Merge branch 'i2c-embedded/for-3.4' of git://git.pengutronix.de/git/wsa/linux
[deliverable/linux.git] / kernel / cgroup.c
1 /*
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29 #include <linux/cgroup.h>
30 #include <linux/cred.h>
31 #include <linux/ctype.h>
32 #include <linux/errno.h>
33 #include <linux/fs.h>
34 #include <linux/init_task.h>
35 #include <linux/kernel.h>
36 #include <linux/list.h>
37 #include <linux/mm.h>
38 #include <linux/mutex.h>
39 #include <linux/mount.h>
40 #include <linux/pagemap.h>
41 #include <linux/proc_fs.h>
42 #include <linux/rcupdate.h>
43 #include <linux/sched.h>
44 #include <linux/backing-dev.h>
45 #include <linux/seq_file.h>
46 #include <linux/slab.h>
47 #include <linux/magic.h>
48 #include <linux/spinlock.h>
49 #include <linux/string.h>
50 #include <linux/sort.h>
51 #include <linux/kmod.h>
52 #include <linux/module.h>
53 #include <linux/delayacct.h>
54 #include <linux/cgroupstats.h>
55 #include <linux/hash.h>
56 #include <linux/namei.h>
57 #include <linux/pid_namespace.h>
58 #include <linux/idr.h>
59 #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
60 #include <linux/eventfd.h>
61 #include <linux/poll.h>
62 #include <linux/flex_array.h> /* used in cgroup_attach_proc */
63
64 #include <linux/atomic.h>
65
66 /*
67 * cgroup_mutex is the master lock. Any modification to cgroup or its
68 * hierarchy must be performed while holding it.
69 *
70 * cgroup_root_mutex nests inside cgroup_mutex and should be held to modify
71 * cgroupfs_root of any cgroup hierarchy - subsys list, flags,
72 * release_agent_path and so on. Modifying requires both cgroup_mutex and
73 * cgroup_root_mutex. Readers can acquire either of the two. This is to
74 * break the following locking order cycle.
75 *
76 * A. cgroup_mutex -> cred_guard_mutex -> s_type->i_mutex_key -> namespace_sem
77 * B. namespace_sem -> cgroup_mutex
78 *
79 * B happens only through cgroup_show_options() and using cgroup_root_mutex
80 * breaks it.
81 */
82 static DEFINE_MUTEX(cgroup_mutex);
83 static DEFINE_MUTEX(cgroup_root_mutex);
84
85 /*
86 * Generate an array of cgroup subsystem pointers. At boot time, this is
87 * populated up to CGROUP_BUILTIN_SUBSYS_COUNT, and modular subsystems are
88 * registered after that. The mutable section of this array is protected by
89 * cgroup_mutex.
90 */
91 #define SUBSYS(_x) &_x ## _subsys,
92 static struct cgroup_subsys *subsys[CGROUP_SUBSYS_COUNT] = {
93 #include <linux/cgroup_subsys.h>
94 };
95
96 #define MAX_CGROUP_ROOT_NAMELEN 64
97
98 /*
99 * A cgroupfs_root represents the root of a cgroup hierarchy,
100 * and may be associated with a superblock to form an active
101 * hierarchy
102 */
103 struct cgroupfs_root {
104 struct super_block *sb;
105
106 /*
107 * The bitmask of subsystems intended to be attached to this
108 * hierarchy
109 */
110 unsigned long subsys_bits;
111
112 /* Unique id for this hierarchy. */
113 int hierarchy_id;
114
115 /* The bitmask of subsystems currently attached to this hierarchy */
116 unsigned long actual_subsys_bits;
117
118 /* A list running through the attached subsystems */
119 struct list_head subsys_list;
120
121 /* The root cgroup for this hierarchy */
122 struct cgroup top_cgroup;
123
124 /* Tracks how many cgroups are currently defined in hierarchy.*/
125 int number_of_cgroups;
126
127 /* A list running through the active hierarchies */
128 struct list_head root_list;
129
130 /* Hierarchy-specific flags */
131 unsigned long flags;
132
133 /* The path to use for release notifications. */
134 char release_agent_path[PATH_MAX];
135
136 /* The name for this hierarchy - may be empty */
137 char name[MAX_CGROUP_ROOT_NAMELEN];
138 };
139
140 /*
141 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
142 * subsystems that are otherwise unattached - it never has more than a
143 * single cgroup, and all tasks are part of that cgroup.
144 */
145 static struct cgroupfs_root rootnode;
146
147 /*
148 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
149 * cgroup_subsys->use_id != 0.
150 */
151 #define CSS_ID_MAX (65535)
152 struct css_id {
153 /*
154 * The css to which this ID points. This pointer is set to valid value
155 * after cgroup is populated. If cgroup is removed, this will be NULL.
156 * This pointer is expected to be RCU-safe because destroy()
157 * is called after synchronize_rcu(). But for safe use, css_is_removed()
158 * css_tryget() should be used for avoiding race.
159 */
160 struct cgroup_subsys_state __rcu *css;
161 /*
162 * ID of this css.
163 */
164 unsigned short id;
165 /*
166 * Depth in hierarchy which this ID belongs to.
167 */
168 unsigned short depth;
169 /*
170 * ID is freed by RCU. (and lookup routine is RCU safe.)
171 */
172 struct rcu_head rcu_head;
173 /*
174 * Hierarchy of CSS ID belongs to.
175 */
176 unsigned short stack[0]; /* Array of Length (depth+1) */
177 };
178
179 /*
180 * cgroup_event represents events which userspace want to receive.
181 */
182 struct cgroup_event {
183 /*
184 * Cgroup which the event belongs to.
185 */
186 struct cgroup *cgrp;
187 /*
188 * Control file which the event associated.
189 */
190 struct cftype *cft;
191 /*
192 * eventfd to signal userspace about the event.
193 */
194 struct eventfd_ctx *eventfd;
195 /*
196 * Each of these stored in a list by the cgroup.
197 */
198 struct list_head list;
199 /*
200 * All fields below needed to unregister event when
201 * userspace closes eventfd.
202 */
203 poll_table pt;
204 wait_queue_head_t *wqh;
205 wait_queue_t wait;
206 struct work_struct remove;
207 };
208
209 /* The list of hierarchy roots */
210
211 static LIST_HEAD(roots);
212 static int root_count;
213
214 static DEFINE_IDA(hierarchy_ida);
215 static int next_hierarchy_id;
216 static DEFINE_SPINLOCK(hierarchy_id_lock);
217
218 /* dummytop is a shorthand for the dummy hierarchy's top cgroup */
219 #define dummytop (&rootnode.top_cgroup)
220
221 /* This flag indicates whether tasks in the fork and exit paths should
222 * check for fork/exit handlers to call. This avoids us having to do
223 * extra work in the fork/exit path if none of the subsystems need to
224 * be called.
225 */
226 static int need_forkexit_callback __read_mostly;
227
228 #ifdef CONFIG_PROVE_LOCKING
229 int cgroup_lock_is_held(void)
230 {
231 return lockdep_is_held(&cgroup_mutex);
232 }
233 #else /* #ifdef CONFIG_PROVE_LOCKING */
234 int cgroup_lock_is_held(void)
235 {
236 return mutex_is_locked(&cgroup_mutex);
237 }
238 #endif /* #else #ifdef CONFIG_PROVE_LOCKING */
239
240 EXPORT_SYMBOL_GPL(cgroup_lock_is_held);
241
242 /* convenient tests for these bits */
243 inline int cgroup_is_removed(const struct cgroup *cgrp)
244 {
245 return test_bit(CGRP_REMOVED, &cgrp->flags);
246 }
247
248 /* bits in struct cgroupfs_root flags field */
249 enum {
250 ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
251 };
252
253 static int cgroup_is_releasable(const struct cgroup *cgrp)
254 {
255 const int bits =
256 (1 << CGRP_RELEASABLE) |
257 (1 << CGRP_NOTIFY_ON_RELEASE);
258 return (cgrp->flags & bits) == bits;
259 }
260
261 static int notify_on_release(const struct cgroup *cgrp)
262 {
263 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
264 }
265
266 static int clone_children(const struct cgroup *cgrp)
267 {
268 return test_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
269 }
270
271 /*
272 * for_each_subsys() allows you to iterate on each subsystem attached to
273 * an active hierarchy
274 */
275 #define for_each_subsys(_root, _ss) \
276 list_for_each_entry(_ss, &_root->subsys_list, sibling)
277
278 /* for_each_active_root() allows you to iterate across the active hierarchies */
279 #define for_each_active_root(_root) \
280 list_for_each_entry(_root, &roots, root_list)
281
282 /* the list of cgroups eligible for automatic release. Protected by
283 * release_list_lock */
284 static LIST_HEAD(release_list);
285 static DEFINE_RAW_SPINLOCK(release_list_lock);
286 static void cgroup_release_agent(struct work_struct *work);
287 static DECLARE_WORK(release_agent_work, cgroup_release_agent);
288 static void check_for_release(struct cgroup *cgrp);
289
290 /* Link structure for associating css_set objects with cgroups */
291 struct cg_cgroup_link {
292 /*
293 * List running through cg_cgroup_links associated with a
294 * cgroup, anchored on cgroup->css_sets
295 */
296 struct list_head cgrp_link_list;
297 struct cgroup *cgrp;
298 /*
299 * List running through cg_cgroup_links pointing at a
300 * single css_set object, anchored on css_set->cg_links
301 */
302 struct list_head cg_link_list;
303 struct css_set *cg;
304 };
305
306 /* The default css_set - used by init and its children prior to any
307 * hierarchies being mounted. It contains a pointer to the root state
308 * for each subsystem. Also used to anchor the list of css_sets. Not
309 * reference-counted, to improve performance when child cgroups
310 * haven't been created.
311 */
312
313 static struct css_set init_css_set;
314 static struct cg_cgroup_link init_css_set_link;
315
316 static int cgroup_init_idr(struct cgroup_subsys *ss,
317 struct cgroup_subsys_state *css);
318
319 /* css_set_lock protects the list of css_set objects, and the
320 * chain of tasks off each css_set. Nests outside task->alloc_lock
321 * due to cgroup_iter_start() */
322 static DEFINE_RWLOCK(css_set_lock);
323 static int css_set_count;
324
325 /*
326 * hash table for cgroup groups. This improves the performance to find
327 * an existing css_set. This hash doesn't (currently) take into
328 * account cgroups in empty hierarchies.
329 */
330 #define CSS_SET_HASH_BITS 7
331 #define CSS_SET_TABLE_SIZE (1 << CSS_SET_HASH_BITS)
332 static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE];
333
334 static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[])
335 {
336 int i;
337 int index;
338 unsigned long tmp = 0UL;
339
340 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
341 tmp += (unsigned long)css[i];
342 tmp = (tmp >> 16) ^ tmp;
343
344 index = hash_long(tmp, CSS_SET_HASH_BITS);
345
346 return &css_set_table[index];
347 }
348
349 /* We don't maintain the lists running through each css_set to its
350 * task until after the first call to cgroup_iter_start(). This
351 * reduces the fork()/exit() overhead for people who have cgroups
352 * compiled into their kernel but not actually in use */
353 static int use_task_css_set_links __read_mostly;
354
355 static void __put_css_set(struct css_set *cg, int taskexit)
356 {
357 struct cg_cgroup_link *link;
358 struct cg_cgroup_link *saved_link;
359 /*
360 * Ensure that the refcount doesn't hit zero while any readers
361 * can see it. Similar to atomic_dec_and_lock(), but for an
362 * rwlock
363 */
364 if (atomic_add_unless(&cg->refcount, -1, 1))
365 return;
366 write_lock(&css_set_lock);
367 if (!atomic_dec_and_test(&cg->refcount)) {
368 write_unlock(&css_set_lock);
369 return;
370 }
371
372 /* This css_set is dead. unlink it and release cgroup refcounts */
373 hlist_del(&cg->hlist);
374 css_set_count--;
375
376 list_for_each_entry_safe(link, saved_link, &cg->cg_links,
377 cg_link_list) {
378 struct cgroup *cgrp = link->cgrp;
379 list_del(&link->cg_link_list);
380 list_del(&link->cgrp_link_list);
381 if (atomic_dec_and_test(&cgrp->count) &&
382 notify_on_release(cgrp)) {
383 if (taskexit)
384 set_bit(CGRP_RELEASABLE, &cgrp->flags);
385 check_for_release(cgrp);
386 }
387
388 kfree(link);
389 }
390
391 write_unlock(&css_set_lock);
392 kfree_rcu(cg, rcu_head);
393 }
394
395 /*
396 * refcounted get/put for css_set objects
397 */
398 static inline void get_css_set(struct css_set *cg)
399 {
400 atomic_inc(&cg->refcount);
401 }
402
403 static inline void put_css_set(struct css_set *cg)
404 {
405 __put_css_set(cg, 0);
406 }
407
408 static inline void put_css_set_taskexit(struct css_set *cg)
409 {
410 __put_css_set(cg, 1);
411 }
412
413 /*
414 * compare_css_sets - helper function for find_existing_css_set().
415 * @cg: candidate css_set being tested
416 * @old_cg: existing css_set for a task
417 * @new_cgrp: cgroup that's being entered by the task
418 * @template: desired set of css pointers in css_set (pre-calculated)
419 *
420 * Returns true if "cg" matches "old_cg" except for the hierarchy
421 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
422 */
423 static bool compare_css_sets(struct css_set *cg,
424 struct css_set *old_cg,
425 struct cgroup *new_cgrp,
426 struct cgroup_subsys_state *template[])
427 {
428 struct list_head *l1, *l2;
429
430 if (memcmp(template, cg->subsys, sizeof(cg->subsys))) {
431 /* Not all subsystems matched */
432 return false;
433 }
434
435 /*
436 * Compare cgroup pointers in order to distinguish between
437 * different cgroups in heirarchies with no subsystems. We
438 * could get by with just this check alone (and skip the
439 * memcmp above) but on most setups the memcmp check will
440 * avoid the need for this more expensive check on almost all
441 * candidates.
442 */
443
444 l1 = &cg->cg_links;
445 l2 = &old_cg->cg_links;
446 while (1) {
447 struct cg_cgroup_link *cgl1, *cgl2;
448 struct cgroup *cg1, *cg2;
449
450 l1 = l1->next;
451 l2 = l2->next;
452 /* See if we reached the end - both lists are equal length. */
453 if (l1 == &cg->cg_links) {
454 BUG_ON(l2 != &old_cg->cg_links);
455 break;
456 } else {
457 BUG_ON(l2 == &old_cg->cg_links);
458 }
459 /* Locate the cgroups associated with these links. */
460 cgl1 = list_entry(l1, struct cg_cgroup_link, cg_link_list);
461 cgl2 = list_entry(l2, struct cg_cgroup_link, cg_link_list);
462 cg1 = cgl1->cgrp;
463 cg2 = cgl2->cgrp;
464 /* Hierarchies should be linked in the same order. */
465 BUG_ON(cg1->root != cg2->root);
466
467 /*
468 * If this hierarchy is the hierarchy of the cgroup
469 * that's changing, then we need to check that this
470 * css_set points to the new cgroup; if it's any other
471 * hierarchy, then this css_set should point to the
472 * same cgroup as the old css_set.
473 */
474 if (cg1->root == new_cgrp->root) {
475 if (cg1 != new_cgrp)
476 return false;
477 } else {
478 if (cg1 != cg2)
479 return false;
480 }
481 }
482 return true;
483 }
484
485 /*
486 * find_existing_css_set() is a helper for
487 * find_css_set(), and checks to see whether an existing
488 * css_set is suitable.
489 *
490 * oldcg: the cgroup group that we're using before the cgroup
491 * transition
492 *
493 * cgrp: the cgroup that we're moving into
494 *
495 * template: location in which to build the desired set of subsystem
496 * state objects for the new cgroup group
497 */
498 static struct css_set *find_existing_css_set(
499 struct css_set *oldcg,
500 struct cgroup *cgrp,
501 struct cgroup_subsys_state *template[])
502 {
503 int i;
504 struct cgroupfs_root *root = cgrp->root;
505 struct hlist_head *hhead;
506 struct hlist_node *node;
507 struct css_set *cg;
508
509 /*
510 * Build the set of subsystem state objects that we want to see in the
511 * new css_set. while subsystems can change globally, the entries here
512 * won't change, so no need for locking.
513 */
514 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
515 if (root->subsys_bits & (1UL << i)) {
516 /* Subsystem is in this hierarchy. So we want
517 * the subsystem state from the new
518 * cgroup */
519 template[i] = cgrp->subsys[i];
520 } else {
521 /* Subsystem is not in this hierarchy, so we
522 * don't want to change the subsystem state */
523 template[i] = oldcg->subsys[i];
524 }
525 }
526
527 hhead = css_set_hash(template);
528 hlist_for_each_entry(cg, node, hhead, hlist) {
529 if (!compare_css_sets(cg, oldcg, cgrp, template))
530 continue;
531
532 /* This css_set matches what we need */
533 return cg;
534 }
535
536 /* No existing cgroup group matched */
537 return NULL;
538 }
539
540 static void free_cg_links(struct list_head *tmp)
541 {
542 struct cg_cgroup_link *link;
543 struct cg_cgroup_link *saved_link;
544
545 list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
546 list_del(&link->cgrp_link_list);
547 kfree(link);
548 }
549 }
550
551 /*
552 * allocate_cg_links() allocates "count" cg_cgroup_link structures
553 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
554 * success or a negative error
555 */
556 static int allocate_cg_links(int count, struct list_head *tmp)
557 {
558 struct cg_cgroup_link *link;
559 int i;
560 INIT_LIST_HEAD(tmp);
561 for (i = 0; i < count; i++) {
562 link = kmalloc(sizeof(*link), GFP_KERNEL);
563 if (!link) {
564 free_cg_links(tmp);
565 return -ENOMEM;
566 }
567 list_add(&link->cgrp_link_list, tmp);
568 }
569 return 0;
570 }
571
572 /**
573 * link_css_set - a helper function to link a css_set to a cgroup
574 * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
575 * @cg: the css_set to be linked
576 * @cgrp: the destination cgroup
577 */
578 static void link_css_set(struct list_head *tmp_cg_links,
579 struct css_set *cg, struct cgroup *cgrp)
580 {
581 struct cg_cgroup_link *link;
582
583 BUG_ON(list_empty(tmp_cg_links));
584 link = list_first_entry(tmp_cg_links, struct cg_cgroup_link,
585 cgrp_link_list);
586 link->cg = cg;
587 link->cgrp = cgrp;
588 atomic_inc(&cgrp->count);
589 list_move(&link->cgrp_link_list, &cgrp->css_sets);
590 /*
591 * Always add links to the tail of the list so that the list
592 * is sorted by order of hierarchy creation
593 */
594 list_add_tail(&link->cg_link_list, &cg->cg_links);
595 }
596
597 /*
598 * find_css_set() takes an existing cgroup group and a
599 * cgroup object, and returns a css_set object that's
600 * equivalent to the old group, but with the given cgroup
601 * substituted into the appropriate hierarchy. Must be called with
602 * cgroup_mutex held
603 */
604 static struct css_set *find_css_set(
605 struct css_set *oldcg, struct cgroup *cgrp)
606 {
607 struct css_set *res;
608 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
609
610 struct list_head tmp_cg_links;
611
612 struct hlist_head *hhead;
613 struct cg_cgroup_link *link;
614
615 /* First see if we already have a cgroup group that matches
616 * the desired set */
617 read_lock(&css_set_lock);
618 res = find_existing_css_set(oldcg, cgrp, template);
619 if (res)
620 get_css_set(res);
621 read_unlock(&css_set_lock);
622
623 if (res)
624 return res;
625
626 res = kmalloc(sizeof(*res), GFP_KERNEL);
627 if (!res)
628 return NULL;
629
630 /* Allocate all the cg_cgroup_link objects that we'll need */
631 if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
632 kfree(res);
633 return NULL;
634 }
635
636 atomic_set(&res->refcount, 1);
637 INIT_LIST_HEAD(&res->cg_links);
638 INIT_LIST_HEAD(&res->tasks);
639 INIT_HLIST_NODE(&res->hlist);
640
641 /* Copy the set of subsystem state objects generated in
642 * find_existing_css_set() */
643 memcpy(res->subsys, template, sizeof(res->subsys));
644
645 write_lock(&css_set_lock);
646 /* Add reference counts and links from the new css_set. */
647 list_for_each_entry(link, &oldcg->cg_links, cg_link_list) {
648 struct cgroup *c = link->cgrp;
649 if (c->root == cgrp->root)
650 c = cgrp;
651 link_css_set(&tmp_cg_links, res, c);
652 }
653
654 BUG_ON(!list_empty(&tmp_cg_links));
655
656 css_set_count++;
657
658 /* Add this cgroup group to the hash table */
659 hhead = css_set_hash(res->subsys);
660 hlist_add_head(&res->hlist, hhead);
661
662 write_unlock(&css_set_lock);
663
664 return res;
665 }
666
667 /*
668 * Return the cgroup for "task" from the given hierarchy. Must be
669 * called with cgroup_mutex held.
670 */
671 static struct cgroup *task_cgroup_from_root(struct task_struct *task,
672 struct cgroupfs_root *root)
673 {
674 struct css_set *css;
675 struct cgroup *res = NULL;
676
677 BUG_ON(!mutex_is_locked(&cgroup_mutex));
678 read_lock(&css_set_lock);
679 /*
680 * No need to lock the task - since we hold cgroup_mutex the
681 * task can't change groups, so the only thing that can happen
682 * is that it exits and its css is set back to init_css_set.
683 */
684 css = task->cgroups;
685 if (css == &init_css_set) {
686 res = &root->top_cgroup;
687 } else {
688 struct cg_cgroup_link *link;
689 list_for_each_entry(link, &css->cg_links, cg_link_list) {
690 struct cgroup *c = link->cgrp;
691 if (c->root == root) {
692 res = c;
693 break;
694 }
695 }
696 }
697 read_unlock(&css_set_lock);
698 BUG_ON(!res);
699 return res;
700 }
701
702 /*
703 * There is one global cgroup mutex. We also require taking
704 * task_lock() when dereferencing a task's cgroup subsys pointers.
