated array of cftypes
3293 *
3294 * Similar to cgroup_add_cftypes() but the added files are only used for
3295 * the default hierarchy.
3296 */
3297 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3298 {
3299 struct cftype *cft;
3300
3301 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3302 cft->flags |= __CFTYPE_ONLY_ON_DFL;
3303 return cgroup_add_cftypes(ss, cfts);
3304 }
3305
3306 /**
3307 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3308 * @ss: target cgroup subsystem
3309 * @cfts: zero-length name terminated array of cftypes
3310 *
3311 * Similar to cgroup_add_cftypes() but the added files are only used for
3312 * the legacy hierarchies.
3313 */
3314 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3315 {
3316 struct cftype *cft;
3317
3318 /*
3319 * If legacy_flies_on_dfl, we want to show the legacy files on the
3320 * dfl hierarchy but iff the target subsystem hasn't been updated
3321 * for the dfl hierarchy yet.
3322 */
3323 if (!cgroup_legacy_files_on_dfl ||
3324 ss->dfl_cftypes != ss->legacy_cftypes) {
3325 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3326 cft->flags |= __CFTYPE_NOT_ON_DFL;
3327 }
3328
3329 return cgroup_add_cftypes(ss, cfts);
3330 }
3331
3332 /**
3333 * cgroup_task_count - count the number of tasks in a cgroup.
3334 * @cgrp: the cgroup in question
3335 *
3336 * Return the number of tasks in the cgroup.
3337 */
3338 static int cgroup_task_count(const struct cgroup *cgrp)
3339 {
3340 int count = 0;
3341 struct cgrp_cset_link *link;
3342
3343 down_read(&css_set_rwsem);
3344 list_for_each_entry(link, &cgrp->cset_links, cset_link)
3345 count += atomic_read(&link->cset->refcount);
3346 up_read(&css_set_rwsem);
3347 return count;
3348 }
3349
3350 /**
3351 * css_next_child - find the next child of a given css
3352 * @pos: the current position (%NULL to initiate traversal)
3353 * @parent: css whose children to walk
3354 *
3355 * This function returns the next child of @parent and should be called
3356 * under either cgroup_mutex or RCU read lock. The only requirement is
3357 * that @parent and @pos are accessible. The next sibling is guaranteed to
3358 * be returned regardless of their states.
3359 *
3360 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3361 * css which finished ->css_online() is guaranteed to be visible in the
3362 * future iterations and will stay visible until the last reference is put.
3363 * A css which hasn't finished ->css_online() or already finished
3364 * ->css_offline() may show up during traversal. It's each subsystem's
3365 * responsibility to synchronize against on/offlining.
3366 */
3367 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
3368 struct cgroup_subsys_state *parent)
3369 {
3370 struct cgroup_subsys_state *next;
3371
3372 cgroup_assert_mutex_or_rcu_locked();
3373
3374 /*
3375 * @pos could already have been unlinked from the sibling list.
3376 * Once a cgroup is removed, its ->sibling.next is no longer
3377 * updated when its next sibling changes. CSS_RELEASED is set when
3378 * @pos is taken off list, at which time its next pointer is valid,
3379 * and, as releases are serialized, the one pointed to by the next
3380 * pointer is guaranteed to not have started release yet. This
3381 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3382 * critical section, the one pointed to by its next pointer is
3383 * guaranteed to not have finished its RCU grace period even if we
3384 * have dropped rcu_read_lock() inbetween iterations.
3385 *
3386 * If @pos has CSS_RELEASED set, its next pointer can't be
3387 * dereferenced; however, as each css is given a monotonically
3388 * increasing unique serial number and always appended to the
3389 * sibling list, the next one can be found by walking the parent's
3390 * children until the first css with higher serial number than
3391 * @pos's. While this path can be slower, it happens iff iteration
3392 * races against release and the race window is very small.
3393 */
3394 if (!pos) {
3395 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
3396 } else if (likely(!(pos->flags & CSS_RELEASED))) {
3397 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
3398 } else {
3399 list_for_each_entry_rcu(next, &parent->children, sibling)
3400 if (next->serial_nr > pos->serial_nr)
3401 break;
3402 }
3403
3404 /*
3405 * @next, if not pointing to the head, can be dereferenced and is
3406 * the next sibling.
3407 */
3408 if (&next->sibling != &parent->children)
3409 return next;
3410 return NULL;
3411 }
3412
3413 /**
3414 * css_next_descendant_pre - find the next descendant for pre-order walk
3415 * @pos: the current position (%NULL to initiate traversal)
3416 * @root: css whose descendants to walk
3417 *
3418 * To be used by css_for_each_descendant_pre(). Find the next descendant
3419 * to visit for pre-order traversal of @root's descendants. @root is
3420 * included in the iteration and the first node to be visited.
3421 *
3422 * While this function requires cgroup_mutex or RCU read locking, it
3423 * doesn't require the whole traversal to be contained in a single critical
3424 * section. This function will return the correct next descendant as long
3425 * as both @pos and @root are accessible and @pos is a descendant of @root.
3426 *
3427 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3428 * css which finished ->css_online() is guaranteed to be visible in the
3429 * future iterations and will stay visible until the last reference is put.
3430 * A css which hasn't finished ->css_online() or already finished
3431 * ->css_offline() may show up during traversal. It's each subsystem's
3432 * responsibility to synchronize against on/offlining.
3433 */
3434 struct cgroup_subsys_state *
3435 css_next_descendant_pre(struct cgroup_subsys_state *pos,
3436 struct cgroup_subsys_state *root)
3437 {
3438 struct cgroup_subsys_state *next;
3439
3440 cgroup_assert_mutex_or_rcu_locked();
3441
3442 /* if first iteration, visit @root */
3443 if (!pos)
3444 return root;
3445
3446 /* visit the first child if exists */
3447 next = css_next_child(NULL, pos);
3448 if (next)
3449 return next;
3450
3451 /* no child, visit my or the closest ancestor's next sibling */
3452 while (pos != root) {
3453 next = css_next_child(pos, pos->parent);
3454 if (next)
3455 return next;
3456 pos = pos->parent;
3457 }
3458
3459 return NULL;
3460 }
3461
3462 /**
3463 * css_rightmost_descendant - return the rightmost descendant of a css
3464 * @pos: css of interest
3465 *
3466 * Return the rightmost descendant of @pos. If there's no descendant, @pos
3467 * is returned. This can be used during pre-order traversal to skip
3468 * subtree of @pos.
3469 *
3470 * While this function requires cgroup_mutex or RCU read locking, it
3471 * doesn't require the whole traversal to be contained in a single critical
3472 * section. This function will return the correct rightmost descendant as
3473 * long as @pos is accessible.
3474 */
3475 struct cgroup_subsys_state *
3476 css_rightmost_descendant(struct cgroup_subsys_state *pos)
3477 {
3478 struct cgroup_subsys_state *last, *tmp;
3479
3480 cgroup_assert_mutex_or_rcu_locked();
3481
3482 do {
3483 last = pos;
3484 /* ->prev isn't RCU safe, walk ->next till the end */
3485 pos = NULL;
3486 css_for_each_child(tmp, last)
3487 pos = tmp;
3488 } while (pos);
3489
3490 return last;
3491 }
3492
3493 static struct cgroup_subsys_state *
3494 css_leftmost_descendant(struct cgroup_subsys_state *pos)
3495 {
3496 struct cgroup_subsys_state *last;
3497
3498 do {
3499 last = pos;
3500 pos = css_next_child(NULL, pos);
3501 } while (pos);
3502
3503 return last;
3504 }
3505
3506 /**
3507 * css_next_descendant_post - find the next descendant for post-order walk
3508 * @pos: the current position (%NULL to initiate traversal)
3509 * @root: css whose descendants to walk
3510 *
3511 * To be used by css_for_each_descendant_post(). Find the next descendant
3512 * to visit for post-order traversal of @root's descendants. @root is
3513 * included in the iteration and the last node to be visited.
3514 *
3515 * While this function requires cgroup_mutex or RCU read locking, it
3516 * doesn't require the whole traversal to be contained in a single critical
3517 * section. This function will return the correct next descendant as long
3518 * as both @pos and @cgroup are accessible and @pos is a descendant of
3519 * @cgroup.
3520 *
3521 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3522 * css which finished ->css_online() is guaranteed to be visible in the
3523 * future iterations and will stay visible until the last reference is put.
3524 * A css which hasn't finished ->css_online() or already finished
3525 * ->css_offline() may show up during traversal. It's each subsystem's
3526 * responsibility to synchronize against on/offlining.
3527 */
3528 struct cgroup_subsys_state *
3529 css_next_descendant_post(struct cgroup_subsys_state *pos,
3530 struct cgroup_subsys_state *root)
3531 {
3532 struct cgroup_subsys_state *next;
3533
3534 cgroup_assert_mutex_or_rcu_locked();
3535
3536 /* if first iteration, visit leftmost descendant which may be @root */
3537 if (!pos)
3538 return css_leftmost_descendant(root);
3539
3540 /* if we visited @root, we're done */
3541 if (pos == root)
3542 return NULL;
3543
3544 /* if there's an unvisited sibling, visit its leftmost descendant */
3545 next = css_next_child(pos, pos->parent);
3546 if (next)
3547 return css_leftmost_descendant(next);
3548
3549 /* no sibling left, visit parent */
3550 return pos->parent;
3551 }
3552
3553 /**
3554 * css_has_online_children - does a css have online children
3555 * @css: the target css
3556 *
3557 * Returns %true if @css has any online children; otherwise, %false. This
3558 * function can be called from any context but the caller is responsible
3559 * for synchronizing against on/offlining as necessary.
