stop_machine: Use smpboot threads
[deliverable/linux.git] / kernel / cpu.c
1 /* CPU control.
2 * (C) 2001, 2002, 2003, 2004 Rusty Russell
3 *
4 * This code is licenced under the GPL.
5 */
6 #include <linux/proc_fs.h>
7 #include <linux/smp.h>
8 #include <linux/init.h>
9 #include <linux/notifier.h>
10 #include <linux/sched.h>
11 #include <linux/unistd.h>
12 #include <linux/cpu.h>
13 #include <linux/oom.h>
14 #include <linux/rcupdate.h>
15 #include <linux/export.h>
16 #include <linux/bug.h>
17 #include <linux/kthread.h>
18 #include <linux/stop_machine.h>
19 #include <linux/mutex.h>
20 #include <linux/gfp.h>
21 #include <linux/suspend.h>
22
23 #include "smpboot.h"
24
25 #ifdef CONFIG_SMP
26 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
27 static DEFINE_MUTEX(cpu_add_remove_lock);
28
29 /*
30 * The following two API's must be used when attempting
31 * to serialize the updates to cpu_online_mask, cpu_present_mask.
32 */
33 void cpu_maps_update_begin(void)
34 {
35 mutex_lock(&cpu_add_remove_lock);
36 }
37
38 void cpu_maps_update_done(void)
39 {
40 mutex_unlock(&cpu_add_remove_lock);
41 }
42
43 static RAW_NOTIFIER_HEAD(cpu_chain);
44
45 /* If set, cpu_up and cpu_down will return -EBUSY and do nothing.
46 * Should always be manipulated under cpu_add_remove_lock
47 */
48 static int cpu_hotplug_disabled;
49
50 #ifdef CONFIG_HOTPLUG_CPU
51
52 static struct {
53 struct task_struct *active_writer;
54 struct mutex lock; /* Synchronizes accesses to refcount, */
55 /*
56 * Also blocks the new readers during
57 * an ongoing cpu hotplug operation.
58 */
59 int refcount;
60 } cpu_hotplug = {
61 .active_writer = NULL,
62 .lock = __MUTEX_INITIALIZER(cpu_hotplug.lock),
63 .refcount = 0,
64 };
65
66 void get_online_cpus(void)
67 {
68 might_sleep();
69 if (cpu_hotplug.active_writer == current)
70 return;
71 mutex_lock(&cpu_hotplug.lock);
72 cpu_hotplug.refcount++;
73 mutex_unlock(&cpu_hotplug.lock);
74
75 }
76 EXPORT_SYMBOL_GPL(get_online_cpus);
77
78 void put_online_cpus(void)
79 {
80 if (cpu_hotplug.active_writer == current)
81 return;
82 mutex_lock(&cpu_hotplug.lock);
83
84 if (WARN_ON(!cpu_hotplug.refcount))
85 cpu_hotplug.refcount++; /* try to fix things up */
86
87 if (!--cpu_hotplug.refcount && unlikely(cpu_hotplug.active_writer))
88 wake_up_process(cpu_hotplug.active_writer);
89 mutex_unlock(&cpu_hotplug.lock);
90
91 }
92 EXPORT_SYMBOL_GPL(put_online_cpus);
93
94 /*
95 * This ensures that the hotplug operation can begin only when the
96 * refcount goes to zero.
97 *
98 * Note that during a cpu-hotplug operation, the new readers, if any,
99 * will be blocked by the cpu_hotplug.lock
100 *
101 * Since cpu_hotplug_begin() is always called after invoking
102 * cpu_maps_update_begin(), we can be sure that only one writer is active.
103 *
104 * Note that theoretically, there is a possibility of a livelock:
105 * - Refcount goes to zero, last reader wakes up the sleeping
106 * writer.
107 * - Last reader unlocks the cpu_hotplug.lock.
108 * - A new reader arrives at this moment, bumps up the refcount.
109 * - The writer acquires the cpu_hotplug.lock finds the refcount
110 * non zero and goes to sleep again.
111 *
112 * However, this is very difficult to achieve in practice since
113 * get_online_cpus() not an api which is called all that often.
