rcu: Make CPU_DYING_IDLE an explicit call
[deliverable/linux.git] / kernel / cpu.c
1 /* CPU control.
2 * (C) 2001, 2002, 2003, 2004 Rusty Russell
3 *
4 * This code is licenced under the GPL.
5 */
6 #include <linux/proc_fs.h>
7 #include <linux/smp.h>
8 #include <linux/init.h>
9 #include <linux/notifier.h>
10 #include <linux/sched.h>
11 #include <linux/unistd.h>
12 #include <linux/cpu.h>
13 #include <linux/oom.h>
14 #include <linux/rcupdate.h>
15 #include <linux/export.h>
16 #include <linux/bug.h>
17 #include <linux/kthread.h>
18 #include <linux/stop_machine.h>
19 #include <linux/mutex.h>
20 #include <linux/gfp.h>
21 #include <linux/suspend.h>
22 #include <linux/lockdep.h>
23 #include <linux/tick.h>
24 #include <linux/irq.h>
25 #include <linux/smpboot.h>
26
27 #include <trace/events/power.h>
28 #define CREATE_TRACE_POINTS
29 #include <trace/events/cpuhp.h>
30
31 #include "smpboot.h"
32
33 /**
34 * cpuhp_cpu_state - Per cpu hotplug state storage
35 * @state: The current cpu state
36 * @target: The target state
37 * @thread: Pointer to the hotplug thread
38 * @should_run: Thread should execute
39 * @cb_stat: The state for a single callback (install/uninstall)
40 * @cb: Single callback function (install/uninstall)
41 * @result: Result of the operation
42 * @done: Signal completion to the issuer of the task
43 */
44 struct cpuhp_cpu_state {
45 enum cpuhp_state state;
46 enum cpuhp_state target;
47 #ifdef CONFIG_SMP
48 struct task_struct *thread;
49 bool should_run;
50 enum cpuhp_state cb_state;
51 int (*cb)(unsigned int cpu);
52 int result;
53 struct completion done;
54 #endif
55 };
56
57 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state);
58
59 /**
60 * cpuhp_step - Hotplug state machine step
61 * @name: Name of the step
62 * @startup: Startup function of the step
63 * @teardown: Teardown function of the step
64 * @skip_onerr: Do not invoke the functions on error rollback
65 * Will go away once the notifiers are gone
66 * @cant_stop: Bringup/teardown can't be stopped at this step
67 */
68 struct cpuhp_step {
69 const char *name;
70 int (*startup)(unsigned int cpu);
71 int (*teardown)(unsigned int cpu);
72 bool skip_onerr;
73 bool cant_stop;
74 };
75
76 static DEFINE_MUTEX(cpuhp_state_mutex);
77 static struct cpuhp_step cpuhp_bp_states[];
78 static struct cpuhp_step cpuhp_ap_states[];
79
80 /**
81 * cpuhp_invoke_callback _ Invoke the callbacks for a given state
82 * @cpu: The cpu for which the callback should be invoked
83 * @step: The step in the state machine
84 * @cb: The callback function to invoke
85 *
86 * Called from cpu hotplug and from the state register machinery
87 */
88 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state step,
89 int (*cb)(unsigned int))
90 {
91 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
92 int ret = 0;
93
94 if (cb) {
95 trace_cpuhp_enter(cpu, st->target, step, cb);
96 ret = cb(cpu);
97 trace_cpuhp_exit(cpu, st->state, step, ret);
98 }
99 return ret;
100 }
101
102 #ifdef CONFIG_SMP
103 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
104 static DEFINE_MUTEX(cpu_add_remove_lock);
105 bool cpuhp_tasks_frozen;
106 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
107
108 /*
109 * The following two APIs (cpu_maps_update_begin/done) must be used when
110 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
111 * The APIs cpu_notifier_register_begin/done() must be used to protect CPU
112 * hotplug callback (un)registration performed using __register_cpu_notifier()
113 * or __unregister_cpu_notifier().
114 */
115 void cpu_maps_update_begin(void)
116 {
117 mutex_lock(&cpu_add_remove_lock);
118 }
119 EXPORT_SYMBOL(cpu_notifier_register_begin);
120
121 void cpu_maps_update_done(void)
122 {
123 mutex_unlock(&cpu_add_remove_lock);
124 }
125 EXPORT_SYMBOL(cpu_notifier_register_done);
126
127 static RAW_NOTIFIER_HEAD(cpu_chain);
128
129 /* If set, cpu_up and cpu_down will return -EBUSY and do nothing.
130 * Should always be manipulated under cpu_add_remove_lock
131 */
132 static int cpu_hotplug_disabled;
133
134 #ifdef CONFIG_HOTPLUG_CPU
135
136 static struct {
137 struct task_struct *active_writer;
138 /* wait queue to wake up the active_writer */
139 wait_queue_head_t wq;
140 /* verifies that no writer will get active while readers are active */
141 struct mutex lock;
142 /*
143 * Also blocks the new readers during
144 * an ongoing cpu hotplug operation.
145 */
146 atomic_t refcount;
147
148 #ifdef CONFIG_DEBUG_LOCK_ALLOC
149 struct lockdep_map dep_map;
150 #endif
151 } cpu_hotplug = {
152 .active_writer = NULL,
153 .wq = __WAIT_QUEUE_HEAD_INITIALIZER(cpu_hotplug.wq),
154 .lock = __MUTEX_INITIALIZER(cpu_hotplug.lock),
155 #ifdef CONFIG_DEBUG_LOCK_ALLOC
156 .dep_map = {.name = "cpu_hotplug.lock" },
157 #endif
158 };
159
160 /* Lockdep annotations for get/put_online_cpus() and cpu_hotplug_begin/end() */
161 #define cpuhp_lock_acquire_read() lock_map_acquire_read(&cpu_hotplug.dep_map)
162 #define cpuhp_lock_acquire_tryread() \
163 lock_map_acquire_tryread(&cpu_hotplug.dep_map)
164 #define cpuhp_lock_acquire() lock_map_acquire(&cpu_hotplug.dep_map)
165 #define cpuhp_lock_release() lock_map_release(&cpu_hotplug.dep_map)
166
167
168 void get_online_cpus(void)
169 {
170 might_sleep();
171 if (cpu_hotplug.active_writer == current)
172 return;
173 cpuhp_lock_acquire_read();
174 mutex_lock(&cpu_hotplug.lock);
175 atomic_inc(&cpu_hotplug.refcount);
176 mutex_unlock(&cpu_hotplug.lock);
177 }
178 EXPORT_SYMBOL_GPL(get_online_cpus);
179
180 void put_online_cpus(void)
181 {
182 int refcount;
183
184 if (cpu_hotplug.active_writer == current)
185 return;
186
187 refcount = atomic_dec_return(&cpu_hotplug.refcount);
188 if (WARN_ON(refcount < 0)) /* try to fix things up */
189 atomic_inc(&cpu_hotplug.refcount);
190
191 if (refcount <= 0 && waitqueue_active(&cpu_hotplug.wq))
192 wake_up(&cpu_hotplug.wq);
193
194 cpuhp_lock_release();
195
196 }
197 EXPORT_SYMBOL_GPL(put_online_cpus);
198
199 /*
200 * This ensures that the hotplug operation can begin only when the
201 * refcount goes to zero.