3560 */
3561 bool css_has_online_children(struct cgroup_subsys_state *css)
3562 {
3563 struct cgroup_subsys_state *child;
3564 bool ret = false;
3565
3566 rcu_read_lock();
3567 css_for_each_child(child, css) {
3568 if (child->flags & CSS_ONLINE) {
3569 ret = true;
3570 break;
3571 }
3572 }
3573 rcu_read_unlock();
3574 return ret;
3575 }
3576
3577 /**
3578 * css_advance_task_iter - advance a task itererator to the next css_set
3579 * @it: the iterator to advance
3580 *
3581 * Advance @it to the next css_set to walk.
3582 */
3583 static void css_advance_task_iter(struct css_task_iter *it)
3584 {
3585 struct list_head *l = it->cset_pos;
3586 struct cgrp_cset_link *link;
3587 struct css_set *cset;
3588
3589 /* Advance to the next non-empty css_set */
3590 do {
3591 l = l->next;
3592 if (l == it->cset_head) {
3593 it->cset_pos = NULL;
3594 return;
3595 }
3596
3597 if (it->ss) {
3598 cset = container_of(l, struct css_set,
3599 e_cset_node[it->ss->id]);
3600 } else {
3601 link = list_entry(l, struct cgrp_cset_link, cset_link);
3602 cset = link->cset;
3603 }
3604 } while (list_empty(&cset->tasks) && list_empty(&cset->mg_tasks));
3605
3606 it->cset_pos = l;
3607
3608 if (!list_empty(&cset->tasks))
3609 it->task_pos = cset->tasks.next;
3610 else
3611 it->task_pos = cset->mg_tasks.next;
3612
3613 it->tasks_head = &cset->tasks;
3614 it->mg_tasks_head = &cset->mg_tasks;
3615 }
3616
3617 /**
3618 * css_task_iter_start - initiate task iteration
3619 * @css: the css to walk tasks of
3620 * @it: the task iterator to use
3621 *
3622 * Initiate iteration through the tasks of @css. The caller can call
3623 * css_task_iter_next() to walk through the tasks until the function
3624 * returns NULL. On completion of iteration, css_task_iter_end() must be
3625 * called.
3626 *
3627 * Note that this function acquires a lock which is released when the
3628 * iteration finishes. The caller can't sleep while iteration is in
3629 * progress.
3630 */
3631 void css_task_iter_start(struct cgroup_subsys_state *css,
3632 struct css_task_iter *it)
3633 __acquires(css_set_rwsem)
3634 {
3635 /* no one should try to iterate before mounting cgroups */
3636 WARN_ON_ONCE(!use_task_css_set_links);
3637
3638 down_read(&css_set_rwsem);
3639
3640 it->ss = css->ss;
3641
3642 if (it->ss)
3643 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
3644 else
3645 it->cset_pos = &css->cgroup->cset_links;
3646
3647 it->cset_head = it->cset_pos;
3648
3649 css_advance_task_iter(it);
3650 }
3651
3652 /**
3653 * css_task_iter_next - return the next task for the iterator
3654 * @it: the task iterator being iterated
3655 *
3656 * The "next" function for task iteration. @it should have been
3657 * initialized via css_task_iter_start(). Returns NULL when the iteration
3658 * reaches the end.
3659 */
3660 struct task_struct *css_task_iter_next(struct css_task_iter *it)
3661 {
3662 struct task_struct *res;
3663 struct list_head *l = it->task_pos;
3664
3665 /* If the iterator cg is NULL, we have no tasks */
3666 if (!it->cset_pos)
3667 return NULL;
3668 res = list_entry(l, struct task_struct, cg_list);
3669
3670 /*
3671 * Advance iterator to find next entry. cset->tasks is consumed
3672 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
3673 * next cset.
3674 */
3675 l = l->next;
3676
3677 if (l == it->tasks_head)
3678 l = it->mg_tasks_head->next;
3679
3680 if (l == it->mg_tasks_head)
3681 css_advance_task_iter(it);
3682 else
3683 it->task_pos = l;
3684
3685 return res;
3686 }
3687
3688 /**
3689 * css_task_iter_end - finish task iteration
3690 * @it: the task iterator to finish
3691 *
3692 * Finish task iteration started by css_task_iter_start().
3693 */
3694 void css_task_iter_end(struct css_task_iter *it)
3695 __releases(css_set_rwsem)
3696 {
3697 up_read(&css_set_rwsem);
3698 }
3699
3700 /**
3701 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
3702 * @to: cgroup to which the tasks will be moved
3703 * @from: cgroup in which the tasks currently reside
3704 *
3705 * Locking rules between cgroup_post_fork() and the migration path
3706 * guarantee that, if a task is forking while being migrated, the new child
3707 * is guaranteed to be either visible in the source cgroup after the
3708 * parent's migration is complete or put into the target cgroup. No task
3709 * can slip out of migration through forking.
3710 */
3711 int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
3712 {
3713 LIST_HEAD(preloaded_csets);
3714 struct cgrp_cset_link *link;
3715 struct css_task_iter it;
3716 struct task_struct *task;
3717 int ret;
3718
3719 mutex_lock(&cgroup_mutex);
3720
3721 /* all tasks in @from are being moved, all csets are source */
3722 down_read(&css_set_rwsem);
3723 list_for_each_entry(link, &from->cset_links, cset_link)
3724 cgroup_migrate_add_src(link->cset, to, &preloaded_csets);
3725 up_read(&css_set_rwsem);
3726
3727 ret = cgroup_migrate_prepare_dst(to, &preloaded_csets);
3728 if (ret)
3729 goto out_err;
3730
3731 /*
3732 * Migrate tasks one-by-one until @form is empty. This fails iff
3733 * ->can_attach() fails.
3734 */
3735 do {
3736 css_task_iter_start(&from->self, &it);
3737 task = css_task_iter_next(&it);
3738 if (task)
3739 get_task_struct(task);
3740 css_task_iter_end(&it);
3741
3742 if (task) {
3743 ret = cgroup_migrate(to, task, false);
3744 put_task_struct(task);
3745 }
3746 } while (task && !ret);
3747 out_err:
3748 cgroup_migrate_finish(&preloaded_csets);
3749 mutex_unlock(&cgroup_mutex);
3750 return ret;
3751 }
3752
3753 /*
3754 * Stuff for reading the 'tasks'/'procs' files.
3755 *
3756 * Reading this file can return large amounts of data if a cgroup has
3757 * *lots* of attached tasks. So it may need several calls to read(),
3758 * but we cannot guarantee that the information we produce is correct
3759 * unless we produce it entirely atomically.
3760 *
3761 */
3762
3763 /* which pidlist file are we talking about? */
3764 enum cgroup_filetype {
3765 CGROUP_FILE_PROCS,
3766 CGROUP_FILE_TASKS,
3767 };
3768
3769 /*
3770 * A pidlist is a list of pids that virtually represents the contents of one
3771 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
3772 * a pair (one each for procs, tasks) for each pid namespace that's relevant
3773 * to the cgroup.
3774 */
3775 struct cgroup_pidlist {
3776 /*
3777 * used to find which pidlist is wanted. doesn't change as long as
3778 * this particular list stays in the list.
3779 */
3780 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
3781 /* array of xids */
3782 pid_t *list;
3783 /* how many elements the above list has */
3784 int length;
3785 /* each of these stored in a list by its cgroup */
3786 struct list_head links;
3787 /* pointer to the cgroup we belong to, for list removal purposes */
3788 struct cgroup *owner;
3789 /* for delayed destruction */
3790 struct delayed_work destroy_dwork;
3791 };
3792
3793 /*
3794 * The following two functions "fix" the issue where there are more pids
3795 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3796 * TODO: replace with a kernel-wide solution to this problem
3797 */
3798 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
3799 static void *pidlist_allocate(int count)
3800 {
3801 if (PIDLIST_TOO_LARGE(count))
3802 return vmalloc(count * sizeof(pid_t));
3803 else
3804 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
3805 }
3806
3807 static void pidlist_free(void *p)
3808 {
3809 kvfree(p);
3810 }
3811
3812 /*
3813 * Used to destroy all pidlists lingering waiting for destroy timer. None
3814 * should be left afterwards.
3815 */
3816 static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
3817 {
3818 struct cgroup_pidlist *l, *tmp_l;
3819
3820 mutex_lock(&cgrp->pidlist_mutex);
3821 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
3822 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
3823 mutex_unlock(&cgrp->pidlist_mutex);
3824
3825 flush_workqueue(cgroup_pidlist_destroy_wq);
3826 BUG_ON(!list_empty(&cgrp->pidlists));
3827 }
3828
3829 static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
3830 {
3831 struct delayed_work *dwork = to_delayed_work(work);
3832 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
3833 destroy_dwork);
3834 struct cgroup_pidlist *tofree = NULL;
3835
3836 mutex_lock(&l->owner->pidlist_mutex);
3837
3838 /*
3839 * Destroy iff we didn't get queued again. The state won't change
3840 * as destroy_dwork can only be queued while locked.
3841 */
3842 if (!delayed_work_pending(dwork)) {
3843 list_del(&l->links);
3844 pidlist_free(l->list);
3845 put_pid_ns(l->key.ns);
3846 tofree = l;
3847 }
3848
3849 mutex_unlock(&l->owner->pidlist_mutex);
3850 kfree(tofree);
3851 }
3852
3853 /*
3854 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
3855 * Returns the number of unique elements.
