Merge tag 'dm-4.8-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/device...
[deliverable/linux.git] / kernel / cgroup.c
1 /*
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/cgroup.h>
32 #include <linux/cred.h>
33 #include <linux/ctype.h>
34 #include <linux/errno.h>
35 #include <linux/init_task.h>
36 #include <linux/kernel.h>
37 #include <linux/list.h>
38 #include <linux/magic.h>
39 #include <linux/mm.h>
40 #include <linux/mutex.h>
41 #include <linux/mount.h>
42 #include <linux/pagemap.h>
43 #include <linux/proc_fs.h>
44 #include <linux/rcupdate.h>
45 #include <linux/sched.h>
46 #include <linux/slab.h>
47 #include <linux/spinlock.h>
48 #include <linux/percpu-rwsem.h>
49 #include <linux/string.h>
50 #include <linux/sort.h>
51 #include <linux/kmod.h>
52 #include <linux/delayacct.h>
53 #include <linux/cgroupstats.h>
54 #include <linux/hashtable.h>
55 #include <linux/pid_namespace.h>
56 #include <linux/idr.h>
57 #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
58 #include <linux/kthread.h>
59 #include <linux/delay.h>
60 #include <linux/atomic.h>
61 #include <linux/cpuset.h>
62 #include <linux/proc_ns.h>
63 #include <linux/nsproxy.h>
64 #include <net/sock.h>
65
66 /*
67 * pidlists linger the following amount before being destroyed. The goal
68 * is avoiding frequent destruction in the middle of consecutive read calls
69 * Expiring in the middle is a performance problem not a correctness one.
70 * 1 sec should be enough.
71 */
72 #define CGROUP_PIDLIST_DESTROY_DELAY HZ
73
74 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
75 MAX_CFTYPE_NAME + 2)
76
77 /*
78 * cgroup_mutex is the master lock. Any modification to cgroup or its
79 * hierarchy must be performed while holding it.
80 *
81 * css_set_lock protects task->cgroups pointer, the list of css_set
82 * objects, and the chain of tasks off each css_set.
83 *
84 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
85 * cgroup.h can use them for lockdep annotations.
86 */
87 #ifdef CONFIG_PROVE_RCU
88 DEFINE_MUTEX(cgroup_mutex);
89 DEFINE_SPINLOCK(css_set_lock);
90 EXPORT_SYMBOL_GPL(cgroup_mutex);
91 EXPORT_SYMBOL_GPL(css_set_lock);
92 #else
93 static DEFINE_MUTEX(cgroup_mutex);
94 static DEFINE_SPINLOCK(css_set_lock);
95 #endif
96
97 /*
98 * Protects cgroup_idr and css_idr so that IDs can be released without
99 * grabbing cgroup_mutex.
100 */
101 static DEFINE_SPINLOCK(cgroup_idr_lock);
102
103 /*
104 * Protects cgroup_file->kn for !self csses. It synchronizes notifications
105 * against file removal/re-creation across css hiding.
106 */
107 static DEFINE_SPINLOCK(cgroup_file_kn_lock);
108
109 /*
110 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
111 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
112 */
113 static DEFINE_SPINLOCK(release_agent_path_lock);
114
115 struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
116
117 #define cgroup_assert_mutex_or_rcu_locked() \
118 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
119 !lockdep_is_held(&cgroup_mutex), \
120 "cgroup_mutex or RCU read lock required");
121
122 /*
123 * cgroup destruction makes heavy use of work items and there can be a lot
124 * of concurrent destructions. Use a separate workqueue so that cgroup
125 * destruction work items don't end up filling up max_active of system_wq
126 * which may lead to deadlock.
127 */
128 static struct workqueue_struct *cgroup_destroy_wq;
129
130 /*
131 * pidlist destructions need to be flushed on cgroup destruction. Use a
132 * separate workqueue as flush domain.
133 */
134 static struct workqueue_struct *cgroup_pidlist_destroy_wq;
135
136 /* generate an array of cgroup subsystem pointers */
137 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
138 static struct cgroup_subsys *cgroup_subsys[] = {
139 #include <linux/cgroup_subsys.h>
140 };
141 #undef SUBSYS
142
143 /* array of cgroup subsystem names */
144 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
145 static const char *cgroup_subsys_name[] = {
146 #include <linux/cgroup_subsys.h>
147 };
148 #undef SUBSYS
149
150 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
151 #define SUBSYS(_x) \
152 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \
153 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \
154 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \
155 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
156 #include <linux/cgroup_subsys.h>
157 #undef SUBSYS
158
159 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
160 static struct static_key_true *cgroup_subsys_enabled_key[] = {
161 #include <linux/cgroup_subsys.h>
162 };
163 #undef SUBSYS
164
165 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
166 static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
167 #include <linux/cgroup_subsys.h>
168 };
169 #undef SUBSYS
170
171 /*
172 * The default hierarchy, reserved for the subsystems that are otherwise
173 * unattached - it never has more than a single cgroup, and all tasks are
174 * part of that cgroup.
175 */
176 struct cgroup_root cgrp_dfl_root;
177 EXPORT_SYMBOL_GPL(cgrp_dfl_root);
178
179 /*
180 * The default hierarchy always exists but is hidden until mounted for the
181 * first time. This is for backward compatibility.
182 */
183 static bool cgrp_dfl_visible;
184
185 /* Controllers blocked by the commandline in v1 */
186 static u16 cgroup_no_v1_mask;
187
188 /* some controllers are not supported in the default hierarchy */
189 static u16 cgrp_dfl_inhibit_ss_mask;
190
191 /* some controllers are implicitly enabled on the default hierarchy */
192 static unsigned long cgrp_dfl_implicit_ss_mask;
193
194 /* The list of hierarchy roots */
195
196 static LIST_HEAD(cgroup_roots);
197 static int cgroup_root_count;
198
199 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
200 static DEFINE_IDR(cgroup_hierarchy_idr);
201
202 /*
203 * Assign a monotonically increasing serial number to csses. It guarantees
204 * cgroups with bigger numbers are newer than those with smaller numbers.
205 * Also, as csses are always appended to the parent's ->children list, it
206 * guarantees that sibling csses are always sorted in the ascending serial
207 * number order on the list. Protected by cgroup_mutex.
208 */
209 static u64 css_serial_nr_next = 1;
210
211 /*
212 * These bitmask flags indicate whether tasks in the fork and exit paths have
213 * fork/exit handlers to call. This avoids us having to do extra work in the
214 * fork/exit path to check which subsystems have fork/exit callbacks.
215 */
216 static u16 have_fork_callback __read_mostly;
217 static u16 have_exit_callback __read_mostly;
218 static u16 have_free_callback __read_mostly;
219
220 /* cgroup namespace for init task */
221 struct cgroup_namespace init_cgroup_ns = {
222 .count = { .counter = 2, },
223 .user_ns = &init_user_ns,
224 .ns.ops = &cgroupns_operations,
225 .ns.inum = PROC_CGROUP_INIT_INO,
226 .root_cset = &init_css_set,
227 };
228
229 /* Ditto for the can_fork callback. */
230 static u16 have_canfork_callback __read_mostly;
231
232 static struct file_system_type cgroup2_fs_type;
233 static struct cftype cgroup_dfl_base_files[];
234 static struct cftype cgroup_legacy_base_files[];
235
236 static int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask);
237 static void cgroup_lock_and_drain_offline(struct cgroup *cgrp);
238 static int cgroup_apply_control(struct cgroup *cgrp);
239 static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
240 static void css_task_iter_advance(struct css_task_iter *it);
241 static int cgroup_destroy_locked(struct cgroup *cgrp);
242 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
243 struct cgroup_subsys *ss);
244 static void css_release(struct percpu_ref *ref);
245 static void kill_css(struct cgroup_subsys_state *css);
246 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
247 struct cgroup *cgrp, struct cftype cfts[],
248 bool is_add);
249
250 /**
251 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
252 * @ssid: subsys ID of interest
253 *
254 * cgroup_subsys_enabled() can only be used with literal subsys names which
255 * is fine for individual subsystems but unsuitable for cgroup core. This
256 * is slower static_key_enabled() based test indexed by @ssid.
257 */
258 static bool cgroup_ssid_enabled(int ssid)
259 {
260 if (CGROUP_SUBSYS_COUNT == 0)
261 return false;
262
263 return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
264 }
265
266 static bool cgroup_ssid_no_v1(int ssid)
267 {
268 return cgroup_no_v1_mask & (1 << ssid);
269 }
270
271 /**
272 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
273 * @cgrp: the cgroup of interest
274 *
275 * The default hierarchy is the v2 interface of cgroup and this function
276 * can be used to test whether a cgroup is on the default hierarchy for
277 * cases where a subsystem should behave differnetly depending on the
278 * interface version.
279 *
280 * The set of behaviors which change on the default hierarchy are still
281 * being determined and the mount option is prefixed with __DEVEL__.
282 *
283 * List of changed behaviors:
284 *
285 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
286 * and "name" are disallowed.
287 *
288 * - When mounting an existing superblock, mount options should match.
289 *
290 * - Remount is disallowed.
291 *
292 * - rename(2) is disallowed.
293 *
294 * - "tasks" is removed. Everything should be at process granularity. Use
295 * "cgroup.procs" instead.
296 *
297 * - "cgroup.procs" is not sorted. pids will be unique unless they got
298 * recycled inbetween reads.
299 *
300 * - "release_agent" and "notify_on_release" are removed. Replacement
301 * notification mechanism will be implemented.
302 *
303 * - "cgroup.clone_children" is removed.
304 *
305 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup
306 * and its descendants contain no task; otherwise, 1. The file also
307 * generates kernfs notification which can be monitored through poll and
308 * [di]notify when the value of the file changes.
309 *
310 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
311 * take masks of ancestors with non-empty cpus/mems, instead of being
312 * moved to an ancestor.
313 *
314 * - cpuset: a task can be moved into an empty cpuset, and again it takes
315 * masks of ancestors.
316 *
317 * - memcg: use_hierarchy is on by default and the cgroup file for the flag
318 * is not created.
319 *
320 * - blkcg: blk-throttle becomes properly hierarchical.
321 *
322 * - debug: disallowed on the default hierarchy.
323 */
324 static bool cgroup_on_dfl(const struct cgroup *cgrp)
325 {
326 return cgrp->root == &cgrp_dfl_root;
327 }
328
329 /* IDR wrappers which synchronize using cgroup_idr_lock */
330 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
331 gfp_t gfp_mask)
332 {
333 int ret;
334
335 idr_preload(gfp_mask);
336 spin_lock_bh(&cgroup_idr_lock);
337 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
338 spin_unlock_bh(&cgroup_idr_lock);
339 idr_preload_end();
340 return ret;
341 }
342
343 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
344 {
345 void *ret;
346
347 spin_lock_bh(&cgroup_idr_lock);
348 ret = idr_replace(idr, ptr, id);
349 spin_unlock_bh(&cgroup_idr_lock);
350 return ret;
351 }
352
353 static void cgroup_idr_remove(struct idr *idr, int id)
354 {
355 spin_lock_bh(&cgroup_idr_lock);
356 idr_remove(idr, id);
357 spin_unlock_bh(&cgroup_idr_lock);
358 }
359
360 static struct cgroup *cgroup_parent(struct cgroup *cgrp)
361 {
362 struct cgroup_subsys_state *parent_css = cgrp->self.parent;
363
364 if (parent_css)
365 return container_of(parent_css, struct cgroup, self);
366 return NULL;
367 }
368
369 /* subsystems visibly enabled on a cgroup */
370 static u16 cgroup_control(struct cgroup *cgrp)
371 {
372 struct cgroup *parent = cgroup_parent(cgrp);
373 u16 root_ss_mask = cgrp->root->subsys_mask;
374
375 if (parent)
376 return parent->subtree_control;
377
378 if (cgroup_on_dfl(cgrp))
379 root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
380 cgrp_dfl_implicit_ss_mask);
381 return root_ss_mask;
382 }
383
384 /* subsystems enabled on a cgroup */
385 static u16 cgroup_ss_mask(struct cgroup *cgrp)
386 {
387 struct cgroup *parent = cgroup_parent(cgrp);
388
389 if (parent)
390 return parent->subtree_ss_mask;
391
392 return cgrp->root->subsys_mask;
393 }
394
395 /**
396 * cgroup_css - obtain a cgroup's css for the specified subsystem
397 * @cgrp: the cgroup of interest
398 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
399 *
400 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
401 * function must be called either under cgroup_mutex or rcu_read_lock() and
402 * the caller is responsible for pinning the returned css if it wants to
403 * keep accessing it outside the said locks. This function may return
404 * %NULL if @cgrp doesn't have @subsys_id enabled.
405 */
406 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
407 struct cgroup_subsys *ss)
408 {
409 if (ss)
410 return rcu_dereference_check(cgrp->subsys[ss->id],
411 lockdep_is_held(&cgroup_mutex));
412 else
413 return &cgrp->self;
414 }
415
416 /**
417 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
418 * @cgrp: the cgroup of interest
419 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
420 *
421 * Similar to cgroup_css() but returns the effective css, which is defined
422 * as the matching css of the nearest ancestor including self which has @ss
423 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
424 * function is guaranteed to return non-NULL css.
425 */
426 static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
427 struct cgroup_subsys *ss)
428 {
429 lockdep_assert_held(&cgroup_mutex);
430
431 if (!ss)
432 return &cgrp->self;
433
434 /*
435 * This function is used while updating css associations and thus
436 * can't test the csses directly. Test ss_mask.
437 */
438 while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
439 cgrp = cgroup_parent(cgrp);
440 if (!cgrp)
441 return NULL;
442 }
443
444 return cgroup_css(cgrp, ss);
445 }
446
447 /**
448 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
449 * @cgrp: the cgroup of interest
450 * @ss: the subsystem of interest
451 *
452 * Find and get the effective css of @cgrp for @ss. The effective css is
453 * defined as the matching css of the nearest ancestor including self which
454 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
455 * the root css is returned, so this function always returns a valid css.
456 * The returned css must be put using css_put().
457 */
458 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
459 struct cgroup_subsys *ss)
460 {
461 struct cgroup_subsys_state *css;
462
463 rcu_read_lock();
464
465 do {
466 css = cgroup_css(cgrp, ss);
467
468 if (css && css_tryget_online(css))
469 goto out_unlock;
470 cgrp = cgroup_parent(cgrp);
471 } while (cgrp);
472
473 css = init_css_set.subsys[ss->id];
474 css_get(css);
475 out_unlock:
476 rcu_read_unlock();
477 return css;
478 }
479
480 /* convenient tests for these bits */
481 static inline bool cgroup_is_dead(const struct cgroup *cgrp)
482 {
483 return !(cgrp->self.flags & CSS_ONLINE);
484 }
485
486 static void cgroup_get(struct cgroup *cgrp)
487 {
488 WARN_ON_ONCE(cgroup_is_dead(cgrp));
489 css_get(&cgrp->self);
490 }
491
492 static bool cgroup_tryget(struct cgroup *cgrp)
493 {
494 return css_tryget(&cgrp->self);
495 }
496
497 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
498 {
499 struct cgroup *cgrp = of->kn->parent->priv;
500 struct cftype *cft = of_cft(of);
501
502 /*
503 * This is open and unprotected implementation of cgroup_css().
504 * seq_css() is only called from a kernfs file operation which has
505 * an active reference on the file. Because all the subsystem
506 * files are drained before a css is disassociated with a cgroup,
507 * the matching css from the cgroup's subsys table is guaranteed to
508 * be and stay valid until the enclosing operation is complete.
509 */
510 if (cft->ss)
511 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
512 else
513 return &cgrp->self;
514 }
515 EXPORT_SYMBOL_GPL(of_css);
516
517 static int notify_on_release(const struct cgroup *cgrp)
518 {
519 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
520 }
521
522 /**
523 * for_each_css - iterate all css's of a cgroup
524 * @css: the iteration cursor
525 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
526 * @cgrp: the target cgroup to iterate css's of
527 *
528 * Should be called under cgroup_[tree_]mutex.
529 */
530 #define for_each_css(css, ssid, cgrp) \
531 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
532 if (!((css) = rcu_dereference_check( \
533 (cgrp)->subsys[(ssid)], \
534 lockdep_is_held(&cgroup_mutex)))) { } \
535 else
536
537 /**
538 * for_each_e_css - iterate all effective css's of a cgroup
539 * @css: the iteration cursor
540 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
541 * @cgrp: the target cgroup to iterate css's of
542 *
543 * Should be called under cgroup_[tree_]mutex.
544 */
545 #define for_each_e_css(css, ssid, cgrp) \
546 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
547 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
548 ; \
549 else
550
551 /**
552 * for_each_subsys - iterate all enabled cgroup subsystems
553 * @ss: the iteration cursor
554 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
555 */
556 #define for_each_subsys(ss, ssid) \
557 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
558 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
559
560 /**
561 * do_each_subsys_mask - filter for_each_subsys with a bitmask
562 * @ss: the iteration cursor
563 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
564 * @ss_mask: the bitmask
565 *
566 * The block will only run for cases where the ssid-th bit (1 << ssid) of
567 * @ss_mask is set.
568 */
569 #define do_each_subsys_mask(ss, ssid, ss_mask) do { \
570 unsigned long __ss_mask = (ss_mask); \
571 if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */ \
572 (ssid) = 0; \
573 break; \
574 } \
575 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \
576 (ss) = cgroup_subsys[ssid]; \
577 {
578
579 #define while_each_subsys_mask() \
580 } \
581 } \
582 } while (false)
583
584 /* iterate across the hierarchies */
585 #define for_each_root(root) \
586 list_for_each_entry((root), &cgroup_roots, root_list)
587
588 /* iterate over child cgrps, lock should be held throughout iteration */
589 #define cgroup_for_each_live_child(child, cgrp) \
590 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
591 if (({ lockdep_assert_held(&cgroup_mutex); \
592 cgroup_is_dead(child); })) \
593 ; \
594 else
595
596 /* walk live descendants in preorder */
597 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \
598 css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \
599 if (({ lockdep_assert_held(&cgroup_mutex); \
600 (dsct) = (d_css)->cgroup; \
601 cgroup_is_dead(dsct); })) \
602 ; \
603 else
604
605 /* walk live descendants in postorder */
606 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \
607 css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \
608 if (({ lockdep_assert_held(&cgroup_mutex); \
609 (dsct) = (d_css)->cgroup; \
610 cgroup_is_dead(dsct); })) \
611 ; \
612 else
613
614 static void cgroup_release_agent(struct work_struct *work);
615 static void check_for_release(struct cgroup *cgrp);
616
617 /*
618 * A cgroup can be associated with multiple css_sets as different tasks may
619 * belong to different cgroups on different hierarchies. In the other
620 * direction, a css_set is naturally associated with multiple cgroups.
621 * This M:N relationship is represented by the following link structure
622 * which exists for each association and allows traversing the associations
623 * from both sides.
624 */
625 struct cgrp_cset_link {
626 /* the cgroup and css_set this link associates */
627 struct cgroup *cgrp;
628 struct css_set *cset;
629
630 /* list of cgrp_cset_links anchored at cgrp->cset_links */
631 struct list_head cset_link;
632
633 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
634 struct list_head cgrp_link;
635 };
636
637 /*
638 * The default css_set - used by init and its children prior to any
639 * hierarchies being mounted. It contains a pointer to the root state
640 * for each subsystem. Also used to anchor the list of css_sets. Not
641 * reference-counted, to improve performance when child cgroups
642 * haven't been created.
643 */
644 struct css_set init_css_set = {
645 .refcount = ATOMIC_INIT(1),
646 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
647 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
648 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
649 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
650 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
651 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters),
652 };
653
654 static int css_set_count = 1; /* 1 for init_css_set */
655
656 /**
657 * css_set_populated - does a css_set contain any tasks?
658 * @cset: target css_set
659 */
660 static bool css_set_populated(struct css_set *cset)
661 {
662 lockdep_assert_held(&css_set_lock);
663
664 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
665 }
666
667 /**
668 * cgroup_update_populated - updated populated count of a cgroup
669 * @cgrp: the target cgroup
670 * @populated: inc or dec populated count
671 *
672 * One of the css_sets associated with @cgrp is either getting its first
673 * task or losing the last. Update @cgrp->populated_cnt accordingly. The
674 * count is propagated towards root so that a given cgroup's populated_cnt
675 * is zero iff the cgroup and all its descendants don't contain any tasks.
676 *
677 * @cgrp's interface file "cgroup.populated" is zero if
678 * @cgrp->populated_cnt is zero and 1 otherwise. When @cgrp->populated_cnt
679 * changes from or to zero, userland is notified that the content of the
680 * interface file has changed. This can be used to detect when @cgrp and
681 * its descendants become populated or empty.
682 */
683 static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
684 {
685 lockdep_assert_held(&css_set_lock);
686
687 do {
688 bool trigger;
689
690 if (populated)
691 trigger = !cgrp->populated_cnt++;
692 else
693 trigger = !--cgrp->populated_cnt;
694
695 if (!trigger)
696 break;
697
698 check_for_release(cgrp);
699 cgroup_file_notify(&cgrp->events_file);
700
701 cgrp = cgroup_parent(cgrp);
702 } while (cgrp);
703 }
704
705 /**
706 * css_set_update_populated - update populated state of a css_set
707 * @cset: target css_set
708 * @populated: whether @cset is populated or depopulated
709 *
710 * @cset is either getting the first task or losing the last. Update the
711 * ->populated_cnt of all associated cgroups accordingly.
712 */
713 static void css_set_update_populated(struct css_set *cset, bool populated)
714 {
715 struct cgrp_cset_link *link;
716
717 lockdep_assert_held(&css_set_lock);
718
719 list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
720 cgroup_update_populated(link->cgrp, populated);
721 }
722
723 /**
724 * css_set_move_task - move a task from one css_set to another
725 * @task: task being moved
726 * @from_cset: css_set @task currently belongs to (may be NULL)
727 * @to_cset: new css_set @task is being moved to (may be NULL)
728 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
729 *
730 * Move @task from @from_cset to @to_cset. If @task didn't belong to any
731 * css_set, @from_cset can be NULL. If @task is being disassociated
732 * instead of moved, @to_cset can be NULL.
733 *
734 * This function automatically handles populated_cnt updates and
735 * css_task_iter adjustments but the caller is responsible for managing
736 * @from_cset and @to_cset's reference counts.
737 */
738 static void css_set_move_task(struct task_struct *task,
739 struct css_set *from_cset, struct css_set *to_cset,
740 bool use_mg_tasks)
741 {
742 lockdep_assert_held(&css_set_lock);
743
744 if (to_cset && !css_set_populated(to_cset))
745 css_set_update_populated(to_cset, true);
746
747 if (from_cset) {
748 struct css_task_iter *it, *pos;
749
750 WARN_ON_ONCE(list_empty(&task->cg_list));
751
752 /*
753 * @task is leaving, advance task iterators which are
754 * pointing to it so that they can resume at the next
755 * position. Advancing an iterator might remove it from
756 * the list, use safe walk. See css_task_iter_advance*()
757 * for details.
758 */
759 list_for_each_entry_safe(it, pos, &from_cset->task_iters,
760 iters_node)
761 if (it->task_pos == &task->cg_list)
762 css_task_iter_advance(it);
763
764 list_del_init(&task->cg_list);
765 if (!css_set_populated(from_cset))
766 css_set_update_populated(from_cset, false);
767 } else {
768 WARN_ON_ONCE(!list_empty(&task->cg_list));
769 }
770
771 if (to_cset) {
772 /*
773 * We are synchronized through cgroup_threadgroup_rwsem
774 * against PF_EXITING setting such that we can't race
775 * against cgroup_exit() changing the css_set to
776 * init_css_set and dropping the old one.
777 */
778 WARN_ON_ONCE(task->flags & PF_EXITING);
779
780 rcu_assign_pointer(task->cgroups, to_cset);
781 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
782 &to_cset->tasks);
783 }
784 }
785
786 /*
787 * hash table for cgroup groups. This improves the performance to find
788 * an existing css_set. This hash doesn't (currently) take into
789 * account cgroups in empty hierarchies.
790 */
791 #define CSS_SET_HASH_BITS 7
792 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
793
794 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
795 {
796 unsigned long key = 0UL;
797 struct cgroup_subsys *ss;
798 int i;
799
800 for_each_subsys(ss, i)
801 key += (unsigned long)css[i];
802 key = (key >> 16) ^ key;
803
804 return key;
805 }
806
807 static void put_css_set_locked(struct css_set *cset)
808 {
809 struct cgrp_cset_link *link, *tmp_link;
810 struct cgroup_subsys *ss;
811 int ssid;
812
813 lockdep_assert_held(&css_set_lock);
814
815 if (!atomic_dec_and_test(&cset->refcount))
816 return;
817
818 /* This css_set is dead. unlink it and release cgroup and css refs */
819 for_each_subsys(ss, ssid) {
820 list_del(&cset->e_cset_node[ssid]);
821 css_put(cset->subsys[ssid]);
822 }
823 hash_del(&cset->hlist);
824 css_set_count--;
825
826 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
827 list_del(&link->cset_link);
828 list_del(&link->cgrp_link);
829 if (cgroup_parent(link->cgrp))
830 cgroup_put(link->cgrp);
831 kfree(link);
832 }
833
834 kfree_rcu(cset, rcu_head);
835 }
836
837 static void put_css_set(struct css_set *cset)
838 {
839 unsigned long flags;
840
841 /*
842 * Ensure that the refcount doesn't hit zero while any readers
843 * can see it. Similar to atomic_dec_and_lock(), but for an
844 * rwlock
845 */
846 if (atomic_add_unless(&cset->refcount, -1, 1))
847 return;
848
849 spin_lock_irqsave(&css_set_lock, flags);
850 put_css_set_locked(cset);
851 spin_unlock_irqrestore(&css_set_lock, flags);
852 }
853
854 /*
855 * refcounted get/put for css_set objects
856 */
857 static inline void get_css_set(struct css_set *cset)
858 {
859 atomic_inc(&cset->refcount);
860 }
861
862 /**
863 * compare_css_sets - helper function for find_existing_css_set().
