cgroup: drop @skip_css from cgroup_taskset_for_each()
[deliverable/linux.git] / kernel / cpuset.c
1 /*
2 * kernel/cpuset.c
3 *
4 * Processor and Memory placement constraints for sets of tasks.
5 *
6 * Copyright (C) 2003 BULL SA.
7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8 * Copyright (C) 2006 Google, Inc
9 *
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
12 *
13 * 2003-10-10 Written by Simon Derr.
14 * 2003-10-22 Updates by Stephen Hemminger.
15 * 2004 May-July Rework by Paul Jackson.
16 * 2006 Rework by Paul Menage to use generic cgroups
17 * 2008 Rework of the scheduler domains and CPU hotplug handling
18 * by Max Krasnyansky
19 *
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
23 */
24
25 #include <linux/cpu.h>
26 #include <linux/cpumask.h>
27 #include <linux/cpuset.h>
28 #include <linux/err.h>
29 #include <linux/errno.h>
30 #include <linux/file.h>
31 #include <linux/fs.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/kernel.h>
35 #include <linux/kmod.h>
36 #include <linux/list.h>
37 #include <linux/mempolicy.h>
38 #include <linux/mm.h>
39 #include <linux/memory.h>
40 #include <linux/export.h>
41 #include <linux/mount.h>
42 #include <linux/namei.h>
43 #include <linux/pagemap.h>
44 #include <linux/proc_fs.h>
45 #include <linux/rcupdate.h>
46 #include <linux/sched.h>
47 #include <linux/seq_file.h>
48 #include <linux/security.h>
49 #include <linux/slab.h>
50 #include <linux/spinlock.h>
51 #include <linux/stat.h>
52 #include <linux/string.h>
53 #include <linux/time.h>
54 #include <linux/backing-dev.h>
55 #include <linux/sort.h>
56
57 #include <asm/uaccess.h>
58 #include <linux/atomic.h>
59 #include <linux/mutex.h>
60 #include <linux/workqueue.h>
61 #include <linux/cgroup.h>
62 #include <linux/wait.h>
63
64 /*
65 * Tracks how many cpusets are currently defined in system.
66 * When there is only one cpuset (the root cpuset) we can
67 * short circuit some hooks.
68 */
69 int number_of_cpusets __read_mostly;
70
71 /* See "Frequency meter" comments, below. */
72
73 struct fmeter {
74 int cnt; /* unprocessed events count */
75 int val; /* most recent output value */
76 time_t time; /* clock (secs) when val computed */
77 spinlock_t lock; /* guards read or write of above */
78 };
79
80 struct cpuset {
81 struct cgroup_subsys_state css;
82
83 unsigned long flags; /* "unsigned long" so bitops work */
84 cpumask_var_t cpus_allowed; /* CPUs allowed to tasks in cpuset */
85 nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */
86
87 /*
88 * This is old Memory Nodes tasks took on.
89 *
90 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
91 * - A new cpuset's old_mems_allowed is initialized when some
92 * task is moved into it.
93 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
94 * cpuset.mems_allowed and have tasks' nodemask updated, and
95 * then old_mems_allowed is updated to mems_allowed.
96 */
97 nodemask_t old_mems_allowed;
98
99 struct fmeter fmeter; /* memory_pressure filter */
100
101 /*
102 * Tasks are being attached to this cpuset. Used to prevent
103 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
104 */
105 int attach_in_progress;
106
107 /* partition number for rebuild_sched_domains() */
108 int pn;
109
110 /* for custom sched domain */
111 int relax_domain_level;
112 };
113
114 static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
115 {
116 return css ? container_of(css, struct cpuset, css) : NULL;
117 }
118
119 /* Retrieve the cpuset for a task */
120 static inline struct cpuset *task_cs(struct task_struct *task)
121 {
122 return css_cs(task_css(task, cpuset_cgrp_id));
123 }
124
125 static inline struct cpuset *parent_cs(struct cpuset *cs)
126 {
127 return css_cs(css_parent(&cs->css));
128 }
129
130 #ifdef CONFIG_NUMA
131 static inline bool task_has_mempolicy(struct task_struct *task)
132 {
133 return task->mempolicy;
134 }
135 #else
136 static inline bool task_has_mempolicy(struct task_struct *task)
137 {
138 return false;
139 }
140 #endif
141
142
143 /* bits in struct cpuset flags field */
144 typedef enum {
145 CS_ONLINE,
146 CS_CPU_EXCLUSIVE,
147 CS_MEM_EXCLUSIVE,
148 CS_MEM_HARDWALL,
149 CS_MEMORY_MIGRATE,
150 CS_SCHED_LOAD_BALANCE,
151 CS_SPREAD_PAGE,
152 CS_SPREAD_SLAB,
153 } cpuset_flagbits_t;
154
155 /* convenient tests for these bits */
156 static inline bool is_cpuset_online(const struct cpuset *cs)
157 {
158 return test_bit(CS_ONLINE, &cs->flags);
159 }
160
161 static inline int is_cpu_exclusive(const struct cpuset *cs)
162 {
163 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
164 }
165
166 static inline int is_mem_exclusive(const struct cpuset *cs)
167 {
168 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
169 }
170
171 static inline int is_mem_hardwall(const struct cpuset *cs)
172 {
173 return test_bit(CS_MEM_HARDWALL, &cs->flags);
174 }
175
176 static inline int is_sched_load_balance(const struct cpuset *cs)
177 {
178 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
179 }
180
181 static inline int is_memory_migrate(const struct cpuset *cs)
182 {
183 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
184 }
185
186 static inline int is_spread_page(const struct cpuset *cs)
187 {
188 return test_bit(CS_SPREAD_PAGE, &cs->flags);
189 }
190
191 static inline int is_spread_slab(const struct cpuset *cs)
192 {
193 return test_bit(CS_SPREAD_SLAB, &cs->flags);
194 }
195
196 static struct cpuset top_cpuset = {
197 .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
198 (1 << CS_MEM_EXCLUSIVE)),
199 };
200
201 /**
202 * cpuset_for_each_child - traverse online children of a cpuset
203 * @child_cs: loop cursor pointing to the current child
204 * @pos_css: used for iteration
205 * @parent_cs: target cpuset to walk children of
206 *
207 * Walk @child_cs through the online children of @parent_cs. Must be used
208 * with RCU read locked.
209 */
210 #define cpuset_for_each_child(child_cs, pos_css, parent_cs) \
211 css_for_each_child((pos_css), &(parent_cs)->css) \
212 if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
213
214 /**
215 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
216 * @des_cs: loop cursor pointing to the current descendant
217 * @pos_css: used for iteration
218 * @root_cs: target cpuset to walk ancestor of
219 *
220 * Walk @des_cs through the online descendants of @root_cs. Must be used
221 * with RCU read locked. The caller may modify @pos_css by calling
222 * css_rightmost_descendant() to skip subtree. @root_cs is included in the
223 * iteration and the first node to be visited.
224 */
225 #define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs) \
226 css_for_each_descendant_pre((pos_css), &(root_cs)->css) \
227 if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
228
229 /*
230 * There are two global mutexes guarding cpuset structures - cpuset_mutex
231 * and callback_mutex. The latter may nest inside the former. We also
232 * require taking task_lock() when dereferencing a task's cpuset pointer.
233 * See "The task_lock() exception", at the end of this comment.
234 *
235 * A task must hold both mutexes to modify cpusets. If a task holds
236 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
237 * is the only task able to also acquire callback_mutex and be able to
238 * modify cpusets. It can perform various checks on the cpuset structure
239 * first, knowing nothing will change. It can also allocate memory while
240 * just holding cpuset_mutex. While it is performing these checks, various
241 * callback routines can briefly acquire callback_mutex to query cpusets.
242 * Once it is ready to make the changes, it takes callback_mutex, blocking
243 * everyone else.
244 *
245 * Calls to the kernel memory allocator can not be made while holding
246 * callback_mutex, as that would risk double tripping on callback_mutex
247 * from one of the callbacks into the cpuset code from within
248 * __alloc_pages().
249 *
250 * If a task is only holding callback_mutex, then it has read-only
251 * access to cpusets.
252 *
253 * Now, the task_struct fields mems_allowed and mempolicy may be changed
254 * by other task, we use alloc_lock in the task_struct fields to protect
255 * them.
256 *
257 * The cpuset_common_file_read() handlers only hold callback_mutex across
258 * small pieces of code, such as when reading out possibly multi-word
259 * cpumasks and nodemasks.
260 *
261 * Accessing a task's cpuset should be done in accordance with the
262 * guidelines for accessing subsystem state in kernel/cgroup.c
263 */
264
265 static DEFINE_MUTEX(cpuset_mutex);
266 static DEFINE_MUTEX(callback_mutex);
267
268 /*
269 * CPU / memory hotplug is handled asynchronously.
270 */
271 static void cpuset_hotplug_workfn(struct work_struct *work);
272 static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
273
274 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
275
276 /*
277 * This is ugly, but preserves the userspace API for existing cpuset
278 * users. If someone tries to mount the "cpuset" filesystem, we
279 * silently switch it to mount "cgroup" instead
280 */
281 static struct dentry *cpuset_mount(struct file_system_type *fs_type,
282 int flags, const char *unused_dev_name, void *data)
283 {
284 struct file_system_type *cgroup_fs = get_fs_type("cgroup");
285 struct dentry *ret = ERR_PTR(-ENODEV);
286 if (cgroup_fs) {
287 char mountopts[] =
288 "cpuset,noprefix,"
289 "release_agent=/sbin/cpuset_release_agent";
290 ret = cgroup_fs->mount(cgroup_fs, flags,
291 unused_dev_name, mountopts);
292 put_filesystem(cgroup_fs);
293 }
294 return ret;
295 }
296
297 static struct file_system_type cpuset_fs_type = {
298 .name = "cpuset",
299 .mount = cpuset_mount,
300 };
301
302 /*
303 * Return in pmask the portion of a cpusets's cpus_allowed that
304 * are online. If none are online, walk up the cpuset hierarchy
305 * until we find one that does have some online cpus. The top
306 * cpuset always has some cpus online.
307 *
308 * One way or another, we guarantee to return some non-empty subset
309 * of cpu_online_mask.
310 *
311 * Call with callback_mutex held.
312 */
313 static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask)
314 {
315 while (!cpumask_intersects(cs->cpus_allowed, cpu_online_mask))
316 cs = parent_cs(cs);
317 cpumask_and(pmask, cs->cpus_allowed, cpu_online_mask);
318 }
319
320 /*
321 * Return in *pmask the portion of a cpusets's mems_allowed that
322 * are online, with memory. If none are online with memory, walk
323 * up the cpuset hierarchy until we find one that does have some
324 * online mems. The top cpuset always has some mems online.
325 *
326 * One way or another, we guarantee to return some non-empty subset
327 * of node_states[N_MEMORY].
328 *
329 * Call with callback_mutex held.