3856 */
3857 static int pidlist_uniq(pid_t *list, int length)
3858 {
3859 int src, dest = 1;
3860
3861 /*
3862 * we presume the 0th element is unique, so i starts at 1. trivial
3863 * edge cases first; no work needs to be done for either
3864 */
3865 if (length == 0 || length == 1)
3866 return length;
3867 /* src and dest walk down the list; dest counts unique elements */
3868 for (src = 1; src < length; src++) {
3869 /* find next unique element */
3870 while (list[src] == list[src-1]) {
3871 src++;
3872 if (src == length)
3873 goto after;
3874 }
3875 /* dest always points to where the next unique element goes */
3876 list[dest] = list[src];
3877 dest++;
3878 }
3879 after:
3880 return dest;
3881 }
3882
3883 /*
3884 * The two pid files - task and cgroup.procs - guaranteed that the result
3885 * is sorted, which forced this whole pidlist fiasco. As pid order is
3886 * different per namespace, each namespace needs differently sorted list,
3887 * making it impossible to use, for example, single rbtree of member tasks
3888 * sorted by task pointer. As pidlists can be fairly large, allocating one
3889 * per open file is dangerous, so cgroup had to implement shared pool of
3890 * pidlists keyed by cgroup and namespace.
3891 *
3892 * All this extra complexity was caused by the original implementation
3893 * committing to an entirely unnecessary property. In the long term, we
3894 * want to do away with it. Explicitly scramble sort order if on the
3895 * default hierarchy so that no such expectation exists in the new
3896 * interface.
3897 *
3898 * Scrambling is done by swapping every two consecutive bits, which is
3899 * non-identity one-to-one mapping which disturbs sort order sufficiently.
3900 */
3901 static pid_t pid_fry(pid_t pid)
3902 {
3903 unsigned a = pid & 0x55555555;
3904 unsigned b = pid & 0xAAAAAAAA;
3905
3906 return (a << 1) | (b >> 1);
3907 }
3908
3909 static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
3910 {
3911 if (cgroup_on_dfl(cgrp))
3912 return pid_fry(pid);
3913 else
3914 return pid;
3915 }
3916
3917 static int cmppid(const void *a, const void *b)
3918 {
3919 return *(pid_t *)a - *(pid_t *)b;
3920 }
3921
3922 static int fried_cmppid(const void *a, const void *b)
3923 {
3924 return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
3925 }
3926
3927 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3928 enum cgroup_filetype type)
3929 {
3930 struct cgroup_pidlist *l;
3931 /* don't need task_nsproxy() if we're looking at ourself */
3932 struct pid_namespace *ns = task_active_pid_ns(current);
3933
3934 lockdep_assert_held(&cgrp->pidlist_mutex);
3935
3936 list_for_each_entry(l, &cgrp->pidlists, links)
3937 if (l->key.type == type && l->key.ns == ns)
3938 return l;
3939 return NULL;
3940 }
3941
3942 /*
3943 * find the appropriate pidlist for our purpose (given procs vs tasks)
3944 * returns with the lock on that pidlist already held, and takes care
3945 * of the use count, or returns NULL with no locks held if we're out of
3946 * memory.
3947 */
3948 static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
3949 enum cgroup_filetype type)
3950 {
3951 struct cgroup_pidlist *l;
3952
3953 lockdep_assert_held(&cgrp->pidlist_mutex);
3954
3955 l = cgroup_pidlist_find(cgrp, type);
3956 if (l)
3957 return l;
3958
3959 /* entry not found; create a new one */
3960 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
3961 if (!l)
3962 return l;
3963
3964 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
3965 l->key.type = type;
3966 /* don't need task_nsproxy() if we're looking at ourself */
3967 l->key.ns = get_pid_ns(task_active_pid_ns(current));
3968 l->owner = cgrp;
3969 list_add(&l->links, &cgrp->pidlists);
3970 return l;
3971 }
3972
3973 /*
3974 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3975 */
3976 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3977 struct cgroup_pidlist **lp)
3978 {
3979 pid_t *array;
3980 int length;
3981 int pid, n = 0; /* used for populating the array */
3982 struct css_task_iter it;
3983 struct task_struct *tsk;
3984 struct cgroup_pidlist *l;
3985
3986 lockdep_assert_held(&cgrp->pidlist_mutex);
3987
3988 /*
3989 * If cgroup gets more users after we read count, we won't have
3990 * enough space - tough. This race is indistinguishable to the
3991 * caller from the case that the additional cgroup users didn't
3992 * show up until sometime later on.
3993 */
3994 length = cgroup_task_count(cgrp);
3995 array = pidlist_allocate(length);
3996 if (!array)
3997 return -ENOMEM;
3998 /* now, populate the array */
3999 css_task_iter_start(&cgrp->self, &it);
4000 while ((tsk = css_task_iter_next(&it))) {
4001 if (unlikely(n == length))
4002 break;
4003 /* get tgid or pid for procs or tasks file respectively */
4004 if (type == CGROUP_FILE_PROCS)
4005 pid = task_tgid_vnr(tsk);
4006 else
4007 pid = task_pid_vnr(tsk);
4008 if (pid > 0) /* make sure to only use valid results */
4009 array[n++] = pid;
4010 }
4011 css_task_iter_end(&it);
4012 length = n;
4013 /* now sort & (if procs) strip out duplicates */
4014 if (cgroup_on_dfl(cgrp))
4015 sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
4016 else
4017 sort(array, length, sizeof(pid_t), cmppid, NULL);
4018 if (type == CGROUP_FILE_PROCS)
4019 length = pidlist_uniq(array, length);
4020
4021 l = cgroup_pidlist_find_create(cgrp, type);
4022 if (!l) {
4023 pidlist_free(array);
4024 return -ENOMEM;
4025 }
4026
4027 /* store array, freeing old if necessary */
4028 pidlist_free(l->list);
4029 l->list = array;
4030 l->length = length;
4031 *lp = l;
4032 return 0;
4033 }
4034
4035 /**
4036 * cgroupstats_build - build and fill cgroupstats
4037 * @stats: cgroupstats to fill information into
4038 * @dentry: A dentry entry belonging to the cgroup for which stats have
4039 * been requested.
4040 *
4041 * Build and fill cgroupstats so that taskstats can export it to user
4042 * space.
4043 */
4044 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
4045 {
4046 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
4047 struct cgroup *cgrp;
4048 struct css_task_iter it;
4049 struct task_struct *tsk;
4050
4051 /* it should be kernfs_node belonging to cgroupfs and is a directory */
4052 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
4053 kernfs_type(kn) != KERNFS_DIR)
4054 return -EINVAL;
4055
4056 mutex_lock(&cgroup_mutex);
4057
4058 /*
4059 * We aren't being called from kernfs and there's no guarantee on
4060 * @kn->priv's validity. For this and css_tryget_online_from_dir(),
4061 * @kn->priv is RCU safe. Let's do the RCU dancing.
4062 */
4063 rcu_read_lock();
4064 cgrp = rcu_dereference(kn->priv);
4065 if (!cgrp || cgroup_is_dead(cgrp)) {
4066 rcu_read_unlock();
4067 mutex_unlock(&cgroup_mutex);
4068 return -ENOENT;
4069 }
4070 rcu_read_unlock();
4071
4072 css_task_iter_start(&cgrp->self, &it);
4073 while ((tsk = css_task_iter_next(&it))) {
4074 switch (tsk->state) {
4075 case TASK_RUNNING:
4076 stats->nr_running++;
4077 break;
4078 case TASK_INTERRUPTIBLE:
4079 stats->nr_sleeping++;
4080 break;
4081 case TASK_UNINTERRUPTIBLE:
4082 stats->nr_uninterruptible++;
4083 break;
4084 case TASK_STOPPED:
4085 stats->nr_stopped++;
4086 break;
4087 default:
4088 if (delayacct_is_task_waiting_on_io(tsk))
4089 stats->nr_io_wait++;
4090 break;
4091 }
4092 }
4093 css_task_iter_end(&it);
4094
4095 mutex_unlock(&cgroup_mutex);
4096 return 0;
4097 }
4098
4099
4100 /*
4101 * seq_file methods for the tasks/procs files. The seq_file position is the
4102 * next pid to display; the seq_file iterator is a pointer to the pid
4103 * in the cgroup->l->list array.
4104 */
4105
4106 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
4107 {
4108 /*
4109 * Initially we receive a position value that corresponds to
4110 * one more than the last pid shown (or 0 on the first call or
4111 * after a seek to the start). Use a binary-search to find the
4112 * next pid to display, if any
4113 */
4114 struct kernfs_open_file *of = s->private;
4115 struct cgroup *cgrp = seq_css(s)->cgroup;
4116 struct cgroup_pidlist *l;
4117 enum cgroup_filetype type = seq_cft(s)->private;
4118 int index = 0, pid = *pos;
4119 int *iter, ret;
4120
4121 mutex_lock(&cgrp->pidlist_mutex);
4122
4123 /*
4124 * !NULL @of->priv indicates that this isn't the first start()
4125 * after open. If the matching pidlist is around, we can use that.
4126 * Look for it. Note that @of->priv can't be used directly. It
4127 * could already have been destroyed.
4128 */
4129 if (of->priv)
4130 of->priv = cgroup_pidlist_find(cgrp, type);
4131
4132 /*
4133 * Either this is the first start() after open or the matching
4134 * pidlist has been destroyed inbetween. Create a new one.