705 * See "The task_lock() exception", at the end of this comment.
706 *
707 * A task must hold cgroup_mutex to modify cgroups.
708 *
709 * Any task can increment and decrement the count field without lock.
710 * So in general, code holding cgroup_mutex can't rely on the count
711 * field not changing. However, if the count goes to zero, then only
712 * cgroup_attach_task() can increment it again. Because a count of zero
713 * means that no tasks are currently attached, therefore there is no
714 * way a task attached to that cgroup can fork (the other way to
715 * increment the count). So code holding cgroup_mutex can safely
716 * assume that if the count is zero, it will stay zero. Similarly, if
717 * a task holds cgroup_mutex on a cgroup with zero count, it
718 * knows that the cgroup won't be removed, as cgroup_rmdir()
719 * needs that mutex.
720 *
721 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
722 * (usually) take cgroup_mutex. These are the two most performance
723 * critical pieces of code here. The exception occurs on cgroup_exit(),
724 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
725 * is taken, and if the cgroup count is zero, a usermode call made
726 * to the release agent with the name of the cgroup (path relative to
727 * the root of cgroup file system) as the argument.
728 *
729 * A cgroup can only be deleted if both its 'count' of using tasks
730 * is zero, and its list of 'children' cgroups is empty. Since all
731 * tasks in the system use _some_ cgroup, and since there is always at
732 * least one task in the system (init, pid == 1), therefore, top_cgroup
733 * always has either children cgroups and/or using tasks. So we don't
734 * need a special hack to ensure that top_cgroup cannot be deleted.
735 *
736 * The task_lock() exception
737 *
738 * The need for this exception arises from the action of
739 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
740 * another. It does so using cgroup_mutex, however there are
741 * several performance critical places that need to reference
742 * task->cgroup without the expense of grabbing a system global
743 * mutex. Therefore except as noted below, when dereferencing or, as
744 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
745 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
746 * the task_struct routinely used for such matters.
747 *
748 * P.S. One more locking exception. RCU is used to guard the
749 * update of a tasks cgroup pointer by cgroup_attach_task()
750 */
751
752 /**
753 * cgroup_lock - lock out any changes to cgroup structures
754 *
755 */
756 void cgroup_lock(void)
757 {
758 mutex_lock(&cgroup_mutex);
759 }
760 EXPORT_SYMBOL_GPL(cgroup_lock);
761
762 /**
763 * cgroup_unlock - release lock on cgroup changes
764 *
765 * Undo the lock taken in a previous cgroup_lock() call.
766 */
767 void cgroup_unlock(void)
768 {
769 mutex_unlock(&cgroup_mutex);
770 }
771 EXPORT_SYMBOL_GPL(cgroup_unlock);
772
773 /*
774 * A couple of forward declarations required, due to cyclic reference loop:
775 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
776 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
777 * -> cgroup_mkdir.
778 */
779
780 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode);
781 static struct dentry *cgroup_lookup(struct inode *, struct dentry *, struct nameidata *);
782 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
783 static int cgroup_populate_dir(struct cgroup *cgrp);
784 static const struct inode_operations cgroup_dir_inode_operations;
785 static const struct file_operations proc_cgroupstats_operations;
786
787 static struct backing_dev_info cgroup_backing_dev_info = {
788 .name = "cgroup",
789 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
790 };
791
792 static int alloc_css_id(struct cgroup_subsys *ss,
793 struct cgroup *parent, struct cgroup *child);
794
795 static struct inode *cgroup_new_inode(umode_t mode, struct super_block *sb)
796 {
797 struct inode *inode = new_inode(sb);
798
799 if (inode) {
800 inode->i_ino = get_next_ino();
801 inode->i_mode = mode;
802 inode->i_uid = current_fsuid();
803 inode->i_gid = current_fsgid();
804 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
805 inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
806 }
807 return inode;
808 }
809
810 /*
811 * Call subsys's pre_destroy handler.
812 * This is called before css refcnt check.
813 */
814 static int cgroup_call_pre_destroy(struct cgroup *cgrp)
815 {
816 struct cgroup_subsys *ss;
817 int ret = 0;
818
819 for_each_subsys(cgrp->root, ss)
820 if (ss->pre_destroy) {
821 ret = ss->pre_destroy(cgrp);
822 if (ret)
823 break;
824 }
825
826 return ret;
827 }
828
829 static void cgroup_diput(struct dentry *dentry, struct inode *inode)
830 {
831 /* is dentry a directory ? if so, kfree() associated cgroup */
832 if (S_ISDIR(inode->i_mode)) {
833 struct cgroup *cgrp = dentry->d_fsdata;
834 struct cgroup_subsys *ss;
835 BUG_ON(!(cgroup_is_removed(cgrp)));
836 /* It's possible for external users to be holding css
837 * reference counts on a cgroup; css_put() needs to
838 * be able to access the cgroup after decrementing
839 * the reference count in order to know if it needs to
840 * queue the cgroup to be handled by the release
841 * agent */
842 synchronize_rcu();
843
844 mutex_lock(&cgroup_mutex);
845 /*
846 * Release the subsystem state objects.
847 */
848 for_each_subsys(cgrp->root, ss)
849 ss->destroy(cgrp);
850
851 cgrp->root->number_of_cgroups--;
852 mutex_unlock(&cgroup_mutex);
853
854 /*
855 * Drop the active superblock reference that we took when we
856 * created the cgroup
857 */
858 deactivate_super(cgrp->root->sb);
859
860 /*
861 * if we're getting rid of the cgroup, refcount should ensure
862 * that there are no pidlists left.
863 */
864 BUG_ON(!list_empty(&cgrp->pidlists));
865
866 kfree_rcu(cgrp, rcu_head);
867 }
868 iput(inode);
869 }
870
871 static int cgroup_delete(const struct dentry *d)
872 {
873 return 1;
874 }
875
876 static void remove_dir(struct dentry *d)
877 {
878 struct dentry *parent = dget(d->d_parent);
879
880 d_delete(d);
881 simple_rmdir(parent->d_inode, d);
882 dput(parent);
883 }
884
885 static void cgroup_clear_directory(struct dentry *dentry)
886 {
887 struct list_head *node;
888
889 BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
890 spin_lock(&dentry->d_lock);
891 node = dentry->d_subdirs.next;
892 while (node != &dentry->d_subdirs) {
893 struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
894
895 spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
896 list_del_init(node);
897 if (d->d_inode) {
898 /* This should never be called on a cgroup
899 * directory with child cgroups */
900 BUG_ON(d->d_inode->i_mode & S_IFDIR);
901 dget_dlock(d);
902 spin_unlock(&d->d_lock);
903 spin_unlock(&dentry->d_lock);
904 d_delete(d);
905 simple_unlink(dentry->d_inode, d);
906 dput(d);
907 spin_lock(&dentry->d_lock);
908 } else
909 spin_unlock(&d->d_lock);
910 node = dentry->d_subdirs.next;
911 }
912 spin_unlock(&dentry->d_lock);
913 }
914
915 /*
916 * NOTE : the dentry must have been dget()'ed
917 */
918 static void cgroup_d_remove_dir(struct dentry *dentry)
919 {
920 struct dentry *parent;
921
922 cgroup_clear_directory(dentry);
923
924 parent = dentry->d_parent;
925 spin_lock(&parent->d_lock);
926 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
927 list_del_init(&dentry->d_u.d_child);
928 spin_unlock(&dentry->d_lock);
929 spin_unlock(&parent->d_lock);
930 remove_dir(dentry);
931 }
932
933 /*
934 * A queue for waiters to do rmdir() cgroup. A tasks will sleep when
935 * cgroup->count == 0 && list_empty(&cgroup->children) && subsys has some
936 * reference to css->refcnt. In general, this refcnt is expected to goes down
937 * to zero, soon.
938 *
939 * CGRP_WAIT_ON_RMDIR flag is set under cgroup's inode->i_mutex;
940 */
941 static DECLARE_WAIT_QUEUE_HEAD(cgroup_rmdir_waitq);
942
943 static void cgroup_wakeup_rmdir_waiter(struct cgroup *cgrp)
944 {
945 if (unlikely(test_and_clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags)))
946 wake_up_all(&cgroup_rmdir_waitq);
947 }
948
949 void cgroup_exclude_rmdir(struct cgroup_subsys_state *css)
950 {
951 css_get(css);
952 }
953
954 void cgroup_release_and_wakeup_rmdir(struct cgroup_subsys_state *css)
955 {
956 cgroup_wakeup_rmdir_waiter(css->cgroup);
957 css_put(css);
958 }
959
960 /*
961 * Call with cgroup_mutex held. Drops reference counts on modules, including
962 * any duplicate ones that parse_cgroupfs_options took. If this function
963 * returns an error, no reference counts are touched.
964 */
965 static int rebind_subsystems(struct cgroupfs_root *root,
966 unsigned long final_bits)
967 {
968 unsigned long added_bits, removed_bits;
969 struct cgroup *cgrp = &root->top_cgroup;
970 int i;
971
972 BUG_ON(!mutex_is_locked(&cgroup_mutex));
973 BUG_ON(!mutex_is_locked(&cgroup_root_mutex));
974
975 removed_bits = root->actual_subsys_bits & ~final_bits;
976 added_bits = final_bits & ~root->actual_subsys_bits;
977 /* Check that any added subsystems are currently free */
978 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
979 unsigned long bit = 1UL << i;
980 struct cgroup_subsys *ss = subsys[i];
981 if (!(bit & added_bits))
982 continue;
983 /*
984 * Nobody should tell us to do a subsys that doesn't exist:
985 * parse_cgroupfs_options should catch that case and refcounts
986 * ensure that subsystems won't disappear once selected.
987 */
988 BUG_ON(ss == NULL);
989 if (ss->root != &rootnode) {
990 /* Subsystem isn't free */
991 return -EBUSY;
992 }
993 }
994
995 /* Currently we don't handle adding/removing subsystems when
996 * any child cgroups exist. This is theoretically supportable
997 * but involves complex error handling, so it's being left until
998 * later */
999 if (root->number_of_cgroups > 1)
1000 return -EBUSY;
1001
1002 /* Process each subsystem */
1003 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1004 struct cgroup_subsys *ss = subsys[i];
1005 unsigned long bit = 1UL << i;
1006 if (bit & added_bits) {
1007 /* We're binding this subsystem to this hierarchy */
1008 BUG_ON(ss == NULL);
1009 BUG_ON(cgrp->subsys[i]);
1010 BUG_ON(!dummytop->subsys[i]);
1011 BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
1012 mutex_lock(&ss->hierarchy_mutex);
1013 cgrp->subsys[i] = dummytop->subsys[i];
1014 cgrp->subsys[i]->cgroup = cgrp;
1015 list_move(&ss->sibling, &root->subsys_list);
1016 ss->root = root;
1017 if (ss->bind)
1018 ss->bind(cgrp);
1019 mutex_unlock(&ss->hierarchy_mutex);
1020 /* refcount was already taken, and we're keeping it */
1021 } else if (bit & removed_bits) {
1022 /* We're removing this subsystem */
1023 BUG_ON(ss == NULL);
1024 BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
1025 BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
1026 mutex_lock(&ss->hierarchy_mutex);
1027 if (ss->bind)
1028 ss->bind(dummytop);
1029 dummytop->subsys[i]->cgroup = dummytop;
1030 cgrp->subsys[i] = NULL;
1031 subsys[i]->root = &rootnode;
1032 list_move(&ss->sibling, &rootnode.subsys_list);
1033 mutex_unlock(&ss->hierarchy_mutex);
1034 /* subsystem is now free - drop reference on module */
1035 module_put(ss->module);
1036 } else if (bit & final_bits) {
1037 /* Subsystem state should already exist */
1038 BUG_ON(ss == NULL);
1039 BUG_ON(!cgrp->subsys[i]);
1040 /*
1041 * a refcount was taken, but we already had one, so
1042 * drop the extra reference.
1043 */
1044 module_put(ss->module);
1045 #ifdef CONFIG_MODULE_UNLOAD
1046 BUG_ON(ss->module && !module_refcount(ss->module));
1047 #endif
1048 } else {
1049 /* Subsystem state shouldn't exist */
1050 BUG_ON(cgrp->subsys[i]);
1051 }
1052 }
1053 root->subsys_bits = root->actual_subsys_bits = final_bits;
1054 synchronize_rcu();
1055
1056 return 0;
1057 }
1058
1059 static int cgroup_show_options(struct seq_file *seq, struct dentry *dentry)
1060 {
1061 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
1062 struct cgroup_subsys *ss;
1063
1064 mutex_lock(&cgroup_root_mutex);
1065 for_each_subsys(root, ss)
1066 seq_printf(seq, ",%s", ss->name);
1067 if (test_bit(ROOT_NOPREFIX, &root->flags))
1068 seq_puts(seq, ",noprefix");
1069 if (strlen(root->release_agent_path))
1070 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
1071 if (clone_children(&root->top_cgroup))
1072 seq_puts(seq, ",clone_children");
1073 if (strlen(root->name))
1074 seq_printf(seq, ",name=%s", root->name);
1075 mutex_unlock(&cgroup_root_mutex);
1076 return 0;
1077 }
1078
1079 struct cgroup_sb_opts {
1080 unsigned long subsys_bits;
1081 unsigned long flags;
1082 char *release_agent;
1083 bool clone_children;
1084 char *name;
1085 /* User explicitly requested empty subsystem */
1086 bool none;
1087
1088 struct cgroupfs_root *new_root;
1089
1090 };
1091
1092 /*
1093 * Convert a hierarchy specifier into a bitmask of subsystems and flags. Call
1094 * with cgroup_mutex held to protect the subsys[] array. This function takes
1095 * refcounts on subsystems to be used, unless it returns error, in which case
1096 * no refcounts are taken.
1097 */
1098 static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
1099 {
1100 char *token, *o = data;
1101 bool all_ss = false, one_ss = false;
1102 unsigned long mask = (unsigned long)-1;
1103 int i;
1104 bool module_pin_failed = false;
1105
1106 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1107
1108 #ifdef CONFIG_CPUSETS
1109 mask = ~(1UL << cpuset_subsys_id);
1110 #endif
1111
1112 memset(opts, 0, sizeof(*opts));
1113
1114 while ((token = strsep(&o, ",")) != NULL) {
1115 if (!*token)
1116 return -EINVAL;
1117 if (!strcmp(token, "none")) {
1118 /* Explicitly have no subsystems */
1119 opts->none = true;
1120 continue;
1121 }
1122 if (!strcmp(token, "all")) {
1123 /* Mutually exclusive option 'all' + subsystem name */
1124 if (one_ss)
1125 return -EINVAL;
1126 all_ss = true;
1127 continue;
1128 }
1129 if (!strcmp(token, "noprefix")) {
1130 set_bit(ROOT_NOPREFIX, &opts->flags);
1131 continue;
1132 }
1133 if (!strcmp(token, "clone_children")) {
1134 opts->clone_children = true;
1135 continue;
1136 }
1137 if (!strncmp(token, "release_agent=", 14)) {
1138 /* Specifying two release agents is forbidden */
1139 if (opts->release_agent)
1140 return -EINVAL;
1141 opts->release_agent =
1142 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
1143 if (!opts->release_agent)
1144 return -ENOMEM;
1145 continue;
1146 }
1147 if (!strncmp(token, "name=", 5)) {
1148 const char *name = token + 5;
1149 /* Can't specify an empty name */
1150 if (!strlen(name))
1151 return -EINVAL;
1152 /* Must match [\w.-]+ */
1153 for (i = 0; i < strlen(name); i++) {
1154 char c = name[i];
1155 if (isalnum(c))
1156 continue;
1157 if ((c == '.') || (c == '-') || (c == '_'))
1158 continue;
1159 return -EINVAL;
1160 }
1161 /* Specifying two names is forbidden */
1162 if (opts->name)
1163 return -EINVAL;
1164 opts->name = kstrndup(name,
1165 MAX_CGROUP_ROOT_NAMELEN - 1,
1166 GFP_KERNEL);
1167 if (!opts->name)
1168 return -ENOMEM;
1169
1170 continue;
1171 }
1172
1173 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1174 struct cgroup_subsys *ss = subsys[i];
1175 if (ss == NULL)
1176 continue;
1177 if (strcmp(token, ss->name))
1178 continue;
1179 if (ss->disabled)
1180 continue;
1181
1182 /* Mutually exclusive option 'all' + subsystem name */
1183 if (all_ss)
1184 return -EINVAL;
1185 set_bit(i, &opts->subsys_bits);
1186 one_ss = true;
1187
1188 break;
1189 }
1190 if (i == CGROUP_SUBSYS_COUNT)
1191 return -ENOENT;
1192 }
1193
1194 /*
1195 * If the 'all' option was specified select all the subsystems,
1196 * otherwise if 'none', 'name=' and a subsystem name options
1197 * were not specified, let's default to 'all'
1198 */
1199 if (all_ss || (!one_ss && !opts->none && !opts->name)) {
1200 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1201 struct cgroup_subsys *ss = subsys[i];
1202 if (ss == NULL)
1203 continue;
1204 if (ss->disabled)
1205 continue;
1206 set_bit(i, &opts->subsys_bits);
1207 }
1208 }
1209
1210 /* Consistency checks */
1211
1212 /*
1213 * Option noprefix was introduced just for backward compatibility
1214 * with the old cpuset, so we allow noprefix only if mounting just
1215 * the cpuset subsystem.
1216 */
1217 if (test_bit(ROOT_NOPREFIX, &opts->flags) &&
1218 (opts->subsys_bits & mask))
1219 return -EINVAL;
1220
1221
1222 /* Can't specify "none" and some subsystems */
1223 if (opts->subsys_bits && opts->none)
1224 return -EINVAL;
1225
1226 /*
1227 * We either have to specify by name or by subsystems. (So all
1228 * empty hierarchies must have a name).
1229 */
1230 if (!opts->subsys_bits && !opts->name)
1231 return -EINVAL;
1232
1233 /*
1234 * Grab references on all the modules we'll need, so the subsystems
1235 * don't dance around before rebind_subsystems attaches them. This may
1236 * take duplicate reference counts on a subsystem that's already used,
1237 * but rebind_subsystems handles this case.
1238 */
1239 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
1240 unsigned long bit = 1UL << i;
1241
1242 if (!(bit & opts->subsys_bits))
1243 continue;
1244 if (!try_module_get(subsys[i]->module)) {
1245 module_pin_failed = true;
1246 break;
1247 }
1248 }
1249 if (module_pin_failed) {
1250 /*
1251 * oops, one of the modules was going away. this means that we
1252 * raced with a module_delete call, and to the user this is
1253 * essentially a "subsystem doesn't exist" case.
