[PATCH] ieee80211: Fix debug comments ipw->ieee80211
[deliverable/linux.git] / kernel / cpuset.c
1 /*
2 * kernel/cpuset.c
3 *
4 * Processor and Memory placement constraints for sets of tasks.
5 *
6 * Copyright (C) 2003 BULL SA.
7 * Copyright (C) 2004 Silicon Graphics, Inc.
8 *
9 * Portions derived from Patrick Mochel's sysfs code.
10 * sysfs is Copyright (c) 2001-3 Patrick Mochel
11 * Portions Copyright (c) 2004 Silicon Graphics, Inc.
12 *
13 * 2003-10-10 Written by Simon Derr <simon.derr@bull.net>
14 * 2003-10-22 Updates by Stephen Hemminger.
15 * 2004 May-July Rework by Paul Jackson <pj@sgi.com>
16 *
17 * This file is subject to the terms and conditions of the GNU General Public
18 * License. See the file COPYING in the main directory of the Linux
19 * distribution for more details.
20 */
21
22 #include <linux/config.h>
23 #include <linux/cpu.h>
24 #include <linux/cpumask.h>
25 #include <linux/cpuset.h>
26 #include <linux/err.h>
27 #include <linux/errno.h>
28 #include <linux/file.h>
29 #include <linux/fs.h>
30 #include <linux/init.h>
31 #include <linux/interrupt.h>
32 #include <linux/kernel.h>
33 #include <linux/kmod.h>
34 #include <linux/list.h>
35 #include <linux/mm.h>
36 #include <linux/module.h>
37 #include <linux/mount.h>
38 #include <linux/namei.h>
39 #include <linux/pagemap.h>
40 #include <linux/proc_fs.h>
41 #include <linux/sched.h>
42 #include <linux/seq_file.h>
43 #include <linux/slab.h>
44 #include <linux/smp_lock.h>
45 #include <linux/spinlock.h>
46 #include <linux/stat.h>
47 #include <linux/string.h>
48 #include <linux/time.h>
49 #include <linux/backing-dev.h>
50 #include <linux/sort.h>
51
52 #include <asm/uaccess.h>
53 #include <asm/atomic.h>
54 #include <asm/semaphore.h>
55
56 #define CPUSET_SUPER_MAGIC 0x27e0eb
57
58 struct cpuset {
59 unsigned long flags; /* "unsigned long" so bitops work */
60 cpumask_t cpus_allowed; /* CPUs allowed to tasks in cpuset */
61 nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */
62
63 atomic_t count; /* count tasks using this cpuset */
64
65 /*
66 * We link our 'sibling' struct into our parents 'children'.
67 * Our children link their 'sibling' into our 'children'.
68 */
69 struct list_head sibling; /* my parents children */
70 struct list_head children; /* my children */
71
72 struct cpuset *parent; /* my parent */
73 struct dentry *dentry; /* cpuset fs entry */
74
75 /*
76 * Copy of global cpuset_mems_generation as of the most
77 * recent time this cpuset changed its mems_allowed.
78 */
79 int mems_generation;
80 };
81
82 /* bits in struct cpuset flags field */
83 typedef enum {
84 CS_CPU_EXCLUSIVE,
85 CS_MEM_EXCLUSIVE,
86 CS_REMOVED,
87 CS_NOTIFY_ON_RELEASE
88 } cpuset_flagbits_t;
89
90 /* convenient tests for these bits */
91 static inline int is_cpu_exclusive(const struct cpuset *cs)
92 {
93 return !!test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
94 }
95
96 static inline int is_mem_exclusive(const struct cpuset *cs)
97 {
98 return !!test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
99 }
100
101 static inline int is_removed(const struct cpuset *cs)
102 {
103 return !!test_bit(CS_REMOVED, &cs->flags);
104 }
105
106 static inline int notify_on_release(const struct cpuset *cs)
107 {
108 return !!test_bit(CS_NOTIFY_ON_RELEASE, &cs->flags);
109 }
110
111 /*
112 * Increment this atomic integer everytime any cpuset changes its
113 * mems_allowed value. Users of cpusets can track this generation
114 * number, and avoid having to lock and reload mems_allowed unless
115 * the cpuset they're using changes generation.