114 *
115 */
116 static void cpu_hotplug_begin(void)
117 {
118 cpu_hotplug.active_writer = current;
119
120 for (;;) {
121 mutex_lock(&cpu_hotplug.lock);
122 if (likely(!cpu_hotplug.refcount))
123 break;
124 __set_current_state(TASK_UNINTERRUPTIBLE);
125 mutex_unlock(&cpu_hotplug.lock);
126 schedule();
127 }
128 }
129
130 static void cpu_hotplug_done(void)
131 {
132 cpu_hotplug.active_writer = NULL;
133 mutex_unlock(&cpu_hotplug.lock);
134 }
135
136 #else /* #if CONFIG_HOTPLUG_CPU */
137 static void cpu_hotplug_begin(void) {}
138 static void cpu_hotplug_done(void) {}
139 #endif /* #else #if CONFIG_HOTPLUG_CPU */
140
141 /* Need to know about CPUs going up/down? */
142 int __ref register_cpu_notifier(struct notifier_block *nb)
143 {
144 int ret;
145 cpu_maps_update_begin();
146 ret = raw_notifier_chain_register(&cpu_chain, nb);
147 cpu_maps_update_done();
148 return ret;
149 }
150
151 static int __cpu_notify(unsigned long val, void *v, int nr_to_call,
152 int *nr_calls)
153 {
154 int ret;
155
156 ret = __raw_notifier_call_chain(&cpu_chain, val, v, nr_to_call,
157 nr_calls);
158
159 return notifier_to_errno(ret);
160 }
161
162 static int cpu_notify(unsigned long val, void *v)
163 {
164 return __cpu_notify(val, v, -1, NULL);
165 }
166
167 #ifdef CONFIG_HOTPLUG_CPU
168
169 static void cpu_notify_nofail(unsigned long val, void *v)
170 {
171 BUG_ON(cpu_notify(val, v));
172 }
173 EXPORT_SYMBOL(register_cpu_notifier);
174
175 void __ref unregister_cpu_notifier(struct notifier_block *nb)
176 {
177 cpu_maps_update_begin();
178 raw_notifier_chain_unregister(&cpu_chain, nb);
179 cpu_maps_update_done();
180 }
181 EXPORT_SYMBOL(unregister_cpu_notifier);
182
183 /**
184 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
185 * @cpu: a CPU id
186 *
187 * This function walks all processes, finds a valid mm struct for each one and
188 * then clears a corresponding bit in mm's cpumask. While this all sounds
189 * trivial, there are various non-obvious corner cases, which this function
190 * tries to solve in a safe manner.
191 *
192 * Also note that the function uses a somewhat relaxed locking scheme, so it may
193 * be called only for an already offlined CPU.
194 */
195 void clear_tasks_mm_cpumask(int cpu)
196 {
197 struct task_struct *p;
198
199 /*
200 * This function is called after the cpu is taken down and marked
201 * offline, so its not like new tasks will ever get this cpu set in
202 * their mm mask. -- Peter Zijlstra
203 * Thus, we may use rcu_read_lock() here, instead of grabbing
204 * full-fledged tasklist_lock.
205 */
206 WARN_ON(cpu_online(cpu));
207 rcu_read_lock();
208 for_each_process(p) {
209 struct task_struct *t;
210
211 /*
212 * Main thread might exit, but other threads may still have
213 * a valid mm. Find one.