4135 */
4136 if (!of->priv) {
4137 ret = pidlist_array_load(cgrp, type,
4138 (struct cgroup_pidlist **)&of->priv);
4139 if (ret)
4140 return ERR_PTR(ret);
4141 }
4142 l = of->priv;
4143
4144 if (pid) {
4145 int end = l->length;
4146
4147 while (index < end) {
4148 int mid = (index + end) / 2;
4149 if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
4150 index = mid;
4151 break;
4152 } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
4153 index = mid + 1;
4154 else
4155 end = mid;
4156 }
4157 }
4158 /* If we're off the end of the array, we're done */
4159 if (index >= l->length)
4160 return NULL;
4161 /* Update the abstract position to be the actual pid that we found */
4162 iter = l->list + index;
4163 *pos = cgroup_pid_fry(cgrp, *iter);
4164 return iter;
4165 }
4166
4167 static void cgroup_pidlist_stop(struct seq_file *s, void *v)
4168 {
4169 struct kernfs_open_file *of = s->private;
4170 struct cgroup_pidlist *l = of->priv;
4171
4172 if (l)
4173 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
4174 CGROUP_PIDLIST_DESTROY_DELAY);
4175 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
4176 }
4177
4178 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
4179 {
4180 struct kernfs_open_file *of = s->private;
4181 struct cgroup_pidlist *l = of->priv;
4182 pid_t *p = v;
4183 pid_t *end = l->list + l->length;
4184 /*
4185 * Advance to the next pid in the array. If this goes off the
4186 * end, we're done
4187 */
4188 p++;
4189 if (p >= end) {
4190 return NULL;
4191 } else {
4192 *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
4193 return p;
4194 }
4195 }
4196
4197 static int cgroup_pidlist_show(struct seq_file *s, void *v)
4198 {
4199 seq_printf(s, "%d\n", *(int *)v);
4200
4201 return 0;
4202 }
4203
4204 static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
4205 struct cftype *cft)
4206 {
4207 return notify_on_release(css->cgroup);
4208 }
4209
4210 static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
4211 struct cftype *cft, u64 val)
4212 {
4213 if (val)
4214 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
4215 else
4216 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
4217 return 0;
4218 }
4219
4220 static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
4221 struct cftype *cft)
4222 {
4223 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4224 }
4225
4226 static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
4227 struct cftype *cft, u64 val)
4228 {
4229 if (val)
4230 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4231 else
4232 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4233 return 0;
4234 }
4235
4236 /* cgroup core interface files for the default hierarchy */
4237 static struct cftype cgroup_dfl_base_files[] = {
4238 {
4239 .name = "cgroup.procs",
4240 .seq_start = cgroup_pidlist_start,
4241 .seq_next = cgroup_pidlist_next,
4242 .seq_stop = cgroup_pidlist_stop,
4243 .seq_show = cgroup_pidlist_show,
4244 .private = CGROUP_FILE_PROCS,
4245 .write = cgroup_procs_write,
4246 .mode = S_IRUGO | S_IWUSR,
4247 },
4248 {
4249 .name = "cgroup.controllers",
4250 .flags = CFTYPE_ONLY_ON_ROOT,
4251 .seq_show = cgroup_root_controllers_show,
4252 },
4253 {
4254 .name = "cgroup.controllers",
4255 .flags = CFTYPE_NOT_ON_ROOT,
4256 .seq_show = cgroup_controllers_show,
4257 },
4258 {
4259 .name = "cgroup.subtree_control",
4260 .seq_show = cgroup_subtree_control_show,
4261 .write = cgroup_subtree_control_write,
4262 },
4263 {
4264 .name = "cgroup.populated",
4265 .flags = CFTYPE_NOT_ON_ROOT,
4266 .seq_show = cgroup_populated_show,
4267 },
4268 { } /* terminate */
4269 };
4270
4271 /* cgroup core interface files for the legacy hierarchies */
4272 static struct cftype cgroup_legacy_base_files[] = {
4273 {
4274 .name = "cgroup.procs",
4275 .seq_start = cgroup_pidlist_start,
4276 .seq_next = cgroup_pidlist_next,
4277 .seq_stop = cgroup_pidlist_stop,
4278 .seq_show = cgroup_pidlist_show,
4279 .private = CGROUP_FILE_PROCS,
4280 .write = cgroup_procs_write,
4281 .mode = S_IRUGO | S_IWUSR,
4282 },
4283 {
4284 .name = "cgroup.clone_children",
4285 .read_u64 = cgroup_clone_children_read,
4286 .write_u64 = cgroup_clone_children_write,
4287 },
4288 {
4289 .name = "cgroup.sane_behavior",
4290 .flags = CFTYPE_ONLY_ON_ROOT,
4291 .seq_show = cgroup_sane_behavior_show,
4292 },
4293 {
4294 .name = "tasks",
4295 .seq_start = cgroup_pidlist_start,
4296 .seq_next = cgroup_pidlist_next,
4297 .seq_stop = cgroup_pidlist_stop,
4298 .seq_show = cgroup_pidlist_show,
4299 .private = CGROUP_FILE_TASKS,
4300 .write = cgroup_tasks_write,
4301 .mode = S_IRUGO | S_IWUSR,
4302 },
4303 {
4304 .name = "notify_on_release",
4305 .read_u64 = cgroup_read_notify_on_release,
4306 .write_u64 = cgroup_write_notify_on_release,
4307 },
4308 {
4309 .name = "release_agent",
4310 .flags = CFTYPE_ONLY_ON_ROOT,
4311 .seq_show = cgroup_release_agent_show,
4312 .write = cgroup_release_agent_write,
4313 .max_write_len = PATH_MAX - 1,
4314 },
4315 { } /* terminate */
4316 };
4317
4318 /**
4319 * cgroup_populate_dir - create subsys files in a cgroup directory
4320 * @cgrp: target cgroup
4321 * @subsys_mask: mask of the subsystem ids whose files should be added
4322 *
4323 * On failure, no file is added.
4324 */
4325 static int cgroup_populate_dir(struct cgroup *cgrp, unsigned long subsys_mask)
4326 {
4327 struct cgroup_subsys *ss;
4328 int i, ret = 0;
4329
4330 /* process cftsets of each subsystem */
4331 for_each_subsys(ss, i) {
4332 struct cftype *cfts;
4333
4334 if (!(subsys_mask & (1 << i)))
4335 continue;
4336
4337 list_for_each_entry(cfts, &ss->cfts, node) {
4338 ret = cgroup_addrm_files(cgrp, cfts, true);
4339 if (ret < 0)
4340 goto err;
4341 }
4342 }
4343 return 0;
4344 err:
4345 cgroup_clear_dir(cgrp, subsys_mask);
4346 return ret;
4347 }
4348
4349 /*
4350 * css destruction is four-stage process.
4351 *
4352 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4353 * Implemented in kill_css().
4354 *
4355 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
4356 * and thus css_tryget_online() is guaranteed to fail, the css can be
4357 * offlined by invoking offline_css(). After offlining, the base ref is
4358 * put. Implemented in css_killed_work_fn().
4359 *
4360 * 3. When the percpu_ref reaches zero, the only possible remaining
4361 * accessors are inside RCU read sections. css_release() schedules the
4362 * RCU callback.
4363 *
4364 * 4. After the grace period, the css can be freed. Implemented in
4365 * css_free_work_fn().
4366 *
4367 * It is actually hairier because both step 2 and 4 require process context
4368 * and thus involve punting to css->destroy_work adding two additional
4369 * steps to the already complex sequence.
4370 */
4371 static void css_free_work_fn(struct work_struct *work)
4372 {
4373 struct cgroup_subsys_state *css =
4374 container_of(work, struct cgroup_subsys_state, destroy_work);
4375 struct cgroup_subsys *ss = css->ss;
4376 struct cgroup *cgrp = css->cgroup;
4377
4378 percpu_ref_exit(&css->refcnt);
4379
4380 if (ss) {
4381 /* css free path */
4382 int id = css->id;
4383
4384 if (css->parent)
4385 css_put(css->parent);
4386
4387 ss->css_free(css);
4388 cgroup_idr_remove(&ss->css_idr, id);
4389 cgroup_put(cgrp);
4390 } else {
4391 /* cgroup free path */
4392 atomic_dec(&cgrp->root->nr_cgrps);
4393 cgroup_pidlist_destroy_all(cgrp);
4394 cancel_work_sync(&cgrp->release_agent_work);
4395
4396 if (cgroup_parent(cgrp)) {
4397 /*
4398 * We get a ref to the parent, and put the ref when
4399 * this cgroup is being freed, so it's guaranteed
4400 * that the parent won't be destroyed before its
4401 * children.
4402 */
4403 cgroup_put(cgroup_parent(cgrp));
4404 kernfs_put(cgrp->kn);
4405 kfree(cgrp);
4406 } else {
4407 /*
4408 * This is root cgroup's refcnt reaching zero,
4409 * which indicates that the root should be
4410 * released.
4411 */
4412 cgroup_destroy_root(cgrp->root);
4413 }
4414 }
4415 }
4416
4417 static void css_free_rcu_fn(struct rcu_head *rcu_head)
4418 {
4419 struct cgroup_subsys_state *css =
4420 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
4421
4422 INIT_WORK(&css->destroy_work, css_free_work_fn);
4423 queue_work(cgroup_destroy_wq, &css->destroy_work);
4424 }
4425
4426 static void css_release_work_fn(struct work_struct *work)
4427 {
4428 struct cgroup_subsys_state *css =
4429 container_of(work, struct cgroup_subsys_state, destroy_work);
4430 struct cgroup_subsys *ss = css->ss;
4431 struct cgroup *cgrp = css->cgroup;
4432
4433 mutex_lock(&cgroup_mutex);
4434
4435 css->flags |= CSS_RELEASED;
4436 list_del_rcu(&css->sibling);
4437
4438 if (ss) {
4439 /* css release path */
4440 cgroup_idr_replace(&ss->css_idr, NULL, css->id);
4441 if (ss->css_released)
4442 ss->css_released(css);
4443 } else {
4444 /* cgroup release path */
4445 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4446 cgrp->id = -1;
4447
4448 /*
4449 * There are two control paths which try to determine
4450 * cgroup from dentry without going through kernfs -
4451 * cgroupstats_build() and css_tryget_online_from_dir().
