cpu/hotplug: Split out the state walk into functions
[deliverable/linux.git] / kernel / cpu.c
1 /* CPU control.
2 * (C) 2001, 2002, 2003, 2004 Rusty Russell
3 *
4 * This code is licenced under the GPL.
5 */
6 #include <linux/proc_fs.h>
7 #include <linux/smp.h>
8 #include <linux/init.h>
9 #include <linux/notifier.h>
10 #include <linux/sched.h>
11 #include <linux/unistd.h>
12 #include <linux/cpu.h>
13 #include <linux/oom.h>
14 #include <linux/rcupdate.h>
15 #include <linux/export.h>
16 #include <linux/bug.h>
17 #include <linux/kthread.h>
18 #include <linux/stop_machine.h>
19 #include <linux/mutex.h>
20 #include <linux/gfp.h>
21 #include <linux/suspend.h>
22 #include <linux/lockdep.h>
23 #include <linux/tick.h>
24 #include <linux/irq.h>
25
26 #include <trace/events/power.h>
27 #define CREATE_TRACE_POINTS
28 #include <trace/events/cpuhp.h>
29
30 #include "smpboot.h"
31
32 /**
33 * cpuhp_cpu_state - Per cpu hotplug state storage
34 * @state: The current cpu state
35 * @target: The target state
36 */
37 struct cpuhp_cpu_state {
38 enum cpuhp_state state;
39 enum cpuhp_state target;
40 };
41
42 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state);
43
44 /**
45 * cpuhp_step - Hotplug state machine step
46 * @name: Name of the step
47 * @startup: Startup function of the step
48 * @teardown: Teardown function of the step
49 * @skip_onerr: Do not invoke the functions on error rollback
50 * Will go away once the notifiers are gone
51 * @cant_stop: Bringup/teardown can't be stopped at this step
52 */
53 struct cpuhp_step {
54 const char *name;
55 int (*startup)(unsigned int cpu);
56 int (*teardown)(unsigned int cpu);
57 bool skip_onerr;
58 bool cant_stop;
59 };
60
61 static DEFINE_MUTEX(cpuhp_state_mutex);
62 static struct cpuhp_step cpuhp_bp_states[];
63 static struct cpuhp_step cpuhp_ap_states[];
64
65 /**
66 * cpuhp_invoke_callback _ Invoke the callbacks for a given state
67 * @cpu: The cpu for which the callback should be invoked
68 * @step: The step in the state machine
69 * @cb: The callback function to invoke
70 *
71 * Called from cpu hotplug and from the state register machinery
72 */
73 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state step,
74 int (*cb)(unsigned int))
75 {
76 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
77 int ret = 0;
78
79 if (cb) {
80 trace_cpuhp_enter(cpu, st->target, step, cb);
81 ret = cb(cpu);
82 trace_cpuhp_exit(cpu, st->state, step, ret);
83 }
84 return ret;
85 }
86
87 #ifdef CONFIG_SMP
88 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
89 static DEFINE_MUTEX(cpu_add_remove_lock);
90 bool cpuhp_tasks_frozen;
91 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
92
93 /*
94 * The following two APIs (cpu_maps_update_begin/done) must be used when
95 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
96 * The APIs cpu_notifier_register_begin/done() must be used to protect CPU
97 * hotplug callback (un)registration performed using __register_cpu_notifier()
98 * or __unregister_cpu_notifier().
99 */
100 void cpu_maps_update_begin(void)
101 {
102 mutex_lock(&cpu_add_remove_lock);
103 }
104 EXPORT_SYMBOL(cpu_notifier_register_begin);
105
106 void cpu_maps_update_done(void)
107 {
108 mutex_unlock(&cpu_add_remove_lock);
109 }
110 EXPORT_SYMBOL(cpu_notifier_register_done);
111
112 static RAW_NOTIFIER_HEAD(cpu_chain);
113
114 /* If set, cpu_up and cpu_down will return -EBUSY and do nothing.
115 * Should always be manipulated under cpu_add_remove_lock
116 */
117 static int cpu_hotplug_disabled;
118
119 #ifdef CONFIG_HOTPLUG_CPU
120
121 static struct {
122 struct task_struct *active_writer;
123 /* wait queue to wake up the active_writer */
124 wait_queue_head_t wq;
125 /* verifies that no writer will get active while readers are active */
126 struct mutex lock;
127 /*
128 * Also blocks the new readers during
129 * an ongoing cpu hotplug operation.
130 */
131 atomic_t refcount;
132
133 #ifdef CONFIG_DEBUG_LOCK_ALLOC
134 struct lockdep_map dep_map;
135 #endif
136 } cpu_hotplug = {
137 .active_writer = NULL,
138 .wq = __WAIT_QUEUE_HEAD_INITIALIZER(cpu_hotplug.wq),
139 .lock = __MUTEX_INITIALIZER(cpu_hotplug.lock),
140 #ifdef CONFIG_DEBUG_LOCK_ALLOC
141 .dep_map = {.name = "cpu_hotplug.lock" },
142 #endif
143 };
144
145 /* Lockdep annotations for get/put_online_cpus() and cpu_hotplug_begin/end() */
146 #define cpuhp_lock_acquire_read() lock_map_acquire_read(&cpu_hotplug.dep_map)
147 #define cpuhp_lock_acquire_tryread() \
148 lock_map_acquire_tryread(&cpu_hotplug.dep_map)
149 #define cpuhp_lock_acquire() lock_map_acquire(&cpu_hotplug.dep_map)
150 #define cpuhp_lock_release() lock_map_release(&cpu_hotplug.dep_map)
151
152
153 void get_online_cpus(void)
154 {
155 might_sleep();
156 if (cpu_hotplug.active_writer == current)
157 return;
158 cpuhp_lock_acquire_read();
159 mutex_lock(&cpu_hotplug.lock);
160 atomic_inc(&cpu_hotplug.refcount);
161 mutex_unlock(&cpu_hotplug.lock);
162 }
163 EXPORT_SYMBOL_GPL(get_online_cpus);
164
165 void put_online_cpus(void)
166 {
167 int refcount;
168
169 if (cpu_hotplug.active_writer == current)
170 return;
171
172 refcount = atomic_dec_return(&cpu_hotplug.refcount);
173 if (WARN_ON(refcount < 0)) /* try to fix things up */
174 atomic_inc(&cpu_hotplug.refcount);
175
176 if (refcount <= 0 && waitqueue_active(&cpu_hotplug.wq))
177 wake_up(&cpu_hotplug.wq);
178
179 cpuhp_lock_release();
180
181 }
182 EXPORT_SYMBOL_GPL(put_online_cpus);
183
184 /*
185 * This ensures that the hotplug operation can begin only when the
186 * refcount goes to zero.