202 *
203 * Note that during a cpu-hotplug operation, the new readers, if any,
204 * will be blocked by the cpu_hotplug.lock
205 *
206 * Since cpu_hotplug_begin() is always called after invoking
207 * cpu_maps_update_begin(), we can be sure that only one writer is active.
208 *
209 * Note that theoretically, there is a possibility of a livelock:
210 * - Refcount goes to zero, last reader wakes up the sleeping
211 * writer.
212 * - Last reader unlocks the cpu_hotplug.lock.
213 * - A new reader arrives at this moment, bumps up the refcount.
214 * - The writer acquires the cpu_hotplug.lock finds the refcount
215 * non zero and goes to sleep again.
216 *
217 * However, this is very difficult to achieve in practice since
218 * get_online_cpus() not an api which is called all that often.
219 *
220 */
221 void cpu_hotplug_begin(void)
222 {
223 DEFINE_WAIT(wait);
224
225 cpu_hotplug.active_writer = current;
226 cpuhp_lock_acquire();
227
228 for (;;) {
229 mutex_lock(&cpu_hotplug.lock);
230 prepare_to_wait(&cpu_hotplug.wq, &wait, TASK_UNINTERRUPTIBLE);
231 if (likely(!atomic_read(&cpu_hotplug.refcount)))
232 break;
233 mutex_unlock(&cpu_hotplug.lock);
234 schedule();
235 }
236 finish_wait(&cpu_hotplug.wq, &wait);
237 }
238
239 void cpu_hotplug_done(void)
240 {
241 cpu_hotplug.active_writer = NULL;
242 mutex_unlock(&cpu_hotplug.lock);
243 cpuhp_lock_release();
244 }
245
246 /*
247 * Wait for currently running CPU hotplug operations to complete (if any) and
248 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
249 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
250 * hotplug path before performing hotplug operations. So acquiring that lock
251 * guarantees mutual exclusion from any currently running hotplug operations.
252 */
253 void cpu_hotplug_disable(void)
254 {
255 cpu_maps_update_begin();
256 cpu_hotplug_disabled++;
257 cpu_maps_update_done();
258 }
259 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
260
261 void cpu_hotplug_enable(void)
262 {
263 cpu_maps_update_begin();
264 WARN_ON(--cpu_hotplug_disabled < 0);
265 cpu_maps_update_done();
266 }
267 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
268 #endif /* CONFIG_HOTPLUG_CPU */
269
270 /* Need to know about CPUs going up/down? */
271 int register_cpu_notifier(struct notifier_block *nb)
272 {
273 int ret;
274 cpu_maps_update_begin();
275 ret = raw_notifier_chain_register(&cpu_chain, nb);
276 cpu_maps_update_done();
277 return ret;
278 }
279
280 int __register_cpu_notifier(struct notifier_block *nb)
281 {
282 return raw_notifier_chain_register(&cpu_chain, nb);
283 }
284
285 static int __cpu_notify(unsigned long val, unsigned int cpu, int nr_to_call,
286 int *nr_calls)
287 {
288 unsigned long mod = cpuhp_tasks_frozen ? CPU_TASKS_FROZEN : 0;
289 void *hcpu = (void *)(long)cpu;
290
291 int ret;
292
293 ret = __raw_notifier_call_chain(&cpu_chain, val | mod, hcpu, nr_to_call,
294 nr_calls);
295
296 return notifier_to_errno(ret);
297 }
298
299 static int cpu_notify(unsigned long val, unsigned int cpu)
300 {
301 return __cpu_notify(val, cpu, -1, NULL);
302 }
303
304 /* Notifier wrappers for transitioning to state machine */
305 static int notify_prepare(unsigned int cpu)
306 {
307 int nr_calls = 0;
308 int ret;
309
310 ret = __cpu_notify(CPU_UP_PREPARE, cpu, -1, &nr_calls);
311 if (ret) {
312 nr_calls--;
313 printk(KERN_WARNING "%s: attempt to bring up CPU %u failed\n",
314 __func__, cpu);
315 __cpu_notify(CPU_UP_CANCELED, cpu, nr_calls, NULL);
316 }
317 return ret;
318 }
319
320 static int notify_online(unsigned int cpu)
321 {
322 cpu_notify(CPU_ONLINE, cpu);
323 return 0;
324 }
325
326 static int notify_starting(unsigned int cpu)
327 {
328 cpu_notify(CPU_STARTING, cpu);
329 return 0;
330 }
331
332 static int bringup_wait_for_ap(unsigned int cpu)
333 {
334 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
335
336 wait_for_completion(&st->done);
337 return st->result;
338 }
339
340 static int bringup_cpu(unsigned int cpu)
341 {
342 struct task_struct *idle = idle_thread_get(cpu);
343 int ret;
344
345 /* Arch-specific enabling code. */
346 ret = __cpu_up(cpu, idle);
347 if (ret) {
348 cpu_notify(CPU_UP_CANCELED, cpu);
349 return ret;
350 }
351 ret = bringup_wait_for_ap(cpu);
352 BUG_ON(!cpu_online(cpu));
353 return ret;
354 }
355
356 /*
357 * Hotplug state machine related functions
358 */
359 static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st,
360 struct cpuhp_step *steps)
361 {
362 for (st->state++; st->state < st->target; st->state++) {
363 struct cpuhp_step *step = steps + st->state;
364
365 if (!step->skip_onerr)
366 cpuhp_invoke_callback(cpu, st->state, step->startup);
367 }
368 }
369
370 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
371 struct cpuhp_step *steps, enum cpuhp_state target)
372 {
373 enum cpuhp_state prev_state = st->state;
374 int ret = 0;
375
376 for (; st->state > target; st->state--) {
377 struct cpuhp_step *step = steps + st->state;
378
379 ret = cpuhp_invoke_callback(cpu, st->state, step->teardown);
380 if (ret) {
381 st->target = prev_state;
382 undo_cpu_down(cpu, st, steps);
383 break;
384 }
385 }
386 return ret;
387 }
388
389 static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st,
390 struct cpuhp_step *steps)
391 {
392 for (st->state--; st->state > st->target; st->state--) {
393 struct cpuhp_step *step = steps + st->state;
394
395 if (!step->skip_onerr)
396 cpuhp_invoke_callback(cpu, st->state, step->teardown);
