cgroups: Documentation/cgroup/cgroup.txt - a trivial fix.
[deliverable/linux.git] / kernel / cpuset.c
1 /*
2 * kernel/cpuset.c
3 *
4 * Processor and Memory placement constraints for sets of tasks.
5 *
6 * Copyright (C) 2003 BULL SA.
7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8 * Copyright (C) 2006 Google, Inc
9 *
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
12 *
13 * 2003-10-10 Written by Simon Derr.
14 * 2003-10-22 Updates by Stephen Hemminger.
15 * 2004 May-July Rework by Paul Jackson.
16 * 2006 Rework by Paul Menage to use generic cgroups
17 * 2008 Rework of the scheduler domains and CPU hotplug handling
18 * by Max Krasnyansky
19 *
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
23 */
24
25 #include <linux/cpu.h>
26 #include <linux/cpumask.h>
27 #include <linux/cpuset.h>
28 #include <linux/err.h>
29 #include <linux/errno.h>
30 #include <linux/file.h>
31 #include <linux/fs.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/kernel.h>
35 #include <linux/kmod.h>
36 #include <linux/list.h>
37 #include <linux/mempolicy.h>
38 #include <linux/mm.h>
39 #include <linux/memory.h>
40 #include <linux/export.h>
41 #include <linux/mount.h>
42 #include <linux/namei.h>
43 #include <linux/pagemap.h>
44 #include <linux/proc_fs.h>
45 #include <linux/rcupdate.h>
46 #include <linux/sched.h>
47 #include <linux/seq_file.h>
48 #include <linux/security.h>
49 #include <linux/slab.h>
50 #include <linux/spinlock.h>
51 #include <linux/stat.h>
52 #include <linux/string.h>
53 #include <linux/time.h>
54 #include <linux/backing-dev.h>
55 #include <linux/sort.h>
56
57 #include <asm/uaccess.h>
58 #include <linux/atomic.h>
59 #include <linux/mutex.h>
60 #include <linux/workqueue.h>
61 #include <linux/cgroup.h>
62
63 /*
64 * Tracks how many cpusets are currently defined in system.
65 * When there is only one cpuset (the root cpuset) we can
66 * short circuit some hooks.
67 */
68 int number_of_cpusets __read_mostly;
69
70 /* Forward declare cgroup structures */
71 struct cgroup_subsys cpuset_subsys;
72 struct cpuset;
73
74 /* See "Frequency meter" comments, below. */
75
76 struct fmeter {
77 int cnt; /* unprocessed events count */
78 int val; /* most recent output value */
79 time_t time; /* clock (secs) when val computed */
80 spinlock_t lock; /* guards read or write of above */
81 };
82
83 struct cpuset {
84 struct cgroup_subsys_state css;
85
86 unsigned long flags; /* "unsigned long" so bitops work */
87 cpumask_var_t cpus_allowed; /* CPUs allowed to tasks in cpuset */
88 nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */
89
90 struct fmeter fmeter; /* memory_pressure filter */
91
92 /*
93 * Tasks are being attached to this cpuset. Used to prevent
94 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
95 */
96 int attach_in_progress;
97
98 /* partition number for rebuild_sched_domains() */
99 int pn;
100
101 /* for custom sched domain */
102 int relax_domain_level;
103
104 struct work_struct hotplug_work;
105 };
106
107 /* Retrieve the cpuset for a cgroup */
108 static inline struct cpuset *cgroup_cs(struct cgroup *cont)
109 {
110 return container_of(cgroup_subsys_state(cont, cpuset_subsys_id),
111 struct cpuset, css);
112 }
113
114 /* Retrieve the cpuset for a task */
115 static inline struct cpuset *task_cs(struct task_struct *task)
116 {
117 return container_of(task_subsys_state(task, cpuset_subsys_id),
118 struct cpuset, css);
119 }
120
121 static inline struct cpuset *parent_cs(const struct cpuset *cs)
122 {
123 struct cgroup *pcgrp = cs->css.cgroup->parent;
124
125 if (pcgrp)
126 return cgroup_cs(pcgrp);
127 return NULL;
128 }
129
130 #ifdef CONFIG_NUMA
131 static inline bool task_has_mempolicy(struct task_struct *task)
132 {
133 return task->mempolicy;
134 }
135 #else
136 static inline bool task_has_mempolicy(struct task_struct *task)
137 {
138 return false;
139 }
140 #endif
141
142
143 /* bits in struct cpuset flags field */
144 typedef enum {
145 CS_ONLINE,
146 CS_CPU_EXCLUSIVE,
147 CS_MEM_EXCLUSIVE,
148 CS_MEM_HARDWALL,
149 CS_MEMORY_MIGRATE,
150 CS_SCHED_LOAD_BALANCE,
151 CS_SPREAD_PAGE,
152 CS_SPREAD_SLAB,
153 } cpuset_flagbits_t;
154
155 /* convenient tests for these bits */
156 static inline bool is_cpuset_online(const struct cpuset *cs)
157 {
158 return test_bit(CS_ONLINE, &cs->flags);
159 }
160
161 static inline int is_cpu_exclusive(const struct cpuset *cs)
162 {
163 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
164 }
165
166 static inline int is_mem_exclusive(const struct cpuset *cs)
167 {
168 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
169 }
170
171 static inline int is_mem_hardwall(const struct cpuset *cs)
172 {
173 return test_bit(CS_MEM_HARDWALL, &cs->flags);
174 }
175
176 static inline int is_sched_load_balance(const struct cpuset *cs)
177 {
178 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
179 }
180
181 static inline int is_memory_migrate(const struct cpuset *cs)
182 {
183 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
184 }
185
186 static inline int is_spread_page(const struct cpuset *cs)
187 {
188 return test_bit(CS_SPREAD_PAGE, &cs->flags);
189 }
190
191 static inline int is_spread_slab(const struct cpuset *cs)
192 {
193 return test_bit(CS_SPREAD_SLAB, &cs->flags);
194 }
195
196 static struct cpuset top_cpuset = {
197 .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
198 (1 << CS_MEM_EXCLUSIVE)),
199 };
200
201 /**
202 * cpuset_for_each_child - traverse online children of a cpuset
203 * @child_cs: loop cursor pointing to the current child
204 * @pos_cgrp: used for iteration
205 * @parent_cs: target cpuset to walk children of
206 *
207 * Walk @child_cs through the online children of @parent_cs. Must be used
208 * with RCU read locked.
209 */
210 #define cpuset_for_each_child(child_cs, pos_cgrp, parent_cs) \
211 cgroup_for_each_child((pos_cgrp), (parent_cs)->css.cgroup) \
212 if (is_cpuset_online(((child_cs) = cgroup_cs((pos_cgrp)))))
213
214 /**
215 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
216 * @des_cs: loop cursor pointing to the current descendant
217 * @pos_cgrp: used for iteration
218 * @root_cs: target cpuset to walk ancestor of
219 *
220 * Walk @des_cs through the online descendants of @root_cs. Must be used
221 * with RCU read locked. The caller may modify @pos_cgrp by calling
222 * cgroup_rightmost_descendant() to skip subtree.
223 */
224 #define cpuset_for_each_descendant_pre(des_cs, pos_cgrp, root_cs) \
225 cgroup_for_each_descendant_pre((pos_cgrp), (root_cs)->css.cgroup) \
226 if (is_cpuset_online(((des_cs) = cgroup_cs((pos_cgrp)))))
227
228 /*
229 * There are two global mutexes guarding cpuset structures - cpuset_mutex
230 * and callback_mutex. The latter may nest inside the former. We also
231 * require taking task_lock() when dereferencing a task's cpuset pointer.
232 * See "The task_lock() exception", at the end of this comment.
233 *
234 * A task must hold both mutexes to modify cpusets. If a task holds
235 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
236 * is the only task able to also acquire callback_mutex and be able to
237 * modify cpusets. It can perform various checks on the cpuset structure
238 * first, knowing nothing will change. It can also allocate memory while
239 * just holding cpuset_mutex. While it is performing these checks, various
240 * callback routines can briefly acquire callback_mutex to query cpusets.
241 * Once it is ready to make the changes, it takes callback_mutex, blocking
242 * everyone else.
243 *
244 * Calls to the kernel memory allocator can not be made while holding
245 * callback_mutex, as that would risk double tripping on callback_mutex
246 * from one of the callbacks into the cpuset code from within
247 * __alloc_pages().
248 *
249 * If a task is only holding callback_mutex, then it has read-only
250 * access to cpusets.
251 *
252 * Now, the task_struct fields mems_allowed and mempolicy may be changed
253 * by other task, we use alloc_lock in the task_struct fields to protect
254 * them.
255 *
256 * The cpuset_common_file_read() handlers only hold callback_mutex across
257 * small pieces of code, such as when reading out possibly multi-word
258 * cpumasks and nodemasks.
259 *
260 * Accessing a task's cpuset should be done in accordance with the
261 * guidelines for accessing subsystem state in kernel/cgroup.c
262 */
263
264 static DEFINE_MUTEX(cpuset_mutex);
265 static DEFINE_MUTEX(callback_mutex);
266
267 /*
268 * CPU / memory hotplug is handled asynchronously.
269 */
270 static struct workqueue_struct *cpuset_propagate_hotplug_wq;
271
272 static void cpuset_hotplug_workfn(struct work_struct *work);
273 static void cpuset_propagate_hotplug_workfn(struct work_struct *work);
274 static void schedule_cpuset_propagate_hotplug(struct cpuset *cs);
275
276 static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
277
278 /*
279 * This is ugly, but preserves the userspace API for existing cpuset
280 * users. If someone tries to mount the "cpuset" filesystem, we
281 * silently switch it to mount "cgroup" instead
282 */
283 static struct dentry *cpuset_mount(struct file_system_type *fs_type,
284 int flags, const char *unused_dev_name, void *data)
285 {
286 struct file_system_type *cgroup_fs = get_fs_type("cgroup");
287 struct dentry *ret = ERR_PTR(-ENODEV);
288 if (cgroup_fs) {
289 char mountopts[] =
290 "cpuset,noprefix,"
291 "release_agent=/sbin/cpuset_release_agent";
292 ret = cgroup_fs->mount(cgroup_fs, flags,
293 unused_dev_name, mountopts);
294 put_filesystem(cgroup_fs);
295 }
296 return ret;
297 }
298
299 static struct file_system_type cpuset_fs_type = {
300 .name = "cpuset",
301 .mount = cpuset_mount,
302 };
303
304 /*
305 * Return in pmask the portion of a cpusets's cpus_allowed that
306 * are online. If none are online, walk up the cpuset hierarchy
307 * until we find one that does have some online cpus. If we get
308 * all the way to the top and still haven't found any online cpus,
309 * return cpu_online_mask. Or if passed a NULL cs from an exit'ing
310 * task, return cpu_online_mask.
311 *
312 * One way or another, we guarantee to return some non-empty subset
313 * of cpu_online_mask.
314 *
315 * Call with callback_mutex held.
316 */
317
318 static void guarantee_online_cpus(const struct cpuset *cs,
319 struct cpumask *pmask)
320 {
321 while (cs && !cpumask_intersects(cs->cpus_allowed, cpu_online_mask))
322 cs = parent_cs(cs);
323 if (cs)
324 cpumask_and(pmask, cs->cpus_allowed, cpu_online_mask);
325 else
326 cpumask_copy(pmask, cpu_online_mask);
327 BUG_ON(!cpumask_intersects(pmask, cpu_online_mask));
328 }
329
330 /*
331 * Return in *pmask the portion of a cpusets's mems_allowed that
332 * are online, with memory. If none are online with memory, walk
333 * up the cpuset hierarchy until we find one that does have some
334 * online mems. If we get all the way to the top and still haven't
335 * found any online mems, return node_states[N_MEMORY].
