cpu/hotplug: Implement setup/removal interface
[deliverable/linux.git] / kernel / cpu.c
1 /* CPU control.
2 * (C) 2001, 2002, 2003, 2004 Rusty Russell
3 *
4 * This code is licenced under the GPL.
5 */
6 #include <linux/proc_fs.h>
7 #include <linux/smp.h>
8 #include <linux/init.h>
9 #include <linux/notifier.h>
10 #include <linux/sched.h>
11 #include <linux/unistd.h>
12 #include <linux/cpu.h>
13 #include <linux/oom.h>
14 #include <linux/rcupdate.h>
15 #include <linux/export.h>
16 #include <linux/bug.h>
17 #include <linux/kthread.h>
18 #include <linux/stop_machine.h>
19 #include <linux/mutex.h>
20 #include <linux/gfp.h>
21 #include <linux/suspend.h>
22 #include <linux/lockdep.h>
23 #include <linux/tick.h>
24 #include <linux/irq.h>
25
26 #include <trace/events/power.h>
27 #define CREATE_TRACE_POINTS
28 #include <trace/events/cpuhp.h>
29
30 #include "smpboot.h"
31
32 /**
33 * cpuhp_cpu_state - Per cpu hotplug state storage
34 * @state: The current cpu state
35 * @target: The target state
36 */
37 struct cpuhp_cpu_state {
38 enum cpuhp_state state;
39 enum cpuhp_state target;
40 };
41
42 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state);
43
44 /**
45 * cpuhp_step - Hotplug state machine step
46 * @name: Name of the step
47 * @startup: Startup function of the step
48 * @teardown: Teardown function of the step
49 * @skip_onerr: Do not invoke the functions on error rollback
50 * Will go away once the notifiers are gone
51 * @cant_stop: Bringup/teardown can't be stopped at this step
52 */
53 struct cpuhp_step {
54 const char *name;
55 int (*startup)(unsigned int cpu);
56 int (*teardown)(unsigned int cpu);
57 bool skip_onerr;
58 bool cant_stop;
59 };
60
61 static DEFINE_MUTEX(cpuhp_state_mutex);
62 static struct cpuhp_step cpuhp_bp_states[];
63 static struct cpuhp_step cpuhp_ap_states[];
64
65 /**
66 * cpuhp_invoke_callback _ Invoke the callbacks for a given state
67 * @cpu: The cpu for which the callback should be invoked
68 * @step: The step in the state machine
69 * @cb: The callback function to invoke
70 *
71 * Called from cpu hotplug and from the state register machinery
72 */
73 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state step,
74 int (*cb)(unsigned int))
75 {
76 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
77 int ret = 0;
78
79 if (cb) {
80 trace_cpuhp_enter(cpu, st->target, step, cb);
81 ret = cb(cpu);
82 trace_cpuhp_exit(cpu, st->state, step, ret);
83 }
84 return ret;
85 }
86
87 #ifdef CONFIG_SMP
88 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
89 static DEFINE_MUTEX(cpu_add_remove_lock);
90 bool cpuhp_tasks_frozen;
91 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
92
93 /*
94 * The following two APIs (cpu_maps_update_begin/done) must be used when
95 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
96 * The APIs cpu_notifier_register_begin/done() must be used to protect CPU
97 * hotplug callback (un)registration performed using __register_cpu_notifier()
98 * or __unregister_cpu_notifier().
99 */
100 void cpu_maps_update_begin(void)
101 {
102 mutex_lock(&cpu_add_remove_lock);
103 }
104 EXPORT_SYMBOL(cpu_notifier_register_begin);
105
106 void cpu_maps_update_done(void)
107 {
108 mutex_unlock(&cpu_add_remove_lock);
109 }
110 EXPORT_SYMBOL(cpu_notifier_register_done);
111
112 static RAW_NOTIFIER_HEAD(cpu_chain);
113
114 /* If set, cpu_up and cpu_down will return -EBUSY and do nothing.
115 * Should always be manipulated under cpu_add_remove_lock
116 */
117 static int cpu_hotplug_disabled;
118
119 #ifdef CONFIG_HOTPLUG_CPU
120
121 static struct {
122 struct task_struct *active_writer;
123 /* wait queue to wake up the active_writer */
124 wait_queue_head_t wq;
125 /* verifies that no writer will get active while readers are active */
126 struct mutex lock;
127 /*
128 * Also blocks the new readers during
129 * an ongoing cpu hotplug operation.
130 */
131 atomic_t refcount;
132
133 #ifdef CONFIG_DEBUG_LOCK_ALLOC
134 struct lockdep_map dep_map;
135 #endif
136 } cpu_hotplug = {
137 .active_writer = NULL,
138 .wq = __WAIT_QUEUE_HEAD_INITIALIZER(cpu_hotplug.wq),
139 .lock = __MUTEX_INITIALIZER(cpu_hotplug.lock),
140 #ifdef CONFIG_DEBUG_LOCK_ALLOC
141 .dep_map = {.name = "cpu_hotplug.lock" },
142 #endif
143 };
144
145 /* Lockdep annotations for get/put_online_cpus() and cpu_hotplug_begin/end() */
146 #define cpuhp_lock_acquire_read() lock_map_acquire_read(&cpu_hotplug.dep_map)
147 #define cpuhp_lock_acquire_tryread() \
148 lock_map_acquire_tryread(&cpu_hotplug.dep_map)
149 #define cpuhp_lock_acquire() lock_map_acquire(&cpu_hotplug.dep_map)
150 #define cpuhp_lock_release() lock_map_release(&cpu_hotplug.dep_map)
151
152
153 void get_online_cpus(void)
154 {
155 might_sleep();
156 if (cpu_hotplug.active_writer == current)
157 return;
158 cpuhp_lock_acquire_read();
159 mutex_lock(&cpu_hotplug.lock);
160 atomic_inc(&cpu_hotplug.refcount);
161 mutex_unlock(&cpu_hotplug.lock);
162 }
163 EXPORT_SYMBOL_GPL(get_online_cpus);
164
165 void put_online_cpus(void)
166 {
167 int refcount;
168
169 if (cpu_hotplug.active_writer == current)
170 return;
171
172 refcount = atomic_dec_return(&cpu_hotplug.refcount);
173 if (WARN_ON(refcount < 0)) /* try to fix things up */
174 atomic_inc(&cpu_hotplug.refcount);
175
176 if (refcount <= 0 && waitqueue_active(&cpu_hotplug.wq))
177 wake_up(&cpu_hotplug.wq);
178
179 cpuhp_lock_release();
180
181 }
182 EXPORT_SYMBOL_GPL(put_online_cpus);
183
184 /*
185 * This ensures that the hotplug operation can begin only when the
186 * refcount goes to zero.