330 */
331 static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
332 {
333 while (!nodes_intersects(cs->mems_allowed, node_states[N_MEMORY]))
334 cs = parent_cs(cs);
335 nodes_and(*pmask, cs->mems_allowed, node_states[N_MEMORY]);
336 }
337
338 /*
339 * update task's spread flag if cpuset's page/slab spread flag is set
340 *
341 * Called with callback_mutex/cpuset_mutex held
342 */
343 static void cpuset_update_task_spread_flag(struct cpuset *cs,
344 struct task_struct *tsk)
345 {
346 if (is_spread_page(cs))
347 tsk->flags |= PF_SPREAD_PAGE;
348 else
349 tsk->flags &= ~PF_SPREAD_PAGE;
350 if (is_spread_slab(cs))
351 tsk->flags |= PF_SPREAD_SLAB;
352 else
353 tsk->flags &= ~PF_SPREAD_SLAB;
354 }
355
356 /*
357 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
358 *
359 * One cpuset is a subset of another if all its allowed CPUs and
360 * Memory Nodes are a subset of the other, and its exclusive flags
361 * are only set if the other's are set. Call holding cpuset_mutex.
362 */
363
364 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
365 {
366 return cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
367 nodes_subset(p->mems_allowed, q->mems_allowed) &&
368 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
369 is_mem_exclusive(p) <= is_mem_exclusive(q);
370 }
371
372 /**
373 * alloc_trial_cpuset - allocate a trial cpuset
374 * @cs: the cpuset that the trial cpuset duplicates
375 */
376 static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
377 {
378 struct cpuset *trial;
379
380 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
381 if (!trial)
382 return NULL;
383
384 if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL)) {
385 kfree(trial);
386 return NULL;
387 }
388 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
389
390 return trial;
391 }
392
393 /**
394 * free_trial_cpuset - free the trial cpuset
395 * @trial: the trial cpuset to be freed
396 */
397 static void free_trial_cpuset(struct cpuset *trial)
398 {
399 free_cpumask_var(trial->cpus_allowed);
400 kfree(trial);
401 }
402
403 /*
404 * validate_change() - Used to validate that any proposed cpuset change
405 * follows the structural rules for cpusets.
406 *
407 * If we replaced the flag and mask values of the current cpuset
408 * (cur) with those values in the trial cpuset (trial), would
409 * our various subset and exclusive rules still be valid? Presumes
410 * cpuset_mutex held.
411 *
412 * 'cur' is the address of an actual, in-use cpuset. Operations
413 * such as list traversal that depend on the actual address of the
414 * cpuset in the list must use cur below, not trial.
415 *
416 * 'trial' is the address of bulk structure copy of cur, with
417 * perhaps one or more of the fields cpus_allowed, mems_allowed,
418 * or flags changed to new, trial values.
419 *
420 * Return 0 if valid, -errno if not.
421 */
422
423 static int validate_change(struct cpuset *cur, struct cpuset *trial)
424 {
425 struct cgroup_subsys_state *css;
426 struct cpuset *c, *par;
427 int ret;
428
429 rcu_read_lock();
430
431 /* Each of our child cpusets must be a subset of us */
432 ret = -EBUSY;
433 cpuset_for_each_child(c, css, cur)
434 if (!is_cpuset_subset(c, trial))
435 goto out;
436
437 /* Remaining checks don't apply to root cpuset */
438 ret = 0;
439 if (cur == &top_cpuset)
440 goto out;
441
442 par = parent_cs(cur);
443
444 /* We must be a subset of our parent cpuset */
445 ret = -EACCES;
446 if (!is_cpuset_subset(trial, par))
447 goto out;
448
449 /*
450 * If either I or some sibling (!= me) is exclusive, we can't
451 * overlap
452 */
453 ret = -EINVAL;
454 cpuset_for_each_child(c, css, par) {
455 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
456 c != cur &&
457 cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
458 goto out;
459 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
460 c != cur &&
461 nodes_intersects(trial->mems_allowed, c->mems_allowed))
462 goto out;
463 }
464
465 /*
466 * Cpusets with tasks - existing or newly being attached - can't
467 * be changed to have empty cpus_allowed or mems_allowed.
468 */
469 ret = -ENOSPC;
470 if ((cgroup_has_tasks(cur->css.cgroup) || cur->attach_in_progress)) {
471 if (!cpumask_empty(cur->cpus_allowed) &&
472 cpumask_empty(trial->cpus_allowed))
473 goto out;
474 if (!nodes_empty(cur->mems_allowed) &&
475 nodes_empty(trial->mems_allowed))
476 goto out;
477 }
478
479 ret = 0;
480 out:
481 rcu_read_unlock();
482 return ret;
483 }
484
485 #ifdef CONFIG_SMP
486 /*
487 * Helper routine for generate_sched_domains().
488 * Do cpusets a, b have overlapping cpus_allowed masks?
489 */
490 static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
491 {
492 return cpumask_intersects(a->cpus_allowed, b->cpus_allowed);
493 }
494
495 static void
496 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
497 {
498 if (dattr->relax_domain_level < c->relax_domain_level)
499 dattr->relax_domain_level = c->relax_domain_level;
500 return;
501 }
502
503 static void update_domain_attr_tree(struct sched_domain_attr *dattr,
504 struct cpuset *root_cs)
505 {
506 struct cpuset *cp;
507 struct cgroup_subsys_state *pos_css;
508
509 rcu_read_lock();
510 cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
511 if (cp == root_cs)
512 continue;
513
514 /* skip the whole subtree if @cp doesn't have any CPU */
515 if (cpumask_empty(cp->cpus_allowed)) {
516 pos_css = css_rightmost_descendant(pos_css);
517 continue;
518 }
519
520 if (is_sched_load_balance(cp))
521 update_domain_attr(dattr, cp);
522 }
523 rcu_read_unlock();
524 }
525
526 /*
527 * generate_sched_domains()
528 *
529 * This function builds a partial partition of the systems CPUs
530 * A 'partial partition' is a set of non-overlapping subsets whose
531 * union is a subset of that set.
532 * The output of this function needs to be passed to kernel/sched/core.c
533 * partition_sched_domains() routine, which will rebuild the scheduler's
534 * load balancing domains (sched domains) as specified by that partial
535 * partition.
536 *
537 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
538 * for a background explanation of this.
539 *
540 * Does not return errors, on the theory that the callers of this
541 * routine would rather not worry about failures to rebuild sched
542 * domains when operating in the severe memory shortage situations
543 * that could cause allocation failures below.
544 *
545 * Must be called with cpuset_mutex held.
546 *
547 * The three key local variables below are:
548 * q - a linked-list queue of cpuset pointers, used to implement a
549 * top-down scan of all cpusets. This scan loads a pointer
550 * to each cpuset marked is_sched_load_balance into the
551 * array 'csa'. For our purposes, rebuilding the schedulers
552 * sched domains, we can ignore !is_sched_load_balance cpusets.
553 * csa - (for CpuSet Array) Array of pointers to all the cpusets
554 * that need to be load balanced, for convenient iterative
555 * access by the subsequent code that finds the best partition,
556 * i.e the set of domains (subsets) of CPUs such that the
557 * cpus_allowed of every cpuset marked is_sched_load_balance
558 * is a subset of one of these domains, while there are as
559 * many such domains as possible, each as small as possible.
560 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
561 * the kernel/sched/core.c routine partition_sched_domains() in a
562 * convenient format, that can be easily compared to the prior
563 * value to determine what partition elements (sched domains)
564 * were changed (added or removed.)
565 *
566 * Finding the best partition (set of domains):
567 * The triple nested loops below over i, j, k scan over the
568 * load balanced cpusets (using the array of cpuset pointers in
569 * csa[]) looking for pairs of cpusets that have overlapping
570 * cpus_allowed, but which don't have the same 'pn' partition
571 * number and gives them in the same partition number. It keeps
572 * looping on the 'restart' label until it can no longer find
573 * any such pairs.
574 *
575 * The union of the cpus_allowed masks from the set of
576 * all cpusets having the same 'pn' value then form the one
577 * element of the partition (one sched domain) to be passed to
578 * partition_sched_domains().
579 */
580 static int generate_sched_domains(cpumask_var_t **domains,
581 struct sched_domain_attr **attributes)
582 {
583 struct cpuset *cp; /* scans q */
584 struct cpuset **csa; /* array of all cpuset ptrs */
585 int csn; /* how many cpuset ptrs in csa so far */
586 int i, j, k; /* indices for partition finding loops */
587 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */
588 struct sched_domain_attr *dattr; /* attributes for custom domains */
589 int ndoms = 0; /* number of sched domains in result */
590 int nslot; /* next empty doms[] struct cpumask slot */
591 struct cgroup_subsys_state *pos_css;
592
593 doms = NULL;
594 dattr = NULL;
595 csa = NULL;
596
597 /* Special case for the 99% of systems with one, full, sched domain */
598 if (is_sched_load_balance(&top_cpuset)) {
599 ndoms = 1;
600 doms = alloc_sched_domains(ndoms);
601 if (!doms)
602 goto done;
603
604 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
605 if (dattr) {
606 *dattr = SD_ATTR_INIT;
607 update_domain_attr_tree(dattr, &top_cpuset);
608 }
609 cpumask_copy(doms[0], top_cpuset.cpus_allowed);
610
611 goto done;
612 }
613
614 csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
615 if (!csa)
616 goto done;
617 csn = 0;
618
619 rcu_read_lock();
620 cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
621 if (cp == &top_cpuset)
622 continue;
623 /*
624 * Continue traversing beyond @cp iff @cp has some CPUs and
625 * isn't load balancing. The former is obvious. The
626 * latter: All child cpusets contain a subset of the
627 * parent's cpus, so just skip them, and then we call
628 * update_domain_attr_tree() to calc relax_domain_level of
629 * the corresponding sched domain.
630 */
631 if (!cpumask_empty(cp->cpus_allowed) &&
632 !is_sched_load_balance(cp))
633 continue;
634
635 if (is_sched_load_balance(cp))
636 csa[csn++] = cp;
637
638 /* skip @cp's subtree */
639 pos_css = css_rightmost_descendant(pos_css);
640 }
641 rcu_read_unlock();
642
643 for (i = 0; i < csn; i++)
644 csa[i]->pn = i;
645 ndoms = csn;
646
647 restart:
648 /* Find the best partition (set of sched domains) */
649 for (i = 0; i < csn; i++) {
650 struct cpuset *a = csa[i];
651 int apn = a->pn;
652
653 for (j = 0; j < csn; j++) {
654 struct cpuset *b = csa[j];
655 int bpn = b->pn;
656
657 if (apn != bpn && cpusets_overlap(a, b)) {
658 for (k = 0; k < csn; k++) {
659 struct cpuset *c = csa[k];
660
661 if (c->pn == bpn)
662 c->pn = apn;
663 }
664 ndoms--; /* one less element */
665 goto restart;
666 }
667 }
668 }
669
670 /*
671 * Now we know how many domains to create.
672 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
673 */
674 doms = alloc_sched_domains(ndoms);
675 if (!doms)
676 goto done;
677
678 /*
679 * The rest of the code, including the scheduler, can deal with
680 * dattr==NULL case. No need to abort if alloc fails.