1254 */
1255 for (i--; i >= CGROUP_BUILTIN_SUBSYS_COUNT; i--) {
1256 /* drop refcounts only on the ones we took */
1257 unsigned long bit = 1UL << i;
1258
1259 if (!(bit & opts->subsys_bits))
1260 continue;
1261 module_put(subsys[i]->module);
1262 }
1263 return -ENOENT;
1264 }
1265
1266 return 0;
1267 }
1268
1269 static void drop_parsed_module_refcounts(unsigned long subsys_bits)
1270 {
1271 int i;
1272 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
1273 unsigned long bit = 1UL << i;
1274
1275 if (!(bit & subsys_bits))
1276 continue;
1277 module_put(subsys[i]->module);
1278 }
1279 }
1280
1281 static int cgroup_remount(struct super_block *sb, int *flags, char *data)
1282 {
1283 int ret = 0;
1284 struct cgroupfs_root *root = sb->s_fs_info;
1285 struct cgroup *cgrp = &root->top_cgroup;
1286 struct cgroup_sb_opts opts;
1287
1288 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
1289 mutex_lock(&cgroup_mutex);
1290 mutex_lock(&cgroup_root_mutex);
1291
1292 /* See what subsystems are wanted */
1293 ret = parse_cgroupfs_options(data, &opts);
1294 if (ret)
1295 goto out_unlock;
1296
1297 /* Don't allow flags or name to change at remount */
1298 if (opts.flags != root->flags ||
1299 (opts.name && strcmp(opts.name, root->name))) {
1300 ret = -EINVAL;
1301 drop_parsed_module_refcounts(opts.subsys_bits);
1302 goto out_unlock;
1303 }
1304
1305 ret = rebind_subsystems(root, opts.subsys_bits);
1306 if (ret) {
1307 drop_parsed_module_refcounts(opts.subsys_bits);
1308 goto out_unlock;
1309 }
1310
1311 /* (re)populate subsystem files */
1312 cgroup_populate_dir(cgrp);
1313
1314 if (opts.release_agent)
1315 strcpy(root->release_agent_path, opts.release_agent);
1316 out_unlock:
1317 kfree(opts.release_agent);
1318 kfree(opts.name);
1319 mutex_unlock(&cgroup_root_mutex);
1320 mutex_unlock(&cgroup_mutex);
1321 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
1322 return ret;
1323 }
1324
1325 static const struct super_operations cgroup_ops = {
1326 .statfs = simple_statfs,
1327 .drop_inode = generic_delete_inode,
1328 .show_options = cgroup_show_options,
1329 .remount_fs = cgroup_remount,
1330 };
1331
1332 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1333 {
1334 INIT_LIST_HEAD(&cgrp->sibling);
1335 INIT_LIST_HEAD(&cgrp->children);
1336 INIT_LIST_HEAD(&cgrp->css_sets);
1337 INIT_LIST_HEAD(&cgrp->release_list);
1338 INIT_LIST_HEAD(&cgrp->pidlists);
1339 mutex_init(&cgrp->pidlist_mutex);
1340 INIT_LIST_HEAD(&cgrp->event_list);
1341 spin_lock_init(&cgrp->event_list_lock);
1342 }
1343
1344 static void init_cgroup_root(struct cgroupfs_root *root)
1345 {
1346 struct cgroup *cgrp = &root->top_cgroup;
1347 INIT_LIST_HEAD(&root->subsys_list);
1348 INIT_LIST_HEAD(&root->root_list);
1349 root->number_of_cgroups = 1;
1350 cgrp->root = root;
1351 cgrp->top_cgroup = cgrp;
1352 init_cgroup_housekeeping(cgrp);
1353 }
1354
1355 static bool init_root_id(struct cgroupfs_root *root)
1356 {
1357 int ret = 0;
1358
1359 do {
1360 if (!ida_pre_get(&hierarchy_ida, GFP_KERNEL))
1361 return false;
1362 spin_lock(&hierarchy_id_lock);
1363 /* Try to allocate the next unused ID */
1364 ret = ida_get_new_above(&hierarchy_ida, next_hierarchy_id,
1365 &root->hierarchy_id);
1366 if (ret == -ENOSPC)
1367 /* Try again starting from 0 */
1368 ret = ida_get_new(&hierarchy_ida, &root->hierarchy_id);
1369 if (!ret) {
1370 next_hierarchy_id = root->hierarchy_id + 1;
1371 } else if (ret != -EAGAIN) {
1372 /* Can only get here if the 31-bit IDR is full ... */
1373 BUG_ON(ret);
1374 }
1375 spin_unlock(&hierarchy_id_lock);
1376 } while (ret);
1377 return true;
1378 }
1379
1380 static int cgroup_test_super(struct super_block *sb, void *data)
1381 {
1382 struct cgroup_sb_opts *opts = data;
1383 struct cgroupfs_root *root = sb->s_fs_info;
1384
1385 /* If we asked for a name then it must match */
1386 if (opts->name && strcmp(opts->name, root->name))
1387 return 0;
1388
1389 /*
1390 * If we asked for subsystems (or explicitly for no
1391 * subsystems) then they must match
1392 */
1393 if ((opts->subsys_bits || opts->none)
1394 && (opts->subsys_bits != root->subsys_bits))
1395 return 0;
1396
1397 return 1;
1398 }
1399
1400 static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
1401 {
1402 struct cgroupfs_root *root;
1403
1404 if (!opts->subsys_bits && !opts->none)
1405 return NULL;
1406
1407 root = kzalloc(sizeof(*root), GFP_KERNEL);
1408 if (!root)
1409 return ERR_PTR(-ENOMEM);
1410
1411 if (!init_root_id(root)) {
1412 kfree(root);
1413 return ERR_PTR(-ENOMEM);
1414 }
1415 init_cgroup_root(root);
1416
1417 root->subsys_bits = opts->subsys_bits;
1418 root->flags = opts->flags;
1419 if (opts->release_agent)
1420 strcpy(root->release_agent_path, opts->release_agent);
1421 if (opts->name)
1422 strcpy(root->name, opts->name);
1423 if (opts->clone_children)
1424 set_bit(CGRP_CLONE_CHILDREN, &root->top_cgroup.flags);
1425 return root;
1426 }
1427
1428 static void cgroup_drop_root(struct cgroupfs_root *root)
1429 {
1430 if (!root)
1431 return;
1432
1433 BUG_ON(!root->hierarchy_id);
1434 spin_lock(&hierarchy_id_lock);
1435 ida_remove(&hierarchy_ida, root->hierarchy_id);
1436 spin_unlock(&hierarchy_id_lock);
1437 kfree(root);
1438 }
1439
1440 static int cgroup_set_super(struct super_block *sb, void *data)
1441 {
1442 int ret;
1443 struct cgroup_sb_opts *opts = data;
1444
1445 /* If we don't have a new root, we can't set up a new sb */
1446 if (!opts->new_root)
1447 return -EINVAL;
1448
1449 BUG_ON(!opts->subsys_bits && !opts->none);
1450
1451 ret = set_anon_super(sb, NULL);
1452 if (ret)
1453 return ret;
1454
1455 sb->s_fs_info = opts->new_root;
1456 opts->new_root->sb = sb;
1457
1458 sb->s_blocksize = PAGE_CACHE_SIZE;
1459 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
1460 sb->s_magic = CGROUP_SUPER_MAGIC;
1461 sb->s_op = &cgroup_ops;
1462
1463 return 0;
1464 }
1465
1466 static int cgroup_get_rootdir(struct super_block *sb)
1467 {
1468 static const struct dentry_operations cgroup_dops = {
1469 .d_iput = cgroup_diput,
1470 .d_delete = cgroup_delete,
1471 };
1472
1473 struct inode *inode =
1474 cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
1475
1476 if (!inode)
1477 return -ENOMEM;
1478
1479 inode->i_fop = &simple_dir_operations;
1480 inode->i_op = &cgroup_dir_inode_operations;
1481 /* directories start off with i_nlink == 2 (for "." entry) */
1482 inc_nlink(inode);
1483 sb->s_root = d_make_root(inode);
1484 if (!sb->s_root)
1485 return -ENOMEM;
1486 /* for everything else we want ->d_op set */
1487 sb->s_d_op = &cgroup_dops;
1488 return 0;
1489 }
1490
1491 static struct dentry *cgroup_mount(struct file_system_type *fs_type,
1492 int flags, const char *unused_dev_name,
1493 void *data)
1494 {
1495 struct cgroup_sb_opts opts;
1496 struct cgroupfs_root *root;
1497 int ret = 0;
1498 struct super_block *sb;
1499 struct cgroupfs_root *new_root;
1500 struct inode *inode;
1501
1502 /* First find the desired set of subsystems */
1503 mutex_lock(&cgroup_mutex);
1504 ret = parse_cgroupfs_options(data, &opts);
1505 mutex_unlock(&cgroup_mutex);
1506 if (ret)
1507 goto out_err;
1508
1509 /*
1510 * Allocate a new cgroup root. We may not need it if we're
1511 * reusing an existing hierarchy.
1512 */
1513 new_root = cgroup_root_from_opts(&opts);
1514 if (IS_ERR(new_root)) {
1515 ret = PTR_ERR(new_root);
1516 goto drop_modules;
1517 }
1518 opts.new_root = new_root;
1519
1520 /* Locate an existing or new sb for this hierarchy */
1521 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, &opts);
1522 if (IS_ERR(sb)) {
1523 ret = PTR_ERR(sb);
1524 cgroup_drop_root(opts.new_root);
1525 goto drop_modules;
1526 }
1527
1528 root = sb->s_fs_info;
1529 BUG_ON(!root);
1530 if (root == opts.new_root) {
1531 /* We used the new root structure, so this is a new hierarchy */
1532 struct list_head tmp_cg_links;
1533 struct cgroup *root_cgrp = &root->top_cgroup;
1534 struct cgroupfs_root *existing_root;
1535 const struct cred *cred;
1536 int i;
1537
1538 BUG_ON(sb->s_root != NULL);
1539
1540 ret = cgroup_get_rootdir(sb);
1541 if (ret)
1542 goto drop_new_super;
1543 inode = sb->s_root->d_inode;
1544
1545 mutex_lock(&inode->i_mutex);
1546 mutex_lock(&cgroup_mutex);
1547 mutex_lock(&cgroup_root_mutex);
1548
1549 /* Check for name clashes with existing mounts */
1550 ret = -EBUSY;
1551 if (strlen(root->name))
1552 for_each_active_root(existing_root)
1553 if (!strcmp(existing_root->name, root->name))
1554 goto unlock_drop;
1555
1556 /*
1557 * We're accessing css_set_count without locking
1558 * css_set_lock here, but that's OK - it can only be
1559 * increased by someone holding cgroup_lock, and
1560 * that's us. The worst that can happen is that we
1561 * have some link structures left over
1562 */
1563 ret = allocate_cg_links(css_set_count, &tmp_cg_links);
1564 if (ret)
1565 goto unlock_drop;
1566
1567 ret = rebind_subsystems(root, root->subsys_bits);
1568 if (ret == -EBUSY) {
1569 free_cg_links(&tmp_cg_links);
1570 goto unlock_drop;
1571 }
1572 /*
1573 * There must be no failure case after here, since rebinding
1574 * takes care of subsystems' refcounts, which are explicitly
1575 * dropped in the failure exit path.
1576 */
1577
1578 /* EBUSY should be the only error here */
1579 BUG_ON(ret);
1580
1581 list_add(&root->root_list, &roots);
1582 root_count++;
1583
1584 sb->s_root->d_fsdata = root_cgrp;
1585 root->top_cgroup.dentry = sb->s_root;
1586
1587 /* Link the top cgroup in this hierarchy into all
1588 * the css_set objects */
1589 write_lock(&css_set_lock);
1590 for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
1591 struct hlist_head *hhead = &css_set_table[i];
1592 struct hlist_node *node;
1593 struct css_set *cg;
1594
1595 hlist_for_each_entry(cg, node, hhead, hlist)
1596 link_css_set(&tmp_cg_links, cg, root_cgrp);
1597 }
1598 write_unlock(&css_set_lock);
1599
1600 free_cg_links(&tmp_cg_links);
1601
1602 BUG_ON(!list_empty(&root_cgrp->sibling));
1603 BUG_ON(!list_empty(&root_cgrp->children));
1604 BUG_ON(root->number_of_cgroups != 1);
1605
1606 cred = override_creds(&init_cred);
1607 cgroup_populate_dir(root_cgrp);
1608 revert_creds(cred);
1609 mutex_unlock(&cgroup_root_mutex);
1610 mutex_unlock(&cgroup_mutex);
1611 mutex_unlock(&inode->i_mutex);
1612 } else {
1613 /*
1614 * We re-used an existing hierarchy - the new root (if
1615 * any) is not needed
1616 */
1617 cgroup_drop_root(opts.new_root);
1618 /* no subsys rebinding, so refcounts don't change */
1619 drop_parsed_module_refcounts(opts.subsys_bits);
1620 }
1621
1622 kfree(opts.release_agent);
1623 kfree(opts.name);
1624 return dget(sb->s_root);
1625
1626 unlock_drop:
1627 mutex_unlock(&cgroup_root_mutex);
1628 mutex_unlock(&cgroup_mutex);
1629 mutex_unlock(&inode->i_mutex);
1630 drop_new_super:
1631 deactivate_locked_super(sb);
1632 drop_modules:
1633 drop_parsed_module_refcounts(opts.subsys_bits);
1634 out_err:
1635 kfree(opts.release_agent);
1636 kfree(opts.name);
1637 return ERR_PTR(ret);
1638 }
1639
1640 static void cgroup_kill_sb(struct super_block *sb) {
1641 struct cgroupfs_root *root = sb->s_fs_info;
1642 struct cgroup *cgrp = &root->top_cgroup;
1643 int ret;
1644 struct cg_cgroup_link *link;
1645 struct cg_cgroup_link *saved_link;
1646
1647 BUG_ON(!root);
1648
1649 BUG_ON(root->number_of_cgroups != 1);
1650 BUG_ON(!list_empty(&cgrp->children));
1651 BUG_ON(!list_empty(&cgrp->sibling));
1652
1653 mutex_lock(&cgroup_mutex);
1654 mutex_lock(&cgroup_root_mutex);
1655
1656 /* Rebind all subsystems back to the default hierarchy */
1657 ret = rebind_subsystems(root, 0);
1658 /* Shouldn't be able to fail ... */
1659 BUG_ON(ret);
1660
1661 /*
1662 * Release all the links from css_sets to this hierarchy's
1663 * root cgroup
1664 */
1665 write_lock(&css_set_lock);
1666
1667 list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
1668 cgrp_link_list) {
1669 list_del(&link->cg_link_list);
1670 list_del(&link->cgrp_link_list);
1671 kfree(link);
1672 }
1673 write_unlock(&css_set_lock);
1674
1675 if (!list_empty(&root->root_list)) {
1676 list_del(&root->root_list);
1677 root_count--;
1678 }
1679
1680 mutex_unlock(&cgroup_root_mutex);
1681 mutex_unlock(&cgroup_mutex);
1682
1683 kill_litter_super(sb);
1684 cgroup_drop_root(root);
1685 }
1686
1687 static struct file_system_type cgroup_fs_type = {
1688 .name = "cgroup",
1689 .mount = cgroup_mount,
1690 .kill_sb = cgroup_kill_sb,
1691 };
1692
1693 static struct kobject *cgroup_kobj;
1694
1695 static inline struct cgroup *__d_cgrp(struct dentry *dentry)
1696 {
1697 return dentry->d_fsdata;
1698 }
1699
1700 static inline struct cftype *__d_cft(struct dentry *dentry)
1701 {
1702 return dentry->d_fsdata;
1703 }
1704
1705 /**
1706 * cgroup_path - generate the path of a cgroup
1707 * @cgrp: the cgroup in question
1708 * @buf: the buffer to write the path into
1709 * @buflen: the length of the buffer
1710 *
1711 * Called with cgroup_mutex held or else with an RCU-protected cgroup
1712 * reference. Writes path of cgroup into buf. Returns 0 on success,
1713 * -errno on error.
1714 */
1715 int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1716 {
1717 char *start;
1718 struct dentry *dentry = rcu_dereference_check(cgrp->dentry,
1719 cgroup_lock_is_held());
1720
1721 if (!dentry || cgrp == dummytop) {
1722 /*
1723 * Inactive subsystems have no dentry for their root
1724 * cgroup
1725 */
1726 strcpy(buf, "/");
1727 return 0;
1728 }
1729
1730 start = buf + buflen;
1731
1732 *--start = '\0';
1733 for (;;) {
1734 int len = dentry->d_name.len;
1735
1736 if ((start -= len) < buf)
1737 return -ENAMETOOLONG;
1738 memcpy(start, dentry->d_name.name, len);
1739 cgrp = cgrp->parent;
1740 if (!cgrp)
1741 break;
1742
1743 dentry = rcu_dereference_check(cgrp->dentry,
1744 cgroup_lock_is_held());
1745 if (!cgrp->parent)
1746 continue;
1747 if (--start < buf)
1748 return -ENAMETOOLONG;
1749 *start = '/';
1750 }
1751 memmove(buf, start, buf + buflen - start);
1752 return 0;
1753 }
1754 EXPORT_SYMBOL_GPL(cgroup_path);
1755
1756 /*
1757 * Control Group taskset
1758 */
1759 struct task_and_cgroup {
1760 struct task_struct *task;
1761 struct cgroup *cgrp;
1762 struct css_set *cg;
1763 };
1764
1765 struct cgroup_taskset {
1766 struct task_and_cgroup single;
1767 struct flex_array *tc_array;
1768 int tc_array_len;
1769 int idx;
1770 struct cgroup *cur_cgrp;
1771 };
1772
1773 /**
1774 * cgroup_taskset_first - reset taskset and return the first task
1775 * @tset: taskset of interest
1776 *
1777 * @tset iteration is initialized and the first task is returned.
1778 */
1779 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
1780 {
1781 if (tset->tc_array) {
1782 tset->idx = 0;
1783 return cgroup_taskset_next(tset);
1784 } else {
1785 tset->cur_cgrp = tset->single.cgrp;
1786 return tset->single.task;
1787 }
1788 }
1789 EXPORT_SYMBOL_GPL(cgroup_taskset_first);
1790
1791 /**
1792 * cgroup_taskset_next - iterate to the next task in taskset
1793 * @tset: taskset of interest
1794 *
1795 * Return the next task in @tset. Iteration must have been initialized
1796 * with cgroup_taskset_first().
1797 */
1798 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
1799 {
1800 struct task_and_cgroup *tc;
1801
1802 if (!tset->tc_array || tset->idx >= tset->tc_array_len)
1803 return NULL;
1804
1805 tc = flex_array_get(tset->tc_array, tset->idx++);
1806 tset->cur_cgrp = tc->cgrp;
1807 return tc->task;
1808 }
1809 EXPORT_SYMBOL_GPL(cgroup_taskset_next);
1810
1811 /**
1812 * cgroup_taskset_cur_cgroup - return the matching cgroup for the current task
1813 * @tset: taskset of interest
1814 *
1815 * Return the cgroup for the current (last returned) task of @tset. This
1816 * function must be preceded by either cgroup_taskset_first() or
1817 * cgroup_taskset_next().
1818 */
1819 struct cgroup *cgroup_taskset_cur_cgroup(struct cgroup_taskset *tset)
1820 {
1821 return tset->cur_cgrp;
1822 }
1823 EXPORT_SYMBOL_GPL(cgroup_taskset_cur_cgroup);
1824
1825 /**
1826 * cgroup_taskset_size - return the number of tasks in taskset
1827 * @tset: taskset of interest
1828 */
1829 int cgroup_taskset_size(struct cgroup_taskset *tset)
1830 {
1831 return tset->tc_array ? tset->tc_array_len : 1;
1832 }
1833 EXPORT_SYMBOL_GPL(cgroup_taskset_size);
1834
1835
1836 /*
1837 * cgroup_task_migrate - move a task from one cgroup to another.
1838 *
1839 * 'guarantee' is set if the caller promises that a new css_set for the task
1840 * will already exist. If not set, this function might sleep, and can fail with
1841 * -ENOMEM. Must be called with cgroup_mutex and threadgroup locked.
1842 */
1843 static void cgroup_task_migrate(struct cgroup *cgrp, struct cgroup *oldcgrp,
1844 struct task_struct *tsk, struct css_set *newcg)
1845 {
1846 struct css_set *oldcg;
1847
1848 /*
1849 * We are synchronized through threadgroup_lock() against PF_EXITING
1850 * setting such that we can't race against cgroup_exit() changing the
1851 * css_set to init_css_set and dropping the old one.
1852 */
1853 WARN_ON_ONCE(tsk->flags & PF_EXITING);
1854 oldcg = tsk->cgroups;
1855
1856 task_lock(tsk);
1857 rcu_assign_pointer(tsk->cgroups, newcg);
1858 task_unlock(tsk);
1859
1860 /* Update the css_set linked lists if we're using them */
1861 write_lock(&css_set_lock);
1862 if (!list_empty(&tsk->cg_list))
1863 list_move(&tsk->cg_list, &newcg->tasks);
1864 write_unlock(&css_set_lock);
1865
1866 /*
1867 * We just gained a reference on oldcg by taking it from the task. As
1868 * trading it for newcg is protected by cgroup_mutex, we're safe to drop
1869 * it here; it will be freed under RCU.
1870 */
1871 put_css_set(oldcg);
1872
1873 set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
1874 }
1875
1876 /**
1877 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
1878 * @cgrp: the cgroup the task is attaching to
1879 * @tsk: the task to be attached
1880 *
1881 * Call with cgroup_mutex and threadgroup locked. May take task_lock of
1882 * @tsk during call.
1883 */
1884 int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
1885 {
1886 int retval;
1887 struct cgroup_subsys *ss, *failed_ss = NULL;
1888 struct cgroup *oldcgrp;
1889 struct cgroupfs_root *root = cgrp->root;
1890 struct cgroup_taskset tset = { };
1891 struct css_set *newcg;
1892
1893 /* @tsk either already exited or can't exit until the end */
1894 if (tsk->flags & PF_EXITING)
1895 return -ESRCH;
1896
1897 /* Nothing to do if the task is already in that cgroup */
1898 oldcgrp = task_cgroup_from_root(tsk, root);
1899 if (cgrp == oldcgrp)
1900 return 0;
1901
1902 tset.single.task = tsk;
1903 tset.single.cgrp = oldcgrp;
1904
1905 for_each_subsys(root, ss) {
1906 if (ss->can_attach) {
1907 retval = ss->can_attach(cgrp, &tset);
1908 if (retval) {
1909 /*
1910 * Remember on which subsystem the can_attach()
1911 * failed, so that we only call cancel_attach()
1912 * against the subsystems whose can_attach()
1913 * succeeded. (See below)
1914 */
1915 failed_ss = ss;
1916 goto out;
1917 }
1918 }
1919 }
1920
1921 newcg = find_css_set(tsk->cgroups, cgrp);
1922 if (!newcg) {
1923 retval = -ENOMEM;
1924 goto out;
1925 }
1926
1927 cgroup_task_migrate(cgrp, oldcgrp, tsk, newcg);
1928
1929 for_each_subsys(root, ss) {
1930 if (ss->attach)
1931 ss->attach(cgrp, &tset);
1932 }
1933
1934 synchronize_rcu();
1935
1936 /*
1937 * wake up rmdir() waiter. the rmdir should fail since the cgroup
1938 * is no longer empty.
1939 */
1940 cgroup_wakeup_rmdir_waiter(cgrp);
1941 out:
1942 if (retval) {
1943 for_each_subsys(root, ss) {
1944 if (ss == failed_ss)
1945 /*
1946 * This subsystem was the one that failed the
1947 * can_attach() check earlier, so we don't need
1948 * to call cancel_attach() against it or any
1949 * remaining subsystems.
1950 */
1951 break;
1952 if (ss->cancel_attach)
1953 ss->cancel_attach(cgrp, &tset);
1954 }
1955 }
1956 return retval;
1957 }
1958
1959 /**
1960 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
1961 * @from: attach to all cgroups of a given task
1962 * @tsk: the task to be attached
1963 */
1964 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
1965 {
1966 struct cgroupfs_root *root;
1967 int retval = 0;
1968
1969 cgroup_lock();
1970 for_each_active_root(root) {
1971 struct cgroup *from_cg = task_cgroup_from_root(from, root);
1972
1973 retval = cgroup_attach_task(from_cg, tsk);
1974 if (retval)
1975 break;
1976 }
1977 cgroup_unlock();
1978
1979 return retval;
1980 }
1981 EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
1982
1983 /**
1984 * cgroup_attach_proc - attach all threads in a threadgroup to a cgroup
1985 * @cgrp: the cgroup to attach to
1986 * @leader: the threadgroup leader task_struct of the group to be attached
1987 *
1988 * Call holding cgroup_mutex and the group_rwsem of the leader. Will take
1989 * task_lock of each thread in leader's threadgroup individually in turn.
