cpu/hotplug: Create hotplug threads
[deliverable/linux.git] / kernel / cpu.c
1 /* CPU control.
2 * (C) 2001, 2002, 2003, 2004 Rusty Russell
3 *
4 * This code is licenced under the GPL.
5 */
6 #include <linux/proc_fs.h>
7 #include <linux/smp.h>
8 #include <linux/init.h>
9 #include <linux/notifier.h>
10 #include <linux/sched.h>
11 #include <linux/unistd.h>
12 #include <linux/cpu.h>
13 #include <linux/oom.h>
14 #include <linux/rcupdate.h>
15 #include <linux/export.h>
16 #include <linux/bug.h>
17 #include <linux/kthread.h>
18 #include <linux/stop_machine.h>
19 #include <linux/mutex.h>
20 #include <linux/gfp.h>
21 #include <linux/suspend.h>
22 #include <linux/lockdep.h>
23 #include <linux/tick.h>
24 #include <linux/irq.h>
25 #include <linux/smpboot.h>
26
27 #include <trace/events/power.h>
28 #define CREATE_TRACE_POINTS
29 #include <trace/events/cpuhp.h>
30
31 #include "smpboot.h"
32
33 /**
34 * cpuhp_cpu_state - Per cpu hotplug state storage
35 * @state: The current cpu state
36 * @target: The target state
37 * @thread: Pointer to the hotplug thread
38 * @should_run: Thread should execute
39 * @cb_stat: The state for a single callback (install/uninstall)
40 * @cb: Single callback function (install/uninstall)
41 * @result: Result of the operation
42 * @done: Signal completion to the issuer of the task
43 */
44 struct cpuhp_cpu_state {
45 enum cpuhp_state state;
46 enum cpuhp_state target;
47 #ifdef CONFIG_SMP
48 struct task_struct *thread;
49 bool should_run;
50 enum cpuhp_state cb_state;
51 int (*cb)(unsigned int cpu);
52 int result;
53 struct completion done;
54 #endif
55 };
56
57 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state);
58
59 /**
60 * cpuhp_step - Hotplug state machine step
61 * @name: Name of the step
62 * @startup: Startup function of the step
63 * @teardown: Teardown function of the step
64 * @skip_onerr: Do not invoke the functions on error rollback
65 * Will go away once the notifiers are gone
66 * @cant_stop: Bringup/teardown can't be stopped at this step
67 */
68 struct cpuhp_step {
69 const char *name;
70 int (*startup)(unsigned int cpu);
71 int (*teardown)(unsigned int cpu);
72 bool skip_onerr;
73 bool cant_stop;
74 };
75
76 static DEFINE_MUTEX(cpuhp_state_mutex);
77 static struct cpuhp_step cpuhp_bp_states[];
78 static struct cpuhp_step cpuhp_ap_states[];
79
80 /**
81 * cpuhp_invoke_callback _ Invoke the callbacks for a given state
82 * @cpu: The cpu for which the callback should be invoked
83 * @step: The step in the state machine
84 * @cb: The callback function to invoke
85 *
86 * Called from cpu hotplug and from the state register machinery
87 */
88 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state step,
89 int (*cb)(unsigned int))
90 {
91 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
92 int ret = 0;
93
94 if (cb) {
95 trace_cpuhp_enter(cpu, st->target, step, cb);
96 ret = cb(cpu);
97 trace_cpuhp_exit(cpu, st->state, step, ret);
98 }
99 return ret;
100 }
101
102 #ifdef CONFIG_SMP
103 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
104 static DEFINE_MUTEX(cpu_add_remove_lock);
105 bool cpuhp_tasks_frozen;
106 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
107
108 /*
109 * The following two APIs (cpu_maps_update_begin/done) must be used when
110 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
111 * The APIs cpu_notifier_register_begin/done() must be used to protect CPU
112 * hotplug callback (un)registration performed using __register_cpu_notifier()
113 * or __unregister_cpu_notifier().
114 */
115 void cpu_maps_update_begin(void)
116 {
117 mutex_lock(&cpu_add_remove_lock);
118 }
119 EXPORT_SYMBOL(cpu_notifier_register_begin);
120
121 void cpu_maps_update_done(void)
122 {
123 mutex_unlock(&cpu_add_remove_lock);
124 }
125 EXPORT_SYMBOL(cpu_notifier_register_done);
126
127 static RAW_NOTIFIER_HEAD(cpu_chain);
128
129 /* If set, cpu_up and cpu_down will return -EBUSY and do nothing.
130 * Should always be manipulated under cpu_add_remove_lock
131 */
132 static int cpu_hotplug_disabled;
133
134 #ifdef CONFIG_HOTPLUG_CPU
135
136 static struct {
137 struct task_struct *active_writer;
138 /* wait queue to wake up the active_writer */
139 wait_queue_head_t wq;
140 /* verifies that no writer will get active while readers are active */
141 struct mutex lock;
142 /*
143 * Also blocks the new readers during
144 * an ongoing cpu hotplug operation.
145 */
146 atomic_t refcount;
147
148 #ifdef CONFIG_DEBUG_LOCK_ALLOC
149 struct lockdep_map dep_map;
150 #endif
151 } cpu_hotplug = {
152 .active_writer = NULL,
153 .wq = __WAIT_QUEUE_HEAD_INITIALIZER(cpu_hotplug.wq),
154 .lock = __MUTEX_INITIALIZER(cpu_hotplug.lock),
155 #ifdef CONFIG_DEBUG_LOCK_ALLOC
156 .dep_map = {.name = "cpu_hotplug.lock" },
157 #endif
158 };
159
160 /* Lockdep annotations for get/put_online_cpus() and cpu_hotplug_begin/end() */
161 #define cpuhp_lock_acquire_read() lock_map_acquire_read(&cpu_hotplug.dep_map)
162 #define cpuhp_lock_acquire_tryread() \
163 lock_map_acquire_tryread(&cpu_hotplug.dep_map)
164 #define cpuhp_lock_acquire() lock_map_acquire(&cpu_hotplug.dep_map)
165 #define cpuhp_lock_release() lock_map_release(&cpu_hotplug.dep_map)
166
167
168 void get_online_cpus(void)
169 {
170 might_sleep();
171 if (cpu_hotplug.active_writer == current)
172 return;
173 cpuhp_lock_acquire_read();
174 mutex_lock(&cpu_hotplug.lock);
175 atomic_inc(&cpu_hotplug.refcount);
176 mutex_unlock(&cpu_hotplug.lock);
177 }
178 EXPORT_SYMBOL_GPL(get_online_cpus);
179
180 void put_online_cpus(void)
181 {
182 int refcount;
183
184 if (cpu_hotplug.active_writer == current)
185 return;
186
187 refcount = atomic_dec_return(&cpu_hotplug.refcount);
188 if (WARN_ON(refcount < 0)) /* try to fix things up */
189 atomic_inc(&cpu_hotplug.refcount);
190
191 if (refcount <= 0 && waitqueue_active(&cpu_hotplug.wq))
192 wake_up(&cpu_hotplug.wq);
193
194 cpuhp_lock_release();
195
196 }
197 EXPORT_SYMBOL_GPL(put_online_cpus);
198
199 /*
200 * This ensures that the hotplug operation can begin only when the
201 * refcount goes to zero.