187 *
188 * Note that during a cpu-hotplug operation, the new readers, if any,
189 * will be blocked by the cpu_hotplug.lock
190 *
191 * Since cpu_hotplug_begin() is always called after invoking
192 * cpu_maps_update_begin(), we can be sure that only one writer is active.
193 *
194 * Note that theoretically, there is a possibility of a livelock:
195 * - Refcount goes to zero, last reader wakes up the sleeping
196 * writer.
197 * - Last reader unlocks the cpu_hotplug.lock.
198 * - A new reader arrives at this moment, bumps up the refcount.
199 * - The writer acquires the cpu_hotplug.lock finds the refcount
200 * non zero and goes to sleep again.
201 *
202 * However, this is very difficult to achieve in practice since
203 * get_online_cpus() not an api which is called all that often.
204 *
205 */
206 void cpu_hotplug_begin(void)
207 {
208 DEFINE_WAIT(wait);
209
210 cpu_hotplug.active_writer = current;
211 cpuhp_lock_acquire();
212
213 for (;;) {
214 mutex_lock(&cpu_hotplug.lock);
215 prepare_to_wait(&cpu_hotplug.wq, &wait, TASK_UNINTERRUPTIBLE);
216 if (likely(!atomic_read(&cpu_hotplug.refcount)))
217 break;
218 mutex_unlock(&cpu_hotplug.lock);
219 schedule();
220 }
221 finish_wait(&cpu_hotplug.wq, &wait);
222 }
223
224 void cpu_hotplug_done(void)
225 {
226 cpu_hotplug.active_writer = NULL;
227 mutex_unlock(&cpu_hotplug.lock);
228 cpuhp_lock_release();
229 }
230
231 /*
232 * Wait for currently running CPU hotplug operations to complete (if any) and
233 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
234 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
235 * hotplug path before performing hotplug operations. So acquiring that lock
236 * guarantees mutual exclusion from any currently running hotplug operations.
237 */
238 void cpu_hotplug_disable(void)
239 {
240 cpu_maps_update_begin();
241 cpu_hotplug_disabled++;
242 cpu_maps_update_done();
243 }
244 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
245
246 void cpu_hotplug_enable(void)
247 {
248 cpu_maps_update_begin();
249 WARN_ON(--cpu_hotplug_disabled < 0);
250 cpu_maps_update_done();
251 }
252 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
253 #endif /* CONFIG_HOTPLUG_CPU */
254
255 /* Need to know about CPUs going up/down? */
256 int register_cpu_notifier(struct notifier_block *nb)
257 {
258 int ret;
259 cpu_maps_update_begin();
260 ret = raw_notifier_chain_register(&cpu_chain, nb);
261 cpu_maps_update_done();
262 return ret;
263 }
264
265 int __register_cpu_notifier(struct notifier_block *nb)
266 {
267 return raw_notifier_chain_register(&cpu_chain, nb);
268 }
269
270 static int __cpu_notify(unsigned long val, unsigned int cpu, int nr_to_call,
271 int *nr_calls)
272 {
273 unsigned long mod = cpuhp_tasks_frozen ? CPU_TASKS_FROZEN : 0;
274 void *hcpu = (void *)(long)cpu;
275
276 int ret;
277
278 ret = __raw_notifier_call_chain(&cpu_chain, val | mod, hcpu, nr_to_call,
279 nr_calls);
280
281 return notifier_to_errno(ret);
282 }
283
284 static int cpu_notify(unsigned long val, unsigned int cpu)
285 {
286 return __cpu_notify(val, cpu, -1, NULL);
287 }
288
289 /* Notifier wrappers for transitioning to state machine */
290 static int notify_prepare(unsigned int cpu)
291 {
292 int nr_calls = 0;
293 int ret;
294
295 ret = __cpu_notify(CPU_UP_PREPARE, cpu, -1, &nr_calls);
296 if (ret) {
297 nr_calls--;
298 printk(KERN_WARNING "%s: attempt to bring up CPU %u failed\n",
299 __func__, cpu);
300 __cpu_notify(CPU_UP_CANCELED, cpu, nr_calls, NULL);
301 }
302 return ret;
303 }
304
305 static int notify_online(unsigned int cpu)
306 {
307 cpu_notify(CPU_ONLINE, cpu);
308 return 0;
309 }
310
311 static int notify_starting(unsigned int cpu)
312 {
313 cpu_notify(CPU_STARTING, cpu);
314 return 0;
315 }
316
317 static int bringup_cpu(unsigned int cpu)
318 {
319 struct task_struct *idle = idle_thread_get(cpu);
320 int ret;
321
322 /* Arch-specific enabling code. */
323 ret = __cpu_up(cpu, idle);
324 if (ret) {
325 cpu_notify(CPU_UP_CANCELED, cpu);
326 return ret;
327 }
328 BUG_ON(!cpu_online(cpu));
329 return 0;
330 }
331
332 #ifdef CONFIG_HOTPLUG_CPU
333 EXPORT_SYMBOL(register_cpu_notifier);
334 EXPORT_SYMBOL(__register_cpu_notifier);
335
336 void unregister_cpu_notifier(struct notifier_block *nb)
337 {
338 cpu_maps_update_begin();
339 raw_notifier_chain_unregister(&cpu_chain, nb);
340 cpu_maps_update_done();
341 }
342 EXPORT_SYMBOL(unregister_cpu_notifier);
343
344 void __unregister_cpu_notifier(struct notifier_block *nb)
345 {
346 raw_notifier_chain_unregister(&cpu_chain, nb);
347 }
348 EXPORT_SYMBOL(__unregister_cpu_notifier);
349
350 /**
351 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
352 * @cpu: a CPU id
353 *
354 * This function walks all processes, finds a valid mm struct for each one and
355 * then clears a corresponding bit in mm's cpumask. While this all sounds
356 * trivial, there are various non-obvious corner cases, which this function
357 * tries to solve in a safe manner.