1990 */
1991 static int cgroup_attach_proc(struct cgroup *cgrp, struct task_struct *leader)
1992 {
1993 int retval, i, group_size;
1994 struct cgroup_subsys *ss, *failed_ss = NULL;
1995 /* guaranteed to be initialized later, but the compiler needs this */
1996 struct cgroupfs_root *root = cgrp->root;
1997 /* threadgroup list cursor and array */
1998 struct task_struct *tsk;
1999 struct task_and_cgroup *tc;
2000 struct flex_array *group;
2001 struct cgroup_taskset tset = { };
2002
2003 /*
2004 * step 0: in order to do expensive, possibly blocking operations for
2005 * every thread, we cannot iterate the thread group list, since it needs
2006 * rcu or tasklist locked. instead, build an array of all threads in the
2007 * group - group_rwsem prevents new threads from appearing, and if
2008 * threads exit, this will just be an over-estimate.
2009 */
2010 group_size = get_nr_threads(leader);
2011 /* flex_array supports very large thread-groups better than kmalloc. */
2012 group = flex_array_alloc(sizeof(*tc), group_size, GFP_KERNEL);
2013 if (!group)
2014 return -ENOMEM;
2015 /* pre-allocate to guarantee space while iterating in rcu read-side. */
2016 retval = flex_array_prealloc(group, 0, group_size - 1, GFP_KERNEL);
2017 if (retval)
2018 goto out_free_group_list;
2019
2020 tsk = leader;
2021 i = 0;
2022 /*
2023 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2024 * already PF_EXITING could be freed from underneath us unless we
2025 * take an rcu_read_lock.
2026 */
2027 rcu_read_lock();
2028 do {
2029 struct task_and_cgroup ent;
2030
2031 /* @tsk either already exited or can't exit until the end */
2032 if (tsk->flags & PF_EXITING)
2033 continue;
2034
2035 /* as per above, nr_threads may decrease, but not increase. */
2036 BUG_ON(i >= group_size);
2037 ent.task = tsk;
2038 ent.cgrp = task_cgroup_from_root(tsk, root);
2039 /* nothing to do if this task is already in the cgroup */
2040 if (ent.cgrp == cgrp)
2041 continue;
2042 /*
2043 * saying GFP_ATOMIC has no effect here because we did prealloc
2044 * earlier, but it's good form to communicate our expectations.
2045 */
2046 retval = flex_array_put(group, i, &ent, GFP_ATOMIC);
2047 BUG_ON(retval != 0);
2048 i++;
2049 } while_each_thread(leader, tsk);
2050 rcu_read_unlock();
2051 /* remember the number of threads in the array for later. */
2052 group_size = i;
2053 tset.tc_array = group;
2054 tset.tc_array_len = group_size;
2055
2056 /* methods shouldn't be called if no task is actually migrating */
2057 retval = 0;
2058 if (!group_size)
2059 goto out_free_group_list;
2060
2061 /*
2062 * step 1: check that we can legitimately attach to the cgroup.
2063 */
2064 for_each_subsys(root, ss) {
2065 if (ss->can_attach) {
2066 retval = ss->can_attach(cgrp, &tset);
2067 if (retval) {
2068 failed_ss = ss;
2069 goto out_cancel_attach;
2070 }
2071 }
2072 }
2073
2074 /*
2075 * step 2: make sure css_sets exist for all threads to be migrated.
2076 * we use find_css_set, which allocates a new one if necessary.
2077 */
2078 for (i = 0; i < group_size; i++) {
2079 tc = flex_array_get(group, i);
2080 tc->cg = find_css_set(tc->task->cgroups, cgrp);
2081 if (!tc->cg) {
2082 retval = -ENOMEM;
2083 goto out_put_css_set_refs;
2084 }
2085 }
2086
2087 /*
2088 * step 3: now that we're guaranteed success wrt the css_sets,
2089 * proceed to move all tasks to the new cgroup. There are no
2090 * failure cases after here, so this is the commit point.
2091 */
2092 for (i = 0; i < group_size; i++) {
2093 tc = flex_array_get(group, i);
2094 cgroup_task_migrate(cgrp, tc->cgrp, tc->task, tc->cg);
2095 }
2096 /* nothing is sensitive to fork() after this point. */
2097
2098 /*
2099 * step 4: do subsystem attach callbacks.
2100 */
2101 for_each_subsys(root, ss) {
2102 if (ss->attach)
2103 ss->attach(cgrp, &tset);
2104 }
2105
2106 /*
2107 * step 5: success! and cleanup
2108 */
2109 synchronize_rcu();
2110 cgroup_wakeup_rmdir_waiter(cgrp);
2111 retval = 0;
2112 out_put_css_set_refs:
2113 if (retval) {
2114 for (i = 0; i < group_size; i++) {
2115 tc = flex_array_get(group, i);
2116 if (!tc->cg)
2117 break;
2118 put_css_set(tc->cg);
2119 }
2120 }
2121 out_cancel_attach:
2122 if (retval) {
2123 for_each_subsys(root, ss) {
2124 if (ss == failed_ss)
2125 break;
2126 if (ss->cancel_attach)
2127 ss->cancel_attach(cgrp, &tset);
2128 }
2129 }
2130 out_free_group_list:
2131 flex_array_free(group);
2132 return retval;
2133 }
2134
2135 /*
2136 * Find the task_struct of the task to attach by vpid and pass it along to the
2137 * function to attach either it or all tasks in its threadgroup. Will lock
2138 * cgroup_mutex and threadgroup; may take task_lock of task.
2139 */
2140 static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
2141 {
2142 struct task_struct *tsk;
2143 const struct cred *cred = current_cred(), *tcred;
2144 int ret;
2145
2146 if (!cgroup_lock_live_group(cgrp))
2147 return -ENODEV;
2148
2149 retry_find_task:
2150 rcu_read_lock();
2151 if (pid) {
2152 tsk = find_task_by_vpid(pid);
2153 if (!tsk) {
2154 rcu_read_unlock();
2155 ret= -ESRCH;
2156 goto out_unlock_cgroup;
2157 }
2158 /*
2159 * even if we're attaching all tasks in the thread group, we
2160 * only need to check permissions on one of them.
2161 */
2162 tcred = __task_cred(tsk);
2163 if (cred->euid &&
2164 cred->euid != tcred->uid &&
2165 cred->euid != tcred->suid) {
2166 rcu_read_unlock();
2167 ret = -EACCES;
2168 goto out_unlock_cgroup;
2169 }
2170 } else
2171 tsk = current;
2172
2173 if (threadgroup)
2174 tsk = tsk->group_leader;
2175 get_task_struct(tsk);
2176 rcu_read_unlock();
2177
2178 threadgroup_lock(tsk);
2179 if (threadgroup) {
2180 if (!thread_group_leader(tsk)) {
2181 /*
2182 * a race with de_thread from another thread's exec()
2183 * may strip us of our leadership, if this happens,
2184 * there is no choice but to throw this task away and
2185 * try again; this is
2186 * "double-double-toil-and-trouble-check locking".
2187 */
2188 threadgroup_unlock(tsk);
2189 put_task_struct(tsk);
2190 goto retry_find_task;
2191 }
2192 ret = cgroup_attach_proc(cgrp, tsk);
2193 } else
2194 ret = cgroup_attach_task(cgrp, tsk);
2195 threadgroup_unlock(tsk);
2196
2197 put_task_struct(tsk);
2198 out_unlock_cgroup:
2199 cgroup_unlock();
2200 return ret;
2201 }
2202
2203 static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
2204 {
2205 return attach_task_by_pid(cgrp, pid, false);
2206 }
2207
2208 static int cgroup_procs_write(struct cgroup *cgrp, struct cftype *cft, u64 tgid)
2209 {
2210 return attach_task_by_pid(cgrp, tgid, true);
2211 }
2212
2213 /**
2214 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
2215 * @cgrp: the cgroup to be checked for liveness
2216 *
2217 * On success, returns true; the lock should be later released with
2218 * cgroup_unlock(). On failure returns false with no lock held.
2219 */
2220 bool cgroup_lock_live_group(struct cgroup *cgrp)
2221 {
2222 mutex_lock(&cgroup_mutex);
2223 if (cgroup_is_removed(cgrp)) {
2224 mutex_unlock(&cgroup_mutex);
2225 return false;
2226 }
2227 return true;
2228 }
2229 EXPORT_SYMBOL_GPL(cgroup_lock_live_group);
2230
2231 static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
2232 const char *buffer)
2233 {
2234 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
2235 if (strlen(buffer) >= PATH_MAX)
2236 return -EINVAL;
2237 if (!cgroup_lock_live_group(cgrp))
2238 return -ENODEV;
2239 mutex_lock(&cgroup_root_mutex);
2240 strcpy(cgrp->root->release_agent_path, buffer);
2241 mutex_unlock(&cgroup_root_mutex);
2242 cgroup_unlock();
2243 return 0;
2244 }
2245
2246 static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
2247 struct seq_file *seq)
2248 {
2249 if (!cgroup_lock_live_group(cgrp))
2250 return -ENODEV;
2251 seq_puts(seq, cgrp->root->release_agent_path);
2252 seq_putc(seq, '\n');
2253 cgroup_unlock();
2254 return 0;
2255 }
2256
2257 /* A buffer size big enough for numbers or short strings */
2258 #define CGROUP_LOCAL_BUFFER_SIZE 64
2259
2260 static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
2261 struct file *file,
2262 const char __user *userbuf,
2263 size_t nbytes, loff_t *unused_ppos)
2264 {
2265 char buffer[CGROUP_LOCAL_BUFFER_SIZE];
2266 int retval = 0;
2267 char *end;
2268
2269 if (!nbytes)
2270 return -EINVAL;
2271 if (nbytes >= sizeof(buffer))
2272 return -E2BIG;
2273 if (copy_from_user(buffer, userbuf, nbytes))
2274 return -EFAULT;
2275
2276 buffer[nbytes] = 0; /* nul-terminate */
2277 if (cft->write_u64) {
2278 u64 val = simple_strtoull(strstrip(buffer), &end, 0);
2279 if (*end)
2280 return -EINVAL;
2281 retval = cft->write_u64(cgrp, cft, val);
2282 } else {
2283 s64 val = simple_strtoll(strstrip(buffer), &end, 0);
2284 if (*end)
2285 return -EINVAL;
2286 retval = cft->write_s64(cgrp, cft, val);
2287 }
2288 if (!retval)
2289 retval = nbytes;
2290 return retval;
2291 }
2292
2293 static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
2294 struct file *file,
2295 const char __user *userbuf,
2296 size_t nbytes, loff_t *unused_ppos)
2297 {
2298 char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
2299 int retval = 0;
2300 size_t max_bytes = cft->max_write_len;
2301 char *buffer = local_buffer;
2302
2303 if (!max_bytes)
2304 max_bytes = sizeof(local_buffer) - 1;
2305 if (nbytes >= max_bytes)
2306 return -E2BIG;
2307 /* Allocate a dynamic buffer if we need one */
2308 if (nbytes >= sizeof(local_buffer)) {
2309 buffer = kmalloc(nbytes + 1, GFP_KERNEL);
2310 if (buffer == NULL)
2311 return -ENOMEM;
2312 }
2313 if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
2314 retval = -EFAULT;
2315 goto out;
2316 }
2317
2318 buffer[nbytes] = 0; /* nul-terminate */
2319 retval = cft->write_string(cgrp, cft, strstrip(buffer));
2320 if (!retval)
2321 retval = nbytes;
2322 out:
2323 if (buffer != local_buffer)
2324 kfree(buffer);
2325 return retval;
2326 }
2327
2328 static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
2329 size_t nbytes, loff_t *ppos)
2330 {
2331 struct cftype *cft = __d_cft(file->f_dentry);
2332 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2333
2334 if (cgroup_is_removed(cgrp))
2335 return -ENODEV;
2336 if (cft->write)
2337 return cft->write(cgrp, cft, file, buf, nbytes, ppos);
2338 if (cft->write_u64 || cft->write_s64)
2339 return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
2340 if (cft->write_string)
2341 return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
2342 if (cft->trigger) {
2343 int ret = cft->trigger(cgrp, (unsigned int)cft->private);
2344 return ret ? ret : nbytes;
2345 }
2346 return -EINVAL;
2347 }
2348
2349 static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
2350 struct file *file,
2351 char __user *buf, size_t nbytes,
2352 loff_t *ppos)
2353 {
2354 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2355 u64 val = cft->read_u64(cgrp, cft);
2356 int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
2357
2358 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2359 }
2360
2361 static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
2362 struct file *file,
2363 char __user *buf, size_t nbytes,
2364 loff_t *ppos)
2365 {
2366 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2367 s64 val = cft->read_s64(cgrp, cft);
2368 int len = sprintf(tmp, "%lld\n", (long long) val);
2369
2370 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2371 }
2372
2373 static ssize_t cgroup_file_read(struct file *file, char __user *buf,
2374 size_t nbytes, loff_t *ppos)
2375 {
2376 struct cftype *cft = __d_cft(file->f_dentry);
2377 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2378
2379 if (cgroup_is_removed(cgrp))
2380 return -ENODEV;
2381
2382 if (cft->read)
2383 return cft->read(cgrp, cft, file, buf, nbytes, ppos);
2384 if (cft->read_u64)
2385 return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
2386 if (cft->read_s64)
2387 return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
2388 return -EINVAL;
2389 }
2390
2391 /*
2392 * seqfile ops/methods for returning structured data. Currently just
2393 * supports string->u64 maps, but can be extended in future.
2394 */
2395
2396 struct cgroup_seqfile_state {
2397 struct cftype *cft;
2398 struct cgroup *cgroup;
2399 };
2400
2401 static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
2402 {
2403 struct seq_file *sf = cb->state;
2404 return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
2405 }
2406
2407 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
2408 {
2409 struct cgroup_seqfile_state *state = m->private;
2410 struct cftype *cft = state->cft;
2411 if (cft->read_map) {
2412 struct cgroup_map_cb cb = {
2413 .fill = cgroup_map_add,
2414 .state = m,
2415 };
2416 return cft->read_map(state->cgroup, cft, &cb);
2417 }
2418 return cft->read_seq_string(state->cgroup, cft, m);
2419 }
2420
2421 static int cgroup_seqfile_release(struct inode *inode, struct file *file)
2422 {
2423 struct seq_file *seq = file->private_data;
2424 kfree(seq->private);
2425 return single_release(inode, file);
2426 }
2427
2428 static const struct file_operations cgroup_seqfile_operations = {
2429 .read = seq_read,
2430 .write = cgroup_file_write,
2431 .llseek = seq_lseek,
2432 .release = cgroup_seqfile_release,
2433 };
2434
2435 static int cgroup_file_open(struct inode *inode, struct file *file)
2436 {
2437 int err;
2438 struct cftype *cft;
2439
2440 err = generic_file_open(inode, file);
2441 if (err)
2442 return err;
2443 cft = __d_cft(file->f_dentry);
2444
2445 if (cft->read_map || cft->read_seq_string) {
2446 struct cgroup_seqfile_state *state =
2447 kzalloc(sizeof(*state), GFP_USER);
2448 if (!state)
2449 return -ENOMEM;
2450 state->cft = cft;
2451 state->cgroup = __d_cgrp(file->f_dentry->d_parent);
2452 file->f_op = &cgroup_seqfile_operations;
2453 err = single_open(file, cgroup_seqfile_show, state);
2454 if (err < 0)
2455 kfree(state);
2456 } else if (cft->open)
2457 err = cft->open(inode, file);
2458 else
2459 err = 0;
2460
2461 return err;
2462 }
2463
2464 static int cgroup_file_release(struct inode *inode, struct file *file)
2465 {
2466 struct cftype *cft = __d_cft(file->f_dentry);
2467 if (cft->release)
2468 return cft->release(inode, file);
2469 return 0;
2470 }
2471
2472 /*
2473 * cgroup_rename - Only allow simple rename of directories in place.
2474 */
2475 static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
2476 struct inode *new_dir, struct dentry *new_dentry)
2477 {
2478 if (!S_ISDIR(old_dentry->d_inode->i_mode))
2479 return -ENOTDIR;
2480 if (new_dentry->d_inode)
2481 return -EEXIST;
2482 if (old_dir != new_dir)
2483 return -EIO;
2484 return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
2485 }
2486
2487 static const struct file_operations cgroup_file_operations = {
2488 .read = cgroup_file_read,
2489 .write = cgroup_file_write,
2490 .llseek = generic_file_llseek,
2491 .open = cgroup_file_open,
2492 .release = cgroup_file_release,
2493 };
2494
2495 static const struct inode_operations cgroup_dir_inode_operations = {
2496 .lookup = cgroup_lookup,
2497 .mkdir = cgroup_mkdir,
2498 .rmdir = cgroup_rmdir,
2499 .rename = cgroup_rename,
2500 };
2501
2502 static struct dentry *cgroup_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
2503 {
2504 if (dentry->d_name.len > NAME_MAX)
2505 return ERR_PTR(-ENAMETOOLONG);
2506 d_add(dentry, NULL);
2507 return NULL;
2508 }
2509
2510 /*
2511 * Check if a file is a control file
2512 */
2513 static inline struct cftype *__file_cft(struct file *file)
2514 {
2515 if (file->f_dentry->d_inode->i_fop != &cgroup_file_operations)
2516 return ERR_PTR(-EINVAL);
2517 return __d_cft(file->f_dentry);
2518 }
2519
2520 static int cgroup_create_file(struct dentry *dentry, umode_t mode,
2521 struct super_block *sb)
2522 {
2523 struct inode *inode;
2524
2525 if (!dentry)
2526 return -ENOENT;
2527 if (dentry->d_inode)
2528 return -EEXIST;
2529
2530 inode = cgroup_new_inode(mode, sb);
2531 if (!inode)
2532 return -ENOMEM;
2533
2534 if (S_ISDIR(mode)) {
2535 inode->i_op = &cgroup_dir_inode_operations;
2536 inode->i_fop = &simple_dir_operations;
2537
2538 /* start off with i_nlink == 2 (for "." entry) */
2539 inc_nlink(inode);
2540
2541 /* start with the directory inode held, so that we can
2542 * populate it without racing with another mkdir */
2543 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
2544 } else if (S_ISREG(mode)) {
2545 inode->i_size = 0;
2546 inode->i_fop = &cgroup_file_operations;
2547 }
2548 d_instantiate(dentry, inode);
2549 dget(dentry); /* Extra count - pin the dentry in core */
2550 return 0;
2551 }
2552
2553 /*
2554 * cgroup_create_dir - create a directory for an object.
2555 * @cgrp: the cgroup we create the directory for. It must have a valid
2556 * ->parent field. And we are going to fill its ->dentry field.
2557 * @dentry: dentry of the new cgroup
2558 * @mode: mode to set on new directory.
2559 */
2560 static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
2561 umode_t mode)
2562 {
2563 struct dentry *parent;
2564 int error = 0;
2565
2566 parent = cgrp->parent->dentry;
2567 error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
2568 if (!error) {
2569 dentry->d_fsdata = cgrp;
2570 inc_nlink(parent->d_inode);
2571 rcu_assign_pointer(cgrp->dentry, dentry);
2572 dget(dentry);
2573 }
2574 dput(dentry);
2575
2576 return error;
2577 }
2578
2579 /**
2580 * cgroup_file_mode - deduce file mode of a control file
2581 * @cft: the control file in question
2582 *
2583 * returns cft->mode if ->mode is not 0
2584 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
2585 * returns S_IRUGO if it has only a read handler
2586 * returns S_IWUSR if it has only a write hander
2587 */
2588 static umode_t cgroup_file_mode(const struct cftype *cft)
2589 {
2590 umode_t mode = 0;
2591
2592 if (cft->mode)
2593 return cft->mode;
2594
2595 if (cft->read || cft->read_u64 || cft->read_s64 ||
2596 cft->read_map || cft->read_seq_string)
2597 mode |= S_IRUGO;
2598
2599 if (cft->write || cft->write_u64 || cft->write_s64 ||
2600 cft->write_string || cft->trigger)
2601 mode |= S_IWUSR;
2602
2603 return mode;
2604 }
2605
2606 int cgroup_add_file(struct cgroup *cgrp,
2607 struct cgroup_subsys *subsys,
2608 const struct cftype *cft)
2609 {
2610 struct dentry *dir = cgrp->dentry;
2611 struct dentry *dentry;
2612 int error;
2613 umode_t mode;
2614
2615 char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
2616 if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
2617 strcpy(name, subsys->name);
2618 strcat(name, ".");
2619 }
2620 strcat(name, cft->name);
2621 BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
2622 dentry = lookup_one_len(name, dir, strlen(name));
2623 if (!IS_ERR(dentry)) {
2624 mode = cgroup_file_mode(cft);
2625 error = cgroup_create_file(dentry, mode | S_IFREG,
2626 cgrp->root->sb);
2627 if (!error)
2628 dentry->d_fsdata = (void *)cft;
2629 dput(dentry);
2630 } else
2631 error = PTR_ERR(dentry);
2632 return error;
2633 }
2634 EXPORT_SYMBOL_GPL(cgroup_add_file);
2635
2636 int cgroup_add_files(struct cgroup *cgrp,
2637 struct cgroup_subsys *subsys,
2638 const struct cftype cft[],
2639 int count)
2640 {
2641 int i, err;
2642 for (i = 0; i < count; i++) {
2643 err = cgroup_add_file(cgrp, subsys, &cft[i]);
2644 if (err)
2645 return err;
2646 }
2647 return 0;
2648 }
2649 EXPORT_SYMBOL_GPL(cgroup_add_files);
2650
2651 /**
2652 * cgroup_task_count - count the number of tasks in a cgroup.
2653 * @cgrp: the cgroup in question
2654 *
2655 * Return the number of tasks in the cgroup.