116 *
117 * A single, global generation is needed because attach_task() could
118 * reattach a task to a different cpuset, which must not have its
119 * generation numbers aliased with those of that tasks previous cpuset.
120 *
121 * Generations are needed for mems_allowed because one task cannot
122 * modify anothers memory placement. So we must enable every task,
123 * on every visit to __alloc_pages(), to efficiently check whether
124 * its current->cpuset->mems_allowed has changed, requiring an update
125 * of its current->mems_allowed.
126 */
127 static atomic_t cpuset_mems_generation = ATOMIC_INIT(1);
128
129 static struct cpuset top_cpuset = {
130 .flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)),
131 .cpus_allowed = CPU_MASK_ALL,
132 .mems_allowed = NODE_MASK_ALL,
133 .count = ATOMIC_INIT(0),
134 .sibling = LIST_HEAD_INIT(top_cpuset.sibling),
135 .children = LIST_HEAD_INIT(top_cpuset.children),
136 .parent = NULL,
137 .dentry = NULL,
138 .mems_generation = 0,
139 };
140
141 static struct vfsmount *cpuset_mount;
142 static struct super_block *cpuset_sb = NULL;
143
144 /*
145 * cpuset_sem should be held by anyone who is depending on the children
146 * or sibling lists of any cpuset, or performing non-atomic operations
147 * on the flags or *_allowed values of a cpuset, such as raising the
148 * CS_REMOVED flag bit iff it is not already raised, or reading and
149 * conditionally modifying the *_allowed values. One kernel global
150 * cpuset semaphore should be sufficient - these things don't change
151 * that much.
152 *
153 * The code that modifies cpusets holds cpuset_sem across the entire
154 * operation, from cpuset_common_file_write() down, single threading
155 * all cpuset modifications (except for counter manipulations from
156 * fork and exit) across the system. This presumes that cpuset
157 * modifications are rare - better kept simple and safe, even if slow.
158 *
159 * The code that reads cpusets, such as in cpuset_common_file_read()
160 * and below, only holds cpuset_sem across small pieces of code, such
161 * as when reading out possibly multi-word cpumasks and nodemasks, as
162 * the risks are less, and the desire for performance a little greater.
163 * The proc_cpuset_show() routine needs to hold cpuset_sem to insure
164 * that no cs->dentry is NULL, as it walks up the cpuset tree to root.
165 *
166 * The hooks from fork and exit, cpuset_fork() and cpuset_exit(), don't
167 * (usually) grab cpuset_sem. These are the two most performance
168 * critical pieces of code here. The exception occurs on exit(),
169 * when a task in a notify_on_release cpuset exits. Then cpuset_sem
170 * is taken, and if the cpuset count is zero, a usermode call made
171 * to /sbin/cpuset_release_agent with the name of the cpuset (path
172 * relative to the root of cpuset file system) as the argument.
173 *
174 * A cpuset can only be deleted if both its 'count' of using tasks is
175 * zero, and its list of 'children' cpusets is empty. Since all tasks
176 * in the system use _some_ cpuset, and since there is always at least
177 * one task in the system (init, pid == 1), therefore, top_cpuset
178 * always has either children cpusets and/or using tasks. So no need
179 * for any special hack to ensure that top_cpuset cannot be deleted.
180 */
181
182 static DECLARE_MUTEX(cpuset_sem);
183
184 /*
185 * A couple of forward declarations required, due to cyclic reference loop:
186 * cpuset_mkdir -> cpuset_create -> cpuset_populate_dir -> cpuset_add_file
187 * -> cpuset_create_file -> cpuset_dir_inode_operations -> cpuset_mkdir.