358 *
359 * Also note that the function uses a somewhat relaxed locking scheme, so it may
360 * be called only for an already offlined CPU.
361 */
362 void clear_tasks_mm_cpumask(int cpu)
363 {
364 struct task_struct *p;
365
366 /*
367 * This function is called after the cpu is taken down and marked
368 * offline, so its not like new tasks will ever get this cpu set in
369 * their mm mask. -- Peter Zijlstra
370 * Thus, we may use rcu_read_lock() here, instead of grabbing
371 * full-fledged tasklist_lock.
372 */
373 WARN_ON(cpu_online(cpu));
374 rcu_read_lock();
375 for_each_process(p) {
376 struct task_struct *t;
377
378 /*
379 * Main thread might exit, but other threads may still have
380 * a valid mm. Find one.
381 */
382 t = find_lock_task_mm(p);
383 if (!t)
384 continue;
385 cpumask_clear_cpu(cpu, mm_cpumask(t->mm));
386 task_unlock(t);
387 }
388 rcu_read_unlock();
389 }
390
391 static inline void check_for_tasks(int dead_cpu)
392 {
393 struct task_struct *g, *p;
394
395 read_lock(&tasklist_lock);
396 for_each_process_thread(g, p) {
397 if (!p->on_rq)
398 continue;
399 /*
400 * We do the check with unlocked task_rq(p)->lock.
401 * Order the reading to do not warn about a task,
402 * which was running on this cpu in the past, and
403 * it's just been woken on another cpu.
404 */
405 rmb();
406 if (task_cpu(p) != dead_cpu)
407 continue;
408
409 pr_warn("Task %s (pid=%d) is on cpu %d (state=%ld, flags=%x)\n",
410 p->comm, task_pid_nr(p), dead_cpu, p->state, p->flags);
411 }
412 read_unlock(&tasklist_lock);
413 }
414
415 static void cpu_notify_nofail(unsigned long val, unsigned int cpu)
416 {
417 BUG_ON(cpu_notify(val, cpu));
418 }
419
420 static int notify_down_prepare(unsigned int cpu)
421 {
422 int err, nr_calls = 0;
423
424 err = __cpu_notify(CPU_DOWN_PREPARE, cpu, -1, &nr_calls);
425 if (err) {
426 nr_calls--;
427 __cpu_notify(CPU_DOWN_FAILED, cpu, nr_calls, NULL);
428 pr_warn("%s: attempt to take down CPU %u failed\n",
429 __func__, cpu);
430 }
431 return err;
432 }
433
434 static int notify_dying(unsigned int cpu)
435 {
436 cpu_notify(CPU_DYING, cpu);
437 return 0;
438 }
439
440 /* Take this CPU down. */
441 static int take_cpu_down(void *_param)
442 {
443 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
444 enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
445 int err, cpu = smp_processor_id();
446
447 /* Ensure this CPU doesn't handle any more interrupts. */
448 err = __cpu_disable();
449 if (err < 0)
450 return err;
451
452 /* Invoke the former CPU_DYING callbacks */
453 for (; st->state > target; st->state--) {
454 struct cpuhp_step *step = cpuhp_ap_states + st->state;
455
456 cpuhp_invoke_callback(cpu, st->state, step->teardown);
457 }
458 /* Give up timekeeping duties */
459 tick_handover_do_timer();
460 /* Park the stopper thread */
461 stop_machine_park(cpu);
462 return 0;
463 }
464
465 static int takedown_cpu(unsigned int cpu)
466 {
467 int err;
468
469 /*
470 * By now we've cleared cpu_active_mask, wait for all preempt-disabled
471 * and RCU users of this state to go away such that all new such users
472 * will observe it.
473 *
474 * For CONFIG_PREEMPT we have preemptible RCU and its sync_rcu() might
475 * not imply sync_sched(), so wait for both.
476 *
477 * Do sync before park smpboot threads to take care the rcu boost case.
478 */
479 if (IS_ENABLED(CONFIG_PREEMPT))
480 synchronize_rcu_mult(call_rcu, call_rcu_sched);
481 else
482 synchronize_rcu();
483
484 smpboot_park_threads(cpu);
485
486 /*
487 * Prevent irq alloc/free while the dying cpu reorganizes the
488 * interrupt affinities.
489 */
490 irq_lock_sparse();
491
492 /*
493 * So now all preempt/rcu users must observe !cpu_active().