2656 */
2657 int cgroup_task_count(const struct cgroup *cgrp)
2658 {
2659 int count = 0;
2660 struct cg_cgroup_link *link;
2661
2662 read_lock(&css_set_lock);
2663 list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
2664 count += atomic_read(&link->cg->refcount);
2665 }
2666 read_unlock(&css_set_lock);
2667 return count;
2668 }
2669
2670 /*
2671 * Advance a list_head iterator. The iterator should be positioned at
2672 * the start of a css_set
2673 */
2674 static void cgroup_advance_iter(struct cgroup *cgrp,
2675 struct cgroup_iter *it)
2676 {
2677 struct list_head *l = it->cg_link;
2678 struct cg_cgroup_link *link;
2679 struct css_set *cg;
2680
2681 /* Advance to the next non-empty css_set */
2682 do {
2683 l = l->next;
2684 if (l == &cgrp->css_sets) {
2685 it->cg_link = NULL;
2686 return;
2687 }
2688 link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
2689 cg = link->cg;
2690 } while (list_empty(&cg->tasks));
2691 it->cg_link = l;
2692 it->task = cg->tasks.next;
2693 }
2694
2695 /*
2696 * To reduce the fork() overhead for systems that are not actually
2697 * using their cgroups capability, we don't maintain the lists running
2698 * through each css_set to its tasks until we see the list actually
2699 * used - in other words after the first call to cgroup_iter_start().
2700 */
2701 static void cgroup_enable_task_cg_lists(void)
2702 {
2703 struct task_struct *p, *g;
2704 write_lock(&css_set_lock);
2705 use_task_css_set_links = 1;
2706 /*
2707 * We need tasklist_lock because RCU is not safe against
2708 * while_each_thread(). Besides, a forking task that has passed
2709 * cgroup_post_fork() without seeing use_task_css_set_links = 1
2710 * is not guaranteed to have its child immediately visible in the
2711 * tasklist if we walk through it with RCU.
2712 */
2713 read_lock(&tasklist_lock);
2714 do_each_thread(g, p) {
2715 task_lock(p);
2716 /*
2717 * We should check if the process is exiting, otherwise
2718 * it will race with cgroup_exit() in that the list
2719 * entry won't be deleted though the process has exited.
2720 */
2721 if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
2722 list_add(&p->cg_list, &p->cgroups->tasks);
2723 task_unlock(p);
2724 } while_each_thread(g, p);
2725 read_unlock(&tasklist_lock);
2726 write_unlock(&css_set_lock);
2727 }
2728
2729 void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
2730 __acquires(css_set_lock)
2731 {
2732 /*
2733 * The first time anyone tries to iterate across a cgroup,
2734 * we need to enable the list linking each css_set to its
2735 * tasks, and fix up all existing tasks.
2736 */
2737 if (!use_task_css_set_links)
2738 cgroup_enable_task_cg_lists();
2739
2740 read_lock(&css_set_lock);
2741 it->cg_link = &cgrp->css_sets;
2742 cgroup_advance_iter(cgrp, it);
2743 }
2744
2745 struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
2746 struct cgroup_iter *it)
2747 {
2748 struct task_struct *res;
2749 struct list_head *l = it->task;
2750 struct cg_cgroup_link *link;
2751
2752 /* If the iterator cg is NULL, we have no tasks */
2753 if (!it->cg_link)
2754 return NULL;
2755 res = list_entry(l, struct task_struct, cg_list);
2756 /* Advance iterator to find next entry */
2757 l = l->next;
2758 link = list_entry(it->cg_link, struct cg_cgroup_link, cgrp_link_list);
2759 if (l == &link->cg->tasks) {
2760 /* We reached the end of this task list - move on to
2761 * the next cg_cgroup_link */
2762 cgroup_advance_iter(cgrp, it);
2763 } else {
2764 it->task = l;
2765 }
2766 return res;
2767 }
2768
2769 void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
2770 __releases(css_set_lock)
2771 {
2772 read_unlock(&css_set_lock);
2773 }
2774
2775 static inline int started_after_time(struct task_struct *t1,
2776 struct timespec *time,
2777 struct task_struct *t2)
2778 {
2779 int start_diff = timespec_compare(&t1->start_time, time);
2780 if (start_diff > 0) {
2781 return 1;
2782 } else if (start_diff < 0) {
2783 return 0;
2784 } else {
2785 /*
2786 * Arbitrarily, if two processes started at the same
2787 * time, we'll say that the lower pointer value
2788 * started first. Note that t2 may have exited by now
2789 * so this may not be a valid pointer any longer, but
2790 * that's fine - it still serves to distinguish
2791 * between two tasks started (effectively) simultaneously.
2792 */
2793 return t1 > t2;
2794 }
2795 }
2796
2797 /*
2798 * This function is a callback from heap_insert() and is used to order
2799 * the heap.
2800 * In this case we order the heap in descending task start time.
2801 */
2802 static inline int started_after(void *p1, void *p2)
2803 {
2804 struct task_struct *t1 = p1;
2805 struct task_struct *t2 = p2;
2806 return started_after_time(t1, &t2->start_time, t2);
2807 }
2808
2809 /**
2810 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
2811 * @scan: struct cgroup_scanner containing arguments for the scan
2812 *
2813 * Arguments include pointers to callback functions test_task() and
2814 * process_task().
2815 * Iterate through all the tasks in a cgroup, calling test_task() for each,
2816 * and if it returns true, call process_task() for it also.
2817 * The test_task pointer may be NULL, meaning always true (select all tasks).
2818 * Effectively duplicates cgroup_iter_{start,next,end}()
2819 * but does not lock css_set_lock for the call to process_task().
2820 * The struct cgroup_scanner may be embedded in any structure of the caller's
2821 * creation.
2822 * It is guaranteed that process_task() will act on every task that
2823 * is a member of the cgroup for the duration of this call. This
2824 * function may or may not call process_task() for tasks that exit
2825 * or move to a different cgroup during the call, or are forked or
2826 * move into the cgroup during the call.
2827 *
2828 * Note that test_task() may be called with locks held, and may in some
2829 * situations be called multiple times for the same task, so it should
2830 * be cheap.
2831 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
2832 * pre-allocated and will be used for heap operations (and its "gt" member will
2833 * be overwritten), else a temporary heap will be used (allocation of which
2834 * may cause this function to fail).
2835 */
2836 int cgroup_scan_tasks(struct cgroup_scanner *scan)
2837 {
2838 int retval, i;
2839 struct cgroup_iter it;
2840 struct task_struct *p, *dropped;
2841 /* Never dereference latest_task, since it's not refcounted */
2842 struct task_struct *latest_task = NULL;
2843 struct ptr_heap tmp_heap;
2844 struct ptr_heap *heap;
2845 struct timespec latest_time = { 0, 0 };
2846
2847 if (scan->heap) {
2848 /* The caller supplied our heap and pre-allocated its memory */
2849 heap = scan->heap;
2850 heap->gt = &started_after;
2851 } else {
2852 /* We need to allocate our own heap memory */
2853 heap = &tmp_heap;
2854 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
2855 if (retval)
2856 /* cannot allocate the heap */
2857 return retval;
2858 }
2859
2860 again:
2861 /*
2862 * Scan tasks in the cgroup, using the scanner's "test_task" callback
2863 * to determine which are of interest, and using the scanner's
2864 * "process_task" callback to process any of them that need an update.
2865 * Since we don't want to hold any locks during the task updates,
2866 * gather tasks to be processed in a heap structure.
2867 * The heap is sorted by descending task start time.
2868 * If the statically-sized heap fills up, we overflow tasks that
2869 * started later, and in future iterations only consider tasks that
2870 * started after the latest task in the previous pass. This
2871 * guarantees forward progress and that we don't miss any tasks.
2872 */
2873 heap->size = 0;
2874 cgroup_iter_start(scan->cg, &it);
2875 while ((p = cgroup_iter_next(scan->cg, &it))) {
2876 /*
2877 * Only affect tasks that qualify per the caller's callback,
2878 * if he provided one
2879 */
2880 if (scan->test_task && !scan->test_task(p, scan))
2881 continue;
2882 /*
2883 * Only process tasks that started after the last task
2884 * we processed
2885 */
2886 if (!started_after_time(p, &latest_time, latest_task))
2887 continue;
2888 dropped = heap_insert(heap, p);
2889 if (dropped == NULL) {
2890 /*
2891 * The new task was inserted; the heap wasn't
2892 * previously full
2893 */
2894 get_task_struct(p);
2895 } else if (dropped != p) {
2896 /*
2897 * The new task was inserted, and pushed out a
2898 * different task
2899 */
2900 get_task_struct(p);
2901 put_task_struct(dropped);
2902 }
2903 /*
2904 * Else the new task was newer than anything already in
2905 * the heap and wasn't inserted
2906 */
2907 }
2908 cgroup_iter_end(scan->cg, &it);
2909
2910 if (heap->size) {
2911 for (i = 0; i < heap->size; i++) {
2912 struct task_struct *q = heap->ptrs[i];
2913 if (i == 0) {
2914 latest_time = q->start_time;
2915 latest_task = q;
2916 }
2917 /* Process the task per the caller's callback */
2918 scan->process_task(q, scan);
2919 put_task_struct(q);
2920 }
2921 /*
2922 * If we had to process any tasks at all, scan again
2923 * in case some of them were in the middle of forking
2924 * children that didn't get processed.
2925 * Not the most efficient way to do it, but it avoids
2926 * having to take callback_mutex in the fork path
2927 */
2928 goto again;
2929 }
2930 if (heap == &tmp_heap)
2931 heap_free(&tmp_heap);
2932 return 0;
2933 }
2934
2935 /*
2936 * Stuff for reading the 'tasks'/'procs' files.
2937 *
2938 * Reading this file can return large amounts of data if a cgroup has
2939 * *lots* of attached tasks. So it may need several calls to read(),
2940 * but we cannot guarantee that the information we produce is correct
2941 * unless we produce it entirely atomically.
2942 *
2943 */
2944
2945 /* which pidlist file are we talking about? */
2946 enum cgroup_filetype {
2947 CGROUP_FILE_PROCS,
2948 CGROUP_FILE_TASKS,
2949 };
2950
2951 /*
2952 * A pidlist is a list of pids that virtually represents the contents of one
2953 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
2954 * a pair (one each for procs, tasks) for each pid namespace that's relevant
2955 * to the cgroup.
2956 */
2957 struct cgroup_pidlist {
2958 /*
2959 * used to find which pidlist is wanted. doesn't change as long as
2960 * this particular list stays in the list.
2961 */
2962 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
2963 /* array of xids */
2964 pid_t *list;
2965 /* how many elements the above list has */
2966 int length;
2967 /* how many files are using the current array */
2968 int use_count;
2969 /* each of these stored in a list by its cgroup */
2970 struct list_head links;
2971 /* pointer to the cgroup we belong to, for list removal purposes */
2972 struct cgroup *owner;
2973 /* protects the other fields */
2974 struct rw_semaphore mutex;
2975 };
2976
2977 /*
2978 * The following two functions "fix" the issue where there are more pids
2979 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
2980 * TODO: replace with a kernel-wide solution to this problem
2981 */
2982 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
2983 static void *pidlist_allocate(int count)
2984 {
2985 if (PIDLIST_TOO_LARGE(count))
2986 return vmalloc(count * sizeof(pid_t));
2987 else
2988 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
2989 }
2990 static void pidlist_free(void *p)
2991 {
2992 if (is_vmalloc_addr(p))
2993 vfree(p);
2994 else
2995 kfree(p);
2996 }
2997 static void *pidlist_resize(void *p, int newcount)
2998 {
2999 void *newlist;
3000 /* note: if new alloc fails, old p will still be valid either way */
3001 if (is_vmalloc_addr(p)) {
3002 newlist = vmalloc(newcount * sizeof(pid_t));
3003 if (!newlist)
3004 return NULL;
3005 memcpy(newlist, p, newcount * sizeof(pid_t));
3006 vfree(p);
3007 } else {
3008 newlist = krealloc(p, newcount * sizeof(pid_t), GFP_KERNEL);
3009 }
3010 return newlist;
3011 }
3012
3013 /*
3014 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
3015 * If the new stripped list is sufficiently smaller and there's enough memory
3016 * to allocate a new buffer, will let go of the unneeded memory. Returns the
3017 * number of unique elements.
3018 */
3019 /* is the size difference enough that we should re-allocate the array? */
3020 #define PIDLIST_REALLOC_DIFFERENCE(old, new) ((old) - PAGE_SIZE >= (new))
3021 static int pidlist_uniq(pid_t **p, int length)
3022 {
3023 int src, dest = 1;
3024 pid_t *list = *p;
3025 pid_t *newlist;
3026
3027 /*
3028 * we presume the 0th element is unique, so i starts at 1. trivial
3029 * edge cases first; no work needs to be done for either
3030 */
3031 if (length == 0 || length == 1)
3032 return length;
3033 /* src and dest walk down the list; dest counts unique elements */
3034 for (src = 1; src < length; src++) {
3035 /* find next unique element */
3036 while (list[src] == list[src-1]) {
3037 src++;
3038 if (src == length)
3039 goto after;
3040 }
3041 /* dest always points to where the next unique element goes */
3042 list[dest] = list[src];
3043 dest++;
3044 }
3045 after:
3046 /*
3047 * if the length difference is large enough, we want to allocate a
3048 * smaller buffer to save memory. if this fails due to out of memory,
3049 * we'll just stay with what we've got.
3050 */
3051 if (PIDLIST_REALLOC_DIFFERENCE(length, dest)) {
3052 newlist = pidlist_resize(list, dest);
3053 if (newlist)
3054 *p = newlist;
3055 }
3056 return dest;
3057 }
3058
3059 static int cmppid(const void *a, const void *b)
3060 {
3061 return *(pid_t *)a - *(pid_t *)b;
3062 }
3063
3064 /*
3065 * find the appropriate pidlist for our purpose (given procs vs tasks)
3066 * returns with the lock on that pidlist already held, and takes care
3067 * of the use count, or returns NULL with no locks held if we're out of
3068 * memory.
3069 */
3070 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3071 enum cgroup_filetype type)
3072 {
3073 struct cgroup_pidlist *l;
3074 /* don't need task_nsproxy() if we're looking at ourself */
3075 struct pid_namespace *ns = current->nsproxy->pid_ns;
3076
3077 /*
3078 * We can't drop the pidlist_mutex before taking the l->mutex in case
3079 * the last ref-holder is trying to remove l from the list at the same
3080 * time. Holding the pidlist_mutex precludes somebody taking whichever
3081 * list we find out from under us - compare release_pid_array().
3082 */
3083 mutex_lock(&cgrp->pidlist_mutex);
3084 list_for_each_entry(l, &cgrp->pidlists, links) {
3085 if (l->key.type == type && l->key.ns == ns) {
3086 /* make sure l doesn't vanish out from under us */
3087 down_write(&l->mutex);
3088 mutex_unlock(&cgrp->pidlist_mutex);
3089 return l;
3090 }
3091 }
3092 /* entry not found; create a new one */
3093 l = kmalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
3094 if (!l) {
3095 mutex_unlock(&cgrp->pidlist_mutex);
3096 return l;
3097 }
3098 init_rwsem(&l->mutex);
3099 down_write(&l->mutex);
3100 l->key.type = type;
3101 l->key.ns = get_pid_ns(ns);
3102 l->use_count = 0; /* don't increment here */
3103 l->list = NULL;
3104 l->owner = cgrp;
3105 list_add(&l->links, &cgrp->pidlists);
3106 mutex_unlock(&cgrp->pidlist_mutex);
3107 return l;
3108 }
3109
3110 /*
3111 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3112 */
3113 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3114 struct cgroup_pidlist **lp)
3115 {
3116 pid_t *array;
3117 int length;
3118 int pid, n = 0; /* used for populating the array */
3119 struct cgroup_iter it;
3120 struct task_struct *tsk;
3121 struct cgroup_pidlist *l;
3122
3123 /*
3124 * If cgroup gets more users after we read count, we won't have
3125 * enough space - tough. This race is indistinguishable to the
3126 * caller from the case that the additional cgroup users didn't
3127 * show up until sometime later on.
3128 */
3129 length = cgroup_task_count(cgrp);
3130 array = pidlist_allocate(length);
3131 if (!array)
3132 return -ENOMEM;
3133 /* now, populate the array */
3134 cgroup_iter_start(cgrp, &it);
3135 while ((tsk = cgroup_iter_next(cgrp, &it))) {
3136 if (unlikely(n == length))
3137 break;
3138 /* get tgid or pid for procs or tasks file respectively */
3139 if (type == CGROUP_FILE_PROCS)
3140 pid = task_tgid_vnr(tsk);
3141 else
3142 pid = task_pid_vnr(tsk);
3143 if (pid > 0) /* make sure to only use valid results */
3144 array[n++] = pid;
3145 }
3146 cgroup_iter_end(cgrp, &it);
3147 length = n;
3148 /* now sort & (if procs) strip out duplicates */
3149 sort(array, length, sizeof(pid_t), cmppid, NULL);
3150 if (type == CGROUP_FILE_PROCS)
3151 length = pidlist_uniq(&array, length);
3152 l = cgroup_pidlist_find(cgrp, type);
3153 if (!l) {
3154 pidlist_free(array);
3155 return -ENOMEM;
3156 }
3157 /* store array, freeing old if necessary - lock already held */
3158 pidlist_free(l->list);
3159 l->list = array;
3160 l->length = length;
3161 l->use_count++;
3162 up_write(&l->mutex);
3163 *lp = l;
3164 return 0;
3165 }
3166
3167 /**
3168 * cgroupstats_build - build and fill cgroupstats
3169 * @stats: cgroupstats to fill information into
3170 * @dentry: A dentry entry belonging to the cgroup for which stats have
3171 * been requested.
3172 *
3173 * Build and fill cgroupstats so that taskstats can export it to user
3174 * space.
3175 */
3176 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
3177 {
3178 int ret = -EINVAL;
3179 struct cgroup *cgrp;
3180 struct cgroup_iter it;
3181 struct task_struct *tsk;
3182
3183 /*
3184 * Validate dentry by checking the superblock operations,
3185 * and make sure it's a directory.
3186 */
3187 if (dentry->d_sb->s_op != &cgroup_ops ||
3188 !S_ISDIR(dentry->d_inode->i_mode))
3189 goto err;
3190
3191 ret = 0;
3192 cgrp = dentry->d_fsdata;
3193
3194 cgroup_iter_start(cgrp, &it);
3195 while ((tsk = cgroup_iter_next(cgrp, &it))) {
3196 switch (tsk->state) {
3197 case TASK_RUNNING:
3198 stats->nr_running++;
3199 break;
3200 case TASK_INTERRUPTIBLE:
3201 stats->nr_sleeping++;
3202 break;
3203 case TASK_UNINTERRUPTIBLE:
3204 stats->nr_uninterruptible++;
3205 break;
3206 case TASK_STOPPED:
3207 stats->nr_stopped++;
3208 break;
3209 default:
3210 if (delayacct_is_task_waiting_on_io(tsk))
3211 stats->nr_io_wait++;
3212 break;
3213 }
3214 }
3215 cgroup_iter_end(cgrp, &it);
3216
3217 err:
3218 return ret;
3219 }
3220
3221
3222 /*
3223 * seq_file methods for the tasks/procs files. The seq_file position is the
3224 * next pid to display; the seq_file iterator is a pointer to the pid
3225 * in the cgroup->l->list array.
3226 */
3227
3228 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
3229 {
3230 /*
3231 * Initially we receive a position value that corresponds to
3232 * one more than the last pid shown (or 0 on the first call or
3233 * after a seek to the start). Use a binary-search to find the
3234 * next pid to display, if any
3235 */
3236 struct cgroup_pidlist *l = s->private;
3237 int index = 0, pid = *pos;
3238 int *iter;
3239
3240 down_read(&l->mutex);
3241 if (pid) {
3242 int end = l->length;
3243
3244 while (index < end) {
3245 int mid = (index + end) / 2;
3246 if (l->list[mid] == pid) {
3247 index = mid;
3248 break;
3249 } else if (l->list[mid] <= pid)
3250 index = mid + 1;
3251 else
3252 end = mid;
3253 }
3254 }
3255 /* If we're off the end of the array, we're done */
3256 if (index >= l->length)
3257 return NULL;
3258 /* Update the abstract position to be the actual pid that we found */
3259 iter = l->list + index;
3260 *pos = *iter;
3261 return iter;
3262 }
3263
3264 static void cgroup_pidlist_stop(struct seq_file *s, void *v)
3265 {
3266 struct cgroup_pidlist *l = s->private;
3267 up_read(&l->mutex);
3268 }
3269
3270 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
3271 {
3272 struct cgroup_pidlist *l = s->private;
3273 pid_t *p = v;
3274 pid_t *end = l->list + l->length;
3275 /*
3276 * Advance to the next pid in the array. If this goes off the
3277 * end, we're done
3278 */
3279 p++;
3280 if (p >= end) {
3281 return NULL;
3282 } else {
3283 *pos = *p;
3284 return p;
3285 }
3286 }
3287
3288 static int cgroup_pidlist_show(struct seq_file *s, void *v)
3289 {
3290 return seq_printf(s, "%d\n", *(int *)v);
3291 }
3292
3293 /*
3294 * seq_operations functions for iterating on pidlists through seq_file -
3295 * independent of whether it's tasks or procs
3296 */
3297 static const struct seq_operations cgroup_pidlist_seq_operations = {
3298 .start = cgroup_pidlist_start,
3299 .stop = cgroup_pidlist_stop,
3300 .next = cgroup_pidlist_next,
3301 .show = cgroup_pidlist_show,
3302 };
3303
3304 static void cgroup_release_pid_array(struct cgroup_pidlist *l)
3305 {
3306 /*
3307 * the case where we're the last user of this particular pidlist will
3308 * have us remove it from the cgroup's list, which entails taking the
3309 * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
3310 * pidlist_mutex, we have to take pidlist_mutex first.