397 }
398 }
399
400 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
401 struct cpuhp_step *steps, enum cpuhp_state target)
402 {
403 enum cpuhp_state prev_state = st->state;
404 int ret = 0;
405
406 while (st->state < target) {
407 struct cpuhp_step *step;
408
409 st->state++;
410 step = steps + st->state;
411 ret = cpuhp_invoke_callback(cpu, st->state, step->startup);
412 if (ret) {
413 st->target = prev_state;
414 undo_cpu_up(cpu, st, steps);
415 break;
416 }
417 }
418 return ret;
419 }
420
421 /*
422 * The cpu hotplug threads manage the bringup and teardown of the cpus
423 */
424 static void cpuhp_create(unsigned int cpu)
425 {
426 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
427
428 init_completion(&st->done);
429 }
430
431 static int cpuhp_should_run(unsigned int cpu)
432 {
433 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
434
435 return st->should_run;
436 }
437
438 /* Execute the teardown callbacks. Used to be CPU_DOWN_PREPARE */
439 static int cpuhp_ap_offline(unsigned int cpu, struct cpuhp_cpu_state *st)
440 {
441 enum cpuhp_state target = max((int)st->target, CPUHP_TEARDOWN_CPU);
442
443 return cpuhp_down_callbacks(cpu, st, cpuhp_ap_states, target);
444 }
445
446 /* Execute the online startup callbacks. Used to be CPU_ONLINE */
447 static int cpuhp_ap_online(unsigned int cpu, struct cpuhp_cpu_state *st)
448 {
449 return cpuhp_up_callbacks(cpu, st, cpuhp_ap_states, st->target);
450 }
451
452 /*
453 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
454 * callbacks when a state gets [un]installed at runtime.
455 */
456 static void cpuhp_thread_fun(unsigned int cpu)
457 {
458 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
459 int ret = 0;
460
461 /*
462 * Paired with the mb() in cpuhp_kick_ap_work and
463 * cpuhp_invoke_ap_callback, so the work set is consistent visible.
464 */
465 smp_mb();
466 if (!st->should_run)
467 return;
468
469 st->should_run = false;
470
471 /* Single callback invocation for [un]install ? */
472 if (st->cb) {
473 if (st->cb_state < CPUHP_AP_ONLINE) {
474 local_irq_disable();
475 ret = cpuhp_invoke_callback(cpu, st->cb_state, st->cb);
476 local_irq_enable();
477 } else {
478 ret = cpuhp_invoke_callback(cpu, st->cb_state, st->cb);
479 }
480 } else {
481 /* Cannot happen .... */
482 BUG_ON(st->state < CPUHP_AP_ONLINE_IDLE);
483
484 /* Regular hotplug work */
485 if (st->state < st->target)
486 ret = cpuhp_ap_online(cpu, st);
487 else if (st->state > st->target)
488 ret = cpuhp_ap_offline(cpu, st);
489 }
490 st->result = ret;
491 complete(&st->done);
492 }
493
494 /* Invoke a single callback on a remote cpu */
495 static int cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state,
496 int (*cb)(unsigned int))
497 {
498 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
499
500 if (!cpu_online(cpu))
501 return 0;
502
503 st->cb_state = state;
504 st->cb = cb;
505 /*
506 * Make sure the above stores are visible before should_run becomes
507 * true. Paired with the mb() above in cpuhp_thread_fun()
508 */
509 smp_mb();
510 st->should_run = true;
511 wake_up_process(st->thread);
512 wait_for_completion(&st->done);
513 return st->result;
514 }
515
516 /* Regular hotplug invocation of the AP hotplug thread */
517 static void __cpuhp_kick_ap_work(struct cpuhp_cpu_state *st)
518 {
519 st->result = 0;
520 st->cb = NULL;
521 /*
522 * Make sure the above stores are visible before should_run becomes
523 * true. Paired with the mb() above in cpuhp_thread_fun()
524 */
525 smp_mb();
526 st->should_run = true;
527 wake_up_process(st->thread);
528 }
529
530 static int cpuhp_kick_ap_work(unsigned int cpu)
531 {
532 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
533 enum cpuhp_state state = st->state;
534
535 trace_cpuhp_enter(cpu, st->target, state, cpuhp_kick_ap_work);
536 __cpuhp_kick_ap_work(st);
537 wait_for_completion(&st->done);
538 trace_cpuhp_exit(cpu, st->state, state, st->result);
539 return st->result;
540 }
541
542 static struct smp_hotplug_thread cpuhp_threads = {
543 .store = &cpuhp_state.thread,
544 .create = &cpuhp_create,
545 .thread_should_run = cpuhp_should_run,
546 .thread_fn = cpuhp_thread_fun,
547 .thread_comm = "cpuhp/%u",
548 .selfparking = true,
549 };
550
551 void __init cpuhp_threads_init(void)
552 {
553 BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
554 kthread_unpark(this_cpu_read(cpuhp_state.thread));
555 }
556
557 #ifdef CONFIG_HOTPLUG_CPU
558 EXPORT_SYMBOL(register_cpu_notifier);
559 EXPORT_SYMBOL(__register_cpu_notifier);
560 void unregister_cpu_notifier(struct notifier_block *nb)
561 {
562 cpu_maps_update_begin();
563 raw_notifier_chain_unregister(&cpu_chain, nb);
564 cpu_maps_update_done();
565 }
566 EXPORT_SYMBOL(unregister_cpu_notifier);
567
568 void __unregister_cpu_notifier(struct notifier_block *nb)
569 {
570 raw_notifier_chain_unregister(&cpu_chain, nb);
571 }
572 EXPORT_SYMBOL(__unregister_cpu_notifier);
573
574 /**
575 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
576 * @cpu: a CPU id
577 *
578 * This function walks all processes, finds a valid mm struct for each one and
579 * then clears a corresponding bit in mm's cpumask. While this all sounds
580 * trivial, there are various non-obvious corner cases, which this function
581 * tries to solve in a safe manner.
582 *
583 * Also note that the function uses a somewhat relaxed locking scheme, so it may
584 * be called only for an already offlined CPU.