214 */
215 t = find_lock_task_mm(p);
216 if (!t)
217 continue;
218 cpumask_clear_cpu(cpu, mm_cpumask(t->mm));
219 task_unlock(t);
220 }
221 rcu_read_unlock();
222 }
223
224 static inline void check_for_tasks(int cpu)
225 {
226 struct task_struct *p;
227
228 write_lock_irq(&tasklist_lock);
229 for_each_process(p) {
230 if (task_cpu(p) == cpu && p->state == TASK_RUNNING &&
231 (p->utime || p->stime))
232 printk(KERN_WARNING "Task %s (pid = %d) is on cpu %d "
233 "(state = %ld, flags = %x)\n",
234 p->comm, task_pid_nr(p), cpu,
235 p->state, p->flags);
236 }
237 write_unlock_irq(&tasklist_lock);
238 }
239
240 struct take_cpu_down_param {
241 unsigned long mod;
242 void *hcpu;
243 };
244
245 /* Take this CPU down. */
246 static int __ref take_cpu_down(void *_param)
247 {
248 struct take_cpu_down_param *param = _param;
249 int err;
250
251 /* Ensure this CPU doesn't handle any more interrupts. */
252 err = __cpu_disable();
253 if (err < 0)
254 return err;
255
256 cpu_notify(CPU_DYING | param->mod, param->hcpu);
257 /* Park the stopper thread */
258 kthread_park(current);
259 return 0;
260 }
261
262 /* Requires cpu_add_remove_lock to be held */
263 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen)
264 {
265 int err, nr_calls = 0;
266 void *hcpu = (void *)(long)cpu;
267 unsigned long mod = tasks_frozen ? CPU_TASKS_FROZEN : 0;
268 struct take_cpu_down_param tcd_param = {
269 .mod = mod,
270 .hcpu = hcpu,
271 };
272
273 if (num_online_cpus() == 1)
274 return -EBUSY;
275
276 if (!cpu_online(cpu))
277 return -EINVAL;
278
279 cpu_hotplug_begin();
280
281 err = __cpu_notify(CPU_DOWN_PREPARE | mod, hcpu, -1, &nr_calls);
282 if (err) {
283 nr_calls--;
284 __cpu_notify(CPU_DOWN_FAILED | mod, hcpu, nr_calls, NULL);
285 printk("%s: attempt to take down CPU %u failed\n",
286 __func__, cpu);
287 goto out_release;
288 }
289 smpboot_park_threads(cpu);
290
291 err = __stop_machine(take_cpu_down, &tcd_param, cpumask_of(cpu));
292 if (err) {
293 /* CPU didn't die: tell everyone. Can't complain. */
294 smpboot_unpark_threads(cpu);
295 cpu_notify_nofail(CPU_DOWN_FAILED | mod, hcpu);
296 goto out_release;
297 }
298 BUG_ON(cpu_online(cpu));
299
300 /*
301 * The migration_call() CPU_DYING callback will have removed all
302 * runnable tasks from the cpu, there's only the idle task left now
303 * that the migration thread is done doing the stop_machine thing.
304 *
305 * Wait for the stop thread to go away.
306 */
307 while (!idle_cpu(cpu))
308 cpu_relax();
309
310 /* This actually kills the CPU. */
311 __cpu_die(cpu);
312
313 /* CPU is completely dead: tell everyone. Too late to complain. */
314 cpu_notify_nofail(CPU_DEAD | mod, hcpu);
315
316 check_for_tasks(cpu);
317
318 out_release:
319 cpu_hotplug_done();
320 if (!err)
321 cpu_notify_nofail(CPU_POST_DEAD | mod, hcpu);
322 return err;
323 }
324
325 int __ref cpu_down(unsigned int cpu)
326 {
327 int err;
328
329 cpu_maps_update_begin();
330
331 if (cpu_hotplug_disabled) {
332 err = -EBUSY;
333 goto out;
334 }
335
336 err = _cpu_down(cpu, 0);
337
338 out:
339 cpu_maps_update_done();
340 return err;
341 }
342 EXPORT_SYMBOL(cpu_down);
343 #endif /*CONFIG_HOTPLUG_CPU*/
344
345 /* Requires cpu_add_remove_lock to be held */
346 static int __cpuinit _cpu_up(unsigned int cpu, int tasks_frozen)
347 {
348 int ret, nr_calls = 0;
349 void *hcpu = (void *)(long)cpu;
350 unsigned long mod = tasks_frozen ? CPU_TASKS_FROZEN : 0;
351 struct task_struct *idle;
352
353 cpu_hotplug_begin();
354
355 if (cpu_online(cpu) || !cpu_present(cpu)) {
356 ret = -EINVAL;
357 goto out;
358 }
359
360 idle = idle_thread_get(cpu);
361 if (IS_ERR(idle)) {
362 ret = PTR_ERR(idle);
363 goto out;
364 }
365
366 ret = smpboot_create_threads(cpu);
367 if (ret)
368 goto out;
369
370 ret = __cpu_notify(CPU_UP_PREPARE | mod, hcpu, -1, &nr_calls);
371 if (ret) {
372 nr_calls--;
373 printk(KERN_WARNING "%s: attempt to bring up CPU %u failed\n",
374 __func__, cpu);
375 goto out_notify;