864 * @cset: candidate css_set being tested
865 * @old_cset: existing css_set for a task
866 * @new_cgrp: cgroup that's being entered by the task
867 * @template: desired set of css pointers in css_set (pre-calculated)
868 *
869 * Returns true if "cset" matches "old_cset" except for the hierarchy
870 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
871 */
872 static bool compare_css_sets(struct css_set *cset,
873 struct css_set *old_cset,
874 struct cgroup *new_cgrp,
875 struct cgroup_subsys_state *template[])
876 {
877 struct list_head *l1, *l2;
878
879 /*
880 * On the default hierarchy, there can be csets which are
881 * associated with the same set of cgroups but different csses.
882 * Let's first ensure that csses match.
883 */
884 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
885 return false;
886
887 /*
888 * Compare cgroup pointers in order to distinguish between
889 * different cgroups in hierarchies. As different cgroups may
890 * share the same effective css, this comparison is always
891 * necessary.
892 */
893 l1 = &cset->cgrp_links;
894 l2 = &old_cset->cgrp_links;
895 while (1) {
896 struct cgrp_cset_link *link1, *link2;
897 struct cgroup *cgrp1, *cgrp2;
898
899 l1 = l1->next;
900 l2 = l2->next;
901 /* See if we reached the end - both lists are equal length. */
902 if (l1 == &cset->cgrp_links) {
903 BUG_ON(l2 != &old_cset->cgrp_links);
904 break;
905 } else {
906 BUG_ON(l2 == &old_cset->cgrp_links);
907 }
908 /* Locate the cgroups associated with these links. */
909 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
910 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
911 cgrp1 = link1->cgrp;
912 cgrp2 = link2->cgrp;
913 /* Hierarchies should be linked in the same order. */
914 BUG_ON(cgrp1->root != cgrp2->root);
915
916 /*
917 * If this hierarchy is the hierarchy of the cgroup
918 * that's changing, then we need to check that this
919 * css_set points to the new cgroup; if it's any other
920 * hierarchy, then this css_set should point to the
921 * same cgroup as the old css_set.
922 */
923 if (cgrp1->root == new_cgrp->root) {
924 if (cgrp1 != new_cgrp)
925 return false;
926 } else {
927 if (cgrp1 != cgrp2)
928 return false;
929 }
930 }
931 return true;
932 }
933
934 /**
935 * find_existing_css_set - init css array and find the matching css_set
936 * @old_cset: the css_set that we're using before the cgroup transition
937 * @cgrp: the cgroup that we're moving into
938 * @template: out param for the new set of csses, should be clear on entry
939 */
940 static struct css_set *find_existing_css_set(struct css_set *old_cset,
941 struct cgroup *cgrp,
942 struct cgroup_subsys_state *template[])
943 {
944 struct cgroup_root *root = cgrp->root;
945 struct cgroup_subsys *ss;
946 struct css_set *cset;
947 unsigned long key;
948 int i;
949
950 /*
951 * Build the set of subsystem state objects that we want to see in the
952 * new css_set. while subsystems can change globally, the entries here
953 * won't change, so no need for locking.
954 */
955 for_each_subsys(ss, i) {
956 if (root->subsys_mask & (1UL << i)) {
957 /*
958 * @ss is in this hierarchy, so we want the
959 * effective css from @cgrp.
960 */
961 template[i] = cgroup_e_css(cgrp, ss);
962 } else {
963 /*
964 * @ss is not in this hierarchy, so we don't want
965 * to change the css.
966 */
967 template[i] = old_cset->subsys[i];
968 }
969 }
970
971 key = css_set_hash(template);
972 hash_for_each_possible(css_set_table, cset, hlist, key) {
973 if (!compare_css_sets(cset, old_cset, cgrp, template))
974 continue;
975
976 /* This css_set matches what we need */
977 return cset;
978 }
979
980 /* No existing cgroup group matched */
981 return NULL;
982 }
983
984 static void free_cgrp_cset_links(struct list_head *links_to_free)
985 {
986 struct cgrp_cset_link *link, *tmp_link;
987
988 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
989 list_del(&link->cset_link);
990 kfree(link);
991 }
992 }
993
994 /**
995 * allocate_cgrp_cset_links - allocate cgrp_cset_links
996 * @count: the number of links to allocate
997 * @tmp_links: list_head the allocated links are put on
998 *
999 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
1000 * through ->cset_link. Returns 0 on success or -errno.
1001 */
1002 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
1003 {
1004 struct cgrp_cset_link *link;
1005 int i;
1006
1007 INIT_LIST_HEAD(tmp_links);
1008
1009 for (i = 0; i < count; i++) {
1010 link = kzalloc(sizeof(*link), GFP_KERNEL);
1011 if (!link) {
1012 free_cgrp_cset_links(tmp_links);
1013 return -ENOMEM;
1014 }
1015 list_add(&link->cset_link, tmp_links);
1016 }
1017 return 0;
1018 }
1019
1020 /**
1021 * link_css_set - a helper function to link a css_set to a cgroup
1022 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
1023 * @cset: the css_set to be linked
1024 * @cgrp: the destination cgroup
1025 */
1026 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
1027 struct cgroup *cgrp)
1028 {
1029 struct cgrp_cset_link *link;
1030
1031 BUG_ON(list_empty(tmp_links));
1032
1033 if (cgroup_on_dfl(cgrp))
1034 cset->dfl_cgrp = cgrp;
1035
1036 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
1037 link->cset = cset;
1038 link->cgrp = cgrp;
1039
1040 /*
1041 * Always add links to the tail of the lists so that the lists are
1042 * in choronological order.
1043 */
1044 list_move_tail(&link->cset_link, &cgrp->cset_links);
1045 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
1046
1047 if (cgroup_parent(cgrp))
1048 cgroup_get(cgrp);
1049 }
1050
1051 /**
1052 * find_css_set - return a new css_set with one cgroup updated
1053 * @old_cset: the baseline css_set
1054 * @cgrp: the cgroup to be updated
1055 *
1056 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1057 * substituted into the appropriate hierarchy.
1058 */
1059 static struct css_set *find_css_set(struct css_set *old_cset,
1060 struct cgroup *cgrp)
1061 {
1062 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
1063 struct css_set *cset;
1064 struct list_head tmp_links;
1065 struct cgrp_cset_link *link;
1066 struct cgroup_subsys *ss;
1067 unsigned long key;
1068 int ssid;
1069
1070 lockdep_assert_held(&cgroup_mutex);
1071
1072 /* First see if we already have a cgroup group that matches
1073 * the desired set */
1074 spin_lock_irq(&css_set_lock);
1075 cset = find_existing_css_set(old_cset, cgrp, template);
1076 if (cset)
1077 get_css_set(cset);
1078 spin_unlock_irq(&css_set_lock);
1079
1080 if (cset)
1081 return cset;
1082
1083 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
1084 if (!cset)
1085 return NULL;
1086
1087 /* Allocate all the cgrp_cset_link objects that we'll need */
1088 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
1089 kfree(cset);
1090 return NULL;
1091 }
1092
1093 atomic_set(&cset->refcount, 1);
1094 INIT_LIST_HEAD(&cset->cgrp_links);
1095 INIT_LIST_HEAD(&cset->tasks);
1096 INIT_LIST_HEAD(&cset->mg_tasks);
1097 INIT_LIST_HEAD(&cset->mg_preload_node);
1098 INIT_LIST_HEAD(&cset->mg_node);
1099 INIT_LIST_HEAD(&cset->task_iters);
1100 INIT_HLIST_NODE(&cset->hlist);
1101
1102 /* Copy the set of subsystem state objects generated in
1103 * find_existing_css_set() */
1104 memcpy(cset->subsys, template, sizeof(cset->subsys));
1105
1106 spin_lock_irq(&css_set_lock);
1107 /* Add reference counts and links from the new css_set. */
1108 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1109 struct cgroup *c = link->cgrp;
1110
1111 if (c->root == cgrp->root)
1112 c = cgrp;
1113 link_css_set(&tmp_links, cset, c);
1114 }
1115
1116 BUG_ON(!list_empty(&tmp_links));
1117
1118 css_set_count++;
1119
1120 /* Add @cset to the hash table */
1121 key = css_set_hash(cset->subsys);
1122 hash_add(css_set_table, &cset->hlist, key);
1123
1124 for_each_subsys(ss, ssid) {
1125 struct cgroup_subsys_state *css = cset->subsys[ssid];
1126
1127 list_add_tail(&cset->e_cset_node[ssid],
1128 &css->cgroup->e_csets[ssid]);
1129 css_get(css);
1130 }
1131
1132 spin_unlock_irq(&css_set_lock);
1133
1134 return cset;
1135 }
1136
1137 static struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1138 {
1139 struct cgroup *root_cgrp = kf_root->kn->priv;
1140
1141 return root_cgrp->root;
1142 }
1143
1144 static int cgroup_init_root_id(struct cgroup_root *root)
1145 {
1146 int id;
1147
1148 lockdep_assert_held(&cgroup_mutex);
1149
1150 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1151 if (id < 0)
1152 return id;
1153
1154 root->hierarchy_id = id;
1155 return 0;
1156 }
1157
1158 static void cgroup_exit_root_id(struct cgroup_root *root)
1159 {
1160 lockdep_assert_held(&cgroup_mutex);
1161
1162 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1163 }
1164
1165 static void cgroup_free_root(struct cgroup_root *root)
1166 {
1167 if (root) {
1168 idr_destroy(&root->cgroup_idr);
1169 kfree(root);
1170 }
1171 }
1172
1173 static void cgroup_destroy_root(struct cgroup_root *root)
1174 {
1175 struct cgroup *cgrp = &root->cgrp;
1176 struct cgrp_cset_link *link, *tmp_link;
1177
1178 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1179
1180 BUG_ON(atomic_read(&root->nr_cgrps));
1181 BUG_ON(!list_empty(&cgrp->self.children));
1182
1183 /* Rebind all subsystems back to the default hierarchy */
1184 WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
1185
1186 /*
1187 * Release all the links from cset_links to this hierarchy's
1188 * root cgroup
1189 */
1190 spin_lock_irq(&css_set_lock);
1191
1192 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1193 list_del(&link->cset_link);
1194 list_del(&link->cgrp_link);
1195 kfree(link);
1196 }
1197
1198 spin_unlock_irq(&css_set_lock);
1199
1200 if (!list_empty(&root->root_list)) {
1201 list_del(&root->root_list);
1202 cgroup_root_count--;
1203 }
1204
1205 cgroup_exit_root_id(root);
1206
1207 mutex_unlock(&cgroup_mutex);
1208
1209 kernfs_destroy_root(root->kf_root);
1210 cgroup_free_root(root);
1211 }
1212
1213 /*
1214 * look up cgroup associated with current task's cgroup namespace on the
1215 * specified hierarchy
1216 */
1217 static struct cgroup *
1218 current_cgns_cgroup_from_root(struct cgroup_root *root)
1219 {
1220 struct cgroup *res = NULL;
1221 struct css_set *cset;
1222
1223 lockdep_assert_held(&css_set_lock);
1224
1225 rcu_read_lock();
1226
1227 cset = current->nsproxy->cgroup_ns->root_cset;
1228 if (cset == &init_css_set) {
1229 res = &root->cgrp;
1230 } else {
1231 struct cgrp_cset_link *link;
1232
1233 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1234 struct cgroup *c = link->cgrp;
1235
1236 if (c->root == root) {
1237 res = c;
1238 break;
1239 }
1240 }
1241 }
1242 rcu_read_unlock();
1243
1244 BUG_ON(!res);
1245 return res;
1246 }
1247
1248 /* look up cgroup associated with given css_set on the specified hierarchy */
1249 static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1250 struct cgroup_root *root)
1251 {
1252 struct cgroup *res = NULL;
1253
1254 lockdep_assert_held(&cgroup_mutex);
1255 lockdep_assert_held(&css_set_lock);
1256
1257 if (cset == &init_css_set) {
1258 res = &root->cgrp;
1259 } else {
1260 struct cgrp_cset_link *link;
1261
1262 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1263 struct cgroup *c = link->cgrp;
1264
1265 if (c->root == root) {
1266 res = c;
1267 break;
1268 }
1269 }
1270 }
1271
1272 BUG_ON(!res);
1273 return res;
1274 }
1275
1276 /*
1277 * Return the cgroup for "task" from the given hierarchy. Must be
1278 * called with cgroup_mutex and css_set_lock held.
1279 */
1280 static struct cgroup *task_cgroup_from_root(struct task_struct *task,
1281 struct cgroup_root *root)
1282 {
1283 /*
1284 * No need to lock the task - since we hold cgroup_mutex the
1285 * task can't change groups, so the only thing that can happen
1286 * is that it exits and its css is set back to init_css_set.
1287 */
1288 return cset_cgroup_from_root(task_css_set(task), root);
1289 }
1290
1291 /*
1292 * A task must hold cgroup_mutex to modify cgroups.
1293 *
1294 * Any task can increment and decrement the count field without lock.
1295 * So in general, code holding cgroup_mutex can't rely on the count
1296 * field not changing. However, if the count goes to zero, then only
1297 * cgroup_attach_task() can increment it again. Because a count of zero
1298 * means that no tasks are currently attached, therefore there is no
1299 * way a task attached to that cgroup can fork (the other way to
1300 * increment the count). So code holding cgroup_mutex can safely
1301 * assume that if the count is zero, it will stay zero. Similarly, if
1302 * a task holds cgroup_mutex on a cgroup with zero count, it
1303 * knows that the cgroup won't be removed, as cgroup_rmdir()
1304 * needs that mutex.
1305 *
1306 * A cgroup can only be deleted if both its 'count' of using tasks
1307 * is zero, and its list of 'children' cgroups is empty. Since all
1308 * tasks in the system use _some_ cgroup, and since there is always at
1309 * least one task in the system (init, pid == 1), therefore, root cgroup
1310 * always has either children cgroups and/or using tasks. So we don't
1311 * need a special hack to ensure that root cgroup cannot be deleted.
1312 *
1313 * P.S. One more locking exception. RCU is used to guard the
1314 * update of a tasks cgroup pointer by cgroup_attach_task()
1315 */
1316
1317 static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1318 static const struct file_operations proc_cgroupstats_operations;
1319
1320 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1321 char *buf)
1322 {
1323 struct cgroup_subsys *ss = cft->ss;
1324
1325 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1326 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
1327 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
1328 cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1329 cft->name);
1330 else
1331 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1332 return buf;
1333 }
1334
1335 /**
1336 * cgroup_file_mode - deduce file mode of a control file
1337 * @cft: the control file in question
1338 *
1339 * S_IRUGO for read, S_IWUSR for write.
1340 */
1341 static umode_t cgroup_file_mode(const struct cftype *cft)
1342 {
1343 umode_t mode = 0;
1344
1345 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1346 mode |= S_IRUGO;
1347
1348 if (cft->write_u64 || cft->write_s64 || cft->write) {
1349 if (cft->flags & CFTYPE_WORLD_WRITABLE)
1350 mode |= S_IWUGO;
1351 else
1352 mode |= S_IWUSR;
1353 }
1354
1355 return mode;
1356 }
1357
1358 /**
1359 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1360 * @subtree_control: the new subtree_control mask to consider
1361 * @this_ss_mask: available subsystems
1362 *
1363 * On the default hierarchy, a subsystem may request other subsystems to be
1364 * enabled together through its ->depends_on mask. In such cases, more
1365 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1366 *
1367 * This function calculates which subsystems need to be enabled if
1368 * @subtree_control is to be applied while restricted to @this_ss_mask.
1369 */
1370 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
1371 {
1372 u16 cur_ss_mask = subtree_control;
1373 struct cgroup_subsys *ss;
1374 int ssid;
1375
1376 lockdep_assert_held(&cgroup_mutex);
1377
1378 cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
1379
1380 while (true) {
1381 u16 new_ss_mask = cur_ss_mask;
1382
1383 do_each_subsys_mask(ss, ssid, cur_ss_mask) {
1384 new_ss_mask |= ss->depends_on;
1385 } while_each_subsys_mask();
1386
1387 /*
1388 * Mask out subsystems which aren't available. This can
1389 * happen only if some depended-upon subsystems were bound
1390 * to non-default hierarchies.
1391 */
1392 new_ss_mask &= this_ss_mask;
1393
1394 if (new_ss_mask == cur_ss_mask)
1395 break;
1396 cur_ss_mask = new_ss_mask;
1397 }
1398
1399 return cur_ss_mask;
1400 }
1401
1402 /**
1403 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1404 * @kn: the kernfs_node being serviced
1405 *
1406 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1407 * the method finishes if locking succeeded. Note that once this function
1408 * returns the cgroup returned by cgroup_kn_lock_live() may become
1409 * inaccessible any time. If the caller intends to continue to access the
1410 * cgroup, it should pin it before invoking this function.
1411 */
1412 static void cgroup_kn_unlock(struct kernfs_node *kn)
1413 {
1414 struct cgroup *cgrp;
1415
1416 if (kernfs_type(kn) == KERNFS_DIR)
1417 cgrp = kn->priv;
1418 else
1419 cgrp = kn->parent->priv;
1420
1421 mutex_unlock(&cgroup_mutex);
1422
1423 kernfs_unbreak_active_protection(kn);
1424 cgroup_put(cgrp);
1425 }
1426
1427 /**
1428 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1429 * @kn: the kernfs_node being serviced
1430 * @drain_offline: perform offline draining on the cgroup
1431 *
1432 * This helper is to be used by a cgroup kernfs method currently servicing
1433 * @kn. It breaks the active protection, performs cgroup locking and
1434 * verifies that the associated cgroup is alive. Returns the cgroup if
1435 * alive; otherwise, %NULL. A successful return should be undone by a
1436 * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the
1437 * cgroup is drained of offlining csses before return.
1438 *
1439 * Any cgroup kernfs method implementation which requires locking the
1440 * associated cgroup should use this helper. It avoids nesting cgroup
1441 * locking under kernfs active protection and allows all kernfs operations
1442 * including self-removal.
1443 */
1444 static struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn,
1445 bool drain_offline)
1446 {
1447 struct cgroup *cgrp;
1448
1449 if (kernfs_type(kn) == KERNFS_DIR)
1450 cgrp = kn->priv;
1451 else
1452 cgrp = kn->parent->priv;
1453
1454 /*
1455 * We're gonna grab cgroup_mutex which nests outside kernfs
1456 * active_ref. cgroup liveliness check alone provides enough
1457 * protection against removal. Ensure @cgrp stays accessible and
1458 * break the active_ref protection.
1459 */
1460 if (!cgroup_tryget(cgrp))
1461 return NULL;
1462 kernfs_break_active_protection(kn);
1463
1464 if (drain_offline)
1465 cgroup_lock_and_drain_offline(cgrp);
1466 else
1467 mutex_lock(&cgroup_mutex);
1468
1469 if (!cgroup_is_dead(cgrp))
1470 return cgrp;
1471
1472 cgroup_kn_unlock(kn);
1473 return NULL;
1474 }
1475
1476 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1477 {
1478 char name[CGROUP_FILE_NAME_MAX];
1479
1480 lockdep_assert_held(&cgroup_mutex);
1481
1482 if (cft->file_offset) {
1483 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1484 struct cgroup_file *cfile = (void *)css + cft->file_offset;
1485
1486 spin_lock_irq(&cgroup_file_kn_lock);
1487 cfile->kn = NULL;
1488 spin_unlock_irq(&cgroup_file_kn_lock);
1489 }
1490
1491 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1492 }
1493
1494 /**
1495 * css_clear_dir - remove subsys files in a cgroup directory
1496 * @css: taget css
1497 */
1498 static void css_clear_dir(struct cgroup_subsys_state *css)
1499 {
1500 struct cgroup *cgrp = css->cgroup;
1501 struct cftype *cfts;
1502
1503 if (!(css->flags & CSS_VISIBLE))
1504 return;
1505
1506 css->flags &= ~CSS_VISIBLE;
1507
1508 list_for_each_entry(cfts, &css->ss->cfts, node)
1509 cgroup_addrm_files(css, cgrp, cfts, false);
1510 }
1511
1512 /**
1513 * css_populate_dir - create subsys files in a cgroup directory
1514 * @css: target css
1515 *
1516 * On failure, no file is added.
1517 */
1518 static int css_populate_dir(struct cgroup_subsys_state *css)
1519 {
1520 struct cgroup *cgrp = css->cgroup;
1521 struct cftype *cfts, *failed_cfts;
1522 int ret;
1523
1524 if ((css->flags & CSS_VISIBLE) || !cgrp->kn)
1525 return 0;
1526
1527 if (!css->ss) {
1528 if (cgroup_on_dfl(cgrp))
1529 cfts = cgroup_dfl_base_files;
1530 else
1531 cfts = cgroup_legacy_base_files;
1532
1533 return cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1534 }
1535
1536 list_for_each_entry(cfts, &css->ss->cfts, node) {
1537 ret = cgroup_addrm_files(css, cgrp, cfts, true);
1538 if (ret < 0) {
1539 failed_cfts = cfts;
1540 goto err;
1541 }
1542 }
1543
1544 css->flags |= CSS_VISIBLE;
1545
1546 return 0;
1547 err:
1548 list_for_each_entry(cfts, &css->ss->cfts, node) {
1549 if (cfts == failed_cfts)
1550 break;
1551 cgroup_addrm_files(css, cgrp, cfts, false);
1552 }
1553 return ret;
1554 }
1555
1556 static int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
1557 {
1558 struct cgroup *dcgrp = &dst_root->cgrp;
1559 struct cgroup_subsys *ss;
1560 int ssid, i, ret;
1561
1562 lockdep_assert_held(&cgroup_mutex);
1563
1564 do_each_subsys_mask(ss, ssid, ss_mask) {
1565 /*
1566 * If @ss has non-root csses attached to it, can't move.
1567 * If @ss is an implicit controller, it is exempt from this
1568 * rule and can be stolen.
1569 */
1570 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
1571 !ss->implicit_on_dfl)
1572 return -EBUSY;
1573
1574 /* can't move between two non-dummy roots either */
1575 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1576 return -EBUSY;
1577 } while_each_subsys_mask();
1578
1579 do_each_subsys_mask(ss, ssid, ss_mask) {
1580 struct cgroup_root *src_root = ss->root;
1581 struct cgroup *scgrp = &src_root->cgrp;
1582 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1583 struct css_set *cset;
1584
1585 WARN_ON(!css || cgroup_css(dcgrp, ss));
1586
1587 /* disable from the source */
1588 src_root->subsys_mask &= ~(1 << ssid);
1589 WARN_ON(cgroup_apply_control(scgrp));
1590 cgroup_finalize_control(scgrp, 0);
1591
1592 /* rebind */
1593 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1594 rcu_assign_pointer(dcgrp->subsys[ssid], css);
1595 ss->root = dst_root;
1596 css->cgroup = dcgrp;
1597
1598 spin_lock_irq(&css_set_lock);
1599 hash_for_each(css_set_table, i, cset, hlist)
1600 list_move_tail(&cset->e_cset_node[ss->id],
1601 &dcgrp->e_csets[ss->id]);
1602 spin_unlock_irq(&css_set_lock);
1603
1604 /* default hierarchy doesn't enable controllers by default */
1605 dst_root->subsys_mask |= 1 << ssid;
1606 if (dst_root == &cgrp_dfl_root) {
1607 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1608 } else {
1609 dcgrp->subtree_control |= 1 << ssid;
1610 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1611 }
1612
1613 ret = cgroup_apply_control(dcgrp);
1614 if (ret)
1615 pr_warn("partial failure to rebind %s controller (err=%d)\n",
1616 ss->name, ret);
1617
1618 if (ss->bind)
1619 ss->bind(css);
1620 } while_each_subsys_mask();
1621
1622 kernfs_activate(dcgrp->kn);
1623 return 0;
1624 }
1625
1626 static int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
1627 struct kernfs_root *kf_root)
1628 {
1629 int len = 0;
1630 char *buf = NULL;
1631 struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
1632 struct cgroup *ns_cgroup;
1633
1634 buf = kmalloc(PATH_MAX, GFP_KERNEL);
1635 if (!buf)
1636 return -ENOMEM;
1637
1638 spin_lock_irq(&css_set_lock);
1639 ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot);
1640 len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX);
1641 spin_unlock_irq(&css_set_lock);
1642
1643 if (len >= PATH_MAX)
1644 len = -ERANGE;
1645 else if (len > 0) {
1646 seq_escape(sf, buf, " \t\n\\");
1647 len = 0;
1648 }
1649 kfree(buf);
1650 return len;
1651 }
1652
1653 static int cgroup_show_options(struct seq_file *seq,
1654 struct kernfs_root *kf_root)
1655 {
1656 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1657 struct cgroup_subsys *ss;
1658 int ssid;
1659
1660 if (root != &cgrp_dfl_root)
1661 for_each_subsys(ss, ssid)
1662 if (root->subsys_mask & (1 << ssid))
1663 seq_show_option(seq, ss->legacy_name, NULL);
1664 if (root->flags & CGRP_ROOT_NOPREFIX)
1665 seq_puts(seq, ",noprefix");
1666 if (root->flags & CGRP_ROOT_XATTR)
1667 seq_puts(seq, ",xattr");
1668
1669 spin_lock(&release_agent_path_lock);
1670 if (strlen(root->release_agent_path))
1671 seq_show_option(seq, "release_agent",
1672 root->release_agent_path);
1673 spin_unlock(&release_agent_path_lock);
1674
1675 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
1676 seq_puts(seq, ",clone_children");
1677 if (strlen(root->name))
1678 seq_show_option(seq, "name", root->name);
1679 return 0;
1680 }
1681
1682 struct cgroup_sb_opts {
1683 u16 subsys_mask;
1684 unsigned int flags;
1685 char *release_agent;
1686 bool cpuset_clone_children;
1687 char *name;
1688 /* User explicitly requested empty subsystem */
1689 bool none;
1690 };
1691
1692 static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
1693 {
1694 char *token, *o = data;
1695 bool all_ss = false, one_ss = false;
1696 u16 mask = U16_MAX;
1697 struct cgroup_subsys *ss;
1698 int nr_opts = 0;
1699 int i;
1700
1701 #ifdef CONFIG_CPUSETS
1702 mask = ~((u16)1 << cpuset_cgrp_id);
1703 #endif
1704
1705 memset(opts, 0, sizeof(*opts));
1706
1707 while ((token = strsep(&o, ",")) != NULL) {
1708 nr_opts++;
1709
1710 if (!*token)
1711 return -EINVAL;
1712 if (!strcmp(token, "none")) {
1713 /* Explicitly have no subsystems */
1714 opts->none = true;
1715 continue;
1716 }
1717 if (!strcmp(token, "all")) {
1718 /* Mutually exclusive option 'all' + subsystem name */
1719 if (one_ss)
1720 return -EINVAL;
1721 all_ss = true;
1722 continue;
1723 }
1724 if (!strcmp(token, "noprefix")) {
1725 opts->flags |= CGRP_ROOT_NOPREFIX;
1726 continue;
1727 }
1728 if (!strcmp(token, "clone_children")) {
1729 opts->cpuset_clone_children = true;
1730 continue;
1731 }
1732 if (!strcmp(token, "xattr")) {
1733 opts->flags |= CGRP_ROOT_XATTR;
1734 continue;
1735 }
1736 if (!strncmp(token, "release_agent=", 14)) {
1737 /* Specifying two release agents is forbidden */
1738 if (opts->release_agent)
1739 return -EINVAL;
1740 opts->release_agent =
1741 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
1742 if (!opts->release_agent)
1743 return -ENOMEM;
1744 continue;
1745 }
1746 if (!strncmp(token, "name=", 5)) {
1747 const char *name = token + 5;
1748 /* Can't specify an empty name */
1749 if (!strlen(name))
1750 return -EINVAL;
1751 /* Must match [\w.-]+ */
1752 for (i = 0; i < strlen(name); i++) {
1753 char c = name[i];
1754 if (isalnum(c))
1755 continue;
1756 if ((c == '.') || (c == '-') || (c == '_'))
1757 continue;
1758 return -EINVAL;
1759 }
1760 /* Specifying two names is forbidden */
1761 if (opts->name)
1762 return -EINVAL;
1763 opts->name = kstrndup(name,
1764 MAX_CGROUP_ROOT_NAMELEN - 1,
1765 GFP_KERNEL);
1766 if (!opts->name)
1767 return -ENOMEM;
1768
1769 continue;
1770 }
1771
1772 for_each_subsys(ss, i) {
1773 if (strcmp(token, ss->legacy_name))
1774 continue;
1775 if (!cgroup_ssid_enabled(i))
1776 continue;
1777 if (cgroup_ssid_no_v1(i))
1778 continue;
1779
1780 /* Mutually exclusive option 'all' + subsystem name */
1781 if (all_ss)
1782 return -EINVAL;
1783 opts->subsys_mask |= (1 << i);
1784 one_ss = true;
1785
1786 break;
1787 }
1788 if (i == CGROUP_SUBSYS_COUNT)
1789 return -ENOENT;
1790 }
1791
1792 /*
1793 * If the 'all' option was specified select all the subsystems,
1794 * otherwise if 'none', 'name=' and a subsystem name options were
1795 * not specified, let's default to 'all'
1796 */
1797 if (all_ss || (!one_ss && !opts->none && !opts->name))
1798 for_each_subsys(ss, i)
1799 if (cgroup_ssid_enabled(i) && !cgroup_ssid_no_v1(i))
1800 opts->subsys_mask |= (1 << i);
1801
1802 /*
1803 * We either have to specify by name or by subsystems. (So all
1804 * empty hierarchies must have a name).