187 *
188 * Note that during a cpu-hotplug operation, the new readers, if any,
189 * will be blocked by the cpu_hotplug.lock
190 *
191 * Since cpu_hotplug_begin() is always called after invoking
192 * cpu_maps_update_begin(), we can be sure that only one writer is active.
193 *
194 * Note that theoretically, there is a possibility of a livelock:
195 * - Refcount goes to zero, last reader wakes up the sleeping
196 * writer.
197 * - Last reader unlocks the cpu_hotplug.lock.
198 * - A new reader arrives at this moment, bumps up the refcount.
199 * - The writer acquires the cpu_hotplug.lock finds the refcount
200 * non zero and goes to sleep again.
201 *
202 * However, this is very difficult to achieve in practice since
203 * get_online_cpus() not an api which is called all that often.
204 *
205 */
206 void cpu_hotplug_begin(void)
207 {
208 DEFINE_WAIT(wait);
209
210 cpu_hotplug.active_writer = current;
211 cpuhp_lock_acquire();
212
213 for (;;) {
214 mutex_lock(&cpu_hotplug.lock);
215 prepare_to_wait(&cpu_hotplug.wq, &wait, TASK_UNINTERRUPTIBLE);
216 if (likely(!atomic_read(&cpu_hotplug.refcount)))
217 break;
218 mutex_unlock(&cpu_hotplug.lock);
219 schedule();
220 }
221 finish_wait(&cpu_hotplug.wq, &wait);
222 }
223
224 void cpu_hotplug_done(void)
225 {
226 cpu_hotplug.active_writer = NULL;
227 mutex_unlock(&cpu_hotplug.lock);
228 cpuhp_lock_release();
229 }
230
231 /*
232 * Wait for currently running CPU hotplug operations to complete (if any) and
233 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
234 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
235 * hotplug path before performing hotplug operations. So acquiring that lock
236 * guarantees mutual exclusion from any currently running hotplug operations.
237 */
238 void cpu_hotplug_disable(void)
239 {
240 cpu_maps_update_begin();
241 cpu_hotplug_disabled++;
242 cpu_maps_update_done();
243 }
244 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
245
246 void cpu_hotplug_enable(void)
247 {
248 cpu_maps_update_begin();
249 WARN_ON(--cpu_hotplug_disabled < 0);
250 cpu_maps_update_done();
251 }
252 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
253 #endif /* CONFIG_HOTPLUG_CPU */
254
255 /* Need to know about CPUs going up/down? */
256 int register_cpu_notifier(struct notifier_block *nb)
257 {
258 int ret;
259 cpu_maps_update_begin();
260 ret = raw_notifier_chain_register(&cpu_chain, nb);
261 cpu_maps_update_done();
262 return ret;
263 }
264
265 int __register_cpu_notifier(struct notifier_block *nb)
266 {
267 return raw_notifier_chain_register(&cpu_chain, nb);
268 }
269
270 static int __cpu_notify(unsigned long val, unsigned int cpu, int nr_to_call,
271 int *nr_calls)
272 {
273 unsigned long mod = cpuhp_tasks_frozen ? CPU_TASKS_FROZEN : 0;
274 void *hcpu = (void *)(long)cpu;
275
276 int ret;
277
278 ret = __raw_notifier_call_chain(&cpu_chain, val | mod, hcpu, nr_to_call,
279 nr_calls);
280
281 return notifier_to_errno(ret);
282 }
283
284 static int cpu_notify(unsigned long val, unsigned int cpu)
285 {
286 return __cpu_notify(val, cpu, -1, NULL);
287 }
288
289 /* Notifier wrappers for transitioning to state machine */
290 static int notify_prepare(unsigned int cpu)
291 {
292 int nr_calls = 0;
293 int ret;
294
295 ret = __cpu_notify(CPU_UP_PREPARE, cpu, -1, &nr_calls);
296 if (ret) {
297 nr_calls--;
298 printk(KERN_WARNING "%s: attempt to bring up CPU %u failed\n",
299 __func__, cpu);
300 __cpu_notify(CPU_UP_CANCELED, cpu, nr_calls, NULL);
301 }
302 return ret;
303 }
304
305 static int notify_online(unsigned int cpu)
306 {
307 cpu_notify(CPU_ONLINE, cpu);
308 return 0;
309 }
310
311 static int notify_starting(unsigned int cpu)
312 {
313 cpu_notify(CPU_STARTING, cpu);
314 return 0;
315 }
316
317 static int bringup_cpu(unsigned int cpu)
318 {
319 struct task_struct *idle = idle_thread_get(cpu);
320 int ret;
321
322 /* Arch-specific enabling code. */
323 ret = __cpu_up(cpu, idle);
324 if (ret) {
325 cpu_notify(CPU_UP_CANCELED, cpu);
326 return ret;
327 }
328 BUG_ON(!cpu_online(cpu));
329 return 0;
330 }
331
332 /*
333 * Hotplug state machine related functions
334 */
335 static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st,
336 struct cpuhp_step *steps)
337 {
338 for (st->state++; st->state < st->target; st->state++) {
339 struct cpuhp_step *step = steps + st->state;
340
341 if (!step->skip_onerr)
342 cpuhp_invoke_callback(cpu, st->state, step->startup);
343 }
344 }
345
346 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
347 struct cpuhp_step *steps, enum cpuhp_state target)
348 {
349 enum cpuhp_state prev_state = st->state;
350 int ret = 0;
351
352 for (; st->state > target; st->state--) {
353 struct cpuhp_step *step = steps + st->state;
354
355 ret = cpuhp_invoke_callback(cpu, st->state, step->teardown);
356 if (ret) {
357 st->target = prev_state;
358 undo_cpu_down(cpu, st, steps);