681 */
682 dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
683
684 for (nslot = 0, i = 0; i < csn; i++) {
685 struct cpuset *a = csa[i];
686 struct cpumask *dp;
687 int apn = a->pn;
688
689 if (apn < 0) {
690 /* Skip completed partitions */
691 continue;
692 }
693
694 dp = doms[nslot];
695
696 if (nslot == ndoms) {
697 static int warnings = 10;
698 if (warnings) {
699 printk(KERN_WARNING
700 "rebuild_sched_domains confused:"
701 " nslot %d, ndoms %d, csn %d, i %d,"
702 " apn %d\n",
703 nslot, ndoms, csn, i, apn);
704 warnings--;
705 }
706 continue;
707 }
708
709 cpumask_clear(dp);
710 if (dattr)
711 *(dattr + nslot) = SD_ATTR_INIT;
712 for (j = i; j < csn; j++) {
713 struct cpuset *b = csa[j];
714
715 if (apn == b->pn) {
716 cpumask_or(dp, dp, b->cpus_allowed);
717 if (dattr)
718 update_domain_attr_tree(dattr + nslot, b);
719
720 /* Done with this partition */
721 b->pn = -1;
722 }
723 }
724 nslot++;
725 }
726 BUG_ON(nslot != ndoms);
727
728 done:
729 kfree(csa);
730
731 /*
732 * Fallback to the default domain if kmalloc() failed.
733 * See comments in partition_sched_domains().
734 */
735 if (doms == NULL)
736 ndoms = 1;
737
738 *domains = doms;
739 *attributes = dattr;
740 return ndoms;
741 }
742
743 /*
744 * Rebuild scheduler domains.
745 *
746 * If the flag 'sched_load_balance' of any cpuset with non-empty
747 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
748 * which has that flag enabled, or if any cpuset with a non-empty
749 * 'cpus' is removed, then call this routine to rebuild the
750 * scheduler's dynamic sched domains.
751 *
752 * Call with cpuset_mutex held. Takes get_online_cpus().
753 */
754 static void rebuild_sched_domains_locked(void)
755 {
756 struct sched_domain_attr *attr;
757 cpumask_var_t *doms;
758 int ndoms;
759
760 lockdep_assert_held(&cpuset_mutex);
761 get_online_cpus();
762
763 /*
764 * We have raced with CPU hotplug. Don't do anything to avoid
765 * passing doms with offlined cpu to partition_sched_domains().
766 * Anyways, hotplug work item will rebuild sched domains.
767 */
768 if (!cpumask_equal(top_cpuset.cpus_allowed, cpu_active_mask))
769 goto out;
770
771 /* Generate domain masks and attrs */
772 ndoms = generate_sched_domains(&doms, &attr);
773
774 /* Have scheduler rebuild the domains */
775 partition_sched_domains(ndoms, doms, attr);
776 out:
777 put_online_cpus();
778 }
779 #else /* !CONFIG_SMP */
780 static void rebuild_sched_domains_locked(void)
781 {
782 }
783 #endif /* CONFIG_SMP */
784
785 void rebuild_sched_domains(void)
786 {
787 mutex_lock(&cpuset_mutex);
788 rebuild_sched_domains_locked();
789 mutex_unlock(&cpuset_mutex);
790 }
791
792 /*
793 * effective_cpumask_cpuset - return nearest ancestor with non-empty cpus
794 * @cs: the cpuset in interest
795 *
796 * A cpuset's effective cpumask is the cpumask of the nearest ancestor
797 * with non-empty cpus. We use effective cpumask whenever:
798 * - we update tasks' cpus_allowed. (they take on the ancestor's cpumask
799 * if the cpuset they reside in has no cpus)
800 * - we want to retrieve task_cs(tsk)'s cpus_allowed.
801 *
802 * Called with cpuset_mutex held. cpuset_cpus_allowed_fallback() is an
803 * exception. See comments there.
804 */
805 static struct cpuset *effective_cpumask_cpuset(struct cpuset *cs)
806 {
807 while (cpumask_empty(cs->cpus_allowed))
808 cs = parent_cs(cs);
809 return cs;
810 }
811
812 /*
813 * effective_nodemask_cpuset - return nearest ancestor with non-empty mems
814 * @cs: the cpuset in interest
815 *
816 * A cpuset's effective nodemask is the nodemask of the nearest ancestor
817 * with non-empty memss. We use effective nodemask whenever:
818 * - we update tasks' mems_allowed. (they take on the ancestor's nodemask
819 * if the cpuset they reside in has no mems)
820 * - we want to retrieve task_cs(tsk)'s mems_allowed.
821 *
822 * Called with cpuset_mutex held.
823 */
824 static struct cpuset *effective_nodemask_cpuset(struct cpuset *cs)
825 {
826 while (nodes_empty(cs->mems_allowed))
827 cs = parent_cs(cs);
828 return cs;
829 }
830
831 /**
832 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
833 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
834 *
835 * Iterate through each task of @cs updating its cpus_allowed to the
836 * effective cpuset's. As this function is called with cpuset_mutex held,
837 * cpuset membership stays stable.
838 */
839 static void update_tasks_cpumask(struct cpuset *cs)
840 {
841 struct cpuset *cpus_cs = effective_cpumask_cpuset(cs);
842 struct css_task_iter it;
843 struct task_struct *task;
844
845 css_task_iter_start(&cs->css, &it);
846 while ((task = css_task_iter_next(&it)))
847 set_cpus_allowed_ptr(task, cpus_cs->cpus_allowed);
848 css_task_iter_end(&it);
849 }
850
851 /*
852 * update_tasks_cpumask_hier - Update the cpumasks of tasks in the hierarchy.
853 * @root_cs: the root cpuset of the hierarchy
854 * @update_root: update root cpuset or not?
855 *
856 * This will update cpumasks of tasks in @root_cs and all other empty cpusets
857 * which take on cpumask of @root_cs.
858 *
859 * Called with cpuset_mutex held
860 */
861 static void update_tasks_cpumask_hier(struct cpuset *root_cs, bool update_root)
862 {
863 struct cpuset *cp;
864 struct cgroup_subsys_state *pos_css;
865
866 rcu_read_lock();
867 cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
868 if (cp == root_cs) {
869 if (!update_root)
870 continue;
871 } else {
872 /* skip the whole subtree if @cp have some CPU */
873 if (!cpumask_empty(cp->cpus_allowed)) {
874 pos_css = css_rightmost_descendant(pos_css);
875 continue;
876 }
877 }
878 if (!css_tryget(&cp->css))
879 continue;
880 rcu_read_unlock();
881
882 update_tasks_cpumask(cp);
883
884 rcu_read_lock();
885 css_put(&cp->css);
886 }
887 rcu_read_unlock();
888 }
889
890 /**
891 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
892 * @cs: the cpuset to consider
893 * @buf: buffer of cpu numbers written to this cpuset
894 */
895 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
896 const char *buf)
897 {
898 int retval;
899 int is_load_balanced;
900
901 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
902 if (cs == &top_cpuset)
903 return -EACCES;
904
905 /*
906 * An empty cpus_allowed is ok only if the cpuset has no tasks.
907 * Since cpulist_parse() fails on an empty mask, we special case
908 * that parsing. The validate_change() call ensures that cpusets
909 * with tasks have cpus.
910 */
911 if (!*buf) {
912 cpumask_clear(trialcs->cpus_allowed);
913 } else {
914 retval = cpulist_parse(buf, trialcs->cpus_allowed);
915 if (retval < 0)
916 return retval;
917
918 if (!cpumask_subset(trialcs->cpus_allowed, cpu_active_mask))
919 return -EINVAL;
920 }
921
922 /* Nothing to do if the cpus didn't change */
923 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
924 return 0;
925
926 retval = validate_change(cs, trialcs);
927 if (retval < 0)
928 return retval;
929
930 is_load_balanced = is_sched_load_balance(trialcs);
931
932 mutex_lock(&callback_mutex);
933 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
934 mutex_unlock(&callback_mutex);
935
936 update_tasks_cpumask_hier(cs, true);
937
938 if (is_load_balanced)
939 rebuild_sched_domains_locked();
940 return 0;
941 }
942
943 /*
944 * cpuset_migrate_mm
945 *
946 * Migrate memory region from one set of nodes to another.
947 *
948 * Temporarilly set tasks mems_allowed to target nodes of migration,
949 * so that the migration code can allocate pages on these nodes.
950 *
951 * Call holding cpuset_mutex, so current's cpuset won't change
952 * during this call, as manage_mutex holds off any cpuset_attach()
953 * calls. Therefore we don't need to take task_lock around the
954 * call to guarantee_online_mems(), as we know no one is changing
955 * our task's cpuset.
956 *
957 * While the mm_struct we are migrating is typically from some
958 * other task, the task_struct mems_allowed that we are hacking
959 * is for our current task, which must allocate new pages for that
960 * migrating memory region.
961 */
962
963 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
964 const nodemask_t *to)
965 {
966 struct task_struct *tsk = current;
967 struct cpuset *mems_cs;
968
969 tsk->mems_allowed = *to;
970
971 do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
972
973 mems_cs = effective_nodemask_cpuset(task_cs(tsk));
974 guarantee_online_mems(mems_cs, &tsk->mems_allowed);
975 }
976
977 /*
978 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
979 * @tsk: the task to change
980 * @newmems: new nodes that the task will be set
981 *
982 * In order to avoid seeing no nodes if the old and new nodes are disjoint,
983 * we structure updates as setting all new allowed nodes, then clearing newly
984 * disallowed ones.
985 */
986 static void cpuset_change_task_nodemask(struct task_struct *tsk,
987 nodemask_t *newmems)
988 {
989 bool need_loop;
990
991 /*
992 * Allow tasks that have access to memory reserves because they have
993 * been OOM killed to get memory anywhere.
994 */
995 if (unlikely(test_thread_flag(TIF_MEMDIE)))
996 return;
997 if (current->flags & PF_EXITING) /* Let dying task have memory */
998 return;
999
1000 task_lock(tsk);
1001 /*
1002 * Determine if a loop is necessary if another thread is doing
1003 * get_mems_allowed(). If at least one node remains unchanged and
1004 * tsk does not have a mempolicy, then an empty nodemask will not be
1005 * possible when mems_allowed is larger than a word.
1006 */
1007 need_loop = task_has_mempolicy(tsk) ||
1008 !nodes_intersects(*newmems, tsk->mems_allowed);
1009
1010 if (need_loop) {
1011 local_irq_disable();
1012 write_seqcount_begin(&tsk->mems_allowed_seq);
1013 }
1014
1015 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
1016 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);
1017
1018 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);
1019 tsk->mems_allowed = *newmems;
1020
1021 if (need_loop) {
1022 write_seqcount_end(&tsk->mems_allowed_seq);
1023 local_irq_enable();
1024 }
1025
1026 task_unlock(tsk);
1027 }
1028
1029 static void *cpuset_being_rebound;
1030
1031 /**
1032 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1033 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1034 *
1035 * Iterate through each task of @cs updating its mems_allowed to the
1036 * effective cpuset's. As this function is called with cpuset_mutex held,
1037 * cpuset membership stays stable.