585 */
586 void clear_tasks_mm_cpumask(int cpu)
587 {
588 struct task_struct *p;
589
590 /*
591 * This function is called after the cpu is taken down and marked
592 * offline, so its not like new tasks will ever get this cpu set in
593 * their mm mask. -- Peter Zijlstra
594 * Thus, we may use rcu_read_lock() here, instead of grabbing
595 * full-fledged tasklist_lock.
596 */
597 WARN_ON(cpu_online(cpu));
598 rcu_read_lock();
599 for_each_process(p) {
600 struct task_struct *t;
601
602 /*
603 * Main thread might exit, but other threads may still have
604 * a valid mm. Find one.
605 */
606 t = find_lock_task_mm(p);
607 if (!t)
608 continue;
609 cpumask_clear_cpu(cpu, mm_cpumask(t->mm));
610 task_unlock(t);
611 }
612 rcu_read_unlock();
613 }
614
615 static inline void check_for_tasks(int dead_cpu)
616 {
617 struct task_struct *g, *p;
618
619 read_lock(&tasklist_lock);
620 for_each_process_thread(g, p) {
621 if (!p->on_rq)
622 continue;
623 /*
624 * We do the check with unlocked task_rq(p)->lock.
625 * Order the reading to do not warn about a task,
626 * which was running on this cpu in the past, and
627 * it's just been woken on another cpu.
628 */
629 rmb();
630 if (task_cpu(p) != dead_cpu)
631 continue;
632
633 pr_warn("Task %s (pid=%d) is on cpu %d (state=%ld, flags=%x)\n",
634 p->comm, task_pid_nr(p), dead_cpu, p->state, p->flags);
635 }
636 read_unlock(&tasklist_lock);
637 }
638
639 static void cpu_notify_nofail(unsigned long val, unsigned int cpu)
640 {
641 BUG_ON(cpu_notify(val, cpu));
642 }
643
644 static int notify_down_prepare(unsigned int cpu)
645 {
646 int err, nr_calls = 0;
647
648 err = __cpu_notify(CPU_DOWN_PREPARE, cpu, -1, &nr_calls);
649 if (err) {
650 nr_calls--;
651 __cpu_notify(CPU_DOWN_FAILED, cpu, nr_calls, NULL);
652 pr_warn("%s: attempt to take down CPU %u failed\n",
653 __func__, cpu);
654 }
655 return err;
656 }
657
658 static int notify_dying(unsigned int cpu)
659 {
660 cpu_notify(CPU_DYING, cpu);
661 return 0;
662 }
663
664 /* Take this CPU down. */
665 static int take_cpu_down(void *_param)
666 {
667 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
668 enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
669 int err, cpu = smp_processor_id();
670
671 /* Ensure this CPU doesn't handle any more interrupts. */
672 err = __cpu_disable();
673 if (err < 0)
674 return err;
675
676 /* Invoke the former CPU_DYING callbacks */
677 for (; st->state > target; st->state--) {
678 struct cpuhp_step *step = cpuhp_ap_states + st->state;
679
680 cpuhp_invoke_callback(cpu, st->state, step->teardown);
681 }
682 /* Give up timekeeping duties */
683 tick_handover_do_timer();
684 /* Park the stopper thread */
685 stop_machine_park(cpu);
686 return 0;
687 }
688
689 static int takedown_cpu(unsigned int cpu)
690 {
691 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
692 int err;
693
694 /*
695 * By now we've cleared cpu_active_mask, wait for all preempt-disabled
696 * and RCU users of this state to go away such that all new such users
697 * will observe it.
698 *
699 * For CONFIG_PREEMPT we have preemptible RCU and its sync_rcu() might
700 * not imply sync_sched(), so wait for both.
701 *
702 * Do sync before park smpboot threads to take care the rcu boost case.
703 */
704 if (IS_ENABLED(CONFIG_PREEMPT))
705 synchronize_rcu_mult(call_rcu, call_rcu_sched);
706 else
707 synchronize_rcu();
708
709 /* Park the hotplug thread */
710 kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread);
711
712 /*
713 * Prevent irq alloc/free while the dying cpu reorganizes the
714 * interrupt affinities.
715 */
716 irq_lock_sparse();
717
718 /*
719 * So now all preempt/rcu users must observe !cpu_active().
720 */
721 err = stop_machine(take_cpu_down, NULL, cpumask_of(cpu));
722 if (err) {
723 /* CPU didn't die: tell everyone. Can't complain. */
724 cpu_notify_nofail(CPU_DOWN_FAILED, cpu);
725 irq_unlock_sparse();
726 return err;
727 }
728 BUG_ON(cpu_online(cpu));
729
730 /*
731 * The migration_call() CPU_DYING callback will have removed all
732 * runnable tasks from the cpu, there's only the idle task left now
733 * that the migration thread is done doing the stop_machine thing.
734 *
735 * Wait for the stop thread to go away.
736 */
737 wait_for_completion(&st->done);
738 BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
739
740 /* Interrupts are moved away from the dying cpu, reenable alloc/free */
741 irq_unlock_sparse();
742
743 hotplug_cpu__broadcast_tick_pull(cpu);
744 /* This actually kills the CPU. */
745 __cpu_die(cpu);
746
747 tick_cleanup_dead_cpu(cpu);
748 return 0;
749 }
750
751 static int notify_dead(unsigned int cpu)
752 {
753 cpu_notify_nofail(CPU_DEAD, cpu);
754 check_for_tasks(cpu);
755 return 0;
756 }
757
758 void cpuhp_report_idle_dead(void)
759 {
760 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
761
762 BUG_ON(st->state != CPUHP_AP_OFFLINE);
763 st->state = CPUHP_AP_IDLE_DEAD;
764 complete(&st->done);
765 rcu_report_dead(smp_processor_id());
766 }
767
768 #else
769 #define notify_down_prepare NULL
770 #define takedown_cpu NULL
771 #define notify_dead NULL
772 #define notify_dying NULL
773 #endif
774
775 #ifdef CONFIG_HOTPLUG_CPU
776
777 /* Requires cpu_add_remove_lock to be held */
778 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
779 enum cpuhp_state target)
780 {
781 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
782 int prev_state, ret = 0;
783 bool hasdied = false;
784
785 if (num_online_cpus() == 1)
786 return -EBUSY;
787
788 if (!cpu_present(cpu))
789 return -EINVAL;
790
791 cpu_hotplug_begin();
792
793 cpuhp_tasks_frozen = tasks_frozen;
794
795 prev_state = st->state;
796 st->target = target;
797 /*
798 * If the current CPU state is in the range of the AP hotplug thread,
799 * then we need to kick the thread.
800 */
801 if (st->state > CPUHP_TEARDOWN_CPU) {
802 ret = cpuhp_kick_ap_work(cpu);
803 /*
804 * The AP side has done the error rollback already. Just
805 * return the error code..