359 break;
360 }
361 }
362 return ret;
363 }
364
365 static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st,
366 struct cpuhp_step *steps)
367 {
368 for (st->state--; st->state > st->target; st->state--) {
369 struct cpuhp_step *step = steps + st->state;
370
371 if (!step->skip_onerr)
372 cpuhp_invoke_callback(cpu, st->state, step->teardown);
373 }
374 }
375
376 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
377 struct cpuhp_step *steps, enum cpuhp_state target)
378 {
379 enum cpuhp_state prev_state = st->state;
380 int ret = 0;
381
382 while (st->state < target) {
383 struct cpuhp_step *step;
384
385 st->state++;
386 step = steps + st->state;
387 ret = cpuhp_invoke_callback(cpu, st->state, step->startup);
388 if (ret) {
389 st->target = prev_state;
390 undo_cpu_up(cpu, st, steps);
391 break;
392 }
393 }
394 return ret;
395 }
396
397 #ifdef CONFIG_HOTPLUG_CPU
398 EXPORT_SYMBOL(register_cpu_notifier);
399 EXPORT_SYMBOL(__register_cpu_notifier);
400 void unregister_cpu_notifier(struct notifier_block *nb)
401 {
402 cpu_maps_update_begin();
403 raw_notifier_chain_unregister(&cpu_chain, nb);
404 cpu_maps_update_done();
405 }
406 EXPORT_SYMBOL(unregister_cpu_notifier);
407
408 void __unregister_cpu_notifier(struct notifier_block *nb)
409 {
410 raw_notifier_chain_unregister(&cpu_chain, nb);
411 }
412 EXPORT_SYMBOL(__unregister_cpu_notifier);
413
414 /**
415 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
416 * @cpu: a CPU id
417 *
418 * This function walks all processes, finds a valid mm struct for each one and
419 * then clears a corresponding bit in mm's cpumask. While this all sounds
420 * trivial, there are various non-obvious corner cases, which this function
421 * tries to solve in a safe manner.
422 *
423 * Also note that the function uses a somewhat relaxed locking scheme, so it may
424 * be called only for an already offlined CPU.
425 */
426 void clear_tasks_mm_cpumask(int cpu)
427 {
428 struct task_struct *p;
429
430 /*
431 * This function is called after the cpu is taken down and marked
432 * offline, so its not like new tasks will ever get this cpu set in
433 * their mm mask. -- Peter Zijlstra
434 * Thus, we may use rcu_read_lock() here, instead of grabbing
435 * full-fledged tasklist_lock.
436 */
437 WARN_ON(cpu_online(cpu));
438 rcu_read_lock();
439 for_each_process(p) {
440 struct task_struct *t;
441
442 /*
443 * Main thread might exit, but other threads may still have
444 * a valid mm. Find one.
445 */
446 t = find_lock_task_mm(p);
447 if (!t)
448 continue;
449 cpumask_clear_cpu(cpu, mm_cpumask(t->mm));
450 task_unlock(t);
451 }
452 rcu_read_unlock();
453 }
454
455 static inline void check_for_tasks(int dead_cpu)
456 {
457 struct task_struct *g, *p;
458
459 read_lock(&tasklist_lock);
460 for_each_process_thread(g, p) {
461 if (!p->on_rq)
462 continue;
463 /*
464 * We do the check with unlocked task_rq(p)->lock.
465 * Order the reading to do not warn about a task,
466 * which was running on this cpu in the past, and
467 * it's just been woken on another cpu.
468 */
469 rmb();
470 if (task_cpu(p) != dead_cpu)
471 continue;
472
473 pr_warn("Task %s (pid=%d) is on cpu %d (state=%ld, flags=%x)\n",
474 p->comm, task_pid_nr(p), dead_cpu, p->state, p->flags);
475 }
476 read_unlock(&tasklist_lock);
477 }
478
479 static void cpu_notify_nofail(unsigned long val, unsigned int cpu)
480 {
481 BUG_ON(cpu_notify(val, cpu));
482 }
483
484 static int notify_down_prepare(unsigned int cpu)
485 {
486 int err, nr_calls = 0;
487
488 err = __cpu_notify(CPU_DOWN_PREPARE, cpu, -1, &nr_calls);
489 if (err) {
490 nr_calls--;
491 __cpu_notify(CPU_DOWN_FAILED, cpu, nr_calls, NULL);
492 pr_warn("%s: attempt to take down CPU %u failed\n",
493 __func__, cpu);
494 }
495 return err;
496 }
497
498 static int notify_dying(unsigned int cpu)
499 {
500 cpu_notify(CPU_DYING, cpu);
501 return 0;
502 }
503
504 /* Take this CPU down. */
505 static int take_cpu_down(void *_param)
506 {
507 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
508 enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
509 int err, cpu = smp_processor_id();
510
511 /* Ensure this CPU doesn't handle any more interrupts. */
512 err = __cpu_disable();
513 if (err < 0)
514 return err;
515
516 /* Invoke the former CPU_DYING callbacks */
517 for (; st->state > target; st->state--) {
518 struct cpuhp_step *step = cpuhp_ap_states + st->state;
519
520 cpuhp_invoke_callback(cpu, st->state, step->teardown);
521 }
522 /* Give up timekeeping duties */
523 tick_handover_do_timer();
524 /* Park the stopper thread */
525 stop_machine_park(cpu);
526 return 0;
527 }
528
529 static int takedown_cpu(unsigned int cpu)
530 {
531 int err;
532
533 /*
534 * By now we've cleared cpu_active_mask, wait for all preempt-disabled
535 * and RCU users of this state to go away such that all new such users
536 * will observe it.