202 *
203 * Note that during a cpu-hotplug operation, the new readers, if any,
204 * will be blocked by the cpu_hotplug.lock
205 *
206 * Since cpu_hotplug_begin() is always called after invoking
207 * cpu_maps_update_begin(), we can be sure that only one writer is active.
208 *
209 * Note that theoretically, there is a possibility of a livelock:
210 * - Refcount goes to zero, last reader wakes up the sleeping
211 * writer.
212 * - Last reader unlocks the cpu_hotplug.lock.
213 * - A new reader arrives at this moment, bumps up the refcount.
214 * - The writer acquires the cpu_hotplug.lock finds the refcount
215 * non zero and goes to sleep again.
216 *
217 * However, this is very difficult to achieve in practice since
218 * get_online_cpus() not an api which is called all that often.
219 *
220 */
221 void cpu_hotplug_begin(void)
222 {
223 DEFINE_WAIT(wait);
224
225 cpu_hotplug.active_writer = current;
226 cpuhp_lock_acquire();
227
228 for (;;) {
229 mutex_lock(&cpu_hotplug.lock);
230 prepare_to_wait(&cpu_hotplug.wq, &wait, TASK_UNINTERRUPTIBLE);
231 if (likely(!atomic_read(&cpu_hotplug.refcount)))
232 break;
233 mutex_unlock(&cpu_hotplug.lock);
234 schedule();
235 }
236 finish_wait(&cpu_hotplug.wq, &wait);
237 }
238
239 void cpu_hotplug_done(void)
240 {
241 cpu_hotplug.active_writer = NULL;
242 mutex_unlock(&cpu_hotplug.lock);
243 cpuhp_lock_release();
244 }
245
246 /*
247 * Wait for currently running CPU hotplug operations to complete (if any) and
248 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
249 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
250 * hotplug path before performing hotplug operations. So acquiring that lock
251 * guarantees mutual exclusion from any currently running hotplug operations.
252 */
253 void cpu_hotplug_disable(void)
254 {
255 cpu_maps_update_begin();
256 cpu_hotplug_disabled++;
257 cpu_maps_update_done();
258 }
259 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
260
261 void cpu_hotplug_enable(void)
262 {
263 cpu_maps_update_begin();
264 WARN_ON(--cpu_hotplug_disabled < 0);
265 cpu_maps_update_done();
266 }
267 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
268 #endif /* CONFIG_HOTPLUG_CPU */
269
270 /* Need to know about CPUs going up/down? */
271 int register_cpu_notifier(struct notifier_block *nb)
272 {
273 int ret;
274 cpu_maps_update_begin();
275 ret = raw_notifier_chain_register(&cpu_chain, nb);
276 cpu_maps_update_done();
277 return ret;
278 }
279
280 int __register_cpu_notifier(struct notifier_block *nb)
281 {
282 return raw_notifier_chain_register(&cpu_chain, nb);
283 }
284
285 static int __cpu_notify(unsigned long val, unsigned int cpu, int nr_to_call,
286 int *nr_calls)
287 {
288 unsigned long mod = cpuhp_tasks_frozen ? CPU_TASKS_FROZEN : 0;
289 void *hcpu = (void *)(long)cpu;
290
291 int ret;
292
293 ret = __raw_notifier_call_chain(&cpu_chain, val | mod, hcpu, nr_to_call,
294 nr_calls);
295
296 return notifier_to_errno(ret);
297 }
298
299 static int cpu_notify(unsigned long val, unsigned int cpu)
300 {
301 return __cpu_notify(val, cpu, -1, NULL);
302 }
303
304 /* Notifier wrappers for transitioning to state machine */
305 static int notify_prepare(unsigned int cpu)
306 {
307 int nr_calls = 0;
308 int ret;
309
310 ret = __cpu_notify(CPU_UP_PREPARE, cpu, -1, &nr_calls);
311 if (ret) {
312 nr_calls--;
313 printk(KERN_WARNING "%s: attempt to bring up CPU %u failed\n",
314 __func__, cpu);
315 __cpu_notify(CPU_UP_CANCELED, cpu, nr_calls, NULL);
316 }
317 return ret;
318 }
319
320 static int notify_online(unsigned int cpu)
321 {
322 cpu_notify(CPU_ONLINE, cpu);
323 return 0;
324 }
325
326 static int notify_starting(unsigned int cpu)
327 {
328 cpu_notify(CPU_STARTING, cpu);
329 return 0;
330 }
331
332 static int bringup_cpu(unsigned int cpu)
333 {
334 struct task_struct *idle = idle_thread_get(cpu);
335 int ret;
336
337 /* Arch-specific enabling code. */
338 ret = __cpu_up(cpu, idle);
339 if (ret) {
340 cpu_notify(CPU_UP_CANCELED, cpu);
341 return ret;
342 }
343 BUG_ON(!cpu_online(cpu));
344 return 0;
345 }
346
347 /*
348 * Hotplug state machine related functions
349 */
350 static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st,
351 struct cpuhp_step *steps)
352 {
353 for (st->state++; st->state < st->target; st->state++) {
354 struct cpuhp_step *step = steps + st->state;
355
356 if (!step->skip_onerr)
357 cpuhp_invoke_callback(cpu, st->state, step->startup);
358 }
359 }
360
361 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
362 struct cpuhp_step *steps, enum cpuhp_state target)
363 {
364 enum cpuhp_state prev_state = st->state;
365 int ret = 0;
366
367 for (; st->state > target; st->state--) {
368 struct cpuhp_step *step = steps + st->state;
369
370 ret = cpuhp_invoke_callback(cpu, st->state, step->teardown);
371 if (ret) {
372 st->target = prev_state;
373 undo_cpu_down(cpu, st, steps);
374 break;
375 }
376 }
377 return ret;
378 }
379
380 static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st,
381 struct cpuhp_step *steps)
382 {
383 for (st->state--; st->state > st->target; st->state--) {
384 struct cpuhp_step *step = steps + st->state;
385
386 if (!step->skip_onerr)
387 cpuhp_invoke_callback(cpu, st->state, step->teardown);
388 }