1805 */
1806 if (!opts->subsys_mask && !opts->name)
1807 return -EINVAL;
1808
1809 /*
1810 * Option noprefix was introduced just for backward compatibility
1811 * with the old cpuset, so we allow noprefix only if mounting just
1812 * the cpuset subsystem.
1813 */
1814 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
1815 return -EINVAL;
1816
1817 /* Can't specify "none" and some subsystems */
1818 if (opts->subsys_mask && opts->none)
1819 return -EINVAL;
1820
1821 return 0;
1822 }
1823
1824 static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
1825 {
1826 int ret = 0;
1827 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1828 struct cgroup_sb_opts opts;
1829 u16 added_mask, removed_mask;
1830
1831 if (root == &cgrp_dfl_root) {
1832 pr_err("remount is not allowed\n");
1833 return -EINVAL;
1834 }
1835
1836 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1837
1838 /* See what subsystems are wanted */
1839 ret = parse_cgroupfs_options(data, &opts);
1840 if (ret)
1841 goto out_unlock;
1842
1843 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
1844 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
1845 task_tgid_nr(current), current->comm);
1846
1847 added_mask = opts.subsys_mask & ~root->subsys_mask;
1848 removed_mask = root->subsys_mask & ~opts.subsys_mask;
1849
1850 /* Don't allow flags or name to change at remount */
1851 if ((opts.flags ^ root->flags) ||
1852 (opts.name && strcmp(opts.name, root->name))) {
1853 pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n",
1854 opts.flags, opts.name ?: "", root->flags, root->name);
1855 ret = -EINVAL;
1856 goto out_unlock;
1857 }
1858
1859 /* remounting is not allowed for populated hierarchies */
1860 if (!list_empty(&root->cgrp.self.children)) {
1861 ret = -EBUSY;
1862 goto out_unlock;
1863 }
1864
1865 ret = rebind_subsystems(root, added_mask);
1866 if (ret)
1867 goto out_unlock;
1868
1869 WARN_ON(rebind_subsystems(&cgrp_dfl_root, removed_mask));
1870
1871 if (opts.release_agent) {
1872 spin_lock(&release_agent_path_lock);
1873 strcpy(root->release_agent_path, opts.release_agent);
1874 spin_unlock(&release_agent_path_lock);
1875 }
1876 out_unlock:
1877 kfree(opts.release_agent);
1878 kfree(opts.name);
1879 mutex_unlock(&cgroup_mutex);
1880 return ret;
1881 }
1882
1883 /*
1884 * To reduce the fork() overhead for systems that are not actually using
1885 * their cgroups capability, we don't maintain the lists running through
1886 * each css_set to its tasks until we see the list actually used - in other
1887 * words after the first mount.
1888 */
1889 static bool use_task_css_set_links __read_mostly;
1890
1891 static void cgroup_enable_task_cg_lists(void)
1892 {
1893 struct task_struct *p, *g;
1894
1895 spin_lock_irq(&css_set_lock);
1896
1897 if (use_task_css_set_links)
1898 goto out_unlock;
1899
1900 use_task_css_set_links = true;
1901
1902 /*
1903 * We need tasklist_lock because RCU is not safe against
1904 * while_each_thread(). Besides, a forking task that has passed
1905 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1906 * is not guaranteed to have its child immediately visible in the
1907 * tasklist if we walk through it with RCU.
1908 */
1909 read_lock(&tasklist_lock);
1910 do_each_thread(g, p) {
1911 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1912 task_css_set(p) != &init_css_set);
1913
1914 /*
1915 * We should check if the process is exiting, otherwise
1916 * it will race with cgroup_exit() in that the list
1917 * entry won't be deleted though the process has exited.
1918 * Do it while holding siglock so that we don't end up
1919 * racing against cgroup_exit().
1920 *
1921 * Interrupts were already disabled while acquiring
1922 * the css_set_lock, so we do not need to disable it
1923 * again when acquiring the sighand->siglock here.
1924 */
1925 spin_lock(&p->sighand->siglock);
1926 if (!(p->flags & PF_EXITING)) {
1927 struct css_set *cset = task_css_set(p);
1928
1929 if (!css_set_populated(cset))
1930 css_set_update_populated(cset, true);
1931 list_add_tail(&p->cg_list, &cset->tasks);
1932 get_css_set(cset);
1933 }
1934 spin_unlock(&p->sighand->siglock);
1935 } while_each_thread(g, p);
1936 read_unlock(&tasklist_lock);
1937 out_unlock:
1938 spin_unlock_irq(&css_set_lock);
1939 }
1940
1941 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1942 {
1943 struct cgroup_subsys *ss;
1944 int ssid;
1945
1946 INIT_LIST_HEAD(&cgrp->self.sibling);
1947 INIT_LIST_HEAD(&cgrp->self.children);
1948 INIT_LIST_HEAD(&cgrp->cset_links);
1949 INIT_LIST_HEAD(&cgrp->pidlists);
1950 mutex_init(&cgrp->pidlist_mutex);
1951 cgrp->self.cgroup = cgrp;
1952 cgrp->self.flags |= CSS_ONLINE;
1953
1954 for_each_subsys(ss, ssid)
1955 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
1956
1957 init_waitqueue_head(&cgrp->offline_waitq);
1958 INIT_WORK(&cgrp->release_agent_work, cgroup_release_agent);
1959 }
1960
1961 static void init_cgroup_root(struct cgroup_root *root,
1962 struct cgroup_sb_opts *opts)
1963 {
1964 struct cgroup *cgrp = &root->cgrp;
1965
1966 INIT_LIST_HEAD(&root->root_list);
1967 atomic_set(&root->nr_cgrps, 1);
1968 cgrp->root = root;
1969 init_cgroup_housekeeping(cgrp);
1970 idr_init(&root->cgroup_idr);
1971
1972 root->flags = opts->flags;
1973 if (opts->release_agent)
1974 strcpy(root->release_agent_path, opts->release_agent);
1975 if (opts->name)
1976 strcpy(root->name, opts->name);
1977 if (opts->cpuset_clone_children)
1978 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
1979 }
1980
1981 static int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask)
1982 {
1983 LIST_HEAD(tmp_links);
1984 struct cgroup *root_cgrp = &root->cgrp;
1985 struct css_set *cset;
1986 int i, ret;
1987
1988 lockdep_assert_held(&cgroup_mutex);
1989
1990 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL);
1991 if (ret < 0)
1992 goto out;
1993 root_cgrp->id = ret;
1994 root_cgrp->ancestor_ids[0] = ret;
1995
1996 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 0,
1997 GFP_KERNEL);
1998 if (ret)
1999 goto out;
2000
2001 /*
2002 * We're accessing css_set_count without locking css_set_lock here,
2003 * but that's OK - it can only be increased by someone holding
2004 * cgroup_lock, and that's us. Later rebinding may disable
2005 * controllers on the default hierarchy and thus create new csets,
2006 * which can't be more than the existing ones. Allocate 2x.
2007 */
2008 ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
2009 if (ret)
2010 goto cancel_ref;
2011
2012 ret = cgroup_init_root_id(root);
2013 if (ret)
2014 goto cancel_ref;
2015
2016 root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops,
2017 KERNFS_ROOT_CREATE_DEACTIVATED,
2018 root_cgrp);
2019 if (IS_ERR(root->kf_root)) {
2020 ret = PTR_ERR(root->kf_root);
2021 goto exit_root_id;
2022 }
2023 root_cgrp->kn = root->kf_root->kn;
2024
2025 ret = css_populate_dir(&root_cgrp->self);
2026 if (ret)
2027 goto destroy_root;
2028
2029 ret = rebind_subsystems(root, ss_mask);
2030 if (ret)
2031 goto destroy_root;
2032
2033 /*
2034 * There must be no failure case after here, since rebinding takes
2035 * care of subsystems' refcounts, which are explicitly dropped in
2036 * the failure exit path.
2037 */
2038 list_add(&root->root_list, &cgroup_roots);
2039 cgroup_root_count++;
2040
2041 /*
2042 * Link the root cgroup in this hierarchy into all the css_set
2043 * objects.
2044 */
2045 spin_lock_irq(&css_set_lock);
2046 hash_for_each(css_set_table, i, cset, hlist) {
2047 link_css_set(&tmp_links, cset, root_cgrp);
2048 if (css_set_populated(cset))
2049 cgroup_update_populated(root_cgrp, true);
2050 }
2051 spin_unlock_irq(&css_set_lock);
2052
2053 BUG_ON(!list_empty(&root_cgrp->self.children));
2054 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
2055
2056 kernfs_activate(root_cgrp->kn);
2057 ret = 0;
2058 goto out;
2059
2060 destroy_root:
2061 kernfs_destroy_root(root->kf_root);
2062 root->kf_root = NULL;
2063 exit_root_id:
2064 cgroup_exit_root_id(root);
2065 cancel_ref:
2066 percpu_ref_exit(&root_cgrp->self.refcnt);
2067 out:
2068 free_cgrp_cset_links(&tmp_links);
2069 return ret;
2070 }
2071
2072 static struct dentry *cgroup_mount(struct file_system_type *fs_type,
2073 int flags, const char *unused_dev_name,
2074 void *data)
2075 {
2076 bool is_v2 = fs_type == &cgroup2_fs_type;
2077 struct super_block *pinned_sb = NULL;
2078 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
2079 struct cgroup_subsys *ss;
2080 struct cgroup_root *root;
2081 struct cgroup_sb_opts opts;
2082 struct dentry *dentry;
2083 int ret;
2084 int i;
2085 bool new_sb;
2086
2087 get_cgroup_ns(ns);
2088
2089 /* Check if the caller has permission to mount. */
2090 if (!ns_capable(ns->user_ns, CAP_SYS_ADMIN)) {
2091 put_cgroup_ns(ns);
2092 return ERR_PTR(-EPERM);
2093 }
2094
2095 /*
2096 * The first time anyone tries to mount a cgroup, enable the list
2097 * linking each css_set to its tasks and fix up all existing tasks.
2098 */
2099 if (!use_task_css_set_links)
2100 cgroup_enable_task_cg_lists();
2101
2102 if (is_v2) {
2103 if (data) {
2104 pr_err("cgroup2: unknown option \"%s\"\n", (char *)data);
2105 put_cgroup_ns(ns);
2106 return ERR_PTR(-EINVAL);
2107 }
2108 cgrp_dfl_visible = true;
2109 root = &cgrp_dfl_root;
2110 cgroup_get(&root->cgrp);
2111 goto out_mount;
2112 }
2113
2114 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
2115
2116 /* First find the desired set of subsystems */
2117 ret = parse_cgroupfs_options(data, &opts);
2118 if (ret)
2119 goto out_unlock;
2120
2121 /*
2122 * Destruction of cgroup root is asynchronous, so subsystems may
2123 * still be dying after the previous unmount. Let's drain the
2124 * dying subsystems. We just need to ensure that the ones
2125 * unmounted previously finish dying and don't care about new ones
2126 * starting. Testing ref liveliness is good enough.
2127 */
2128 for_each_subsys(ss, i) {
2129 if (!(opts.subsys_mask & (1 << i)) ||
2130 ss->root == &cgrp_dfl_root)
2131 continue;
2132
2133 if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) {
2134 mutex_unlock(&cgroup_mutex);
2135 msleep(10);
2136 ret = restart_syscall();
2137 goto out_free;
2138 }
2139 cgroup_put(&ss->root->cgrp);
2140 }
2141
2142 for_each_root(root) {
2143 bool name_match = false;
2144
2145 if (root == &cgrp_dfl_root)
2146 continue;
2147
2148 /*
2149 * If we asked for a name then it must match. Also, if
2150 * name matches but sybsys_mask doesn't, we should fail.
2151 * Remember whether name matched.
2152 */
2153 if (opts.name) {
2154 if (strcmp(opts.name, root->name))
2155 continue;
2156 name_match = true;
2157 }
2158
2159 /*
2160 * If we asked for subsystems (or explicitly for no
2161 * subsystems) then they must match.
2162 */
2163 if ((opts.subsys_mask || opts.none) &&
2164 (opts.subsys_mask != root->subsys_mask)) {
2165 if (!name_match)
2166 continue;
2167 ret = -EBUSY;
2168 goto out_unlock;
2169 }
2170
2171 if (root->flags ^ opts.flags)
2172 pr_warn("new mount options do not match the existing superblock, will be ignored\n");
2173
2174 /*
2175 * We want to reuse @root whose lifetime is governed by its
2176 * ->cgrp. Let's check whether @root is alive and keep it
2177 * that way. As cgroup_kill_sb() can happen anytime, we
2178 * want to block it by pinning the sb so that @root doesn't
2179 * get killed before mount is complete.
2180 *
2181 * With the sb pinned, tryget_live can reliably indicate
2182 * whether @root can be reused. If it's being killed,
2183 * drain it. We can use wait_queue for the wait but this
2184 * path is super cold. Let's just sleep a bit and retry.
2185 */
2186 pinned_sb = kernfs_pin_sb(root->kf_root, NULL);
2187 if (IS_ERR(pinned_sb) ||
2188 !percpu_ref_tryget_live(&root->cgrp.self.refcnt)) {
2189 mutex_unlock(&cgroup_mutex);
2190 if (!IS_ERR_OR_NULL(pinned_sb))
2191 deactivate_super(pinned_sb);
2192 msleep(10);
2193 ret = restart_syscall();
2194 goto out_free;
2195 }
2196
2197 ret = 0;
2198 goto out_unlock;
2199 }
2200
2201 /*
2202 * No such thing, create a new one. name= matching without subsys
2203 * specification is allowed for already existing hierarchies but we
2204 * can't create new one without subsys specification.
2205 */
2206 if (!opts.subsys_mask && !opts.none) {
2207 ret = -EINVAL;
2208 goto out_unlock;
2209 }
2210
2211 /*
2212 * We know this subsystem has not yet been bound. Users in a non-init
2213 * user namespace may only mount hierarchies with no bound subsystems,
2214 * i.e. 'none,name=user1'
2215 */
2216 if (!opts.none && !capable(CAP_SYS_ADMIN)) {
2217 ret = -EPERM;
2218 goto out_unlock;
2219 }
2220
2221 root = kzalloc(sizeof(*root), GFP_KERNEL);
2222 if (!root) {
2223 ret = -ENOMEM;
2224 goto out_unlock;
2225 }
2226
2227 init_cgroup_root(root, &opts);
2228
2229 ret = cgroup_setup_root(root, opts.subsys_mask);
2230 if (ret)
2231 cgroup_free_root(root);
2232
2233 out_unlock:
2234 mutex_unlock(&cgroup_mutex);
2235 out_free:
2236 kfree(opts.release_agent);
2237 kfree(opts.name);
2238
2239 if (ret) {
2240 put_cgroup_ns(ns);
2241 return ERR_PTR(ret);
2242 }
2243 out_mount:
2244 dentry = kernfs_mount(fs_type, flags, root->kf_root,
2245 is_v2 ? CGROUP2_SUPER_MAGIC : CGROUP_SUPER_MAGIC,
2246 &new_sb);
2247
2248 /*
2249 * In non-init cgroup namespace, instead of root cgroup's
2250 * dentry, we return the dentry corresponding to the
2251 * cgroupns->root_cgrp.
2252 */
2253 if (!IS_ERR(dentry) && ns != &init_cgroup_ns) {
2254 struct dentry *nsdentry;
2255 struct cgroup *cgrp;
2256
2257 mutex_lock(&cgroup_mutex);
2258 spin_lock_irq(&css_set_lock);
2259
2260 cgrp = cset_cgroup_from_root(ns->root_cset, root);
2261
2262 spin_unlock_irq(&css_set_lock);
2263 mutex_unlock(&cgroup_mutex);
2264
2265 nsdentry = kernfs_node_dentry(cgrp->kn, dentry->d_sb);
2266 dput(dentry);
2267 dentry = nsdentry;
2268 }
2269
2270 if (IS_ERR(dentry) || !new_sb)
2271 cgroup_put(&root->cgrp);
2272
2273 /*
2274 * If @pinned_sb, we're reusing an existing root and holding an
2275 * extra ref on its sb. Mount is complete. Put the extra ref.
2276 */
2277 if (pinned_sb) {
2278 WARN_ON(new_sb);
2279 deactivate_super(pinned_sb);
2280 }
2281
2282 put_cgroup_ns(ns);
2283 return dentry;
2284 }
2285
2286 static void cgroup_kill_sb(struct super_block *sb)
2287 {
2288 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2289 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2290
2291 /*
2292 * If @root doesn't have any mounts or children, start killing it.
2293 * This prevents new mounts by disabling percpu_ref_tryget_live().
2294 * cgroup_mount() may wait for @root's release.
2295 *
2296 * And don't kill the default root.
2297 */
2298 if (!list_empty(&root->cgrp.self.children) ||
2299 root == &cgrp_dfl_root)
2300 cgroup_put(&root->cgrp);
2301 else
2302 percpu_ref_kill(&root->cgrp.self.refcnt);
2303
2304 kernfs_kill_sb(sb);
2305 }
2306
2307 static struct file_system_type cgroup_fs_type = {
2308 .name = "cgroup",
2309 .mount = cgroup_mount,
2310 .kill_sb = cgroup_kill_sb,
2311 .fs_flags = FS_USERNS_MOUNT,
2312 };
2313
2314 static struct file_system_type cgroup2_fs_type = {
2315 .name = "cgroup2",
2316 .mount = cgroup_mount,
2317 .kill_sb = cgroup_kill_sb,
2318 .fs_flags = FS_USERNS_MOUNT,
2319 };
2320
2321 static char *cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
2322 struct cgroup_namespace *ns)
2323 {
2324 struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
2325 int ret;
2326
2327 ret = kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
2328 if (ret < 0 || ret >= buflen)
2329 return NULL;
2330 return buf;
2331 }
2332
2333 char *cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
2334 struct cgroup_namespace *ns)
2335 {
2336 char *ret;
2337
2338 mutex_lock(&cgroup_mutex);
2339 spin_lock_irq(&css_set_lock);
2340
2341 ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
2342
2343 spin_unlock_irq(&css_set_lock);
2344 mutex_unlock(&cgroup_mutex);
2345
2346 return ret;
2347 }
2348 EXPORT_SYMBOL_GPL(cgroup_path_ns);
2349
2350 /**
2351 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
2352 * @task: target task
2353 * @buf: the buffer to write the path into
2354 * @buflen: the length of the buffer
2355 *
2356 * Determine @task's cgroup on the first (the one with the lowest non-zero
2357 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
2358 * function grabs cgroup_mutex and shouldn't be used inside locks used by
2359 * cgroup controller callbacks.
2360 *
2361 * Return value is the same as kernfs_path().
2362 */
2363 char *task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
2364 {
2365 struct cgroup_root *root;
2366 struct cgroup *cgrp;
2367 int hierarchy_id = 1;
2368 char *path = NULL;
2369
2370 mutex_lock(&cgroup_mutex);
2371 spin_lock_irq(&css_set_lock);
2372
2373 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2374
2375 if (root) {
2376 cgrp = task_cgroup_from_root(task, root);
2377 path = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns);
2378 } else {
2379 /* if no hierarchy exists, everyone is in "/" */
2380 if (strlcpy(buf, "/", buflen) < buflen)
2381 path = buf;
2382 }
2383
2384 spin_unlock_irq(&css_set_lock);
2385 mutex_unlock(&cgroup_mutex);
2386 return path;
2387 }
2388 EXPORT_SYMBOL_GPL(task_cgroup_path);
2389
2390 /* used to track tasks and other necessary states during migration */
2391 struct cgroup_taskset {
2392 /* the src and dst cset list running through cset->mg_node */
2393 struct list_head src_csets;
2394 struct list_head dst_csets;
2395
2396 /* the subsys currently being processed */
2397 int ssid;
2398
2399 /*
2400 * Fields for cgroup_taskset_*() iteration.
2401 *
2402 * Before migration is committed, the target migration tasks are on
2403 * ->mg_tasks of the csets on ->src_csets. After, on ->mg_tasks of
2404 * the csets on ->dst_csets. ->csets point to either ->src_csets
2405 * or ->dst_csets depending on whether migration is committed.
2406 *
2407 * ->cur_csets and ->cur_task point to the current task position
2408 * during iteration.
2409 */
2410 struct list_head *csets;
2411 struct css_set *cur_cset;
2412 struct task_struct *cur_task;
2413 };
2414
2415 #define CGROUP_TASKSET_INIT(tset) (struct cgroup_taskset){ \
2416 .src_csets = LIST_HEAD_INIT(tset.src_csets), \
2417 .dst_csets = LIST_HEAD_INIT(tset.dst_csets), \
2418 .csets = &tset.src_csets, \
2419 }
2420
2421 /**
2422 * cgroup_taskset_add - try to add a migration target task to a taskset
2423 * @task: target task
2424 * @tset: target taskset
2425 *
2426 * Add @task, which is a migration target, to @tset. This function becomes
2427 * noop if @task doesn't need to be migrated. @task's css_set should have
2428 * been added as a migration source and @task->cg_list will be moved from
2429 * the css_set's tasks list to mg_tasks one.
2430 */
2431 static void cgroup_taskset_add(struct task_struct *task,
2432 struct cgroup_taskset *tset)
2433 {
2434 struct css_set *cset;
2435
2436 lockdep_assert_held(&css_set_lock);
2437
2438 /* @task either already exited or can't exit until the end */
2439 if (task->flags & PF_EXITING)
2440 return;
2441
2442 /* leave @task alone if post_fork() hasn't linked it yet */
2443 if (list_empty(&task->cg_list))
2444 return;
2445
2446 cset = task_css_set(task);
2447 if (!cset->mg_src_cgrp)
2448 return;
2449
2450 list_move_tail(&task->cg_list, &cset->mg_tasks);
2451 if (list_empty(&cset->mg_node))
2452 list_add_tail(&cset->mg_node, &tset->src_csets);
2453 if (list_empty(&cset->mg_dst_cset->mg_node))
2454 list_move_tail(&cset->mg_dst_cset->mg_node,
2455 &tset->dst_csets);
2456 }
2457
2458 /**
2459 * cgroup_taskset_first - reset taskset and return the first task
2460 * @tset: taskset of interest
2461 * @dst_cssp: output variable for the destination css
2462 *
2463 * @tset iteration is initialized and the first task is returned.
2464 */
2465 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2466 struct cgroup_subsys_state **dst_cssp)
2467 {
2468 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2469 tset->cur_task = NULL;
2470
2471 return cgroup_taskset_next(tset, dst_cssp);
2472 }
2473
2474 /**
2475 * cgroup_taskset_next - iterate to the next task in taskset
2476 * @tset: taskset of interest
2477 * @dst_cssp: output variable for the destination css
2478 *
2479 * Return the next task in @tset. Iteration must have been initialized
2480 * with cgroup_taskset_first().