806 */
807 if (ret)
808 goto out;
809
810 /*
811 * We might have stopped still in the range of the AP hotplug
812 * thread. Nothing to do anymore.
813 */
814 if (st->state > CPUHP_TEARDOWN_CPU)
815 goto out;
816 }
817 /*
818 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
819 * to do the further cleanups.
820 */
821 ret = cpuhp_down_callbacks(cpu, st, cpuhp_bp_states, target);
822
823 hasdied = prev_state != st->state && st->state == CPUHP_OFFLINE;
824 out:
825 cpu_hotplug_done();
826 /* This post dead nonsense must die */
827 if (!ret && hasdied)
828 cpu_notify_nofail(CPU_POST_DEAD, cpu);
829 return ret;
830 }
831
832 static int do_cpu_down(unsigned int cpu, enum cpuhp_state target)
833 {
834 int err;
835
836 cpu_maps_update_begin();
837
838 if (cpu_hotplug_disabled) {
839 err = -EBUSY;
840 goto out;
841 }
842
843 err = _cpu_down(cpu, 0, target);
844
845 out:
846 cpu_maps_update_done();
847 return err;
848 }
849 int cpu_down(unsigned int cpu)
850 {
851 return do_cpu_down(cpu, CPUHP_OFFLINE);
852 }
853 EXPORT_SYMBOL(cpu_down);
854 #endif /*CONFIG_HOTPLUG_CPU*/
855
856 /**
857 * notify_cpu_starting(cpu) - call the CPU_STARTING notifiers
858 * @cpu: cpu that just started
859 *
860 * This function calls the cpu_chain notifiers with CPU_STARTING.
861 * It must be called by the arch code on the new cpu, before the new cpu
862 * enables interrupts and before the "boot" cpu returns from __cpu_up().
863 */
864 void notify_cpu_starting(unsigned int cpu)
865 {
866 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
867 enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
868
869 while (st->state < target) {
870 struct cpuhp_step *step;
871
872 st->state++;
873 step = cpuhp_ap_states + st->state;
874 cpuhp_invoke_callback(cpu, st->state, step->startup);
875 }
876 }
877
878 /*
879 * Called from the idle task. We need to set active here, so we can kick off
880 * the stopper thread and unpark the smpboot threads. If the target state is
881 * beyond CPUHP_AP_ONLINE_IDLE we kick cpuhp thread and let it bring up the
882 * cpu further.
883 */
884 void cpuhp_online_idle(enum cpuhp_state state)
885 {
886 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
887 unsigned int cpu = smp_processor_id();
888
889 /* Happens for the boot cpu */
890 if (state != CPUHP_AP_ONLINE_IDLE)
891 return;
892
893 st->state = CPUHP_AP_ONLINE_IDLE;
894
895 /* The cpu is marked online, set it active now */
896 set_cpu_active(cpu, true);
897 /* Unpark the stopper thread and the hotplug thread of this cpu */
898 stop_machine_unpark(cpu);
899 kthread_unpark(st->thread);
900
901 /* Should we go further up ? */
902 if (st->target > CPUHP_AP_ONLINE_IDLE)
903 __cpuhp_kick_ap_work(st);
904 else
905 complete(&st->done);
906 }
907
908 /* Requires cpu_add_remove_lock to be held */
909 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
910 {
911 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
912 struct task_struct *idle;
913 int ret = 0;
914
915 cpu_hotplug_begin();
916
917 if (!cpu_present(cpu)) {
918 ret = -EINVAL;
919 goto out;
920 }
921
922 /*
923 * The caller of do_cpu_up might have raced with another
924 * caller. Ignore it for now.
925 */
926 if (st->state >= target)
927 goto out;
928
929 if (st->state == CPUHP_OFFLINE) {
930 /* Let it fail before we try to bring the cpu up */
931 idle = idle_thread_get(cpu);
932 if (IS_ERR(idle)) {
933 ret = PTR_ERR(idle);
934 goto out;
935 }
936 }
937
938 cpuhp_tasks_frozen = tasks_frozen;
939
940 st->target = target;
941 /*
942 * If the current CPU state is in the range of the AP hotplug thread,
943 * then we need to kick the thread once more.
944 */
945 if (st->state > CPUHP_BRINGUP_CPU) {
946 ret = cpuhp_kick_ap_work(cpu);
947 /*
948 * The AP side has done the error rollback already. Just
949 * return the error code..
950 */
951 if (ret)
952 goto out;
953 }
954
955 /*
956 * Try to reach the target state. We max out on the BP at
957 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
958 * responsible for bringing it up to the target state.
959 */
960 target = min((int)target, CPUHP_BRINGUP_CPU);
961 ret = cpuhp_up_callbacks(cpu, st, cpuhp_bp_states, target);
962 out:
963 cpu_hotplug_done();
964 return ret;
965 }
966
967 static int do_cpu_up(unsigned int cpu, enum cpuhp_state target)
968 {
969 int err = 0;
970
971 if (!cpu_possible(cpu)) {
972 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
973 cpu);
974 #if defined(CONFIG_IA64)
975 pr_err("please check additional_cpus= boot parameter\n");
976 #endif
977 return -EINVAL;
978 }
979
980 err = try_online_node(cpu_to_node(cpu));
981 if (err)
982 return err;
983
984 cpu_maps_update_begin();
985
986 if (cpu_hotplug_disabled) {
987 err = -EBUSY;
988 goto out;
989 }
990
991 err = _cpu_up(cpu, 0, target);
992 out:
993 cpu_maps_update_done();
994 return err;
995 }
996
997 int cpu_up(unsigned int cpu)
998 {
999 return do_cpu_up(cpu, CPUHP_ONLINE);
1000 }
1001 EXPORT_SYMBOL_GPL(cpu_up);
1002
1003 #ifdef CONFIG_PM_SLEEP_SMP
1004 static cpumask_var_t frozen_cpus;
1005
1006 int disable_nonboot_cpus(void)
1007 {
1008 int cpu, first_cpu, error = 0;
1009
1010 cpu_maps_update_begin();
1011 first_cpu = cpumask_first(cpu_online_mask);
1012 /*
1013 * We take down all of the non-boot CPUs in one shot to avoid races
1014 * with the userspace trying to use the CPU hotplug at the same time
1015 */
1016 cpumask_clear(frozen_cpus);
1017
1018 pr_info("Disabling non-boot CPUs ...\n");
1019 for_each_online_cpu(cpu) {
1020 if (cpu == first_cpu)
1021 continue;
1022 trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1023 error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1024 trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1025 if (!error)
1026 cpumask_set_cpu(cpu, frozen_cpus);
1027 else {
1028 pr_err("Error taking CPU%d down: %d\n", cpu, error);
1029 break;
1030 }
1031 }
1032
1033 if (!error)
1034 BUG_ON(num_online_cpus() > 1);
1035 else
1036 pr_err("Non-boot CPUs are not disabled\n");
1037
1038 /*
1039 * Make sure the CPUs won't be enabled by someone else. We need to do
1040 * this even in case of failure as all disable_nonboot_cpus() users are
1041 * supposed to do enable_nonboot_cpus() on the failure path.