4452 * Those are supported by RCU protecting clearing of
4453 * cgrp->kn->priv backpointer.
4454 */
4455 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, NULL);
4456 }
4457
4458 mutex_unlock(&cgroup_mutex);
4459
4460 call_rcu(&css->rcu_head, css_free_rcu_fn);
4461 }
4462
4463 static void css_release(struct percpu_ref *ref)
4464 {
4465 struct cgroup_subsys_state *css =
4466 container_of(ref, struct cgroup_subsys_state, refcnt);
4467
4468 INIT_WORK(&css->destroy_work, css_release_work_fn);
4469 queue_work(cgroup_destroy_wq, &css->destroy_work);
4470 }
4471
4472 static void init_and_link_css(struct cgroup_subsys_state *css,
4473 struct cgroup_subsys *ss, struct cgroup *cgrp)
4474 {
4475 lockdep_assert_held(&cgroup_mutex);
4476
4477 cgroup_get(cgrp);
4478
4479 memset(css, 0, sizeof(*css));
4480 css->cgroup = cgrp;
4481 css->ss = ss;
4482 INIT_LIST_HEAD(&css->sibling);
4483 INIT_LIST_HEAD(&css->children);
4484 css->serial_nr = css_serial_nr_next++;
4485
4486 if (cgroup_parent(cgrp)) {
4487 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
4488 css_get(css->parent);
4489 }
4490
4491 BUG_ON(cgroup_css(cgrp, ss));
4492 }
4493
4494 /* invoke ->css_online() on a new CSS and mark it online if successful */
4495 static int online_css(struct cgroup_subsys_state *css)
4496 {
4497 struct cgroup_subsys *ss = css->ss;
4498 int ret = 0;
4499
4500 lockdep_assert_held(&cgroup_mutex);
4501
4502 if (ss->css_online)
4503 ret = ss->css_online(css);
4504 if (!ret) {
4505 css->flags |= CSS_ONLINE;
4506 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
4507 }
4508 return ret;
4509 }
4510
4511 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
4512 static void offline_css(struct cgroup_subsys_state *css)
4513 {
4514 struct cgroup_subsys *ss = css->ss;
4515
4516 lockdep_assert_held(&cgroup_mutex);
4517
4518 if (!(css->flags & CSS_ONLINE))
4519 return;
4520
4521 if (ss->css_offline)
4522 ss->css_offline(css);
4523
4524 css->flags &= ~CSS_ONLINE;
4525 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
4526
4527 wake_up_all(&css->cgroup->offline_waitq);
4528 }
4529
4530 /**
4531 * create_css - create a cgroup_subsys_state
4532 * @cgrp: the cgroup new css will be associated with
4533 * @ss: the subsys of new css
4534 * @visible: whether to create control knobs for the new css or not
4535 *
4536 * Create a new css associated with @cgrp - @ss pair. On success, the new
4537 * css is online and installed in @cgrp with all interface files created if
4538 * @visible. Returns 0 on success, -errno on failure.
4539 */
4540 static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
4541 bool visible)
4542 {
4543 struct cgroup *parent = cgroup_parent(cgrp);
4544 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
4545 struct cgroup_subsys_state *css;
4546 int err;
4547
4548 lockdep_assert_held(&cgroup_mutex);
4549
4550 css = ss->css_alloc(parent_css);
4551 if (IS_ERR(css))
4552 return PTR_ERR(css);
4553
4554 init_and_link_css(css, ss, cgrp);
4555
4556 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
4557 if (err)
4558 goto err_free_css;
4559
4560 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_NOWAIT);
4561 if (err < 0)
4562 goto err_free_percpu_ref;
4563 css->id = err;
4564
4565 if (visible) {
4566 err = cgroup_populate_dir(cgrp, 1 << ss->id);
4567 if (err)
4568 goto err_free_id;
4569 }
4570
4571 /* @css is ready to be brought online now, make it visible */
4572 list_add_tail_rcu(&css->sibling, &parent_css->children);
4573 cgroup_idr_replace(&ss->css_idr, css, css->id);
4574
4575 err = online_css(css);
4576 if (err)
4577 goto err_list_del;
4578
4579 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
4580 cgroup_parent(parent)) {
4581 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4582 current->comm, current->pid, ss->name);
4583 if (!strcmp(ss->name, "memory"))
4584 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
4585 ss->warned_broken_hierarchy = true;
4586 }
4587
4588 return 0;
4589
4590 err_list_del:
4591 list_del_rcu(&css->sibling);
4592 cgroup_clear_dir(css->cgroup, 1 << css->ss->id);
4593 err_free_id:
4594 cgroup_idr_remove(&ss->css_idr, css->id);
4595 err_free_percpu_ref:
4596 percpu_ref_exit(&css->refcnt);
4597 err_free_css:
4598 call_rcu(&css->rcu_head, css_free_rcu_fn);
4599 return err;
4600 }
4601
4602 static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
4603 umode_t mode)
4604 {
4605 struct cgroup *parent, *cgrp;
4606 struct cgroup_root *root;
4607 struct cgroup_subsys *ss;
4608 struct kernfs_node *kn;
4609 struct cftype *base_files;
4610 int ssid, ret;
4611
4612 /* Do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable.
4613 */
4614 if (strchr(name, '\n'))
4615 return -EINVAL;
4616
4617 parent = cgroup_kn_lock_live(parent_kn);
4618 if (!parent)
4619 return -ENODEV;
4620 root = parent->root;
4621
4622 /* allocate the cgroup and its ID, 0 is reserved for the root */
4623 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
4624 if (!cgrp) {
4625 ret = -ENOMEM;
4626 goto out_unlock;
4627 }
4628
4629 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
4630 if (ret)
4631 goto out_free_cgrp;
4632
4633 /*
4634 * Temporarily set the pointer to NULL, so idr_find() won't return
4635 * a half-baked cgroup.
4636 */
4637 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_NOWAIT);
4638 if (cgrp->id < 0) {
4639 ret = -ENOMEM;
4640 goto out_cancel_ref;
4641 }
4642
4643 init_cgroup_housekeeping(cgrp);
4644
4645 cgrp->self.parent = &parent->self;
4646 cgrp->root = root;
4647
4648 if (notify_on_release(parent))
4649 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4650
4651 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4652 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
4653
4654 /* create the directory */
4655 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
4656 if (IS_ERR(kn)) {
4657 ret = PTR_ERR(kn);
4658 goto out_free_id;
4659 }
4660 cgrp->kn = kn;
4661
4662 /*
4663 * This extra ref will be put in cgroup_free_fn() and guarantees
4664 * that @cgrp->kn is always accessible.
4665 */
4666 kernfs_get(kn);
4667
4668 cgrp->self.serial_nr = css_serial_nr_next++;
4669
4670 /* allocation complete, commit to creation */
4671 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
4672 atomic_inc(&root->nr_cgrps);
4673 cgroup_get(parent);
4674
4675 /*
4676 * @cgrp is now fully operational. If something fails after this
4677 * point, it'll be released via the normal destruction path.
4678 */
4679 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
4680
4681 ret = cgroup_kn_set_ugid(kn);
4682 if (ret)
4683 goto out_destroy;
4684
4685 if (cgroup_on_dfl(cgrp))
4686 base_files = cgroup_dfl_base_files;
4687 else
4688 base_files = cgroup_legacy_base_files;
4689
4690 ret = cgroup_addrm_files(cgrp, base_files, true);
4691 if (ret)
4692 goto out_destroy;
4693
4694 /* let's create and online css's */
4695 for_each_subsys(ss, ssid) {
4696 if (parent->child_subsys_mask & (1 << ssid)) {
4697 ret = create_css(cgrp, ss,
4698 parent->subtree_control & (1 << ssid));
4699 if (ret)
4700 goto out_destroy;
4701 }
4702 }
4703
4704 /*
4705 * On the default hierarchy, a child doesn't automatically inherit
4706 * subtree_control from the parent. Each is configured manually.
4707 */
4708 if (!cgroup_on_dfl(cgrp)) {
4709 cgrp->subtree_control = parent->subtree_control;
4710 cgroup_refresh_child_subsys_mask(cgrp);
4711 }
4712
4713 kernfs_activate(kn);
4714
4715 ret = 0;
4716 goto out_unlock;
4717
4718 out_free_id:
4719 cgroup_idr_remove(&root->cgroup_idr, cgrp->id);
4720 out_cancel_ref:
4721 percpu_ref_exit(&cgrp->self.refcnt);
4722 out_free_cgrp:
4723 kfree(cgrp);
4724 out_unlock:
4725 cgroup_kn_unlock(parent_kn);
4726 return ret;
4727
4728 out_destroy:
4729 cgroup_destroy_locked(cgrp);
4730 goto out_unlock;
4731 }
4732
4733 /*
4734 * This is called when the refcnt of a css is confirmed to be killed.