2481 */
2482 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2483 struct cgroup_subsys_state **dst_cssp)
2484 {
2485 struct css_set *cset = tset->cur_cset;
2486 struct task_struct *task = tset->cur_task;
2487
2488 while (&cset->mg_node != tset->csets) {
2489 if (!task)
2490 task = list_first_entry(&cset->mg_tasks,
2491 struct task_struct, cg_list);
2492 else
2493 task = list_next_entry(task, cg_list);
2494
2495 if (&task->cg_list != &cset->mg_tasks) {
2496 tset->cur_cset = cset;
2497 tset->cur_task = task;
2498
2499 /*
2500 * This function may be called both before and
2501 * after cgroup_taskset_migrate(). The two cases
2502 * can be distinguished by looking at whether @cset
2503 * has its ->mg_dst_cset set.
2504 */
2505 if (cset->mg_dst_cset)
2506 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2507 else
2508 *dst_cssp = cset->subsys[tset->ssid];
2509
2510 return task;
2511 }
2512
2513 cset = list_next_entry(cset, mg_node);
2514 task = NULL;
2515 }
2516
2517 return NULL;
2518 }
2519
2520 /**
2521 * cgroup_taskset_migrate - migrate a taskset
2522 * @tset: taget taskset
2523 * @root: cgroup root the migration is taking place on
2524 *
2525 * Migrate tasks in @tset as setup by migration preparation functions.
2526 * This function fails iff one of the ->can_attach callbacks fails and
2527 * guarantees that either all or none of the tasks in @tset are migrated.
2528 * @tset is consumed regardless of success.
2529 */
2530 static int cgroup_taskset_migrate(struct cgroup_taskset *tset,
2531 struct cgroup_root *root)
2532 {
2533 struct cgroup_subsys *ss;
2534 struct task_struct *task, *tmp_task;
2535 struct css_set *cset, *tmp_cset;
2536 int ssid, failed_ssid, ret;
2537
2538 /* methods shouldn't be called if no task is actually migrating */
2539 if (list_empty(&tset->src_csets))
2540 return 0;
2541
2542 /* check that we can legitimately attach to the cgroup */
2543 do_each_subsys_mask(ss, ssid, root->subsys_mask) {
2544 if (ss->can_attach) {
2545 tset->ssid = ssid;
2546 ret = ss->can_attach(tset);
2547 if (ret) {
2548 failed_ssid = ssid;
2549 goto out_cancel_attach;
2550 }
2551 }
2552 } while_each_subsys_mask();
2553
2554 /*
2555 * Now that we're guaranteed success, proceed to move all tasks to
2556 * the new cgroup. There are no failure cases after here, so this
2557 * is the commit point.
2558 */
2559 spin_lock_irq(&css_set_lock);
2560 list_for_each_entry(cset, &tset->src_csets, mg_node) {
2561 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2562 struct css_set *from_cset = task_css_set(task);
2563 struct css_set *to_cset = cset->mg_dst_cset;
2564
2565 get_css_set(to_cset);
2566 css_set_move_task(task, from_cset, to_cset, true);
2567 put_css_set_locked(from_cset);
2568 }
2569 }
2570 spin_unlock_irq(&css_set_lock);
2571
2572 /*
2573 * Migration is committed, all target tasks are now on dst_csets.
2574 * Nothing is sensitive to fork() after this point. Notify
2575 * controllers that migration is complete.
2576 */
2577 tset->csets = &tset->dst_csets;
2578
2579 do_each_subsys_mask(ss, ssid, root->subsys_mask) {
2580 if (ss->attach) {
2581 tset->ssid = ssid;
2582 ss->attach(tset);
2583 }
2584 } while_each_subsys_mask();
2585
2586 ret = 0;
2587 goto out_release_tset;
2588
2589 out_cancel_attach:
2590 do_each_subsys_mask(ss, ssid, root->subsys_mask) {
2591 if (ssid == failed_ssid)
2592 break;
2593 if (ss->cancel_attach) {
2594 tset->ssid = ssid;
2595 ss->cancel_attach(tset);
2596 }
2597 } while_each_subsys_mask();
2598 out_release_tset:
2599 spin_lock_irq(&css_set_lock);
2600 list_splice_init(&tset->dst_csets, &tset->src_csets);
2601 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2602 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2603 list_del_init(&cset->mg_node);
2604 }
2605 spin_unlock_irq(&css_set_lock);
2606 return ret;
2607 }
2608
2609 /**
2610 * cgroup_may_migrate_to - verify whether a cgroup can be migration destination
2611 * @dst_cgrp: destination cgroup to test
2612 *
2613 * On the default hierarchy, except for the root, subtree_control must be
2614 * zero for migration destination cgroups with tasks so that child cgroups
2615 * don't compete against tasks.
2616 */
2617 static bool cgroup_may_migrate_to(struct cgroup *dst_cgrp)
2618 {
2619 return !cgroup_on_dfl(dst_cgrp) || !cgroup_parent(dst_cgrp) ||
2620 !dst_cgrp->subtree_control;
2621 }
2622
2623 /**
2624 * cgroup_migrate_finish - cleanup after attach
2625 * @preloaded_csets: list of preloaded css_sets
2626 *
2627 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2628 * those functions for details.
2629 */
2630 static void cgroup_migrate_finish(struct list_head *preloaded_csets)
2631 {
2632 struct css_set *cset, *tmp_cset;
2633
2634 lockdep_assert_held(&cgroup_mutex);
2635
2636 spin_lock_irq(&css_set_lock);
2637 list_for_each_entry_safe(cset, tmp_cset, preloaded_csets, mg_preload_node) {
2638 cset->mg_src_cgrp = NULL;
2639 cset->mg_dst_cgrp = NULL;
2640 cset->mg_dst_cset = NULL;
2641 list_del_init(&cset->mg_preload_node);
2642 put_css_set_locked(cset);
2643 }
2644 spin_unlock_irq(&css_set_lock);
2645 }
2646
2647 /**
2648 * cgroup_migrate_add_src - add a migration source css_set
2649 * @src_cset: the source css_set to add
2650 * @dst_cgrp: the destination cgroup
2651 * @preloaded_csets: list of preloaded css_sets
2652 *
2653 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2654 * @src_cset and add it to @preloaded_csets, which should later be cleaned
2655 * up by cgroup_migrate_finish().
2656 *
2657 * This function may be called without holding cgroup_threadgroup_rwsem
2658 * even if the target is a process. Threads may be created and destroyed
2659 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2660 * into play and the preloaded css_sets are guaranteed to cover all
2661 * migrations.
2662 */
2663 static void cgroup_migrate_add_src(struct css_set *src_cset,
2664 struct cgroup *dst_cgrp,
2665 struct list_head *preloaded_csets)
2666 {
2667 struct cgroup *src_cgrp;
2668
2669 lockdep_assert_held(&cgroup_mutex);
2670 lockdep_assert_held(&css_set_lock);
2671
2672 /*
2673 * If ->dead, @src_set is associated with one or more dead cgroups
2674 * and doesn't contain any migratable tasks. Ignore it early so
2675 * that the rest of migration path doesn't get confused by it.
2676 */
2677 if (src_cset->dead)
2678 return;
2679
2680 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2681
2682 if (!list_empty(&src_cset->mg_preload_node))
2683 return;
2684
2685 WARN_ON(src_cset->mg_src_cgrp);
2686 WARN_ON(src_cset->mg_dst_cgrp);
2687 WARN_ON(!list_empty(&src_cset->mg_tasks));
2688 WARN_ON(!list_empty(&src_cset->mg_node));
2689
2690 src_cset->mg_src_cgrp = src_cgrp;
2691 src_cset->mg_dst_cgrp = dst_cgrp;
2692 get_css_set(src_cset);
2693 list_add(&src_cset->mg_preload_node, preloaded_csets);
2694 }
2695
2696 /**
2697 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2698 * @preloaded_csets: list of preloaded source css_sets
2699 *
2700 * Tasks are about to be moved and all the source css_sets have been
2701 * preloaded to @preloaded_csets. This function looks up and pins all
2702 * destination css_sets, links each to its source, and append them to
2703 * @preloaded_csets.
2704 *
2705 * This function must be called after cgroup_migrate_add_src() has been
2706 * called on each migration source css_set. After migration is performed
2707 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2708 * @preloaded_csets.
2709 */
2710 static int cgroup_migrate_prepare_dst(struct list_head *preloaded_csets)
2711 {
2712 LIST_HEAD(csets);
2713 struct css_set *src_cset, *tmp_cset;
2714
2715 lockdep_assert_held(&cgroup_mutex);
2716
2717 /* look up the dst cset for each src cset and link it to src */
2718 list_for_each_entry_safe(src_cset, tmp_cset, preloaded_csets, mg_preload_node) {
2719 struct css_set *dst_cset;
2720
2721 dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
2722 if (!dst_cset)
2723 goto err;
2724
2725 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2726
2727 /*
2728 * If src cset equals dst, it's noop. Drop the src.
2729 * cgroup_migrate() will skip the cset too. Note that we
2730 * can't handle src == dst as some nodes are used by both.
2731 */
2732 if (src_cset == dst_cset) {
2733 src_cset->mg_src_cgrp = NULL;
2734 src_cset->mg_dst_cgrp = NULL;
2735 list_del_init(&src_cset->mg_preload_node);
2736 put_css_set(src_cset);
2737 put_css_set(dst_cset);
2738 continue;
2739 }
2740
2741 src_cset->mg_dst_cset = dst_cset;
2742
2743 if (list_empty(&dst_cset->mg_preload_node))
2744 list_add(&dst_cset->mg_preload_node, &csets);
2745 else
2746 put_css_set(dst_cset);
2747 }
2748
2749 list_splice_tail(&csets, preloaded_csets);
2750 return 0;
2751 err:
2752 cgroup_migrate_finish(&csets);
2753 return -ENOMEM;
2754 }
2755
2756 /**
2757 * cgroup_migrate - migrate a process or task to a cgroup
2758 * @leader: the leader of the process or the task to migrate
2759 * @threadgroup: whether @leader points to the whole process or a single task
2760 * @root: cgroup root migration is taking place on
2761 *
2762 * Migrate a process or task denoted by @leader. If migrating a process,
2763 * the caller must be holding cgroup_threadgroup_rwsem. The caller is also
2764 * responsible for invoking cgroup_migrate_add_src() and
2765 * cgroup_migrate_prepare_dst() on the targets before invoking this
2766 * function and following up with cgroup_migrate_finish().
2767 *
2768 * As long as a controller's ->can_attach() doesn't fail, this function is
2769 * guaranteed to succeed. This means that, excluding ->can_attach()
2770 * failure, when migrating multiple targets, the success or failure can be
2771 * decided for all targets by invoking group_migrate_prepare_dst() before
2772 * actually starting migrating.
2773 */
2774 static int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2775 struct cgroup_root *root)
2776 {
2777 struct cgroup_taskset tset = CGROUP_TASKSET_INIT(tset);
2778 struct task_struct *task;
2779
2780 /*
2781 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2782 * already PF_EXITING could be freed from underneath us unless we
2783 * take an rcu_read_lock.
2784 */
2785 spin_lock_irq(&css_set_lock);
2786 rcu_read_lock();
2787 task = leader;
2788 do {
2789 cgroup_taskset_add(task, &tset);
2790 if (!threadgroup)
2791 break;
2792 } while_each_thread(leader, task);
2793 rcu_read_unlock();
2794 spin_unlock_irq(&css_set_lock);
2795
2796 return cgroup_taskset_migrate(&tset, root);
2797 }
2798
2799 /**
2800 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2801 * @dst_cgrp: the cgroup to attach to
2802 * @leader: the task or the leader of the threadgroup to be attached
2803 * @threadgroup: attach the whole threadgroup?
2804 *
2805 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2806 */
2807 static int cgroup_attach_task(struct cgroup *dst_cgrp,
2808 struct task_struct *leader, bool threadgroup)
2809 {
2810 LIST_HEAD(preloaded_csets);
2811 struct task_struct *task;
2812 int ret;
2813
2814 if (!cgroup_may_migrate_to(dst_cgrp))
2815 return -EBUSY;
2816
2817 /* look up all src csets */
2818 spin_lock_irq(&css_set_lock);
2819 rcu_read_lock();
2820 task = leader;
2821 do {
2822 cgroup_migrate_add_src(task_css_set(task), dst_cgrp,
2823 &preloaded_csets);
2824 if (!threadgroup)
2825 break;
2826 } while_each_thread(leader, task);
2827 rcu_read_unlock();
2828 spin_unlock_irq(&css_set_lock);
2829
2830 /* prepare dst csets and commit */
2831 ret = cgroup_migrate_prepare_dst(&preloaded_csets);
2832 if (!ret)
2833 ret = cgroup_migrate(leader, threadgroup, dst_cgrp->root);
2834
2835 cgroup_migrate_finish(&preloaded_csets);
2836 return ret;
2837 }
2838
2839 static int cgroup_procs_write_permission(struct task_struct *task,
2840 struct cgroup *dst_cgrp,
2841 struct kernfs_open_file *of)
2842 {
2843 const struct cred *cred = current_cred();
2844 const struct cred *tcred = get_task_cred(task);
2845 int ret = 0;
2846
2847 /*
2848 * even if we're attaching all tasks in the thread group, we only
2849 * need to check permissions on one of them.
2850 */
2851 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2852 !uid_eq(cred->euid, tcred->uid) &&
2853 !uid_eq(cred->euid, tcred->suid))
2854 ret = -EACCES;
2855
2856 if (!ret && cgroup_on_dfl(dst_cgrp)) {
2857 struct super_block *sb = of->file->f_path.dentry->d_sb;
2858 struct cgroup *cgrp;
2859 struct inode *inode;
2860
2861 spin_lock_irq(&css_set_lock);
2862 cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
2863 spin_unlock_irq(&css_set_lock);
2864
2865 while (!cgroup_is_descendant(dst_cgrp, cgrp))
2866 cgrp = cgroup_parent(cgrp);
2867
2868 ret = -ENOMEM;
2869 inode = kernfs_get_inode(sb, cgrp->procs_file.kn);
2870 if (inode) {
2871 ret = inode_permission(inode, MAY_WRITE);
2872 iput(inode);
2873 }
2874 }
2875
2876 put_cred(tcred);
2877 return ret;
2878 }
2879
2880 /*
2881 * Find the task_struct of the task to attach by vpid and pass it along to the
2882 * function to attach either it or all tasks in its threadgroup. Will lock
2883 * cgroup_mutex and threadgroup.
2884 */
2885 static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
2886 size_t nbytes, loff_t off, bool threadgroup)
2887 {
2888 struct task_struct *tsk;
2889 struct cgroup_subsys *ss;
2890 struct cgroup *cgrp;
2891 pid_t pid;
2892 int ssid, ret;
2893
2894 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2895 return -EINVAL;
2896
2897 cgrp = cgroup_kn_lock_live(of->kn, false);
2898 if (!cgrp)
2899 return -ENODEV;
2900
2901 percpu_down_write(&cgroup_threadgroup_rwsem);
2902 rcu_read_lock();
2903 if (pid) {
2904 tsk = find_task_by_vpid(pid);
2905 if (!tsk) {
2906 ret = -ESRCH;
2907 goto out_unlock_rcu;
2908 }
2909 } else {
2910 tsk = current;
2911 }
2912
2913 if (threadgroup)
2914 tsk = tsk->group_leader;
2915
2916 /*
2917 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
2918 * trapped in a cpuset, or RT worker may be born in a cgroup
2919 * with no rt_runtime allocated. Just say no.
2920 */
2921 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
2922 ret = -EINVAL;
2923 goto out_unlock_rcu;
2924 }
2925
2926 get_task_struct(tsk);
2927 rcu_read_unlock();
2928
2929 ret = cgroup_procs_write_permission(tsk, cgrp, of);
2930 if (!ret)
2931 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
2932
2933 put_task_struct(tsk);
2934 goto out_unlock_threadgroup;
2935
2936 out_unlock_rcu:
2937 rcu_read_unlock();
2938 out_unlock_threadgroup:
2939 percpu_up_write(&cgroup_threadgroup_rwsem);
2940 for_each_subsys(ss, ssid)
2941 if (ss->post_attach)
2942 ss->post_attach();
2943 cgroup_kn_unlock(of->kn);
2944 return ret ?: nbytes;
2945 }
2946
2947 /**
2948 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2949 * @from: attach to all cgroups of a given task
2950 * @tsk: the task to be attached
2951 */
2952 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2953 {
2954 struct cgroup_root *root;
2955 int retval = 0;
2956
2957 mutex_lock(&cgroup_mutex);
2958 for_each_root(root) {
2959 struct cgroup *from_cgrp;
2960
2961 if (root == &cgrp_dfl_root)
2962 continue;
2963
2964 spin_lock_irq(&css_set_lock);
2965 from_cgrp = task_cgroup_from_root(from, root);
2966 spin_unlock_irq(&css_set_lock);
2967
2968 retval = cgroup_attach_task(from_cgrp, tsk, false);
2969 if (retval)
2970 break;
2971 }
2972 mutex_unlock(&cgroup_mutex);
2973
2974 return retval;
2975 }
2976 EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2977
2978 static ssize_t cgroup_tasks_write(struct kernfs_open_file *of,
2979 char *buf, size_t nbytes, loff_t off)
2980 {
2981 return __cgroup_procs_write(of, buf, nbytes, off, false);
2982 }
2983
2984 static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
2985 char *buf, size_t nbytes, loff_t off)
2986 {
2987 return __cgroup_procs_write(of, buf, nbytes, off, true);
2988 }
2989
2990 static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
2991 char *buf, size_t nbytes, loff_t off)
2992 {
2993 struct cgroup *cgrp;
2994
2995 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
2996
2997 cgrp = cgroup_kn_lock_live(of->kn, false);
2998 if (!cgrp)
2999 return -ENODEV;
3000 spin_lock(&release_agent_path_lock);
3001 strlcpy(cgrp->root->release_agent_path, strstrip(buf),
3002 sizeof(cgrp->root->release_agent_path));
3003 spin_unlock(&release_agent_path_lock);
3004 cgroup_kn_unlock(of->kn);
3005 return nbytes;
3006 }
3007
3008 static int cgroup_release_agent_show(struct seq_file *seq, void *v)
3009 {
3010 struct cgroup *cgrp = seq_css(seq)->cgroup;
3011
3012 spin_lock(&release_agent_path_lock);
3013 seq_puts(seq, cgrp->root->release_agent_path);
3014 spin_unlock(&release_agent_path_lock);
3015 seq_putc(seq, '\n');
3016 return 0;
3017 }
3018
3019 static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
3020 {
3021 seq_puts(seq, "0\n");
3022 return 0;
3023 }
3024
3025 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
3026 {
3027 struct cgroup_subsys *ss;
3028 bool printed = false;
3029 int ssid;
3030
3031 do_each_subsys_mask(ss, ssid, ss_mask) {
3032 if (printed)
3033 seq_putc(seq, ' ');
3034 seq_printf(seq, "%s", ss->name);
3035 printed = true;
3036 } while_each_subsys_mask();
3037 if (printed)
3038 seq_putc(seq, '\n');
3039 }
3040
3041 /* show controllers which are enabled from the parent */
3042 static int cgroup_controllers_show(struct seq_file *seq, void *v)
3043 {
3044 struct cgroup *cgrp = seq_css(seq)->cgroup;
3045
3046 cgroup_print_ss_mask(seq, cgroup_control(cgrp));
3047 return 0;
3048 }
3049
3050 /* show controllers which are enabled for a given cgroup's children */
3051 static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
3052 {
3053 struct cgroup *cgrp = seq_css(seq)->cgroup;
3054
3055 cgroup_print_ss_mask(seq, cgrp->subtree_control);
3056 return 0;
3057 }
3058
3059 /**
3060 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
3061 * @cgrp: root of the subtree to update csses for
3062 *
3063 * @cgrp's control masks have changed and its subtree's css associations
3064 * need to be updated accordingly. This function looks up all css_sets
3065 * which are attached to the subtree, creates the matching updated css_sets
3066 * and migrates the tasks to the new ones.
3067 */
3068 static int cgroup_update_dfl_csses(struct cgroup *cgrp)
3069 {
3070 LIST_HEAD(preloaded_csets);
3071 struct cgroup_taskset tset = CGROUP_TASKSET_INIT(tset);
3072 struct cgroup_subsys_state *d_css;
3073 struct cgroup *dsct;
3074 struct css_set *src_cset;
3075 int ret;
3076
3077 lockdep_assert_held(&cgroup_mutex);
3078
3079 percpu_down_write(&cgroup_threadgroup_rwsem);
3080
3081 /* look up all csses currently attached to @cgrp's subtree */
3082 spin_lock_irq(&css_set_lock);
3083 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3084 struct cgrp_cset_link *link;
3085
3086 list_for_each_entry(link, &dsct->cset_links, cset_link)
3087 cgroup_migrate_add_src(link->cset, dsct,
3088 &preloaded_csets);
3089 }
3090 spin_unlock_irq(&css_set_lock);
3091
3092 /* NULL dst indicates self on default hierarchy */
3093 ret = cgroup_migrate_prepare_dst(&preloaded_csets);
3094 if (ret)
3095 goto out_finish;
3096
3097 spin_lock_irq(&css_set_lock);
3098 list_for_each_entry(src_cset, &preloaded_csets, mg_preload_node) {
3099 struct task_struct *task, *ntask;
3100
3101 /* src_csets precede dst_csets, break on the first dst_cset */
3102 if (!src_cset->mg_src_cgrp)
3103 break;
3104
3105 /* all tasks in src_csets need to be migrated */
3106 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
3107 cgroup_taskset_add(task, &tset);
3108 }
3109 spin_unlock_irq(&css_set_lock);
3110
3111 ret = cgroup_taskset_migrate(&tset, cgrp->root);
3112 out_finish:
3113 cgroup_migrate_finish(&preloaded_csets);
3114 percpu_up_write(&cgroup_threadgroup_rwsem);
3115 return ret;
3116 }
3117
3118 /**
3119 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
3120 * @cgrp: root of the target subtree
3121 *
3122 * Because css offlining is asynchronous, userland may try to re-enable a
3123 * controller while the previous css is still around. This function grabs
3124 * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
3125 */
3126 static void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
3127 __acquires(&cgroup_mutex)
3128 {
3129 struct cgroup *dsct;
3130 struct cgroup_subsys_state *d_css;
3131 struct cgroup_subsys *ss;
3132 int ssid;
3133
3134 restart:
3135 mutex_lock(&cgroup_mutex);
3136
3137 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3138 for_each_subsys(ss, ssid) {
3139 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3140 DEFINE_WAIT(wait);
3141
3142 if (!css || !percpu_ref_is_dying(&css->refcnt))
3143 continue;
3144
3145 cgroup_get(dsct);
3146 prepare_to_wait(&dsct->offline_waitq, &wait,
3147 TASK_UNINTERRUPTIBLE);
3148
3149 mutex_unlock(&cgroup_mutex);
3150 schedule();
3151 finish_wait(&dsct->offline_waitq, &wait);
3152
3153 cgroup_put(dsct);
3154 goto restart;
3155 }
3156 }
3157 }
3158
3159 /**
3160 * cgroup_save_control - save control masks of a subtree
3161 * @cgrp: root of the target subtree
3162 *
3163 * Save ->subtree_control and ->subtree_ss_mask to the respective old_
3164 * prefixed fields for @cgrp's subtree including @cgrp itself.
3165 */
3166 static void cgroup_save_control(struct cgroup *cgrp)
3167 {
3168 struct cgroup *dsct;
3169 struct cgroup_subsys_state *d_css;
3170
3171 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3172 dsct->old_subtree_control = dsct->subtree_control;
3173 dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
3174 }
3175 }
3176
3177 /**
3178 * cgroup_propagate_control - refresh control masks of a subtree
3179 * @cgrp: root of the target subtree
3180 *
3181 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
3182 * ->subtree_control and propagate controller availability through the
3183 * subtree so that descendants don't have unavailable controllers enabled.
3184 */
3185 static void cgroup_propagate_control(struct cgroup *cgrp)
3186 {
3187 struct cgroup *dsct;
3188 struct cgroup_subsys_state *d_css;
3189
3190 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3191 dsct->subtree_control &= cgroup_control(dsct);
3192 dsct->subtree_ss_mask =
3193 cgroup_calc_subtree_ss_mask(dsct->subtree_control,
3194 cgroup_ss_mask(dsct));
3195 }
3196 }
3197
3198 /**
3199 * cgroup_restore_control - restore control masks of a subtree
3200 * @cgrp: root of the target subtree
3201 *
3202 * Restore ->subtree_control and ->subtree_ss_mask from the respective old_
3203 * prefixed fields for @cgrp's subtree including @cgrp itself.
3204 */
3205 static void cgroup_restore_control(struct cgroup *cgrp)
3206 {
3207 struct cgroup *dsct;
3208 struct cgroup_subsys_state *d_css;
3209
3210 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3211 dsct->subtree_control = dsct->old_subtree_control;
3212 dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
3213 }
3214 }
3215
3216 static bool css_visible(struct cgroup_subsys_state *css)
3217 {
3218 struct cgroup_subsys *ss = css->ss;
3219 struct cgroup *cgrp = css->cgroup;
3220
3221 if (cgroup_control(cgrp) & (1 << ss->id))
3222 return true;
3223 if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
3224 return false;
3225 return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
3226 }
3227
3228 /**
3229 * cgroup_apply_control_enable - enable or show csses according to control
3230 * @cgrp: root of the target subtree
3231 *
3232 * Walk @cgrp's subtree and create new csses or make the existing ones
3233 * visible. A css is created invisible if it's being implicitly enabled
3234 * through dependency. An invisible css is made visible when the userland
3235 * explicitly enables it.
3236 *
3237 * Returns 0 on success, -errno on failure. On failure, csses which have
3238 * been processed already aren't cleaned up. The caller is responsible for
3239 * cleaning up with cgroup_apply_control_disble().