376 }
377
378 /* Arch-specific enabling code. */
379 ret = __cpu_up(cpu, idle);
380 if (ret != 0)
381 goto out_notify;
382 BUG_ON(!cpu_online(cpu));
383
384 /* Wake the per cpu threads */
385 smpboot_unpark_threads(cpu);
386
387 /* Now call notifier in preparation. */
388 cpu_notify(CPU_ONLINE | mod, hcpu);
389
390 out_notify:
391 if (ret != 0)
392 __cpu_notify(CPU_UP_CANCELED | mod, hcpu, nr_calls, NULL);
393 out:
394 cpu_hotplug_done();
395
396 return ret;
397 }
398
399 int __cpuinit cpu_up(unsigned int cpu)
400 {
401 int err = 0;
402
403 #ifdef CONFIG_MEMORY_HOTPLUG
404 int nid;
405 pg_data_t *pgdat;
406 #endif
407
408 if (!cpu_possible(cpu)) {
409 printk(KERN_ERR "can't online cpu %d because it is not "
410 "configured as may-hotadd at boot time\n", cpu);
411 #if defined(CONFIG_IA64)
412 printk(KERN_ERR "please check additional_cpus= boot "
413 "parameter\n");
414 #endif
415 return -EINVAL;
416 }
417
418 #ifdef CONFIG_MEMORY_HOTPLUG
419 nid = cpu_to_node(cpu);
420 if (!node_online(nid)) {
421 err = mem_online_node(nid);
422 if (err)
423 return err;
424 }
425
426 pgdat = NODE_DATA(nid);
427 if (!pgdat) {
428 printk(KERN_ERR
429 "Can't online cpu %d due to NULL pgdat\n", cpu);
430 return -ENOMEM;
431 }
432
433 if (pgdat->node_zonelists->_zonerefs->zone == NULL) {
434 mutex_lock(&zonelists_mutex);
435 build_all_zonelists(NULL, NULL);
436 mutex_unlock(&zonelists_mutex);
437 }
438 #endif
439
440 cpu_maps_update_begin();
441
442 if (cpu_hotplug_disabled) {
443 err = -EBUSY;
444 goto out;
445 }
446
447 err = _cpu_up(cpu, 0);
448
449 out:
450 cpu_maps_update_done();
451 return err;
452 }
453 EXPORT_SYMBOL_GPL(cpu_up);
454
455 #ifdef CONFIG_PM_SLEEP_SMP
456 static cpumask_var_t frozen_cpus;
457
458 int disable_nonboot_cpus(void)
459 {
460 int cpu, first_cpu, error = 0;
461
462 cpu_maps_update_begin();
463 first_cpu = cpumask_first(cpu_online_mask);
464 /*
465 * We take down all of the non-boot CPUs in one shot to avoid races
466 * with the userspace trying to use the CPU hotplug at the same time
467 */
468 cpumask_clear(frozen_cpus);
469
470 printk("Disabling non-boot CPUs ...\n");
471 for_each_online_cpu(cpu) {
472 if (cpu == first_cpu)
473 continue;
474 error = _cpu_down(cpu, 1);
475 if (!error)
476 cpumask_set_cpu(cpu, frozen_cpus);
477 else {
478 printk(KERN_ERR "Error taking CPU%d down: %d\n",
479 cpu, error);
480 break;
481 }
482 }
483
484 if (!error) {
485 BUG_ON(num_online_cpus() > 1);
486 /* Make sure the CPUs won't be enabled by someone else */
487 cpu_hotplug_disabled = 1;
488 } else {
489 printk(KERN_ERR "Non-boot CPUs are not disabled\n");
490 }
491 cpu_maps_update_done();
492 return error;
493 }
494
495 void __weak arch_enable_nonboot_cpus_begin(void)
496 {
497 }
498
499 void __weak arch_enable_nonboot_cpus_end(void)
500 {
501 }
502
503 void __ref enable_nonboot_cpus(void)
504 {
505 int cpu, error;
506
507 /* Allow everyone to use the CPU hotplug again */
508 cpu_maps_update_begin();
509 cpu_hotplug_disabled = 0;
510 if (cpumask_empty(frozen_cpus))
511 goto out;
512
513 printk(KERN_INFO "Enabling non-boot CPUs ...\n");
514
515 arch_enable_nonboot_cpus_begin();
516
517 for_each_cpu(cpu, frozen_cpus) {
518 error = _cpu_up(cpu, 1);
519 if (!error) {
520 printk(KERN_INFO "CPU%d is up\n", cpu);
521 continue;
522 }
523 printk(KERN_WARNING "Error taking CPU%d up: %d\n", cpu, error);
524 }
525
526 arch_enable_nonboot_cpus_end();
527
528 cpumask_clear(frozen_cpus);
529 out:
530 cpu_maps_update_done();
531 }
532
533 static int __init alloc_frozen_cpus(void)
534 {
535 if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
536 return -ENOMEM;
537 return 0;
538 }
539 core_initcall(alloc_frozen_cpus);
540
541 /*
542 * Prevent regular CPU hotplug from racing with the freezer, by disabling CPU
543 * hotplug when tasks are about to be frozen. Also, don't allow the freezer
544 * to continue until any currently running CPU hotplug operation gets
545 * completed.