188 */
189
190 static int cpuset_mkdir(struct inode *dir, struct dentry *dentry, int mode);
191 static int cpuset_rmdir(struct inode *unused_dir, struct dentry *dentry);
192
193 static struct backing_dev_info cpuset_backing_dev_info = {
194 .ra_pages = 0, /* No readahead */
195 .capabilities = BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK,
196 };
197
198 static struct inode *cpuset_new_inode(mode_t mode)
199 {
200 struct inode *inode = new_inode(cpuset_sb);
201
202 if (inode) {
203 inode->i_mode = mode;
204 inode->i_uid = current->fsuid;
205 inode->i_gid = current->fsgid;
206 inode->i_blksize = PAGE_CACHE_SIZE;
207 inode->i_blocks = 0;
208 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
209 inode->i_mapping->backing_dev_info = &cpuset_backing_dev_info;
210 }
211 return inode;
212 }
213
214 static void cpuset_diput(struct dentry *dentry, struct inode *inode)
215 {
216 /* is dentry a directory ? if so, kfree() associated cpuset */
217 if (S_ISDIR(inode->i_mode)) {
218 struct cpuset *cs = dentry->d_fsdata;
219 BUG_ON(!(is_removed(cs)));
220 kfree(cs);
221 }
222 iput(inode);
223 }
224
225 static struct dentry_operations cpuset_dops = {
226 .d_iput = cpuset_diput,
227 };
228
229 static struct dentry *cpuset_get_dentry(struct dentry *parent, const char *name)
230 {
231 struct dentry *d = lookup_one_len(name, parent, strlen(name));
232 if (!IS_ERR(d))
233 d->d_op = &cpuset_dops;
234 return d;
235 }
236
237 static void remove_dir(struct dentry *d)
238 {
239 struct dentry *parent = dget(d->d_parent);
240
241 d_delete(d);
242 simple_rmdir(parent->d_inode, d);
243 dput(parent);
244 }
245
246 /*
247 * NOTE : the dentry must have been dget()'ed
248 */
249 static void cpuset_d_remove_dir(struct dentry *dentry)
250 {
251 struct list_head *node;
252
253 spin_lock(&dcache_lock);
254 node = dentry->d_subdirs.next;
255 while (node != &dentry->d_subdirs) {
256 struct dentry *d = list_entry(node, struct dentry, d_child);
257 list_del_init(node);
258 if (d->d_inode) {
259 d = dget_locked(d);
260 spin_unlock(&dcache_lock);
261 d_delete(d);
262 simple_unlink(dentry->d_inode, d);
263 dput(d);
264 spin_lock(&dcache_lock);
265 }
266 node = dentry->d_subdirs.next;
267 }
268 list_del_init(&dentry->d_child);
269 spin_unlock(&dcache_lock);
270 remove_dir(dentry);
271 }
272
273 static struct super_operations cpuset_ops = {
274 .statfs = simple_statfs,
275 .drop_inode = generic_delete_inode,
276 };
277
278 static int cpuset_fill_super(struct super_block *sb, void *unused_data,
279 int unused_silent)
280 {
281 struct inode *inode;
282 struct dentry *root;
283
284 sb->s_blocksize = PAGE_CACHE_SIZE;
285 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
286 sb->s_magic = CPUSET_SUPER_MAGIC;
287 sb->s_op = &cpuset_ops;
288 cpuset_sb = sb;
289
290 inode = cpuset_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR);
291 if (inode) {
292 inode->i_op = &simple_dir_inode_operations;
293 inode->i_fop = &simple_dir_operations;
294 /* directories start off with i_nlink == 2 (for "." entry) */
295 inode->i_nlink++;
296 } else {
297 return -ENOMEM;
298 }
299
300 root = d_alloc_root(inode);
301 if (!root) {
302 iput(inode);
303 return -ENOMEM;
304 }
305 sb->s_root = root;
306 return 0;
307 }
308
309 static struct super_block *cpuset_get_sb(struct file_system_type *fs_type,
310 int flags, const char *unused_dev_name,
311 void *data)
312 {
313 return get_sb_single(fs_type, flags, data, cpuset_fill_super);
314 }
315
316 static struct file_system_type cpuset_fs_type = {
317 .name = "cpuset",
318 .get_sb = cpuset_get_sb,
319 .kill_sb = kill_litter_super,
320 };
321
322 /* struct cftype:
323 *
324 * The files in the cpuset filesystem mostly have a very simple read/write
325 * handling, some common function will take care of it. Nevertheless some cases
326 * (read tasks) are special and therefore I define this structure for every
327 * kind of file.