336 *
337 * One way or another, we guarantee to return some non-empty subset
338 * of node_states[N_MEMORY].
339 *
340 * Call with callback_mutex held.
341 */
342
343 static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
344 {
345 while (cs && !nodes_intersects(cs->mems_allowed,
346 node_states[N_MEMORY]))
347 cs = parent_cs(cs);
348 if (cs)
349 nodes_and(*pmask, cs->mems_allowed,
350 node_states[N_MEMORY]);
351 else
352 *pmask = node_states[N_MEMORY];
353 BUG_ON(!nodes_intersects(*pmask, node_states[N_MEMORY]));
354 }
355
356 /*
357 * update task's spread flag if cpuset's page/slab spread flag is set
358 *
359 * Called with callback_mutex/cpuset_mutex held
360 */
361 static void cpuset_update_task_spread_flag(struct cpuset *cs,
362 struct task_struct *tsk)
363 {
364 if (is_spread_page(cs))
365 tsk->flags |= PF_SPREAD_PAGE;
366 else
367 tsk->flags &= ~PF_SPREAD_PAGE;
368 if (is_spread_slab(cs))
369 tsk->flags |= PF_SPREAD_SLAB;
370 else
371 tsk->flags &= ~PF_SPREAD_SLAB;
372 }
373
374 /*
375 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
376 *
377 * One cpuset is a subset of another if all its allowed CPUs and
378 * Memory Nodes are a subset of the other, and its exclusive flags
379 * are only set if the other's are set. Call holding cpuset_mutex.
380 */
381
382 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
383 {
384 return cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
385 nodes_subset(p->mems_allowed, q->mems_allowed) &&
386 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
387 is_mem_exclusive(p) <= is_mem_exclusive(q);
388 }
389
390 /**
391 * alloc_trial_cpuset - allocate a trial cpuset
392 * @cs: the cpuset that the trial cpuset duplicates
393 */
394 static struct cpuset *alloc_trial_cpuset(const struct cpuset *cs)
395 {
396 struct cpuset *trial;
397
398 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
399 if (!trial)
400 return NULL;
401
402 if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL)) {
403 kfree(trial);
404 return NULL;
405 }
406 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
407
408 return trial;
409 }
410
411 /**
412 * free_trial_cpuset - free the trial cpuset
413 * @trial: the trial cpuset to be freed
414 */
415 static void free_trial_cpuset(struct cpuset *trial)
416 {
417 free_cpumask_var(trial->cpus_allowed);
418 kfree(trial);
419 }
420
421 /*
422 * validate_change() - Used to validate that any proposed cpuset change
423 * follows the structural rules for cpusets.
424 *
425 * If we replaced the flag and mask values of the current cpuset
426 * (cur) with those values in the trial cpuset (trial), would
427 * our various subset and exclusive rules still be valid? Presumes
428 * cpuset_mutex held.
429 *
430 * 'cur' is the address of an actual, in-use cpuset. Operations
431 * such as list traversal that depend on the actual address of the
432 * cpuset in the list must use cur below, not trial.
433 *
434 * 'trial' is the address of bulk structure copy of cur, with
435 * perhaps one or more of the fields cpus_allowed, mems_allowed,
436 * or flags changed to new, trial values.
437 *
438 * Return 0 if valid, -errno if not.
439 */
440
441 static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
442 {
443 struct cgroup *cont;
444 struct cpuset *c, *par;
445 int ret;
446
447 rcu_read_lock();
448
449 /* Each of our child cpusets must be a subset of us */
450 ret = -EBUSY;
451 cpuset_for_each_child(c, cont, cur)
452 if (!is_cpuset_subset(c, trial))
453 goto out;
454
455 /* Remaining checks don't apply to root cpuset */
456 ret = 0;
457 if (cur == &top_cpuset)
458 goto out;
459
460 par = parent_cs(cur);
461
462 /* We must be a subset of our parent cpuset */
463 ret = -EACCES;
464 if (!is_cpuset_subset(trial, par))
465 goto out;
466
467 /*
468 * If either I or some sibling (!= me) is exclusive, we can't
469 * overlap
470 */
471 ret = -EINVAL;
472 cpuset_for_each_child(c, cont, par) {
473 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
474 c != cur &&
475 cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
476 goto out;
477 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
478 c != cur &&
479 nodes_intersects(trial->mems_allowed, c->mems_allowed))
480 goto out;
481 }
482
483 /*
484 * Cpusets with tasks - existing or newly being attached - can't
485 * have empty cpus_allowed or mems_allowed.
486 */
487 ret = -ENOSPC;
488 if ((cgroup_task_count(cur->css.cgroup) || cur->attach_in_progress) &&
489 (cpumask_empty(trial->cpus_allowed) ||
490 nodes_empty(trial->mems_allowed)))
491 goto out;
492
493 ret = 0;
494 out:
495 rcu_read_unlock();
496 return ret;
497 }
498
499 #ifdef CONFIG_SMP
500 /*
501 * Helper routine for generate_sched_domains().
502 * Do cpusets a, b have overlapping cpus_allowed masks?
503 */
504 static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
505 {
506 return cpumask_intersects(a->cpus_allowed, b->cpus_allowed);
507 }
508
509 static void
510 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
511 {
512 if (dattr->relax_domain_level < c->relax_domain_level)
513 dattr->relax_domain_level = c->relax_domain_level;
514 return;
515 }
516
517 static void update_domain_attr_tree(struct sched_domain_attr *dattr,
518 struct cpuset *root_cs)
519 {
520 struct cpuset *cp;
521 struct cgroup *pos_cgrp;
522
523 rcu_read_lock();
524 cpuset_for_each_descendant_pre(cp, pos_cgrp, root_cs) {
525 /* skip the whole subtree if @cp doesn't have any CPU */
526 if (cpumask_empty(cp->cpus_allowed)) {
527 pos_cgrp = cgroup_rightmost_descendant(pos_cgrp);
528 continue;
529 }
530
531 if (is_sched_load_balance(cp))
532 update_domain_attr(dattr, cp);
533 }
534 rcu_read_unlock();
535 }
536
537 /*
538 * generate_sched_domains()
539 *
540 * This function builds a partial partition of the systems CPUs
541 * A 'partial partition' is a set of non-overlapping subsets whose
542 * union is a subset of that set.
543 * The output of this function needs to be passed to kernel/sched.c
544 * partition_sched_domains() routine, which will rebuild the scheduler's
545 * load balancing domains (sched domains) as specified by that partial
546 * partition.
547 *
548 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
549 * for a background explanation of this.
550 *
551 * Does not return errors, on the theory that the callers of this
552 * routine would rather not worry about failures to rebuild sched
553 * domains when operating in the severe memory shortage situations
554 * that could cause allocation failures below.
555 *
556 * Must be called with cpuset_mutex held.
557 *
558 * The three key local variables below are:
559 * q - a linked-list queue of cpuset pointers, used to implement a
560 * top-down scan of all cpusets. This scan loads a pointer
561 * to each cpuset marked is_sched_load_balance into the
562 * array 'csa'. For our purposes, rebuilding the schedulers
563 * sched domains, we can ignore !is_sched_load_balance cpusets.
564 * csa - (for CpuSet Array) Array of pointers to all the cpusets
565 * that need to be load balanced, for convenient iterative
566 * access by the subsequent code that finds the best partition,
567 * i.e the set of domains (subsets) of CPUs such that the
568 * cpus_allowed of every cpuset marked is_sched_load_balance
569 * is a subset of one of these domains, while there are as
570 * many such domains as possible, each as small as possible.
571 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
572 * the kernel/sched.c routine partition_sched_domains() in a
573 * convenient format, that can be easily compared to the prior
574 * value to determine what partition elements (sched domains)
575 * were changed (added or removed.)
576 *
577 * Finding the best partition (set of domains):
578 * The triple nested loops below over i, j, k scan over the
579 * load balanced cpusets (using the array of cpuset pointers in
580 * csa[]) looking for pairs of cpusets that have overlapping
581 * cpus_allowed, but which don't have the same 'pn' partition
582 * number and gives them in the same partition number. It keeps
583 * looping on the 'restart' label until it can no longer find
584 * any such pairs.
585 *
586 * The union of the cpus_allowed masks from the set of
587 * all cpusets having the same 'pn' value then form the one
588 * element of the partition (one sched domain) to be passed to
589 * partition_sched_domains().
590 */
591 static int generate_sched_domains(cpumask_var_t **domains,
592 struct sched_domain_attr **attributes)
593 {
594 struct cpuset *cp; /* scans q */
595 struct cpuset **csa; /* array of all cpuset ptrs */
596 int csn; /* how many cpuset ptrs in csa so far */
597 int i, j, k; /* indices for partition finding loops */
598 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */
599 struct sched_domain_attr *dattr; /* attributes for custom domains */
600 int ndoms = 0; /* number of sched domains in result */
601 int nslot; /* next empty doms[] struct cpumask slot */
602 struct cgroup *pos_cgrp;
603
604 doms = NULL;
605 dattr = NULL;
606 csa = NULL;
607
608 /* Special case for the 99% of systems with one, full, sched domain */
609 if (is_sched_load_balance(&top_cpuset)) {
610 ndoms = 1;
611 doms = alloc_sched_domains(ndoms);
612 if (!doms)
613 goto done;
614
615 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
616 if (dattr) {
617 *dattr = SD_ATTR_INIT;
618 update_domain_attr_tree(dattr, &top_cpuset);
619 }
620 cpumask_copy(doms[0], top_cpuset.cpus_allowed);
621
622 goto done;
623 }
624
625 csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
626 if (!csa)
627 goto done;
628 csn = 0;
629
630 rcu_read_lock();
631 cpuset_for_each_descendant_pre(cp, pos_cgrp, &top_cpuset) {
632 /*
633 * Continue traversing beyond @cp iff @cp has some CPUs and
634 * isn't load balancing. The former is obvious. The
635 * latter: All child cpusets contain a subset of the
636 * parent's cpus, so just skip them, and then we call
637 * update_domain_attr_tree() to calc relax_domain_level of
638 * the corresponding sched domain.
639 */
640 if (!cpumask_empty(cp->cpus_allowed) &&
641 !is_sched_load_balance(cp))
642 continue;
643
644 if (is_sched_load_balance(cp))
645 csa[csn++] = cp;
646
647 /* skip @cp's subtree */
648 pos_cgrp = cgroup_rightmost_descendant(pos_cgrp);
649 }
650 rcu_read_unlock();
651
652 for (i = 0; i < csn; i++)
653 csa[i]->pn = i;
654 ndoms = csn;
655
656 restart:
657 /* Find the best partition (set of sched domains) */
658 for (i = 0; i < csn; i++) {
659 struct cpuset *a = csa[i];
660 int apn = a->pn;
661
662 for (j = 0; j < csn; j++) {
663 struct cpuset *b = csa[j];
664 int bpn = b->pn;
665
666 if (apn != bpn && cpusets_overlap(a, b)) {
667 for (k = 0; k < csn; k++) {
668 struct cpuset *c = csa[k];
669
670 if (c->pn == bpn)
671 c->pn = apn;
672 }
673 ndoms--; /* one less element */
674 goto restart;
675 }
676 }
677 }
678
679 /*
680 * Now we know how many domains to create.
681 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
682 */
683 doms = alloc_sched_domains(ndoms);
684 if (!doms)
685 goto done;
686
687 /*
688 * The rest of the code, including the scheduler, can deal with
689 * dattr==NULL case. No need to abort if alloc fails.