1038 */
1039 static void update_tasks_nodemask(struct cpuset *cs)
1040 {
1041 static nodemask_t newmems; /* protected by cpuset_mutex */
1042 struct cpuset *mems_cs = effective_nodemask_cpuset(cs);
1043 struct css_task_iter it;
1044 struct task_struct *task;
1045
1046 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
1047
1048 guarantee_online_mems(mems_cs, &newmems);
1049
1050 /*
1051 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
1052 * take while holding tasklist_lock. Forks can happen - the
1053 * mpol_dup() cpuset_being_rebound check will catch such forks,
1054 * and rebind their vma mempolicies too. Because we still hold
1055 * the global cpuset_mutex, we know that no other rebind effort
1056 * will be contending for the global variable cpuset_being_rebound.
1057 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1058 * is idempotent. Also migrate pages in each mm to new nodes.
1059 */
1060 css_task_iter_start(&cs->css, &it);
1061 while ((task = css_task_iter_next(&it))) {
1062 struct mm_struct *mm;
1063 bool migrate;
1064
1065 cpuset_change_task_nodemask(task, &newmems);
1066
1067 mm = get_task_mm(task);
1068 if (!mm)
1069 continue;
1070
1071 migrate = is_memory_migrate(cs);
1072
1073 mpol_rebind_mm(mm, &cs->mems_allowed);
1074 if (migrate)
1075 cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
1076 mmput(mm);
1077 }
1078 css_task_iter_end(&it);
1079
1080 /*
1081 * All the tasks' nodemasks have been updated, update
1082 * cs->old_mems_allowed.
1083 */
1084 cs->old_mems_allowed = newmems;
1085
1086 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
1087 cpuset_being_rebound = NULL;
1088 }
1089
1090 /*
1091 * update_tasks_nodemask_hier - Update the nodemasks of tasks in the hierarchy.
1092 * @cs: the root cpuset of the hierarchy
1093 * @update_root: update the root cpuset or not?
1094 *
1095 * This will update nodemasks of tasks in @root_cs and all other empty cpusets
1096 * which take on nodemask of @root_cs.
1097 *
1098 * Called with cpuset_mutex held
1099 */
1100 static void update_tasks_nodemask_hier(struct cpuset *root_cs, bool update_root)
1101 {
1102 struct cpuset *cp;
1103 struct cgroup_subsys_state *pos_css;
1104
1105 rcu_read_lock();
1106 cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
1107 if (cp == root_cs) {
1108 if (!update_root)
1109 continue;
1110 } else {
1111 /* skip the whole subtree if @cp have some CPU */
1112 if (!nodes_empty(cp->mems_allowed)) {
1113 pos_css = css_rightmost_descendant(pos_css);
1114 continue;
1115 }
1116 }
1117 if (!css_tryget(&cp->css))
1118 continue;
1119 rcu_read_unlock();
1120
1121 update_tasks_nodemask(cp);
1122
1123 rcu_read_lock();
1124 css_put(&cp->css);
1125 }
1126 rcu_read_unlock();
1127 }
1128
1129 /*
1130 * Handle user request to change the 'mems' memory placement
1131 * of a cpuset. Needs to validate the request, update the
1132 * cpusets mems_allowed, and for each task in the cpuset,
1133 * update mems_allowed and rebind task's mempolicy and any vma
1134 * mempolicies and if the cpuset is marked 'memory_migrate',
1135 * migrate the tasks pages to the new memory.
1136 *
1137 * Call with cpuset_mutex held. May take callback_mutex during call.
1138 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1139 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1140 * their mempolicies to the cpusets new mems_allowed.
1141 */
1142 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1143 const char *buf)
1144 {
1145 int retval;
1146
1147 /*
1148 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
1149 * it's read-only
1150 */
1151 if (cs == &top_cpuset) {
1152 retval = -EACCES;
1153 goto done;
1154 }
1155
1156 /*
1157 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1158 * Since nodelist_parse() fails on an empty mask, we special case
1159 * that parsing. The validate_change() call ensures that cpusets
1160 * with tasks have memory.
1161 */
1162 if (!*buf) {
1163 nodes_clear(trialcs->mems_allowed);
1164 } else {
1165 retval = nodelist_parse(buf, trialcs->mems_allowed);
1166 if (retval < 0)
1167 goto done;
1168
1169 if (!nodes_subset(trialcs->mems_allowed,
1170 node_states[N_MEMORY])) {
1171 retval = -EINVAL;
1172 goto done;
1173 }
1174 }
1175
1176 if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
1177 retval = 0; /* Too easy - nothing to do */
1178 goto done;
1179 }
1180 retval = validate_change(cs, trialcs);
1181 if (retval < 0)
1182 goto done;
1183
1184 mutex_lock(&callback_mutex);
1185 cs->mems_allowed = trialcs->mems_allowed;
1186 mutex_unlock(&callback_mutex);
1187
1188 update_tasks_nodemask_hier(cs, true);
1189 done:
1190 return retval;
1191 }
1192
1193 int current_cpuset_is_being_rebound(void)
1194 {
1195 return task_cs(current) == cpuset_being_rebound;
1196 }
1197
1198 static int update_relax_domain_level(struct cpuset *cs, s64 val)
1199 {
1200 #ifdef CONFIG_SMP
1201 if (val < -1 || val >= sched_domain_level_max)
1202 return -EINVAL;
1203 #endif
1204
1205 if (val != cs->relax_domain_level) {
1206 cs->relax_domain_level = val;
1207 if (!cpumask_empty(cs->cpus_allowed) &&
1208 is_sched_load_balance(cs))
1209 rebuild_sched_domains_locked();
1210 }
1211
1212 return 0;
1213 }
1214
1215 /**
1216 * update_tasks_flags - update the spread flags of tasks in the cpuset.
1217 * @cs: the cpuset in which each task's spread flags needs to be changed
1218 *
1219 * Iterate through each task of @cs updating its spread flags. As this
1220 * function is called with cpuset_mutex held, cpuset membership stays
1221 * stable.
1222 */
1223 static void update_tasks_flags(struct cpuset *cs)
1224 {
1225 struct css_task_iter it;
1226 struct task_struct *task;
1227
1228 css_task_iter_start(&cs->css, &it);
1229 while ((task = css_task_iter_next(&it)))
1230 cpuset_update_task_spread_flag(cs, task);
1231 css_task_iter_end(&it);
1232 }
1233
1234 /*
1235 * update_flag - read a 0 or a 1 in a file and update associated flag
1236 * bit: the bit to update (see cpuset_flagbits_t)
1237 * cs: the cpuset to update
1238 * turning_on: whether the flag is being set or cleared
1239 *
1240 * Call with cpuset_mutex held.
1241 */
1242
1243 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1244 int turning_on)
1245 {
1246 struct cpuset *trialcs;
1247 int balance_flag_changed;
1248 int spread_flag_changed;
1249 int err;
1250
1251 trialcs = alloc_trial_cpuset(cs);
1252 if (!trialcs)
1253 return -ENOMEM;
1254
1255 if (turning_on)
1256 set_bit(bit, &trialcs->flags);
1257 else
1258 clear_bit(bit, &trialcs->flags);
1259
1260 err = validate_change(cs, trialcs);
1261 if (err < 0)
1262 goto out;
1263
1264 balance_flag_changed = (is_sched_load_balance(cs) !=
1265 is_sched_load_balance(trialcs));
1266
1267 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1268 || (is_spread_page(cs) != is_spread_page(trialcs)));
1269
1270 mutex_lock(&callback_mutex);
1271 cs->flags = trialcs->flags;
1272 mutex_unlock(&callback_mutex);
1273
1274 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1275 rebuild_sched_domains_locked();
1276
1277 if (spread_flag_changed)
1278 update_tasks_flags(cs);
1279 out:
1280 free_trial_cpuset(trialcs);
1281 return err;
1282 }
1283
1284 /*
1285 * Frequency meter - How fast is some event occurring?
1286 *
1287 * These routines manage a digitally filtered, constant time based,
1288 * event frequency meter. There are four routines:
1289 * fmeter_init() - initialize a frequency meter.
1290 * fmeter_markevent() - called each time the event happens.
1291 * fmeter_getrate() - returns the recent rate of such events.
1292 * fmeter_update() - internal routine used to update fmeter.
1293 *
1294 * A common data structure is passed to each of these routines,
1295 * which is used to keep track of the state required to manage the
1296 * frequency meter and its digital filter.
1297 *
1298 * The filter works on the number of events marked per unit time.
1299 * The filter is single-pole low-pass recursive (IIR). The time unit
1300 * is 1 second. Arithmetic is done using 32-bit integers scaled to
1301 * simulate 3 decimal digits of precision (multiplied by 1000).
1302 *
1303 * With an FM_COEF of 933, and a time base of 1 second, the filter
1304 * has a half-life of 10 seconds, meaning that if the events quit
1305 * happening, then the rate returned from the fmeter_getrate()
1306 * will be cut in half each 10 seconds, until it converges to zero.
1307 *
1308 * It is not worth doing a real infinitely recursive filter. If more
1309 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1310 * just compute FM_MAXTICKS ticks worth, by which point the level
1311 * will be stable.
1312 *
1313 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1314 * arithmetic overflow in the fmeter_update() routine.
1315 *
1316 * Given the simple 32 bit integer arithmetic used, this meter works
1317 * best for reporting rates between one per millisecond (msec) and
1318 * one per 32 (approx) seconds. At constant rates faster than one
1319 * per msec it maxes out at values just under 1,000,000. At constant
1320 * rates between one per msec, and one per second it will stabilize
1321 * to a value N*1000, where N is the rate of events per second.
1322 * At constant rates between one per second and one per 32 seconds,
1323 * it will be choppy, moving up on the seconds that have an event,
1324 * and then decaying until the next event. At rates slower than
1325 * about one in 32 seconds, it decays all the way back to zero between
1326 * each event.
1327 */
1328
1329 #define FM_COEF 933 /* coefficient for half-life of 10 secs */
1330 #define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
1331 #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
1332 #define FM_SCALE 1000 /* faux fixed point scale */
1333
1334 /* Initialize a frequency meter */
1335 static void fmeter_init(struct fmeter *fmp)
1336 {
1337 fmp->cnt = 0;
1338 fmp->val = 0;
1339 fmp->time = 0;
1340 spin_lock_init(&fmp->lock);
1341 }
1342
1343 /* Internal meter update - process cnt events and update value */
1344 static void fmeter_update(struct fmeter *fmp)
1345 {
1346 time_t now = get_seconds();
1347 time_t ticks = now - fmp->time;
1348
1349 if (ticks == 0)
1350 return;
1351
1352 ticks = min(FM_MAXTICKS, ticks);
1353 while (ticks-- > 0)
1354 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1355 fmp->time = now;
1356
1357 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1358 fmp->cnt = 0;
1359 }
1360
1361 /* Process any previous ticks, then bump cnt by one (times scale). */
1362 static void fmeter_markevent(struct fmeter *fmp)
1363 {
1364 spin_lock(&fmp->lock);
1365 fmeter_update(fmp);
1366 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1367 spin_unlock(&fmp->lock);
1368 }
1369
1370 /* Process any previous ticks, then return current value. */
1371 static int fmeter_getrate(struct fmeter *fmp)
1372 {
1373 int val;
1374
1375 spin_lock(&fmp->lock);
1376 fmeter_update(fmp);
1377 val = fmp->val;
1378 spin_unlock(&fmp->lock);
1379 return val;
1380 }
1381
1382 /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
1383 static int cpuset_can_attach(struct cgroup_subsys_state *css,
1384 struct cgroup_taskset *tset)
1385 {
1386 struct cpuset *cs = css_cs(css);
1387 struct task_struct *task;
1388 int ret;
1389
1390 mutex_lock(&cpuset_mutex);
1391
1392 /*
1393 * We allow to move tasks into an empty cpuset if sane_behavior
1394 * flag is set.