494 */
495 err = stop_machine(take_cpu_down, NULL, cpumask_of(cpu));
496 if (err) {
497 /* CPU didn't die: tell everyone. Can't complain. */
498 cpu_notify_nofail(CPU_DOWN_FAILED, cpu);
499 irq_unlock_sparse();
500 return err;
501 }
502 BUG_ON(cpu_online(cpu));
503
504 /*
505 * The migration_call() CPU_DYING callback will have removed all
506 * runnable tasks from the cpu, there's only the idle task left now
507 * that the migration thread is done doing the stop_machine thing.
508 *
509 * Wait for the stop thread to go away.
510 */
511 while (!per_cpu(cpu_dead_idle, cpu))
512 cpu_relax();
513 smp_mb(); /* Read from cpu_dead_idle before __cpu_die(). */
514 per_cpu(cpu_dead_idle, cpu) = false;
515
516 /* Interrupts are moved away from the dying cpu, reenable alloc/free */
517 irq_unlock_sparse();
518
519 hotplug_cpu__broadcast_tick_pull(cpu);
520 /* This actually kills the CPU. */
521 __cpu_die(cpu);
522
523 tick_cleanup_dead_cpu(cpu);
524 return 0;
525 }
526
527 static int notify_dead(unsigned int cpu)
528 {
529 cpu_notify_nofail(CPU_DEAD, cpu);
530 check_for_tasks(cpu);
531 return 0;
532 }
533
534 #else
535 #define notify_down_prepare NULL
536 #define takedown_cpu NULL
537 #define notify_dead NULL
538 #define notify_dying NULL
539 #endif
540
541 #ifdef CONFIG_HOTPLUG_CPU
542 static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st)
543 {
544 for (st->state++; st->state < st->target; st->state++) {
545 struct cpuhp_step *step = cpuhp_bp_states + st->state;
546
547 if (!step->skip_onerr)
548 cpuhp_invoke_callback(cpu, st->state, step->startup);
549 }
550 }
551
552 /* Requires cpu_add_remove_lock to be held */
553 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
554 enum cpuhp_state target)
555 {
556 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
557 int prev_state, ret = 0;
558 bool hasdied = false;
559
560 if (num_online_cpus() == 1)
561 return -EBUSY;
562
563 if (!cpu_present(cpu))
564 return -EINVAL;
565
566 cpu_hotplug_begin();
567
568 cpuhp_tasks_frozen = tasks_frozen;
569
570 prev_state = st->state;
571 st->target = target;
572 for (; st->state > st->target; st->state--) {
573 struct cpuhp_step *step = cpuhp_bp_states + st->state;
574
575 ret = cpuhp_invoke_callback(cpu, st->state, step->teardown);
576 if (ret) {
577 st->target = prev_state;
578 undo_cpu_down(cpu, st);
579 break;
580 }
581 }
582 hasdied = prev_state != st->state && st->state == CPUHP_OFFLINE;
583
584 cpu_hotplug_done();
585 /* This post dead nonsense must die */
586 if (!ret && hasdied)
587 cpu_notify_nofail(CPU_POST_DEAD, cpu);
588 return ret;
589 }
590
591 static int do_cpu_down(unsigned int cpu, enum cpuhp_state target)
592 {
593 int err;
594
595 cpu_maps_update_begin();
596
597 if (cpu_hotplug_disabled) {
598 err = -EBUSY;
599 goto out;
600 }
601
602 err = _cpu_down(cpu, 0, target);
603
604 out:
605 cpu_maps_update_done();
606 return err;
607 }
608 int cpu_down(unsigned int cpu)
609 {
610 return do_cpu_down(cpu, CPUHP_OFFLINE);
611 }
612 EXPORT_SYMBOL(cpu_down);
613 #endif /*CONFIG_HOTPLUG_CPU*/
614
615 /*
616 * Unpark per-CPU smpboot kthreads at CPU-online time.
617 */
618 static int smpboot_thread_call(struct notifier_block *nfb,
619 unsigned long action, void *hcpu)
620 {
621 int cpu = (long)hcpu;
622
623 switch (action & ~CPU_TASKS_FROZEN) {
624
625 case CPU_DOWN_FAILED:
626 case CPU_ONLINE:
627 smpboot_unpark_threads(cpu);
628 break;
629
630 default:
631 break;
632 }
633
634 return NOTIFY_OK;
635 }
636
637 static struct notifier_block smpboot_thread_notifier = {
638 .notifier_call = smpboot_thread_call,
639 .priority = CPU_PRI_SMPBOOT,
640 };
641
642 void smpboot_thread_init(void)
643 {
644 register_cpu_notifier(&smpboot_thread_notifier);
645 }
646
647 /**
648 * notify_cpu_starting(cpu) - call the CPU_STARTING notifiers
649 * @cpu: cpu that just started
650 *
651 * This function calls the cpu_chain notifiers with CPU_STARTING.
652 * It must be called by the arch code on the new cpu, before the new cpu
653 * enables interrupts and before the "boot" cpu returns from __cpu_up().
654 */
655 void notify_cpu_starting(unsigned int cpu)
656 {
657 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
658 enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
659
660 while (st->state < target) {
661 struct cpuhp_step *step;
662
663 st->state++;
664 step = cpuhp_ap_states + st->state;
665 cpuhp_invoke_callback(cpu, st->state, step->startup);
666 }
667 }
668
669 static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st)
670 {
671 for (st->state--; st->state > st->target; st->state--) {
672 struct cpuhp_step *step = cpuhp_bp_states + st->state;
673
674 if (!step->skip_onerr)
675 cpuhp_invoke_callback(cpu, st->state, step->teardown);
676 }
677 }
678
679 /* Requires cpu_add_remove_lock to be held */
680 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
681 {
682 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
683 struct task_struct *idle;
684 int prev_state, ret = 0;
685
686 cpu_hotplug_begin();
687
688 if (!cpu_present(cpu)) {
689 ret = -EINVAL;
690 goto out;
691 }
692
693 /*
694 * The caller of do_cpu_up might have raced with another
695 * caller. Ignore it for now.