389 }
390
391 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
392 struct cpuhp_step *steps, enum cpuhp_state target)
393 {
394 enum cpuhp_state prev_state = st->state;
395 int ret = 0;
396
397 while (st->state < target) {
398 struct cpuhp_step *step;
399
400 st->state++;
401 step = steps + st->state;
402 ret = cpuhp_invoke_callback(cpu, st->state, step->startup);
403 if (ret) {
404 st->target = prev_state;
405 undo_cpu_up(cpu, st, steps);
406 break;
407 }
408 }
409 return ret;
410 }
411
412 /*
413 * The cpu hotplug threads manage the bringup and teardown of the cpus
414 */
415 static void cpuhp_create(unsigned int cpu)
416 {
417 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
418
419 init_completion(&st->done);
420 }
421
422 static int cpuhp_should_run(unsigned int cpu)
423 {
424 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
425
426 return st->should_run;
427 }
428
429 /* Execute the teardown callbacks. Used to be CPU_DOWN_PREPARE */
430 static int cpuhp_ap_offline(unsigned int cpu, struct cpuhp_cpu_state *st)
431 {
432 enum cpuhp_state target = max((int)st->target, CPUHP_AP_ONLINE);
433
434 return cpuhp_down_callbacks(cpu, st, cpuhp_ap_states, target);
435 }
436
437 /* Execute the online startup callbacks. Used to be CPU_ONLINE */
438 static int cpuhp_ap_online(unsigned int cpu, struct cpuhp_cpu_state *st)
439 {
440 return cpuhp_up_callbacks(cpu, st, cpuhp_ap_states, st->target);
441 }
442
443 /*
444 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
445 * callbacks when a state gets [un]installed at runtime.
446 */
447 static void cpuhp_thread_fun(unsigned int cpu)
448 {
449 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
450 int ret = 0;
451
452 /*
453 * Paired with the mb() in cpuhp_kick_ap_work and
454 * cpuhp_invoke_ap_callback, so the work set is consistent visible.
455 */
456 smp_mb();
457 if (!st->should_run)
458 return;
459
460 st->should_run = false;
461
462 /* Single callback invocation for [un]install ? */
463 if (st->cb) {
464 if (st->cb_state < CPUHP_AP_ONLINE) {
465 local_irq_disable();
466 ret = cpuhp_invoke_callback(cpu, st->cb_state, st->cb);
467 local_irq_enable();
468 } else {
469 ret = cpuhp_invoke_callback(cpu, st->cb_state, st->cb);
470 }
471 } else {
472 /* Regular hotplug work */
473 if (st->state < st->target)
474 ret = cpuhp_ap_online(cpu, st);
475 else if (st->state > st->target)
476 ret = cpuhp_ap_offline(cpu, st);
477 }
478 st->result = ret;
479 complete(&st->done);
480 }
481
482 /* Invoke a single callback on a remote cpu */
483 static int cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state,
484 int (*cb)(unsigned int))
485 {
486 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
487
488 if (!cpu_online(cpu))
489 return 0;
490
491 st->cb_state = state;
492 st->cb = cb;
493 /*
494 * Make sure the above stores are visible before should_run becomes
495 * true. Paired with the mb() above in cpuhp_thread_fun()
496 */
497 smp_mb();
498 st->should_run = true;
499 wake_up_process(st->thread);
500 wait_for_completion(&st->done);
501 return st->result;
502 }
503
504 /* Regular hotplug invocation of the AP hotplug thread */
505 static int cpuhp_kick_ap_work(unsigned int cpu)
506 {
507 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
508 enum cpuhp_state state = st->state;
509
510 trace_cpuhp_enter(cpu, st->target, state, cpuhp_kick_ap_work);
511 st->result = 0;
512 st->cb = NULL;
513 /*
514 * Make sure the above stores are visible before should_run becomes
515 * true. Paired with the mb() above in cpuhp_thread_fun()
516 */
517 smp_mb();
518 st->should_run = true;
519 wake_up_process(st->thread);
520 wait_for_completion(&st->done);
521 trace_cpuhp_exit(cpu, st->state, state, st->result);
522 return st->result;
523 }
524
525 static struct smp_hotplug_thread cpuhp_threads = {
526 .store = &cpuhp_state.thread,
527 .create = &cpuhp_create,
528 .thread_should_run = cpuhp_should_run,
529 .thread_fn = cpuhp_thread_fun,
530 .thread_comm = "cpuhp/%u",
531 .selfparking = true,
532 };
533
534 void __init cpuhp_threads_init(void)
535 {
536 BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
537 kthread_unpark(this_cpu_read(cpuhp_state.thread));
538 }
539
540 #ifdef CONFIG_HOTPLUG_CPU
541 EXPORT_SYMBOL(register_cpu_notifier);
542 EXPORT_SYMBOL(__register_cpu_notifier);
543 void unregister_cpu_notifier(struct notifier_block *nb)
544 {
545 cpu_maps_update_begin();
546 raw_notifier_chain_unregister(&cpu_chain, nb);
547 cpu_maps_update_done();
548 }
549 EXPORT_SYMBOL(unregister_cpu_notifier);
550
551 void __unregister_cpu_notifier(struct notifier_block *nb)
552 {
553 raw_notifier_chain_unregister(&cpu_chain, nb);
554 }
555 EXPORT_SYMBOL(__unregister_cpu_notifier);
556
557 /**
558 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
559 * @cpu: a CPU id
560 *
561 * This function walks all processes, finds a valid mm struct for each one and
562 * then clears a corresponding bit in mm's cpumask. While this all sounds
563 * trivial, there are various non-obvious corner cases, which this function
564 * tries to solve in a safe manner.
565 *
566 * Also note that the function uses a somewhat relaxed locking scheme, so it may
567 * be called only for an already offlined CPU.