4735 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
4736 * initate destruction and put the css ref from kill_css().
4737 */
4738 static void css_killed_work_fn(struct work_struct *work)
4739 {
4740 struct cgroup_subsys_state *css =
4741 container_of(work, struct cgroup_subsys_state, destroy_work);
4742
4743 mutex_lock(&cgroup_mutex);
4744 offline_css(css);
4745 mutex_unlock(&cgroup_mutex);
4746
4747 css_put(css);
4748 }
4749
4750 /* css kill confirmation processing requires process context, bounce */
4751 static void css_killed_ref_fn(struct percpu_ref *ref)
4752 {
4753 struct cgroup_subsys_state *css =
4754 container_of(ref, struct cgroup_subsys_state, refcnt);
4755
4756 INIT_WORK(&css->destroy_work, css_killed_work_fn);
4757 queue_work(cgroup_destroy_wq, &css->destroy_work);
4758 }
4759
4760 /**
4761 * kill_css - destroy a css
4762 * @css: css to destroy
4763 *
4764 * This function initiates destruction of @css by removing cgroup interface
4765 * files and putting its base reference. ->css_offline() will be invoked
4766 * asynchronously once css_tryget_online() is guaranteed to fail and when
4767 * the reference count reaches zero, @css will be released.
4768 */
4769 static void kill_css(struct cgroup_subsys_state *css)
4770 {
4771 lockdep_assert_held(&cgroup_mutex);
4772
4773 /*
4774 * This must happen before css is disassociated with its cgroup.
4775 * See seq_css() for details.
4776 */
4777 cgroup_clear_dir(css->cgroup, 1 << css->ss->id);
4778
4779 /*
4780 * Killing would put the base ref, but we need to keep it alive
4781 * until after ->css_offline().
4782 */
4783 css_get(css);
4784
4785 /*
4786 * cgroup core guarantees that, by the time ->css_offline() is
4787 * invoked, no new css reference will be given out via
4788 * css_tryget_online(). We can't simply call percpu_ref_kill() and
4789 * proceed to offlining css's because percpu_ref_kill() doesn't
4790 * guarantee that the ref is seen as killed on all CPUs on return.
4791 *
4792 * Use percpu_ref_kill_and_confirm() to get notifications as each
4793 * css is confirmed to be seen as killed on all CPUs.
4794 */
4795 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
4796 }
4797
4798 /**
4799 * cgroup_destroy_locked - the first stage of cgroup destruction
4800 * @cgrp: cgroup to be destroyed
4801 *
4802 * css's make use of percpu refcnts whose killing latency shouldn't be
4803 * exposed to userland and are RCU protected. Also, cgroup core needs to
4804 * guarantee that css_tryget_online() won't succeed by the time
4805 * ->css_offline() is invoked. To satisfy all the requirements,
4806 * destruction is implemented in the following two steps.
4807 *
4808 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
4809 * userland visible parts and start killing the percpu refcnts of
4810 * css's. Set up so that the next stage will be kicked off once all
4811 * the percpu refcnts are confirmed to be killed.
4812 *
4813 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
4814 * rest of destruction. Once all cgroup references are gone, the
4815 * cgroup is RCU-freed.
4816 *
4817 * This function implements s1. After this step, @cgrp is gone as far as
4818 * the userland is concerned and a new cgroup with the same name may be
4819 * created. As cgroup doesn't care about the names internally, this
4820 * doesn't cause any problem.
4821 */
4822 static int cgroup_destroy_locked(struct cgroup *cgrp)
4823 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
4824 {
4825 struct cgroup_subsys_state *css;
4826 bool empty;
4827 int ssid;
4828
4829 lockdep_assert_held(&cgroup_mutex);
4830
4831 /*
4832 * css_set_rwsem synchronizes access to ->cset_links and prevents
4833 * @cgrp from being removed while put_css_set() is in progress.
4834 */
4835 down_read(&css_set_rwsem);
4836 empty = list_empty(&cgrp->cset_links);
4837 up_read(&css_set_rwsem);
4838 if (!empty)
4839 return -EBUSY;
4840
4841 /*
4842 * Make sure there's no live children. We can't test emptiness of
4843 * ->self.children as dead children linger on it while being
4844 * drained; otherwise, "rmdir parent/child parent" may fail.
4845 */
4846 if (css_has_online_children(&cgrp->self))
4847 return -EBUSY;
4848
4849 /*
4850 * Mark @cgrp dead. This prevents further task migration and child
4851 * creation by disabling cgroup_lock_live_group().
4852 */
4853 cgrp->self.flags &= ~CSS_ONLINE;
4854
4855 /* initiate massacre of all css's */
4856 for_each_css(css, ssid, cgrp)
4857 kill_css(css);
4858
4859 /*
4860 * Remove @cgrp directory along with the base files. @cgrp has an
4861 * extra ref on its kn.
4862 */
4863 kernfs_remove(cgrp->kn);
4864
4865 check_for_release(cgroup_parent(cgrp));
4866
4867 /* put the base reference */
4868 percpu_ref_kill(&cgrp->self.refcnt);
4869
4870 return 0;
4871 };
4872
4873 static int cgroup_rmdir(struct kernfs_node *kn)
4874 {
4875 struct cgroup *cgrp;
4876 int ret = 0;
4877
4878 cgrp = cgroup_kn_lock_live(kn);
4879 if (!cgrp)
4880 return 0;
4881
4882 ret = cgroup_destroy_locked(cgrp);
4883
4884 cgroup_kn_unlock(kn);
4885 return ret;
4886 }
4887
4888 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
4889 .remount_fs = cgroup_remount,
4890 .show_options = cgroup_show_options,
4891 .mkdir = cgroup_mkdir,
4892 .rmdir = cgroup_rmdir,
4893 .rename = cgroup_rename,
4894 };
4895
4896 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
4897 {
4898 struct cgroup_subsys_state *css;
4899
4900 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
4901
4902 mutex_lock(&cgroup_mutex);
4903
4904 idr_init(&ss->css_idr);
4905 INIT_LIST_HEAD(&ss->cfts);
4906
4907 /* Create the root cgroup state for this subsystem */
4908 ss->root = &cgrp_dfl_root;
4909 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
4910 /* We don't handle early failures gracefully */
4911 BUG_ON(IS_ERR(css));
4912 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
4913
4914 /*
4915 * Root csses are never destroyed and we can't initialize
4916 * percpu_ref during early init. Disable refcnting.
4917 */
4918 css->flags |= CSS_NO_REF;
4919
4920 if (early) {
4921 /* allocation can't be done safely during early init */
4922 css->id = 1;
4923 } else {
4924 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
4925 BUG_ON(css->id < 0);
4926 }
4927
4928 /* Update the init_css_set to contain a subsys
4929 * pointer to this state - since the subsystem is
4930 * newly registered, all tasks and hence the
4931 * init_css_set is in the subsystem's root cgroup. */
4932 init_css_set.subsys[ss->id] = css;
4933
4934 have_fork_callback |= (bool)ss->fork << ss->id;
4935 have_exit_callback |= (bool)ss->exit << ss->id;
4936
4937 /* At system boot, before all subsystems have been
4938 * registered, no tasks have been forked, so we don't
4939 * need to invoke fork callbacks here. */
4940 BUG_ON(!list_empty(&init_task.tasks));
4941
4942 BUG_ON(online_css(css));
4943
4944 mutex_unlock(&cgroup_mutex);
4945 }
4946
4947 /**
4948 * cgroup_init_early - cgroup initialization at system boot
4949 *
4950 * Initialize cgroups at system boot, and initialize any
4951 * subsystems that request early init.
4952 */
4953 int __init cgroup_init_early(void)
4954 {
4955 static struct cgroup_sb_opts __initdata opts;
4956 struct cgroup_subsys *ss;
4957 int i;
4958
4959 init_cgroup_root(&cgrp_dfl_root, &opts);
4960 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
4961
4962 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
4963
4964 for_each_subsys(ss, i) {
4965 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
4966 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p name:id=%d:%s\n",
4967 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
4968 ss->id, ss->name);
4969 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
4970 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
4971
4972 ss->id = i;
4973 ss->name = cgroup_subsys_name[i];
4974
4975 if (ss->early_init)
4976 cgroup_init_subsys(ss, true);
4977 }
4978 return 0;
4979 }
4980
4981 /**
4982 * cgroup_init - cgroup initialization
4983 *
4984 * Register cgroup filesystem and /proc file, and initialize
4985 * any subsystems that didn't request early init.
4986 */
4987 int __init cgroup_init(void)
4988 {
4989 struct cgroup_subsys *ss;
4990 unsigned long key;
4991 int ssid, err;
4992
4993 BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem));
4994 BUG_ON(cgroup_init_cftypes(NULL, cgroup_dfl_base_files));
4995 BUG_ON(cgroup_init_cftypes(NULL, cgroup_legacy_base_files));
4996
4997 mutex_lock(&cgroup_mutex);
4998
4999 /* Add init_css_set to the hash table */
5000 key = css_set_hash(init_css_set.subsys);
5001 hash_add(css_set_table, &init_css_set.hlist, key);
5002
5003 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
5004
5005 mutex_unlock(&cgroup_mutex);
5006
5007 for_each_subsys(ss, ssid) {
5008 if (ss->early_init) {
5009 struct cgroup_subsys_state *css =
5010 init_css_set.subsys[ss->id];
5011
5012 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5013 GFP_KERNEL);
5014 BUG_ON(css->id < 0);
5015 } else {
5016 cgroup_init_subsys(ss, false);
5017 }
5018
5019 list_add_tail(&init_css_set.e_cset_node[ssid],
5020 &cgrp_dfl_root.cgrp.e_csets[ssid]);
5021
5022 /*
5023 * Setting dfl_root subsys_mask needs to consider the
5024 * disabled flag and cftype registration needs kmalloc,
5025 * both of which aren't available during early_init.