696 */
697 if (st->state >= target)
698 goto out;
699
700 if (st->state == CPUHP_OFFLINE) {
701 /* Let it fail before we try to bring the cpu up */
702 idle = idle_thread_get(cpu);
703 if (IS_ERR(idle)) {
704 ret = PTR_ERR(idle);
705 goto out;
706 }
707 }
708
709 cpuhp_tasks_frozen = tasks_frozen;
710
711 prev_state = st->state;
712 st->target = target;
713 while (st->state < st->target) {
714 struct cpuhp_step *step;
715
716 st->state++;
717 step = cpuhp_bp_states + st->state;
718 ret = cpuhp_invoke_callback(cpu, st->state, step->startup);
719 if (ret) {
720 st->target = prev_state;
721 undo_cpu_up(cpu, st);
722 break;
723 }
724 }
725 out:
726 cpu_hotplug_done();
727 return ret;
728 }
729
730 static int do_cpu_up(unsigned int cpu, enum cpuhp_state target)
731 {
732 int err = 0;
733
734 if (!cpu_possible(cpu)) {
735 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
736 cpu);
737 #if defined(CONFIG_IA64)
738 pr_err("please check additional_cpus= boot parameter\n");
739 #endif
740 return -EINVAL;
741 }
742
743 err = try_online_node(cpu_to_node(cpu));
744 if (err)
745 return err;
746
747 cpu_maps_update_begin();
748
749 if (cpu_hotplug_disabled) {
750 err = -EBUSY;
751 goto out;
752 }
753
754 err = _cpu_up(cpu, 0, target);
755 out:
756 cpu_maps_update_done();
757 return err;
758 }
759
760 int cpu_up(unsigned int cpu)
761 {
762 return do_cpu_up(cpu, CPUHP_ONLINE);
763 }
764 EXPORT_SYMBOL_GPL(cpu_up);
765
766 #ifdef CONFIG_PM_SLEEP_SMP
767 static cpumask_var_t frozen_cpus;
768
769 int disable_nonboot_cpus(void)
770 {
771 int cpu, first_cpu, error = 0;
772
773 cpu_maps_update_begin();
774 first_cpu = cpumask_first(cpu_online_mask);
775 /*
776 * We take down all of the non-boot CPUs in one shot to avoid races
777 * with the userspace trying to use the CPU hotplug at the same time
778 */
779 cpumask_clear(frozen_cpus);
780
781 pr_info("Disabling non-boot CPUs ...\n");
782 for_each_online_cpu(cpu) {
783 if (cpu == first_cpu)
784 continue;
785 trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
786 error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
787 trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
788 if (!error)
789 cpumask_set_cpu(cpu, frozen_cpus);
790 else {
791 pr_err("Error taking CPU%d down: %d\n", cpu, error);
792 break;
793 }
794 }
795
796 if (!error)
797 BUG_ON(num_online_cpus() > 1);
798 else
799 pr_err("Non-boot CPUs are not disabled\n");
800
801 /*
802 * Make sure the CPUs won't be enabled by someone else. We need to do
803 * this even in case of failure as all disable_nonboot_cpus() users are
804 * supposed to do enable_nonboot_cpus() on the failure path.
805 */
806 cpu_hotplug_disabled++;
807
808 cpu_maps_update_done();
809 return error;
810 }
811
812 void __weak arch_enable_nonboot_cpus_begin(void)
813 {
814 }
815
816 void __weak arch_enable_nonboot_cpus_end(void)
817 {
818 }
819
820 void enable_nonboot_cpus(void)
821 {
822 int cpu, error;
823
824 /* Allow everyone to use the CPU hotplug again */
825 cpu_maps_update_begin();
826 WARN_ON(--cpu_hotplug_disabled < 0);
827 if (cpumask_empty(frozen_cpus))
828 goto out;
829
830 pr_info("Enabling non-boot CPUs ...\n");
831
832 arch_enable_nonboot_cpus_begin();
833
834 for_each_cpu(cpu, frozen_cpus) {
835 trace_suspend_resume(TPS("CPU_ON"), cpu, true);
836 error = _cpu_up(cpu, 1, CPUHP_ONLINE);
837 trace_suspend_resume(TPS("CPU_ON"), cpu, false);
838 if (!error) {
839 pr_info("CPU%d is up\n", cpu);
840 continue;
841 }
842 pr_warn("Error taking CPU%d up: %d\n", cpu, error);
843 }
844
845 arch_enable_nonboot_cpus_end();
846
847 cpumask_clear(frozen_cpus);
848 out:
849 cpu_maps_update_done();
850 }
851
852 static int __init alloc_frozen_cpus(void)
853 {
854 if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
855 return -ENOMEM;
856 return 0;
857 }
858 core_initcall(alloc_frozen_cpus);
859
860 /*
861 * When callbacks for CPU hotplug notifications are being executed, we must
862 * ensure that the state of the system with respect to the tasks being frozen
863 * or not, as reported by the notification, remains unchanged *throughout the
864 * duration* of the execution of the callbacks.
865 * Hence we need to prevent the freezer from racing with regular CPU hotplug.
866 *
867 * This synchronization is implemented by mutually excluding regular CPU
868 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
869 * Hibernate notifications.