537 *
538 * For CONFIG_PREEMPT we have preemptible RCU and its sync_rcu() might
539 * not imply sync_sched(), so wait for both.
540 *
541 * Do sync before park smpboot threads to take care the rcu boost case.
542 */
543 if (IS_ENABLED(CONFIG_PREEMPT))
544 synchronize_rcu_mult(call_rcu, call_rcu_sched);
545 else
546 synchronize_rcu();
547
548 /*
549 * Prevent irq alloc/free while the dying cpu reorganizes the
550 * interrupt affinities.
551 */
552 irq_lock_sparse();
553
554 /*
555 * So now all preempt/rcu users must observe !cpu_active().
556 */
557 err = stop_machine(take_cpu_down, NULL, cpumask_of(cpu));
558 if (err) {
559 /* CPU didn't die: tell everyone. Can't complain. */
560 cpu_notify_nofail(CPU_DOWN_FAILED, cpu);
561 irq_unlock_sparse();
562 return err;
563 }
564 BUG_ON(cpu_online(cpu));
565
566 /*
567 * The migration_call() CPU_DYING callback will have removed all
568 * runnable tasks from the cpu, there's only the idle task left now
569 * that the migration thread is done doing the stop_machine thing.
570 *
571 * Wait for the stop thread to go away.
572 */
573 while (!per_cpu(cpu_dead_idle, cpu))
574 cpu_relax();
575 smp_mb(); /* Read from cpu_dead_idle before __cpu_die(). */
576 per_cpu(cpu_dead_idle, cpu) = false;
577
578 /* Interrupts are moved away from the dying cpu, reenable alloc/free */
579 irq_unlock_sparse();
580
581 hotplug_cpu__broadcast_tick_pull(cpu);
582 /* This actually kills the CPU. */
583 __cpu_die(cpu);
584
585 tick_cleanup_dead_cpu(cpu);
586 return 0;
587 }
588
589 static int notify_dead(unsigned int cpu)
590 {
591 cpu_notify_nofail(CPU_DEAD, cpu);
592 check_for_tasks(cpu);
593 return 0;
594 }
595
596 #else
597 #define notify_down_prepare NULL
598 #define takedown_cpu NULL
599 #define notify_dead NULL
600 #define notify_dying NULL
601 #endif
602
603 #ifdef CONFIG_HOTPLUG_CPU
604
605 /* Requires cpu_add_remove_lock to be held */
606 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
607 enum cpuhp_state target)
608 {
609 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
610 int prev_state, ret = 0;
611 bool hasdied = false;
612
613 if (num_online_cpus() == 1)
614 return -EBUSY;
615
616 if (!cpu_present(cpu))
617 return -EINVAL;
618
619 cpu_hotplug_begin();
620
621 cpuhp_tasks_frozen = tasks_frozen;
622
623 prev_state = st->state;
624 st->target = target;
625 ret = cpuhp_down_callbacks(cpu, st, cpuhp_bp_states, target);
626
627 hasdied = prev_state != st->state && st->state == CPUHP_OFFLINE;
628
629 cpu_hotplug_done();
630 /* This post dead nonsense must die */
631 if (!ret && hasdied)
632 cpu_notify_nofail(CPU_POST_DEAD, cpu);
633 return ret;
634 }
635
636 static int do_cpu_down(unsigned int cpu, enum cpuhp_state target)
637 {
638 int err;
639
640 cpu_maps_update_begin();
641
642 if (cpu_hotplug_disabled) {
643 err = -EBUSY;
644 goto out;
645 }
646
647 err = _cpu_down(cpu, 0, target);
648
649 out:
650 cpu_maps_update_done();
651 return err;
652 }
653 int cpu_down(unsigned int cpu)
654 {
655 return do_cpu_down(cpu, CPUHP_OFFLINE);
656 }
657 EXPORT_SYMBOL(cpu_down);
658 #endif /*CONFIG_HOTPLUG_CPU*/
659
660 /**
661 * notify_cpu_starting(cpu) - call the CPU_STARTING notifiers
662 * @cpu: cpu that just started
663 *
664 * This function calls the cpu_chain notifiers with CPU_STARTING.
665 * It must be called by the arch code on the new cpu, before the new cpu
666 * enables interrupts and before the "boot" cpu returns from __cpu_up().
667 */
668 void notify_cpu_starting(unsigned int cpu)
669 {
670 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
671 enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
672
673 while (st->state < target) {
674 struct cpuhp_step *step;
675
676 st->state++;
677 step = cpuhp_ap_states + st->state;
678 cpuhp_invoke_callback(cpu, st->state, step->startup);
679 }
680 }
681
682 /*
683 * Called from the idle task. We need to set active here, so we can kick off
684 * the stopper thread.