5026 */
5027 if (ss->disabled)
5028 continue;
5029
5030 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5031
5032 if (cgroup_legacy_files_on_dfl && !ss->dfl_cftypes)
5033 ss->dfl_cftypes = ss->legacy_cftypes;
5034
5035 if (!ss->dfl_cftypes)
5036 cgrp_dfl_root_inhibit_ss_mask |= 1 << ss->id;
5037
5038 if (ss->dfl_cftypes == ss->legacy_cftypes) {
5039 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5040 } else {
5041 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5042 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
5043 }
5044
5045 if (ss->bind)
5046 ss->bind(init_css_set.subsys[ssid]);
5047 }
5048
5049 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
5050 if (!cgroup_kobj)
5051 return -ENOMEM;
5052
5053 err = register_filesystem(&cgroup_fs_type);
5054 if (err < 0) {
5055 kobject_put(cgroup_kobj);
5056 return err;
5057 }
5058
5059 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
5060 return 0;
5061 }
5062
5063 static int __init cgroup_wq_init(void)
5064 {
5065 /*
5066 * There isn't much point in executing destruction path in
5067 * parallel. Good chunk is serialized with cgroup_mutex anyway.
5068 * Use 1 for @max_active.
5069 *
5070 * We would prefer to do this in cgroup_init() above, but that
5071 * is called before init_workqueues(): so leave this until after.
5072 */
5073 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
5074 BUG_ON(!cgroup_destroy_wq);
5075
5076 /*
5077 * Used to destroy pidlists and separate to serve as flush domain.
5078 * Cap @max_active to 1 too.
5079 */
5080 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
5081 0, 1);
5082 BUG_ON(!cgroup_pidlist_destroy_wq);
5083
5084 return 0;
5085 }
5086 core_initcall(cgroup_wq_init);
5087
5088 /*
5089 * proc_cgroup_show()
5090 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5091 * - Used for /proc/<pid>/cgroup.
5092 */
5093 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5094 struct pid *pid, struct task_struct *tsk)
5095 {
5096 char *buf, *path;
5097 int retval;
5098 struct cgroup_root *root;
5099
5100 retval = -ENOMEM;
5101 buf = kmalloc(PATH_MAX, GFP_KERNEL);
5102 if (!buf)
5103 goto out;
5104
5105 mutex_lock(&cgroup_mutex);
5106 down_read(&css_set_rwsem);
5107
5108 for_each_root(root) {
5109 struct cgroup_subsys *ss;
5110 struct cgroup *cgrp;
5111 int ssid, count = 0;
5112
5113 if (root == &cgrp_dfl_root && !cgrp_dfl_root_visible)
5114 continue;
5115
5116 seq_printf(m, "%d:", root->hierarchy_id);
5117 for_each_subsys(ss, ssid)
5118 if (root->subsys_mask & (1 << ssid))
5119 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
5120 if (strlen(root->name))
5121 seq_printf(m, "%sname=%s", count ? "," : "",
5122 root->name);
5123 seq_putc(m, ':');
5124 cgrp = task_cgroup_from_root(tsk, root);
5125 path = cgroup_path(cgrp, buf, PATH_MAX);
5126 if (!path) {
5127 retval = -ENAMETOOLONG;
5128 goto out_unlock;
5129 }
5130 seq_puts(m, path);
5131 seq_putc(m, '\n');
5132 }
5133
5134 retval = 0;
5135 out_unlock:
5136 up_read(&css_set_rwsem);
5137 mutex_unlock(&cgroup_mutex);
5138 kfree(buf);
5139 out:
5140 return retval;
5141 }
5142
5143 /* Display information about each subsystem and each hierarchy */
5144 static int proc_cgroupstats_show(struct seq_file *m, void *v)
5145 {
5146 struct cgroup_subsys *ss;
5147 int i;
5148
5149 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
5150 /*
5151 * ideally we don't want subsystems moving around while we do this.
5152 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
5153 * subsys/hierarchy state.
5154 */
5155 mutex_lock(&cgroup_mutex);
5156
5157 for_each_subsys(ss, i)
5158 seq_printf(m, "%s\t%d\t%d\t%d\n",
5159 ss->name, ss->root->hierarchy_id,
5160 atomic_read(&ss->root->nr_cgrps), !ss->disabled);
5161
5162 mutex_unlock(&cgroup_mutex);
5163 return 0;
5164 }
5165
5166 static int cgroupstats_open(struct inode *inode, struct file *file)
5167 {
5168 return single_open(file, proc_cgroupstats_show, NULL);
5169 }
5170
5171 static const struct file_operations proc_cgroupstats_operations = {
5172 .open = cgroupstats_open,
5173 .read = seq_read,
5174 .llseek = seq_lseek,
5175 .release = single_release,
5176 };
5177
5178 /**
5179 * cgroup_fork - initialize cgroup related fields during copy_process()
5180 * @child: pointer to task_struct of forking parent process.
5181 *
5182 * A task is associated with the init_css_set until cgroup_post_fork()
5183 * attaches it to the parent's css_set. Empty cg_list indicates that
5184 * @child isn't holding reference to its css_set.
5185 */
5186 void cgroup_fork(struct task_struct *child)
5187 {
5188 RCU_INIT_POINTER(child->cgroups, &init_css_set);
5189 INIT_LIST_HEAD(&child->cg_list);
5190 }
5191
5192 /**
5193 * cgroup_post_fork - called on a new task after adding it to the task list
5194 * @child: the task in question
5195 *
5196 * Adds the task to the list running through its css_set if necessary and
5197 * call the subsystem fork() callbacks. Has to be after the task is
5198 * visible on the task list in case we race with the first call to
5199 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5200 * list.
5201 */
5202 void cgroup_post_fork(struct task_struct *child)
5203 {
5204 struct cgroup_subsys *ss;
5205 int i;
5206
5207 /*
5208 * This may race against cgroup_enable_task_cg_lists(). As that
5209 * function sets use_task_css_set_links before grabbing
5210 * tasklist_lock and we just went through tasklist_lock to add
5211 * @child, it's guaranteed that either we see the set
5212 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5213 * @child during its iteration.
5214 *
5215 * If we won the race, @child is associated with %current's
5216 * css_set. Grabbing css_set_rwsem guarantees both that the
5217 * association is stable, and, on completion of the parent's
5218 * migration, @child is visible in the source of migration or
5219 * already in the destination cgroup. This guarantee is necessary
5220 * when implementing operations which need to migrate all tasks of
5221 * a cgroup to another.
5222 *
5223 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
5224 * will remain in init_css_set. This is safe because all tasks are
5225 * in the init_css_set before cg_links is enabled and there's no
5226 * operation which transfers all tasks out of init_css_set.
5227 */
5228 if (use_task_css_set_links) {
5229 struct css_set *cset;
5230
5231 down_write(&css_set_rwsem);
5232 cset = task_css_set(current);
5233 if (list_empty(&child->cg_list)) {
5234 rcu_assign_pointer(child->cgroups, cset);
5235 list_add(&child->cg_list, &cset->tasks);
5236 get_css_set(cset);
5237 }
5238 up_write(&css_set_rwsem);
5239 }
5240
5241 /*
5242 * Call ss->fork(). This must happen after @child is linked on
5243 * css_set; otherwise, @child might change state between ->fork()
5244 * and addition to css_set.
5245 */
5246 for_each_subsys_which(ss, i, &have_fork_callback)
5247 ss->fork(child);
5248 }
5249
5250 /**
5251 * cgroup_exit - detach cgroup from exiting task
5252 * @tsk: pointer to task_struct of exiting process
5253 *
5254 * Description: Detach cgroup from @tsk and release it.
5255 *
5256 * Note that cgroups marked notify_on_release force every task in
5257 * them to take the global cgroup_mutex mutex when exiting.
5258 * This could impact scaling on very large systems. Be reluctant to
5259 * use notify_on_release cgroups where very high task exit scaling
5260 * is required on large systems.
5261 *
5262 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
5263 * call cgroup_exit() while the task is still competent to handle
5264 * notify_on_release(), then leave the task attached to the root cgroup in
5265 * each hierarchy for the remainder of its exit. No need to bother with
5266 * init_css_set refcnting. init_css_set never goes away and we can't race
5267 * with migration path - PF_EXITING is visible to migration path.
5268 */
5269 void cgroup_exit(struct task_struct *tsk)
5270 {
5271 struct cgroup_subsys *ss;
5272 struct css_set *cset;
5273 bool put_cset = false;
5274 int i;
5275
5276 /*
5277 * Unlink from @tsk from its css_set. As migration path can't race
5278 * with us, we can check cg_list without grabbing css_set_rwsem.