3311 */
3312 mutex_lock(&l->owner->pidlist_mutex);
3313 down_write(&l->mutex);
3314 BUG_ON(!l->use_count);
3315 if (!--l->use_count) {
3316 /* we're the last user if refcount is 0; remove and free */
3317 list_del(&l->links);
3318 mutex_unlock(&l->owner->pidlist_mutex);
3319 pidlist_free(l->list);
3320 put_pid_ns(l->key.ns);
3321 up_write(&l->mutex);
3322 kfree(l);
3323 return;
3324 }
3325 mutex_unlock(&l->owner->pidlist_mutex);
3326 up_write(&l->mutex);
3327 }
3328
3329 static int cgroup_pidlist_release(struct inode *inode, struct file *file)
3330 {
3331 struct cgroup_pidlist *l;
3332 if (!(file->f_mode & FMODE_READ))
3333 return 0;
3334 /*
3335 * the seq_file will only be initialized if the file was opened for
3336 * reading; hence we check if it's not null only in that case.
3337 */
3338 l = ((struct seq_file *)file->private_data)->private;
3339 cgroup_release_pid_array(l);
3340 return seq_release(inode, file);
3341 }
3342
3343 static const struct file_operations cgroup_pidlist_operations = {
3344 .read = seq_read,
3345 .llseek = seq_lseek,
3346 .write = cgroup_file_write,
3347 .release = cgroup_pidlist_release,
3348 };
3349
3350 /*
3351 * The following functions handle opens on a file that displays a pidlist
3352 * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
3353 * in the cgroup.
3354 */
3355 /* helper function for the two below it */
3356 static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type)
3357 {
3358 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
3359 struct cgroup_pidlist *l;
3360 int retval;
3361
3362 /* Nothing to do for write-only files */
3363 if (!(file->f_mode & FMODE_READ))
3364 return 0;
3365
3366 /* have the array populated */
3367 retval = pidlist_array_load(cgrp, type, &l);
3368 if (retval)
3369 return retval;
3370 /* configure file information */
3371 file->f_op = &cgroup_pidlist_operations;
3372
3373 retval = seq_open(file, &cgroup_pidlist_seq_operations);
3374 if (retval) {
3375 cgroup_release_pid_array(l);
3376 return retval;
3377 }
3378 ((struct seq_file *)file->private_data)->private = l;
3379 return 0;
3380 }
3381 static int cgroup_tasks_open(struct inode *unused, struct file *file)
3382 {
3383 return cgroup_pidlist_open(file, CGROUP_FILE_TASKS);
3384 }
3385 static int cgroup_procs_open(struct inode *unused, struct file *file)
3386 {
3387 return cgroup_pidlist_open(file, CGROUP_FILE_PROCS);
3388 }
3389
3390 static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
3391 struct cftype *cft)
3392 {
3393 return notify_on_release(cgrp);
3394 }
3395
3396 static int cgroup_write_notify_on_release(struct cgroup *cgrp,
3397 struct cftype *cft,
3398 u64 val)
3399 {
3400 clear_bit(CGRP_RELEASABLE, &cgrp->flags);
3401 if (val)
3402 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3403 else
3404 clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3405 return 0;
3406 }
3407
3408 /*
3409 * Unregister event and free resources.
3410 *
3411 * Gets called from workqueue.
3412 */
3413 static void cgroup_event_remove(struct work_struct *work)
3414 {
3415 struct cgroup_event *event = container_of(work, struct cgroup_event,
3416 remove);
3417 struct cgroup *cgrp = event->cgrp;
3418
3419 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3420
3421 eventfd_ctx_put(event->eventfd);
3422 kfree(event);
3423 dput(cgrp->dentry);
3424 }
3425
3426 /*
3427 * Gets called on POLLHUP on eventfd when user closes it.
3428 *
3429 * Called with wqh->lock held and interrupts disabled.
3430 */
3431 static int cgroup_event_wake(wait_queue_t *wait, unsigned mode,
3432 int sync, void *key)
3433 {
3434 struct cgroup_event *event = container_of(wait,
3435 struct cgroup_event, wait);
3436 struct cgroup *cgrp = event->cgrp;
3437 unsigned long flags = (unsigned long)key;
3438
3439 if (flags & POLLHUP) {
3440 __remove_wait_queue(event->wqh, &event->wait);
3441 spin_lock(&cgrp->event_list_lock);
3442 list_del(&event->list);
3443 spin_unlock(&cgrp->event_list_lock);
3444 /*
3445 * We are in atomic context, but cgroup_event_remove() may
3446 * sleep, so we have to call it in workqueue.
3447 */
3448 schedule_work(&event->remove);
3449 }
3450
3451 return 0;
3452 }
3453
3454 static void cgroup_event_ptable_queue_proc(struct file *file,
3455 wait_queue_head_t *wqh, poll_table *pt)
3456 {
3457 struct cgroup_event *event = container_of(pt,
3458 struct cgroup_event, pt);
3459
3460 event->wqh = wqh;
3461 add_wait_queue(wqh, &event->wait);
3462 }
3463
3464 /*
3465 * Parse input and register new cgroup event handler.
3466 *
3467 * Input must be in format '<event_fd> <control_fd> <args>'.
3468 * Interpretation of args is defined by control file implementation.
3469 */
3470 static int cgroup_write_event_control(struct cgroup *cgrp, struct cftype *cft,
3471 const char *buffer)
3472 {
3473 struct cgroup_event *event = NULL;
3474 unsigned int efd, cfd;
3475 struct file *efile = NULL;
3476 struct file *cfile = NULL;
3477 char *endp;
3478 int ret;
3479
3480 efd = simple_strtoul(buffer, &endp, 10);
3481 if (*endp != ' ')
3482 return -EINVAL;
3483 buffer = endp + 1;
3484
3485 cfd = simple_strtoul(buffer, &endp, 10);
3486 if ((*endp != ' ') && (*endp != '\0'))
3487 return -EINVAL;
3488 buffer = endp + 1;
3489
3490 event = kzalloc(sizeof(*event), GFP_KERNEL);
3491 if (!event)
3492 return -ENOMEM;
3493 event->cgrp = cgrp;
3494 INIT_LIST_HEAD(&event->list);
3495 init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc);
3496 init_waitqueue_func_entry(&event->wait, cgroup_event_wake);
3497 INIT_WORK(&event->remove, cgroup_event_remove);
3498
3499 efile = eventfd_fget(efd);
3500 if (IS_ERR(efile)) {
3501 ret = PTR_ERR(efile);
3502 goto fail;
3503 }
3504
3505 event->eventfd = eventfd_ctx_fileget(efile);
3506 if (IS_ERR(event->eventfd)) {
3507 ret = PTR_ERR(event->eventfd);
3508 goto fail;
3509 }
3510
3511 cfile = fget(cfd);
3512 if (!cfile) {
3513 ret = -EBADF;
3514 goto fail;
3515 }
3516
3517 /* the process need read permission on control file */
3518 /* AV: shouldn't we check that it's been opened for read instead? */
3519 ret = inode_permission(cfile->f_path.dentry->d_inode, MAY_READ);
3520 if (ret < 0)
3521 goto fail;
3522
3523 event->cft = __file_cft(cfile);
3524 if (IS_ERR(event->cft)) {
3525 ret = PTR_ERR(event->cft);
3526 goto fail;
3527 }
3528
3529 if (!event->cft->register_event || !event->cft->unregister_event) {
3530 ret = -EINVAL;
3531 goto fail;
3532 }
3533
3534 ret = event->cft->register_event(cgrp, event->cft,
3535 event->eventfd, buffer);
3536 if (ret)
3537 goto fail;
3538
3539 if (efile->f_op->poll(efile, &event->pt) & POLLHUP) {
3540 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3541 ret = 0;
3542 goto fail;
3543 }
3544
3545 /*
3546 * Events should be removed after rmdir of cgroup directory, but before
3547 * destroying subsystem state objects. Let's take reference to cgroup
3548 * directory dentry to do that.
3549 */
3550 dget(cgrp->dentry);
3551
3552 spin_lock(&cgrp->event_list_lock);
3553 list_add(&event->list, &cgrp->event_list);
3554 spin_unlock(&cgrp->event_list_lock);
3555
3556 fput(cfile);
3557 fput(efile);
3558
3559 return 0;
3560
3561 fail:
3562 if (cfile)
3563 fput(cfile);
3564
3565 if (event && event->eventfd && !IS_ERR(event->eventfd))
3566 eventfd_ctx_put(event->eventfd);
3567
3568 if (!IS_ERR_OR_NULL(efile))
3569 fput(efile);
3570
3571 kfree(event);
3572
3573 return ret;
3574 }
3575
3576 static u64 cgroup_clone_children_read(struct cgroup *cgrp,
3577 struct cftype *cft)
3578 {
3579 return clone_children(cgrp);
3580 }
3581
3582 static int cgroup_clone_children_write(struct cgroup *cgrp,
3583 struct cftype *cft,
3584 u64 val)
3585 {
3586 if (val)
3587 set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3588 else
3589 clear_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3590 return 0;
3591 }
3592
3593 /*
3594 * for the common functions, 'private' gives the type of file
3595 */
3596 /* for hysterical raisins, we can't put this on the older files */
3597 #define CGROUP_FILE_GENERIC_PREFIX "cgroup."
3598 static struct cftype files[] = {
3599 {
3600 .name = "tasks",
3601 .open = cgroup_tasks_open,
3602 .write_u64 = cgroup_tasks_write,
3603 .release = cgroup_pidlist_release,
3604 .mode = S_IRUGO | S_IWUSR,
3605 },
3606 {
3607 .name = CGROUP_FILE_GENERIC_PREFIX "procs",
3608 .open = cgroup_procs_open,
3609 .write_u64 = cgroup_procs_write,
3610 .release = cgroup_pidlist_release,
3611 .mode = S_IRUGO | S_IWUSR,
3612 },
3613 {
3614 .name = "notify_on_release",
3615 .read_u64 = cgroup_read_notify_on_release,
3616 .write_u64 = cgroup_write_notify_on_release,
3617 },
3618 {
3619 .name = CGROUP_FILE_GENERIC_PREFIX "event_control",
3620 .write_string = cgroup_write_event_control,
3621 .mode = S_IWUGO,
3622 },
3623 {
3624 .name = "cgroup.clone_children",
3625 .read_u64 = cgroup_clone_children_read,
3626 .write_u64 = cgroup_clone_children_write,
3627 },
3628 };
3629
3630 static struct cftype cft_release_agent = {
3631 .name = "release_agent",
3632 .read_seq_string = cgroup_release_agent_show,
3633 .write_string = cgroup_release_agent_write,
3634 .max_write_len = PATH_MAX,
3635 };
3636
3637 static int cgroup_populate_dir(struct cgroup *cgrp)
3638 {
3639 int err;
3640 struct cgroup_subsys *ss;
3641
3642 /* First clear out any existing files */
3643 cgroup_clear_directory(cgrp->dentry);
3644
3645 err = cgroup_add_files(cgrp, NULL, files, ARRAY_SIZE(files));
3646 if (err < 0)
3647 return err;
3648
3649 if (cgrp == cgrp->top_cgroup) {
3650 if ((err = cgroup_add_file(cgrp, NULL, &cft_release_agent)) < 0)
3651 return err;
3652 }
3653
3654 for_each_subsys(cgrp->root, ss) {
3655 if (ss->populate && (err = ss->populate(ss, cgrp)) < 0)
3656 return err;
3657 }
3658 /* This cgroup is ready now */
3659 for_each_subsys(cgrp->root, ss) {
3660 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3661 /*
3662 * Update id->css pointer and make this css visible from
3663 * CSS ID functions. This pointer will be dereferened
3664 * from RCU-read-side without locks.
3665 */
3666 if (css->id)
3667 rcu_assign_pointer(css->id->css, css);
3668 }
3669
3670 return 0;
3671 }
3672
3673 static void init_cgroup_css(struct cgroup_subsys_state *css,
3674 struct cgroup_subsys *ss,
3675 struct cgroup *cgrp)
3676 {
3677 css->cgroup = cgrp;
3678 atomic_set(&css->refcnt, 1);
3679 css->flags = 0;
3680 css->id = NULL;
3681 if (cgrp == dummytop)
3682 set_bit(CSS_ROOT, &css->flags);
3683 BUG_ON(cgrp->subsys[ss->subsys_id]);
3684 cgrp->subsys[ss->subsys_id] = css;
3685 }
3686
3687 static void cgroup_lock_hierarchy(struct cgroupfs_root *root)
3688 {
3689 /* We need to take each hierarchy_mutex in a consistent order */
3690 int i;
3691
3692 /*
3693 * No worry about a race with rebind_subsystems that might mess up the
3694 * locking order, since both parties are under cgroup_mutex.
3695 */
3696 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3697 struct cgroup_subsys *ss = subsys[i];
3698 if (ss == NULL)
3699 continue;
3700 if (ss->root == root)
3701 mutex_lock(&ss->hierarchy_mutex);
3702 }
3703 }
3704
3705 static void cgroup_unlock_hierarchy(struct cgroupfs_root *root)
3706 {
3707 int i;
3708
3709 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3710 struct cgroup_subsys *ss = subsys[i];
3711 if (ss == NULL)
3712 continue;
3713 if (ss->root == root)
3714 mutex_unlock(&ss->hierarchy_mutex);
3715 }
3716 }
3717
3718 /*
3719 * cgroup_create - create a cgroup
3720 * @parent: cgroup that will be parent of the new cgroup
3721 * @dentry: dentry of the new cgroup
3722 * @mode: mode to set on new inode
3723 *
3724 * Must be called with the mutex on the parent inode held
3725 */
3726 static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
3727 umode_t mode)
3728 {
3729 struct cgroup *cgrp;
3730 struct cgroupfs_root *root = parent->root;
3731 int err = 0;
3732 struct cgroup_subsys *ss;
3733 struct super_block *sb = root->sb;
3734
3735 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
3736 if (!cgrp)
3737 return -ENOMEM;
3738
3739 /* Grab a reference on the superblock so the hierarchy doesn't
3740 * get deleted on unmount if there are child cgroups. This
3741 * can be done outside cgroup_mutex, since the sb can't
3742 * disappear while someone has an open control file on the
3743 * fs */
3744 atomic_inc(&sb->s_active);
3745
3746 mutex_lock(&cgroup_mutex);
3747
3748 init_cgroup_housekeeping(cgrp);
3749
3750 cgrp->parent = parent;
3751 cgrp->root = parent->root;
3752 cgrp->top_cgroup = parent->top_cgroup;
3753
3754 if (notify_on_release(parent))
3755 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3756
3757 if (clone_children(parent))
3758 set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3759
3760 for_each_subsys(root, ss) {
3761 struct cgroup_subsys_state *css = ss->create(cgrp);
3762
3763 if (IS_ERR(css)) {
3764 err = PTR_ERR(css);
3765 goto err_destroy;
3766 }
3767 init_cgroup_css(css, ss, cgrp);
3768 if (ss->use_id) {
3769 err = alloc_css_id(ss, parent, cgrp);
3770 if (err)
3771 goto err_destroy;
3772 }
3773 /* At error, ->destroy() callback has to free assigned ID. */
3774 if (clone_children(parent) && ss->post_clone)
3775 ss->post_clone(cgrp);
3776 }
3777
3778 cgroup_lock_hierarchy(root);
3779 list_add(&cgrp->sibling, &cgrp->parent->children);
3780 cgroup_unlock_hierarchy(root);
3781 root->number_of_cgroups++;
3782
3783 err = cgroup_create_dir(cgrp, dentry, mode);
3784 if (err < 0)
3785 goto err_remove;
3786
3787 /* The cgroup directory was pre-locked for us */
3788 BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
3789
3790 err = cgroup_populate_dir(cgrp);
3791 /* If err < 0, we have a half-filled directory - oh well ;) */
3792
3793 mutex_unlock(&cgroup_mutex);
3794 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
3795
3796 return 0;
3797
3798 err_remove:
3799
3800 cgroup_lock_hierarchy(root);
3801 list_del(&cgrp->sibling);
3802 cgroup_unlock_hierarchy(root);
3803 root->number_of_cgroups--;
3804
3805 err_destroy:
3806
3807 for_each_subsys(root, ss) {
3808 if (cgrp->subsys[ss->subsys_id])
3809 ss->destroy(cgrp);
3810 }
3811
3812 mutex_unlock(&cgroup_mutex);
3813
3814 /* Release the reference count that we took on the superblock */
3815 deactivate_super(sb);
3816
3817 kfree(cgrp);
3818 return err;
3819 }
3820
3821 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3822 {
3823 struct cgroup *c_parent = dentry->d_parent->d_fsdata;
3824
3825 /* the vfs holds inode->i_mutex already */
3826 return cgroup_create(c_parent, dentry, mode | S_IFDIR);
3827 }
3828
3829 static int cgroup_has_css_refs(struct cgroup *cgrp)
3830 {
3831 /* Check the reference count on each subsystem. Since we
3832 * already established that there are no tasks in the
3833 * cgroup, if the css refcount is also 1, then there should
3834 * be no outstanding references, so the subsystem is safe to
3835 * destroy. We scan across all subsystems rather than using
3836 * the per-hierarchy linked list of mounted subsystems since
3837 * we can be called via check_for_release() with no
3838 * synchronization other than RCU, and the subsystem linked
3839 * list isn't RCU-safe */
3840 int i;
3841 /*
3842 * We won't need to lock the subsys array, because the subsystems
3843 * we're concerned about aren't going anywhere since our cgroup root
3844 * has a reference on them.
3845 */
3846 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3847 struct cgroup_subsys *ss = subsys[i];
3848 struct cgroup_subsys_state *css;
3849 /* Skip subsystems not present or not in this hierarchy */
3850 if (ss == NULL || ss->root != cgrp->root)
3851 continue;
3852 css = cgrp->subsys[ss->subsys_id];
3853 /* When called from check_for_release() it's possible
3854 * that by this point the cgroup has been removed
3855 * and the css deleted. But a false-positive doesn't
3856 * matter, since it can only happen if the cgroup
3857 * has been deleted and hence no longer needs the
3858 * release agent to be called anyway. */
3859 if (css && (atomic_read(&css->refcnt) > 1))
3860 return 1;
3861 }
3862 return 0;
3863 }
3864
3865 /*
3866 * Atomically mark all (or else none) of the cgroup's CSS objects as
3867 * CSS_REMOVED. Return true on success, or false if the cgroup has
3868 * busy subsystems. Call with cgroup_mutex held
3869 */
3870
3871 static int cgroup_clear_css_refs(struct cgroup *cgrp)
3872 {
3873 struct cgroup_subsys *ss;
3874 unsigned long flags;
3875 bool failed = false;
3876 local_irq_save(flags);
3877 for_each_subsys(cgrp->root, ss) {
3878 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3879 int refcnt;
3880 while (1) {
3881 /* We can only remove a CSS with a refcnt==1 */
3882 refcnt = atomic_read(&css->refcnt);
3883 if (refcnt > 1) {
3884 failed = true;
3885 goto done;
3886 }
3887 BUG_ON(!refcnt);
3888 /*
3889 * Drop the refcnt to 0 while we check other
3890 * subsystems. This will cause any racing
3891 * css_tryget() to spin until we set the
3892 * CSS_REMOVED bits or abort
3893 */
3894 if (atomic_cmpxchg(&css->refcnt, refcnt, 0) == refcnt)
3895 break;
3896 cpu_relax();
3897 }
3898 }
3899 done:
3900 for_each_subsys(cgrp->root, ss) {
3901 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3902 if (failed) {
3903 /*
3904 * Restore old refcnt if we previously managed
3905 * to clear it from 1 to 0
3906 */
3907 if (!atomic_read(&css->refcnt))
3908 atomic_set(&css->refcnt, 1);
3909 } else {
3910 /* Commit the fact that the CSS is removed */
3911 set_bit(CSS_REMOVED, &css->flags);
3912 }
3913 }
3914 local_irq_restore(flags);
3915 return !failed;
3916 }
3917
3918 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
3919 {
3920 struct cgroup *cgrp = dentry->d_fsdata;
3921 struct dentry *d;
3922 struct cgroup *parent;
3923 DEFINE_WAIT(wait);
3924 struct cgroup_event *event, *tmp;
3925 int ret;
3926
3927 /* the vfs holds both inode->i_mutex already */
3928 again:
3929 mutex_lock(&cgroup_mutex);
3930 if (atomic_read(&cgrp->count) != 0) {
3931 mutex_unlock(&cgroup_mutex);
3932 return -EBUSY;
3933 }
3934 if (!list_empty(&cgrp->children)) {
3935 mutex_unlock(&cgroup_mutex);
3936 return -EBUSY;
3937 }
3938 mutex_unlock(&cgroup_mutex);
3939
3940 /*
3941 * In general, subsystem has no css->refcnt after pre_destroy(). But
3942 * in racy cases, subsystem may have to get css->refcnt after
3943 * pre_destroy() and it makes rmdir return with -EBUSY. This sometimes
3944 * make rmdir return -EBUSY too often. To avoid that, we use waitqueue
3945 * for cgroup's rmdir. CGRP_WAIT_ON_RMDIR is for synchronizing rmdir
3946 * and subsystem's reference count handling. Please see css_get/put
3947 * and css_tryget() and cgroup_wakeup_rmdir_waiter() implementation.
3948 */
3949 set_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3950
3951 /*
3952 * Call pre_destroy handlers of subsys. Notify subsystems
3953 * that rmdir() request comes.
3954 */
3955 ret = cgroup_call_pre_destroy(cgrp);
3956 if (ret) {
3957 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3958 return ret;
3959 }
3960
3961 mutex_lock(&cgroup_mutex);
3962 parent = cgrp->parent;
3963 if (atomic_read(&cgrp->count) || !list_empty(&cgrp->children)) {
3964 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3965 mutex_unlock(&cgroup_mutex);
3966 return -EBUSY;
3967 }
3968 prepare_to_wait(&cgroup_rmdir_waitq, &wait, TASK_INTERRUPTIBLE);
3969 if (!cgroup_clear_css_refs(cgrp)) {
3970 mutex_unlock(&cgroup_mutex);
3971 /*
3972 * Because someone may call cgroup_wakeup_rmdir_waiter() before
3973 * prepare_to_wait(), we need to check this flag.