685 */
686 static int cpuhp_set_cpu_active(unsigned int cpu)
687 {
688 /* The cpu is marked online, set it active now */
689 set_cpu_active(cpu, true);
690 /* Unpark the stopper thread */
691 stop_machine_unpark(cpu);
692 return 0;
693 }
694
695 /* Requires cpu_add_remove_lock to be held */
696 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
697 {
698 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
699 struct task_struct *idle;
700 int ret = 0;
701
702 cpu_hotplug_begin();
703
704 if (!cpu_present(cpu)) {
705 ret = -EINVAL;
706 goto out;
707 }
708
709 /*
710 * The caller of do_cpu_up might have raced with another
711 * caller. Ignore it for now.
712 */
713 if (st->state >= target)
714 goto out;
715
716 if (st->state == CPUHP_OFFLINE) {
717 /* Let it fail before we try to bring the cpu up */
718 idle = idle_thread_get(cpu);
719 if (IS_ERR(idle)) {
720 ret = PTR_ERR(idle);
721 goto out;
722 }
723 }
724
725 cpuhp_tasks_frozen = tasks_frozen;
726
727 st->target = target;
728 ret = cpuhp_up_callbacks(cpu, st, cpuhp_bp_states, target);
729 out:
730 cpu_hotplug_done();
731 return ret;
732 }
733
734 static int do_cpu_up(unsigned int cpu, enum cpuhp_state target)
735 {
736 int err = 0;
737
738 if (!cpu_possible(cpu)) {
739 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
740 cpu);
741 #if defined(CONFIG_IA64)
742 pr_err("please check additional_cpus= boot parameter\n");
743 #endif
744 return -EINVAL;
745 }
746
747 err = try_online_node(cpu_to_node(cpu));
748 if (err)
749 return err;
750
751 cpu_maps_update_begin();
752
753 if (cpu_hotplug_disabled) {
754 err = -EBUSY;
755 goto out;
756 }
757
758 err = _cpu_up(cpu, 0, target);
759 out:
760 cpu_maps_update_done();
761 return err;
762 }
763
764 int cpu_up(unsigned int cpu)
765 {
766 return do_cpu_up(cpu, CPUHP_ONLINE);
767 }
768 EXPORT_SYMBOL_GPL(cpu_up);
769
770 #ifdef CONFIG_PM_SLEEP_SMP
771 static cpumask_var_t frozen_cpus;
772
773 int disable_nonboot_cpus(void)
774 {
775 int cpu, first_cpu, error = 0;
776
777 cpu_maps_update_begin();
778 first_cpu = cpumask_first(cpu_online_mask);
779 /*
780 * We take down all of the non-boot CPUs in one shot to avoid races
781 * with the userspace trying to use the CPU hotplug at the same time
782 */
783 cpumask_clear(frozen_cpus);
784
785 pr_info("Disabling non-boot CPUs ...\n");
786 for_each_online_cpu(cpu) {
787 if (cpu == first_cpu)
788 continue;
789 trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
790 error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
791 trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
792 if (!error)
793 cpumask_set_cpu(cpu, frozen_cpus);
794 else {
795 pr_err("Error taking CPU%d down: %d\n", cpu, error);
796 break;
797 }
798 }
799
800 if (!error)
801 BUG_ON(num_online_cpus() > 1);
802 else
803 pr_err("Non-boot CPUs are not disabled\n");
804
805 /*
806 * Make sure the CPUs won't be enabled by someone else. We need to do
807 * this even in case of failure as all disable_nonboot_cpus() users are
808 * supposed to do enable_nonboot_cpus() on the failure path.
809 */
810 cpu_hotplug_disabled++;
811
812 cpu_maps_update_done();
813 return error;
814 }
815
816 void __weak arch_enable_nonboot_cpus_begin(void)
817 {
818 }
819
820 void __weak arch_enable_nonboot_cpus_end(void)
821 {
822 }
823
824 void enable_nonboot_cpus(void)
825 {
826 int cpu, error;
827
828 /* Allow everyone to use the CPU hotplug again */
829 cpu_maps_update_begin();
830 WARN_ON(--cpu_hotplug_disabled < 0);
831 if (cpumask_empty(frozen_cpus))
832 goto out;
833
834 pr_info("Enabling non-boot CPUs ...\n");
835
836 arch_enable_nonboot_cpus_begin();
837
838 for_each_cpu(cpu, frozen_cpus) {
839 trace_suspend_resume(TPS("CPU_ON"), cpu, true);
840 error = _cpu_up(cpu, 1, CPUHP_ONLINE);
841 trace_suspend_resume(TPS("CPU_ON"), cpu, false);
842 if (!error) {
843 pr_info("CPU%d is up\n", cpu);
844 continue;
845 }
846 pr_warn("Error taking CPU%d up: %d\n", cpu, error);
847 }
848
849 arch_enable_nonboot_cpus_end();
850
851 cpumask_clear(frozen_cpus);
852 out:
853 cpu_maps_update_done();
854 }
855
856 static int __init alloc_frozen_cpus(void)
857 {
858 if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
859 return -ENOMEM;
860 return 0;
861 }
862 core_initcall(alloc_frozen_cpus);
863
864 /*
865 * When callbacks for CPU hotplug notifications are being executed, we must
866 * ensure that the state of the system with respect to the tasks being frozen
867 * or not, as reported by the notification, remains unchanged *throughout the
868 * duration* of the execution of the callbacks.
869 * Hence we need to prevent the freezer from racing with regular CPU hotplug.
870 *
871 * This synchronization is implemented by mutually excluding regular CPU
872 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
873 * Hibernate notifications.
874 */
875 static int
876 cpu_hotplug_pm_callback(struct notifier_block *nb,
877 unsigned long action, void *ptr)
878 {
879 switch (action) {
880
881 case PM_SUSPEND_PREPARE:
882 case PM_HIBERNATION_PREPARE:
883 cpu_hotplug_disable();
884 break;
885
886 case PM_POST_SUSPEND:
887 case PM_POST_HIBERNATION:
888 cpu_hotplug_enable();
889 break;
890
891 default:
892 return NOTIFY_DONE;
893 }
894
895 return NOTIFY_OK;
896 }
897
898
899 static int __init cpu_hotplug_pm_sync_init(void)
900 {
901 /*
902 * cpu_hotplug_pm_callback has higher priority than x86
903 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
904 * to disable cpu hotplug to avoid cpu hotplug race.