870 */
871 static int
872 cpu_hotplug_pm_callback(struct notifier_block *nb,
873 unsigned long action, void *ptr)
874 {
875 switch (action) {
876
877 case PM_SUSPEND_PREPARE:
878 case PM_HIBERNATION_PREPARE:
879 cpu_hotplug_disable();
880 break;
881
882 case PM_POST_SUSPEND:
883 case PM_POST_HIBERNATION:
884 cpu_hotplug_enable();
885 break;
886
887 default:
888 return NOTIFY_DONE;
889 }
890
891 return NOTIFY_OK;
892 }
893
894
895 static int __init cpu_hotplug_pm_sync_init(void)
896 {
897 /*
898 * cpu_hotplug_pm_callback has higher priority than x86
899 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
900 * to disable cpu hotplug to avoid cpu hotplug race.
901 */
902 pm_notifier(cpu_hotplug_pm_callback, 0);
903 return 0;
904 }
905 core_initcall(cpu_hotplug_pm_sync_init);
906
907 #endif /* CONFIG_PM_SLEEP_SMP */
908
909 #endif /* CONFIG_SMP */
910
911 /* Boot processor state steps */
912 static struct cpuhp_step cpuhp_bp_states[] = {
913 [CPUHP_OFFLINE] = {
914 .name = "offline",
915 .startup = NULL,
916 .teardown = NULL,
917 },
918 #ifdef CONFIG_SMP
919 [CPUHP_CREATE_THREADS]= {
920 .name = "threads:create",
921 .startup = smpboot_create_threads,
922 .teardown = NULL,
923 .cant_stop = true,
924 },
925 [CPUHP_NOTIFY_PREPARE] = {
926 .name = "notify:prepare",
927 .startup = notify_prepare,
928 .teardown = notify_dead,
929 .skip_onerr = true,
930 .cant_stop = true,
931 },
932 [CPUHP_BRINGUP_CPU] = {
933 .name = "cpu:bringup",
934 .startup = bringup_cpu,
935 .teardown = NULL,
936 .cant_stop = true,
937 },
938 [CPUHP_TEARDOWN_CPU] = {
939 .name = "cpu:teardown",
940 .startup = NULL,
941 .teardown = takedown_cpu,
942 .cant_stop = true,
943 },
944 [CPUHP_NOTIFY_ONLINE] = {
945 .name = "notify:online",
946 .startup = notify_online,
947 .teardown = notify_down_prepare,
948 .cant_stop = true,
949 },
950 #endif
951 [CPUHP_ONLINE] = {
952 .name = "online",
953 .startup = NULL,
954 .teardown = NULL,
955 },
956 };
957
958 /* Application processor state steps */
959 static struct cpuhp_step cpuhp_ap_states[] = {
960 #ifdef CONFIG_SMP
961 [CPUHP_AP_NOTIFY_STARTING] = {
962 .name = "notify:starting",
963 .startup = notify_starting,
964 .teardown = notify_dying,
965 .skip_onerr = true,
966 .cant_stop = true,
967 },
968 #endif
969 [CPUHP_ONLINE] = {
970 .name = "online",
971 .startup = NULL,
972 .teardown = NULL,
973 },
974 };
975
976 /* Sanity check for callbacks */
977 static int cpuhp_cb_check(enum cpuhp_state state)
978 {
979 if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
980 return -EINVAL;
981 return 0;
982 }
983
984 static bool cpuhp_is_ap_state(enum cpuhp_state state)
985 {
986 return (state > CPUHP_AP_OFFLINE && state < CPUHP_AP_ONLINE);
987 }
988
989 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
990 {
991 struct cpuhp_step *sp;
992
993 sp = cpuhp_is_ap_state(state) ? cpuhp_ap_states : cpuhp_bp_states;
994 return sp + state;
995 }
996
997 static void cpuhp_store_callbacks(enum cpuhp_state state,
998 const char *name,
999 int (*startup)(unsigned int cpu),
1000 int (*teardown)(unsigned int cpu))
1001 {
1002 /* (Un)Install the callbacks for further cpu hotplug operations */
1003 struct cpuhp_step *sp;
1004
1005 mutex_lock(&cpuhp_state_mutex);
1006 sp = cpuhp_get_step(state);
1007 sp->startup = startup;
1008 sp->teardown = teardown;
1009 sp->name = name;
1010 mutex_unlock(&cpuhp_state_mutex);
1011 }
1012
1013 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
1014 {
1015 return cpuhp_get_step(state)->teardown;
1016 }
1017
1018 /* Helper function to run callback on the target cpu */
1019 static void cpuhp_on_cpu_cb(void *__cb)
1020 {
1021 int (*cb)(unsigned int cpu) = __cb;
1022
1023 BUG_ON(cb(smp_processor_id()));
1024 }
1025
1026 /*
1027 * Call the startup/teardown function for a step either on the AP or
1028 * on the current CPU.
1029 */
1030 static int cpuhp_issue_call(int cpu, enum cpuhp_state state,
1031 int (*cb)(unsigned int), bool bringup)
1032 {
1033 int ret;
1034
1035 if (!cb)
1036 return 0;
1037
1038 /*
1039 * This invokes the callback directly for now. In a later step we
1040 * convert that to use cpuhp_invoke_callback().
1041 */
1042 if (cpuhp_is_ap_state(state)) {
1043 /*
1044 * Note, that a function called on the AP is not
1045 * allowed to fail.
1046 */
1047 if (cpu_online(cpu))
1048 smp_call_function_single(cpu, cpuhp_on_cpu_cb, cb, 1);
1049 return 0;
1050 }
1051
1052 /*
1053 * The non AP bound callbacks can fail on bringup. On teardown
1054 * e.g. module removal we crash for now.
1055 */
1056 ret = cb(cpu);
1057 BUG_ON(ret && !bringup);
1058 return ret;
1059 }
1060
1061 /*
1062 * Called from __cpuhp_setup_state on a recoverable failure.