690 */
691 dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
692
693 for (nslot = 0, i = 0; i < csn; i++) {
694 struct cpuset *a = csa[i];
695 struct cpumask *dp;
696 int apn = a->pn;
697
698 if (apn < 0) {
699 /* Skip completed partitions */
700 continue;
701 }
702
703 dp = doms[nslot];
704
705 if (nslot == ndoms) {
706 static int warnings = 10;
707 if (warnings) {
708 printk(KERN_WARNING
709 "rebuild_sched_domains confused:"
710 " nslot %d, ndoms %d, csn %d, i %d,"
711 " apn %d\n",
712 nslot, ndoms, csn, i, apn);
713 warnings--;
714 }
715 continue;
716 }
717
718 cpumask_clear(dp);
719 if (dattr)
720 *(dattr + nslot) = SD_ATTR_INIT;
721 for (j = i; j < csn; j++) {
722 struct cpuset *b = csa[j];
723
724 if (apn == b->pn) {
725 cpumask_or(dp, dp, b->cpus_allowed);
726 if (dattr)
727 update_domain_attr_tree(dattr + nslot, b);
728
729 /* Done with this partition */
730 b->pn = -1;
731 }
732 }
733 nslot++;
734 }
735 BUG_ON(nslot != ndoms);
736
737 done:
738 kfree(csa);
739
740 /*
741 * Fallback to the default domain if kmalloc() failed.
742 * See comments in partition_sched_domains().
743 */
744 if (doms == NULL)
745 ndoms = 1;
746
747 *domains = doms;
748 *attributes = dattr;
749 return ndoms;
750 }
751
752 /*
753 * Rebuild scheduler domains.
754 *
755 * If the flag 'sched_load_balance' of any cpuset with non-empty
756 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
757 * which has that flag enabled, or if any cpuset with a non-empty
758 * 'cpus' is removed, then call this routine to rebuild the
759 * scheduler's dynamic sched domains.
760 *
761 * Call with cpuset_mutex held. Takes get_online_cpus().
762 */
763 static void rebuild_sched_domains_locked(void)
764 {
765 struct sched_domain_attr *attr;
766 cpumask_var_t *doms;
767 int ndoms;
768
769 lockdep_assert_held(&cpuset_mutex);
770 get_online_cpus();
771
772 /* Generate domain masks and attrs */
773 ndoms = generate_sched_domains(&doms, &attr);
774
775 /* Have scheduler rebuild the domains */
776 partition_sched_domains(ndoms, doms, attr);
777
778 put_online_cpus();
779 }
780 #else /* !CONFIG_SMP */
781 static void rebuild_sched_domains_locked(void)
782 {
783 }
784
785 static int generate_sched_domains(cpumask_var_t **domains,
786 struct sched_domain_attr **attributes)
787 {
788 *domains = NULL;
789 return 1;
790 }
791 #endif /* CONFIG_SMP */
792
793 void rebuild_sched_domains(void)
794 {
795 mutex_lock(&cpuset_mutex);
796 rebuild_sched_domains_locked();
797 mutex_unlock(&cpuset_mutex);
798 }
799
800 /**
801 * cpuset_test_cpumask - test a task's cpus_allowed versus its cpuset's
802 * @tsk: task to test
803 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
804 *
805 * Call with cpuset_mutex held. May take callback_mutex during call.
806 * Called for each task in a cgroup by cgroup_scan_tasks().
807 * Return nonzero if this tasks's cpus_allowed mask should be changed (in other
808 * words, if its mask is not equal to its cpuset's mask).
809 */
810 static int cpuset_test_cpumask(struct task_struct *tsk,
811 struct cgroup_scanner *scan)
812 {
813 return !cpumask_equal(&tsk->cpus_allowed,
814 (cgroup_cs(scan->cg))->cpus_allowed);
815 }
816
817 /**
818 * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's
819 * @tsk: task to test
820 * @scan: struct cgroup_scanner containing the cgroup of the task
821 *
822 * Called by cgroup_scan_tasks() for each task in a cgroup whose
823 * cpus_allowed mask needs to be changed.
824 *
825 * We don't need to re-check for the cgroup/cpuset membership, since we're
826 * holding cpuset_mutex at this point.
827 */
828 static void cpuset_change_cpumask(struct task_struct *tsk,
829 struct cgroup_scanner *scan)
830 {
831 set_cpus_allowed_ptr(tsk, ((cgroup_cs(scan->cg))->cpus_allowed));
832 }
833
834 /**
835 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
836 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
837 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
838 *
839 * Called with cpuset_mutex held
840 *
841 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
842 * calling callback functions for each.
843 *
844 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
845 * if @heap != NULL.
846 */
847 static void update_tasks_cpumask(struct cpuset *cs, struct ptr_heap *heap)
848 {
849 struct cgroup_scanner scan;
850
851 scan.cg = cs->css.cgroup;
852 scan.test_task = cpuset_test_cpumask;
853 scan.process_task = cpuset_change_cpumask;
854 scan.heap = heap;
855 cgroup_scan_tasks(&scan);
856 }
857
858 /**
859 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
860 * @cs: the cpuset to consider
861 * @buf: buffer of cpu numbers written to this cpuset
862 */
863 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
864 const char *buf)
865 {
866 struct ptr_heap heap;
867 int retval;
868 int is_load_balanced;
869
870 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
871 if (cs == &top_cpuset)
872 return -EACCES;
873
874 /*
875 * An empty cpus_allowed is ok only if the cpuset has no tasks.
876 * Since cpulist_parse() fails on an empty mask, we special case
877 * that parsing. The validate_change() call ensures that cpusets
878 * with tasks have cpus.
879 */
880 if (!*buf) {
881 cpumask_clear(trialcs->cpus_allowed);
882 } else {
883 retval = cpulist_parse(buf, trialcs->cpus_allowed);
884 if (retval < 0)
885 return retval;
886
887 if (!cpumask_subset(trialcs->cpus_allowed, cpu_active_mask))
888 return -EINVAL;
889 }
890 retval = validate_change(cs, trialcs);
891 if (retval < 0)
892 return retval;
893
894 /* Nothing to do if the cpus didn't change */
895 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
896 return 0;
897
898 retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
899 if (retval)
900 return retval;
901
902 is_load_balanced = is_sched_load_balance(trialcs);
903
904 mutex_lock(&callback_mutex);
905 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
906 mutex_unlock(&callback_mutex);
907
908 /*
909 * Scan tasks in the cpuset, and update the cpumasks of any
910 * that need an update.
911 */
912 update_tasks_cpumask(cs, &heap);
913
914 heap_free(&heap);
915
916 if (is_load_balanced)
917 rebuild_sched_domains_locked();
918 return 0;
919 }
920
921 /*
922 * cpuset_migrate_mm
923 *
924 * Migrate memory region from one set of nodes to another.
925 *
926 * Temporarilly set tasks mems_allowed to target nodes of migration,
927 * so that the migration code can allocate pages on these nodes.
928 *
929 * Call holding cpuset_mutex, so current's cpuset won't change
930 * during this call, as manage_mutex holds off any cpuset_attach()
931 * calls. Therefore we don't need to take task_lock around the
932 * call to guarantee_online_mems(), as we know no one is changing
933 * our task's cpuset.
934 *
935 * While the mm_struct we are migrating is typically from some
936 * other task, the task_struct mems_allowed that we are hacking
937 * is for our current task, which must allocate new pages for that
938 * migrating memory region.
939 */
940
941 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
942 const nodemask_t *to)
943 {
944 struct task_struct *tsk = current;
945
946 tsk->mems_allowed = *to;
947
948 do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
949
950 guarantee_online_mems(task_cs(tsk),&tsk->mems_allowed);
951 }
952
953 /*
954 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
955 * @tsk: the task to change
956 * @newmems: new nodes that the task will be set
957 *
958 * In order to avoid seeing no nodes if the old and new nodes are disjoint,
959 * we structure updates as setting all new allowed nodes, then clearing newly
960 * disallowed ones.
961 */
962 static void cpuset_change_task_nodemask(struct task_struct *tsk,
963 nodemask_t *newmems)
964 {
965 bool need_loop;
966
967 /*
968 * Allow tasks that have access to memory reserves because they have
969 * been OOM killed to get memory anywhere.
970 */
971 if (unlikely(test_thread_flag(TIF_MEMDIE)))
972 return;
973 if (current->flags & PF_EXITING) /* Let dying task have memory */
974 return;
975
976 task_lock(tsk);
977 /*
978 * Determine if a loop is necessary if another thread is doing
979 * get_mems_allowed(). If at least one node remains unchanged and
980 * tsk does not have a mempolicy, then an empty nodemask will not be
981 * possible when mems_allowed is larger than a word.
982 */
983 need_loop = task_has_mempolicy(tsk) ||
984 !nodes_intersects(*newmems, tsk->mems_allowed);
985
986 if (need_loop)
987 write_seqcount_begin(&tsk->mems_allowed_seq);
988
989 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
990 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);
991
992 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);
993 tsk->mems_allowed = *newmems;
994
995 if (need_loop)
996 write_seqcount_end(&tsk->mems_allowed_seq);
997
998 task_unlock(tsk);
999 }
1000
1001 /*
1002 * Update task's mems_allowed and rebind its mempolicy and vmas' mempolicy
1003 * of it to cpuset's new mems_allowed, and migrate pages to new nodes if
1004 * memory_migrate flag is set. Called with cpuset_mutex held.
1005 */
1006 static void cpuset_change_nodemask(struct task_struct *p,
1007 struct cgroup_scanner *scan)
1008 {
1009 struct mm_struct *mm;
1010 struct cpuset *cs;
1011 int migrate;
1012 const nodemask_t *oldmem = scan->data;
1013 static nodemask_t newmems; /* protected by cpuset_mutex */
1014
1015 cs = cgroup_cs(scan->cg);
1016 guarantee_online_mems(cs, &newmems);
1017
1018 cpuset_change_task_nodemask(p, &newmems);
1019
1020 mm = get_task_mm(p);
1021 if (!mm)
1022 return;
1023
1024 migrate = is_memory_migrate(cs);
1025
1026 mpol_rebind_mm(mm, &cs->mems_allowed);
1027 if (migrate)
1028 cpuset_migrate_mm(mm, oldmem, &cs->mems_allowed);
1029 mmput(mm);
1030 }
1031
1032 static void *cpuset_being_rebound;
1033
1034 /**
1035 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1036 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1037 * @oldmem: old mems_allowed of cpuset cs
1038 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
1039 *
1040 * Called with cpuset_mutex held
1041 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
1042 * if @heap != NULL.
1043 */
1044 static void update_tasks_nodemask(struct cpuset *cs, const nodemask_t *oldmem,
1045 struct ptr_heap *heap)
1046 {
1047 struct cgroup_scanner scan;
1048
1049 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
1050
1051 scan.cg = cs->css.cgroup;
1052 scan.test_task = NULL;
1053 scan.process_task = cpuset_change_nodemask;
1054 scan.heap = heap;
1055 scan.data = (nodemask_t *)oldmem;
1056
1057 /*
1058 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
1059 * take while holding tasklist_lock. Forks can happen - the
1060 * mpol_dup() cpuset_being_rebound check will catch such forks,
1061 * and rebind their vma mempolicies too. Because we still hold
1062 * the global cpuset_mutex, we know that no other rebind effort
1063 * will be contending for the global variable cpuset_being_rebound.
1064 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1065 * is idempotent. Also migrate pages in each mm to new nodes.