905 */
906 pm_notifier(cpu_hotplug_pm_callback, 0);
907 return 0;
908 }
909 core_initcall(cpu_hotplug_pm_sync_init);
910
911 #endif /* CONFIG_PM_SLEEP_SMP */
912
913 #endif /* CONFIG_SMP */
914
915 /* Boot processor state steps */
916 static struct cpuhp_step cpuhp_bp_states[] = {
917 [CPUHP_OFFLINE] = {
918 .name = "offline",
919 .startup = NULL,
920 .teardown = NULL,
921 },
922 #ifdef CONFIG_SMP
923 [CPUHP_CREATE_THREADS]= {
924 .name = "threads:create",
925 .startup = smpboot_create_threads,
926 .teardown = NULL,
927 .cant_stop = true,
928 },
929 [CPUHP_NOTIFY_PREPARE] = {
930 .name = "notify:prepare",
931 .startup = notify_prepare,
932 .teardown = notify_dead,
933 .skip_onerr = true,
934 .cant_stop = true,
935 },
936 [CPUHP_BRINGUP_CPU] = {
937 .name = "cpu:bringup",
938 .startup = bringup_cpu,
939 .teardown = NULL,
940 .cant_stop = true,
941 },
942 [CPUHP_TEARDOWN_CPU] = {
943 .name = "cpu:teardown",
944 .startup = NULL,
945 .teardown = takedown_cpu,
946 .cant_stop = true,
947 },
948 [CPUHP_CPU_SET_ACTIVE] = {
949 .name = "cpu:active",
950 .startup = cpuhp_set_cpu_active,
951 .teardown = NULL,
952 },
953 [CPUHP_SMPBOOT_THREADS] = {
954 .name = "smpboot:threads",
955 .startup = smpboot_unpark_threads,
956 .teardown = smpboot_park_threads,
957 },
958 [CPUHP_NOTIFY_ONLINE] = {
959 .name = "notify:online",
960 .startup = notify_online,
961 .teardown = notify_down_prepare,
962 .cant_stop = true,
963 },
964 #endif
965 [CPUHP_ONLINE] = {
966 .name = "online",
967 .startup = NULL,
968 .teardown = NULL,
969 },
970 };
971
972 /* Application processor state steps */
973 static struct cpuhp_step cpuhp_ap_states[] = {
974 #ifdef CONFIG_SMP
975 [CPUHP_AP_NOTIFY_STARTING] = {
976 .name = "notify:starting",
977 .startup = notify_starting,
978 .teardown = notify_dying,
979 .skip_onerr = true,
980 .cant_stop = true,
981 },
982 #endif
983 [CPUHP_ONLINE] = {
984 .name = "online",
985 .startup = NULL,
986 .teardown = NULL,
987 },
988 };
989
990 /* Sanity check for callbacks */
991 static int cpuhp_cb_check(enum cpuhp_state state)
992 {
993 if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
994 return -EINVAL;
995 return 0;
996 }
997
998 static bool cpuhp_is_ap_state(enum cpuhp_state state)
999 {
1000 return (state > CPUHP_AP_OFFLINE && state < CPUHP_AP_ONLINE);
1001 }
1002
1003 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
1004 {
1005 struct cpuhp_step *sp;
1006
1007 sp = cpuhp_is_ap_state(state) ? cpuhp_ap_states : cpuhp_bp_states;
1008 return sp + state;
1009 }
1010
1011 static void cpuhp_store_callbacks(enum cpuhp_state state,
1012 const char *name,
1013 int (*startup)(unsigned int cpu),
1014 int (*teardown)(unsigned int cpu))
1015 {
1016 /* (Un)Install the callbacks for further cpu hotplug operations */
1017 struct cpuhp_step *sp;
1018
1019 mutex_lock(&cpuhp_state_mutex);
1020 sp = cpuhp_get_step(state);
1021 sp->startup = startup;
1022 sp->teardown = teardown;
1023 sp->name = name;
1024 mutex_unlock(&cpuhp_state_mutex);
1025 }
1026
1027 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
1028 {
1029 return cpuhp_get_step(state)->teardown;
1030 }
1031
1032 /* Helper function to run callback on the target cpu */
1033 static void cpuhp_on_cpu_cb(void *__cb)
1034 {
1035 int (*cb)(unsigned int cpu) = __cb;
1036
1037 BUG_ON(cb(smp_processor_id()));
1038 }
1039
1040 /*
1041 * Call the startup/teardown function for a step either on the AP or
1042 * on the current CPU.
1043 */
1044 static int cpuhp_issue_call(int cpu, enum cpuhp_state state,
1045 int (*cb)(unsigned int), bool bringup)
1046 {
1047 int ret;
1048
1049 if (!cb)
1050 return 0;
1051
1052 /*
1053 * This invokes the callback directly for now. In a later step we
1054 * convert that to use cpuhp_invoke_callback().
1055 */
1056 if (cpuhp_is_ap_state(state)) {
1057 /*
1058 * Note, that a function called on the AP is not
1059 * allowed to fail.
1060 */
1061 if (cpu_online(cpu))
1062 smp_call_function_single(cpu, cpuhp_on_cpu_cb, cb, 1);
1063 return 0;
1064 }
1065
1066 /*
1067 * The non AP bound callbacks can fail on bringup. On teardown
1068 * e.g. module removal we crash for now.