1395 */
1396 ret = -ENOSPC;
1397 if (!cgroup_sane_behavior(css->cgroup) &&
1398 (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
1399 goto out_unlock;
1400
1401 cgroup_taskset_for_each(task, tset) {
1402 /*
1403 * Kthreads which disallow setaffinity shouldn't be moved
1404 * to a new cpuset; we don't want to change their cpu
1405 * affinity and isolating such threads by their set of
1406 * allowed nodes is unnecessary. Thus, cpusets are not
1407 * applicable for such threads. This prevents checking for
1408 * success of set_cpus_allowed_ptr() on all attached tasks
1409 * before cpus_allowed may be changed.
1410 */
1411 ret = -EINVAL;
1412 if (task->flags & PF_NO_SETAFFINITY)
1413 goto out_unlock;
1414 ret = security_task_setscheduler(task);
1415 if (ret)
1416 goto out_unlock;
1417 }
1418
1419 /*
1420 * Mark attach is in progress. This makes validate_change() fail
1421 * changes which zero cpus/mems_allowed.
1422 */
1423 cs->attach_in_progress++;
1424 ret = 0;
1425 out_unlock:
1426 mutex_unlock(&cpuset_mutex);
1427 return ret;
1428 }
1429
1430 static void cpuset_cancel_attach(struct cgroup_subsys_state *css,
1431 struct cgroup_taskset *tset)
1432 {
1433 mutex_lock(&cpuset_mutex);
1434 css_cs(css)->attach_in_progress--;
1435 mutex_unlock(&cpuset_mutex);
1436 }
1437
1438 /*
1439 * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach()
1440 * but we can't allocate it dynamically there. Define it global and
1441 * allocate from cpuset_init().
1442 */
1443 static cpumask_var_t cpus_attach;
1444
1445 static void cpuset_attach(struct cgroup_subsys_state *css,
1446 struct cgroup_taskset *tset)
1447 {
1448 /* static buf protected by cpuset_mutex */
1449 static nodemask_t cpuset_attach_nodemask_to;
1450 struct mm_struct *mm;
1451 struct task_struct *task;
1452 struct task_struct *leader = cgroup_taskset_first(tset);
1453 struct cgroup_subsys_state *oldcss = cgroup_taskset_cur_css(tset,
1454 cpuset_cgrp_id);
1455 struct cpuset *cs = css_cs(css);
1456 struct cpuset *oldcs = css_cs(oldcss);
1457 struct cpuset *cpus_cs = effective_cpumask_cpuset(cs);
1458 struct cpuset *mems_cs = effective_nodemask_cpuset(cs);
1459
1460 mutex_lock(&cpuset_mutex);
1461
1462 /* prepare for attach */
1463 if (cs == &top_cpuset)
1464 cpumask_copy(cpus_attach, cpu_possible_mask);
1465 else
1466 guarantee_online_cpus(cpus_cs, cpus_attach);
1467
1468 guarantee_online_mems(mems_cs, &cpuset_attach_nodemask_to);
1469
1470 cgroup_taskset_for_each(task, tset) {
1471 /*
1472 * can_attach beforehand should guarantee that this doesn't
1473 * fail. TODO: have a better way to handle failure here
1474 */
1475 WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
1476
1477 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
1478 cpuset_update_task_spread_flag(cs, task);
1479 }
1480
1481 /*
1482 * Change mm, possibly for multiple threads in a threadgroup. This is
1483 * expensive and may sleep.
1484 */
1485 cpuset_attach_nodemask_to = cs->mems_allowed;
1486 mm = get_task_mm(leader);
1487 if (mm) {
1488 struct cpuset *mems_oldcs = effective_nodemask_cpuset(oldcs);
1489
1490 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
1491
1492 /*
1493 * old_mems_allowed is the same with mems_allowed here, except
1494 * if this task is being moved automatically due to hotplug.
1495 * In that case @mems_allowed has been updated and is empty,
1496 * so @old_mems_allowed is the right nodesets that we migrate
1497 * mm from.
1498 */
1499 if (is_memory_migrate(cs)) {
1500 cpuset_migrate_mm(mm, &mems_oldcs->old_mems_allowed,
1501 &cpuset_attach_nodemask_to);
1502 }
1503 mmput(mm);
1504 }
1505
1506 cs->old_mems_allowed = cpuset_attach_nodemask_to;
1507
1508 cs->attach_in_progress--;
1509 if (!cs->attach_in_progress)
1510 wake_up(&cpuset_attach_wq);
1511
1512 mutex_unlock(&cpuset_mutex);
1513 }
1514
1515 /* The various types of files and directories in a cpuset file system */
1516
1517 typedef enum {
1518 FILE_MEMORY_MIGRATE,
1519 FILE_CPULIST,
1520 FILE_MEMLIST,
1521 FILE_CPU_EXCLUSIVE,
1522 FILE_MEM_EXCLUSIVE,
1523 FILE_MEM_HARDWALL,
1524 FILE_SCHED_LOAD_BALANCE,
1525 FILE_SCHED_RELAX_DOMAIN_LEVEL,
1526 FILE_MEMORY_PRESSURE_ENABLED,
1527 FILE_MEMORY_PRESSURE,
1528 FILE_SPREAD_PAGE,
1529 FILE_SPREAD_SLAB,
1530 } cpuset_filetype_t;
1531
1532 static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
1533 u64 val)
1534 {
1535 struct cpuset *cs = css_cs(css);
1536 cpuset_filetype_t type = cft->private;
1537 int retval = 0;
1538
1539 mutex_lock(&cpuset_mutex);
1540 if (!is_cpuset_online(cs)) {
1541 retval = -ENODEV;
1542 goto out_unlock;
1543 }
1544
1545 switch (type) {
1546 case FILE_CPU_EXCLUSIVE:
1547 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
1548 break;
1549 case FILE_MEM_EXCLUSIVE:
1550 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
1551 break;
1552 case FILE_MEM_HARDWALL:
1553 retval = update_flag(CS_MEM_HARDWALL, cs, val);
1554 break;
1555 case FILE_SCHED_LOAD_BALANCE:
1556 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1557 break;
1558 case FILE_MEMORY_MIGRATE:
1559 retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
1560 break;
1561 case FILE_MEMORY_PRESSURE_ENABLED:
1562 cpuset_memory_pressure_enabled = !!val;
1563 break;
1564 case FILE_MEMORY_PRESSURE:
1565 retval = -EACCES;
1566 break;
1567 case FILE_SPREAD_PAGE:
1568 retval = update_flag(CS_SPREAD_PAGE, cs, val);
1569 break;
1570 case FILE_SPREAD_SLAB:
1571 retval = update_flag(CS_SPREAD_SLAB, cs, val);
1572 break;
1573 default:
1574 retval = -EINVAL;
1575 break;
1576 }
1577 out_unlock:
1578 mutex_unlock(&cpuset_mutex);
1579 return retval;
1580 }
1581
1582 static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
1583 s64 val)
1584 {
1585 struct cpuset *cs = css_cs(css);
1586 cpuset_filetype_t type = cft->private;
1587 int retval = -ENODEV;
1588
1589 mutex_lock(&cpuset_mutex);
1590 if (!is_cpuset_online(cs))
1591 goto out_unlock;
1592
1593 switch (type) {
1594 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1595 retval = update_relax_domain_level(cs, val);
1596 break;
1597 default:
1598 retval = -EINVAL;
1599 break;
1600 }
1601 out_unlock:
1602 mutex_unlock(&cpuset_mutex);
1603 return retval;
1604 }
1605
1606 /*
1607 * Common handling for a write to a "cpus" or "mems" file.
1608 */
1609 static int cpuset_write_resmask(struct cgroup_subsys_state *css,
1610 struct cftype *cft, const char *buf)
1611 {
1612 struct cpuset *cs = css_cs(css);
1613 struct cpuset *trialcs;
1614 int retval = -ENODEV;
1615
1616 /*
1617 * CPU or memory hotunplug may leave @cs w/o any execution
1618 * resources, in which case the hotplug code asynchronously updates
1619 * configuration and transfers all tasks to the nearest ancestor
1620 * which can execute.
1621 *
1622 * As writes to "cpus" or "mems" may restore @cs's execution
1623 * resources, wait for the previously scheduled operations before
1624 * proceeding, so that we don't end up keep removing tasks added
1625 * after execution capability is restored.
1626 */
1627 flush_work(&cpuset_hotplug_work);
1628
1629 mutex_lock(&cpuset_mutex);
1630 if (!is_cpuset_online(cs))
1631 goto out_unlock;
1632
1633 trialcs = alloc_trial_cpuset(cs);
1634 if (!trialcs) {
1635 retval = -ENOMEM;
1636 goto out_unlock;
1637 }
1638
1639 switch (cft->private) {
1640 case FILE_CPULIST:
1641 retval = update_cpumask(cs, trialcs, buf);
1642 break;
1643 case FILE_MEMLIST:
1644 retval = update_nodemask(cs, trialcs, buf);
1645 break;
1646 default:
1647 retval = -EINVAL;
1648 break;
1649 }
1650
1651 free_trial_cpuset(trialcs);
1652 out_unlock:
1653 mutex_unlock(&cpuset_mutex);
1654 return retval;
1655 }
1656
1657 /*
1658 * These ascii lists should be read in a single call, by using a user
1659 * buffer large enough to hold the entire map. If read in smaller
1660 * chunks, there is no guarantee of atomicity. Since the display format
1661 * used, list of ranges of sequential numbers, is variable length,
1662 * and since these maps can change value dynamically, one could read
1663 * gibberish by doing partial reads while a list was changing.