3240 */
3241 static int cgroup_apply_control_enable(struct cgroup *cgrp)
3242 {
3243 struct cgroup *dsct;
3244 struct cgroup_subsys_state *d_css;
3245 struct cgroup_subsys *ss;
3246 int ssid, ret;
3247
3248 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3249 for_each_subsys(ss, ssid) {
3250 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3251
3252 WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
3253
3254 if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
3255 continue;
3256
3257 if (!css) {
3258 css = css_create(dsct, ss);
3259 if (IS_ERR(css))
3260 return PTR_ERR(css);
3261 }
3262
3263 if (css_visible(css)) {
3264 ret = css_populate_dir(css);
3265 if (ret)
3266 return ret;
3267 }
3268 }
3269 }
3270
3271 return 0;
3272 }
3273
3274 /**
3275 * cgroup_apply_control_disable - kill or hide csses according to control
3276 * @cgrp: root of the target subtree
3277 *
3278 * Walk @cgrp's subtree and kill and hide csses so that they match
3279 * cgroup_ss_mask() and cgroup_visible_mask().
3280 *
3281 * A css is hidden when the userland requests it to be disabled while other
3282 * subsystems are still depending on it. The css must not actively control
3283 * resources and be in the vanilla state if it's made visible again later.
3284 * Controllers which may be depended upon should provide ->css_reset() for
3285 * this purpose.
3286 */
3287 static void cgroup_apply_control_disable(struct cgroup *cgrp)
3288 {
3289 struct cgroup *dsct;
3290 struct cgroup_subsys_state *d_css;
3291 struct cgroup_subsys *ss;
3292 int ssid;
3293
3294 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3295 for_each_subsys(ss, ssid) {
3296 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3297
3298 WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
3299
3300 if (!css)
3301 continue;
3302
3303 if (css->parent &&
3304 !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
3305 kill_css(css);
3306 } else if (!css_visible(css)) {
3307 css_clear_dir(css);
3308 if (ss->css_reset)
3309 ss->css_reset(css);
3310 }
3311 }
3312 }
3313 }
3314
3315 /**
3316 * cgroup_apply_control - apply control mask updates to the subtree
3317 * @cgrp: root of the target subtree
3318 *
3319 * subsystems can be enabled and disabled in a subtree using the following
3320 * steps.
3321 *
3322 * 1. Call cgroup_save_control() to stash the current state.
3323 * 2. Update ->subtree_control masks in the subtree as desired.
3324 * 3. Call cgroup_apply_control() to apply the changes.
3325 * 4. Optionally perform other related operations.
3326 * 5. Call cgroup_finalize_control() to finish up.
3327 *
3328 * This function implements step 3 and propagates the mask changes
3329 * throughout @cgrp's subtree, updates csses accordingly and perform
3330 * process migrations.
3331 */
3332 static int cgroup_apply_control(struct cgroup *cgrp)
3333 {
3334 int ret;
3335
3336 cgroup_propagate_control(cgrp);
3337
3338 ret = cgroup_apply_control_enable(cgrp);
3339 if (ret)
3340 return ret;
3341
3342 /*
3343 * At this point, cgroup_e_css() results reflect the new csses
3344 * making the following cgroup_update_dfl_csses() properly update
3345 * css associations of all tasks in the subtree.
3346 */
3347 ret = cgroup_update_dfl_csses(cgrp);
3348 if (ret)
3349 return ret;
3350
3351 return 0;
3352 }
3353
3354 /**
3355 * cgroup_finalize_control - finalize control mask update
3356 * @cgrp: root of the target subtree
3357 * @ret: the result of the update
3358 *
3359 * Finalize control mask update. See cgroup_apply_control() for more info.
3360 */
3361 static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
3362 {
3363 if (ret) {
3364 cgroup_restore_control(cgrp);
3365 cgroup_propagate_control(cgrp);
3366 }
3367
3368 cgroup_apply_control_disable(cgrp);
3369 }
3370
3371 /* change the enabled child controllers for a cgroup in the default hierarchy */
3372 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3373 char *buf, size_t nbytes,
3374 loff_t off)
3375 {
3376 u16 enable = 0, disable = 0;
3377 struct cgroup *cgrp, *child;
3378 struct cgroup_subsys *ss;
3379 char *tok;
3380 int ssid, ret;
3381
3382 /*
3383 * Parse input - space separated list of subsystem names prefixed
3384 * with either + or -.
3385 */
3386 buf = strstrip(buf);
3387 while ((tok = strsep(&buf, " "))) {
3388 if (tok[0] == '\0')
3389 continue;
3390 do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
3391 if (!cgroup_ssid_enabled(ssid) ||
3392 strcmp(tok + 1, ss->name))
3393 continue;
3394
3395 if (*tok == '+') {
3396 enable |= 1 << ssid;
3397 disable &= ~(1 << ssid);
3398 } else if (*tok == '-') {
3399 disable |= 1 << ssid;
3400 enable &= ~(1 << ssid);
3401 } else {
3402 return -EINVAL;
3403 }
3404 break;
3405 } while_each_subsys_mask();
3406 if (ssid == CGROUP_SUBSYS_COUNT)
3407 return -EINVAL;
3408 }
3409
3410 cgrp = cgroup_kn_lock_live(of->kn, true);
3411 if (!cgrp)
3412 return -ENODEV;
3413
3414 for_each_subsys(ss, ssid) {
3415 if (enable & (1 << ssid)) {
3416 if (cgrp->subtree_control & (1 << ssid)) {
3417 enable &= ~(1 << ssid);
3418 continue;
3419 }
3420
3421 if (!(cgroup_control(cgrp) & (1 << ssid))) {
3422 ret = -ENOENT;
3423 goto out_unlock;
3424 }
3425 } else if (disable & (1 << ssid)) {
3426 if (!(cgrp->subtree_control & (1 << ssid))) {
3427 disable &= ~(1 << ssid);
3428 continue;
3429 }
3430
3431 /* a child has it enabled? */
3432 cgroup_for_each_live_child(child, cgrp) {
3433 if (child->subtree_control & (1 << ssid)) {
3434 ret = -EBUSY;
3435 goto out_unlock;
3436 }
3437 }
3438 }
3439 }
3440
3441 if (!enable && !disable) {
3442 ret = 0;
3443 goto out_unlock;
3444 }
3445
3446 /*
3447 * Except for the root, subtree_control must be zero for a cgroup
3448 * with tasks so that child cgroups don't compete against tasks.
3449 */
3450 if (enable && cgroup_parent(cgrp) && !list_empty(&cgrp->cset_links)) {
3451 ret = -EBUSY;
3452 goto out_unlock;
3453 }
3454
3455 /* save and update control masks and prepare csses */
3456 cgroup_save_control(cgrp);
3457
3458 cgrp->subtree_control |= enable;
3459 cgrp->subtree_control &= ~disable;
3460
3461 ret = cgroup_apply_control(cgrp);
3462
3463 cgroup_finalize_control(cgrp, ret);
3464
3465 kernfs_activate(cgrp->kn);
3466 ret = 0;
3467 out_unlock:
3468 cgroup_kn_unlock(of->kn);
3469 return ret ?: nbytes;
3470 }
3471
3472 static int cgroup_events_show(struct seq_file *seq, void *v)
3473 {
3474 seq_printf(seq, "populated %d\n",
3475 cgroup_is_populated(seq_css(seq)->cgroup));
3476 return 0;
3477 }
3478
3479 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3480 size_t nbytes, loff_t off)
3481 {
3482 struct cgroup *cgrp = of->kn->parent->priv;
3483 struct cftype *cft = of->kn->priv;
3484 struct cgroup_subsys_state *css;
3485 int ret;
3486
3487 if (cft->write)
3488 return cft->write(of, buf, nbytes, off);
3489
3490 /*
3491 * kernfs guarantees that a file isn't deleted with operations in
3492 * flight, which means that the matching css is and stays alive and
3493 * doesn't need to be pinned. The RCU locking is not necessary
3494 * either. It's just for the convenience of using cgroup_css().
3495 */
3496 rcu_read_lock();
3497 css = cgroup_css(cgrp, cft->ss);
3498 rcu_read_unlock();
3499
3500 if (cft->write_u64) {
3501 unsigned long long v;
3502 ret = kstrtoull(buf, 0, &v);
3503 if (!ret)
3504 ret = cft->write_u64(css, cft, v);
3505 } else if (cft->write_s64) {
3506 long long v;
3507 ret = kstrtoll(buf, 0, &v);
3508 if (!ret)
3509 ret = cft->write_s64(css, cft, v);
3510 } else {
3511 ret = -EINVAL;
3512 }
3513
3514 return ret ?: nbytes;
3515 }
3516
3517 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
3518 {
3519 return seq_cft(seq)->seq_start(seq, ppos);
3520 }
3521
3522 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
3523 {
3524 return seq_cft(seq)->seq_next(seq, v, ppos);
3525 }
3526
3527 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
3528 {
3529 seq_cft(seq)->seq_stop(seq, v);
3530 }
3531
3532 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
3533 {
3534 struct cftype *cft = seq_cft(m);
3535 struct cgroup_subsys_state *css = seq_css(m);
3536
3537 if (cft->seq_show)
3538 return cft->seq_show(m, arg);
3539
3540 if (cft->read_u64)
3541 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3542 else if (cft->read_s64)
3543 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3544 else
3545 return -EINVAL;
3546 return 0;
3547 }
3548
3549 static struct kernfs_ops cgroup_kf_single_ops = {
3550 .atomic_write_len = PAGE_SIZE,
3551 .write = cgroup_file_write,
3552 .seq_show = cgroup_seqfile_show,
3553 };
3554
3555 static struct kernfs_ops cgroup_kf_ops = {
3556 .atomic_write_len = PAGE_SIZE,
3557 .write = cgroup_file_write,
3558 .seq_start = cgroup_seqfile_start,
3559 .seq_next = cgroup_seqfile_next,
3560 .seq_stop = cgroup_seqfile_stop,
3561 .seq_show = cgroup_seqfile_show,
3562 };
3563
3564 /*
3565 * cgroup_rename - Only allow simple rename of directories in place.
3566 */
3567 static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
3568 const char *new_name_str)
3569 {
3570 struct cgroup *cgrp = kn->priv;
3571 int ret;
3572
3573 if (kernfs_type(kn) != KERNFS_DIR)
3574 return -ENOTDIR;
3575 if (kn->parent != new_parent)
3576 return -EIO;
3577
3578 /*
3579 * This isn't a proper migration and its usefulness is very
3580 * limited. Disallow on the default hierarchy.
3581 */
3582 if (cgroup_on_dfl(cgrp))
3583 return -EPERM;
3584
3585 /*
3586 * We're gonna grab cgroup_mutex which nests outside kernfs
3587 * active_ref. kernfs_rename() doesn't require active_ref
3588 * protection. Break them before grabbing cgroup_mutex.
3589 */
3590 kernfs_break_active_protection(new_parent);
3591 kernfs_break_active_protection(kn);
3592
3593 mutex_lock(&cgroup_mutex);
3594
3595 ret = kernfs_rename(kn, new_parent, new_name_str);
3596
3597 mutex_unlock(&cgroup_mutex);
3598
3599 kernfs_unbreak_active_protection(kn);
3600 kernfs_unbreak_active_protection(new_parent);
3601 return ret;
3602 }
3603
3604 /* set uid and gid of cgroup dirs and files to that of the creator */
3605 static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3606 {
3607 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3608 .ia_uid = current_fsuid(),
3609 .ia_gid = current_fsgid(), };
3610
3611 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3612 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3613 return 0;
3614
3615 return kernfs_setattr(kn, &iattr);
3616 }
3617
3618 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3619 struct cftype *cft)
3620 {
3621 char name[CGROUP_FILE_NAME_MAX];
3622 struct kernfs_node *kn;
3623 struct lock_class_key *key = NULL;
3624 int ret;
3625
3626 #ifdef CONFIG_DEBUG_LOCK_ALLOC
3627 key = &cft->lockdep_key;
3628 #endif
3629 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3630 cgroup_file_mode(cft), 0, cft->kf_ops, cft,
3631 NULL, key);
3632 if (IS_ERR(kn))
3633 return PTR_ERR(kn);
3634
3635 ret = cgroup_kn_set_ugid(kn);
3636 if (ret) {
3637 kernfs_remove(kn);
3638 return ret;
3639 }
3640
3641 if (cft->file_offset) {
3642 struct cgroup_file *cfile = (void *)css + cft->file_offset;
3643
3644 spin_lock_irq(&cgroup_file_kn_lock);
3645 cfile->kn = kn;
3646 spin_unlock_irq(&cgroup_file_kn_lock);
3647 }
3648
3649 return 0;
3650 }
3651
3652 /**
3653 * cgroup_addrm_files - add or remove files to a cgroup directory
3654 * @css: the target css
3655 * @cgrp: the target cgroup (usually css->cgroup)
3656 * @cfts: array of cftypes to be added
3657 * @is_add: whether to add or remove
3658 *
3659 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
3660 * For removals, this function never fails.
3661 */
3662 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
3663 struct cgroup *cgrp, struct cftype cfts[],
3664 bool is_add)
3665 {
3666 struct cftype *cft, *cft_end = NULL;
3667 int ret = 0;
3668
3669 lockdep_assert_held(&cgroup_mutex);
3670
3671 restart:
3672 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
3673 /* does cft->flags tell us to skip this file on @cgrp? */
3674 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
3675 continue;
3676 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
3677 continue;
3678 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
3679 continue;
3680 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
3681 continue;
3682
3683 if (is_add) {
3684 ret = cgroup_add_file(css, cgrp, cft);
3685 if (ret) {
3686 pr_warn("%s: failed to add %s, err=%d\n",
3687 __func__, cft->name, ret);
3688 cft_end = cft;
3689 is_add = false;
3690 goto restart;
3691 }
3692 } else {
3693 cgroup_rm_file(cgrp, cft);
3694 }
3695 }
3696 return ret;
3697 }
3698
3699 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
3700 {
3701 LIST_HEAD(pending);
3702 struct cgroup_subsys *ss = cfts[0].ss;
3703 struct cgroup *root = &ss->root->cgrp;
3704 struct cgroup_subsys_state *css;
3705 int ret = 0;
3706
3707 lockdep_assert_held(&cgroup_mutex);
3708
3709 /* add/rm files for all cgroups created before */
3710 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
3711 struct cgroup *cgrp = css->cgroup;
3712
3713 if (!(css->flags & CSS_VISIBLE))
3714 continue;
3715
3716 ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
3717 if (ret)
3718 break;
3719 }
3720
3721 if (is_add && !ret)
3722 kernfs_activate(root->kn);
3723 return ret;
3724 }
3725
3726 static void cgroup_exit_cftypes(struct cftype *cfts)
3727 {
3728 struct cftype *cft;
3729
3730 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3731 /* free copy for custom atomic_write_len, see init_cftypes() */
3732 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3733 kfree(cft->kf_ops);
3734 cft->kf_ops = NULL;
3735 cft->ss = NULL;
3736
3737 /* revert flags set by cgroup core while adding @cfts */
3738 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
3739 }
3740 }
3741
3742 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3743 {
3744 struct cftype *cft;
3745
3746 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3747 struct kernfs_ops *kf_ops;
3748
3749 WARN_ON(cft->ss || cft->kf_ops);
3750
3751 if (cft->seq_start)
3752 kf_ops = &cgroup_kf_ops;
3753 else
3754 kf_ops = &cgroup_kf_single_ops;
3755
3756 /*
3757 * Ugh... if @cft wants a custom max_write_len, we need to
3758 * make a copy of kf_ops to set its atomic_write_len.
3759 */
3760 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3761 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3762 if (!kf_ops) {
3763 cgroup_exit_cftypes(cfts);
3764 return -ENOMEM;
3765 }
3766 kf_ops->atomic_write_len = cft->max_write_len;
3767 }
3768
3769 cft->kf_ops = kf_ops;
3770 cft->ss = ss;
3771 }
3772
3773 return 0;
3774 }
3775
3776 static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3777 {
3778 lockdep_assert_held(&cgroup_mutex);
3779
3780 if (!cfts || !cfts[0].ss)
3781 return -ENOENT;
3782
3783 list_del(&cfts->node);
3784 cgroup_apply_cftypes(cfts, false);
3785 cgroup_exit_cftypes(cfts);
3786 return 0;
3787 }
3788
3789 /**
3790 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
3791 * @cfts: zero-length name terminated array of cftypes
3792 *
3793 * Unregister @cfts. Files described by @cfts are removed from all
3794 * existing cgroups and all future cgroups won't have them either. This
3795 * function can be called anytime whether @cfts' subsys is attached or not.
3796 *
3797 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
3798 * registered.
3799 */
3800 int cgroup_rm_cftypes(struct cftype *cfts)
3801 {
3802 int ret;
3803
3804 mutex_lock(&cgroup_mutex);
3805 ret = cgroup_rm_cftypes_locked(cfts);
3806 mutex_unlock(&cgroup_mutex);
3807 return ret;
3808 }
3809
3810 /**
3811 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3812 * @ss: target cgroup subsystem
3813 * @cfts: zero-length name terminated array of cftypes
3814 *
3815 * Register @cfts to @ss. Files described by @cfts are created for all
3816 * existing cgroups to which @ss is attached and all future cgroups will
3817 * have them too. This function can be called anytime whether @ss is
3818 * attached or not.
3819 *
3820 * Returns 0 on successful registration, -errno on failure. Note that this
3821 * function currently returns 0 as long as @cfts registration is successful
3822 * even if some file creation attempts on existing cgroups fail.
3823 */
3824 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3825 {
3826 int ret;
3827
3828 if (!cgroup_ssid_enabled(ss->id))
3829 return 0;
3830
3831 if (!cfts || cfts[0].name[0] == '\0')
3832 return 0;
3833
3834 ret = cgroup_init_cftypes(ss, cfts);
3835 if (ret)
3836 return ret;
3837
3838 mutex_lock(&cgroup_mutex);
3839
3840 list_add_tail(&cfts->node, &ss->cfts);
3841 ret = cgroup_apply_cftypes(cfts, true);
3842 if (ret)
3843 cgroup_rm_cftypes_locked(cfts);
3844
3845 mutex_unlock(&cgroup_mutex);
3846 return ret;
3847 }
3848
3849 /**
3850 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3851 * @ss: target cgroup subsystem
3852 * @cfts: zero-length name terminated array of cftypes
3853 *
3854 * Similar to cgroup_add_cftypes() but the added files are only used for
3855 * the default hierarchy.
3856 */
3857 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3858 {
3859 struct cftype *cft;
3860
3861 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3862 cft->flags |= __CFTYPE_ONLY_ON_DFL;
3863 return cgroup_add_cftypes(ss, cfts);
3864 }
3865
3866 /**
3867 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3868 * @ss: target cgroup subsystem
3869 * @cfts: zero-length name terminated array of cftypes
3870 *
3871 * Similar to cgroup_add_cftypes() but the added files are only used for
3872 * the legacy hierarchies.
3873 */
3874 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3875 {
3876 struct cftype *cft;
3877
3878 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3879 cft->flags |= __CFTYPE_NOT_ON_DFL;
3880 return cgroup_add_cftypes(ss, cfts);
3881 }
3882
3883 /**
3884 * cgroup_file_notify - generate a file modified event for a cgroup_file
3885 * @cfile: target cgroup_file
3886 *
3887 * @cfile must have been obtained by setting cftype->file_offset.
3888 */
3889 void cgroup_file_notify(struct cgroup_file *cfile)
3890 {
3891 unsigned long flags;
3892
3893 spin_lock_irqsave(&cgroup_file_kn_lock, flags);
3894 if (cfile->kn)
3895 kernfs_notify(cfile->kn);
3896 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
3897 }
3898
3899 /**
3900 * cgroup_task_count - count the number of tasks in a cgroup.
3901 * @cgrp: the cgroup in question
3902 *
3903 * Return the number of tasks in the cgroup.
3904 */
3905 static int cgroup_task_count(const struct cgroup *cgrp)
3906 {
3907 int count = 0;
3908 struct cgrp_cset_link *link;
3909
3910 spin_lock_irq(&css_set_lock);
3911 list_for_each_entry(link, &cgrp->cset_links, cset_link)
3912 count += atomic_read(&link->cset->refcount);
3913 spin_unlock_irq(&css_set_lock);
3914 return count;
3915 }
3916
3917 /**
3918 * css_next_child - find the next child of a given css
3919 * @pos: the current position (%NULL to initiate traversal)
3920 * @parent: css whose children to walk
3921 *
3922 * This function returns the next child of @parent and should be called
3923 * under either cgroup_mutex or RCU read lock. The only requirement is
3924 * that @parent and @pos are accessible. The next sibling is guaranteed to
3925 * be returned regardless of their states.
3926 *
3927 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3928 * css which finished ->css_online() is guaranteed to be visible in the
3929 * future iterations and will stay visible until the last reference is put.
3930 * A css which hasn't finished ->css_online() or already finished
3931 * ->css_offline() may show up during traversal. It's each subsystem's
3932 * responsibility to synchronize against on/offlining.
3933 */
3934 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
3935 struct cgroup_subsys_state *parent)
3936 {
3937 struct cgroup_subsys_state *next;
3938
3939 cgroup_assert_mutex_or_rcu_locked();
3940
3941 /*
3942 * @pos could already have been unlinked from the sibling list.
3943 * Once a cgroup is removed, its ->sibling.next is no longer
3944 * updated when its next sibling changes. CSS_RELEASED is set when
3945 * @pos is taken off list, at which time its next pointer is valid,
3946 * and, as releases are serialized, the one pointed to by the next
3947 * pointer is guaranteed to not have started release yet. This
3948 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3949 * critical section, the one pointed to by its next pointer is
3950 * guaranteed to not have finished its RCU grace period even if we
3951 * have dropped rcu_read_lock() inbetween iterations.
3952 *
3953 * If @pos has CSS_RELEASED set, its next pointer can't be
3954 * dereferenced; however, as each css is given a monotonically
3955 * increasing unique serial number and always appended to the
3956 * sibling list, the next one can be found by walking the parent's
3957 * children until the first css with higher serial number than
3958 * @pos's. While this path can be slower, it happens iff iteration
3959 * races against release and the race window is very small.
3960 */
3961 if (!pos) {
3962 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
3963 } else if (likely(!(pos->flags & CSS_RELEASED))) {
3964 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
3965 } else {
3966 list_for_each_entry_rcu(next, &parent->children, sibling)
3967 if (next->serial_nr > pos->serial_nr)
3968 break;
3969 }
3970
3971 /*
3972 * @next, if not pointing to the head, can be dereferenced and is
3973 * the next sibling.
3974 */
3975 if (&next->sibling != &parent->children)
3976 return next;
3977 return NULL;
3978 }
3979
3980 /**
3981 * css_next_descendant_pre - find the next descendant for pre-order walk
3982 * @pos: the current position (%NULL to initiate traversal)
3983 * @root: css whose descendants to walk
3984 *
3985 * To be used by css_for_each_descendant_pre(). Find the next descendant
3986 * to visit for pre-order traversal of @root's descendants. @root is
3987 * included in the iteration and the first node to be visited.
3988 *
3989 * While this function requires cgroup_mutex or RCU read locking, it
3990 * doesn't require the whole traversal to be contained in a single critical
3991 * section. This function will return the correct next descendant as long
3992 * as both @pos and @root are accessible and @pos is a descendant of @root.
3993 *
3994 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3995 * css which finished ->css_online() is guaranteed to be visible in the
3996 * future iterations and will stay visible until the last reference is put.
3997 * A css which hasn't finished ->css_online() or already finished
3998 * ->css_offline() may show up during traversal. It's each subsystem's
3999 * responsibility to synchronize against on/offlining.
4000 */
4001 struct cgroup_subsys_state *
4002 css_next_descendant_pre(struct cgroup_subsys_state *pos,
4003 struct cgroup_subsys_state *root)
4004 {
4005 struct cgroup_subsys_state *next;
4006
4007 cgroup_assert_mutex_or_rcu_locked();
4008
4009 /* if first iteration, visit @root */
4010 if (!pos)
4011 return root;
4012
4013 /* visit the first child if exists */
4014 next = css_next_child(NULL, pos);
4015 if (next)
4016 return next;
4017
4018 /* no child, visit my or the closest ancestor's next sibling */
4019 while (pos != root) {
4020 next = css_next_child(pos, pos->parent);
4021 if (next)
4022 return next;
4023 pos = pos->parent;
4024 }
4025
4026 return NULL;
4027 }
4028
4029 /**
4030 * css_rightmost_descendant - return the rightmost descendant of a css
4031 * @pos: css of interest
4032 *
4033 * Return the rightmost descendant of @pos. If there's no descendant, @pos
4034 * is returned. This can be used during pre-order traversal to skip
4035 * subtree of @pos.
4036 *
4037 * While this function requires cgroup_mutex or RCU read locking, it
4038 * doesn't require the whole traversal to be contained in a single critical
4039 * section. This function will return the correct rightmost descendant as
4040 * long as @pos is accessible.
4041 */
4042 struct cgroup_subsys_state *
4043 css_rightmost_descendant(struct cgroup_subsys_state *pos)
4044 {
4045 struct cgroup_subsys_state *last, *tmp;
4046
4047 cgroup_assert_mutex_or_rcu_locked();
4048
4049 do {
4050 last = pos;
4051 /* ->prev isn't RCU safe, walk ->next till the end */
4052 pos = NULL;
4053 css_for_each_child(tmp, last)
4054 pos = tmp;
4055 } while (pos);
4056
4057 return last;
4058 }
4059
4060 static struct cgroup_subsys_state *
4061 css_leftmost_descendant(struct cgroup_subsys_state *pos)
4062 {
4063 struct cgroup_subsys_state *last;
4064
4065 do {
4066 last = pos;
4067 pos = css_next_child(NULL, pos);
4068 } while (pos);
4069
4070 return last;
4071 }
4072
4073 /**
4074 * css_next_descendant_post - find the next descendant for post-order walk
4075 * @pos: the current position (%NULL to initiate traversal)
4076 * @root: css whose descendants to walk
4077 *
4078 * To be used by css_for_each_descendant_post(). Find the next descendant
4079 * to visit for post-order traversal of @root's descendants. @root is
4080 * included in the iteration and the last node to be visited.
4081 *
4082 * While this function requires cgroup_mutex or RCU read locking, it
4083 * doesn't require the whole traversal to be contained in a single critical
4084 * section. This function will return the correct next descendant as long
4085 * as both @pos and @cgroup are accessible and @pos is a descendant of
4086 * @cgroup.
4087 *
4088 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4089 * css which finished ->css_online() is guaranteed to be visible in the
4090 * future iterations and will stay visible until the last reference is put.