1063 *
1064 * Note: The teardown callbacks for rollback are not allowed to fail!
1065 */
1066 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
1067 int (*teardown)(unsigned int cpu))
1068 {
1069 int cpu;
1070
1071 if (!teardown)
1072 return;
1073
1074 /* Roll back the already executed steps on the other cpus */
1075 for_each_present_cpu(cpu) {
1076 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1077 int cpustate = st->state;
1078
1079 if (cpu >= failedcpu)
1080 break;
1081
1082 /* Did we invoke the startup call on that cpu ? */
1083 if (cpustate >= state)
1084 cpuhp_issue_call(cpu, state, teardown, false);
1085 }
1086 }
1087
1088 /*
1089 * Returns a free for dynamic slot assignment of the Online state. The states
1090 * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1091 * by having no name assigned.
1092 */
1093 static int cpuhp_reserve_state(enum cpuhp_state state)
1094 {
1095 enum cpuhp_state i;
1096
1097 mutex_lock(&cpuhp_state_mutex);
1098 for (i = CPUHP_ONLINE_DYN; i <= CPUHP_ONLINE_DYN_END; i++) {
1099 if (cpuhp_bp_states[i].name)
1100 continue;
1101
1102 cpuhp_bp_states[i].name = "Reserved";
1103 mutex_unlock(&cpuhp_state_mutex);
1104 return i;
1105 }
1106 mutex_unlock(&cpuhp_state_mutex);
1107 WARN(1, "No more dynamic states available for CPU hotplug\n");
1108 return -ENOSPC;
1109 }
1110
1111 /**
1112 * __cpuhp_setup_state - Setup the callbacks for an hotplug machine state
1113 * @state: The state to setup
1114 * @invoke: If true, the startup function is invoked for cpus where
1115 * cpu state >= @state
1116 * @startup: startup callback function
1117 * @teardown: teardown callback function
1118 *
1119 * Returns 0 if successful, otherwise a proper error code
1120 */
1121 int __cpuhp_setup_state(enum cpuhp_state state,
1122 const char *name, bool invoke,
1123 int (*startup)(unsigned int cpu),
1124 int (*teardown)(unsigned int cpu))
1125 {
1126 int cpu, ret = 0;
1127 int dyn_state = 0;
1128
1129 if (cpuhp_cb_check(state) || !name)
1130 return -EINVAL;
1131
1132 get_online_cpus();
1133
1134 /* currently assignments for the ONLINE state are possible */
1135 if (state == CPUHP_ONLINE_DYN) {
1136 dyn_state = 1;
1137 ret = cpuhp_reserve_state(state);
1138 if (ret < 0)
1139 goto out;
1140 state = ret;
1141 }
1142
1143 cpuhp_store_callbacks(state, name, startup, teardown);
1144
1145 if (!invoke || !startup)
1146 goto out;
1147
1148 /*
1149 * Try to call the startup callback for each present cpu
1150 * depending on the hotplug state of the cpu.
1151 */
1152 for_each_present_cpu(cpu) {
1153 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1154 int cpustate = st->state;
1155
1156 if (cpustate < state)
1157 continue;
1158
1159 ret = cpuhp_issue_call(cpu, state, startup, true);
1160 if (ret) {
1161 cpuhp_rollback_install(cpu, state, teardown);
1162 cpuhp_store_callbacks(state, NULL, NULL, NULL);
1163 goto out;
1164 }
1165 }
1166 out:
1167 put_online_cpus();
1168 if (!ret && dyn_state)
1169 return state;
1170 return ret;
1171 }
1172 EXPORT_SYMBOL(__cpuhp_setup_state);
1173
1174 /**
1175 * __cpuhp_remove_state - Remove the callbacks for an hotplug machine state
1176 * @state: The state to remove
1177 * @invoke: If true, the teardown function is invoked for cpus where
1178 * cpu state >= @state
1179 *
1180 * The teardown callback is currently not allowed to fail. Think
1181 * about module removal!
1182 */
1183 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
1184 {
1185 int (*teardown)(unsigned int cpu) = cpuhp_get_teardown_cb(state);
1186 int cpu;
1187
1188 BUG_ON(cpuhp_cb_check(state));
1189
1190 get_online_cpus();
1191
1192 if (!invoke || !teardown)
1193 goto remove;
1194
1195 /*
1196 * Call the teardown callback for each present cpu depending
1197 * on the hotplug state of the cpu. This function is not
1198 * allowed to fail currently!