1664 */
1665 static int cpuset_common_seq_show(struct seq_file *sf, void *v)
1666 {
1667 struct cpuset *cs = css_cs(seq_css(sf));
1668 cpuset_filetype_t type = seq_cft(sf)->private;
1669 ssize_t count;
1670 char *buf, *s;
1671 int ret = 0;
1672
1673 count = seq_get_buf(sf, &buf);
1674 s = buf;
1675
1676 mutex_lock(&callback_mutex);
1677
1678 switch (type) {
1679 case FILE_CPULIST:
1680 s += cpulist_scnprintf(s, count, cs->cpus_allowed);
1681 break;
1682 case FILE_MEMLIST:
1683 s += nodelist_scnprintf(s, count, cs->mems_allowed);
1684 break;
1685 default:
1686 ret = -EINVAL;
1687 goto out_unlock;
1688 }
1689
1690 if (s < buf + count - 1) {
1691 *s++ = '\n';
1692 seq_commit(sf, s - buf);
1693 } else {
1694 seq_commit(sf, -1);
1695 }
1696 out_unlock:
1697 mutex_unlock(&callback_mutex);
1698 return ret;
1699 }
1700
1701 static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
1702 {
1703 struct cpuset *cs = css_cs(css);
1704 cpuset_filetype_t type = cft->private;
1705 switch (type) {
1706 case FILE_CPU_EXCLUSIVE:
1707 return is_cpu_exclusive(cs);
1708 case FILE_MEM_EXCLUSIVE:
1709 return is_mem_exclusive(cs);
1710 case FILE_MEM_HARDWALL:
1711 return is_mem_hardwall(cs);
1712 case FILE_SCHED_LOAD_BALANCE:
1713 return is_sched_load_balance(cs);
1714 case FILE_MEMORY_MIGRATE:
1715 return is_memory_migrate(cs);
1716 case FILE_MEMORY_PRESSURE_ENABLED:
1717 return cpuset_memory_pressure_enabled;
1718 case FILE_MEMORY_PRESSURE:
1719 return fmeter_getrate(&cs->fmeter);
1720 case FILE_SPREAD_PAGE:
1721 return is_spread_page(cs);
1722 case FILE_SPREAD_SLAB:
1723 return is_spread_slab(cs);
1724 default:
1725 BUG();
1726 }
1727
1728 /* Unreachable but makes gcc happy */
1729 return 0;
1730 }
1731
1732 static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
1733 {
1734 struct cpuset *cs = css_cs(css);
1735 cpuset_filetype_t type = cft->private;
1736 switch (type) {
1737 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1738 return cs->relax_domain_level;
1739 default:
1740 BUG();
1741 }
1742
1743 /* Unrechable but makes gcc happy */
1744 return 0;
1745 }
1746
1747
1748 /*
1749 * for the common functions, 'private' gives the type of file
1750 */
1751
1752 static struct cftype files[] = {
1753 {
1754 .name = "cpus",
1755 .seq_show = cpuset_common_seq_show,
1756 .write_string = cpuset_write_resmask,
1757 .max_write_len = (100U + 6 * NR_CPUS),
1758 .private = FILE_CPULIST,
1759 },
1760
1761 {
1762 .name = "mems",
1763 .seq_show = cpuset_common_seq_show,
1764 .write_string = cpuset_write_resmask,
1765 .max_write_len = (100U + 6 * MAX_NUMNODES),
1766 .private = FILE_MEMLIST,
1767 },
1768
1769 {
1770 .name = "cpu_exclusive",
1771 .read_u64 = cpuset_read_u64,
1772 .write_u64 = cpuset_write_u64,
1773 .private = FILE_CPU_EXCLUSIVE,
1774 },
1775
1776 {
1777 .name = "mem_exclusive",
1778 .read_u64 = cpuset_read_u64,
1779 .write_u64 = cpuset_write_u64,
1780 .private = FILE_MEM_EXCLUSIVE,
1781 },
1782
1783 {
1784 .name = "mem_hardwall",
1785 .read_u64 = cpuset_read_u64,
1786 .write_u64 = cpuset_write_u64,
1787 .private = FILE_MEM_HARDWALL,
1788 },
1789
1790 {
1791 .name = "sched_load_balance",
1792 .read_u64 = cpuset_read_u64,
1793 .write_u64 = cpuset_write_u64,
1794 .private = FILE_SCHED_LOAD_BALANCE,
1795 },
1796
1797 {
1798 .name = "sched_relax_domain_level",
1799 .read_s64 = cpuset_read_s64,
1800 .write_s64 = cpuset_write_s64,
1801 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
1802 },
1803
1804 {
1805 .name = "memory_migrate",
1806 .read_u64 = cpuset_read_u64,
1807 .write_u64 = cpuset_write_u64,
1808 .private = FILE_MEMORY_MIGRATE,
1809 },
1810
1811 {
1812 .name = "memory_pressure",
1813 .read_u64 = cpuset_read_u64,
1814 .write_u64 = cpuset_write_u64,
1815 .private = FILE_MEMORY_PRESSURE,
1816 .mode = S_IRUGO,
1817 },
1818
1819 {
1820 .name = "memory_spread_page",
1821 .read_u64 = cpuset_read_u64,
1822 .write_u64 = cpuset_write_u64,
1823 .private = FILE_SPREAD_PAGE,
1824 },
1825
1826 {
1827 .name = "memory_spread_slab",
1828 .read_u64 = cpuset_read_u64,
1829 .write_u64 = cpuset_write_u64,
1830 .private = FILE_SPREAD_SLAB,
1831 },
1832
1833 {
1834 .name = "memory_pressure_enabled",
1835 .flags = CFTYPE_ONLY_ON_ROOT,
1836 .read_u64 = cpuset_read_u64,
1837 .write_u64 = cpuset_write_u64,
1838 .private = FILE_MEMORY_PRESSURE_ENABLED,
1839 },
1840
1841 { } /* terminate */
1842 };
1843
1844 /*
1845 * cpuset_css_alloc - allocate a cpuset css
1846 * cgrp: control group that the new cpuset will be part of
1847 */
1848
1849 static struct cgroup_subsys_state *
1850 cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
1851 {
1852 struct cpuset *cs;
1853
1854 if (!parent_css)
1855 return &top_cpuset.css;
1856
1857 cs = kzalloc(sizeof(*cs), GFP_KERNEL);
1858 if (!cs)
1859 return ERR_PTR(-ENOMEM);
1860 if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL)) {
1861 kfree(cs);
1862 return ERR_PTR(-ENOMEM);
1863 }
1864
1865 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1866 cpumask_clear(cs->cpus_allowed);
1867 nodes_clear(cs->mems_allowed);
1868 fmeter_init(&cs->fmeter);
1869 cs->relax_domain_level = -1;
1870
1871 return &cs->css;
1872 }
1873
1874 static int cpuset_css_online(struct cgroup_subsys_state *css)
1875 {
1876 struct cpuset *cs = css_cs(css);
1877 struct cpuset *parent = parent_cs(cs);
1878 struct cpuset *tmp_cs;
1879 struct cgroup_subsys_state *pos_css;
1880
1881 if (!parent)
1882 return 0;
1883
1884 mutex_lock(&cpuset_mutex);
1885
1886 set_bit(CS_ONLINE, &cs->flags);
1887 if (is_spread_page(parent))
1888 set_bit(CS_SPREAD_PAGE, &cs->flags);
1889 if (is_spread_slab(parent))
1890 set_bit(CS_SPREAD_SLAB, &cs->flags);
1891
1892 number_of_cpusets++;
1893
1894 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
1895 goto out_unlock;
1896
1897 /*
1898 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
1899 * set. This flag handling is implemented in cgroup core for
1900 * histrical reasons - the flag may be specified during mount.
1901 *
1902 * Currently, if any sibling cpusets have exclusive cpus or mem, we
1903 * refuse to clone the configuration - thereby refusing the task to
1904 * be entered, and as a result refusing the sys_unshare() or
1905 * clone() which initiated it. If this becomes a problem for some
1906 * users who wish to allow that scenario, then this could be
1907 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
1908 * (and likewise for mems) to the new cgroup.
1909 */
1910 rcu_read_lock();
1911 cpuset_for_each_child(tmp_cs, pos_css, parent) {
1912 if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
1913 rcu_read_unlock();
1914 goto out_unlock;
1915 }
1916 }
1917 rcu_read_unlock();
1918
1919 mutex_lock(&callback_mutex);
1920 cs->mems_allowed = parent->mems_allowed;
1921 cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
1922 mutex_unlock(&callback_mutex);
1923 out_unlock:
1924 mutex_unlock(&cpuset_mutex);
1925 return 0;
1926 }
1927
1928 /*
1929 * If the cpuset being removed has its flag 'sched_load_balance'
1930 * enabled, then simulate turning sched_load_balance off, which
1931 * will call rebuild_sched_domains_locked().
1932 */
1933
1934 static void cpuset_css_offline(struct cgroup_subsys_state *css)
1935 {
1936 struct cpuset *cs = css_cs(css);
1937
1938 mutex_lock(&cpuset_mutex);
1939
1940 if (is_sched_load_balance(cs))
1941 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
1942
1943 number_of_cpusets--;
1944 clear_bit(CS_ONLINE, &cs->flags);
1945
1946 mutex_unlock(&cpuset_mutex);
1947 }
1948
1949 static void cpuset_css_free(struct cgroup_subsys_state *css)
1950 {
1951 struct cpuset *cs = css_cs(css);
1952
1953 free_cpumask_var(cs->cpus_allowed);
1954 kfree(cs);
1955 }
1956
1957 struct cgroup_subsys cpuset_cgrp_subsys = {
1958 .css_alloc = cpuset_css_alloc,
1959 .css_online = cpuset_css_online,
1960 .css_offline = cpuset_css_offline,
1961 .css_free = cpuset_css_free,
1962 .can_attach = cpuset_can_attach,
1963 .cancel_attach = cpuset_cancel_attach,
1964 .attach = cpuset_attach,
1965 .base_cftypes = files,
1966 .early_init = 1,
1967 };
1968
1969 /**
1970 * cpuset_init - initialize cpusets at system boot
1971 *
1972 * Description: Initialize top_cpuset and the cpuset internal file system,
1973 **/
1974
1975 int __init cpuset_init(void)
1976 {
1977 int err = 0;
1978
1979 if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
1980 BUG();
1981
1982 cpumask_setall(top_cpuset.cpus_allowed);
1983 nodes_setall(top_cpuset.mems_allowed);
1984
1985 fmeter_init(&top_cpuset.fmeter);
1986 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
1987 top_cpuset.relax_domain_level = -1;
1988
1989 err = register_filesystem(&cpuset_fs_type);
1990 if (err < 0)
1991 return err;
1992
1993 if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
1994 BUG();
1995
1996 number_of_cpusets = 1;
1997 return 0;
1998 }
1999
2000 /*
2001 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
2002 * or memory nodes, we need to walk over the cpuset hierarchy,
2003 * removing that CPU or node from all cpusets. If this removes the
2004 * last CPU or node from a cpuset, then move the tasks in the empty
2005 * cpuset to its next-highest non-empty parent.
2006 */
2007 static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
2008 {
2009 struct cpuset *parent;
2010
2011 /*
2012 * Find its next-highest non-empty parent, (top cpuset
2013 * has online cpus, so can't be empty).
2014 */
2015 parent = parent_cs(cs);
2016 while (cpumask_empty(parent->cpus_allowed) ||
2017 nodes_empty(parent->mems_allowed))
2018 parent = parent_cs(parent);
2019
2020 if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
2021 printk(KERN_ERR "cpuset: failed to transfer tasks out of empty cpuset ");
2022 pr_cont_cgroup_name(cs->css.cgroup);
2023 pr_cont("\n");
2024 }
2025 }
2026
2027 /**
2028 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
2029 * @cs: cpuset in interest
2030 *
2031 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
2032 * offline, update @cs accordingly. If @cs ends up with no CPU or memory,
2033 * all its tasks are moved to the nearest ancestor with both resources.
2034 */
2035 static void cpuset_hotplug_update_tasks(struct cpuset *cs)
2036 {
2037 static cpumask_t off_cpus;
2038 static nodemask_t off_mems;
2039 bool is_empty;
2040 bool sane = cgroup_sane_behavior(cs->css.cgroup);
2041
2042 retry:
2043 wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
2044
2045 mutex_lock(&cpuset_mutex);
2046
2047 /*
2048 * We have raced with task attaching. We wait until attaching
2049 * is finished, so we won't attach a task to an empty cpuset.