1066 */
1067 cgroup_scan_tasks(&scan);
1068
1069 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
1070 cpuset_being_rebound = NULL;
1071 }
1072
1073 /*
1074 * Handle user request to change the 'mems' memory placement
1075 * of a cpuset. Needs to validate the request, update the
1076 * cpusets mems_allowed, and for each task in the cpuset,
1077 * update mems_allowed and rebind task's mempolicy and any vma
1078 * mempolicies and if the cpuset is marked 'memory_migrate',
1079 * migrate the tasks pages to the new memory.
1080 *
1081 * Call with cpuset_mutex held. May take callback_mutex during call.
1082 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1083 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1084 * their mempolicies to the cpusets new mems_allowed.
1085 */
1086 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1087 const char *buf)
1088 {
1089 NODEMASK_ALLOC(nodemask_t, oldmem, GFP_KERNEL);
1090 int retval;
1091 struct ptr_heap heap;
1092
1093 if (!oldmem)
1094 return -ENOMEM;
1095
1096 /*
1097 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
1098 * it's read-only
1099 */
1100 if (cs == &top_cpuset) {
1101 retval = -EACCES;
1102 goto done;
1103 }
1104
1105 /*
1106 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1107 * Since nodelist_parse() fails on an empty mask, we special case
1108 * that parsing. The validate_change() call ensures that cpusets
1109 * with tasks have memory.
1110 */
1111 if (!*buf) {
1112 nodes_clear(trialcs->mems_allowed);
1113 } else {
1114 retval = nodelist_parse(buf, trialcs->mems_allowed);
1115 if (retval < 0)
1116 goto done;
1117
1118 if (!nodes_subset(trialcs->mems_allowed,
1119 node_states[N_MEMORY])) {
1120 retval = -EINVAL;
1121 goto done;
1122 }
1123 }
1124 *oldmem = cs->mems_allowed;
1125 if (nodes_equal(*oldmem, trialcs->mems_allowed)) {
1126 retval = 0; /* Too easy - nothing to do */
1127 goto done;
1128 }
1129 retval = validate_change(cs, trialcs);
1130 if (retval < 0)
1131 goto done;
1132
1133 retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
1134 if (retval < 0)
1135 goto done;
1136
1137 mutex_lock(&callback_mutex);
1138 cs->mems_allowed = trialcs->mems_allowed;
1139 mutex_unlock(&callback_mutex);
1140
1141 update_tasks_nodemask(cs, oldmem, &heap);
1142
1143 heap_free(&heap);
1144 done:
1145 NODEMASK_FREE(oldmem);
1146 return retval;
1147 }
1148
1149 int current_cpuset_is_being_rebound(void)
1150 {
1151 return task_cs(current) == cpuset_being_rebound;
1152 }
1153
1154 static int update_relax_domain_level(struct cpuset *cs, s64 val)
1155 {
1156 #ifdef CONFIG_SMP
1157 if (val < -1 || val >= sched_domain_level_max)
1158 return -EINVAL;
1159 #endif
1160
1161 if (val != cs->relax_domain_level) {
1162 cs->relax_domain_level = val;
1163 if (!cpumask_empty(cs->cpus_allowed) &&
1164 is_sched_load_balance(cs))
1165 rebuild_sched_domains_locked();
1166 }
1167
1168 return 0;
1169 }
1170
1171 /*
1172 * cpuset_change_flag - make a task's spread flags the same as its cpuset's
1173 * @tsk: task to be updated
1174 * @scan: struct cgroup_scanner containing the cgroup of the task
1175 *
1176 * Called by cgroup_scan_tasks() for each task in a cgroup.
1177 *
1178 * We don't need to re-check for the cgroup/cpuset membership, since we're
1179 * holding cpuset_mutex at this point.
1180 */
1181 static void cpuset_change_flag(struct task_struct *tsk,
1182 struct cgroup_scanner *scan)
1183 {
1184 cpuset_update_task_spread_flag(cgroup_cs(scan->cg), tsk);
1185 }
1186
1187 /*
1188 * update_tasks_flags - update the spread flags of tasks in the cpuset.
1189 * @cs: the cpuset in which each task's spread flags needs to be changed
1190 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
1191 *
1192 * Called with cpuset_mutex held
1193 *
1194 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
1195 * calling callback functions for each.
1196 *
1197 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
1198 * if @heap != NULL.
1199 */
1200 static void update_tasks_flags(struct cpuset *cs, struct ptr_heap *heap)
1201 {
1202 struct cgroup_scanner scan;
1203
1204 scan.cg = cs->css.cgroup;
1205 scan.test_task = NULL;
1206 scan.process_task = cpuset_change_flag;
1207 scan.heap = heap;
1208 cgroup_scan_tasks(&scan);
1209 }
1210
1211 /*
1212 * update_flag - read a 0 or a 1 in a file and update associated flag
1213 * bit: the bit to update (see cpuset_flagbits_t)
1214 * cs: the cpuset to update
1215 * turning_on: whether the flag is being set or cleared
1216 *
1217 * Call with cpuset_mutex held.
1218 */
1219
1220 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1221 int turning_on)
1222 {
1223 struct cpuset *trialcs;
1224 int balance_flag_changed;
1225 int spread_flag_changed;
1226 struct ptr_heap heap;
1227 int err;
1228
1229 trialcs = alloc_trial_cpuset(cs);
1230 if (!trialcs)
1231 return -ENOMEM;
1232
1233 if (turning_on)
1234 set_bit(bit, &trialcs->flags);
1235 else
1236 clear_bit(bit, &trialcs->flags);
1237
1238 err = validate_change(cs, trialcs);
1239 if (err < 0)
1240 goto out;
1241
1242 err = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
1243 if (err < 0)
1244 goto out;
1245
1246 balance_flag_changed = (is_sched_load_balance(cs) !=
1247 is_sched_load_balance(trialcs));
1248
1249 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1250 || (is_spread_page(cs) != is_spread_page(trialcs)));
1251
1252 mutex_lock(&callback_mutex);
1253 cs->flags = trialcs->flags;
1254 mutex_unlock(&callback_mutex);
1255
1256 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1257 rebuild_sched_domains_locked();
1258
1259 if (spread_flag_changed)
1260 update_tasks_flags(cs, &heap);
1261 heap_free(&heap);
1262 out:
1263 free_trial_cpuset(trialcs);
1264 return err;
1265 }
1266
1267 /*
1268 * Frequency meter - How fast is some event occurring?
1269 *
1270 * These routines manage a digitally filtered, constant time based,
1271 * event frequency meter. There are four routines:
1272 * fmeter_init() - initialize a frequency meter.
1273 * fmeter_markevent() - called each time the event happens.
1274 * fmeter_getrate() - returns the recent rate of such events.
1275 * fmeter_update() - internal routine used to update fmeter.
1276 *
1277 * A common data structure is passed to each of these routines,
1278 * which is used to keep track of the state required to manage the
1279 * frequency meter and its digital filter.
1280 *
1281 * The filter works on the number of events marked per unit time.
1282 * The filter is single-pole low-pass recursive (IIR). The time unit
1283 * is 1 second. Arithmetic is done using 32-bit integers scaled to
1284 * simulate 3 decimal digits of precision (multiplied by 1000).
1285 *
1286 * With an FM_COEF of 933, and a time base of 1 second, the filter
1287 * has a half-life of 10 seconds, meaning that if the events quit
1288 * happening, then the rate returned from the fmeter_getrate()
1289 * will be cut in half each 10 seconds, until it converges to zero.
1290 *
1291 * It is not worth doing a real infinitely recursive filter. If more
1292 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1293 * just compute FM_MAXTICKS ticks worth, by which point the level
1294 * will be stable.
1295 *
1296 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1297 * arithmetic overflow in the fmeter_update() routine.
1298 *
1299 * Given the simple 32 bit integer arithmetic used, this meter works
1300 * best for reporting rates between one per millisecond (msec) and
1301 * one per 32 (approx) seconds. At constant rates faster than one
1302 * per msec it maxes out at values just under 1,000,000. At constant
1303 * rates between one per msec, and one per second it will stabilize
1304 * to a value N*1000, where N is the rate of events per second.
1305 * At constant rates between one per second and one per 32 seconds,
1306 * it will be choppy, moving up on the seconds that have an event,
1307 * and then decaying until the next event. At rates slower than
1308 * about one in 32 seconds, it decays all the way back to zero between
1309 * each event.
1310 */
1311
1312 #define FM_COEF 933 /* coefficient for half-life of 10 secs */
1313 #define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
1314 #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
1315 #define FM_SCALE 1000 /* faux fixed point scale */
1316
1317 /* Initialize a frequency meter */
1318 static void fmeter_init(struct fmeter *fmp)
1319 {
1320 fmp->cnt = 0;
1321 fmp->val = 0;
1322 fmp->time = 0;
1323 spin_lock_init(&fmp->lock);
1324 }
1325
1326 /* Internal meter update - process cnt events and update value */
1327 static void fmeter_update(struct fmeter *fmp)
1328 {
1329 time_t now = get_seconds();
1330 time_t ticks = now - fmp->time;
1331
1332 if (ticks == 0)
1333 return;
1334
1335 ticks = min(FM_MAXTICKS, ticks);
1336 while (ticks-- > 0)
1337 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1338 fmp->time = now;
1339
1340 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1341 fmp->cnt = 0;
1342 }
1343
1344 /* Process any previous ticks, then bump cnt by one (times scale). */
1345 static void fmeter_markevent(struct fmeter *fmp)
1346 {
1347 spin_lock(&fmp->lock);
1348 fmeter_update(fmp);
1349 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1350 spin_unlock(&fmp->lock);
1351 }
1352
1353 /* Process any previous ticks, then return current value. */
1354 static int fmeter_getrate(struct fmeter *fmp)
1355 {
1356 int val;
1357
1358 spin_lock(&fmp->lock);
1359 fmeter_update(fmp);
1360 val = fmp->val;
1361 spin_unlock(&fmp->lock);
1362 return val;
1363 }
1364
1365 /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
1366 static int cpuset_can_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
1367 {
1368 struct cpuset *cs = cgroup_cs(cgrp);
1369 struct task_struct *task;
1370 int ret;
1371
1372 mutex_lock(&cpuset_mutex);
1373
1374 ret = -ENOSPC;
1375 if (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
1376 goto out_unlock;
1377
1378 cgroup_taskset_for_each(task, cgrp, tset) {
1379 /*
1380 * Kthreads bound to specific cpus cannot be moved to a new
1381 * cpuset; we cannot change their cpu affinity and
1382 * isolating such threads by their set of allowed nodes is
1383 * unnecessary. Thus, cpusets are not applicable for such
1384 * threads. This prevents checking for success of
1385 * set_cpus_allowed_ptr() on all attached tasks before
1386 * cpus_allowed may be changed.
1387 */
1388 ret = -EINVAL;
1389 if (task->flags & PF_THREAD_BOUND)
1390 goto out_unlock;
1391 ret = security_task_setscheduler(task);
1392 if (ret)
1393 goto out_unlock;
1394 }
1395
1396 /*
1397 * Mark attach is in progress. This makes validate_change() fail
1398 * changes which zero cpus/mems_allowed.
1399 */
1400 cs->attach_in_progress++;
1401 ret = 0;
1402 out_unlock:
1403 mutex_unlock(&cpuset_mutex);
1404 return ret;
1405 }
1406
1407 static void cpuset_cancel_attach(struct cgroup *cgrp,
1408 struct cgroup_taskset *tset)
1409 {
1410 mutex_lock(&cpuset_mutex);
1411 cgroup_cs(cgrp)->attach_in_progress--;
1412 mutex_unlock(&cpuset_mutex);
1413 }
1414
1415 /*
1416 * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach()
1417 * but we can't allocate it dynamically there. Define it global and
1418 * allocate from cpuset_init().