3974 */
3975 if (test_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags))
3976 schedule();
3977 finish_wait(&cgroup_rmdir_waitq, &wait);
3978 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3979 if (signal_pending(current))
3980 return -EINTR;
3981 goto again;
3982 }
3983 /* NO css_tryget() can success after here. */
3984 finish_wait(&cgroup_rmdir_waitq, &wait);
3985 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3986
3987 raw_spin_lock(&release_list_lock);
3988 set_bit(CGRP_REMOVED, &cgrp->flags);
3989 if (!list_empty(&cgrp->release_list))
3990 list_del_init(&cgrp->release_list);
3991 raw_spin_unlock(&release_list_lock);
3992
3993 cgroup_lock_hierarchy(cgrp->root);
3994 /* delete this cgroup from parent->children */
3995 list_del_init(&cgrp->sibling);
3996 cgroup_unlock_hierarchy(cgrp->root);
3997
3998 d = dget(cgrp->dentry);
3999
4000 cgroup_d_remove_dir(d);
4001 dput(d);
4002
4003 set_bit(CGRP_RELEASABLE, &parent->flags);
4004 check_for_release(parent);
4005
4006 /*
4007 * Unregister events and notify userspace.
4008 * Notify userspace about cgroup removing only after rmdir of cgroup
4009 * directory to avoid race between userspace and kernelspace
4010 */
4011 spin_lock(&cgrp->event_list_lock);
4012 list_for_each_entry_safe(event, tmp, &cgrp->event_list, list) {
4013 list_del(&event->list);
4014 remove_wait_queue(event->wqh, &event->wait);
4015 eventfd_signal(event->eventfd, 1);
4016 schedule_work(&event->remove);
4017 }
4018 spin_unlock(&cgrp->event_list_lock);
4019
4020 mutex_unlock(&cgroup_mutex);
4021 return 0;
4022 }
4023
4024 static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
4025 {
4026 struct cgroup_subsys_state *css;
4027
4028 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
4029
4030 /* Create the top cgroup state for this subsystem */
4031 list_add(&ss->sibling, &rootnode.subsys_list);
4032 ss->root = &rootnode;
4033 css = ss->create(dummytop);
4034 /* We don't handle early failures gracefully */
4035 BUG_ON(IS_ERR(css));
4036 init_cgroup_css(css, ss, dummytop);
4037
4038 /* Update the init_css_set to contain a subsys
4039 * pointer to this state - since the subsystem is
4040 * newly registered, all tasks and hence the
4041 * init_css_set is in the subsystem's top cgroup. */
4042 init_css_set.subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
4043
4044 need_forkexit_callback |= ss->fork || ss->exit;
4045
4046 /* At system boot, before all subsystems have been
4047 * registered, no tasks have been forked, so we don't
4048 * need to invoke fork callbacks here. */
4049 BUG_ON(!list_empty(&init_task.tasks));
4050
4051 mutex_init(&ss->hierarchy_mutex);
4052 lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
4053 ss->active = 1;
4054
4055 /* this function shouldn't be used with modular subsystems, since they
4056 * need to register a subsys_id, among other things */
4057 BUG_ON(ss->module);
4058 }
4059
4060 /**
4061 * cgroup_load_subsys: load and register a modular subsystem at runtime
4062 * @ss: the subsystem to load
4063 *
4064 * This function should be called in a modular subsystem's initcall. If the
4065 * subsystem is built as a module, it will be assigned a new subsys_id and set
4066 * up for use. If the subsystem is built-in anyway, work is delegated to the
4067 * simpler cgroup_init_subsys.
4068 */
4069 int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss)
4070 {
4071 int i;
4072 struct cgroup_subsys_state *css;
4073
4074 /* check name and function validity */
4075 if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN ||
4076 ss->create == NULL || ss->destroy == NULL)
4077 return -EINVAL;
4078
4079 /*
4080 * we don't support callbacks in modular subsystems. this check is
4081 * before the ss->module check for consistency; a subsystem that could
4082 * be a module should still have no callbacks even if the user isn't
4083 * compiling it as one.
4084 */
4085 if (ss->fork || ss->exit)
4086 return -EINVAL;
4087
4088 /*
4089 * an optionally modular subsystem is built-in: we want to do nothing,
4090 * since cgroup_init_subsys will have already taken care of it.
4091 */
4092 if (ss->module == NULL) {
4093 /* a few sanity checks */
4094 BUG_ON(ss->subsys_id >= CGROUP_BUILTIN_SUBSYS_COUNT);
4095 BUG_ON(subsys[ss->subsys_id] != ss);
4096 return 0;
4097 }
4098
4099 /*
4100 * need to register a subsys id before anything else - for example,
4101 * init_cgroup_css needs it.
4102 */
4103 mutex_lock(&cgroup_mutex);
4104 /* find the first empty slot in the array */
4105 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
4106 if (subsys[i] == NULL)
4107 break;
4108 }
4109 if (i == CGROUP_SUBSYS_COUNT) {
4110 /* maximum number of subsystems already registered! */
4111 mutex_unlock(&cgroup_mutex);
4112 return -EBUSY;
4113 }
4114 /* assign ourselves the subsys_id */
4115 ss->subsys_id = i;
4116 subsys[i] = ss;
4117
4118 /*
4119 * no ss->create seems to need anything important in the ss struct, so
4120 * this can happen first (i.e. before the rootnode attachment).
4121 */
4122 css = ss->create(dummytop);
4123 if (IS_ERR(css)) {
4124 /* failure case - need to deassign the subsys[] slot. */
4125 subsys[i] = NULL;
4126 mutex_unlock(&cgroup_mutex);
4127 return PTR_ERR(css);
4128 }
4129
4130 list_add(&ss->sibling, &rootnode.subsys_list);
4131 ss->root = &rootnode;
4132
4133 /* our new subsystem will be attached to the dummy hierarchy. */
4134 init_cgroup_css(css, ss, dummytop);
4135 /* init_idr must be after init_cgroup_css because it sets css->id. */
4136 if (ss->use_id) {
4137 int ret = cgroup_init_idr(ss, css);
4138 if (ret) {
4139 dummytop->subsys[ss->subsys_id] = NULL;
4140 ss->destroy(dummytop);
4141 subsys[i] = NULL;
4142 mutex_unlock(&cgroup_mutex);
4143 return ret;
4144 }
4145 }
4146
4147 /*
4148 * Now we need to entangle the css into the existing css_sets. unlike
4149 * in cgroup_init_subsys, there are now multiple css_sets, so each one
4150 * will need a new pointer to it; done by iterating the css_set_table.
4151 * furthermore, modifying the existing css_sets will corrupt the hash
4152 * table state, so each changed css_set will need its hash recomputed.
4153 * this is all done under the css_set_lock.
4154 */
4155 write_lock(&css_set_lock);
4156 for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
4157 struct css_set *cg;
4158 struct hlist_node *node, *tmp;
4159 struct hlist_head *bucket = &css_set_table[i], *new_bucket;
4160
4161 hlist_for_each_entry_safe(cg, node, tmp, bucket, hlist) {
4162 /* skip entries that we already rehashed */
4163 if (cg->subsys[ss->subsys_id])
4164 continue;
4165 /* remove existing entry */
4166 hlist_del(&cg->hlist);
4167 /* set new value */
4168 cg->subsys[ss->subsys_id] = css;
4169 /* recompute hash and restore entry */
4170 new_bucket = css_set_hash(cg->subsys);
4171 hlist_add_head(&cg->hlist, new_bucket);
4172 }
4173 }
4174 write_unlock(&css_set_lock);
4175
4176 mutex_init(&ss->hierarchy_mutex);
4177 lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
4178 ss->active = 1;
4179
4180 /* success! */
4181 mutex_unlock(&cgroup_mutex);
4182 return 0;
4183 }
4184 EXPORT_SYMBOL_GPL(cgroup_load_subsys);
4185
4186 /**
4187 * cgroup_unload_subsys: unload a modular subsystem
4188 * @ss: the subsystem to unload
4189 *
4190 * This function should be called in a modular subsystem's exitcall. When this
4191 * function is invoked, the refcount on the subsystem's module will be 0, so
4192 * the subsystem will not be attached to any hierarchy.
4193 */
4194 void cgroup_unload_subsys(struct cgroup_subsys *ss)
4195 {
4196 struct cg_cgroup_link *link;
4197 struct hlist_head *hhead;
4198
4199 BUG_ON(ss->module == NULL);
4200
4201 /*
4202 * we shouldn't be called if the subsystem is in use, and the use of
4203 * try_module_get in parse_cgroupfs_options should ensure that it
4204 * doesn't start being used while we're killing it off.
4205 */
4206 BUG_ON(ss->root != &rootnode);
4207
4208 mutex_lock(&cgroup_mutex);
4209 /* deassign the subsys_id */
4210 BUG_ON(ss->subsys_id < CGROUP_BUILTIN_SUBSYS_COUNT);
4211 subsys[ss->subsys_id] = NULL;
4212
4213 /* remove subsystem from rootnode's list of subsystems */
4214 list_del_init(&ss->sibling);
4215
4216 /*
4217 * disentangle the css from all css_sets attached to the dummytop. as
4218 * in loading, we need to pay our respects to the hashtable gods.
4219 */
4220 write_lock(&css_set_lock);
4221 list_for_each_entry(link, &dummytop->css_sets, cgrp_link_list) {
4222 struct css_set *cg = link->cg;
4223
4224 hlist_del(&cg->hlist);
4225 BUG_ON(!cg->subsys[ss->subsys_id]);
4226 cg->subsys[ss->subsys_id] = NULL;
4227 hhead = css_set_hash(cg->subsys);
4228 hlist_add_head(&cg->hlist, hhead);
4229 }
4230 write_unlock(&css_set_lock);
4231
4232 /*
4233 * remove subsystem's css from the dummytop and free it - need to free
4234 * before marking as null because ss->destroy needs the cgrp->subsys
4235 * pointer to find their state. note that this also takes care of
4236 * freeing the css_id.
4237 */
4238 ss->destroy(dummytop);
4239 dummytop->subsys[ss->subsys_id] = NULL;
4240
4241 mutex_unlock(&cgroup_mutex);
4242 }
4243 EXPORT_SYMBOL_GPL(cgroup_unload_subsys);
4244
4245 /**
4246 * cgroup_init_early - cgroup initialization at system boot
4247 *
4248 * Initialize cgroups at system boot, and initialize any
4249 * subsystems that request early init.
4250 */
4251 int __init cgroup_init_early(void)
4252 {
4253 int i;
4254 atomic_set(&init_css_set.refcount, 1);
4255 INIT_LIST_HEAD(&init_css_set.cg_links);
4256 INIT_LIST_HEAD(&init_css_set.tasks);
4257 INIT_HLIST_NODE(&init_css_set.hlist);
4258 css_set_count = 1;
4259 init_cgroup_root(&rootnode);
4260 root_count = 1;
4261 init_task.cgroups = &init_css_set;
4262
4263 init_css_set_link.cg = &init_css_set;
4264 init_css_set_link.cgrp = dummytop;
4265 list_add(&init_css_set_link.cgrp_link_list,
4266 &rootnode.top_cgroup.css_sets);
4267 list_add(&init_css_set_link.cg_link_list,
4268 &init_css_set.cg_links);
4269
4270 for (i = 0; i < CSS_SET_TABLE_SIZE; i++)
4271 INIT_HLIST_HEAD(&css_set_table[i]);
4272
4273 /* at bootup time, we don't worry about modular subsystems */
4274 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4275 struct cgroup_subsys *ss = subsys[i];
4276
4277 BUG_ON(!ss->name);
4278 BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
4279 BUG_ON(!ss->create);
4280 BUG_ON(!ss->destroy);
4281 if (ss->subsys_id != i) {
4282 printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
4283 ss->name, ss->subsys_id);
4284 BUG();
4285 }
4286
4287 if (ss->early_init)
4288 cgroup_init_subsys(ss);
4289 }
4290 return 0;
4291 }
4292
4293 /**
4294 * cgroup_init - cgroup initialization
4295 *
4296 * Register cgroup filesystem and /proc file, and initialize
4297 * any subsystems that didn't request early init.
4298 */
4299 int __init cgroup_init(void)
4300 {
4301 int err;
4302 int i;
4303 struct hlist_head *hhead;
4304
4305 err = bdi_init(&cgroup_backing_dev_info);
4306 if (err)
4307 return err;
4308
4309 /* at bootup time, we don't worry about modular subsystems */
4310 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4311 struct cgroup_subsys *ss = subsys[i];
4312 if (!ss->early_init)
4313 cgroup_init_subsys(ss);
4314 if (ss->use_id)
4315 cgroup_init_idr(ss, init_css_set.subsys[ss->subsys_id]);
4316 }
4317
4318 /* Add init_css_set to the hash table */
4319 hhead = css_set_hash(init_css_set.subsys);
4320 hlist_add_head(&init_css_set.hlist, hhead);
4321 BUG_ON(!init_root_id(&rootnode));
4322
4323 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
4324 if (!cgroup_kobj) {
4325 err = -ENOMEM;
4326 goto out;
4327 }
4328
4329 err = register_filesystem(&cgroup_fs_type);
4330 if (err < 0) {
4331 kobject_put(cgroup_kobj);
4332 goto out;
4333 }
4334
4335 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
4336
4337 out:
4338 if (err)
4339 bdi_destroy(&cgroup_backing_dev_info);
4340
4341 return err;
4342 }
4343
4344 /*
4345 * proc_cgroup_show()
4346 * - Print task's cgroup paths into seq_file, one line for each hierarchy
4347 * - Used for /proc/<pid>/cgroup.
4348 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
4349 * doesn't really matter if tsk->cgroup changes after we read it,
4350 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
4351 * anyway. No need to check that tsk->cgroup != NULL, thanks to
4352 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
4353 * cgroup to top_cgroup.
4354 */
4355
4356 /* TODO: Use a proper seq_file iterator */
4357 static int proc_cgroup_show(struct seq_file *m, void *v)
4358 {
4359 struct pid *pid;
4360 struct task_struct *tsk;
4361 char *buf;
4362 int retval;
4363 struct cgroupfs_root *root;
4364
4365 retval = -ENOMEM;
4366 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4367 if (!buf)
4368 goto out;
4369
4370 retval = -ESRCH;
4371 pid = m->private;
4372 tsk = get_pid_task(pid, PIDTYPE_PID);
4373 if (!tsk)
4374 goto out_free;
4375
4376 retval = 0;
4377
4378 mutex_lock(&cgroup_mutex);
4379
4380 for_each_active_root(root) {
4381 struct cgroup_subsys *ss;
4382 struct cgroup *cgrp;
4383 int count = 0;
4384
4385 seq_printf(m, "%d:", root->hierarchy_id);
4386 for_each_subsys(root, ss)
4387 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
4388 if (strlen(root->name))
4389 seq_printf(m, "%sname=%s", count ? "," : "",
4390 root->name);
4391 seq_putc(m, ':');
4392 cgrp = task_cgroup_from_root(tsk, root);
4393 retval = cgroup_path(cgrp, buf, PAGE_SIZE);
4394 if (retval < 0)
4395 goto out_unlock;
4396 seq_puts(m, buf);
4397 seq_putc(m, '\n');
4398 }
4399
4400 out_unlock:
4401 mutex_unlock(&cgroup_mutex);
4402 put_task_struct(tsk);
4403 out_free:
4404 kfree(buf);
4405 out:
4406 return retval;
4407 }
4408
4409 static int cgroup_open(struct inode *inode, struct file *file)
4410 {
4411 struct pid *pid = PROC_I(inode)->pid;
4412 return single_open(file, proc_cgroup_show, pid);
4413 }
4414
4415 const struct file_operations proc_cgroup_operations = {
4416 .open = cgroup_open,
4417 .read = seq_read,
4418 .llseek = seq_lseek,
4419 .release = single_release,
4420 };
4421
4422 /* Display information about each subsystem and each hierarchy */
4423 static int proc_cgroupstats_show(struct seq_file *m, void *v)
4424 {
4425 int i;
4426
4427 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
4428 /*
4429 * ideally we don't want subsystems moving around while we do this.
4430 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
4431 * subsys/hierarchy state.
4432 */
4433 mutex_lock(&cgroup_mutex);
4434 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4435 struct cgroup_subsys *ss = subsys[i];
4436 if (ss == NULL)
4437 continue;
4438 seq_printf(m, "%s\t%d\t%d\t%d\n",
4439 ss->name, ss->root->hierarchy_id,
4440 ss->root->number_of_cgroups, !ss->disabled);
4441 }
4442 mutex_unlock(&cgroup_mutex);
4443 return 0;
4444 }
4445
4446 static int cgroupstats_open(struct inode *inode, struct file *file)
4447 {
4448 return single_open(file, proc_cgroupstats_show, NULL);
4449 }
4450
4451 static const struct file_operations proc_cgroupstats_operations = {
4452 .open = cgroupstats_open,
4453 .read = seq_read,
4454 .llseek = seq_lseek,
4455 .release = single_release,
4456 };
4457
4458 /**
4459 * cgroup_fork - attach newly forked task to its parents cgroup.
4460 * @child: pointer to task_struct of forking parent process.
4461 *
4462 * Description: A task inherits its parent's cgroup at fork().
4463 *
4464 * A pointer to the shared css_set was automatically copied in
4465 * fork.c by dup_task_struct(). However, we ignore that copy, since
4466 * it was not made under the protection of RCU, cgroup_mutex or
4467 * threadgroup_change_begin(), so it might no longer be a valid
4468 * cgroup pointer. cgroup_attach_task() might have already changed
4469 * current->cgroups, allowing the previously referenced cgroup
4470 * group to be removed and freed.
4471 *
4472 * Outside the pointer validity we also need to process the css_set
4473 * inheritance between threadgoup_change_begin() and
4474 * threadgoup_change_end(), this way there is no leak in any process
4475 * wide migration performed by cgroup_attach_proc() that could otherwise
4476 * miss a thread because it is too early or too late in the fork stage.
4477 *
4478 * At the point that cgroup_fork() is called, 'current' is the parent
4479 * task, and the passed argument 'child' points to the child task.
4480 */
4481 void cgroup_fork(struct task_struct *child)
4482 {
4483 /*
4484 * We don't need to task_lock() current because current->cgroups
4485 * can't be changed concurrently here. The parent obviously hasn't
4486 * exited and called cgroup_exit(), and we are synchronized against
4487 * cgroup migration through threadgroup_change_begin().
4488 */
4489 child->cgroups = current->cgroups;
4490 get_css_set(child->cgroups);
4491 INIT_LIST_HEAD(&child->cg_list);
4492 }
4493
4494 /**
4495 * cgroup_fork_callbacks - run fork callbacks
4496 * @child: the new task
4497 *
4498 * Called on a new task very soon before adding it to the
4499 * tasklist. No need to take any locks since no-one can
4500 * be operating on this task.
4501 */
4502 void cgroup_fork_callbacks(struct task_struct *child)
4503 {
4504 if (need_forkexit_callback) {
4505 int i;
4506 /*
4507 * forkexit callbacks are only supported for builtin
4508 * subsystems, and the builtin section of the subsys array is
4509 * immutable, so we don't need to lock the subsys array here.
4510 */
4511 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4512 struct cgroup_subsys *ss = subsys[i];
4513 if (ss->fork)
4514 ss->fork(child);
4515 }
4516 }
4517 }
4518
4519 /**
4520 * cgroup_post_fork - called on a new task after adding it to the task list
4521 * @child: the task in question
4522 *
4523 * Adds the task to the list running through its css_set if necessary.
4524 * Has to be after the task is visible on the task list in case we race
4525 * with the first call to cgroup_iter_start() - to guarantee that the
4526 * new task ends up on its list.
4527 */
4528 void cgroup_post_fork(struct task_struct *child)
4529 {
4530 /*
4531 * use_task_css_set_links is set to 1 before we walk the tasklist
4532 * under the tasklist_lock and we read it here after we added the child
4533 * to the tasklist under the tasklist_lock as well. If the child wasn't
4534 * yet in the tasklist when we walked through it from
4535 * cgroup_enable_task_cg_lists(), then use_task_css_set_links value
4536 * should be visible now due to the paired locking and barriers implied
4537 * by LOCK/UNLOCK: it is written before the tasklist_lock unlock
4538 * in cgroup_enable_task_cg_lists() and read here after the tasklist_lock
4539 * lock on fork.
4540 */
4541 if (use_task_css_set_links) {
4542 write_lock(&css_set_lock);
4543 if (list_empty(&child->cg_list)) {
4544 /*
4545 * It's safe to use child->cgroups without task_lock()
4546 * here because we are protected through
4547 * threadgroup_change_begin() against concurrent
4548 * css_set change in cgroup_task_migrate(). Also
4549 * the task can't exit at that point until
4550 * wake_up_new_task() is called, so we are protected
4551 * against cgroup_exit() setting child->cgroup to
4552 * init_css_set.
4553 */
4554 list_add(&child->cg_list, &child->cgroups->tasks);
4555 }
4556 write_unlock(&css_set_lock);
4557 }
4558 }
4559 /**
4560 * cgroup_exit - detach cgroup from exiting task
4561 * @tsk: pointer to task_struct of exiting process
4562 * @run_callback: run exit callbacks?
4563 *
4564 * Description: Detach cgroup from @tsk and release it.
4565 *
4566 * Note that cgroups marked notify_on_release force every task in
4567 * them to take the global cgroup_mutex mutex when exiting.
4568 * This could impact scaling on very large systems. Be reluctant to
4569 * use notify_on_release cgroups where very high task exit scaling
4570 * is required on large systems.
4571 *
4572 * the_top_cgroup_hack:
4573 *
4574 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
4575 *
4576 * We call cgroup_exit() while the task is still competent to
4577 * handle notify_on_release(), then leave the task attached to the
4578 * root cgroup in each hierarchy for the remainder of its exit.