568 */
569 void clear_tasks_mm_cpumask(int cpu)
570 {
571 struct task_struct *p;
572
573 /*
574 * This function is called after the cpu is taken down and marked
575 * offline, so its not like new tasks will ever get this cpu set in
576 * their mm mask. -- Peter Zijlstra
577 * Thus, we may use rcu_read_lock() here, instead of grabbing
578 * full-fledged tasklist_lock.
579 */
580 WARN_ON(cpu_online(cpu));
581 rcu_read_lock();
582 for_each_process(p) {
583 struct task_struct *t;
584
585 /*
586 * Main thread might exit, but other threads may still have
587 * a valid mm. Find one.
588 */
589 t = find_lock_task_mm(p);
590 if (!t)
591 continue;
592 cpumask_clear_cpu(cpu, mm_cpumask(t->mm));
593 task_unlock(t);
594 }
595 rcu_read_unlock();
596 }
597
598 static inline void check_for_tasks(int dead_cpu)
599 {
600 struct task_struct *g, *p;
601
602 read_lock(&tasklist_lock);
603 for_each_process_thread(g, p) {
604 if (!p->on_rq)
605 continue;
606 /*
607 * We do the check with unlocked task_rq(p)->lock.
608 * Order the reading to do not warn about a task,
609 * which was running on this cpu in the past, and
610 * it's just been woken on another cpu.
611 */
612 rmb();
613 if (task_cpu(p) != dead_cpu)
614 continue;
615
616 pr_warn("Task %s (pid=%d) is on cpu %d (state=%ld, flags=%x)\n",
617 p->comm, task_pid_nr(p), dead_cpu, p->state, p->flags);
618 }
619 read_unlock(&tasklist_lock);
620 }
621
622 static void cpu_notify_nofail(unsigned long val, unsigned int cpu)
623 {
624 BUG_ON(cpu_notify(val, cpu));
625 }
626
627 static int notify_down_prepare(unsigned int cpu)
628 {
629 int err, nr_calls = 0;
630
631 err = __cpu_notify(CPU_DOWN_PREPARE, cpu, -1, &nr_calls);
632 if (err) {
633 nr_calls--;
634 __cpu_notify(CPU_DOWN_FAILED, cpu, nr_calls, NULL);
635 pr_warn("%s: attempt to take down CPU %u failed\n",
636 __func__, cpu);
637 }
638 return err;
639 }
640
641 static int notify_dying(unsigned int cpu)
642 {
643 cpu_notify(CPU_DYING, cpu);
644 return 0;
645 }
646
647 /* Take this CPU down. */
648 static int take_cpu_down(void *_param)
649 {
650 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
651 enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
652 int err, cpu = smp_processor_id();
653
654 /* Ensure this CPU doesn't handle any more interrupts. */
655 err = __cpu_disable();
656 if (err < 0)
657 return err;
658
659 /* Invoke the former CPU_DYING callbacks */
660 for (; st->state > target; st->state--) {
661 struct cpuhp_step *step = cpuhp_ap_states + st->state;
662
663 cpuhp_invoke_callback(cpu, st->state, step->teardown);
664 }
665 /* Give up timekeeping duties */
666 tick_handover_do_timer();
667 /* Park the stopper thread */
668 stop_machine_park(cpu);
669 return 0;
670 }
671
672 static int takedown_cpu(unsigned int cpu)
673 {
674 int err;
675
676 /*
677 * By now we've cleared cpu_active_mask, wait for all preempt-disabled
678 * and RCU users of this state to go away such that all new such users
679 * will observe it.
680 *
681 * For CONFIG_PREEMPT we have preemptible RCU and its sync_rcu() might
682 * not imply sync_sched(), so wait for both.
683 *
684 * Do sync before park smpboot threads to take care the rcu boost case.
685 */
686 if (IS_ENABLED(CONFIG_PREEMPT))
687 synchronize_rcu_mult(call_rcu, call_rcu_sched);
688 else
689 synchronize_rcu();
690
691 /*
692 * Prevent irq alloc/free while the dying cpu reorganizes the
693 * interrupt affinities.
694 */
695 irq_lock_sparse();
696
697 /*
698 * So now all preempt/rcu users must observe !cpu_active().
699 */
700 err = stop_machine(take_cpu_down, NULL, cpumask_of(cpu));
701 if (err) {
702 /* CPU didn't die: tell everyone. Can't complain. */
703 cpu_notify_nofail(CPU_DOWN_FAILED, cpu);
704 irq_unlock_sparse();
705 return err;
706 }
707 BUG_ON(cpu_online(cpu));
708
709 /*
710 * The migration_call() CPU_DYING callback will have removed all
711 * runnable tasks from the cpu, there's only the idle task left now
712 * that the migration thread is done doing the stop_machine thing.
713 *
714 * Wait for the stop thread to go away.
715 */
716 while (!per_cpu(cpu_dead_idle, cpu))
717 cpu_relax();
718 smp_mb(); /* Read from cpu_dead_idle before __cpu_die(). */
719 per_cpu(cpu_dead_idle, cpu) = false;
720
721 /* Interrupts are moved away from the dying cpu, reenable alloc/free */
722 irq_unlock_sparse();
723
724 hotplug_cpu__broadcast_tick_pull(cpu);
725 /* This actually kills the CPU. */
726 __cpu_die(cpu);
727
728 tick_cleanup_dead_cpu(cpu);
729 return 0;
730 }
731
732 static int notify_dead(unsigned int cpu)
733 {
734 cpu_notify_nofail(CPU_DEAD, cpu);
735 check_for_tasks(cpu);
736 return 0;
737 }
738
739 #else
740 #define notify_down_prepare NULL
741 #define takedown_cpu NULL
742 #define notify_dead NULL
743 #define notify_dying NULL
744 #endif
745
746 #ifdef CONFIG_HOTPLUG_CPU
747
748 /* Requires cpu_add_remove_lock to be held */
749 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
750 enum cpuhp_state target)
751 {
752 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
753 int prev_state, ret = 0;
754 bool hasdied = false;
755
756 if (num_online_cpus() == 1)
757 return -EBUSY;
758
759 if (!cpu_present(cpu))
760 return -EINVAL;
761
762 cpu_hotplug_begin();
763
764 cpuhp_tasks_frozen = tasks_frozen;
765
766 prev_state = st->state;
767 st->target = target;
768 ret = cpuhp_down_callbacks(cpu, st, cpuhp_bp_states, target);
769
770 hasdied = prev_state != st->state && st->state == CPUHP_OFFLINE;
771
772 cpu_hotplug_done();
773 /* This post dead nonsense must die */
774 if (!ret && hasdied)
775 cpu_notify_nofail(CPU_POST_DEAD, cpu);
776 return ret;
777 }
778
779 static int do_cpu_down(unsigned int cpu, enum cpuhp_state target)
780 {
781 int err;
782
783 cpu_maps_update_begin();
784
785 if (cpu_hotplug_disabled) {
786 err = -EBUSY;
787 goto out;
788 }
789
790 err = _cpu_down(cpu, 0, target);
791
792 out:
793 cpu_maps_update_done();
794 return err;
795 }
796 int cpu_down(unsigned int cpu)
797 {
798 return do_cpu_down(cpu, CPUHP_OFFLINE);
799 }
800 EXPORT_SYMBOL(cpu_down);
801 #endif /*CONFIG_HOTPLUG_CPU*/
802
803 /**
804 * notify_cpu_starting(cpu) - call the CPU_STARTING notifiers
805 * @cpu: cpu that just started
806 *
807 * This function calls the cpu_chain notifiers with CPU_STARTING.