2050 */
2051 if (cs->attach_in_progress) {
2052 mutex_unlock(&cpuset_mutex);
2053 goto retry;
2054 }
2055
2056 cpumask_andnot(&off_cpus, cs->cpus_allowed, top_cpuset.cpus_allowed);
2057 nodes_andnot(off_mems, cs->mems_allowed, top_cpuset.mems_allowed);
2058
2059 mutex_lock(&callback_mutex);
2060 cpumask_andnot(cs->cpus_allowed, cs->cpus_allowed, &off_cpus);
2061 mutex_unlock(&callback_mutex);
2062
2063 /*
2064 * If sane_behavior flag is set, we need to update tasks' cpumask
2065 * for empty cpuset to take on ancestor's cpumask. Otherwise, don't
2066 * call update_tasks_cpumask() if the cpuset becomes empty, as
2067 * the tasks in it will be migrated to an ancestor.
2068 */
2069 if ((sane && cpumask_empty(cs->cpus_allowed)) ||
2070 (!cpumask_empty(&off_cpus) && !cpumask_empty(cs->cpus_allowed)))
2071 update_tasks_cpumask(cs);
2072
2073 mutex_lock(&callback_mutex);
2074 nodes_andnot(cs->mems_allowed, cs->mems_allowed, off_mems);
2075 mutex_unlock(&callback_mutex);
2076
2077 /*
2078 * If sane_behavior flag is set, we need to update tasks' nodemask
2079 * for empty cpuset to take on ancestor's nodemask. Otherwise, don't
2080 * call update_tasks_nodemask() if the cpuset becomes empty, as
2081 * the tasks in it will be migratd to an ancestor.
2082 */
2083 if ((sane && nodes_empty(cs->mems_allowed)) ||
2084 (!nodes_empty(off_mems) && !nodes_empty(cs->mems_allowed)))
2085 update_tasks_nodemask(cs);
2086
2087 is_empty = cpumask_empty(cs->cpus_allowed) ||
2088 nodes_empty(cs->mems_allowed);
2089
2090 mutex_unlock(&cpuset_mutex);
2091
2092 /*
2093 * If sane_behavior flag is set, we'll keep tasks in empty cpusets.
2094 *
2095 * Otherwise move tasks to the nearest ancestor with execution
2096 * resources. This is full cgroup operation which will
2097 * also call back into cpuset. Should be done outside any lock.
2098 */
2099 if (!sane && is_empty)
2100 remove_tasks_in_empty_cpuset(cs);
2101 }
2102
2103 /**
2104 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
2105 *
2106 * This function is called after either CPU or memory configuration has
2107 * changed and updates cpuset accordingly. The top_cpuset is always
2108 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
2109 * order to make cpusets transparent (of no affect) on systems that are
2110 * actively using CPU hotplug but making no active use of cpusets.
2111 *
2112 * Non-root cpusets are only affected by offlining. If any CPUs or memory
2113 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
2114 * all descendants.
2115 *
2116 * Note that CPU offlining during suspend is ignored. We don't modify
2117 * cpusets across suspend/resume cycles at all.
2118 */
2119 static void cpuset_hotplug_workfn(struct work_struct *work)
2120 {
2121 static cpumask_t new_cpus;
2122 static nodemask_t new_mems;
2123 bool cpus_updated, mems_updated;
2124
2125 mutex_lock(&cpuset_mutex);
2126
2127 /* fetch the available cpus/mems and find out which changed how */
2128 cpumask_copy(&new_cpus, cpu_active_mask);
2129 new_mems = node_states[N_MEMORY];
2130
2131 cpus_updated = !cpumask_equal(top_cpuset.cpus_allowed, &new_cpus);
2132 mems_updated = !nodes_equal(top_cpuset.mems_allowed, new_mems);
2133
2134 /* synchronize cpus_allowed to cpu_active_mask */
2135 if (cpus_updated) {
2136 mutex_lock(&callback_mutex);
2137 cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
2138 mutex_unlock(&callback_mutex);
2139 /* we don't mess with cpumasks of tasks in top_cpuset */
2140 }
2141
2142 /* synchronize mems_allowed to N_MEMORY */
2143 if (mems_updated) {
2144 mutex_lock(&callback_mutex);
2145 top_cpuset.mems_allowed = new_mems;
2146 mutex_unlock(&callback_mutex);
2147 update_tasks_nodemask(&top_cpuset);
2148 }
2149
2150 mutex_unlock(&cpuset_mutex);
2151
2152 /* if cpus or mems changed, we need to propagate to descendants */
2153 if (cpus_updated || mems_updated) {
2154 struct cpuset *cs;
2155 struct cgroup_subsys_state *pos_css;
2156
2157 rcu_read_lock();
2158 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
2159 if (cs == &top_cpuset || !css_tryget(&cs->css))
2160 continue;
2161 rcu_read_unlock();
2162
2163 cpuset_hotplug_update_tasks(cs);
2164
2165 rcu_read_lock();
2166 css_put(&cs->css);
2167 }
2168 rcu_read_unlock();
2169 }
2170
2171 /* rebuild sched domains if cpus_allowed has changed */
2172 if (cpus_updated)
2173 rebuild_sched_domains();
2174 }
2175
2176 void cpuset_update_active_cpus(bool cpu_online)
2177 {
2178 /*
2179 * We're inside cpu hotplug critical region which usually nests
2180 * inside cgroup synchronization. Bounce actual hotplug processing
2181 * to a work item to avoid reverse locking order.
2182 *
2183 * We still need to do partition_sched_domains() synchronously;
2184 * otherwise, the scheduler will get confused and put tasks to the
2185 * dead CPU. Fall back to the default single domain.
2186 * cpuset_hotplug_workfn() will rebuild it as necessary.
2187 */
2188 partition_sched_domains(1, NULL, NULL);
2189 schedule_work(&cpuset_hotplug_work);
2190 }
2191
2192 /*
2193 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
2194 * Call this routine anytime after node_states[N_MEMORY] changes.
2195 * See cpuset_update_active_cpus() for CPU hotplug handling.
2196 */
2197 static int cpuset_track_online_nodes(struct notifier_block *self,
2198 unsigned long action, void *arg)
2199 {
2200 schedule_work(&cpuset_hotplug_work);
2201 return NOTIFY_OK;
2202 }
2203
2204 static struct notifier_block cpuset_track_online_nodes_nb = {
2205 .notifier_call = cpuset_track_online_nodes,
2206 .priority = 10, /* ??! */
2207 };
2208
2209 /**
2210 * cpuset_init_smp - initialize cpus_allowed
2211 *
2212 * Description: Finish top cpuset after cpu, node maps are initialized
2213 */
2214 void __init cpuset_init_smp(void)
2215 {
2216 cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
2217 top_cpuset.mems_allowed = node_states[N_MEMORY];
2218 top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
2219
2220 register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
2221 }
2222
2223 /**
2224 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2225 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
2226 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
2227 *
2228 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
2229 * attached to the specified @tsk. Guaranteed to return some non-empty
2230 * subset of cpu_online_mask, even if this means going outside the
2231 * tasks cpuset.
2232 **/
2233
2234 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
2235 {
2236 struct cpuset *cpus_cs;
2237
2238 mutex_lock(&callback_mutex);
2239 task_lock(tsk);
2240 cpus_cs = effective_cpumask_cpuset(task_cs(tsk));
2241 guarantee_online_cpus(cpus_cs, pmask);
2242 task_unlock(tsk);
2243 mutex_unlock(&callback_mutex);
2244 }
2245
2246 void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
2247 {
2248 struct cpuset *cpus_cs;
2249
2250 rcu_read_lock();
2251 cpus_cs = effective_cpumask_cpuset(task_cs(tsk));
2252 do_set_cpus_allowed(tsk, cpus_cs->cpus_allowed);
2253 rcu_read_unlock();
2254
2255 /*
2256 * We own tsk->cpus_allowed, nobody can change it under us.
2257 *
2258 * But we used cs && cs->cpus_allowed lockless and thus can
2259 * race with cgroup_attach_task() or update_cpumask() and get
2260 * the wrong tsk->cpus_allowed. However, both cases imply the
2261 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
2262 * which takes task_rq_lock().
2263 *
2264 * If we are called after it dropped the lock we must see all
2265 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
2266 * set any mask even if it is not right from task_cs() pov,
2267 * the pending set_cpus_allowed_ptr() will fix things.
2268 *
2269 * select_fallback_rq() will fix things ups and set cpu_possible_mask
2270 * if required.
2271 */
2272 }
2273
2274 void cpuset_init_current_mems_allowed(void)
2275 {
2276 nodes_setall(current->mems_allowed);
2277 }
2278
2279 /**
2280 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2281 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2282 *
2283 * Description: Returns the nodemask_t mems_allowed of the cpuset
2284 * attached to the specified @tsk. Guaranteed to return some non-empty
2285 * subset of node_states[N_MEMORY], even if this means going outside the
2286 * tasks cpuset.
2287 **/
2288
2289 nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
2290 {
2291 struct cpuset *mems_cs;
2292 nodemask_t mask;
2293
2294 mutex_lock(&callback_mutex);
2295 task_lock(tsk);
2296 mems_cs = effective_nodemask_cpuset(task_cs(tsk));
2297 guarantee_online_mems(mems_cs, &mask);
2298 task_unlock(tsk);
2299 mutex_unlock(&callback_mutex);
2300
2301 return mask;
2302 }
2303
2304 /**
2305 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
2306 * @nodemask: the nodemask to be checked
2307 *
2308 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
2309 */
2310 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
2311 {
2312 return nodes_intersects(*nodemask, current->mems_allowed);
2313 }
2314
2315 /*
2316 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2317 * mem_hardwall ancestor to the specified cpuset. Call holding
2318 * callback_mutex. If no ancestor is mem_exclusive or mem_hardwall
2319 * (an unusual configuration), then returns the root cpuset.
2320 */
2321 static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
2322 {
2323 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
2324 cs = parent_cs(cs);
2325 return cs;
2326 }
2327
2328 /**
2329 * cpuset_node_allowed_softwall - Can we allocate on a memory node?
2330 * @node: is this an allowed node?
2331 * @gfp_mask: memory allocation flags
2332 *
2333 * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
2334 * set, yes, we can always allocate. If node is in our task's mems_allowed,
2335 * yes. If it's not a __GFP_HARDWALL request and this node is in the nearest
2336 * hardwalled cpuset ancestor to this task's cpuset, yes. If the task has been
2337 * OOM killed and has access to memory reserves as specified by the TIF_MEMDIE
2338 * flag, yes.
2339 * Otherwise, no.
2340 *
2341 * If __GFP_HARDWALL is set, cpuset_node_allowed_softwall() reduces to
2342 * cpuset_node_allowed_hardwall(). Otherwise, cpuset_node_allowed_softwall()
2343 * might sleep, and might allow a node from an enclosing cpuset.
2344 *
2345 * cpuset_node_allowed_hardwall() only handles the simpler case of hardwall
2346 * cpusets, and never sleeps.