1042 */
1043 cpu_hotplug_disabled++;
1044
1045 cpu_maps_update_done();
1046 return error;
1047 }
1048
1049 void __weak arch_enable_nonboot_cpus_begin(void)
1050 {
1051 }
1052
1053 void __weak arch_enable_nonboot_cpus_end(void)
1054 {
1055 }
1056
1057 void enable_nonboot_cpus(void)
1058 {
1059 int cpu, error;
1060
1061 /* Allow everyone to use the CPU hotplug again */
1062 cpu_maps_update_begin();
1063 WARN_ON(--cpu_hotplug_disabled < 0);
1064 if (cpumask_empty(frozen_cpus))
1065 goto out;
1066
1067 pr_info("Enabling non-boot CPUs ...\n");
1068
1069 arch_enable_nonboot_cpus_begin();
1070
1071 for_each_cpu(cpu, frozen_cpus) {
1072 trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1073 error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1074 trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1075 if (!error) {
1076 pr_info("CPU%d is up\n", cpu);
1077 continue;
1078 }
1079 pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1080 }
1081
1082 arch_enable_nonboot_cpus_end();
1083
1084 cpumask_clear(frozen_cpus);
1085 out:
1086 cpu_maps_update_done();
1087 }
1088
1089 static int __init alloc_frozen_cpus(void)
1090 {
1091 if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1092 return -ENOMEM;
1093 return 0;
1094 }
1095 core_initcall(alloc_frozen_cpus);
1096
1097 /*
1098 * When callbacks for CPU hotplug notifications are being executed, we must
1099 * ensure that the state of the system with respect to the tasks being frozen
1100 * or not, as reported by the notification, remains unchanged *throughout the
1101 * duration* of the execution of the callbacks.
1102 * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1103 *
1104 * This synchronization is implemented by mutually excluding regular CPU
1105 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1106 * Hibernate notifications.
1107 */
1108 static int
1109 cpu_hotplug_pm_callback(struct notifier_block *nb,
1110 unsigned long action, void *ptr)
1111 {
1112 switch (action) {
1113
1114 case PM_SUSPEND_PREPARE:
1115 case PM_HIBERNATION_PREPARE:
1116 cpu_hotplug_disable();
1117 break;
1118
1119 case PM_POST_SUSPEND:
1120 case PM_POST_HIBERNATION:
1121 cpu_hotplug_enable();
1122 break;
1123
1124 default:
1125 return NOTIFY_DONE;
1126 }
1127
1128 return NOTIFY_OK;
1129 }
1130
1131
1132 static int __init cpu_hotplug_pm_sync_init(void)
1133 {
1134 /*
1135 * cpu_hotplug_pm_callback has higher priority than x86
1136 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1137 * to disable cpu hotplug to avoid cpu hotplug race.
1138 */
1139 pm_notifier(cpu_hotplug_pm_callback, 0);
1140 return 0;
1141 }
1142 core_initcall(cpu_hotplug_pm_sync_init);
1143
1144 #endif /* CONFIG_PM_SLEEP_SMP */
1145
1146 #endif /* CONFIG_SMP */
1147
1148 /* Boot processor state steps */
1149 static struct cpuhp_step cpuhp_bp_states[] = {
1150 [CPUHP_OFFLINE] = {
1151 .name = "offline",
1152 .startup = NULL,
1153 .teardown = NULL,
1154 },
1155 #ifdef CONFIG_SMP
1156 [CPUHP_CREATE_THREADS]= {
1157 .name = "threads:create",
1158 .startup = smpboot_create_threads,
1159 .teardown = NULL,
1160 .cant_stop = true,
1161 },
1162 [CPUHP_NOTIFY_PREPARE] = {
1163 .name = "notify:prepare",
1164 .startup = notify_prepare,
1165 .teardown = notify_dead,
1166 .skip_onerr = true,
1167 .cant_stop = true,
1168 },
1169 [CPUHP_BRINGUP_CPU] = {
1170 .name = "cpu:bringup",
1171 .startup = bringup_cpu,
1172 .teardown = NULL,
1173 .cant_stop = true,
1174 },
1175 [CPUHP_TEARDOWN_CPU] = {
1176 .name = "cpu:teardown",
1177 .startup = NULL,
1178 .teardown = takedown_cpu,
1179 .cant_stop = true,
1180 },
1181 #endif
1182 };
1183
1184 /* Application processor state steps */
1185 static struct cpuhp_step cpuhp_ap_states[] = {
1186 #ifdef CONFIG_SMP
1187 [CPUHP_AP_NOTIFY_STARTING] = {
1188 .name = "notify:starting",
1189 .startup = notify_starting,
1190 .teardown = notify_dying,
1191 .skip_onerr = true,
1192 .cant_stop = true,
1193 },
1194 [CPUHP_AP_SMPBOOT_THREADS] = {
1195 .name = "smpboot:threads",
1196 .startup = smpboot_unpark_threads,
1197 .teardown = smpboot_park_threads,
1198 },
1199 [CPUHP_AP_NOTIFY_ONLINE] = {
1200 .name = "notify:online",
1201 .startup = notify_online,
1202 .teardown = notify_down_prepare,
1203 },
1204 #endif
1205 [CPUHP_ONLINE] = {
1206 .name = "online",
1207 .startup = NULL,
1208 .teardown = NULL,
1209 },
1210 };
1211
1212 /* Sanity check for callbacks */
1213 static int cpuhp_cb_check(enum cpuhp_state state)
1214 {
1215 if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
1216 return -EINVAL;
1217 return 0;
1218 }
1219
1220 static bool cpuhp_is_ap_state(enum cpuhp_state state)
1221 {
1222 if (state >= CPUHP_AP_OFFLINE && state <= CPUHP_AP_ONLINE)
1223 return true;
1224 return state > CPUHP_BRINGUP_CPU;
1225 }
1226
1227 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
1228 {
1229 struct cpuhp_step *sp;
1230
1231 sp = cpuhp_is_ap_state(state) ? cpuhp_ap_states : cpuhp_bp_states;
1232 return sp + state;
1233 }
1234
1235 static void cpuhp_store_callbacks(enum cpuhp_state state,
1236 const char *name,
1237 int (*startup)(unsigned int cpu),
1238 int (*teardown)(unsigned int cpu))
1239 {
1240 /* (Un)Install the callbacks for further cpu hotplug operations */
1241 struct cpuhp_step *sp;
1242
1243 mutex_lock(&cpuhp_state_mutex);
1244 sp = cpuhp_get_step(state);
1245 sp->startup = startup;
1246 sp->teardown = teardown;
1247 sp->name = name;
1248 mutex_unlock(&cpuhp_state_mutex);
1249 }
1250
1251 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
1252 {
1253 return cpuhp_get_step(state)->teardown;
1254 }
1255
1256 /*
1257 * Call the startup/teardown function for a step either on the AP or
1258 * on the current CPU.