4091 * A css which hasn't finished ->css_online() or already finished
4092 * ->css_offline() may show up during traversal. It's each subsystem's
4093 * responsibility to synchronize against on/offlining.
4094 */
4095 struct cgroup_subsys_state *
4096 css_next_descendant_post(struct cgroup_subsys_state *pos,
4097 struct cgroup_subsys_state *root)
4098 {
4099 struct cgroup_subsys_state *next;
4100
4101 cgroup_assert_mutex_or_rcu_locked();
4102
4103 /* if first iteration, visit leftmost descendant which may be @root */
4104 if (!pos)
4105 return css_leftmost_descendant(root);
4106
4107 /* if we visited @root, we're done */
4108 if (pos == root)
4109 return NULL;
4110
4111 /* if there's an unvisited sibling, visit its leftmost descendant */
4112 next = css_next_child(pos, pos->parent);
4113 if (next)
4114 return css_leftmost_descendant(next);
4115
4116 /* no sibling left, visit parent */
4117 return pos->parent;
4118 }
4119
4120 /**
4121 * css_has_online_children - does a css have online children
4122 * @css: the target css
4123 *
4124 * Returns %true if @css has any online children; otherwise, %false. This
4125 * function can be called from any context but the caller is responsible
4126 * for synchronizing against on/offlining as necessary.
4127 */
4128 bool css_has_online_children(struct cgroup_subsys_state *css)
4129 {
4130 struct cgroup_subsys_state *child;
4131 bool ret = false;
4132
4133 rcu_read_lock();
4134 css_for_each_child(child, css) {
4135 if (child->flags & CSS_ONLINE) {
4136 ret = true;
4137 break;
4138 }
4139 }
4140 rcu_read_unlock();
4141 return ret;
4142 }
4143
4144 /**
4145 * css_task_iter_advance_css_set - advance a task itererator to the next css_set
4146 * @it: the iterator to advance
4147 *
4148 * Advance @it to the next css_set to walk.
4149 */
4150 static void css_task_iter_advance_css_set(struct css_task_iter *it)
4151 {
4152 struct list_head *l = it->cset_pos;
4153 struct cgrp_cset_link *link;
4154 struct css_set *cset;
4155
4156 lockdep_assert_held(&css_set_lock);
4157
4158 /* Advance to the next non-empty css_set */
4159 do {
4160 l = l->next;
4161 if (l == it->cset_head) {
4162 it->cset_pos = NULL;
4163 it->task_pos = NULL;
4164 return;
4165 }
4166
4167 if (it->ss) {
4168 cset = container_of(l, struct css_set,
4169 e_cset_node[it->ss->id]);
4170 } else {
4171 link = list_entry(l, struct cgrp_cset_link, cset_link);
4172 cset = link->cset;
4173 }
4174 } while (!css_set_populated(cset));
4175
4176 it->cset_pos = l;
4177
4178 if (!list_empty(&cset->tasks))
4179 it->task_pos = cset->tasks.next;
4180 else
4181 it->task_pos = cset->mg_tasks.next;
4182
4183 it->tasks_head = &cset->tasks;
4184 it->mg_tasks_head = &cset->mg_tasks;
4185
4186 /*
4187 * We don't keep css_sets locked across iteration steps and thus
4188 * need to take steps to ensure that iteration can be resumed after
4189 * the lock is re-acquired. Iteration is performed at two levels -
4190 * css_sets and tasks in them.
4191 *
4192 * Once created, a css_set never leaves its cgroup lists, so a
4193 * pinned css_set is guaranteed to stay put and we can resume
4194 * iteration afterwards.
4195 *
4196 * Tasks may leave @cset across iteration steps. This is resolved
4197 * by registering each iterator with the css_set currently being
4198 * walked and making css_set_move_task() advance iterators whose
4199 * next task is leaving.
4200 */
4201 if (it->cur_cset) {
4202 list_del(&it->iters_node);
4203 put_css_set_locked(it->cur_cset);
4204 }
4205 get_css_set(cset);
4206 it->cur_cset = cset;
4207 list_add(&it->iters_node, &cset->task_iters);
4208 }
4209
4210 static void css_task_iter_advance(struct css_task_iter *it)
4211 {
4212 struct list_head *l = it->task_pos;
4213
4214 lockdep_assert_held(&css_set_lock);
4215 WARN_ON_ONCE(!l);
4216
4217 /*
4218 * Advance iterator to find next entry. cset->tasks is consumed
4219 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
4220 * next cset.
4221 */
4222 l = l->next;
4223
4224 if (l == it->tasks_head)
4225 l = it->mg_tasks_head->next;
4226
4227 if (l == it->mg_tasks_head)
4228 css_task_iter_advance_css_set(it);
4229 else
4230 it->task_pos = l;
4231 }
4232
4233 /**
4234 * css_task_iter_start - initiate task iteration
4235 * @css: the css to walk tasks of
4236 * @it: the task iterator to use
4237 *
4238 * Initiate iteration through the tasks of @css. The caller can call
4239 * css_task_iter_next() to walk through the tasks until the function
4240 * returns NULL. On completion of iteration, css_task_iter_end() must be
4241 * called.
4242 */
4243 void css_task_iter_start(struct cgroup_subsys_state *css,
4244 struct css_task_iter *it)
4245 {
4246 /* no one should try to iterate before mounting cgroups */
4247 WARN_ON_ONCE(!use_task_css_set_links);
4248
4249 memset(it, 0, sizeof(*it));
4250
4251 spin_lock_irq(&css_set_lock);
4252
4253 it->ss = css->ss;
4254
4255 if (it->ss)
4256 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
4257 else
4258 it->cset_pos = &css->cgroup->cset_links;
4259
4260 it->cset_head = it->cset_pos;
4261
4262 css_task_iter_advance_css_set(it);
4263
4264 spin_unlock_irq(&css_set_lock);
4265 }
4266
4267 /**
4268 * css_task_iter_next - return the next task for the iterator
4269 * @it: the task iterator being iterated
4270 *
4271 * The "next" function for task iteration. @it should have been
4272 * initialized via css_task_iter_start(). Returns NULL when the iteration
4273 * reaches the end.
4274 */
4275 struct task_struct *css_task_iter_next(struct css_task_iter *it)
4276 {
4277 if (it->cur_task) {
4278 put_task_struct(it->cur_task);
4279 it->cur_task = NULL;
4280 }
4281
4282 spin_lock_irq(&css_set_lock);
4283
4284 if (it->task_pos) {
4285 it->cur_task = list_entry(it->task_pos, struct task_struct,
4286 cg_list);
4287 get_task_struct(it->cur_task);
4288 css_task_iter_advance(it);
4289 }
4290
4291 spin_unlock_irq(&css_set_lock);
4292
4293 return it->cur_task;
4294 }
4295
4296 /**
4297 * css_task_iter_end - finish task iteration
4298 * @it: the task iterator to finish
4299 *
4300 * Finish task iteration started by css_task_iter_start().
4301 */
4302 void css_task_iter_end(struct css_task_iter *it)
4303 {
4304 if (it->cur_cset) {
4305 spin_lock_irq(&css_set_lock);
4306 list_del(&it->iters_node);
4307 put_css_set_locked(it->cur_cset);
4308 spin_unlock_irq(&css_set_lock);
4309 }
4310
4311 if (it->cur_task)
4312 put_task_struct(it->cur_task);
4313 }
4314
4315 /**
4316 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
4317 * @to: cgroup to which the tasks will be moved
4318 * @from: cgroup in which the tasks currently reside
4319 *
4320 * Locking rules between cgroup_post_fork() and the migration path
4321 * guarantee that, if a task is forking while being migrated, the new child
4322 * is guaranteed to be either visible in the source cgroup after the
4323 * parent's migration is complete or put into the target cgroup. No task
4324 * can slip out of migration through forking.
4325 */
4326 int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
4327 {
4328 LIST_HEAD(preloaded_csets);
4329 struct cgrp_cset_link *link;
4330 struct css_task_iter it;
4331 struct task_struct *task;
4332 int ret;
4333
4334 if (!cgroup_may_migrate_to(to))
4335 return -EBUSY;
4336
4337 mutex_lock(&cgroup_mutex);
4338
4339 /* all tasks in @from are being moved, all csets are source */
4340 spin_lock_irq(&css_set_lock);
4341 list_for_each_entry(link, &from->cset_links, cset_link)
4342 cgroup_migrate_add_src(link->cset, to, &preloaded_csets);
4343 spin_unlock_irq(&css_set_lock);
4344
4345 ret = cgroup_migrate_prepare_dst(&preloaded_csets);
4346 if (ret)
4347 goto out_err;
4348
4349 /*
4350 * Migrate tasks one-by-one until @from is empty. This fails iff
4351 * ->can_attach() fails.
4352 */
4353 do {
4354 css_task_iter_start(&from->self, &it);
4355 task = css_task_iter_next(&it);
4356 if (task)
4357 get_task_struct(task);
4358 css_task_iter_end(&it);
4359
4360 if (task) {
4361 ret = cgroup_migrate(task, false, to->root);
4362 put_task_struct(task);
4363 }
4364 } while (task && !ret);
4365 out_err:
4366 cgroup_migrate_finish(&preloaded_csets);
4367 mutex_unlock(&cgroup_mutex);
4368 return ret;
4369 }
4370
4371 /*
4372 * Stuff for reading the 'tasks'/'procs' files.
4373 *
4374 * Reading this file can return large amounts of data if a cgroup has
4375 * *lots* of attached tasks. So it may need several calls to read(),
4376 * but we cannot guarantee that the information we produce is correct
4377 * unless we produce it entirely atomically.
4378 *
4379 */
4380
4381 /* which pidlist file are we talking about? */
4382 enum cgroup_filetype {
4383 CGROUP_FILE_PROCS,
4384 CGROUP_FILE_TASKS,
4385 };
4386
4387 /*
4388 * A pidlist is a list of pids that virtually represents the contents of one
4389 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
4390 * a pair (one each for procs, tasks) for each pid namespace that's relevant
4391 * to the cgroup.
4392 */
4393 struct cgroup_pidlist {
4394 /*
4395 * used to find which pidlist is wanted. doesn't change as long as
4396 * this particular list stays in the list.
4397 */
4398 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
4399 /* array of xids */
4400 pid_t *list;
4401 /* how many elements the above list has */
4402 int length;
4403 /* each of these stored in a list by its cgroup */
4404 struct list_head links;
4405 /* pointer to the cgroup we belong to, for list removal purposes */
4406 struct cgroup *owner;
4407 /* for delayed destruction */
4408 struct delayed_work destroy_dwork;
4409 };
4410
4411 /*
4412 * The following two functions "fix" the issue where there are more pids
4413 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
4414 * TODO: replace with a kernel-wide solution to this problem
4415 */
4416 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
4417 static void *pidlist_allocate(int count)
4418 {
4419 if (PIDLIST_TOO_LARGE(count))
4420 return vmalloc(count * sizeof(pid_t));
4421 else
4422 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
4423 }
4424
4425 static void pidlist_free(void *p)
4426 {
4427 kvfree(p);
4428 }
4429
4430 /*
4431 * Used to destroy all pidlists lingering waiting for destroy timer. None
4432 * should be left afterwards.
4433 */
4434 static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
4435 {
4436 struct cgroup_pidlist *l, *tmp_l;
4437
4438 mutex_lock(&cgrp->pidlist_mutex);
4439 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
4440 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
4441 mutex_unlock(&cgrp->pidlist_mutex);
4442
4443 flush_workqueue(cgroup_pidlist_destroy_wq);
4444 BUG_ON(!list_empty(&cgrp->pidlists));
4445 }
4446
4447 static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
4448 {
4449 struct delayed_work *dwork = to_delayed_work(work);
4450 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
4451 destroy_dwork);
4452 struct cgroup_pidlist *tofree = NULL;
4453
4454 mutex_lock(&l->owner->pidlist_mutex);
4455
4456 /*
4457 * Destroy iff we didn't get queued again. The state won't change
4458 * as destroy_dwork can only be queued while locked.
4459 */
4460 if (!delayed_work_pending(dwork)) {
4461 list_del(&l->links);
4462 pidlist_free(l->list);
4463 put_pid_ns(l->key.ns);
4464 tofree = l;
4465 }
4466
4467 mutex_unlock(&l->owner->pidlist_mutex);
4468 kfree(tofree);
4469 }
4470
4471 /*
4472 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
4473 * Returns the number of unique elements.
4474 */
4475 static int pidlist_uniq(pid_t *list, int length)
4476 {
4477 int src, dest = 1;
4478
4479 /*
4480 * we presume the 0th element is unique, so i starts at 1. trivial
4481 * edge cases first; no work needs to be done for either
4482 */
4483 if (length == 0 || length == 1)
4484 return length;
4485 /* src and dest walk down the list; dest counts unique elements */
4486 for (src = 1; src < length; src++) {
4487 /* find next unique element */
4488 while (list[src] == list[src-1]) {
4489 src++;
4490 if (src == length)
4491 goto after;
4492 }
4493 /* dest always points to where the next unique element goes */
4494 list[dest] = list[src];
4495 dest++;
4496 }
4497 after:
4498 return dest;
4499 }
4500
4501 /*
4502 * The two pid files - task and cgroup.procs - guaranteed that the result
4503 * is sorted, which forced this whole pidlist fiasco. As pid order is
4504 * different per namespace, each namespace needs differently sorted list,
4505 * making it impossible to use, for example, single rbtree of member tasks
4506 * sorted by task pointer. As pidlists can be fairly large, allocating one
4507 * per open file is dangerous, so cgroup had to implement shared pool of
4508 * pidlists keyed by cgroup and namespace.
4509 *
4510 * All this extra complexity was caused by the original implementation
4511 * committing to an entirely unnecessary property. In the long term, we
4512 * want to do away with it. Explicitly scramble sort order if on the
4513 * default hierarchy so that no such expectation exists in the new
4514 * interface.
4515 *
4516 * Scrambling is done by swapping every two consecutive bits, which is
4517 * non-identity one-to-one mapping which disturbs sort order sufficiently.
4518 */
4519 static pid_t pid_fry(pid_t pid)
4520 {
4521 unsigned a = pid & 0x55555555;
4522 unsigned b = pid & 0xAAAAAAAA;
4523
4524 return (a << 1) | (b >> 1);
4525 }
4526
4527 static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
4528 {
4529 if (cgroup_on_dfl(cgrp))
4530 return pid_fry(pid);
4531 else
4532 return pid;
4533 }
4534
4535 static int cmppid(const void *a, const void *b)
4536 {
4537 return *(pid_t *)a - *(pid_t *)b;
4538 }
4539
4540 static int fried_cmppid(const void *a, const void *b)
4541 {
4542 return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
4543 }
4544
4545 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
4546 enum cgroup_filetype type)
4547 {
4548 struct cgroup_pidlist *l;
4549 /* don't need task_nsproxy() if we're looking at ourself */
4550 struct pid_namespace *ns = task_active_pid_ns(current);
4551
4552 lockdep_assert_held(&cgrp->pidlist_mutex);
4553
4554 list_for_each_entry(l, &cgrp->pidlists, links)
4555 if (l->key.type == type && l->key.ns == ns)
4556 return l;
4557 return NULL;
4558 }
4559
4560 /*
4561 * find the appropriate pidlist for our purpose (given procs vs tasks)
4562 * returns with the lock on that pidlist already held, and takes care
4563 * of the use count, or returns NULL with no locks held if we're out of
4564 * memory.
4565 */
4566 static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
4567 enum cgroup_filetype type)
4568 {
4569 struct cgroup_pidlist *l;
4570
4571 lockdep_assert_held(&cgrp->pidlist_mutex);
4572
4573 l = cgroup_pidlist_find(cgrp, type);
4574 if (l)
4575 return l;
4576
4577 /* entry not found; create a new one */
4578 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
4579 if (!l)
4580 return l;
4581
4582 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
4583 l->key.type = type;
4584 /* don't need task_nsproxy() if we're looking at ourself */
4585 l->key.ns = get_pid_ns(task_active_pid_ns(current));
4586 l->owner = cgrp;
4587 list_add(&l->links, &cgrp->pidlists);
4588 return l;
4589 }
4590
4591 /*
4592 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
4593 */
4594 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
4595 struct cgroup_pidlist **lp)
4596 {
4597 pid_t *array;
4598 int length;
4599 int pid, n = 0; /* used for populating the array */
4600 struct css_task_iter it;
4601 struct task_struct *tsk;
4602 struct cgroup_pidlist *l;
4603
4604 lockdep_assert_held(&cgrp->pidlist_mutex);
4605
4606 /*
4607 * If cgroup gets more users after we read count, we won't have
4608 * enough space - tough. This race is indistinguishable to the
4609 * caller from the case that the additional cgroup users didn't
4610 * show up until sometime later on.
4611 */
4612 length = cgroup_task_count(cgrp);
4613 array = pidlist_allocate(length);
4614 if (!array)
4615 return -ENOMEM;
4616 /* now, populate the array */
4617 css_task_iter_start(&cgrp->self, &it);
4618 while ((tsk = css_task_iter_next(&it))) {
4619 if (unlikely(n == length))
4620 break;
4621 /* get tgid or pid for procs or tasks file respectively */
4622 if (type == CGROUP_FILE_PROCS)
4623 pid = task_tgid_vnr(tsk);
4624 else
4625 pid = task_pid_vnr(tsk);
4626 if (pid > 0) /* make sure to only use valid results */
4627 array[n++] = pid;
4628 }
4629 css_task_iter_end(&it);
4630 length = n;
4631 /* now sort & (if procs) strip out duplicates */
4632 if (cgroup_on_dfl(cgrp))
4633 sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
4634 else
4635 sort(array, length, sizeof(pid_t), cmppid, NULL);
4636 if (type == CGROUP_FILE_PROCS)
4637 length = pidlist_uniq(array, length);
4638
4639 l = cgroup_pidlist_find_create(cgrp, type);
4640 if (!l) {
4641 pidlist_free(array);
4642 return -ENOMEM;
4643 }
4644
4645 /* store array, freeing old if necessary */
4646 pidlist_free(l->list);
4647 l->list = array;
4648 l->length = length;
4649 *lp = l;
4650 return 0;
4651 }
4652
4653 /**
4654 * cgroupstats_build - build and fill cgroupstats
4655 * @stats: cgroupstats to fill information into
4656 * @dentry: A dentry entry belonging to the cgroup for which stats have
4657 * been requested.
4658 *
4659 * Build and fill cgroupstats so that taskstats can export it to user
4660 * space.
4661 */
4662 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
4663 {
4664 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
4665 struct cgroup *cgrp;
4666 struct css_task_iter it;
4667 struct task_struct *tsk;
4668
4669 /* it should be kernfs_node belonging to cgroupfs and is a directory */
4670 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
4671 kernfs_type(kn) != KERNFS_DIR)
4672 return -EINVAL;
4673
4674 mutex_lock(&cgroup_mutex);
4675
4676 /*
4677 * We aren't being called from kernfs and there's no guarantee on
4678 * @kn->priv's validity. For this and css_tryget_online_from_dir(),
4679 * @kn->priv is RCU safe. Let's do the RCU dancing.
4680 */
4681 rcu_read_lock();
4682 cgrp = rcu_dereference(kn->priv);
4683 if (!cgrp || cgroup_is_dead(cgrp)) {
4684 rcu_read_unlock();
4685 mutex_unlock(&cgroup_mutex);
4686 return -ENOENT;
4687 }
4688 rcu_read_unlock();
4689
4690 css_task_iter_start(&cgrp->self, &it);
4691 while ((tsk = css_task_iter_next(&it))) {
4692 switch (tsk->state) {
4693 case TASK_RUNNING:
4694 stats->nr_running++;
4695 break;
4696 case TASK_INTERRUPTIBLE:
4697 stats->nr_sleeping++;
4698 break;
4699 case TASK_UNINTERRUPTIBLE:
4700 stats->nr_uninterruptible++;
4701 break;
4702 case TASK_STOPPED:
4703 stats->nr_stopped++;
4704 break;
4705 default:
4706 if (delayacct_is_task_waiting_on_io(tsk))
4707 stats->nr_io_wait++;
4708 break;
4709 }
4710 }
4711 css_task_iter_end(&it);
4712
4713 mutex_unlock(&cgroup_mutex);
4714 return 0;
4715 }
4716
4717
4718 /*
4719 * seq_file methods for the tasks/procs files. The seq_file position is the
4720 * next pid to display; the seq_file iterator is a pointer to the pid
4721 * in the cgroup->l->list array.
4722 */
4723
4724 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
4725 {
4726 /*
4727 * Initially we receive a position value that corresponds to
4728 * one more than the last pid shown (or 0 on the first call or
4729 * after a seek to the start). Use a binary-search to find the
4730 * next pid to display, if any
4731 */
4732 struct kernfs_open_file *of = s->private;
4733 struct cgroup *cgrp = seq_css(s)->cgroup;
4734 struct cgroup_pidlist *l;
4735 enum cgroup_filetype type = seq_cft(s)->private;
4736 int index = 0, pid = *pos;
4737 int *iter, ret;
4738
4739 mutex_lock(&cgrp->pidlist_mutex);
4740
4741 /*
4742 * !NULL @of->priv indicates that this isn't the first start()
4743 * after open. If the matching pidlist is around, we can use that.
4744 * Look for it. Note that @of->priv can't be used directly. It
4745 * could already have been destroyed.
4746 */
4747 if (of->priv)
4748 of->priv = cgroup_pidlist_find(cgrp, type);
4749
4750 /*
4751 * Either this is the first start() after open or the matching
4752 * pidlist has been destroyed inbetween. Create a new one.
4753 */
4754 if (!of->priv) {
4755 ret = pidlist_array_load(cgrp, type,
4756 (struct cgroup_pidlist **)&of->priv);
4757 if (ret)
4758 return ERR_PTR(ret);
4759 }
4760 l = of->priv;
4761
4762 if (pid) {
4763 int end = l->length;
4764
4765 while (index < end) {
4766 int mid = (index + end) / 2;
4767 if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
4768 index = mid;
4769 break;
4770 } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
4771 index = mid + 1;
4772 else
4773 end = mid;
4774 }
4775 }
4776 /* If we're off the end of the array, we're done */
4777 if (index >= l->length)
4778 return NULL;
4779 /* Update the abstract position to be the actual pid that we found */
4780 iter = l->list + index;
4781 *pos = cgroup_pid_fry(cgrp, *iter);
4782 return iter;
4783 }
4784
4785 static void cgroup_pidlist_stop(struct seq_file *s, void *v)
4786 {
4787 struct kernfs_open_file *of = s->private;
4788 struct cgroup_pidlist *l = of->priv;
4789
4790 if (l)
4791 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
4792 CGROUP_PIDLIST_DESTROY_DELAY);
4793 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
4794 }
4795
4796 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
4797 {
4798 struct kernfs_open_file *of = s->private;
4799 struct cgroup_pidlist *l = of->priv;
4800 pid_t *p = v;
4801 pid_t *end = l->list + l->length;
4802 /*
4803 * Advance to the next pid in the array. If this goes off the
4804 * end, we're done
4805 */
4806 p++;
4807 if (p >= end) {
4808 return NULL;
4809 } else {
4810 *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
4811 return p;
4812 }
4813 }
4814
4815 static int cgroup_pidlist_show(struct seq_file *s, void *v)
4816 {
4817 seq_printf(s, "%d\n", *(int *)v);
4818
4819 return 0;
4820 }
4821
4822 static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
4823 struct cftype *cft)
4824 {
4825 return notify_on_release(css->cgroup);
4826 }
4827
4828 static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
4829 struct cftype *cft, u64 val)
4830 {
4831 if (val)
4832 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
4833 else
4834 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
4835 return 0;
4836 }
4837
4838 static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
4839 struct cftype *cft)
4840 {
4841 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4842 }
4843
4844 static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
4845 struct cftype *cft, u64 val)
4846 {
4847 if (val)
4848 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4849 else
4850 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4851 return 0;
4852 }
4853
4854 /* cgroup core interface files for the default hierarchy */
4855 static struct cftype cgroup_dfl_base_files[] = {
4856 {
4857 .name = "cgroup.procs",
4858 .file_offset = offsetof(struct cgroup, procs_file),
4859 .seq_start = cgroup_pidlist_start,
4860 .seq_next = cgroup_pidlist_next,
4861 .seq_stop = cgroup_pidlist_stop,
4862 .seq_show = cgroup_pidlist_show,
4863 .private = CGROUP_FILE_PROCS,
4864 .write = cgroup_procs_write,
4865 },
4866 {
4867 .name = "cgroup.controllers",
4868 .seq_show = cgroup_controllers_show,
4869 },
4870 {
4871 .name = "cgroup.subtree_control",
4872 .seq_show = cgroup_subtree_control_show,
4873 .write = cgroup_subtree_control_write,
4874 },
4875 {
4876 .name = "cgroup.events",
4877 .flags = CFTYPE_NOT_ON_ROOT,
4878 .file_offset = offsetof(struct cgroup, events_file),
4879 .seq_show = cgroup_events_show,
4880 },
4881 { } /* terminate */
4882 };
4883
4884 /* cgroup core interface files for the legacy hierarchies */
4885 static struct cftype cgroup_legacy_base_files[] = {
4886 {
4887 .name = "cgroup.procs",
4888 .seq_start = cgroup_pidlist_start,
4889 .seq_next = cgroup_pidlist_next,
4890 .seq_stop = cgroup_pidlist_stop,
4891 .seq_show = cgroup_pidlist_show,
4892 .private = CGROUP_FILE_PROCS,
4893 .write = cgroup_procs_write,
4894 },
4895 {
4896 .name = "cgroup.clone_children",
4897 .read_u64 = cgroup_clone_children_read,
4898 .write_u64 = cgroup_clone_children_write,
4899 },
4900 {
4901 .name = "cgroup.sane_behavior",
4902 .flags = CFTYPE_ONLY_ON_ROOT,
4903 .seq_show = cgroup_sane_behavior_show,
4904 },
4905 {
4906 .name = "tasks",
4907 .seq_start = cgroup_pidlist_start,
4908 .seq_next = cgroup_pidlist_next,
4909 .seq_stop = cgroup_pidlist_stop,
4910 .seq_show = cgroup_pidlist_show,
4911 .private = CGROUP_FILE_TASKS,
4912 .write = cgroup_tasks_write,
4913 },
4914 {
4915 .name = "notify_on_release",
4916 .read_u64 = cgroup_read_notify_on_release,
4917 .write_u64 = cgroup_write_notify_on_release,
4918 },
4919 {
4920 .name = "release_agent",
4921 .flags = CFTYPE_ONLY_ON_ROOT,
4922 .seq_show = cgroup_release_agent_show,
4923 .write = cgroup_release_agent_write,
4924 .max_write_len = PATH_MAX - 1,
4925 },
4926 { } /* terminate */
4927 };
4928
4929 /*
4930 * css destruction is four-stage process.