2347 *
2348 * The __GFP_THISNODE placement logic is really handled elsewhere,
2349 * by forcibly using a zonelist starting at a specified node, and by
2350 * (in get_page_from_freelist()) refusing to consider the zones for
2351 * any node on the zonelist except the first. By the time any such
2352 * calls get to this routine, we should just shut up and say 'yes'.
2353 *
2354 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
2355 * and do not allow allocations outside the current tasks cpuset
2356 * unless the task has been OOM killed as is marked TIF_MEMDIE.
2357 * GFP_KERNEL allocations are not so marked, so can escape to the
2358 * nearest enclosing hardwalled ancestor cpuset.
2359 *
2360 * Scanning up parent cpusets requires callback_mutex. The
2361 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2362 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2363 * current tasks mems_allowed came up empty on the first pass over
2364 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
2365 * cpuset are short of memory, might require taking the callback_mutex
2366 * mutex.
2367 *
2368 * The first call here from mm/page_alloc:get_page_from_freelist()
2369 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2370 * so no allocation on a node outside the cpuset is allowed (unless
2371 * in interrupt, of course).
2372 *
2373 * The second pass through get_page_from_freelist() doesn't even call
2374 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
2375 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2376 * in alloc_flags. That logic and the checks below have the combined
2377 * affect that:
2378 * in_interrupt - any node ok (current task context irrelevant)
2379 * GFP_ATOMIC - any node ok
2380 * TIF_MEMDIE - any node ok
2381 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
2382 * GFP_USER - only nodes in current tasks mems allowed ok.
2383 *
2384 * Rule:
2385 * Don't call cpuset_node_allowed_softwall if you can't sleep, unless you
2386 * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
2387 * the code that might scan up ancestor cpusets and sleep.
2388 */
2389 int __cpuset_node_allowed_softwall(int node, gfp_t gfp_mask)
2390 {
2391 struct cpuset *cs; /* current cpuset ancestors */
2392 int allowed; /* is allocation in zone z allowed? */
2393
2394 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2395 return 1;
2396 might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
2397 if (node_isset(node, current->mems_allowed))
2398 return 1;
2399 /*
2400 * Allow tasks that have access to memory reserves because they have
2401 * been OOM killed to get memory anywhere.
2402 */
2403 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2404 return 1;
2405 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
2406 return 0;
2407
2408 if (current->flags & PF_EXITING) /* Let dying task have memory */
2409 return 1;
2410
2411 /* Not hardwall and node outside mems_allowed: scan up cpusets */
2412 mutex_lock(&callback_mutex);
2413
2414 task_lock(current);
2415 cs = nearest_hardwall_ancestor(task_cs(current));
2416 task_unlock(current);
2417
2418 allowed = node_isset(node, cs->mems_allowed);
2419 mutex_unlock(&callback_mutex);
2420 return allowed;
2421 }
2422
2423 /*
2424 * cpuset_node_allowed_hardwall - Can we allocate on a memory node?
2425 * @node: is this an allowed node?
2426 * @gfp_mask: memory allocation flags
2427 *
2428 * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
2429 * set, yes, we can always allocate. If node is in our task's mems_allowed,
2430 * yes. If the task has been OOM killed and has access to memory reserves as
2431 * specified by the TIF_MEMDIE flag, yes.
2432 * Otherwise, no.
2433 *
2434 * The __GFP_THISNODE placement logic is really handled elsewhere,
2435 * by forcibly using a zonelist starting at a specified node, and by
2436 * (in get_page_from_freelist()) refusing to consider the zones for
2437 * any node on the zonelist except the first. By the time any such
2438 * calls get to this routine, we should just shut up and say 'yes'.
2439 *
2440 * Unlike the cpuset_node_allowed_softwall() variant, above,
2441 * this variant requires that the node be in the current task's
2442 * mems_allowed or that we're in interrupt. It does not scan up the
2443 * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
2444 * It never sleeps.
2445 */
2446 int __cpuset_node_allowed_hardwall(int node, gfp_t gfp_mask)
2447 {
2448 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2449 return 1;
2450 if (node_isset(node, current->mems_allowed))
2451 return 1;
2452 /*
2453 * Allow tasks that have access to memory reserves because they have
2454 * been OOM killed to get memory anywhere.
2455 */
2456 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2457 return 1;
2458 return 0;
2459 }
2460
2461 /**
2462 * cpuset_mem_spread_node() - On which node to begin search for a file page
2463 * cpuset_slab_spread_node() - On which node to begin search for a slab page
2464 *
2465 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2466 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2467 * and if the memory allocation used cpuset_mem_spread_node()
2468 * to determine on which node to start looking, as it will for
2469 * certain page cache or slab cache pages such as used for file
2470 * system buffers and inode caches, then instead of starting on the
2471 * local node to look for a free page, rather spread the starting
2472 * node around the tasks mems_allowed nodes.
2473 *
2474 * We don't have to worry about the returned node being offline
2475 * because "it can't happen", and even if it did, it would be ok.
2476 *
2477 * The routines calling guarantee_online_mems() are careful to
2478 * only set nodes in task->mems_allowed that are online. So it
2479 * should not be possible for the following code to return an
2480 * offline node. But if it did, that would be ok, as this routine
2481 * is not returning the node where the allocation must be, only
2482 * the node where the search should start. The zonelist passed to
2483 * __alloc_pages() will include all nodes. If the slab allocator
2484 * is passed an offline node, it will fall back to the local node.
2485 * See kmem_cache_alloc_node().
2486 */
2487
2488 static int cpuset_spread_node(int *rotor)
2489 {
2490 int node;
2491
2492 node = next_node(*rotor, current->mems_allowed);
2493 if (node == MAX_NUMNODES)
2494 node = first_node(current->mems_allowed);
2495 *rotor = node;
2496 return node;
2497 }
2498
2499 int cpuset_mem_spread_node(void)
2500 {
2501 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
2502 current->cpuset_mem_spread_rotor =
2503 node_random(&current->mems_allowed);
2504
2505 return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
2506 }
2507
2508 int cpuset_slab_spread_node(void)
2509 {
2510 if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
2511 current->cpuset_slab_spread_rotor =
2512 node_random(&current->mems_allowed);
2513
2514 return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
2515 }
2516
2517 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
2518
2519 /**
2520 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2521 * @tsk1: pointer to task_struct of some task.
2522 * @tsk2: pointer to task_struct of some other task.
2523 *
2524 * Description: Return true if @tsk1's mems_allowed intersects the
2525 * mems_allowed of @tsk2. Used by the OOM killer to determine if
2526 * one of the task's memory usage might impact the memory available
2527 * to the other.
2528 **/
2529
2530 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
2531 const struct task_struct *tsk2)
2532 {
2533 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
2534 }
2535
2536 #define CPUSET_NODELIST_LEN (256)
2537
2538 /**
2539 * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
2540 * @task: pointer to task_struct of some task.
2541 *
2542 * Description: Prints @task's name, cpuset name, and cached copy of its
2543 * mems_allowed to the kernel log. Must hold task_lock(task) to allow
2544 * dereferencing task_cs(task).
2545 */
2546 void cpuset_print_task_mems_allowed(struct task_struct *tsk)
2547 {
2548 /* Statically allocated to prevent using excess stack. */
2549 static char cpuset_nodelist[CPUSET_NODELIST_LEN];
2550 static DEFINE_SPINLOCK(cpuset_buffer_lock);
2551 struct cgroup *cgrp = task_cs(tsk)->css.cgroup;
2552
2553 spin_lock(&cpuset_buffer_lock);
2554
2555 nodelist_scnprintf(cpuset_nodelist, CPUSET_NODELIST_LEN,
2556 tsk->mems_allowed);
2557 printk(KERN_INFO "%s cpuset=", tsk->comm);
2558 pr_cont_cgroup_name(cgrp);
2559 pr_cont(" mems_allowed=%s\n", cpuset_nodelist);
2560
2561 spin_unlock(&cpuset_buffer_lock);
2562 }
2563
2564 /*
2565 * Collection of memory_pressure is suppressed unless
2566 * this flag is enabled by writing "1" to the special
2567 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2568 */
2569
2570 int cpuset_memory_pressure_enabled __read_mostly;
2571
2572 /**
2573 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2574 *
2575 * Keep a running average of the rate of synchronous (direct)
2576 * page reclaim efforts initiated by tasks in each cpuset.
2577 *
2578 * This represents the rate at which some task in the cpuset
2579 * ran low on memory on all nodes it was allowed to use, and
2580 * had to enter the kernels page reclaim code in an effort to
2581 * create more free memory by tossing clean pages or swapping
2582 * or writing dirty pages.
2583 *
2584 * Display to user space in the per-cpuset read-only file
2585 * "memory_pressure". Value displayed is an integer
2586 * representing the recent rate of entry into the synchronous
2587 * (direct) page reclaim by any task attached to the cpuset.
2588 **/
2589
2590 void __cpuset_memory_pressure_bump(void)
2591 {
2592 task_lock(current);
2593 fmeter_markevent(&task_cs(current)->fmeter);
2594 task_unlock(current);
2595 }
2596
2597 #ifdef CONFIG_PROC_PID_CPUSET
2598 /*
2599 * proc_cpuset_show()
2600 * - Print tasks cpuset path into seq_file.
2601 * - Used for /proc/<pid>/cpuset.
2602 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2603 * doesn't really matter if tsk->cpuset changes after we read it,
2604 * and we take cpuset_mutex, keeping cpuset_attach() from changing it
2605 * anyway.
2606 */
2607 int proc_cpuset_show(struct seq_file *m, void *unused_v)
2608 {
2609 struct pid *pid;
2610 struct task_struct *tsk;
2611 char *buf, *p;
2612 struct cgroup_subsys_state *css;
2613 int retval;
2614
2615 retval = -ENOMEM;
2616 buf = kmalloc(PATH_MAX, GFP_KERNEL);
2617 if (!buf)
2618 goto out;
2619
2620 retval = -ESRCH;
2621 pid = m->private;
2622 tsk = get_pid_task(pid, PIDTYPE_PID);
2623 if (!tsk)
2624 goto out_free;
2625
2626 retval = -ENAMETOOLONG;
2627 rcu_read_lock();
2628 css = task_css(tsk, cpuset_cgrp_id);
2629 p = cgroup_path(css->cgroup, buf, PATH_MAX);
2630 rcu_read_unlock();
2631 if (!p)
2632 goto out_put_task;
2633 seq_puts(m, p);
2634 seq_putc(m, '\n');
2635 retval = 0;
2636 out_put_task:
2637 put_task_struct(tsk);
2638 out_free:
2639 kfree(buf);
2640 out:
2641 return retval;
2642 }
2643 #endif /* CONFIG_PROC_PID_CPUSET */
2644
2645 /* Display task mems_allowed in /proc/<pid>/status file. */
2646 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
2647 {
2648 seq_printf(m, "Mems_allowed:\t");
2649 seq_nodemask(m, &task->mems_allowed);
2650 seq_printf(m, "\n");
2651 seq_printf(m, "Mems_allowed_list:\t");
2652 seq_nodemask_list(m, &task->mems_allowed);
2653 seq_printf(m, "\n");
2654 }
This page took 0.088314 seconds and 5 git commands to generate.