5279 */
5280 if (!list_empty(&tsk->cg_list)) {
5281 down_write(&css_set_rwsem);
5282 list_del_init(&tsk->cg_list);
5283 up_write(&css_set_rwsem);
5284 put_cset = true;
5285 }
5286
5287 /* Reassign the task to the init_css_set. */
5288 cset = task_css_set(tsk);
5289 RCU_INIT_POINTER(tsk->cgroups, &init_css_set);
5290
5291 /* see cgroup_post_fork() for details */
5292 for_each_subsys_which(ss, i, &have_exit_callback) {
5293 struct cgroup_subsys_state *old_css = cset->subsys[i];
5294 struct cgroup_subsys_state *css = task_css(tsk, i);
5295
5296 ss->exit(css, old_css, tsk);
5297 }
5298
5299 if (put_cset)
5300 put_css_set(cset);
5301 }
5302
5303 static void check_for_release(struct cgroup *cgrp)
5304 {
5305 if (notify_on_release(cgrp) && !cgroup_has_tasks(cgrp) &&
5306 !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
5307 schedule_work(&cgrp->release_agent_work);
5308 }
5309
5310 /*
5311 * Notify userspace when a cgroup is released, by running the
5312 * configured release agent with the name of the cgroup (path
5313 * relative to the root of cgroup file system) as the argument.
5314 *
5315 * Most likely, this user command will try to rmdir this cgroup.
5316 *
5317 * This races with the possibility that some other task will be
5318 * attached to this cgroup before it is removed, or that some other
5319 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5320 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5321 * unused, and this cgroup will be reprieved from its death sentence,
5322 * to continue to serve a useful existence. Next time it's released,
5323 * we will get notified again, if it still has 'notify_on_release' set.
5324 *
5325 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5326 * means only wait until the task is successfully execve()'d. The
5327 * separate release agent task is forked by call_usermodehelper(),
5328 * then control in this thread returns here, without waiting for the
5329 * release agent task. We don't bother to wait because the caller of
5330 * this routine has no use for the exit status of the release agent
5331 * task, so no sense holding our caller up for that.
5332 */
5333 static void cgroup_release_agent(struct work_struct *work)
5334 {
5335 struct cgroup *cgrp =
5336 container_of(work, struct cgroup, release_agent_work);
5337 char *pathbuf = NULL, *agentbuf = NULL, *path;
5338 char *argv[3], *envp[3];
5339
5340 mutex_lock(&cgroup_mutex);
5341
5342 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
5343 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5344 if (!pathbuf || !agentbuf)
5345 goto out;
5346
5347 path = cgroup_path(cgrp, pathbuf, PATH_MAX);
5348 if (!path)
5349 goto out;
5350
5351 argv[0] = agentbuf;
5352 argv[1] = path;
5353 argv[2] = NULL;
5354
5355 /* minimal command environment */
5356 envp[0] = "HOME=/";
5357 envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5358 envp[2] = NULL;
5359
5360 mutex_unlock(&cgroup_mutex);
5361 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
5362 goto out_free;
5363 out:
5364 mutex_unlock(&cgroup_mutex);
5365 out_free:
5366 kfree(agentbuf);
5367 kfree(pathbuf);
5368 }
5369
5370 static int __init cgroup_disable(char *str)
5371 {
5372 struct cgroup_subsys *ss;
5373 char *token;
5374 int i;
5375
5376 while ((token = strsep(&str, ",")) != NULL) {
5377 if (!*token)
5378 continue;
5379
5380 for_each_subsys(ss, i) {
5381 if (!strcmp(token, ss->name)) {
5382 ss->disabled = 1;
5383 printk(KERN_INFO "Disabling %s control group"
5384 " subsystem\n", ss->name);
5385 break;
5386 }
5387 }
5388 }
5389 return 1;
5390 }
5391 __setup("cgroup_disable=", cgroup_disable);
5392
5393 static int __init cgroup_set_legacy_files_on_dfl(char *str)
5394 {
5395 printk("cgroup: using legacy files on the default hierarchy\n");
5396 cgroup_legacy_files_on_dfl = true;
5397 return 0;
5398 }
5399 __setup("cgroup__DEVEL__legacy_files_on_dfl", cgroup_set_legacy_files_on_dfl);
5400
5401 /**
5402 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
5403 * @dentry: directory dentry of interest
5404 * @ss: subsystem of interest
5405 *
5406 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
5407 * to get the corresponding css and return it. If such css doesn't exist
5408 * or can't be pinned, an ERR_PTR value is returned.
5409 */
5410 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
5411 struct cgroup_subsys *ss)
5412 {
5413 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
5414 struct cgroup_subsys_state *css = NULL;
5415 struct cgroup *cgrp;
5416
5417 /* is @dentry a cgroup dir? */
5418 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
5419 kernfs_type(kn) != KERNFS_DIR)
5420 return ERR_PTR(-EBADF);
5421
5422 rcu_read_lock();
5423
5424 /*
5425 * This path doesn't originate from kernfs and @kn could already
5426 * have been or be removed at any point. @kn->priv is RCU
5427 * protected for this access. See css_release_work_fn() for details.
5428 */
5429 cgrp = rcu_dereference(kn->priv);
5430 if (cgrp)
5431 css = cgroup_css(cgrp, ss);
5432
5433 if (!css || !css_tryget_online(css))
5434 css = ERR_PTR(-ENOENT);
5435
5436 rcu_read_unlock();
5437 return css;
5438 }
5439
5440 /**
5441 * css_from_id - lookup css by id
5442 * @id: the cgroup id
5443 * @ss: cgroup subsys to be looked into
5444 *
5445 * Returns the css if there's valid one with @id, otherwise returns NULL.
5446 * Should be called under rcu_read_lock().
5447 */
5448 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
5449 {
5450 WARN_ON_ONCE(!rcu_read_lock_held());
5451 return id > 0 ? idr_find(&ss->css_idr, id) : NULL;
5452 }
5453
5454 #ifdef CONFIG_CGROUP_DEBUG
5455 static struct cgroup_subsys_state *
5456 debug_css_alloc(struct cgroup_subsys_state *parent_css)
5457 {
5458 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5459
5460 if (!css)
5461 return ERR_PTR(-ENOMEM);
5462
5463 return css;
5464 }
5465
5466 static void debug_css_free(struct cgroup_subsys_state *css)
5467 {
5468 kfree(css);
5469 }
5470
5471 static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
5472 struct cftype *cft)
5473 {
5474 return cgroup_task_count(css->cgroup);
5475 }
5476
5477 static u64 current_css_set_read(struct cgroup_subsys_state *css,
5478 struct cftype *cft)
5479 {
5480 return (u64)(unsigned long)current->cgroups;
5481 }
5482
5483 static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
5484 struct cftype *cft)
5485 {
5486 u64 count;
5487
5488 rcu_read_lock();
5489 count = atomic_read(&task_css_set(current)->refcount);
5490 rcu_read_unlock();
5491 return count;
5492 }
5493
5494 static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
5495 {
5496 struct cgrp_cset_link *link;
5497 struct css_set *cset;
5498 char *name_buf;
5499
5500 name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
5501 if (!name_buf)
5502 return -ENOMEM;
5503
5504 down_read(&css_set_rwsem);
5505 rcu_read_lock();
5506 cset = rcu_dereference(current->cgroups);
5507 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
5508 struct cgroup *c = link->cgrp;
5509
5510 cgroup_name(c, name_buf, NAME_MAX + 1);
5511 seq_printf(seq, "Root %d group %s\n",
5512 c->root->hierarchy_id, name_buf);
5513 }
5514 rcu_read_unlock();
5515 up_read(&css_set_rwsem);
5516 kfree(name_buf);
5517 return 0;
5518 }
5519
5520 #define MAX_TASKS_SHOWN_PER_CSS 25
5521 static int cgroup_css_links_read(struct seq_file *seq, void *v)
5522 {
5523 struct cgroup_subsys_state *css = seq_css(seq);
5524 struct cgrp_cset_link *link;
5525
5526 down_read(&css_set_rwsem);
5527 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
5528 struct css_set *cset = link->cset;
5529 struct task_struct *task;
5530 int count = 0;
5531
5532 seq_printf(seq, "css_set %p\n", cset);
5533
5534 list_for_each_entry(task, &cset->tasks, cg_list) {
5535 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5536 goto overflow;
5537 seq_printf(seq, " task %d\n", task_pid_vnr(task));
5538 }
5539
5540 list_for_each_entry(task, &cset->mg_tasks, cg_list) {
5541 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5542 goto overflow;
5543 seq_printf(seq, " task %d\n", task_pid_vnr(task));
5544 }
5545 continue;
5546 overflow:
5547 seq_puts(seq, " ...\n");
5548 }
5549 up_read(&css_set_rwsem);
5550 return 0;
5551 }
5552
5553 static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
5554 {
5555 return (!cgroup_has_tasks(css->cgroup) &&
5556 !css_has_online_children(&css->cgroup->self));
5557 }
5558
5559 static struct cftype debug_files[] = {
5560 {
5561 .name = "taskcount",
5562 .read_u64 = debug_taskcount_read,
5563 },
5564
5565 {
5566 .name = "current_css_set",
5567 .read_u64 = current_css_set_read,
5568 },
5569
5570 {
5571 .name = "current_css_set_refcount",
5572 .read_u64 = current_css_set_refcount_read,
5573 },
5574
5575 {
5576 .name = "current_css_set_cg_links",
5577 .seq_show = current_css_set_cg_links_read,
5578 },
5579
5580 {
5581 .name = "cgroup_css_links",
5582 .seq_show = cgroup_css_links_read,
5583 },
5584
5585 {
5586 .name = "releasable",
5587 .read_u64 = releasable_read,
5588 },
5589
5590 { } /* terminate */
5591 };
5592
5593 struct cgroup_subsys debug_cgrp_subsys = {
5594 .css_alloc = debug_css_alloc,
5595 .css_free = debug_css_free,
5596 .legacy_cftypes = debug_files,
5597 };
5598 #endif /* CONFIG_CGROUP_DEBUG */
This page took 0.252179 seconds and 6 git commands to generate.