1419 */
1420 static cpumask_var_t cpus_attach;
1421
1422 static void cpuset_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
1423 {
1424 /* static bufs protected by cpuset_mutex */
1425 static nodemask_t cpuset_attach_nodemask_from;
1426 static nodemask_t cpuset_attach_nodemask_to;
1427 struct mm_struct *mm;
1428 struct task_struct *task;
1429 struct task_struct *leader = cgroup_taskset_first(tset);
1430 struct cgroup *oldcgrp = cgroup_taskset_cur_cgroup(tset);
1431 struct cpuset *cs = cgroup_cs(cgrp);
1432 struct cpuset *oldcs = cgroup_cs(oldcgrp);
1433
1434 mutex_lock(&cpuset_mutex);
1435
1436 /* prepare for attach */
1437 if (cs == &top_cpuset)
1438 cpumask_copy(cpus_attach, cpu_possible_mask);
1439 else
1440 guarantee_online_cpus(cs, cpus_attach);
1441
1442 guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
1443
1444 cgroup_taskset_for_each(task, cgrp, tset) {
1445 /*
1446 * can_attach beforehand should guarantee that this doesn't
1447 * fail. TODO: have a better way to handle failure here
1448 */
1449 WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
1450
1451 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
1452 cpuset_update_task_spread_flag(cs, task);
1453 }
1454
1455 /*
1456 * Change mm, possibly for multiple threads in a threadgroup. This is
1457 * expensive and may sleep.
1458 */
1459 cpuset_attach_nodemask_from = oldcs->mems_allowed;
1460 cpuset_attach_nodemask_to = cs->mems_allowed;
1461 mm = get_task_mm(leader);
1462 if (mm) {
1463 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
1464 if (is_memory_migrate(cs))
1465 cpuset_migrate_mm(mm, &cpuset_attach_nodemask_from,
1466 &cpuset_attach_nodemask_to);
1467 mmput(mm);
1468 }
1469
1470 cs->attach_in_progress--;
1471
1472 /*
1473 * We may have raced with CPU/memory hotunplug. Trigger hotplug
1474 * propagation if @cs doesn't have any CPU or memory. It will move
1475 * the newly added tasks to the nearest parent which can execute.
1476 */
1477 if (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
1478 schedule_cpuset_propagate_hotplug(cs);
1479
1480 mutex_unlock(&cpuset_mutex);
1481 }
1482
1483 /* The various types of files and directories in a cpuset file system */
1484
1485 typedef enum {
1486 FILE_MEMORY_MIGRATE,
1487 FILE_CPULIST,
1488 FILE_MEMLIST,
1489 FILE_CPU_EXCLUSIVE,
1490 FILE_MEM_EXCLUSIVE,
1491 FILE_MEM_HARDWALL,
1492 FILE_SCHED_LOAD_BALANCE,
1493 FILE_SCHED_RELAX_DOMAIN_LEVEL,
1494 FILE_MEMORY_PRESSURE_ENABLED,
1495 FILE_MEMORY_PRESSURE,
1496 FILE_SPREAD_PAGE,
1497 FILE_SPREAD_SLAB,
1498 } cpuset_filetype_t;
1499
1500 static int cpuset_write_u64(struct cgroup *cgrp, struct cftype *cft, u64 val)
1501 {
1502 struct cpuset *cs = cgroup_cs(cgrp);
1503 cpuset_filetype_t type = cft->private;
1504 int retval = -ENODEV;
1505
1506 mutex_lock(&cpuset_mutex);
1507 if (!is_cpuset_online(cs))
1508 goto out_unlock;
1509
1510 switch (type) {
1511 case FILE_CPU_EXCLUSIVE:
1512 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
1513 break;
1514 case FILE_MEM_EXCLUSIVE:
1515 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
1516 break;
1517 case FILE_MEM_HARDWALL:
1518 retval = update_flag(CS_MEM_HARDWALL, cs, val);
1519 break;
1520 case FILE_SCHED_LOAD_BALANCE:
1521 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1522 break;
1523 case FILE_MEMORY_MIGRATE:
1524 retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
1525 break;
1526 case FILE_MEMORY_PRESSURE_ENABLED:
1527 cpuset_memory_pressure_enabled = !!val;
1528 break;
1529 case FILE_MEMORY_PRESSURE:
1530 retval = -EACCES;
1531 break;
1532 case FILE_SPREAD_PAGE:
1533 retval = update_flag(CS_SPREAD_PAGE, cs, val);
1534 break;
1535 case FILE_SPREAD_SLAB:
1536 retval = update_flag(CS_SPREAD_SLAB, cs, val);
1537 break;
1538 default:
1539 retval = -EINVAL;
1540 break;
1541 }
1542 out_unlock:
1543 mutex_unlock(&cpuset_mutex);
1544 return retval;
1545 }
1546
1547 static int cpuset_write_s64(struct cgroup *cgrp, struct cftype *cft, s64 val)
1548 {
1549 struct cpuset *cs = cgroup_cs(cgrp);
1550 cpuset_filetype_t type = cft->private;
1551 int retval = -ENODEV;
1552
1553 mutex_lock(&cpuset_mutex);
1554 if (!is_cpuset_online(cs))
1555 goto out_unlock;
1556
1557 switch (type) {
1558 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1559 retval = update_relax_domain_level(cs, val);
1560 break;
1561 default:
1562 retval = -EINVAL;
1563 break;
1564 }
1565 out_unlock:
1566 mutex_unlock(&cpuset_mutex);
1567 return retval;
1568 }
1569
1570 /*
1571 * Common handling for a write to a "cpus" or "mems" file.
1572 */
1573 static int cpuset_write_resmask(struct cgroup *cgrp, struct cftype *cft,
1574 const char *buf)
1575 {
1576 struct cpuset *cs = cgroup_cs(cgrp);
1577 struct cpuset *trialcs;
1578 int retval = -ENODEV;
1579
1580 /*
1581 * CPU or memory hotunplug may leave @cs w/o any execution
1582 * resources, in which case the hotplug code asynchronously updates
1583 * configuration and transfers all tasks to the nearest ancestor
1584 * which can execute.
1585 *
1586 * As writes to "cpus" or "mems" may restore @cs's execution
1587 * resources, wait for the previously scheduled operations before
1588 * proceeding, so that we don't end up keep removing tasks added
1589 * after execution capability is restored.
1590 *
1591 * Flushing cpuset_hotplug_work is enough to synchronize against
1592 * hotplug hanlding; however, cpuset_attach() may schedule
1593 * propagation work directly. Flush the workqueue too.
1594 */
1595 flush_work(&cpuset_hotplug_work);
1596 flush_workqueue(cpuset_propagate_hotplug_wq);
1597
1598 mutex_lock(&cpuset_mutex);
1599 if (!is_cpuset_online(cs))
1600 goto out_unlock;
1601
1602 trialcs = alloc_trial_cpuset(cs);
1603 if (!trialcs) {
1604 retval = -ENOMEM;
1605 goto out_unlock;
1606 }
1607
1608 switch (cft->private) {
1609 case FILE_CPULIST:
1610 retval = update_cpumask(cs, trialcs, buf);
1611 break;
1612 case FILE_MEMLIST:
1613 retval = update_nodemask(cs, trialcs, buf);
1614 break;
1615 default:
1616 retval = -EINVAL;
1617 break;
1618 }
1619
1620 free_trial_cpuset(trialcs);
1621 out_unlock:
1622 mutex_unlock(&cpuset_mutex);
1623 return retval;
1624 }
1625
1626 /*
1627 * These ascii lists should be read in a single call, by using a user
1628 * buffer large enough to hold the entire map. If read in smaller
1629 * chunks, there is no guarantee of atomicity. Since the display format
1630 * used, list of ranges of sequential numbers, is variable length,
1631 * and since these maps can change value dynamically, one could read
1632 * gibberish by doing partial reads while a list was changing.
1633 * A single large read to a buffer that crosses a page boundary is
1634 * ok, because the result being copied to user land is not recomputed
1635 * across a page fault.
1636 */
1637
1638 static size_t cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
1639 {
1640 size_t count;
1641
1642 mutex_lock(&callback_mutex);
1643 count = cpulist_scnprintf(page, PAGE_SIZE, cs->cpus_allowed);
1644 mutex_unlock(&callback_mutex);
1645
1646 return count;
1647 }
1648
1649 static size_t cpuset_sprintf_memlist(char *page, struct cpuset *cs)
1650 {
1651 size_t count;
1652
1653 mutex_lock(&callback_mutex);
1654 count = nodelist_scnprintf(page, PAGE_SIZE, cs->mems_allowed);
1655 mutex_unlock(&callback_mutex);
1656
1657 return count;
1658 }
1659
1660 static ssize_t cpuset_common_file_read(struct cgroup *cont,
1661 struct cftype *cft,
1662 struct file *file,
1663 char __user *buf,
1664 size_t nbytes, loff_t *ppos)
1665 {
1666 struct cpuset *cs = cgroup_cs(cont);
1667 cpuset_filetype_t type = cft->private;
1668 char *page;
1669 ssize_t retval = 0;
1670 char *s;
1671
1672 if (!(page = (char *)__get_free_page(GFP_TEMPORARY)))
1673 return -ENOMEM;
1674
1675 s = page;
1676
1677 switch (type) {
1678 case FILE_CPULIST:
1679 s += cpuset_sprintf_cpulist(s, cs);
1680 break;
1681 case FILE_MEMLIST:
1682 s += cpuset_sprintf_memlist(s, cs);
1683 break;
1684 default:
1685 retval = -EINVAL;
1686 goto out;
1687 }
1688 *s++ = '\n';
1689
1690 retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
1691 out:
1692 free_page((unsigned long)page);
1693 return retval;
1694 }
1695
1696 static u64 cpuset_read_u64(struct cgroup *cont, struct cftype *cft)
1697 {
1698 struct cpuset *cs = cgroup_cs(cont);
1699 cpuset_filetype_t type = cft->private;
1700 switch (type) {
1701 case FILE_CPU_EXCLUSIVE:
1702 return is_cpu_exclusive(cs);
1703 case FILE_MEM_EXCLUSIVE:
1704 return is_mem_exclusive(cs);
1705 case FILE_MEM_HARDWALL:
1706 return is_mem_hardwall(cs);
1707 case FILE_SCHED_LOAD_BALANCE:
1708 return is_sched_load_balance(cs);
1709 case FILE_MEMORY_MIGRATE:
1710 return is_memory_migrate(cs);
1711 case FILE_MEMORY_PRESSURE_ENABLED:
1712 return cpuset_memory_pressure_enabled;
1713 case FILE_MEMORY_PRESSURE:
1714 return fmeter_getrate(&cs->fmeter);
1715 case FILE_SPREAD_PAGE:
1716 return is_spread_page(cs);
1717 case FILE_SPREAD_SLAB:
1718 return is_spread_slab(cs);
1719 default:
1720 BUG();
1721 }
1722
1723 /* Unreachable but makes gcc happy */
1724 return 0;
1725 }
1726
1727 static s64 cpuset_read_s64(struct cgroup *cont, struct cftype *cft)
1728 {
1729 struct cpuset *cs = cgroup_cs(cont);
1730 cpuset_filetype_t type = cft->private;
1731 switch (type) {
1732 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1733 return cs->relax_domain_level;
1734 default:
1735 BUG();
1736 }
1737
1738 /* Unrechable but makes gcc happy */