1069 */
1070 ret = cb(cpu);
1071 BUG_ON(ret && !bringup);
1072 return ret;
1073 }
1074
1075 /*
1076 * Called from __cpuhp_setup_state on a recoverable failure.
1077 *
1078 * Note: The teardown callbacks for rollback are not allowed to fail!
1079 */
1080 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
1081 int (*teardown)(unsigned int cpu))
1082 {
1083 int cpu;
1084
1085 if (!teardown)
1086 return;
1087
1088 /* Roll back the already executed steps on the other cpus */
1089 for_each_present_cpu(cpu) {
1090 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1091 int cpustate = st->state;
1092
1093 if (cpu >= failedcpu)
1094 break;
1095
1096 /* Did we invoke the startup call on that cpu ? */
1097 if (cpustate >= state)
1098 cpuhp_issue_call(cpu, state, teardown, false);
1099 }
1100 }
1101
1102 /*
1103 * Returns a free for dynamic slot assignment of the Online state. The states
1104 * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1105 * by having no name assigned.
1106 */
1107 static int cpuhp_reserve_state(enum cpuhp_state state)
1108 {
1109 enum cpuhp_state i;
1110
1111 mutex_lock(&cpuhp_state_mutex);
1112 for (i = CPUHP_ONLINE_DYN; i <= CPUHP_ONLINE_DYN_END; i++) {
1113 if (cpuhp_bp_states[i].name)
1114 continue;
1115
1116 cpuhp_bp_states[i].name = "Reserved";
1117 mutex_unlock(&cpuhp_state_mutex);
1118 return i;
1119 }
1120 mutex_unlock(&cpuhp_state_mutex);
1121 WARN(1, "No more dynamic states available for CPU hotplug\n");
1122 return -ENOSPC;
1123 }
1124
1125 /**
1126 * __cpuhp_setup_state - Setup the callbacks for an hotplug machine state
1127 * @state: The state to setup
1128 * @invoke: If true, the startup function is invoked for cpus where
1129 * cpu state >= @state
1130 * @startup: startup callback function
1131 * @teardown: teardown callback function
1132 *
1133 * Returns 0 if successful, otherwise a proper error code
1134 */
1135 int __cpuhp_setup_state(enum cpuhp_state state,
1136 const char *name, bool invoke,
1137 int (*startup)(unsigned int cpu),
1138 int (*teardown)(unsigned int cpu))
1139 {
1140 int cpu, ret = 0;
1141 int dyn_state = 0;
1142
1143 if (cpuhp_cb_check(state) || !name)
1144 return -EINVAL;
1145
1146 get_online_cpus();
1147
1148 /* currently assignments for the ONLINE state are possible */
1149 if (state == CPUHP_ONLINE_DYN) {
1150 dyn_state = 1;
1151 ret = cpuhp_reserve_state(state);
1152 if (ret < 0)
1153 goto out;
1154 state = ret;
1155 }
1156
1157 cpuhp_store_callbacks(state, name, startup, teardown);
1158
1159 if (!invoke || !startup)
1160 goto out;
1161
1162 /*
1163 * Try to call the startup callback for each present cpu
1164 * depending on the hotplug state of the cpu.
1165 */
1166 for_each_present_cpu(cpu) {
1167 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1168 int cpustate = st->state;
1169
1170 if (cpustate < state)
1171 continue;
1172
1173 ret = cpuhp_issue_call(cpu, state, startup, true);
1174 if (ret) {
1175 cpuhp_rollback_install(cpu, state, teardown);
1176 cpuhp_store_callbacks(state, NULL, NULL, NULL);
1177 goto out;
1178 }
1179 }
1180 out:
1181 put_online_cpus();
1182 if (!ret && dyn_state)
1183 return state;
1184 return ret;
1185 }
1186 EXPORT_SYMBOL(__cpuhp_setup_state);
1187
1188 /**
1189 * __cpuhp_remove_state - Remove the callbacks for an hotplug machine state
1190 * @state: The state to remove
1191 * @invoke: If true, the teardown function is invoked for cpus where
1192 * cpu state >= @state
1193 *
1194 * The teardown callback is currently not allowed to fail. Think
1195 * about module removal!
1196 */
1197 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
1198 {
1199 int (*teardown)(unsigned int cpu) = cpuhp_get_teardown_cb(state);
1200 int cpu;
1201
1202 BUG_ON(cpuhp_cb_check(state));
1203
1204 get_online_cpus();
1205
1206 if (!invoke || !teardown)
1207 goto remove;
1208
1209 /*
1210 * Call the teardown callback for each present cpu depending
1211 * on the hotplug state of the cpu. This function is not
1212 * allowed to fail currently!