808 * It must be called by the arch code on the new cpu, before the new cpu
809 * enables interrupts and before the "boot" cpu returns from __cpu_up().
810 */
811 void notify_cpu_starting(unsigned int cpu)
812 {
813 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
814 enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
815
816 while (st->state < target) {
817 struct cpuhp_step *step;
818
819 st->state++;
820 step = cpuhp_ap_states + st->state;
821 cpuhp_invoke_callback(cpu, st->state, step->startup);
822 }
823 }
824
825 /*
826 * Called from the idle task. We need to set active here, so we can kick off
827 * the stopper thread.
828 */
829 static int cpuhp_set_cpu_active(unsigned int cpu)
830 {
831 /* The cpu is marked online, set it active now */
832 set_cpu_active(cpu, true);
833 /* Unpark the stopper thread */
834 stop_machine_unpark(cpu);
835 return 0;
836 }
837
838 /* Requires cpu_add_remove_lock to be held */
839 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
840 {
841 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
842 struct task_struct *idle;
843 int ret = 0;
844
845 cpu_hotplug_begin();
846
847 if (!cpu_present(cpu)) {
848 ret = -EINVAL;
849 goto out;
850 }
851
852 /*
853 * The caller of do_cpu_up might have raced with another
854 * caller. Ignore it for now.
855 */
856 if (st->state >= target)
857 goto out;
858
859 if (st->state == CPUHP_OFFLINE) {
860 /* Let it fail before we try to bring the cpu up */
861 idle = idle_thread_get(cpu);
862 if (IS_ERR(idle)) {
863 ret = PTR_ERR(idle);
864 goto out;
865 }
866 }
867
868 cpuhp_tasks_frozen = tasks_frozen;
869
870 st->target = target;
871 ret = cpuhp_up_callbacks(cpu, st, cpuhp_bp_states, target);
872 out:
873 cpu_hotplug_done();
874 return ret;
875 }
876
877 static int do_cpu_up(unsigned int cpu, enum cpuhp_state target)
878 {
879 int err = 0;
880
881 if (!cpu_possible(cpu)) {
882 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
883 cpu);
884 #if defined(CONFIG_IA64)
885 pr_err("please check additional_cpus= boot parameter\n");
886 #endif
887 return -EINVAL;
888 }
889
890 err = try_online_node(cpu_to_node(cpu));
891 if (err)
892 return err;
893
894 cpu_maps_update_begin();
895
896 if (cpu_hotplug_disabled) {
897 err = -EBUSY;
898 goto out;
899 }
900
901 err = _cpu_up(cpu, 0, target);
902 out:
903 cpu_maps_update_done();
904 return err;
905 }
906
907 int cpu_up(unsigned int cpu)
908 {
909 return do_cpu_up(cpu, CPUHP_ONLINE);
910 }
911 EXPORT_SYMBOL_GPL(cpu_up);
912
913 #ifdef CONFIG_PM_SLEEP_SMP
914 static cpumask_var_t frozen_cpus;
915
916 int disable_nonboot_cpus(void)
917 {
918 int cpu, first_cpu, error = 0;
919
920 cpu_maps_update_begin();
921 first_cpu = cpumask_first(cpu_online_mask);
922 /*
923 * We take down all of the non-boot CPUs in one shot to avoid races
924 * with the userspace trying to use the CPU hotplug at the same time
925 */
926 cpumask_clear(frozen_cpus);
927
928 pr_info("Disabling non-boot CPUs ...\n");
929 for_each_online_cpu(cpu) {
930 if (cpu == first_cpu)
931 continue;
932 trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
933 error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
934 trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
935 if (!error)
936 cpumask_set_cpu(cpu, frozen_cpus);
937 else {
938 pr_err("Error taking CPU%d down: %d\n", cpu, error);
939 break;
940 }
941 }
942
943 if (!error)
944 BUG_ON(num_online_cpus() > 1);
945 else
946 pr_err("Non-boot CPUs are not disabled\n");
947
948 /*
949 * Make sure the CPUs won't be enabled by someone else. We need to do
950 * this even in case of failure as all disable_nonboot_cpus() users are
951 * supposed to do enable_nonboot_cpus() on the failure path.
952 */
953 cpu_hotplug_disabled++;
954
955 cpu_maps_update_done();
956 return error;
957 }
958
959 void __weak arch_enable_nonboot_cpus_begin(void)
960 {
961 }
962
963 void __weak arch_enable_nonboot_cpus_end(void)
964 {
965 }
966
967 void enable_nonboot_cpus(void)
968 {
969 int cpu, error;
970
971 /* Allow everyone to use the CPU hotplug again */
972 cpu_maps_update_begin();
973 WARN_ON(--cpu_hotplug_disabled < 0);
974 if (cpumask_empty(frozen_cpus))
975 goto out;
976
977 pr_info("Enabling non-boot CPUs ...\n");
978
979 arch_enable_nonboot_cpus_begin();
980
981 for_each_cpu(cpu, frozen_cpus) {
982 trace_suspend_resume(TPS("CPU_ON"), cpu, true);
983 error = _cpu_up(cpu, 1, CPUHP_ONLINE);
984 trace_suspend_resume(TPS("CPU_ON"), cpu, false);
985 if (!error) {
986 pr_info("CPU%d is up\n", cpu);
987 continue;
988 }
989 pr_warn("Error taking CPU%d up: %d\n", cpu, error);
990 }
991
992 arch_enable_nonboot_cpus_end();
993
994 cpumask_clear(frozen_cpus);
995 out:
996 cpu_maps_update_done();
997 }
998
999 static int __init alloc_frozen_cpus(void)
1000 {
1001 if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1002 return -ENOMEM;
1003 return 0;
1004 }
1005 core_initcall(alloc_frozen_cpus);
1006
1007 /*
1008 * When callbacks for CPU hotplug notifications are being executed, we must
1009 * ensure that the state of the system with respect to the tasks being frozen
1010 * or not, as reported by the notification, remains unchanged *throughout the
1011 * duration* of the execution of the callbacks.