1259 */
1260 static int cpuhp_issue_call(int cpu, enum cpuhp_state state,
1261 int (*cb)(unsigned int), bool bringup)
1262 {
1263 int ret;
1264
1265 if (!cb)
1266 return 0;
1267 /*
1268 * The non AP bound callbacks can fail on bringup. On teardown
1269 * e.g. module removal we crash for now.
1270 */
1271 #ifdef CONFIG_SMP
1272 if (cpuhp_is_ap_state(state))
1273 ret = cpuhp_invoke_ap_callback(cpu, state, cb);
1274 else
1275 ret = cpuhp_invoke_callback(cpu, state, cb);
1276 #else
1277 ret = cpuhp_invoke_callback(cpu, state, cb);
1278 #endif
1279 BUG_ON(ret && !bringup);
1280 return ret;
1281 }
1282
1283 /*
1284 * Called from __cpuhp_setup_state on a recoverable failure.
1285 *
1286 * Note: The teardown callbacks for rollback are not allowed to fail!
1287 */
1288 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
1289 int (*teardown)(unsigned int cpu))
1290 {
1291 int cpu;
1292
1293 if (!teardown)
1294 return;
1295
1296 /* Roll back the already executed steps on the other cpus */
1297 for_each_present_cpu(cpu) {
1298 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1299 int cpustate = st->state;
1300
1301 if (cpu >= failedcpu)
1302 break;
1303
1304 /* Did we invoke the startup call on that cpu ? */
1305 if (cpustate >= state)
1306 cpuhp_issue_call(cpu, state, teardown, false);
1307 }
1308 }
1309
1310 /*
1311 * Returns a free for dynamic slot assignment of the Online state. The states
1312 * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1313 * by having no name assigned.
1314 */
1315 static int cpuhp_reserve_state(enum cpuhp_state state)
1316 {
1317 enum cpuhp_state i;
1318
1319 mutex_lock(&cpuhp_state_mutex);
1320 for (i = CPUHP_AP_ONLINE_DYN; i <= CPUHP_AP_ONLINE_DYN_END; i++) {
1321 if (cpuhp_ap_states[i].name)
1322 continue;
1323
1324 cpuhp_ap_states[i].name = "Reserved";
1325 mutex_unlock(&cpuhp_state_mutex);
1326 return i;
1327 }
1328 mutex_unlock(&cpuhp_state_mutex);
1329 WARN(1, "No more dynamic states available for CPU hotplug\n");
1330 return -ENOSPC;
1331 }
1332
1333 /**
1334 * __cpuhp_setup_state - Setup the callbacks for an hotplug machine state
1335 * @state: The state to setup
1336 * @invoke: If true, the startup function is invoked for cpus where
1337 * cpu state >= @state
1338 * @startup: startup callback function
1339 * @teardown: teardown callback function
1340 *
1341 * Returns 0 if successful, otherwise a proper error code
1342 */
1343 int __cpuhp_setup_state(enum cpuhp_state state,
1344 const char *name, bool invoke,
1345 int (*startup)(unsigned int cpu),
1346 int (*teardown)(unsigned int cpu))
1347 {
1348 int cpu, ret = 0;
1349 int dyn_state = 0;
1350
1351 if (cpuhp_cb_check(state) || !name)
1352 return -EINVAL;
1353
1354 get_online_cpus();
1355
1356 /* currently assignments for the ONLINE state are possible */
1357 if (state == CPUHP_AP_ONLINE_DYN) {
1358 dyn_state = 1;
1359 ret = cpuhp_reserve_state(state);
1360 if (ret < 0)
1361 goto out;
1362 state = ret;
1363 }
1364
1365 cpuhp_store_callbacks(state, name, startup, teardown);
1366
1367 if (!invoke || !startup)
1368 goto out;
1369
1370 /*
1371 * Try to call the startup callback for each present cpu
1372 * depending on the hotplug state of the cpu.
1373 */
1374 for_each_present_cpu(cpu) {
1375 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1376 int cpustate = st->state;
1377
1378 if (cpustate < state)
1379 continue;
1380
1381 ret = cpuhp_issue_call(cpu, state, startup, true);
1382 if (ret) {
1383 cpuhp_rollback_install(cpu, state, teardown);
1384 cpuhp_store_callbacks(state, NULL, NULL, NULL);
1385 goto out;
1386 }
1387 }
1388 out:
1389 put_online_cpus();
1390 if (!ret && dyn_state)
1391 return state;
1392 return ret;
1393 }
1394 EXPORT_SYMBOL(__cpuhp_setup_state);
1395
1396 /**
1397 * __cpuhp_remove_state - Remove the callbacks for an hotplug machine state
1398 * @state: The state to remove
1399 * @invoke: If true, the teardown function is invoked for cpus where
1400 * cpu state >= @state
1401 *
1402 * The teardown callback is currently not allowed to fail. Think
1403 * about module removal!
1404 */
1405 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
1406 {
1407 int (*teardown)(unsigned int cpu) = cpuhp_get_teardown_cb(state);
1408 int cpu;
1409
1410 BUG_ON(cpuhp_cb_check(state));
1411
1412 get_online_cpus();
1413
1414 if (!invoke || !teardown)
1415 goto remove;
1416
1417 /*
1418 * Call the teardown callback for each present cpu depending
1419 * on the hotplug state of the cpu. This function is not
1420 * allowed to fail currently!