4931 *
4932 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4933 * Implemented in kill_css().
4934 *
4935 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
4936 * and thus css_tryget_online() is guaranteed to fail, the css can be
4937 * offlined by invoking offline_css(). After offlining, the base ref is
4938 * put. Implemented in css_killed_work_fn().
4939 *
4940 * 3. When the percpu_ref reaches zero, the only possible remaining
4941 * accessors are inside RCU read sections. css_release() schedules the
4942 * RCU callback.
4943 *
4944 * 4. After the grace period, the css can be freed. Implemented in
4945 * css_free_work_fn().
4946 *
4947 * It is actually hairier because both step 2 and 4 require process context
4948 * and thus involve punting to css->destroy_work adding two additional
4949 * steps to the already complex sequence.
4950 */
4951 static void css_free_work_fn(struct work_struct *work)
4952 {
4953 struct cgroup_subsys_state *css =
4954 container_of(work, struct cgroup_subsys_state, destroy_work);
4955 struct cgroup_subsys *ss = css->ss;
4956 struct cgroup *cgrp = css->cgroup;
4957
4958 percpu_ref_exit(&css->refcnt);
4959
4960 if (ss) {
4961 /* css free path */
4962 struct cgroup_subsys_state *parent = css->parent;
4963 int id = css->id;
4964
4965 ss->css_free(css);
4966 cgroup_idr_remove(&ss->css_idr, id);
4967 cgroup_put(cgrp);
4968
4969 if (parent)
4970 css_put(parent);
4971 } else {
4972 /* cgroup free path */
4973 atomic_dec(&cgrp->root->nr_cgrps);
4974 cgroup_pidlist_destroy_all(cgrp);
4975 cancel_work_sync(&cgrp->release_agent_work);
4976
4977 if (cgroup_parent(cgrp)) {
4978 /*
4979 * We get a ref to the parent, and put the ref when
4980 * this cgroup is being freed, so it's guaranteed
4981 * that the parent won't be destroyed before its
4982 * children.
4983 */
4984 cgroup_put(cgroup_parent(cgrp));
4985 kernfs_put(cgrp->kn);
4986 kfree(cgrp);
4987 } else {
4988 /*
4989 * This is root cgroup's refcnt reaching zero,
4990 * which indicates that the root should be
4991 * released.
4992 */
4993 cgroup_destroy_root(cgrp->root);
4994 }
4995 }
4996 }
4997
4998 static void css_free_rcu_fn(struct rcu_head *rcu_head)
4999 {
5000 struct cgroup_subsys_state *css =
5001 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
5002
5003 INIT_WORK(&css->destroy_work, css_free_work_fn);
5004 queue_work(cgroup_destroy_wq, &css->destroy_work);
5005 }
5006
5007 static void css_release_work_fn(struct work_struct *work)
5008 {
5009 struct cgroup_subsys_state *css =
5010 container_of(work, struct cgroup_subsys_state, destroy_work);
5011 struct cgroup_subsys *ss = css->ss;
5012 struct cgroup *cgrp = css->cgroup;
5013
5014 mutex_lock(&cgroup_mutex);
5015
5016 css->flags |= CSS_RELEASED;
5017 list_del_rcu(&css->sibling);
5018
5019 if (ss) {
5020 /* css release path */
5021 cgroup_idr_replace(&ss->css_idr, NULL, css->id);
5022 if (ss->css_released)
5023 ss->css_released(css);
5024 } else {
5025 /* cgroup release path */
5026 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
5027 cgrp->id = -1;
5028
5029 /*
5030 * There are two control paths which try to determine
5031 * cgroup from dentry without going through kernfs -
5032 * cgroupstats_build() and css_tryget_online_from_dir().
5033 * Those are supported by RCU protecting clearing of
5034 * cgrp->kn->priv backpointer.
5035 */
5036 if (cgrp->kn)
5037 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
5038 NULL);
5039 }
5040
5041 mutex_unlock(&cgroup_mutex);
5042
5043 call_rcu(&css->rcu_head, css_free_rcu_fn);
5044 }
5045
5046 static void css_release(struct percpu_ref *ref)
5047 {
5048 struct cgroup_subsys_state *css =
5049 container_of(ref, struct cgroup_subsys_state, refcnt);
5050
5051 INIT_WORK(&css->destroy_work, css_release_work_fn);
5052 queue_work(cgroup_destroy_wq, &css->destroy_work);
5053 }
5054
5055 static void init_and_link_css(struct cgroup_subsys_state *css,
5056 struct cgroup_subsys *ss, struct cgroup *cgrp)
5057 {
5058 lockdep_assert_held(&cgroup_mutex);
5059
5060 cgroup_get(cgrp);
5061
5062 memset(css, 0, sizeof(*css));
5063 css->cgroup = cgrp;
5064 css->ss = ss;
5065 css->id = -1;
5066 INIT_LIST_HEAD(&css->sibling);
5067 INIT_LIST_HEAD(&css->children);
5068 css->serial_nr = css_serial_nr_next++;
5069 atomic_set(&css->online_cnt, 0);
5070
5071 if (cgroup_parent(cgrp)) {
5072 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
5073 css_get(css->parent);
5074 }
5075
5076 BUG_ON(cgroup_css(cgrp, ss));
5077 }
5078
5079 /* invoke ->css_online() on a new CSS and mark it online if successful */
5080 static int online_css(struct cgroup_subsys_state *css)
5081 {
5082 struct cgroup_subsys *ss = css->ss;
5083 int ret = 0;
5084
5085 lockdep_assert_held(&cgroup_mutex);
5086
5087 if (ss->css_online)
5088 ret = ss->css_online(css);
5089 if (!ret) {
5090 css->flags |= CSS_ONLINE;
5091 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
5092
5093 atomic_inc(&css->online_cnt);
5094 if (css->parent)
5095 atomic_inc(&css->parent->online_cnt);
5096 }
5097 return ret;
5098 }
5099
5100 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
5101 static void offline_css(struct cgroup_subsys_state *css)
5102 {
5103 struct cgroup_subsys *ss = css->ss;
5104
5105 lockdep_assert_held(&cgroup_mutex);
5106
5107 if (!(css->flags & CSS_ONLINE))
5108 return;
5109
5110 if (ss->css_reset)
5111 ss->css_reset(css);
5112
5113 if (ss->css_offline)
5114 ss->css_offline(css);
5115
5116 css->flags &= ~CSS_ONLINE;
5117 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
5118
5119 wake_up_all(&css->cgroup->offline_waitq);
5120 }
5121
5122 /**
5123 * css_create - create a cgroup_subsys_state
5124 * @cgrp: the cgroup new css will be associated with
5125 * @ss: the subsys of new css
5126 *
5127 * Create a new css associated with @cgrp - @ss pair. On success, the new
5128 * css is online and installed in @cgrp. This function doesn't create the
5129 * interface files. Returns 0 on success, -errno on failure.
5130 */
5131 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
5132 struct cgroup_subsys *ss)
5133 {
5134 struct cgroup *parent = cgroup_parent(cgrp);
5135 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
5136 struct cgroup_subsys_state *css;
5137 int err;
5138
5139 lockdep_assert_held(&cgroup_mutex);
5140
5141 css = ss->css_alloc(parent_css);
5142 if (!css)
5143 css = ERR_PTR(-ENOMEM);
5144 if (IS_ERR(css))
5145 return css;
5146
5147 init_and_link_css(css, ss, cgrp);
5148
5149 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
5150 if (err)
5151 goto err_free_css;
5152
5153 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
5154 if (err < 0)
5155 goto err_free_css;
5156 css->id = err;
5157
5158 /* @css is ready to be brought online now, make it visible */
5159 list_add_tail_rcu(&css->sibling, &parent_css->children);
5160 cgroup_idr_replace(&ss->css_idr, css, css->id);
5161
5162 err = online_css(css);
5163 if (err)
5164 goto err_list_del;
5165
5166 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
5167 cgroup_parent(parent)) {
5168 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
5169 current->comm, current->pid, ss->name);
5170 if (!strcmp(ss->name, "memory"))
5171 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
5172 ss->warned_broken_hierarchy = true;
5173 }
5174
5175 return css;
5176
5177 err_list_del:
5178 list_del_rcu(&css->sibling);
5179 err_free_css:
5180 call_rcu(&css->rcu_head, css_free_rcu_fn);
5181 return ERR_PTR(err);
5182 }
5183
5184 static struct cgroup *cgroup_create(struct cgroup *parent)
5185 {
5186 struct cgroup_root *root = parent->root;
5187 struct cgroup *cgrp, *tcgrp;
5188 int level = parent->level + 1;
5189 int ret;
5190
5191 /* allocate the cgroup and its ID, 0 is reserved for the root */
5192 cgrp = kzalloc(sizeof(*cgrp) +
5193 sizeof(cgrp->ancestor_ids[0]) * (level + 1), GFP_KERNEL);
5194 if (!cgrp)
5195 return ERR_PTR(-ENOMEM);
5196
5197 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
5198 if (ret)
5199 goto out_free_cgrp;
5200
5201 /*
5202 * Temporarily set the pointer to NULL, so idr_find() won't return
5203 * a half-baked cgroup.
5204 */
5205 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL);
5206 if (cgrp->id < 0) {
5207 ret = -ENOMEM;
5208 goto out_cancel_ref;
5209 }
5210
5211 init_cgroup_housekeeping(cgrp);
5212
5213 cgrp->self.parent = &parent->self;
5214 cgrp->root = root;
5215 cgrp->level = level;
5216
5217 for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp))
5218 cgrp->ancestor_ids[tcgrp->level] = tcgrp->id;
5219
5220 if (notify_on_release(parent))
5221 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
5222
5223 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
5224 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
5225
5226 cgrp->self.serial_nr = css_serial_nr_next++;
5227
5228 /* allocation complete, commit to creation */
5229 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
5230 atomic_inc(&root->nr_cgrps);
5231 cgroup_get(parent);
5232
5233 /*
5234 * @cgrp is now fully operational. If something fails after this
5235 * point, it'll be released via the normal destruction path.
5236 */
5237 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
5238
5239 /*
5240 * On the default hierarchy, a child doesn't automatically inherit
5241 * subtree_control from the parent. Each is configured manually.
5242 */
5243 if (!cgroup_on_dfl(cgrp))
5244 cgrp->subtree_control = cgroup_control(cgrp);
5245
5246 cgroup_propagate_control(cgrp);
5247
5248 /* @cgrp doesn't have dir yet so the following will only create csses */
5249 ret = cgroup_apply_control_enable(cgrp);
5250 if (ret)
5251 goto out_destroy;
5252
5253 return cgrp;
5254
5255 out_cancel_ref:
5256 percpu_ref_exit(&cgrp->self.refcnt);
5257 out_free_cgrp:
5258 kfree(cgrp);
5259 return ERR_PTR(ret);
5260 out_destroy:
5261 cgroup_destroy_locked(cgrp);
5262 return ERR_PTR(ret);
5263 }
5264
5265 static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
5266 umode_t mode)
5267 {
5268 struct cgroup *parent, *cgrp;
5269 struct kernfs_node *kn;
5270 int ret;
5271
5272 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
5273 if (strchr(name, '\n'))
5274 return -EINVAL;
5275
5276 parent = cgroup_kn_lock_live(parent_kn, false);
5277 if (!parent)
5278 return -ENODEV;
5279
5280 cgrp = cgroup_create(parent);
5281 if (IS_ERR(cgrp)) {
5282 ret = PTR_ERR(cgrp);
5283 goto out_unlock;
5284 }
5285
5286 /* create the directory */
5287 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
5288 if (IS_ERR(kn)) {
5289 ret = PTR_ERR(kn);
5290 goto out_destroy;
5291 }
5292 cgrp->kn = kn;
5293
5294 /*
5295 * This extra ref will be put in cgroup_free_fn() and guarantees
5296 * that @cgrp->kn is always accessible.
5297 */
5298 kernfs_get(kn);
5299
5300 ret = cgroup_kn_set_ugid(kn);
5301 if (ret)
5302 goto out_destroy;
5303
5304 ret = css_populate_dir(&cgrp->self);
5305 if (ret)
5306 goto out_destroy;
5307
5308 ret = cgroup_apply_control_enable(cgrp);
5309 if (ret)
5310 goto out_destroy;
5311
5312 /* let's create and online css's */
5313 kernfs_activate(kn);
5314
5315 ret = 0;
5316 goto out_unlock;
5317
5318 out_destroy:
5319 cgroup_destroy_locked(cgrp);
5320 out_unlock:
5321 cgroup_kn_unlock(parent_kn);
5322 return ret;
5323 }
5324
5325 /*
5326 * This is called when the refcnt of a css is confirmed to be killed.
5327 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
5328 * initate destruction and put the css ref from kill_css().
5329 */
5330 static void css_killed_work_fn(struct work_struct *work)
5331 {
5332 struct cgroup_subsys_state *css =
5333 container_of(work, struct cgroup_subsys_state, destroy_work);
5334
5335 mutex_lock(&cgroup_mutex);
5336
5337 do {
5338 offline_css(css);
5339 css_put(css);
5340 /* @css can't go away while we're holding cgroup_mutex */
5341 css = css->parent;
5342 } while (css && atomic_dec_and_test(&css->online_cnt));
5343
5344 mutex_unlock(&cgroup_mutex);
5345 }
5346
5347 /* css kill confirmation processing requires process context, bounce */
5348 static void css_killed_ref_fn(struct percpu_ref *ref)
5349 {
5350 struct cgroup_subsys_state *css =
5351 container_of(ref, struct cgroup_subsys_state, refcnt);
5352
5353 if (atomic_dec_and_test(&css->online_cnt)) {
5354 INIT_WORK(&css->destroy_work, css_killed_work_fn);
5355 queue_work(cgroup_destroy_wq, &css->destroy_work);
5356 }
5357 }
5358
5359 /**
5360 * kill_css - destroy a css
5361 * @css: css to destroy
5362 *
5363 * This function initiates destruction of @css by removing cgroup interface
5364 * files and putting its base reference. ->css_offline() will be invoked
5365 * asynchronously once css_tryget_online() is guaranteed to fail and when
5366 * the reference count reaches zero, @css will be released.
5367 */
5368 static void kill_css(struct cgroup_subsys_state *css)
5369 {
5370 lockdep_assert_held(&cgroup_mutex);
5371
5372 /*
5373 * This must happen before css is disassociated with its cgroup.
5374 * See seq_css() for details.
5375 */
5376 css_clear_dir(css);
5377
5378 /*
5379 * Killing would put the base ref, but we need to keep it alive
5380 * until after ->css_offline().
5381 */
5382 css_get(css);
5383
5384 /*
5385 * cgroup core guarantees that, by the time ->css_offline() is
5386 * invoked, no new css reference will be given out via
5387 * css_tryget_online(). We can't simply call percpu_ref_kill() and
5388 * proceed to offlining css's because percpu_ref_kill() doesn't
5389 * guarantee that the ref is seen as killed on all CPUs on return.
5390 *
5391 * Use percpu_ref_kill_and_confirm() to get notifications as each
5392 * css is confirmed to be seen as killed on all CPUs.
5393 */
5394 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
5395 }
5396
5397 /**
5398 * cgroup_destroy_locked - the first stage of cgroup destruction
5399 * @cgrp: cgroup to be destroyed
5400 *
5401 * css's make use of percpu refcnts whose killing latency shouldn't be
5402 * exposed to userland and are RCU protected. Also, cgroup core needs to
5403 * guarantee that css_tryget_online() won't succeed by the time
5404 * ->css_offline() is invoked. To satisfy all the requirements,
5405 * destruction is implemented in the following two steps.
5406 *
5407 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
5408 * userland visible parts and start killing the percpu refcnts of
5409 * css's. Set up so that the next stage will be kicked off once all
5410 * the percpu refcnts are confirmed to be killed.
5411 *
5412 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5413 * rest of destruction. Once all cgroup references are gone, the
5414 * cgroup is RCU-freed.
5415 *
5416 * This function implements s1. After this step, @cgrp is gone as far as
5417 * the userland is concerned and a new cgroup with the same name may be
5418 * created. As cgroup doesn't care about the names internally, this
5419 * doesn't cause any problem.
5420 */
5421 static int cgroup_destroy_locked(struct cgroup *cgrp)
5422 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
5423 {
5424 struct cgroup_subsys_state *css;
5425 struct cgrp_cset_link *link;
5426 int ssid;
5427
5428 lockdep_assert_held(&cgroup_mutex);
5429
5430 /*
5431 * Only migration can raise populated from zero and we're already
5432 * holding cgroup_mutex.
5433 */
5434 if (cgroup_is_populated(cgrp))
5435 return -EBUSY;
5436
5437 /*
5438 * Make sure there's no live children. We can't test emptiness of
5439 * ->self.children as dead children linger on it while being
5440 * drained; otherwise, "rmdir parent/child parent" may fail.
5441 */
5442 if (css_has_online_children(&cgrp->self))
5443 return -EBUSY;
5444
5445 /*
5446 * Mark @cgrp and the associated csets dead. The former prevents
5447 * further task migration and child creation by disabling
5448 * cgroup_lock_live_group(). The latter makes the csets ignored by
5449 * the migration path.
5450 */
5451 cgrp->self.flags &= ~CSS_ONLINE;
5452
5453 spin_lock_irq(&css_set_lock);
5454 list_for_each_entry(link, &cgrp->cset_links, cset_link)
5455 link->cset->dead = true;
5456 spin_unlock_irq(&css_set_lock);
5457
5458 /* initiate massacre of all css's */
5459 for_each_css(css, ssid, cgrp)
5460 kill_css(css);
5461
5462 /*
5463 * Remove @cgrp directory along with the base files. @cgrp has an
5464 * extra ref on its kn.
5465 */
5466 kernfs_remove(cgrp->kn);
5467
5468 check_for_release(cgroup_parent(cgrp));
5469
5470 /* put the base reference */
5471 percpu_ref_kill(&cgrp->self.refcnt);
5472
5473 return 0;
5474 };
5475
5476 static int cgroup_rmdir(struct kernfs_node *kn)
5477 {
5478 struct cgroup *cgrp;
5479 int ret = 0;
5480
5481 cgrp = cgroup_kn_lock_live(kn, false);
5482 if (!cgrp)
5483 return 0;
5484
5485 ret = cgroup_destroy_locked(cgrp);
5486
5487 cgroup_kn_unlock(kn);
5488 return ret;
5489 }
5490
5491 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5492 .remount_fs = cgroup_remount,
5493 .show_options = cgroup_show_options,
5494 .mkdir = cgroup_mkdir,
5495 .rmdir = cgroup_rmdir,
5496 .rename = cgroup_rename,
5497 .show_path = cgroup_show_path,
5498 };
5499
5500 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
5501 {
5502 struct cgroup_subsys_state *css;
5503
5504 pr_debug("Initializing cgroup subsys %s\n", ss->name);
5505
5506 mutex_lock(&cgroup_mutex);
5507
5508 idr_init(&ss->css_idr);
5509 INIT_LIST_HEAD(&ss->cfts);
5510
5511 /* Create the root cgroup state for this subsystem */
5512 ss->root = &cgrp_dfl_root;
5513 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
5514 /* We don't handle early failures gracefully */
5515 BUG_ON(IS_ERR(css));
5516 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
5517
5518 /*
5519 * Root csses are never destroyed and we can't initialize
5520 * percpu_ref during early init. Disable refcnting.
5521 */
5522 css->flags |= CSS_NO_REF;
5523
5524 if (early) {
5525 /* allocation can't be done safely during early init */
5526 css->id = 1;
5527 } else {
5528 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5529 BUG_ON(css->id < 0);
5530 }
5531
5532 /* Update the init_css_set to contain a subsys
5533 * pointer to this state - since the subsystem is
5534 * newly registered, all tasks and hence the
5535 * init_css_set is in the subsystem's root cgroup. */
5536 init_css_set.subsys[ss->id] = css;
5537
5538 have_fork_callback |= (bool)ss->fork << ss->id;
5539 have_exit_callback |= (bool)ss->exit << ss->id;
5540 have_free_callback |= (bool)ss->free << ss->id;
5541 have_canfork_callback |= (bool)ss->can_fork << ss->id;
5542
5543 /* At system boot, before all subsystems have been
5544 * registered, no tasks have been forked, so we don't
5545 * need to invoke fork callbacks here. */
5546 BUG_ON(!list_empty(&init_task.tasks));
5547
5548 BUG_ON(online_css(css));
5549
5550 mutex_unlock(&cgroup_mutex);
5551 }
5552
5553 /**
5554 * cgroup_init_early - cgroup initialization at system boot
5555 *
5556 * Initialize cgroups at system boot, and initialize any
5557 * subsystems that request early init.
5558 */
5559 int __init cgroup_init_early(void)
5560 {
5561 static struct cgroup_sb_opts __initdata opts;
5562 struct cgroup_subsys *ss;
5563 int i;
5564
5565 init_cgroup_root(&cgrp_dfl_root, &opts);
5566 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5567
5568 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
5569
5570 for_each_subsys(ss, i) {
5571 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
5572 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
5573 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
5574 ss->id, ss->name);
5575 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5576 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5577
5578 ss->id = i;
5579 ss->name = cgroup_subsys_name[i];
5580 if (!ss->legacy_name)
5581 ss->legacy_name = cgroup_subsys_name[i];
5582
5583 if (ss->early_init)
5584 cgroup_init_subsys(ss, true);
5585 }
5586 return 0;
5587 }
5588
5589 static u16 cgroup_disable_mask __initdata;
5590
5591 /**
5592 * cgroup_init - cgroup initialization
5593 *
5594 * Register cgroup filesystem and /proc file, and initialize
5595 * any subsystems that didn't request early init.
5596 */
5597 int __init cgroup_init(void)
5598 {
5599 struct cgroup_subsys *ss;
5600 int ssid;
5601
5602 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
5603 BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem));
5604 BUG_ON(cgroup_init_cftypes(NULL, cgroup_dfl_base_files));
5605 BUG_ON(cgroup_init_cftypes(NULL, cgroup_legacy_base_files));
5606
5607 get_user_ns(init_cgroup_ns.user_ns);
5608
5609 mutex_lock(&cgroup_mutex);
5610
5611 /*
5612 * Add init_css_set to the hash table so that dfl_root can link to
5613 * it during init.
5614 */
5615 hash_add(css_set_table, &init_css_set.hlist,
5616 css_set_hash(init_css_set.subsys));
5617
5618 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
5619
5620 mutex_unlock(&cgroup_mutex);
5621
5622 for_each_subsys(ss, ssid) {
5623 if (ss->early_init) {
5624 struct cgroup_subsys_state *css =
5625 init_css_set.subsys[ss->id];
5626
5627 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5628 GFP_KERNEL);
5629 BUG_ON(css->id < 0);
5630 } else {
5631 cgroup_init_subsys(ss, false);
5632 }
5633
5634 list_add_tail(&init_css_set.e_cset_node[ssid],
5635 &cgrp_dfl_root.cgrp.e_csets[ssid]);
5636
5637 /*
5638 * Setting dfl_root subsys_mask needs to consider the
5639 * disabled flag and cftype registration needs kmalloc,
5640 * both of which aren't available during early_init.
5641 */
5642 if (cgroup_disable_mask & (1 << ssid)) {
5643 static_branch_disable(cgroup_subsys_enabled_key[ssid]);
5644 printk(KERN_INFO "Disabling %s control group subsystem\n",
5645 ss->name);
5646 continue;
5647 }
5648
5649 if (cgroup_ssid_no_v1(ssid))
5650 printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n",
5651 ss->name);
5652
5653 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5654
5655 if (ss->implicit_on_dfl)
5656 cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
5657 else if (!ss->dfl_cftypes)
5658 cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
5659
5660 if (ss->dfl_cftypes == ss->legacy_cftypes) {
5661 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5662 } else {
5663 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5664 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
5665 }
5666
5667 if (ss->bind)
5668 ss->bind(init_css_set.subsys[ssid]);
5669 }
5670
5671 /* init_css_set.subsys[] has been updated, re-hash */
5672 hash_del(&init_css_set.hlist);
5673 hash_add(css_set_table, &init_css_set.hlist,
5674 css_set_hash(init_css_set.subsys));
5675
5676 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
5677 WARN_ON(register_filesystem(&cgroup_fs_type));
5678 WARN_ON(register_filesystem(&cgroup2_fs_type));
5679 WARN_ON(!proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations));
5680
5681 return 0;
5682 }
5683
5684 static int __init cgroup_wq_init(void)
5685 {
5686 /*
5687 * There isn't much point in executing destruction path in
5688 * parallel. Good chunk is serialized with cgroup_mutex anyway.
5689 * Use 1 for @max_active.
5690 *
5691 * We would prefer to do this in cgroup_init() above, but that
5692 * is called before init_workqueues(): so leave this until after.
5693 */
5694 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
5695 BUG_ON(!cgroup_destroy_wq);
5696
5697 /*
5698 * Used to destroy pidlists and separate to serve as flush domain.
5699 * Cap @max_active to 1 too.
5700 */
5701 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
5702 0, 1);
5703 BUG_ON(!cgroup_pidlist_destroy_wq);
5704
5705 return 0;
5706 }
5707 core_initcall(cgroup_wq_init);
5708
5709 /*
5710 * proc_cgroup_show()
5711 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5712 * - Used for /proc/<pid>/cgroup.