1012 * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1013 *
1014 * This synchronization is implemented by mutually excluding regular CPU
1015 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1016 * Hibernate notifications.
1017 */
1018 static int
1019 cpu_hotplug_pm_callback(struct notifier_block *nb,
1020 unsigned long action, void *ptr)
1021 {
1022 switch (action) {
1023
1024 case PM_SUSPEND_PREPARE:
1025 case PM_HIBERNATION_PREPARE:
1026 cpu_hotplug_disable();
1027 break;
1028
1029 case PM_POST_SUSPEND:
1030 case PM_POST_HIBERNATION:
1031 cpu_hotplug_enable();
1032 break;
1033
1034 default:
1035 return NOTIFY_DONE;
1036 }
1037
1038 return NOTIFY_OK;
1039 }
1040
1041
1042 static int __init cpu_hotplug_pm_sync_init(void)
1043 {
1044 /*
1045 * cpu_hotplug_pm_callback has higher priority than x86
1046 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1047 * to disable cpu hotplug to avoid cpu hotplug race.
1048 */
1049 pm_notifier(cpu_hotplug_pm_callback, 0);
1050 return 0;
1051 }
1052 core_initcall(cpu_hotplug_pm_sync_init);
1053
1054 #endif /* CONFIG_PM_SLEEP_SMP */
1055
1056 #endif /* CONFIG_SMP */
1057
1058 /* Boot processor state steps */
1059 static struct cpuhp_step cpuhp_bp_states[] = {
1060 [CPUHP_OFFLINE] = {
1061 .name = "offline",
1062 .startup = NULL,
1063 .teardown = NULL,
1064 },
1065 #ifdef CONFIG_SMP
1066 [CPUHP_CREATE_THREADS]= {
1067 .name = "threads:create",
1068 .startup = smpboot_create_threads,
1069 .teardown = NULL,
1070 .cant_stop = true,
1071 },
1072 [CPUHP_NOTIFY_PREPARE] = {
1073 .name = "notify:prepare",
1074 .startup = notify_prepare,
1075 .teardown = notify_dead,
1076 .skip_onerr = true,
1077 .cant_stop = true,
1078 },
1079 [CPUHP_BRINGUP_CPU] = {
1080 .name = "cpu:bringup",
1081 .startup = bringup_cpu,
1082 .teardown = NULL,
1083 .cant_stop = true,
1084 },
1085 [CPUHP_TEARDOWN_CPU] = {
1086 .name = "cpu:teardown",
1087 .startup = NULL,
1088 .teardown = takedown_cpu,
1089 .cant_stop = true,
1090 },
1091 [CPUHP_CPU_SET_ACTIVE] = {
1092 .name = "cpu:active",
1093 .startup = cpuhp_set_cpu_active,
1094 .teardown = NULL,
1095 },
1096 [CPUHP_SMPBOOT_THREADS] = {
1097 .name = "smpboot:threads",
1098 .startup = smpboot_unpark_threads,
1099 .teardown = smpboot_park_threads,
1100 },
1101 [CPUHP_NOTIFY_ONLINE] = {
1102 .name = "notify:online",
1103 .startup = notify_online,
1104 .teardown = notify_down_prepare,
1105 .cant_stop = true,
1106 },
1107 #endif
1108 [CPUHP_ONLINE] = {
1109 .name = "online",
1110 .startup = NULL,
1111 .teardown = NULL,
1112 },
1113 };
1114
1115 /* Application processor state steps */
1116 static struct cpuhp_step cpuhp_ap_states[] = {
1117 #ifdef CONFIG_SMP
1118 [CPUHP_AP_NOTIFY_STARTING] = {
1119 .name = "notify:starting",
1120 .startup = notify_starting,
1121 .teardown = notify_dying,
1122 .skip_onerr = true,
1123 .cant_stop = true,
1124 },
1125 #endif
1126 [CPUHP_ONLINE] = {
1127 .name = "online",
1128 .startup = NULL,
1129 .teardown = NULL,
1130 },
1131 };
1132
1133 /* Sanity check for callbacks */
1134 static int cpuhp_cb_check(enum cpuhp_state state)
1135 {
1136 if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
1137 return -EINVAL;
1138 return 0;
1139 }
1140
1141 static bool cpuhp_is_ap_state(enum cpuhp_state state)
1142 {
1143 return (state >= CPUHP_AP_OFFLINE && state <= CPUHP_AP_ONLINE);
1144 }
1145
1146 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
1147 {
1148 struct cpuhp_step *sp;
1149
1150 sp = cpuhp_is_ap_state(state) ? cpuhp_ap_states : cpuhp_bp_states;
1151 return sp + state;
1152 }
1153
1154 static void cpuhp_store_callbacks(enum cpuhp_state state,
1155 const char *name,
1156 int (*startup)(unsigned int cpu),
1157 int (*teardown)(unsigned int cpu))
1158 {
1159 /* (Un)Install the callbacks for further cpu hotplug operations */
1160 struct cpuhp_step *sp;
1161
1162 mutex_lock(&cpuhp_state_mutex);
1163 sp = cpuhp_get_step(state);
1164 sp->startup = startup;
1165 sp->teardown = teardown;
1166 sp->name = name;
1167 mutex_unlock(&cpuhp_state_mutex);
1168 }
1169
1170 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
1171 {
1172 return cpuhp_get_step(state)->teardown;
1173 }
1174
1175 /* Helper function to run callback on the target cpu */
1176 static void cpuhp_on_cpu_cb(void *__cb)
1177 {
1178 int (*cb)(unsigned int cpu) = __cb;
1179
1180 BUG_ON(cb(smp_processor_id()));
1181 }
1182
1183 /*
1184 * Call the startup/teardown function for a step either on the AP or
1185 * on the current CPU.