1213 */
1214 for_each_present_cpu(cpu) {
1215 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1216 int cpustate = st->state;
1217
1218 if (cpustate >= state)
1219 cpuhp_issue_call(cpu, state, teardown, false);
1220 }
1221 remove:
1222 cpuhp_store_callbacks(state, NULL, NULL, NULL);
1223 put_online_cpus();
1224 }
1225 EXPORT_SYMBOL(__cpuhp_remove_state);
1226
1227 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
1228 static ssize_t show_cpuhp_state(struct device *dev,
1229 struct device_attribute *attr, char *buf)
1230 {
1231 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1232
1233 return sprintf(buf, "%d\n", st->state);
1234 }
1235 static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL);
1236
1237 static ssize_t write_cpuhp_target(struct device *dev,
1238 struct device_attribute *attr,
1239 const char *buf, size_t count)
1240 {
1241 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1242 struct cpuhp_step *sp;
1243 int target, ret;
1244
1245 ret = kstrtoint(buf, 10, &target);
1246 if (ret)
1247 return ret;
1248
1249 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
1250 if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
1251 return -EINVAL;
1252 #else
1253 if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
1254 return -EINVAL;
1255 #endif
1256
1257 ret = lock_device_hotplug_sysfs();
1258 if (ret)
1259 return ret;
1260
1261 mutex_lock(&cpuhp_state_mutex);
1262 sp = cpuhp_get_step(target);
1263 ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
1264 mutex_unlock(&cpuhp_state_mutex);
1265 if (ret)
1266 return ret;
1267
1268 if (st->state < target)
1269 ret = do_cpu_up(dev->id, target);
1270 else
1271 ret = do_cpu_down(dev->id, target);
1272
1273 unlock_device_hotplug();
1274 return ret ? ret : count;
1275 }
1276
1277 static ssize_t show_cpuhp_target(struct device *dev,
1278 struct device_attribute *attr, char *buf)
1279 {
1280 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1281
1282 return sprintf(buf, "%d\n", st->target);
1283 }
1284 static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target);
1285
1286 static struct attribute *cpuhp_cpu_attrs[] = {
1287 &dev_attr_state.attr,
1288 &dev_attr_target.attr,
1289 NULL
1290 };
1291
1292 static struct attribute_group cpuhp_cpu_attr_group = {
1293 .attrs = cpuhp_cpu_attrs,
1294 .name = "hotplug",
1295 NULL
1296 };
1297
1298 static ssize_t show_cpuhp_states(struct device *dev,
1299 struct device_attribute *attr, char *buf)
1300 {
1301 ssize_t cur, res = 0;
1302 int i;
1303
1304 mutex_lock(&cpuhp_state_mutex);
1305 for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
1306 struct cpuhp_step *sp = cpuhp_get_step(i);
1307
1308 if (sp->name) {
1309 cur = sprintf(buf, "%3d: %s\n", i, sp->name);
1310 buf += cur;
1311 res += cur;
1312 }
1313 }
1314 mutex_unlock(&cpuhp_state_mutex);
1315 return res;
1316 }
1317 static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL);
1318
1319 static struct attribute *cpuhp_cpu_root_attrs[] = {
1320 &dev_attr_states.attr,
1321 NULL
1322 };
1323
1324 static struct attribute_group cpuhp_cpu_root_attr_group = {
1325 .attrs = cpuhp_cpu_root_attrs,
1326 .name = "hotplug",
1327 NULL
1328 };
1329
1330 static int __init cpuhp_sysfs_init(void)
1331 {
1332 int cpu, ret;
1333
1334 ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
1335 &cpuhp_cpu_root_attr_group);
1336 if (ret)
1337 return ret;
1338
1339 for_each_possible_cpu(cpu) {
1340 struct device *dev = get_cpu_device(cpu);
1341
1342 if (!dev)
1343 continue;
1344 ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
1345 if (ret)
1346 return ret;
1347 }
1348 return 0;
1349 }
1350 device_initcall(cpuhp_sysfs_init);
1351 #endif
1352
1353 /*
1354 * cpu_bit_bitmap[] is a special, "compressed" data structure that
1355 * represents all NR_CPUS bits binary values of 1<<nr.
1356 *
1357 * It is used by cpumask_of() to get a constant address to a CPU
1358 * mask value that has a single bit set only.
1359 */
1360
1361 /* cpu_bit_bitmap[0] is empty - so we can back into it */
1362 #define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x))
1363 #define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
1364 #define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
1365 #define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
1366
1367 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
1368
1369 MASK_DECLARE_8(0), MASK_DECLARE_8(8),
1370 MASK_DECLARE_8(16), MASK_DECLARE_8(24),
1371 #if BITS_PER_LONG > 32
1372 MASK_DECLARE_8(32), MASK_DECLARE_8(40),
1373 MASK_DECLARE_8(48), MASK_DECLARE_8(56),
1374 #endif
1375 };
1376 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
1377
1378 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
1379 EXPORT_SYMBOL(cpu_all_bits);
1380
1381 #ifdef CONFIG_INIT_ALL_POSSIBLE
1382 struct cpumask __cpu_possible_mask __read_mostly
1383 = {CPU_BITS_ALL};
1384 #else
1385 struct cpumask __cpu_possible_mask __read_mostly;
1386 #endif
1387 EXPORT_SYMBOL(__cpu_possible_mask);
1388
1389 struct cpumask __cpu_online_mask __read_mostly;
1390 EXPORT_SYMBOL(__cpu_online_mask);
1391
1392 struct cpumask __cpu_present_mask __read_mostly;
1393 EXPORT_SYMBOL(__cpu_present_mask);
1394
1395 struct cpumask __cpu_active_mask __read_mostly;
1396 EXPORT_SYMBOL(__cpu_active_mask);
1397
1398 void init_cpu_present(const struct cpumask *src)
1399 {
1400 cpumask_copy(&__cpu_present_mask, src);
1401 }
1402
1403 void init_cpu_possible(const struct cpumask *src)
1404 {
1405 cpumask_copy(&__cpu_possible_mask, src);
1406 }
1407
1408 void init_cpu_online(const struct cpumask *src)
1409 {
1410 cpumask_copy(&__cpu_online_mask, src);
1411 }
1412
1413 /*
1414 * Activate the first processor.
1415 */
1416 void __init boot_cpu_init(void)
1417 {
1418 int cpu = smp_processor_id();
1419
1420 /* Mark the boot cpu "present", "online" etc for SMP and UP case */
1421 set_cpu_online(cpu, true);
1422 set_cpu_active(cpu, true);
1423 set_cpu_present(cpu, true);
1424 set_cpu_possible(cpu, true);
1425 }
1426
1427 /*
1428 * Must be called _AFTER_ setting up the per_cpu areas
1429 */
1430 void __init boot_cpu_state_init(void)
1431 {
1432 per_cpu_ptr(&cpuhp_state, smp_processor_id())->state = CPUHP_ONLINE;
1433 }
This page took 0.059499 seconds and 6 git commands to generate.