4579 *
4580 * To do this properly, we would increment the reference count on
4581 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
4582 * code we would add a second cgroup function call, to drop that
4583 * reference. This would just create an unnecessary hot spot on
4584 * the top_cgroup reference count, to no avail.
4585 *
4586 * Normally, holding a reference to a cgroup without bumping its
4587 * count is unsafe. The cgroup could go away, or someone could
4588 * attach us to a different cgroup, decrementing the count on
4589 * the first cgroup that we never incremented. But in this case,
4590 * top_cgroup isn't going away, and either task has PF_EXITING set,
4591 * which wards off any cgroup_attach_task() attempts, or task is a failed
4592 * fork, never visible to cgroup_attach_task.
4593 */
4594 void cgroup_exit(struct task_struct *tsk, int run_callbacks)
4595 {
4596 struct css_set *cg;
4597 int i;
4598
4599 /*
4600 * Unlink from the css_set task list if necessary.
4601 * Optimistically check cg_list before taking
4602 * css_set_lock
4603 */
4604 if (!list_empty(&tsk->cg_list)) {
4605 write_lock(&css_set_lock);
4606 if (!list_empty(&tsk->cg_list))
4607 list_del_init(&tsk->cg_list);
4608 write_unlock(&css_set_lock);
4609 }
4610
4611 /* Reassign the task to the init_css_set. */
4612 task_lock(tsk);
4613 cg = tsk->cgroups;
4614 tsk->cgroups = &init_css_set;
4615
4616 if (run_callbacks && need_forkexit_callback) {
4617 /*
4618 * modular subsystems can't use callbacks, so no need to lock
4619 * the subsys array
4620 */
4621 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4622 struct cgroup_subsys *ss = subsys[i];
4623 if (ss->exit) {
4624 struct cgroup *old_cgrp =
4625 rcu_dereference_raw(cg->subsys[i])->cgroup;
4626 struct cgroup *cgrp = task_cgroup(tsk, i);
4627 ss->exit(cgrp, old_cgrp, tsk);
4628 }
4629 }
4630 }
4631 task_unlock(tsk);
4632
4633 if (cg)
4634 put_css_set_taskexit(cg);
4635 }
4636
4637 /**
4638 * cgroup_is_descendant - see if @cgrp is a descendant of @task's cgrp
4639 * @cgrp: the cgroup in question
4640 * @task: the task in question
4641 *
4642 * See if @cgrp is a descendant of @task's cgroup in the appropriate
4643 * hierarchy.
4644 *
4645 * If we are sending in dummytop, then presumably we are creating
4646 * the top cgroup in the subsystem.
4647 *
4648 * Called only by the ns (nsproxy) cgroup.
4649 */
4650 int cgroup_is_descendant(const struct cgroup *cgrp, struct task_struct *task)
4651 {
4652 int ret;
4653 struct cgroup *target;
4654
4655 if (cgrp == dummytop)
4656 return 1;
4657
4658 target = task_cgroup_from_root(task, cgrp->root);
4659 while (cgrp != target && cgrp!= cgrp->top_cgroup)
4660 cgrp = cgrp->parent;
4661 ret = (cgrp == target);
4662 return ret;
4663 }
4664
4665 static void check_for_release(struct cgroup *cgrp)
4666 {
4667 /* All of these checks rely on RCU to keep the cgroup
4668 * structure alive */
4669 if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
4670 && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
4671 /* Control Group is currently removeable. If it's not
4672 * already queued for a userspace notification, queue
4673 * it now */
4674 int need_schedule_work = 0;
4675 raw_spin_lock(&release_list_lock);
4676 if (!cgroup_is_removed(cgrp) &&
4677 list_empty(&cgrp->release_list)) {
4678 list_add(&cgrp->release_list, &release_list);
4679 need_schedule_work = 1;
4680 }
4681 raw_spin_unlock(&release_list_lock);
4682 if (need_schedule_work)
4683 schedule_work(&release_agent_work);
4684 }
4685 }
4686
4687 /* Caller must verify that the css is not for root cgroup */
4688 void __css_put(struct cgroup_subsys_state *css, int count)
4689 {
4690 struct cgroup *cgrp = css->cgroup;
4691 int val;
4692 rcu_read_lock();
4693 val = atomic_sub_return(count, &css->refcnt);
4694 if (val == 1) {
4695 if (notify_on_release(cgrp)) {
4696 set_bit(CGRP_RELEASABLE, &cgrp->flags);
4697 check_for_release(cgrp);
4698 }
4699 cgroup_wakeup_rmdir_waiter(cgrp);
4700 }
4701 rcu_read_unlock();
4702 WARN_ON_ONCE(val < 1);
4703 }
4704 EXPORT_SYMBOL_GPL(__css_put);
4705
4706 /*
4707 * Notify userspace when a cgroup is released, by running the
4708 * configured release agent with the name of the cgroup (path
4709 * relative to the root of cgroup file system) as the argument.
4710 *
4711 * Most likely, this user command will try to rmdir this cgroup.
4712 *
4713 * This races with the possibility that some other task will be
4714 * attached to this cgroup before it is removed, or that some other
4715 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
4716 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
4717 * unused, and this cgroup will be reprieved from its death sentence,
4718 * to continue to serve a useful existence. Next time it's released,
4719 * we will get notified again, if it still has 'notify_on_release' set.
4720 *
4721 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
4722 * means only wait until the task is successfully execve()'d. The
4723 * separate release agent task is forked by call_usermodehelper(),
4724 * then control in this thread returns here, without waiting for the
4725 * release agent task. We don't bother to wait because the caller of
4726 * this routine has no use for the exit status of the release agent
4727 * task, so no sense holding our caller up for that.
4728 */
4729 static void cgroup_release_agent(struct work_struct *work)
4730 {
4731 BUG_ON(work != &release_agent_work);
4732 mutex_lock(&cgroup_mutex);
4733 raw_spin_lock(&release_list_lock);
4734 while (!list_empty(&release_list)) {
4735 char *argv[3], *envp[3];
4736 int i;
4737 char *pathbuf = NULL, *agentbuf = NULL;
4738 struct cgroup *cgrp = list_entry(release_list.next,
4739 struct cgroup,
4740 release_list);
4741 list_del_init(&cgrp->release_list);
4742 raw_spin_unlock(&release_list_lock);
4743 pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4744 if (!pathbuf)
4745 goto continue_free;
4746 if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
4747 goto continue_free;
4748 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
4749 if (!agentbuf)
4750 goto continue_free;
4751
4752 i = 0;
4753 argv[i++] = agentbuf;
4754 argv[i++] = pathbuf;
4755 argv[i] = NULL;
4756
4757 i = 0;
4758 /* minimal command environment */
4759 envp[i++] = "HOME=/";
4760 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
4761 envp[i] = NULL;
4762
4763 /* Drop the lock while we invoke the usermode helper,
4764 * since the exec could involve hitting disk and hence
4765 * be a slow process */
4766 mutex_unlock(&cgroup_mutex);
4767 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
4768 mutex_lock(&cgroup_mutex);
4769 continue_free:
4770 kfree(pathbuf);
4771 kfree(agentbuf);
4772 raw_spin_lock(&release_list_lock);
4773 }
4774 raw_spin_unlock(&release_list_lock);
4775 mutex_unlock(&cgroup_mutex);
4776 }
4777
4778 static int __init cgroup_disable(char *str)
4779 {
4780 int i;
4781 char *token;
4782
4783 while ((token = strsep(&str, ",")) != NULL) {
4784 if (!*token)
4785 continue;
4786 /*
4787 * cgroup_disable, being at boot time, can't know about module
4788 * subsystems, so we don't worry about them.
4789 */
4790 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4791 struct cgroup_subsys *ss = subsys[i];
4792
4793 if (!strcmp(token, ss->name)) {
4794 ss->disabled = 1;
4795 printk(KERN_INFO "Disabling %s control group"
4796 " subsystem\n", ss->name);
4797 break;
4798 }
4799 }
4800 }
4801 return 1;
4802 }
4803 __setup("cgroup_disable=", cgroup_disable);
4804
4805 /*
4806 * Functons for CSS ID.
4807 */
4808
4809 /*
4810 *To get ID other than 0, this should be called when !cgroup_is_removed().
4811 */
4812 unsigned short css_id(struct cgroup_subsys_state *css)
4813 {
4814 struct css_id *cssid;
4815
4816 /*
4817 * This css_id() can return correct value when somone has refcnt
4818 * on this or this is under rcu_read_lock(). Once css->id is allocated,
4819 * it's unchanged until freed.
4820 */
4821 cssid = rcu_dereference_check(css->id, atomic_read(&css->refcnt));
4822
4823 if (cssid)
4824 return cssid->id;
4825 return 0;
4826 }
4827 EXPORT_SYMBOL_GPL(css_id);
4828
4829 unsigned short css_depth(struct cgroup_subsys_state *css)
4830 {
4831 struct css_id *cssid;
4832
4833 cssid = rcu_dereference_check(css->id, atomic_read(&css->refcnt));
4834
4835 if (cssid)
4836 return cssid->depth;
4837 return 0;
4838 }
4839 EXPORT_SYMBOL_GPL(css_depth);
4840
4841 /**
4842 * css_is_ancestor - test "root" css is an ancestor of "child"
4843 * @child: the css to be tested.
4844 * @root: the css supporsed to be an ancestor of the child.
4845 *
4846 * Returns true if "root" is an ancestor of "child" in its hierarchy. Because
4847 * this function reads css->id, this use rcu_dereference() and rcu_read_lock().
4848 * But, considering usual usage, the csses should be valid objects after test.
4849 * Assuming that the caller will do some action to the child if this returns
4850 * returns true, the caller must take "child";s reference count.
4851 * If "child" is valid object and this returns true, "root" is valid, too.
4852 */
4853
4854 bool css_is_ancestor(struct cgroup_subsys_state *child,
4855 const struct cgroup_subsys_state *root)
4856 {
4857 struct css_id *child_id;
4858 struct css_id *root_id;
4859 bool ret = true;
4860
4861 rcu_read_lock();
4862 child_id = rcu_dereference(child->id);
4863 root_id = rcu_dereference(root->id);
4864 if (!child_id
4865 || !root_id
4866 || (child_id->depth < root_id->depth)
4867 || (child_id->stack[root_id->depth] != root_id->id))
4868 ret = false;
4869 rcu_read_unlock();
4870 return ret;
4871 }
4872
4873 void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
4874 {
4875 struct css_id *id = css->id;
4876 /* When this is called before css_id initialization, id can be NULL */
4877 if (!id)
4878 return;
4879
4880 BUG_ON(!ss->use_id);
4881
4882 rcu_assign_pointer(id->css, NULL);
4883 rcu_assign_pointer(css->id, NULL);
4884 spin_lock(&ss->id_lock);
4885 idr_remove(&ss->idr, id->id);
4886 spin_unlock(&ss->id_lock);
4887 kfree_rcu(id, rcu_head);
4888 }
4889 EXPORT_SYMBOL_GPL(free_css_id);
4890
4891 /*
4892 * This is called by init or create(). Then, calls to this function are
4893 * always serialized (By cgroup_mutex() at create()).
4894 */
4895
4896 static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
4897 {
4898 struct css_id *newid;
4899 int myid, error, size;
4900
4901 BUG_ON(!ss->use_id);
4902
4903 size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
4904 newid = kzalloc(size, GFP_KERNEL);
4905 if (!newid)
4906 return ERR_PTR(-ENOMEM);
4907 /* get id */
4908 if (unlikely(!idr_pre_get(&ss->idr, GFP_KERNEL))) {
4909 error = -ENOMEM;
4910 goto err_out;
4911 }
4912 spin_lock(&ss->id_lock);
4913 /* Don't use 0. allocates an ID of 1-65535 */
4914 error = idr_get_new_above(&ss->idr, newid, 1, &myid);
4915 spin_unlock(&ss->id_lock);
4916
4917 /* Returns error when there are no free spaces for new ID.*/
4918 if (error) {
4919 error = -ENOSPC;
4920 goto err_out;
4921 }
4922 if (myid > CSS_ID_MAX)
4923 goto remove_idr;
4924
4925 newid->id = myid;
4926 newid->depth = depth;
4927 return newid;
4928 remove_idr:
4929 error = -ENOSPC;
4930 spin_lock(&ss->id_lock);
4931 idr_remove(&ss->idr, myid);
4932 spin_unlock(&ss->id_lock);
4933 err_out:
4934 kfree(newid);
4935 return ERR_PTR(error);
4936
4937 }
4938
4939 static int __init_or_module cgroup_init_idr(struct cgroup_subsys *ss,
4940 struct cgroup_subsys_state *rootcss)
4941 {
4942 struct css_id *newid;
4943
4944 spin_lock_init(&ss->id_lock);
4945 idr_init(&ss->idr);
4946
4947 newid = get_new_cssid(ss, 0);
4948 if (IS_ERR(newid))
4949 return PTR_ERR(newid);
4950
4951 newid->stack[0] = newid->id;
4952 newid->css = rootcss;
4953 rootcss->id = newid;
4954 return 0;
4955 }
4956
4957 static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
4958 struct cgroup *child)
4959 {
4960 int subsys_id, i, depth = 0;
4961 struct cgroup_subsys_state *parent_css, *child_css;
4962 struct css_id *child_id, *parent_id;
4963
4964 subsys_id = ss->subsys_id;
4965 parent_css = parent->subsys[subsys_id];
4966 child_css = child->subsys[subsys_id];
4967 parent_id = parent_css->id;
4968 depth = parent_id->depth + 1;
4969
4970 child_id = get_new_cssid(ss, depth);
4971 if (IS_ERR(child_id))
4972 return PTR_ERR(child_id);
4973
4974 for (i = 0; i < depth; i++)
4975 child_id->stack[i] = parent_id->stack[i];
4976 child_id->stack[depth] = child_id->id;
4977 /*
4978 * child_id->css pointer will be set after this cgroup is available
4979 * see cgroup_populate_dir()
4980 */
4981 rcu_assign_pointer(child_css->id, child_id);
4982
4983 return 0;
4984 }
4985
4986 /**
4987 * css_lookup - lookup css by id
4988 * @ss: cgroup subsys to be looked into.
4989 * @id: the id
4990 *
4991 * Returns pointer to cgroup_subsys_state if there is valid one with id.
4992 * NULL if not. Should be called under rcu_read_lock()
4993 */
4994 struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
4995 {
4996 struct css_id *cssid = NULL;
4997
4998 BUG_ON(!ss->use_id);
4999 cssid = idr_find(&ss->idr, id);
5000
5001 if (unlikely(!cssid))
5002 return NULL;
5003
5004 return rcu_dereference(cssid->css);
5005 }
5006 EXPORT_SYMBOL_GPL(css_lookup);
5007
5008 /**
5009 * css_get_next - lookup next cgroup under specified hierarchy.
5010 * @ss: pointer to subsystem
5011 * @id: current position of iteration.
5012 * @root: pointer to css. search tree under this.
5013 * @foundid: position of found object.
5014 *
5015 * Search next css under the specified hierarchy of rootid. Calling under
5016 * rcu_read_lock() is necessary. Returns NULL if it reaches the end.
5017 */
5018 struct cgroup_subsys_state *
5019 css_get_next(struct cgroup_subsys *ss, int id,
5020 struct cgroup_subsys_state *root, int *foundid)
5021 {
5022 struct cgroup_subsys_state *ret = NULL;
5023 struct css_id *tmp;
5024 int tmpid;
5025 int rootid = css_id(root);
5026 int depth = css_depth(root);
5027
5028 if (!rootid)
5029 return NULL;
5030
5031 BUG_ON(!ss->use_id);
5032 WARN_ON_ONCE(!rcu_read_lock_held());
5033
5034 /* fill start point for scan */
5035 tmpid = id;
5036 while (1) {
5037 /*
5038 * scan next entry from bitmap(tree), tmpid is updated after
5039 * idr_get_next().
5040 */
5041 tmp = idr_get_next(&ss->idr, &tmpid);
5042 if (!tmp)
5043 break;
5044 if (tmp->depth >= depth && tmp->stack[depth] == rootid) {
5045 ret = rcu_dereference(tmp->css);
5046 if (ret) {
5047 *foundid = tmpid;
5048 break;
5049 }
5050 }
5051 /* continue to scan from next id */
5052 tmpid = tmpid + 1;
5053 }
5054 return ret;
5055 }
5056
5057 /*
5058 * get corresponding css from file open on cgroupfs directory
5059 */
5060 struct cgroup_subsys_state *cgroup_css_from_dir(struct file *f, int id)
5061 {
5062 struct cgroup *cgrp;
5063 struct inode *inode;
5064 struct cgroup_subsys_state *css;
5065
5066 inode = f->f_dentry->d_inode;
5067 /* check in cgroup filesystem dir */
5068 if (inode->i_op != &cgroup_dir_inode_operations)
5069 return ERR_PTR(-EBADF);
5070
5071 if (id < 0 || id >= CGROUP_SUBSYS_COUNT)
5072 return ERR_PTR(-EINVAL);
5073
5074 /* get cgroup */
5075 cgrp = __d_cgrp(f->f_dentry);
5076 css = cgrp->subsys[id];
5077 return css ? css : ERR_PTR(-ENOENT);
5078 }
5079
5080 #ifdef CONFIG_CGROUP_DEBUG
5081 static struct cgroup_subsys_state *debug_create(struct cgroup *cont)
5082 {
5083 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5084
5085 if (!css)
5086 return ERR_PTR(-ENOMEM);
5087
5088 return css;
5089 }
5090
5091 static void debug_destroy(struct cgroup *cont)
5092 {
5093 kfree(cont->subsys[debug_subsys_id]);
5094 }
5095
5096 static u64 cgroup_refcount_read(struct cgroup *cont, struct cftype *cft)
5097 {
5098 return atomic_read(&cont->count);
5099 }
5100
5101 static u64 debug_taskcount_read(struct cgroup *cont, struct cftype *cft)
5102 {
5103 return cgroup_task_count(cont);
5104 }
5105
5106 static u64 current_css_set_read(struct cgroup *cont, struct cftype *cft)
5107 {
5108 return (u64)(unsigned long)current->cgroups;
5109 }
5110
5111 static u64 current_css_set_refcount_read(struct cgroup *cont,
5112 struct cftype *cft)
5113 {
5114 u64 count;
5115
5116 rcu_read_lock();
5117 count = atomic_read(&current->cgroups->refcount);
5118 rcu_read_unlock();
5119 return count;
5120 }
5121
5122 static int current_css_set_cg_links_read(struct cgroup *cont,
5123 struct cftype *cft,
5124 struct seq_file *seq)
5125 {
5126 struct cg_cgroup_link *link;
5127 struct css_set *cg;
5128
5129 read_lock(&css_set_lock);
5130 rcu_read_lock();
5131 cg = rcu_dereference(current->cgroups);
5132 list_for_each_entry(link, &cg->cg_links, cg_link_list) {
5133 struct cgroup *c = link->cgrp;
5134 const char *name;
5135
5136 if (c->dentry)
5137 name = c->dentry->d_name.name;
5138 else
5139 name = "?";
5140 seq_printf(seq, "Root %d group %s\n",
5141 c->root->hierarchy_id, name);
5142 }
5143 rcu_read_unlock();
5144 read_unlock(&css_set_lock);
5145 return 0;
5146 }
5147
5148 #define MAX_TASKS_SHOWN_PER_CSS 25
5149 static int cgroup_css_links_read(struct cgroup *cont,
5150 struct cftype *cft,
5151 struct seq_file *seq)
5152 {
5153 struct cg_cgroup_link *link;
5154
5155 read_lock(&css_set_lock);
5156 list_for_each_entry(link, &cont->css_sets, cgrp_link_list) {
5157 struct css_set *cg = link->cg;
5158 struct task_struct *task;
5159 int count = 0;
5160 seq_printf(seq, "css_set %p\n", cg);
5161 list_for_each_entry(task, &cg->tasks, cg_list) {
5162 if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
5163 seq_puts(seq, " ...\n");
5164 break;
5165 } else {
5166 seq_printf(seq, " task %d\n",
5167 task_pid_vnr(task));
5168 }
5169 }
5170 }
5171 read_unlock(&css_set_lock);
5172 return 0;
5173 }
5174
5175 static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft)
5176 {
5177 return test_bit(CGRP_RELEASABLE, &cgrp->flags);
5178 }
5179
5180 static struct cftype debug_files[] = {
5181 {
5182 .name = "cgroup_refcount",
5183 .read_u64 = cgroup_refcount_read,
5184 },
5185 {
5186 .name = "taskcount",
5187 .read_u64 = debug_taskcount_read,
5188 },
5189
5190 {
5191 .name = "current_css_set",
5192 .read_u64 = current_css_set_read,
5193 },
5194
5195 {
5196 .name = "current_css_set_refcount",
5197 .read_u64 = current_css_set_refcount_read,
5198 },
5199
5200 {
5201 .name = "current_css_set_cg_links",
5202 .read_seq_string = current_css_set_cg_links_read,
5203 },
5204
5205 {
5206 .name = "cgroup_css_links",
5207 .read_seq_string = cgroup_css_links_read,
5208 },
5209
5210 {
5211 .name = "releasable",
5212 .read_u64 = releasable_read,
5213 },
5214 };
5215
5216 static int debug_populate(struct cgroup_subsys *ss, struct cgroup *cont)
5217 {
5218 return cgroup_add_files(cont, ss, debug_files,
5219 ARRAY_SIZE(debug_files));
5220 }
5221
5222 struct cgroup_subsys debug_subsys = {
5223 .name = "debug",
5224 .create = debug_create,
5225 .destroy = debug_destroy,
5226 .populate = debug_populate,
5227 .subsys_id = debug_subsys_id,
5228 };
5229 #endif /* CONFIG_CGROUP_DEBUG */
This page took 0.146183 seconds and 6 git commands to generate.