546 * To modify the 'cpu_hotplug_disabled' flag, we need to acquire the
547 * 'cpu_add_remove_lock'. And this same lock is also taken by the regular
548 * CPU hotplug path and released only after it is complete. Thus, we
549 * (and hence the freezer) will block here until any currently running CPU
550 * hotplug operation gets completed.
551 */
552 void cpu_hotplug_disable_before_freeze(void)
553 {
554 cpu_maps_update_begin();
555 cpu_hotplug_disabled = 1;
556 cpu_maps_update_done();
557 }
558
559
560 /*
561 * When tasks have been thawed, re-enable regular CPU hotplug (which had been
562 * disabled while beginning to freeze tasks).
563 */
564 void cpu_hotplug_enable_after_thaw(void)
565 {
566 cpu_maps_update_begin();
567 cpu_hotplug_disabled = 0;
568 cpu_maps_update_done();
569 }
570
571 /*
572 * When callbacks for CPU hotplug notifications are being executed, we must
573 * ensure that the state of the system with respect to the tasks being frozen
574 * or not, as reported by the notification, remains unchanged *throughout the
575 * duration* of the execution of the callbacks.
576 * Hence we need to prevent the freezer from racing with regular CPU hotplug.
577 *
578 * This synchronization is implemented by mutually excluding regular CPU
579 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
580 * Hibernate notifications.
581 */
582 static int
583 cpu_hotplug_pm_callback(struct notifier_block *nb,
584 unsigned long action, void *ptr)
585 {
586 switch (action) {
587
588 case PM_SUSPEND_PREPARE:
589 case PM_HIBERNATION_PREPARE:
590 cpu_hotplug_disable_before_freeze();
591 break;
592
593 case PM_POST_SUSPEND:
594 case PM_POST_HIBERNATION:
595 cpu_hotplug_enable_after_thaw();
596 break;
597
598 default:
599 return NOTIFY_DONE;
600 }
601
602 return NOTIFY_OK;
603 }
604
605
606 static int __init cpu_hotplug_pm_sync_init(void)
607 {
608 /*
609 * cpu_hotplug_pm_callback has higher priority than x86
610 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
611 * to disable cpu hotplug to avoid cpu hotplug race.
612 */
613 pm_notifier(cpu_hotplug_pm_callback, 0);
614 return 0;
615 }
616 core_initcall(cpu_hotplug_pm_sync_init);
617
618 #endif /* CONFIG_PM_SLEEP_SMP */
619
620 /**
621 * notify_cpu_starting(cpu) - call the CPU_STARTING notifiers
622 * @cpu: cpu that just started
623 *
624 * This function calls the cpu_chain notifiers with CPU_STARTING.
625 * It must be called by the arch code on the new cpu, before the new cpu
626 * enables interrupts and before the "boot" cpu returns from __cpu_up().