1421 */
1422 for_each_present_cpu(cpu) {
1423 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1424 int cpustate = st->state;
1425
1426 if (cpustate >= state)
1427 cpuhp_issue_call(cpu, state, teardown, false);
1428 }
1429 remove:
1430 cpuhp_store_callbacks(state, NULL, NULL, NULL);
1431 put_online_cpus();
1432 }
1433 EXPORT_SYMBOL(__cpuhp_remove_state);
1434
1435 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
1436 static ssize_t show_cpuhp_state(struct device *dev,
1437 struct device_attribute *attr, char *buf)
1438 {
1439 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1440
1441 return sprintf(buf, "%d\n", st->state);
1442 }
1443 static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL);
1444
1445 static ssize_t write_cpuhp_target(struct device *dev,
1446 struct device_attribute *attr,
1447 const char *buf, size_t count)
1448 {
1449 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1450 struct cpuhp_step *sp;
1451 int target, ret;
1452
1453 ret = kstrtoint(buf, 10, &target);
1454 if (ret)
1455 return ret;
1456
1457 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
1458 if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
1459 return -EINVAL;
1460 #else
1461 if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
1462 return -EINVAL;
1463 #endif
1464
1465 ret = lock_device_hotplug_sysfs();
1466 if (ret)
1467 return ret;
1468
1469 mutex_lock(&cpuhp_state_mutex);
1470 sp = cpuhp_get_step(target);
1471 ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
1472 mutex_unlock(&cpuhp_state_mutex);
1473 if (ret)
1474 return ret;
1475
1476 if (st->state < target)
1477 ret = do_cpu_up(dev->id, target);
1478 else
1479 ret = do_cpu_down(dev->id, target);
1480
1481 unlock_device_hotplug();
1482 return ret ? ret : count;
1483 }
1484
1485 static ssize_t show_cpuhp_target(struct device *dev,
1486 struct device_attribute *attr, char *buf)
1487 {
1488 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1489
1490 return sprintf(buf, "%d\n", st->target);
1491 }
1492 static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target);
1493
1494 static struct attribute *cpuhp_cpu_attrs[] = {
1495 &dev_attr_state.attr,
1496 &dev_attr_target.attr,
1497 NULL
1498 };
1499
1500 static struct attribute_group cpuhp_cpu_attr_group = {
1501 .attrs = cpuhp_cpu_attrs,
1502 .name = "hotplug",
1503 NULL
1504 };
1505
1506 static ssize_t show_cpuhp_states(struct device *dev,
1507 struct device_attribute *attr, char *buf)
1508 {
1509 ssize_t cur, res = 0;
1510 int i;
1511
1512 mutex_lock(&cpuhp_state_mutex);
1513 for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
1514 struct cpuhp_step *sp = cpuhp_get_step(i);
1515
1516 if (sp->name) {
1517 cur = sprintf(buf, "%3d: %s\n", i, sp->name);
1518 buf += cur;
1519 res += cur;
1520 }
1521 }
1522 mutex_unlock(&cpuhp_state_mutex);
1523 return res;
1524 }
1525 static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL);
1526
1527 static struct attribute *cpuhp_cpu_root_attrs[] = {
1528 &dev_attr_states.attr,
1529 NULL
1530 };
1531
1532 static struct attribute_group cpuhp_cpu_root_attr_group = {
1533 .attrs = cpuhp_cpu_root_attrs,
1534 .name = "hotplug",
1535 NULL
1536 };
1537
1538 static int __init cpuhp_sysfs_init(void)
1539 {
1540 int cpu, ret;
1541
1542 ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
1543 &cpuhp_cpu_root_attr_group);
1544 if (ret)
1545 return ret;
1546
1547 for_each_possible_cpu(cpu) {
1548 struct device *dev = get_cpu_device(cpu);
1549
1550 if (!dev)
1551 continue;
1552 ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
1553 if (ret)
1554 return ret;
1555 }
1556 return 0;
1557 }
1558 device_initcall(cpuhp_sysfs_init);
1559 #endif
1560
1561 /*
1562 * cpu_bit_bitmap[] is a special, "compressed" data structure that
1563 * represents all NR_CPUS bits binary values of 1<<nr.
1564 *
1565 * It is used by cpumask_of() to get a constant address to a CPU
1566 * mask value that has a single bit set only.
1567 */
1568
1569 /* cpu_bit_bitmap[0] is empty - so we can back into it */
1570 #define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x))
1571 #define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
1572 #define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
1573 #define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
1574
1575 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
1576
1577 MASK_DECLARE_8(0), MASK_DECLARE_8(8),
1578 MASK_DECLARE_8(16), MASK_DECLARE_8(24),
1579 #if BITS_PER_LONG > 32
1580 MASK_DECLARE_8(32), MASK_DECLARE_8(40),
1581 MASK_DECLARE_8(48), MASK_DECLARE_8(56),
1582 #endif
1583 };
1584 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
1585
1586 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
1587 EXPORT_SYMBOL(cpu_all_bits);
1588
1589 #ifdef CONFIG_INIT_ALL_POSSIBLE
1590 struct cpumask __cpu_possible_mask __read_mostly
1591 = {CPU_BITS_ALL};
1592 #else
1593 struct cpumask __cpu_possible_mask __read_mostly;
1594 #endif
1595 EXPORT_SYMBOL(__cpu_possible_mask);
1596
1597 struct cpumask __cpu_online_mask __read_mostly;
1598 EXPORT_SYMBOL(__cpu_online_mask);
1599
1600 struct cpumask __cpu_present_mask __read_mostly;
1601 EXPORT_SYMBOL(__cpu_present_mask);
1602
1603 struct cpumask __cpu_active_mask __read_mostly;
1604 EXPORT_SYMBOL(__cpu_active_mask);
1605
1606 void init_cpu_present(const struct cpumask *src)
1607 {
1608 cpumask_copy(&__cpu_present_mask, src);
1609 }
1610
1611 void init_cpu_possible(const struct cpumask *src)
1612 {
1613 cpumask_copy(&__cpu_possible_mask, src);
1614 }
1615
1616 void init_cpu_online(const struct cpumask *src)
1617 {
1618 cpumask_copy(&__cpu_online_mask, src);
1619 }
1620
1621 /*
1622 * Activate the first processor.
1623 */
1624 void __init boot_cpu_init(void)
1625 {
1626 int cpu = smp_processor_id();
1627
1628 /* Mark the boot cpu "present", "online" etc for SMP and UP case */
1629 set_cpu_online(cpu, true);
1630 set_cpu_active(cpu, true);
1631 set_cpu_present(cpu, true);
1632 set_cpu_possible(cpu, true);
1633 }
1634
1635 /*
1636 * Must be called _AFTER_ setting up the per_cpu areas
1637 */
1638 void __init boot_cpu_state_init(void)
1639 {
1640 per_cpu_ptr(&cpuhp_state, smp_processor_id())->state = CPUHP_ONLINE;
1641 }
This page took 0.105062 seconds and 6 git commands to generate.