1739 return 0;
1740 }
1741
1742
1743 /*
1744 * for the common functions, 'private' gives the type of file
1745 */
1746
1747 static struct cftype files[] = {
1748 {
1749 .name = "cpus",
1750 .read = cpuset_common_file_read,
1751 .write_string = cpuset_write_resmask,
1752 .max_write_len = (100U + 6 * NR_CPUS),
1753 .private = FILE_CPULIST,
1754 },
1755
1756 {
1757 .name = "mems",
1758 .read = cpuset_common_file_read,
1759 .write_string = cpuset_write_resmask,
1760 .max_write_len = (100U + 6 * MAX_NUMNODES),
1761 .private = FILE_MEMLIST,
1762 },
1763
1764 {
1765 .name = "cpu_exclusive",
1766 .read_u64 = cpuset_read_u64,
1767 .write_u64 = cpuset_write_u64,
1768 .private = FILE_CPU_EXCLUSIVE,
1769 },
1770
1771 {
1772 .name = "mem_exclusive",
1773 .read_u64 = cpuset_read_u64,
1774 .write_u64 = cpuset_write_u64,
1775 .private = FILE_MEM_EXCLUSIVE,
1776 },
1777
1778 {
1779 .name = "mem_hardwall",
1780 .read_u64 = cpuset_read_u64,
1781 .write_u64 = cpuset_write_u64,
1782 .private = FILE_MEM_HARDWALL,
1783 },
1784
1785 {
1786 .name = "sched_load_balance",
1787 .read_u64 = cpuset_read_u64,
1788 .write_u64 = cpuset_write_u64,
1789 .private = FILE_SCHED_LOAD_BALANCE,
1790 },
1791
1792 {
1793 .name = "sched_relax_domain_level",
1794 .read_s64 = cpuset_read_s64,
1795 .write_s64 = cpuset_write_s64,
1796 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
1797 },
1798
1799 {
1800 .name = "memory_migrate",
1801 .read_u64 = cpuset_read_u64,
1802 .write_u64 = cpuset_write_u64,
1803 .private = FILE_MEMORY_MIGRATE,
1804 },
1805
1806 {
1807 .name = "memory_pressure",
1808 .read_u64 = cpuset_read_u64,
1809 .write_u64 = cpuset_write_u64,
1810 .private = FILE_MEMORY_PRESSURE,
1811 .mode = S_IRUGO,
1812 },
1813
1814 {
1815 .name = "memory_spread_page",
1816 .read_u64 = cpuset_read_u64,
1817 .write_u64 = cpuset_write_u64,
1818 .private = FILE_SPREAD_PAGE,
1819 },
1820
1821 {
1822 .name = "memory_spread_slab",
1823 .read_u64 = cpuset_read_u64,
1824 .write_u64 = cpuset_write_u64,
1825 .private = FILE_SPREAD_SLAB,
1826 },
1827
1828 {
1829 .name = "memory_pressure_enabled",
1830 .flags = CFTYPE_ONLY_ON_ROOT,
1831 .read_u64 = cpuset_read_u64,
1832 .write_u64 = cpuset_write_u64,
1833 .private = FILE_MEMORY_PRESSURE_ENABLED,
1834 },
1835
1836 { } /* terminate */
1837 };
1838
1839 /*
1840 * cpuset_css_alloc - allocate a cpuset css
1841 * cont: control group that the new cpuset will be part of
1842 */
1843
1844 static struct cgroup_subsys_state *cpuset_css_alloc(struct cgroup *cont)
1845 {
1846 struct cpuset *cs;
1847
1848 if (!cont->parent)
1849 return &top_cpuset.css;
1850
1851 cs = kzalloc(sizeof(*cs), GFP_KERNEL);
1852 if (!cs)
1853 return ERR_PTR(-ENOMEM);
1854 if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL)) {
1855 kfree(cs);
1856 return ERR_PTR(-ENOMEM);
1857 }
1858
1859 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1860 cpumask_clear(cs->cpus_allowed);
1861 nodes_clear(cs->mems_allowed);
1862 fmeter_init(&cs->fmeter);
1863 INIT_WORK(&cs->hotplug_work, cpuset_propagate_hotplug_workfn);
1864 cs->relax_domain_level = -1;
1865
1866 return &cs->css;
1867 }
1868
1869 static int cpuset_css_online(struct cgroup *cgrp)
1870 {
1871 struct cpuset *cs = cgroup_cs(cgrp);
1872 struct cpuset *parent = parent_cs(cs);
1873 struct cpuset *tmp_cs;
1874 struct cgroup *pos_cg;
1875
1876 if (!parent)
1877 return 0;
1878
1879 mutex_lock(&cpuset_mutex);
1880
1881 set_bit(CS_ONLINE, &cs->flags);
1882 if (is_spread_page(parent))
1883 set_bit(CS_SPREAD_PAGE, &cs->flags);
1884 if (is_spread_slab(parent))
1885 set_bit(CS_SPREAD_SLAB, &cs->flags);
1886
1887 number_of_cpusets++;
1888
1889 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags))
1890 goto out_unlock;
1891
1892 /*
1893 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
1894 * set. This flag handling is implemented in cgroup core for
1895 * histrical reasons - the flag may be specified during mount.
1896 *
1897 * Currently, if any sibling cpusets have exclusive cpus or mem, we
1898 * refuse to clone the configuration - thereby refusing the task to
1899 * be entered, and as a result refusing the sys_unshare() or
1900 * clone() which initiated it. If this becomes a problem for some
1901 * users who wish to allow that scenario, then this could be
1902 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
1903 * (and likewise for mems) to the new cgroup.
1904 */
1905 rcu_read_lock();
1906 cpuset_for_each_child(tmp_cs, pos_cg, parent) {
1907 if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
1908 rcu_read_unlock();
1909 goto out_unlock;
1910 }
1911 }
1912 rcu_read_unlock();
1913
1914 mutex_lock(&callback_mutex);
1915 cs->mems_allowed = parent->mems_allowed;
1916 cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
1917 mutex_unlock(&callback_mutex);
1918 out_unlock:
1919 mutex_unlock(&cpuset_mutex);
1920 return 0;
1921 }
1922
1923 static void cpuset_css_offline(struct cgroup *cgrp)
1924 {
1925 struct cpuset *cs = cgroup_cs(cgrp);
1926
1927 mutex_lock(&cpuset_mutex);
1928
1929 if (is_sched_load_balance(cs))
1930 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
1931
1932 number_of_cpusets--;
1933 clear_bit(CS_ONLINE, &cs->flags);
1934
1935 mutex_unlock(&cpuset_mutex);
1936 }
1937
1938 /*
1939 * If the cpuset being removed has its flag 'sched_load_balance'
1940 * enabled, then simulate turning sched_load_balance off, which
1941 * will call rebuild_sched_domains_locked().
1942 */
1943
1944 static void cpuset_css_free(struct cgroup *cont)
1945 {
1946 struct cpuset *cs = cgroup_cs(cont);
1947
1948 free_cpumask_var(cs->cpus_allowed);
1949 kfree(cs);
1950 }
1951
1952 struct cgroup_subsys cpuset_subsys = {
1953 .name = "cpuset",
1954 .css_alloc = cpuset_css_alloc,
1955 .css_online = cpuset_css_online,
1956 .css_offline = cpuset_css_offline,
1957 .css_free = cpuset_css_free,
1958 .can_attach = cpuset_can_attach,
1959 .cancel_attach = cpuset_cancel_attach,
1960 .attach = cpuset_attach,
1961 .subsys_id = cpuset_subsys_id,
1962 .base_cftypes = files,
1963 .early_init = 1,
1964 };
1965
1966 /**
1967 * cpuset_init - initialize cpusets at system boot
1968 *
1969 * Description: Initialize top_cpuset and the cpuset internal file system,
1970 **/
1971
1972 int __init cpuset_init(void)
1973 {
1974 int err = 0;
1975
1976 if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
1977 BUG();
1978
1979 cpumask_setall(top_cpuset.cpus_allowed);
1980 nodes_setall(top_cpuset.mems_allowed);
1981
1982 fmeter_init(&top_cpuset.fmeter);
1983 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
1984 top_cpuset.relax_domain_level = -1;
1985
1986 err = register_filesystem(&cpuset_fs_type);
1987 if (err < 0)
1988 return err;
1989
1990 if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
1991 BUG();
1992
1993 number_of_cpusets = 1;
1994 return 0;
1995 }
1996
1997 /**
1998 * cpuset_do_move_task - move a given task to another cpuset
1999 * @tsk: pointer to task_struct the task to move
2000 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
2001 *
2002 * Called by cgroup_scan_tasks() for each task in a cgroup.
2003 * Return nonzero to stop the walk through the tasks.
2004 */
2005 static void cpuset_do_move_task(struct task_struct *tsk,
2006 struct cgroup_scanner *scan)
2007 {
2008 struct cgroup *new_cgroup = scan->data;
2009
2010 cgroup_lock();
2011 cgroup_attach_task(new_cgroup, tsk, false);
2012 cgroup_unlock();
2013 }
2014
2015 /**
2016 * move_member_tasks_to_cpuset - move tasks from one cpuset to another
2017 * @from: cpuset in which the tasks currently reside
2018 * @to: cpuset to which the tasks will be moved
2019 *
2020 * Called with cpuset_mutex held
2021 * callback_mutex must not be held, as cpuset_attach() will take it.
2022 *
2023 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
2024 * calling callback functions for each.
2025 */
2026 static void move_member_tasks_to_cpuset(struct cpuset *from, struct cpuset *to)
2027 {
2028 struct cgroup_scanner scan;
2029
2030 scan.cg = from->css.cgroup;
2031 scan.test_task = NULL; /* select all tasks in cgroup */
2032 scan.process_task = cpuset_do_move_task;
2033 scan.heap = NULL;
2034 scan.data = to->css.cgroup;
2035
2036 if (cgroup_scan_tasks(&scan))
2037 printk(KERN_ERR "move_member_tasks_to_cpuset: "
2038 "cgroup_scan_tasks failed\n");
2039 }
2040
2041 /*
2042 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
2043 * or memory nodes, we need to walk over the cpuset hierarchy,
2044 * removing that CPU or node from all cpusets. If this removes the
2045 * last CPU or node from a cpuset, then move the tasks in the empty
2046 * cpuset to its next-highest non-empty parent.
2047 */
2048 static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
2049 {
2050 struct cpuset *parent;
2051
2052 /*
2053 * Find its next-highest non-empty parent, (top cpuset
2054 * has online cpus, so can't be empty).
2055 */
2056 parent = parent_cs(cs);
2057 while (cpumask_empty(parent->cpus_allowed) ||
2058 nodes_empty(parent->mems_allowed))
2059 parent = parent_cs(parent);
2060
2061 move_member_tasks_to_cpuset(cs, parent);
2062 }
2063
2064 /**
2065 * cpuset_propagate_hotplug_workfn - propagate CPU/memory hotplug to a cpuset
2066 * @cs: cpuset in interest
2067 *
2068 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
2069 * offline, update @cs accordingly. If @cs ends up with no CPU or memory,
2070 * all its tasks are moved to the nearest ancestor with both resources.