1186 */
1187 static int cpuhp_issue_call(int cpu, enum cpuhp_state state,
1188 int (*cb)(unsigned int), bool bringup)
1189 {
1190 int ret;
1191
1192 if (!cb)
1193 return 0;
1194
1195 /*
1196 * This invokes the callback directly for now. In a later step we
1197 * convert that to use cpuhp_invoke_callback().
1198 */
1199 if (cpuhp_is_ap_state(state)) {
1200 /*
1201 * Note, that a function called on the AP is not
1202 * allowed to fail.
1203 */
1204 if (cpu_online(cpu))
1205 smp_call_function_single(cpu, cpuhp_on_cpu_cb, cb, 1);
1206 return 0;
1207 }
1208
1209 /*
1210 * The non AP bound callbacks can fail on bringup. On teardown
1211 * e.g. module removal we crash for now.
1212 */
1213 ret = cb(cpu);
1214 BUG_ON(ret && !bringup);
1215 return ret;
1216 }
1217
1218 /*
1219 * Called from __cpuhp_setup_state on a recoverable failure.
1220 *
1221 * Note: The teardown callbacks for rollback are not allowed to fail!
1222 */
1223 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
1224 int (*teardown)(unsigned int cpu))
1225 {
1226 int cpu;
1227
1228 if (!teardown)
1229 return;
1230
1231 /* Roll back the already executed steps on the other cpus */
1232 for_each_present_cpu(cpu) {
1233 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1234 int cpustate = st->state;
1235
1236 if (cpu >= failedcpu)
1237 break;
1238
1239 /* Did we invoke the startup call on that cpu ? */
1240 if (cpustate >= state)
1241 cpuhp_issue_call(cpu, state, teardown, false);
1242 }
1243 }
1244
1245 /*
1246 * Returns a free for dynamic slot assignment of the Online state. The states
1247 * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1248 * by having no name assigned.
1249 */
1250 static int cpuhp_reserve_state(enum cpuhp_state state)
1251 {
1252 enum cpuhp_state i;
1253
1254 mutex_lock(&cpuhp_state_mutex);
1255 for (i = CPUHP_ONLINE_DYN; i <= CPUHP_ONLINE_DYN_END; i++) {
1256 if (cpuhp_bp_states[i].name)
1257 continue;
1258
1259 cpuhp_bp_states[i].name = "Reserved";
1260 mutex_unlock(&cpuhp_state_mutex);
1261 return i;
1262 }
1263 mutex_unlock(&cpuhp_state_mutex);
1264 WARN(1, "No more dynamic states available for CPU hotplug\n");
1265 return -ENOSPC;
1266 }
1267
1268 /**
1269 * __cpuhp_setup_state - Setup the callbacks for an hotplug machine state
1270 * @state: The state to setup
1271 * @invoke: If true, the startup function is invoked for cpus where
1272 * cpu state >= @state
1273 * @startup: startup callback function
1274 * @teardown: teardown callback function
1275 *
1276 * Returns 0 if successful, otherwise a proper error code
1277 */
1278 int __cpuhp_setup_state(enum cpuhp_state state,
1279 const char *name, bool invoke,
1280 int (*startup)(unsigned int cpu),
1281 int (*teardown)(unsigned int cpu))
1282 {
1283 int cpu, ret = 0;
1284 int dyn_state = 0;
1285
1286 if (cpuhp_cb_check(state) || !name)
1287 return -EINVAL;
1288
1289 get_online_cpus();
1290
1291 /* currently assignments for the ONLINE state are possible */
1292 if (state == CPUHP_ONLINE_DYN) {
1293 dyn_state = 1;
1294 ret = cpuhp_reserve_state(state);
1295 if (ret < 0)
1296 goto out;
1297 state = ret;
1298 }
1299
1300 cpuhp_store_callbacks(state, name, startup, teardown);
1301
1302 if (!invoke || !startup)
1303 goto out;
1304
1305 /*
1306 * Try to call the startup callback for each present cpu
1307 * depending on the hotplug state of the cpu.
1308 */
1309 for_each_present_cpu(cpu) {
1310 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1311 int cpustate = st->state;
1312
1313 if (cpustate < state)
1314 continue;
1315
1316 ret = cpuhp_issue_call(cpu, state, startup, true);
1317 if (ret) {
1318 cpuhp_rollback_install(cpu, state, teardown);
1319 cpuhp_store_callbacks(state, NULL, NULL, NULL);
1320 goto out;
1321 }
1322 }
1323 out:
1324 put_online_cpus();
1325 if (!ret && dyn_state)
1326 return state;
1327 return ret;
1328 }
1329 EXPORT_SYMBOL(__cpuhp_setup_state);
1330
1331 /**
1332 * __cpuhp_remove_state - Remove the callbacks for an hotplug machine state
1333 * @state: The state to remove
1334 * @invoke: If true, the teardown function is invoked for cpus where
1335 * cpu state >= @state
1336 *
1337 * The teardown callback is currently not allowed to fail. Think
1338 * about module removal!
1339 */
1340 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
1341 {
1342 int (*teardown)(unsigned int cpu) = cpuhp_get_teardown_cb(state);
1343 int cpu;
1344
1345 BUG_ON(cpuhp_cb_check(state));
1346
1347 get_online_cpus();
1348
1349 if (!invoke || !teardown)
1350 goto remove;
1351
1352 /*
1353 * Call the teardown callback for each present cpu depending
1354 * on the hotplug state of the cpu. This function is not
1355 * allowed to fail currently!