1199 */
1200 for_each_present_cpu(cpu) {
1201 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1202 int cpustate = st->state;
1203
1204 if (cpustate >= state)
1205 cpuhp_issue_call(cpu, state, teardown, false);
1206 }
1207 remove:
1208 cpuhp_store_callbacks(state, NULL, NULL, NULL);
1209 put_online_cpus();
1210 }
1211 EXPORT_SYMBOL(__cpuhp_remove_state);
1212
1213 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
1214 static ssize_t show_cpuhp_state(struct device *dev,
1215 struct device_attribute *attr, char *buf)
1216 {
1217 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1218
1219 return sprintf(buf, "%d\n", st->state);
1220 }
1221 static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL);
1222
1223 static ssize_t write_cpuhp_target(struct device *dev,
1224 struct device_attribute *attr,
1225 const char *buf, size_t count)
1226 {
1227 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1228 struct cpuhp_step *sp;
1229 int target, ret;
1230
1231 ret = kstrtoint(buf, 10, &target);
1232 if (ret)
1233 return ret;
1234
1235 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
1236 if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
1237 return -EINVAL;
1238 #else
1239 if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
1240 return -EINVAL;
1241 #endif
1242
1243 ret = lock_device_hotplug_sysfs();
1244 if (ret)
1245 return ret;
1246
1247 mutex_lock(&cpuhp_state_mutex);
1248 sp = cpuhp_get_step(target);
1249 ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
1250 mutex_unlock(&cpuhp_state_mutex);
1251 if (ret)
1252 return ret;
1253
1254 if (st->state < target)
1255 ret = do_cpu_up(dev->id, target);
1256 else
1257 ret = do_cpu_down(dev->id, target);
1258
1259 unlock_device_hotplug();
1260 return ret ? ret : count;
1261 }
1262
1263 static ssize_t show_cpuhp_target(struct device *dev,
1264 struct device_attribute *attr, char *buf)
1265 {
1266 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1267
1268 return sprintf(buf, "%d\n", st->target);
1269 }
1270 static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target);
1271
1272 static struct attribute *cpuhp_cpu_attrs[] = {
1273 &dev_attr_state.attr,
1274 &dev_attr_target.attr,
1275 NULL
1276 };
1277
1278 static struct attribute_group cpuhp_cpu_attr_group = {
1279 .attrs = cpuhp_cpu_attrs,
1280 .name = "hotplug",
1281 NULL
1282 };
1283
1284 static ssize_t show_cpuhp_states(struct device *dev,
1285 struct device_attribute *attr, char *buf)
1286 {
1287 ssize_t cur, res = 0;
1288 int i;
1289
1290 mutex_lock(&cpuhp_state_mutex);
1291 for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
1292 struct cpuhp_step *sp = cpuhp_get_step(i);
1293
1294 if (sp->name) {
1295 cur = sprintf(buf, "%3d: %s\n", i, sp->name);
1296 buf += cur;
1297 res += cur;
1298 }
1299 }
1300 mutex_unlock(&cpuhp_state_mutex);
1301 return res;
1302 }
1303 static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL);
1304
1305 static struct attribute *cpuhp_cpu_root_attrs[] = {
1306 &dev_attr_states.attr,
1307 NULL
1308 };
1309
1310 static struct attribute_group cpuhp_cpu_root_attr_group = {
1311 .attrs = cpuhp_cpu_root_attrs,
1312 .name = "hotplug",
1313 NULL
1314 };
1315
1316 static int __init cpuhp_sysfs_init(void)
1317 {
1318 int cpu, ret;
1319
1320 ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
1321 &cpuhp_cpu_root_attr_group);
1322 if (ret)
1323 return ret;
1324
1325 for_each_possible_cpu(cpu) {
1326 struct device *dev = get_cpu_device(cpu);
1327
1328 if (!dev)
1329 continue;
1330 ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
1331 if (ret)
1332 return ret;
1333 }
1334 return 0;
1335 }
1336 device_initcall(cpuhp_sysfs_init);
1337 #endif
1338
1339 /*
1340 * cpu_bit_bitmap[] is a special, "compressed" data structure that
1341 * represents all NR_CPUS bits binary values of 1<<nr.
1342 *
1343 * It is used by cpumask_of() to get a constant address to a CPU
1344 * mask value that has a single bit set only.
1345 */
1346
1347 /* cpu_bit_bitmap[0] is empty - so we can back into it */
1348 #define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x))
1349 #define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
1350 #define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
1351 #define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
1352
1353 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
1354
1355 MASK_DECLARE_8(0), MASK_DECLARE_8(8),
1356 MASK_DECLARE_8(16), MASK_DECLARE_8(24),
1357 #if BITS_PER_LONG > 32
1358 MASK_DECLARE_8(32), MASK_DECLARE_8(40),
1359 MASK_DECLARE_8(48), MASK_DECLARE_8(56),
1360 #endif
1361 };
1362 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
1363
1364 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
1365 EXPORT_SYMBOL(cpu_all_bits);
1366
1367 #ifdef CONFIG_INIT_ALL_POSSIBLE
1368 struct cpumask __cpu_possible_mask __read_mostly
1369 = {CPU_BITS_ALL};
1370 #else
1371 struct cpumask __cpu_possible_mask __read_mostly;
1372 #endif
1373 EXPORT_SYMBOL(__cpu_possible_mask);
1374
1375 struct cpumask __cpu_online_mask __read_mostly;
1376 EXPORT_SYMBOL(__cpu_online_mask);
1377
1378 struct cpumask __cpu_present_mask __read_mostly;
1379 EXPORT_SYMBOL(__cpu_present_mask);
1380
1381 struct cpumask __cpu_active_mask __read_mostly;
1382 EXPORT_SYMBOL(__cpu_active_mask);
1383
1384 void init_cpu_present(const struct cpumask *src)
1385 {
1386 cpumask_copy(&__cpu_present_mask, src);
1387 }
1388
1389 void init_cpu_possible(const struct cpumask *src)
1390 {
1391 cpumask_copy(&__cpu_possible_mask, src);
1392 }
1393
1394 void init_cpu_online(const struct cpumask *src)
1395 {
1396 cpumask_copy(&__cpu_online_mask, src);
1397 }
1398
1399 /*
1400 * Activate the first processor.
1401 */
1402 void __init boot_cpu_init(void)
1403 {
1404 int cpu = smp_processor_id();
1405
1406 /* Mark the boot cpu "present", "online" etc for SMP and UP case */
1407 set_cpu_online(cpu, true);
1408 set_cpu_active(cpu, true);
1409 set_cpu_present(cpu, true);
1410 set_cpu_possible(cpu, true);
1411 }
1412
1413 /*
1414 * Must be called _AFTER_ setting up the per_cpu areas
1415 */
1416 void __init boot_cpu_state_init(void)
1417 {
1418 per_cpu_ptr(&cpuhp_state, smp_processor_id())->state = CPUHP_ONLINE;
1419 }
This page took 0.059083 seconds and 6 git commands to generate.