2071 */
2072 static void cpuset_propagate_hotplug_workfn(struct work_struct *work)
2073 {
2074 static cpumask_t off_cpus;
2075 static nodemask_t off_mems, tmp_mems;
2076 struct cpuset *cs = container_of(work, struct cpuset, hotplug_work);
2077 bool is_empty;
2078
2079 mutex_lock(&cpuset_mutex);
2080
2081 cpumask_andnot(&off_cpus, cs->cpus_allowed, top_cpuset.cpus_allowed);
2082 nodes_andnot(off_mems, cs->mems_allowed, top_cpuset.mems_allowed);
2083
2084 /* remove offline cpus from @cs */
2085 if (!cpumask_empty(&off_cpus)) {
2086 mutex_lock(&callback_mutex);
2087 cpumask_andnot(cs->cpus_allowed, cs->cpus_allowed, &off_cpus);
2088 mutex_unlock(&callback_mutex);
2089 update_tasks_cpumask(cs, NULL);
2090 }
2091
2092 /* remove offline mems from @cs */
2093 if (!nodes_empty(off_mems)) {
2094 tmp_mems = cs->mems_allowed;
2095 mutex_lock(&callback_mutex);
2096 nodes_andnot(cs->mems_allowed, cs->mems_allowed, off_mems);
2097 mutex_unlock(&callback_mutex);
2098 update_tasks_nodemask(cs, &tmp_mems, NULL);
2099 }
2100
2101 is_empty = cpumask_empty(cs->cpus_allowed) ||
2102 nodes_empty(cs->mems_allowed);
2103
2104 mutex_unlock(&cpuset_mutex);
2105
2106 /*
2107 * If @cs became empty, move tasks to the nearest ancestor with
2108 * execution resources. This is full cgroup operation which will
2109 * also call back into cpuset. Should be done outside any lock.
2110 */
2111 if (is_empty)
2112 remove_tasks_in_empty_cpuset(cs);
2113
2114 /* the following may free @cs, should be the last operation */
2115 css_put(&cs->css);
2116 }
2117
2118 /**
2119 * schedule_cpuset_propagate_hotplug - schedule hotplug propagation to a cpuset
2120 * @cs: cpuset of interest
2121 *
2122 * Schedule cpuset_propagate_hotplug_workfn() which will update CPU and
2123 * memory masks according to top_cpuset.
2124 */
2125 static void schedule_cpuset_propagate_hotplug(struct cpuset *cs)
2126 {
2127 /*
2128 * Pin @cs. The refcnt will be released when the work item
2129 * finishes executing.
2130 */
2131 if (!css_tryget(&cs->css))
2132 return;
2133
2134 /*
2135 * Queue @cs->hotplug_work. If already pending, lose the css ref.
2136 * cpuset_propagate_hotplug_wq is ordered and propagation will
2137 * happen in the order this function is called.
2138 */
2139 if (!queue_work(cpuset_propagate_hotplug_wq, &cs->hotplug_work))
2140 css_put(&cs->css);
2141 }
2142
2143 /**
2144 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
2145 *
2146 * This function is called after either CPU or memory configuration has
2147 * changed and updates cpuset accordingly. The top_cpuset is always
2148 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
2149 * order to make cpusets transparent (of no affect) on systems that are
2150 * actively using CPU hotplug but making no active use of cpusets.
2151 *
2152 * Non-root cpusets are only affected by offlining. If any CPUs or memory
2153 * nodes have been taken down, cpuset_propagate_hotplug() is invoked on all
2154 * descendants.
2155 *
2156 * Note that CPU offlining during suspend is ignored. We don't modify
2157 * cpusets across suspend/resume cycles at all.
2158 */
2159 static void cpuset_hotplug_workfn(struct work_struct *work)
2160 {
2161 static cpumask_t new_cpus, tmp_cpus;
2162 static nodemask_t new_mems, tmp_mems;
2163 bool cpus_updated, mems_updated;
2164 bool cpus_offlined, mems_offlined;
2165
2166 mutex_lock(&cpuset_mutex);
2167
2168 /* fetch the available cpus/mems and find out which changed how */
2169 cpumask_copy(&new_cpus, cpu_active_mask);
2170 new_mems = node_states[N_MEMORY];
2171
2172 cpus_updated = !cpumask_equal(top_cpuset.cpus_allowed, &new_cpus);
2173 cpus_offlined = cpumask_andnot(&tmp_cpus, top_cpuset.cpus_allowed,
2174 &new_cpus);
2175
2176 mems_updated = !nodes_equal(top_cpuset.mems_allowed, new_mems);
2177 nodes_andnot(tmp_mems, top_cpuset.mems_allowed, new_mems);
2178 mems_offlined = !nodes_empty(tmp_mems);
2179
2180 /* synchronize cpus_allowed to cpu_active_mask */
2181 if (cpus_updated) {
2182 mutex_lock(&callback_mutex);
2183 cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
2184 mutex_unlock(&callback_mutex);
2185 /* we don't mess with cpumasks of tasks in top_cpuset */
2186 }
2187
2188 /* synchronize mems_allowed to N_MEMORY */
2189 if (mems_updated) {
2190 tmp_mems = top_cpuset.mems_allowed;
2191 mutex_lock(&callback_mutex);
2192 top_cpuset.mems_allowed = new_mems;
2193 mutex_unlock(&callback_mutex);
2194 update_tasks_nodemask(&top_cpuset, &tmp_mems, NULL);
2195 }
2196
2197 /* if cpus or mems went down, we need to propagate to descendants */
2198 if (cpus_offlined || mems_offlined) {
2199 struct cpuset *cs;
2200 struct cgroup *pos_cgrp;
2201
2202 rcu_read_lock();
2203 cpuset_for_each_descendant_pre(cs, pos_cgrp, &top_cpuset)
2204 schedule_cpuset_propagate_hotplug(cs);
2205 rcu_read_unlock();
2206 }
2207
2208 mutex_unlock(&cpuset_mutex);
2209
2210 /* wait for propagations to finish */
2211 flush_workqueue(cpuset_propagate_hotplug_wq);
2212
2213 /* rebuild sched domains if cpus_allowed has changed */
2214 if (cpus_updated) {
2215 struct sched_domain_attr *attr;
2216 cpumask_var_t *doms;
2217 int ndoms;
2218
2219 mutex_lock(&cpuset_mutex);
2220 ndoms = generate_sched_domains(&doms, &attr);
2221 mutex_unlock(&cpuset_mutex);
2222
2223 partition_sched_domains(ndoms, doms, attr);
2224 }
2225 }
2226
2227 void cpuset_update_active_cpus(bool cpu_online)
2228 {
2229 /*
2230 * We're inside cpu hotplug critical region which usually nests
2231 * inside cgroup synchronization. Bounce actual hotplug processing
2232 * to a work item to avoid reverse locking order.
2233 *
2234 * We still need to do partition_sched_domains() synchronously;
2235 * otherwise, the scheduler will get confused and put tasks to the
2236 * dead CPU. Fall back to the default single domain.
2237 * cpuset_hotplug_workfn() will rebuild it as necessary.
2238 */
2239 partition_sched_domains(1, NULL, NULL);
2240 schedule_work(&cpuset_hotplug_work);
2241 }
2242
2243 #ifdef CONFIG_MEMORY_HOTPLUG
2244 /*
2245 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
2246 * Call this routine anytime after node_states[N_MEMORY] changes.
2247 * See cpuset_update_active_cpus() for CPU hotplug handling.
2248 */
2249 static int cpuset_track_online_nodes(struct notifier_block *self,
2250 unsigned long action, void *arg)
2251 {
2252 schedule_work(&cpuset_hotplug_work);
2253 return NOTIFY_OK;
2254 }
2255 #endif
2256
2257 /**
2258 * cpuset_init_smp - initialize cpus_allowed
2259 *
2260 * Description: Finish top cpuset after cpu, node maps are initialized
2261 **/
2262
2263 void __init cpuset_init_smp(void)
2264 {
2265 cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
2266 top_cpuset.mems_allowed = node_states[N_MEMORY];
2267
2268 hotplug_memory_notifier(cpuset_track_online_nodes, 10);
2269
2270 cpuset_propagate_hotplug_wq =
2271 alloc_ordered_workqueue("cpuset_hotplug", 0);
2272 BUG_ON(!cpuset_propagate_hotplug_wq);
2273 }
2274
2275 /**
2276 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2277 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
2278 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
2279 *
2280 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
2281 * attached to the specified @tsk. Guaranteed to return some non-empty
2282 * subset of cpu_online_mask, even if this means going outside the
2283 * tasks cpuset.
2284 **/
2285
2286 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
2287 {
2288 mutex_lock(&callback_mutex);
2289 task_lock(tsk);
2290 guarantee_online_cpus(task_cs(tsk), pmask);
2291 task_unlock(tsk);
2292 mutex_unlock(&callback_mutex);
2293 }
2294
2295 void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
2296 {
2297 const struct cpuset *cs;
2298
2299 rcu_read_lock();
2300 cs = task_cs(tsk);
2301 if (cs)
2302 do_set_cpus_allowed(tsk, cs->cpus_allowed);
2303 rcu_read_unlock();
2304
2305 /*
2306 * We own tsk->cpus_allowed, nobody can change it under us.
2307 *
2308 * But we used cs && cs->cpus_allowed lockless and thus can
2309 * race with cgroup_attach_task() or update_cpumask() and get
2310 * the wrong tsk->cpus_allowed. However, both cases imply the
2311 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
2312 * which takes task_rq_lock().
2313 *
2314 * If we are called after it dropped the lock we must see all
2315 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
2316 * set any mask even if it is not right from task_cs() pov,
2317 * the pending set_cpus_allowed_ptr() will fix things.
2318 *
2319 * select_fallback_rq() will fix things ups and set cpu_possible_mask
2320 * if required.
2321 */
2322 }
2323
2324 void cpuset_init_current_mems_allowed(void)
2325 {
2326 nodes_setall(current->mems_allowed);
2327 }
2328
2329 /**
2330 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2331 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2332 *
2333 * Description: Returns the nodemask_t mems_allowed of the cpuset
2334 * attached to the specified @tsk. Guaranteed to return some non-empty
2335 * subset of node_states[N_MEMORY], even if this means going outside the
2336 * tasks cpuset.
2337 **/
2338
2339 nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
2340 {
2341 nodemask_t mask;
2342
2343 mutex_lock(&callback_mutex);
2344 task_lock(tsk);
2345 guarantee_online_mems(task_cs(tsk), &mask);
2346 task_unlock(tsk);
2347 mutex_unlock(&callback_mutex);
2348
2349 return mask;
2350 }
2351
2352 /**
2353 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
2354 * @nodemask: the nodemask to be checked
2355 *
2356 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
2357 */
2358 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
2359 {
2360 return nodes_intersects(*nodemask, current->mems_allowed);
2361 }
2362
2363 /*
2364 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2365 * mem_hardwall ancestor to the specified cpuset. Call holding
2366 * callback_mutex. If no ancestor is mem_exclusive or mem_hardwall
2367 * (an unusual configuration), then returns the root cpuset.
2368 */
2369 static const struct cpuset *nearest_hardwall_ancestor(const struct cpuset *cs)
2370 {
2371 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
2372 cs = parent_cs(cs);
2373 return cs;
2374 }
2375
2376 /**
2377 * cpuset_node_allowed_softwall - Can we allocate on a memory node?
2378 * @node: is this an allowed node?
2379 * @gfp_mask: memory allocation flags
2380 *
2381 * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
2382 * set, yes, we can always allocate. If node is in our task's mems_allowed,
2383 * yes. If it's not a __GFP_HARDWALL request and this node is in the nearest
2384 * hardwalled cpuset ancestor to this task's cpuset, yes. If the task has been
2385 * OOM killed and has access to memory reserves as specified by the TIF_MEMDIE
2386 * flag, yes.
2387 * Otherwise, no.
2388 *
2389 * If __GFP_HARDWALL is set, cpuset_node_allowed_softwall() reduces to
2390 * cpuset_node_allowed_hardwall(). Otherwise, cpuset_node_allowed_softwall()
2391 * might sleep, and might allow a node from an enclosing cpuset.
2392 *
2393 * cpuset_node_allowed_hardwall() only handles the simpler case of hardwall
2394 * cpusets, and never sleeps.