5713 */
5714 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5715 struct pid *pid, struct task_struct *tsk)
5716 {
5717 char *buf, *path;
5718 int retval;
5719 struct cgroup_root *root;
5720
5721 retval = -ENOMEM;
5722 buf = kmalloc(PATH_MAX, GFP_KERNEL);
5723 if (!buf)
5724 goto out;
5725
5726 mutex_lock(&cgroup_mutex);
5727 spin_lock_irq(&css_set_lock);
5728
5729 for_each_root(root) {
5730 struct cgroup_subsys *ss;
5731 struct cgroup *cgrp;
5732 int ssid, count = 0;
5733
5734 if (root == &cgrp_dfl_root && !cgrp_dfl_visible)
5735 continue;
5736
5737 seq_printf(m, "%d:", root->hierarchy_id);
5738 if (root != &cgrp_dfl_root)
5739 for_each_subsys(ss, ssid)
5740 if (root->subsys_mask & (1 << ssid))
5741 seq_printf(m, "%s%s", count++ ? "," : "",
5742 ss->legacy_name);
5743 if (strlen(root->name))
5744 seq_printf(m, "%sname=%s", count ? "," : "",
5745 root->name);
5746 seq_putc(m, ':');
5747
5748 cgrp = task_cgroup_from_root(tsk, root);
5749
5750 /*
5751 * On traditional hierarchies, all zombie tasks show up as
5752 * belonging to the root cgroup. On the default hierarchy,
5753 * while a zombie doesn't show up in "cgroup.procs" and
5754 * thus can't be migrated, its /proc/PID/cgroup keeps
5755 * reporting the cgroup it belonged to before exiting. If
5756 * the cgroup is removed before the zombie is reaped,
5757 * " (deleted)" is appended to the cgroup path.
5758 */
5759 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
5760 path = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
5761 current->nsproxy->cgroup_ns);
5762 if (!path) {
5763 retval = -ENAMETOOLONG;
5764 goto out_unlock;
5765 }
5766 } else {
5767 path = "/";
5768 }
5769
5770 seq_puts(m, path);
5771
5772 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
5773 seq_puts(m, " (deleted)\n");
5774 else
5775 seq_putc(m, '\n');
5776 }
5777
5778 retval = 0;
5779 out_unlock:
5780 spin_unlock_irq(&css_set_lock);
5781 mutex_unlock(&cgroup_mutex);
5782 kfree(buf);
5783 out:
5784 return retval;
5785 }
5786
5787 /* Display information about each subsystem and each hierarchy */
5788 static int proc_cgroupstats_show(struct seq_file *m, void *v)
5789 {
5790 struct cgroup_subsys *ss;
5791 int i;
5792
5793 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
5794 /*
5795 * ideally we don't want subsystems moving around while we do this.
5796 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
5797 * subsys/hierarchy state.
5798 */
5799 mutex_lock(&cgroup_mutex);
5800
5801 for_each_subsys(ss, i)
5802 seq_printf(m, "%s\t%d\t%d\t%d\n",
5803 ss->legacy_name, ss->root->hierarchy_id,
5804 atomic_read(&ss->root->nr_cgrps),
5805 cgroup_ssid_enabled(i));
5806
5807 mutex_unlock(&cgroup_mutex);
5808 return 0;
5809 }
5810
5811 static int cgroupstats_open(struct inode *inode, struct file *file)
5812 {
5813 return single_open(file, proc_cgroupstats_show, NULL);
5814 }
5815
5816 static const struct file_operations proc_cgroupstats_operations = {
5817 .open = cgroupstats_open,
5818 .read = seq_read,
5819 .llseek = seq_lseek,
5820 .release = single_release,
5821 };
5822
5823 /**
5824 * cgroup_fork - initialize cgroup related fields during copy_process()
5825 * @child: pointer to task_struct of forking parent process.
5826 *
5827 * A task is associated with the init_css_set until cgroup_post_fork()
5828 * attaches it to the parent's css_set. Empty cg_list indicates that
5829 * @child isn't holding reference to its css_set.
5830 */
5831 void cgroup_fork(struct task_struct *child)
5832 {
5833 RCU_INIT_POINTER(child->cgroups, &init_css_set);
5834 INIT_LIST_HEAD(&child->cg_list);
5835 }
5836
5837 /**
5838 * cgroup_can_fork - called on a new task before the process is exposed
5839 * @child: the task in question.
5840 *
5841 * This calls the subsystem can_fork() callbacks. If the can_fork() callback
5842 * returns an error, the fork aborts with that error code. This allows for
5843 * a cgroup subsystem to conditionally allow or deny new forks.
5844 */
5845 int cgroup_can_fork(struct task_struct *child)
5846 {
5847 struct cgroup_subsys *ss;
5848 int i, j, ret;
5849
5850 do_each_subsys_mask(ss, i, have_canfork_callback) {
5851 ret = ss->can_fork(child);
5852 if (ret)
5853 goto out_revert;
5854 } while_each_subsys_mask();
5855
5856 return 0;
5857
5858 out_revert:
5859 for_each_subsys(ss, j) {
5860 if (j >= i)
5861 break;
5862 if (ss->cancel_fork)
5863 ss->cancel_fork(child);
5864 }
5865
5866 return ret;
5867 }
5868
5869 /**
5870 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
5871 * @child: the task in question
5872 *
5873 * This calls the cancel_fork() callbacks if a fork failed *after*
5874 * cgroup_can_fork() succeded.
5875 */
5876 void cgroup_cancel_fork(struct task_struct *child)
5877 {
5878 struct cgroup_subsys *ss;
5879 int i;
5880
5881 for_each_subsys(ss, i)
5882 if (ss->cancel_fork)
5883 ss->cancel_fork(child);
5884 }
5885
5886 /**
5887 * cgroup_post_fork - called on a new task after adding it to the task list
5888 * @child: the task in question
5889 *
5890 * Adds the task to the list running through its css_set if necessary and
5891 * call the subsystem fork() callbacks. Has to be after the task is
5892 * visible on the task list in case we race with the first call to
5893 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5894 * list.
5895 */
5896 void cgroup_post_fork(struct task_struct *child)
5897 {
5898 struct cgroup_subsys *ss;
5899 int i;
5900
5901 /*
5902 * This may race against cgroup_enable_task_cg_lists(). As that
5903 * function sets use_task_css_set_links before grabbing
5904 * tasklist_lock and we just went through tasklist_lock to add
5905 * @child, it's guaranteed that either we see the set
5906 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5907 * @child during its iteration.
5908 *
5909 * If we won the race, @child is associated with %current's
5910 * css_set. Grabbing css_set_lock guarantees both that the
5911 * association is stable, and, on completion of the parent's
5912 * migration, @child is visible in the source of migration or
5913 * already in the destination cgroup. This guarantee is necessary
5914 * when implementing operations which need to migrate all tasks of
5915 * a cgroup to another.
5916 *
5917 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
5918 * will remain in init_css_set. This is safe because all tasks are
5919 * in the init_css_set before cg_links is enabled and there's no
5920 * operation which transfers all tasks out of init_css_set.
5921 */
5922 if (use_task_css_set_links) {
5923 struct css_set *cset;
5924
5925 spin_lock_irq(&css_set_lock);
5926 cset = task_css_set(current);
5927 if (list_empty(&child->cg_list)) {
5928 get_css_set(cset);
5929 css_set_move_task(child, NULL, cset, false);
5930 }
5931 spin_unlock_irq(&css_set_lock);
5932 }
5933
5934 /*
5935 * Call ss->fork(). This must happen after @child is linked on
5936 * css_set; otherwise, @child might change state between ->fork()
5937 * and addition to css_set.
5938 */
5939 do_each_subsys_mask(ss, i, have_fork_callback) {
5940 ss->fork(child);
5941 } while_each_subsys_mask();
5942 }
5943
5944 /**
5945 * cgroup_exit - detach cgroup from exiting task
5946 * @tsk: pointer to task_struct of exiting process
5947 *
5948 * Description: Detach cgroup from @tsk and release it.
5949 *
5950 * Note that cgroups marked notify_on_release force every task in
5951 * them to take the global cgroup_mutex mutex when exiting.
5952 * This could impact scaling on very large systems. Be reluctant to
5953 * use notify_on_release cgroups where very high task exit scaling
5954 * is required on large systems.
5955 *
5956 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
5957 * call cgroup_exit() while the task is still competent to handle
5958 * notify_on_release(), then leave the task attached to the root cgroup in
5959 * each hierarchy for the remainder of its exit. No need to bother with
5960 * init_css_set refcnting. init_css_set never goes away and we can't race
5961 * with migration path - PF_EXITING is visible to migration path.
5962 */
5963 void cgroup_exit(struct task_struct *tsk)
5964 {
5965 struct cgroup_subsys *ss;
5966 struct css_set *cset;
5967 int i;
5968
5969 /*
5970 * Unlink from @tsk from its css_set. As migration path can't race
5971 * with us, we can check css_set and cg_list without synchronization.
5972 */
5973 cset = task_css_set(tsk);
5974
5975 if (!list_empty(&tsk->cg_list)) {
5976 spin_lock_irq(&css_set_lock);
5977 css_set_move_task(tsk, cset, NULL, false);
5978 spin_unlock_irq(&css_set_lock);
5979 } else {
5980 get_css_set(cset);
5981 }
5982
5983 /* see cgroup_post_fork() for details */
5984 do_each_subsys_mask(ss, i, have_exit_callback) {
5985 ss->exit(tsk);
5986 } while_each_subsys_mask();
5987 }
5988
5989 void cgroup_free(struct task_struct *task)
5990 {
5991 struct css_set *cset = task_css_set(task);
5992 struct cgroup_subsys *ss;
5993 int ssid;
5994
5995 do_each_subsys_mask(ss, ssid, have_free_callback) {
5996 ss->free(task);
5997 } while_each_subsys_mask();
5998
5999 put_css_set(cset);
6000 }
6001
6002 static void check_for_release(struct cgroup *cgrp)
6003 {
6004 if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) &&
6005 !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
6006 schedule_work(&cgrp->release_agent_work);
6007 }
6008
6009 /*
6010 * Notify userspace when a cgroup is released, by running the
6011 * configured release agent with the name of the cgroup (path
6012 * relative to the root of cgroup file system) as the argument.
6013 *
6014 * Most likely, this user command will try to rmdir this cgroup.
6015 *
6016 * This races with the possibility that some other task will be
6017 * attached to this cgroup before it is removed, or that some other
6018 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
6019 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
6020 * unused, and this cgroup will be reprieved from its death sentence,
6021 * to continue to serve a useful existence. Next time it's released,
6022 * we will get notified again, if it still has 'notify_on_release' set.
6023 *
6024 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
6025 * means only wait until the task is successfully execve()'d. The
6026 * separate release agent task is forked by call_usermodehelper(),
6027 * then control in this thread returns here, without waiting for the
6028 * release agent task. We don't bother to wait because the caller of
6029 * this routine has no use for the exit status of the release agent
6030 * task, so no sense holding our caller up for that.
6031 */
6032 static void cgroup_release_agent(struct work_struct *work)
6033 {
6034 struct cgroup *cgrp =
6035 container_of(work, struct cgroup, release_agent_work);
6036 char *pathbuf = NULL, *agentbuf = NULL, *path;
6037 char *argv[3], *envp[3];
6038
6039 mutex_lock(&cgroup_mutex);
6040
6041 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
6042 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
6043 if (!pathbuf || !agentbuf)
6044 goto out;
6045
6046 spin_lock_irq(&css_set_lock);
6047 path = cgroup_path_ns_locked(cgrp, pathbuf, PATH_MAX, &init_cgroup_ns);
6048 spin_unlock_irq(&css_set_lock);
6049 if (!path)
6050 goto out;
6051
6052 argv[0] = agentbuf;
6053 argv[1] = path;
6054 argv[2] = NULL;
6055
6056 /* minimal command environment */
6057 envp[0] = "HOME=/";
6058 envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
6059 envp[2] = NULL;
6060
6061 mutex_unlock(&cgroup_mutex);
6062 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
6063 goto out_free;
6064 out:
6065 mutex_unlock(&cgroup_mutex);
6066 out_free:
6067 kfree(agentbuf);
6068 kfree(pathbuf);
6069 }
6070
6071 static int __init cgroup_disable(char *str)
6072 {
6073 struct cgroup_subsys *ss;
6074 char *token;
6075 int i;
6076
6077 while ((token = strsep(&str, ",")) != NULL) {
6078 if (!*token)
6079 continue;
6080
6081 for_each_subsys(ss, i) {
6082 if (strcmp(token, ss->name) &&
6083 strcmp(token, ss->legacy_name))
6084 continue;
6085 cgroup_disable_mask |= 1 << i;
6086 }
6087 }
6088 return 1;
6089 }
6090 __setup("cgroup_disable=", cgroup_disable);
6091
6092 static int __init cgroup_no_v1(char *str)
6093 {
6094 struct cgroup_subsys *ss;
6095 char *token;
6096 int i;
6097
6098 while ((token = strsep(&str, ",")) != NULL) {
6099 if (!*token)
6100 continue;
6101
6102 if (!strcmp(token, "all")) {
6103 cgroup_no_v1_mask = U16_MAX;
6104 break;
6105 }
6106
6107 for_each_subsys(ss, i) {
6108 if (strcmp(token, ss->name) &&
6109 strcmp(token, ss->legacy_name))
6110 continue;
6111
6112 cgroup_no_v1_mask |= 1 << i;
6113 }
6114 }
6115 return 1;
6116 }
6117 __setup("cgroup_no_v1=", cgroup_no_v1);
6118
6119 /**
6120 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
6121 * @dentry: directory dentry of interest
6122 * @ss: subsystem of interest
6123 *
6124 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
6125 * to get the corresponding css and return it. If such css doesn't exist
6126 * or can't be pinned, an ERR_PTR value is returned.
6127 */
6128 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
6129 struct cgroup_subsys *ss)
6130 {
6131 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
6132 struct file_system_type *s_type = dentry->d_sb->s_type;
6133 struct cgroup_subsys_state *css = NULL;
6134 struct cgroup *cgrp;
6135
6136 /* is @dentry a cgroup dir? */
6137 if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
6138 !kn || kernfs_type(kn) != KERNFS_DIR)
6139 return ERR_PTR(-EBADF);
6140
6141 rcu_read_lock();
6142
6143 /*
6144 * This path doesn't originate from kernfs and @kn could already
6145 * have been or be removed at any point. @kn->priv is RCU
6146 * protected for this access. See css_release_work_fn() for details.
6147 */
6148 cgrp = rcu_dereference(kn->priv);
6149 if (cgrp)
6150 css = cgroup_css(cgrp, ss);
6151
6152 if (!css || !css_tryget_online(css))
6153 css = ERR_PTR(-ENOENT);
6154
6155 rcu_read_unlock();
6156 return css;
6157 }
6158
6159 /**
6160 * css_from_id - lookup css by id
6161 * @id: the cgroup id
6162 * @ss: cgroup subsys to be looked into
6163 *
6164 * Returns the css if there's valid one with @id, otherwise returns NULL.
6165 * Should be called under rcu_read_lock().
6166 */
6167 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
6168 {
6169 WARN_ON_ONCE(!rcu_read_lock_held());
6170 return idr_find(&ss->css_idr, id);
6171 }
6172
6173 /**
6174 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
6175 * @path: path on the default hierarchy
6176 *
6177 * Find the cgroup at @path on the default hierarchy, increment its
6178 * reference count and return it. Returns pointer to the found cgroup on
6179 * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR)
6180 * if @path points to a non-directory.
6181 */
6182 struct cgroup *cgroup_get_from_path(const char *path)
6183 {
6184 struct kernfs_node *kn;
6185 struct cgroup *cgrp;
6186
6187 mutex_lock(&cgroup_mutex);
6188
6189 kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path);
6190 if (kn) {
6191 if (kernfs_type(kn) == KERNFS_DIR) {
6192 cgrp = kn->priv;
6193 cgroup_get(cgrp);
6194 } else {
6195 cgrp = ERR_PTR(-ENOTDIR);
6196 }
6197 kernfs_put(kn);
6198 } else {
6199 cgrp = ERR_PTR(-ENOENT);
6200 }
6201
6202 mutex_unlock(&cgroup_mutex);
6203 return cgrp;
6204 }
6205 EXPORT_SYMBOL_GPL(cgroup_get_from_path);
6206
6207 /*
6208 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data
6209 * definition in cgroup-defs.h.
6210 */
6211 #ifdef CONFIG_SOCK_CGROUP_DATA
6212
6213 #if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID)
6214
6215 DEFINE_SPINLOCK(cgroup_sk_update_lock);
6216 static bool cgroup_sk_alloc_disabled __read_mostly;
6217
6218 void cgroup_sk_alloc_disable(void)
6219 {
6220 if (cgroup_sk_alloc_disabled)
6221 return;
6222 pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n");
6223 cgroup_sk_alloc_disabled = true;
6224 }
6225
6226 #else
6227
6228 #define cgroup_sk_alloc_disabled false
6229
6230 #endif
6231
6232 void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
6233 {
6234 if (cgroup_sk_alloc_disabled)
6235 return;
6236
6237 rcu_read_lock();
6238
6239 while (true) {
6240 struct css_set *cset;
6241
6242 cset = task_css_set(current);
6243 if (likely(cgroup_tryget(cset->dfl_cgrp))) {
6244 skcd->val = (unsigned long)cset->dfl_cgrp;
6245 break;
6246 }
6247 cpu_relax();
6248 }
6249
6250 rcu_read_unlock();
6251 }
6252
6253 void cgroup_sk_free(struct sock_cgroup_data *skcd)
6254 {
6255 cgroup_put(sock_cgroup_ptr(skcd));
6256 }
6257
6258 #endif /* CONFIG_SOCK_CGROUP_DATA */
6259
6260 /* cgroup namespaces */
6261
6262 static struct cgroup_namespace *alloc_cgroup_ns(void)
6263 {
6264 struct cgroup_namespace *new_ns;
6265 int ret;
6266
6267 new_ns = kzalloc(sizeof(struct cgroup_namespace), GFP_KERNEL);
6268 if (!new_ns)
6269 return ERR_PTR(-ENOMEM);
6270 ret = ns_alloc_inum(&new_ns->ns);
6271 if (ret) {
6272 kfree(new_ns);
6273 return ERR_PTR(ret);
6274 }
6275 atomic_set(&new_ns->count, 1);
6276 new_ns->ns.ops = &cgroupns_operations;
6277 return new_ns;
6278 }
6279
6280 void free_cgroup_ns(struct cgroup_namespace *ns)
6281 {
6282 put_css_set(ns->root_cset);
6283 put_user_ns(ns->user_ns);
6284 ns_free_inum(&ns->ns);
6285 kfree(ns);
6286 }
6287 EXPORT_SYMBOL(free_cgroup_ns);
6288
6289 struct cgroup_namespace *copy_cgroup_ns(unsigned long flags,
6290 struct user_namespace *user_ns,
6291 struct cgroup_namespace *old_ns)
6292 {
6293 struct cgroup_namespace *new_ns;
6294 struct css_set *cset;
6295
6296 BUG_ON(!old_ns);
6297
6298 if (!(flags & CLONE_NEWCGROUP)) {
6299 get_cgroup_ns(old_ns);
6300 return old_ns;
6301 }
6302
6303 /* Allow only sysadmin to create cgroup namespace. */
6304 if (!ns_capable(user_ns, CAP_SYS_ADMIN))
6305 return ERR_PTR(-EPERM);
6306
6307 mutex_lock(&cgroup_mutex);
6308 spin_lock_irq(&css_set_lock);
6309
6310 cset = task_css_set(current);
6311 get_css_set(cset);
6312
6313 spin_unlock_irq(&css_set_lock);
6314 mutex_unlock(&cgroup_mutex);
6315
6316 new_ns = alloc_cgroup_ns();
6317 if (IS_ERR(new_ns)) {
6318 put_css_set(cset);
6319 return new_ns;
6320 }
6321
6322 new_ns->user_ns = get_user_ns(user_ns);
6323 new_ns->root_cset = cset;
6324
6325 return new_ns;
6326 }
6327
6328 static inline struct cgroup_namespace *to_cg_ns(struct ns_common *ns)
6329 {
6330 return container_of(ns, struct cgroup_namespace, ns);
6331 }
6332
6333 static int cgroupns_install(struct nsproxy *nsproxy, struct ns_common *ns)
6334 {
6335 struct cgroup_namespace *cgroup_ns = to_cg_ns(ns);
6336
6337 if (!ns_capable(current_user_ns(), CAP_SYS_ADMIN) ||
6338 !ns_capable(cgroup_ns->user_ns, CAP_SYS_ADMIN))
6339 return -EPERM;
6340
6341 /* Don't need to do anything if we are attaching to our own cgroupns. */
6342 if (cgroup_ns == nsproxy->cgroup_ns)
6343 return 0;
6344
6345 get_cgroup_ns(cgroup_ns);
6346 put_cgroup_ns(nsproxy->cgroup_ns);
6347 nsproxy->cgroup_ns = cgroup_ns;
6348
6349 return 0;
6350 }
6351
6352 static struct ns_common *cgroupns_get(struct task_struct *task)
6353 {
6354 struct cgroup_namespace *ns = NULL;
6355 struct nsproxy *nsproxy;
6356
6357 task_lock(task);
6358 nsproxy = task->nsproxy;
6359 if (nsproxy) {
6360 ns = nsproxy->cgroup_ns;
6361 get_cgroup_ns(ns);
6362 }
6363 task_unlock(task);
6364
6365 return ns ? &ns->ns : NULL;
6366 }
6367
6368 static void cgroupns_put(struct ns_common *ns)
6369 {
6370 put_cgroup_ns(to_cg_ns(ns));
6371 }
6372
6373 const struct proc_ns_operations cgroupns_operations = {
6374 .name = "cgroup",
6375 .type = CLONE_NEWCGROUP,
6376 .get = cgroupns_get,
6377 .put = cgroupns_put,
6378 .install = cgroupns_install,
6379 };
6380
6381 static __init int cgroup_namespaces_init(void)
6382 {
6383 return 0;
6384 }
6385 subsys_initcall(cgroup_namespaces_init);
6386
6387 #ifdef CONFIG_CGROUP_DEBUG
6388 static struct cgroup_subsys_state *
6389 debug_css_alloc(struct cgroup_subsys_state *parent_css)
6390 {
6391 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
6392
6393 if (!css)
6394 return ERR_PTR(-ENOMEM);
6395
6396 return css;
6397 }
6398
6399 static void debug_css_free(struct cgroup_subsys_state *css)
6400 {
6401 kfree(css);
6402 }
6403
6404 static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
6405 struct cftype *cft)
6406 {
6407 return cgroup_task_count(css->cgroup);
6408 }
6409
6410 static u64 current_css_set_read(struct cgroup_subsys_state *css,
6411 struct cftype *cft)
6412 {
6413 return (u64)(unsigned long)current->cgroups;
6414 }
6415
6416 static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
6417 struct cftype *cft)
6418 {
6419 u64 count;
6420
6421 rcu_read_lock();
6422 count = atomic_read(&task_css_set(current)->refcount);
6423 rcu_read_unlock();
6424 return count;
6425 }
6426
6427 static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
6428 {
6429 struct cgrp_cset_link *link;
6430 struct css_set *cset;
6431 char *name_buf;
6432
6433 name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
6434 if (!name_buf)
6435 return -ENOMEM;
6436
6437 spin_lock_irq(&css_set_lock);
6438 rcu_read_lock();
6439 cset = rcu_dereference(current->cgroups);
6440 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
6441 struct cgroup *c = link->cgrp;
6442
6443 cgroup_name(c, name_buf, NAME_MAX + 1);
6444 seq_printf(seq, "Root %d group %s\n",
6445 c->root->hierarchy_id, name_buf);
6446 }
6447 rcu_read_unlock();
6448 spin_unlock_irq(&css_set_lock);
6449 kfree(name_buf);
6450 return 0;
6451 }
6452
6453 #define MAX_TASKS_SHOWN_PER_CSS 25
6454 static int cgroup_css_links_read(struct seq_file *seq, void *v)
6455 {
6456 struct cgroup_subsys_state *css = seq_css(seq);
6457 struct cgrp_cset_link *link;
6458
6459 spin_lock_irq(&css_set_lock);
6460 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
6461 struct css_set *cset = link->cset;
6462 struct task_struct *task;
6463 int count = 0;
6464
6465 seq_printf(seq, "css_set %p\n", cset);
6466
6467 list_for_each_entry(task, &cset->tasks, cg_list) {
6468 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
6469 goto overflow;
6470 seq_printf(seq, " task %d\n", task_pid_vnr(task));
6471 }
6472
6473 list_for_each_entry(task, &cset->mg_tasks, cg_list) {
6474 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
6475 goto overflow;
6476 seq_printf(seq, " task %d\n", task_pid_vnr(task));
6477 }
6478 continue;
6479 overflow:
6480 seq_puts(seq, " ...\n");
6481 }
6482 spin_unlock_irq(&css_set_lock);
6483 return 0;
6484 }
6485
6486 static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
6487 {
6488 return (!cgroup_is_populated(css->cgroup) &&
6489 !css_has_online_children(&css->cgroup->self));
6490 }
6491
6492 static struct cftype debug_files[] = {
6493 {
6494 .name = "taskcount",
6495 .read_u64 = debug_taskcount_read,
6496 },
6497
6498 {
6499 .name = "current_css_set",
6500 .read_u64 = current_css_set_read,
6501 },
6502
6503 {
6504 .name = "current_css_set_refcount",
6505 .read_u64 = current_css_set_refcount_read,
6506 },
6507
6508 {
6509 .name = "current_css_set_cg_links",
6510 .seq_show = current_css_set_cg_links_read,
6511 },
6512
6513 {
6514 .name = "cgroup_css_links",
6515 .seq_show = cgroup_css_links_read,
6516 },
6517
6518 {
6519 .name = "releasable",
6520 .read_u64 = releasable_read,
6521 },
6522
6523 { } /* terminate */
6524 };
6525
6526 struct cgroup_subsys debug_cgrp_subsys = {
6527 .css_alloc = debug_css_alloc,
6528 .css_free = debug_css_free,
6529 .legacy_cftypes = debug_files,
6530 };
6531 #endif /* CONFIG_CGROUP_DEBUG */
This page took 0.269064 seconds and 6 git commands to generate.