627 */
628 void __cpuinit notify_cpu_starting(unsigned int cpu)
629 {
630 unsigned long val = CPU_STARTING;
631
632 #ifdef CONFIG_PM_SLEEP_SMP
633 if (frozen_cpus != NULL && cpumask_test_cpu(cpu, frozen_cpus))
634 val = CPU_STARTING_FROZEN;
635 #endif /* CONFIG_PM_SLEEP_SMP */
636 cpu_notify(val, (void *)(long)cpu);
637 }
638
639 #endif /* CONFIG_SMP */
640
641 /*
642 * cpu_bit_bitmap[] is a special, "compressed" data structure that
643 * represents all NR_CPUS bits binary values of 1<<nr.
644 *
645 * It is used by cpumask_of() to get a constant address to a CPU
646 * mask value that has a single bit set only.
647 */
648
649 /* cpu_bit_bitmap[0] is empty - so we can back into it */
650 #define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x))
651 #define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
652 #define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
653 #define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
654
655 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
656
657 MASK_DECLARE_8(0), MASK_DECLARE_8(8),
658 MASK_DECLARE_8(16), MASK_DECLARE_8(24),
659 #if BITS_PER_LONG > 32
660 MASK_DECLARE_8(32), MASK_DECLARE_8(40),
661 MASK_DECLARE_8(48), MASK_DECLARE_8(56),
662 #endif
663 };
664 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
665
666 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
667 EXPORT_SYMBOL(cpu_all_bits);
668
669 #ifdef CONFIG_INIT_ALL_POSSIBLE
670 static DECLARE_BITMAP(cpu_possible_bits, CONFIG_NR_CPUS) __read_mostly
671 = CPU_BITS_ALL;
672 #else
673 static DECLARE_BITMAP(cpu_possible_bits, CONFIG_NR_CPUS) __read_mostly;
674 #endif
675 const struct cpumask *const cpu_possible_mask = to_cpumask(cpu_possible_bits);
676 EXPORT_SYMBOL(cpu_possible_mask);
677
678 static DECLARE_BITMAP(cpu_online_bits, CONFIG_NR_CPUS) __read_mostly;
679 const struct cpumask *const cpu_online_mask = to_cpumask(cpu_online_bits);
680 EXPORT_SYMBOL(cpu_online_mask);
681
682 static DECLARE_BITMAP(cpu_present_bits, CONFIG_NR_CPUS) __read_mostly;
683 const struct cpumask *const cpu_present_mask = to_cpumask(cpu_present_bits);
684 EXPORT_SYMBOL(cpu_present_mask);
685
686 static DECLARE_BITMAP(cpu_active_bits, CONFIG_NR_CPUS) __read_mostly;
687 const struct cpumask *const cpu_active_mask = to_cpumask(cpu_active_bits);
688 EXPORT_SYMBOL(cpu_active_mask);
689
690 void set_cpu_possible(unsigned int cpu, bool possible)
691 {
692 if (possible)
693 cpumask_set_cpu(cpu, to_cpumask(cpu_possible_bits));
694 else
695 cpumask_clear_cpu(cpu, to_cpumask(cpu_possible_bits));
696 }
697
698 void set_cpu_present(unsigned int cpu, bool present)
699 {
700 if (present)
701 cpumask_set_cpu(cpu, to_cpumask(cpu_present_bits));
702 else
703 cpumask_clear_cpu(cpu, to_cpumask(cpu_present_bits));
704 }
705
706 void set_cpu_online(unsigned int cpu, bool online)
707 {
708 if (online)
709 cpumask_set_cpu(cpu, to_cpumask(cpu_online_bits));
710 else
711 cpumask_clear_cpu(cpu, to_cpumask(cpu_online_bits));
712 }
713
714 void set_cpu_active(unsigned int cpu, bool active)
715 {
716 if (active)
717 cpumask_set_cpu(cpu, to_cpumask(cpu_active_bits));
718 else
719 cpumask_clear_cpu(cpu, to_cpumask(cpu_active_bits));
720 }
721
722 void init_cpu_present(const struct cpumask *src)
723 {
724 cpumask_copy(to_cpumask(cpu_present_bits), src);
725 }
726
727 void init_cpu_possible(const struct cpumask *src)
728 {
729 cpumask_copy(to_cpumask(cpu_possible_bits), src);
730 }
731
732 void init_cpu_online(const struct cpumask *src)
733 {
734 cpumask_copy(to_cpumask(cpu_online_bits), src);
735 }
This page took 0.044795 seconds and 5 git commands to generate.