2395 *
2396 * The __GFP_THISNODE placement logic is really handled elsewhere,
2397 * by forcibly using a zonelist starting at a specified node, and by
2398 * (in get_page_from_freelist()) refusing to consider the zones for
2399 * any node on the zonelist except the first. By the time any such
2400 * calls get to this routine, we should just shut up and say 'yes'.
2401 *
2402 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
2403 * and do not allow allocations outside the current tasks cpuset
2404 * unless the task has been OOM killed as is marked TIF_MEMDIE.
2405 * GFP_KERNEL allocations are not so marked, so can escape to the
2406 * nearest enclosing hardwalled ancestor cpuset.
2407 *
2408 * Scanning up parent cpusets requires callback_mutex. The
2409 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2410 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2411 * current tasks mems_allowed came up empty on the first pass over
2412 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
2413 * cpuset are short of memory, might require taking the callback_mutex
2414 * mutex.
2415 *
2416 * The first call here from mm/page_alloc:get_page_from_freelist()
2417 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2418 * so no allocation on a node outside the cpuset is allowed (unless
2419 * in interrupt, of course).
2420 *
2421 * The second pass through get_page_from_freelist() doesn't even call
2422 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
2423 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2424 * in alloc_flags. That logic and the checks below have the combined
2425 * affect that:
2426 * in_interrupt - any node ok (current task context irrelevant)
2427 * GFP_ATOMIC - any node ok
2428 * TIF_MEMDIE - any node ok
2429 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
2430 * GFP_USER - only nodes in current tasks mems allowed ok.
2431 *
2432 * Rule:
2433 * Don't call cpuset_node_allowed_softwall if you can't sleep, unless you
2434 * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
2435 * the code that might scan up ancestor cpusets and sleep.
2436 */
2437 int __cpuset_node_allowed_softwall(int node, gfp_t gfp_mask)
2438 {
2439 const struct cpuset *cs; /* current cpuset ancestors */
2440 int allowed; /* is allocation in zone z allowed? */
2441
2442 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2443 return 1;
2444 might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
2445 if (node_isset(node, current->mems_allowed))
2446 return 1;
2447 /*
2448 * Allow tasks that have access to memory reserves because they have
2449 * been OOM killed to get memory anywhere.
2450 */
2451 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2452 return 1;
2453 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
2454 return 0;
2455
2456 if (current->flags & PF_EXITING) /* Let dying task have memory */
2457 return 1;
2458
2459 /* Not hardwall and node outside mems_allowed: scan up cpusets */
2460 mutex_lock(&callback_mutex);
2461
2462 task_lock(current);
2463 cs = nearest_hardwall_ancestor(task_cs(current));
2464 task_unlock(current);
2465
2466 allowed = node_isset(node, cs->mems_allowed);
2467 mutex_unlock(&callback_mutex);
2468 return allowed;
2469 }
2470
2471 /*
2472 * cpuset_node_allowed_hardwall - Can we allocate on a memory node?
2473 * @node: is this an allowed node?
2474 * @gfp_mask: memory allocation flags
2475 *
2476 * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
2477 * set, yes, we can always allocate. If node is in our task's mems_allowed,
2478 * yes. If the task has been OOM killed and has access to memory reserves as
2479 * specified by the TIF_MEMDIE flag, yes.
2480 * Otherwise, no.
2481 *
2482 * The __GFP_THISNODE placement logic is really handled elsewhere,
2483 * by forcibly using a zonelist starting at a specified node, and by
2484 * (in get_page_from_freelist()) refusing to consider the zones for
2485 * any node on the zonelist except the first. By the time any such
2486 * calls get to this routine, we should just shut up and say 'yes'.
2487 *
2488 * Unlike the cpuset_node_allowed_softwall() variant, above,
2489 * this variant requires that the node be in the current task's
2490 * mems_allowed or that we're in interrupt. It does not scan up the
2491 * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
2492 * It never sleeps.
2493 */
2494 int __cpuset_node_allowed_hardwall(int node, gfp_t gfp_mask)
2495 {
2496 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2497 return 1;
2498 if (node_isset(node, current->mems_allowed))
2499 return 1;
2500 /*
2501 * Allow tasks that have access to memory reserves because they have
2502 * been OOM killed to get memory anywhere.
2503 */
2504 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2505 return 1;
2506 return 0;
2507 }
2508
2509 /**
2510 * cpuset_mem_spread_node() - On which node to begin search for a file page
2511 * cpuset_slab_spread_node() - On which node to begin search for a slab page
2512 *
2513 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2514 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2515 * and if the memory allocation used cpuset_mem_spread_node()
2516 * to determine on which node to start looking, as it will for
2517 * certain page cache or slab cache pages such as used for file
2518 * system buffers and inode caches, then instead of starting on the
2519 * local node to look for a free page, rather spread the starting
2520 * node around the tasks mems_allowed nodes.
2521 *
2522 * We don't have to worry about the returned node being offline
2523 * because "it can't happen", and even if it did, it would be ok.
2524 *
2525 * The routines calling guarantee_online_mems() are careful to
2526 * only set nodes in task->mems_allowed that are online. So it
2527 * should not be possible for the following code to return an
2528 * offline node. But if it did, that would be ok, as this routine
2529 * is not returning the node where the allocation must be, only
2530 * the node where the search should start. The zonelist passed to
2531 * __alloc_pages() will include all nodes. If the slab allocator
2532 * is passed an offline node, it will fall back to the local node.
2533 * See kmem_cache_alloc_node().
2534 */
2535
2536 static int cpuset_spread_node(int *rotor)
2537 {
2538 int node;
2539
2540 node = next_node(*rotor, current->mems_allowed);
2541 if (node == MAX_NUMNODES)
2542 node = first_node(current->mems_allowed);
2543 *rotor = node;
2544 return node;
2545 }
2546
2547 int cpuset_mem_spread_node(void)
2548 {
2549 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
2550 current->cpuset_mem_spread_rotor =
2551 node_random(&current->mems_allowed);
2552
2553 return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
2554 }
2555
2556 int cpuset_slab_spread_node(void)
2557 {
2558 if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
2559 current->cpuset_slab_spread_rotor =
2560 node_random(&current->mems_allowed);
2561
2562 return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
2563 }
2564
2565 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
2566
2567 /**
2568 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2569 * @tsk1: pointer to task_struct of some task.
2570 * @tsk2: pointer to task_struct of some other task.
2571 *
2572 * Description: Return true if @tsk1's mems_allowed intersects the
2573 * mems_allowed of @tsk2. Used by the OOM killer to determine if
2574 * one of the task's memory usage might impact the memory available
2575 * to the other.
2576 **/
2577
2578 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
2579 const struct task_struct *tsk2)
2580 {
2581 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
2582 }
2583
2584 #define CPUSET_NODELIST_LEN (256)
2585
2586 /**
2587 * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
2588 * @task: pointer to task_struct of some task.
2589 *
2590 * Description: Prints @task's name, cpuset name, and cached copy of its
2591 * mems_allowed to the kernel log. Must hold task_lock(task) to allow
2592 * dereferencing task_cs(task).
2593 */
2594 void cpuset_print_task_mems_allowed(struct task_struct *tsk)
2595 {
2596 /* Statically allocated to prevent using excess stack. */
2597 static char cpuset_nodelist[CPUSET_NODELIST_LEN];
2598 static DEFINE_SPINLOCK(cpuset_buffer_lock);
2599
2600 struct cgroup *cgrp = task_cs(tsk)->css.cgroup;
2601
2602 rcu_read_lock();
2603 spin_lock(&cpuset_buffer_lock);
2604
2605 nodelist_scnprintf(cpuset_nodelist, CPUSET_NODELIST_LEN,
2606 tsk->mems_allowed);
2607 printk(KERN_INFO "%s cpuset=%s mems_allowed=%s\n",
2608 tsk->comm, cgroup_name(cgrp), cpuset_nodelist);
2609
2610 spin_unlock(&cpuset_buffer_lock);
2611 rcu_read_unlock();
2612 }
2613
2614 /*
2615 * Collection of memory_pressure is suppressed unless
2616 * this flag is enabled by writing "1" to the special
2617 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2618 */
2619
2620 int cpuset_memory_pressure_enabled __read_mostly;
2621
2622 /**
2623 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2624 *
2625 * Keep a running average of the rate of synchronous (direct)
2626 * page reclaim efforts initiated by tasks in each cpuset.
2627 *
2628 * This represents the rate at which some task in the cpuset
2629 * ran low on memory on all nodes it was allowed to use, and
2630 * had to enter the kernels page reclaim code in an effort to
2631 * create more free memory by tossing clean pages or swapping
2632 * or writing dirty pages.
2633 *
2634 * Display to user space in the per-cpuset read-only file
2635 * "memory_pressure". Value displayed is an integer
2636 * representing the recent rate of entry into the synchronous
2637 * (direct) page reclaim by any task attached to the cpuset.
2638 **/
2639
2640 void __cpuset_memory_pressure_bump(void)
2641 {
2642 task_lock(current);
2643 fmeter_markevent(&task_cs(current)->fmeter);
2644 task_unlock(current);
2645 }
2646
2647 #ifdef CONFIG_PROC_PID_CPUSET
2648 /*
2649 * proc_cpuset_show()
2650 * - Print tasks cpuset path into seq_file.
2651 * - Used for /proc/<pid>/cpuset.
2652 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2653 * doesn't really matter if tsk->cpuset changes after we read it,
2654 * and we take cpuset_mutex, keeping cpuset_attach() from changing it
2655 * anyway.
2656 */
2657 static int proc_cpuset_show(struct seq_file *m, void *unused_v)
2658 {
2659 struct pid *pid;
2660 struct task_struct *tsk;
2661 char *buf;
2662 struct cgroup_subsys_state *css;
2663 int retval;
2664
2665 retval = -ENOMEM;
2666 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2667 if (!buf)
2668 goto out;
2669
2670 retval = -ESRCH;
2671 pid = m->private;
2672 tsk = get_pid_task(pid, PIDTYPE_PID);
2673 if (!tsk)
2674 goto out_free;
2675
2676 rcu_read_lock();
2677 css = task_subsys_state(tsk, cpuset_subsys_id);
2678 retval = cgroup_path(css->cgroup, buf, PAGE_SIZE);
2679 rcu_read_unlock();
2680 if (retval < 0)
2681 goto out_put_task;
2682 seq_puts(m, buf);
2683 seq_putc(m, '\n');
2684 out_put_task:
2685 put_task_struct(tsk);
2686 out_free:
2687 kfree(buf);
2688 out:
2689 return retval;
2690 }
2691
2692 static int cpuset_open(struct inode *inode, struct file *file)
2693 {
2694 struct pid *pid = PROC_I(inode)->pid;
2695 return single_open(file, proc_cpuset_show, pid);
2696 }
2697
2698 const struct file_operations proc_cpuset_operations = {
2699 .open = cpuset_open,
2700 .read = seq_read,
2701 .llseek = seq_lseek,
2702 .release = single_release,
2703 };
2704 #endif /* CONFIG_PROC_PID_CPUSET */
2705
2706 /* Display task mems_allowed in /proc/<pid>/status file. */
2707 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
2708 {
2709 seq_printf(m, "Mems_allowed:\t");
2710 seq_nodemask(m, &task->mems_allowed);
2711 seq_printf(m, "\n");
2712 seq_printf(m, "Mems_allowed_list:\t");
2713 seq_nodemask_list(m, &task->mems_allowed);
2714 seq_printf(m, "\n");
2715 }
This page took 0.093241 seconds and 5 git commands to generate.