1356 */
1357 for_each_present_cpu(cpu) {
1358 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1359 int cpustate = st->state;
1360
1361 if (cpustate >= state)
1362 cpuhp_issue_call(cpu, state, teardown, false);
1363 }
1364 remove:
1365 cpuhp_store_callbacks(state, NULL, NULL, NULL);
1366 put_online_cpus();
1367 }
1368 EXPORT_SYMBOL(__cpuhp_remove_state);
1369
1370 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
1371 static ssize_t show_cpuhp_state(struct device *dev,
1372 struct device_attribute *attr, char *buf)
1373 {
1374 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1375
1376 return sprintf(buf, "%d\n", st->state);
1377 }
1378 static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL);
1379
1380 static ssize_t write_cpuhp_target(struct device *dev,
1381 struct device_attribute *attr,
1382 const char *buf, size_t count)
1383 {
1384 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1385 struct cpuhp_step *sp;
1386 int target, ret;
1387
1388 ret = kstrtoint(buf, 10, &target);
1389 if (ret)
1390 return ret;
1391
1392 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
1393 if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
1394 return -EINVAL;
1395 #else
1396 if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
1397 return -EINVAL;
1398 #endif
1399
1400 ret = lock_device_hotplug_sysfs();
1401 if (ret)
1402 return ret;
1403
1404 mutex_lock(&cpuhp_state_mutex);
1405 sp = cpuhp_get_step(target);
1406 ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
1407 mutex_unlock(&cpuhp_state_mutex);
1408 if (ret)
1409 return ret;
1410
1411 if (st->state < target)
1412 ret = do_cpu_up(dev->id, target);
1413 else
1414 ret = do_cpu_down(dev->id, target);
1415
1416 unlock_device_hotplug();
1417 return ret ? ret : count;
1418 }
1419
1420 static ssize_t show_cpuhp_target(struct device *dev,
1421 struct device_attribute *attr, char *buf)
1422 {
1423 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1424
1425 return sprintf(buf, "%d\n", st->target);
1426 }
1427 static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target);
1428
1429 static struct attribute *cpuhp_cpu_attrs[] = {
1430 &dev_attr_state.attr,
1431 &dev_attr_target.attr,
1432 NULL
1433 };
1434
1435 static struct attribute_group cpuhp_cpu_attr_group = {
1436 .attrs = cpuhp_cpu_attrs,
1437 .name = "hotplug",
1438 NULL
1439 };
1440
1441 static ssize_t show_cpuhp_states(struct device *dev,
1442 struct device_attribute *attr, char *buf)
1443 {
1444 ssize_t cur, res = 0;
1445 int i;
1446
1447 mutex_lock(&cpuhp_state_mutex);
1448 for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
1449 struct cpuhp_step *sp = cpuhp_get_step(i);
1450
1451 if (sp->name) {
1452 cur = sprintf(buf, "%3d: %s\n", i, sp->name);
1453 buf += cur;
1454 res += cur;
1455 }
1456 }
1457 mutex_unlock(&cpuhp_state_mutex);
1458 return res;
1459 }
1460 static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL);
1461
1462 static struct attribute *cpuhp_cpu_root_attrs[] = {
1463 &dev_attr_states.attr,
1464 NULL
1465 };
1466
1467 static struct attribute_group cpuhp_cpu_root_attr_group = {
1468 .attrs = cpuhp_cpu_root_attrs,
1469 .name = "hotplug",
1470 NULL
1471 };
1472
1473 static int __init cpuhp_sysfs_init(void)
1474 {
1475 int cpu, ret;
1476
1477 ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
1478 &cpuhp_cpu_root_attr_group);
1479 if (ret)
1480 return ret;
1481
1482 for_each_possible_cpu(cpu) {
1483 struct device *dev = get_cpu_device(cpu);
1484
1485 if (!dev)
1486 continue;
1487 ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
1488 if (ret)
1489 return ret;
1490 }
1491 return 0;
1492 }
1493 device_initcall(cpuhp_sysfs_init);
1494 #endif
1495
1496 /*
1497 * cpu_bit_bitmap[] is a special, "compressed" data structure that
1498 * represents all NR_CPUS bits binary values of 1<<nr.
1499 *
1500 * It is used by cpumask_of() to get a constant address to a CPU
1501 * mask value that has a single bit set only.
1502 */
1503
1504 /* cpu_bit_bitmap[0] is empty - so we can back into it */
1505 #define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x))
1506 #define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
1507 #define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
1508 #define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
1509
1510 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
1511
1512 MASK_DECLARE_8(0), MASK_DECLARE_8(8),
1513 MASK_DECLARE_8(16), MASK_DECLARE_8(24),
1514 #if BITS_PER_LONG > 32
1515 MASK_DECLARE_8(32), MASK_DECLARE_8(40),
1516 MASK_DECLARE_8(48), MASK_DECLARE_8(56),
1517 #endif
1518 };
1519 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
1520
1521 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
1522 EXPORT_SYMBOL(cpu_all_bits);
1523
1524 #ifdef CONFIG_INIT_ALL_POSSIBLE
1525 struct cpumask __cpu_possible_mask __read_mostly
1526 = {CPU_BITS_ALL};
1527 #else
1528 struct cpumask __cpu_possible_mask __read_mostly;
1529 #endif
1530 EXPORT_SYMBOL(__cpu_possible_mask);
1531
1532 struct cpumask __cpu_online_mask __read_mostly;
1533 EXPORT_SYMBOL(__cpu_online_mask);
1534
1535 struct cpumask __cpu_present_mask __read_mostly;
1536 EXPORT_SYMBOL(__cpu_present_mask);
1537
1538 struct cpumask __cpu_active_mask __read_mostly;
1539 EXPORT_SYMBOL(__cpu_active_mask);
1540
1541 void init_cpu_present(const struct cpumask *src)
1542 {
1543 cpumask_copy(&__cpu_present_mask, src);
1544 }
1545
1546 void init_cpu_possible(const struct cpumask *src)
1547 {
1548 cpumask_copy(&__cpu_possible_mask, src);
1549 }
1550
1551 void init_cpu_online(const struct cpumask *src)
1552 {
1553 cpumask_copy(&__cpu_online_mask, src);
1554 }
1555
1556 /*
1557 * Activate the first processor.
1558 */
1559 void __init boot_cpu_init(void)
1560 {
1561 int cpu = smp_processor_id();
1562
1563 /* Mark the boot cpu "present", "online" etc for SMP and UP case */
1564 set_cpu_online(cpu, true);
1565 set_cpu_active(cpu, true);
1566 set_cpu_present(cpu, true);
1567 set_cpu_possible(cpu, true);
1568 }
1569
1570 /*
1571 * Must be called _AFTER_ setting up the per_cpu areas
1572 */
1573 void __init boot_cpu_state_init(void)
1574 {
1575 per_cpu_ptr(&cpuhp_state, smp_processor_id())->state = CPUHP_ONLINE;
1576 }
This page took 0.068048 seconds and 6 git commands to generate.