328 *
329 *
330 * When reading/writing to a file:
331 * - the cpuset to use in file->f_dentry->d_parent->d_fsdata
332 * - the 'cftype' of the file is file->f_dentry->d_fsdata
333 */
334
335 struct cftype {
336 char *name;
337 int private;
338 int (*open) (struct inode *inode, struct file *file);
339 ssize_t (*read) (struct file *file, char __user *buf, size_t nbytes,
340 loff_t *ppos);
341 int (*write) (struct file *file, const char __user *buf, size_t nbytes,
342 loff_t *ppos);
343 int (*release) (struct inode *inode, struct file *file);
344 };
345
346 static inline struct cpuset *__d_cs(struct dentry *dentry)
347 {
348 return dentry->d_fsdata;
349 }
350
351 static inline struct cftype *__d_cft(struct dentry *dentry)
352 {
353 return dentry->d_fsdata;
354 }
355
356 /*
357 * Call with cpuset_sem held. Writes path of cpuset into buf.
358 * Returns 0 on success, -errno on error.
359 */
360
361 static int cpuset_path(const struct cpuset *cs, char *buf, int buflen)
362 {
363 char *start;
364
365 start = buf + buflen;
366
367 *--start = '\0';
368 for (;;) {
369 int len = cs->dentry->d_name.len;
370 if ((start -= len) < buf)
371 return -ENAMETOOLONG;
372 memcpy(start, cs->dentry->d_name.name, len);
373 cs = cs->parent;
374 if (!cs)
375 break;
376 if (!cs->parent)
377 continue;
378 if (--start < buf)
379 return -ENAMETOOLONG;
380 *start = '/';
381 }
382 memmove(buf, start, buf + buflen - start);
383 return 0;
384 }
385
386 /*
387 * Notify userspace when a cpuset is released, by running
388 * /sbin/cpuset_release_agent with the name of the cpuset (path
389 * relative to the root of cpuset file system) as the argument.
390 *
391 * Most likely, this user command will try to rmdir this cpuset.
392 *
393 * This races with the possibility that some other task will be
394 * attached to this cpuset before it is removed, or that some other
395 * user task will 'mkdir' a child cpuset of this cpuset. That's ok.
396 * The presumed 'rmdir' will fail quietly if this cpuset is no longer
397 * unused, and this cpuset will be reprieved from its death sentence,
398 * to continue to serve a useful existence. Next time it's released,
399 * we will get notified again, if it still has 'notify_on_release' set.
400 *
401 * The final arg to call_usermodehelper() is 0, which means don't
402 * wait. The separate /sbin/cpuset_release_agent task is forked by
403 * call_usermodehelper(), then control in this thread returns here,
404 * without waiting for the release agent task. We don't bother to
405 * wait because the caller of this routine has no use for the exit
406 * status of the /sbin/cpuset_release_agent task, so no sense holding
407 * our caller up for that.
408 *
409 * The simple act of forking that task might require more memory,
410 * which might need cpuset_sem. So this routine must be called while
411 * cpuset_sem is not held, to avoid a possible deadlock. See also
412 * comments for check_for_release(), below.
413 */
414
415 static void cpuset_release_agent(const char *pathbuf)
416 {
417 char *argv[3], *envp[3];
418 int i;
419
420 if (!pathbuf)
421 return;
422
423 i = 0;
424 argv[i++] = "/sbin/cpuset_release_agent";
425 argv[i++] = (char *)pathbuf;
426 argv[i] = NULL;
427
428 i = 0;
429 /* minimal command environment */
430 envp[i++] = "HOME=/";
431 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
432 envp[i] = NULL;
433
434 call_usermodehelper(argv[0], argv, envp, 0);
435 kfree(pathbuf);
436 }
437
438 /*
439 * Either cs->count of using tasks transitioned to zero, or the
440 * cs->children list of child cpusets just became empty. If this
441 * cs is notify_on_release() and now both the user count is zero and
442 * the list of children is empty, prepare cpuset path in a kmalloc'd
443 * buffer, to be returned via ppathbuf, so that the caller can invoke
444 * cpuset_release_agent() with it later on, once cpuset_sem is dropped.
445 * Call here with cpuset_sem held.
446 *
447 * This check_for_release() routine is responsible for kmalloc'ing
448 * pathbuf. The above cpuset_release_agent() is responsible for
449 * kfree'ing pathbuf. The caller of these routines is responsible
450 * for providing a pathbuf pointer, initialized to NULL, then
451 * calling check_for_release() with cpuset_sem held and the address
452 * of the pathbuf pointer, then dropping cpuset_sem, then calling
453 * cpuset_release_agent() with pathbuf, as set by check_for_release().
454 */
455
456 static void check_for_release(struct cpuset *cs, char **ppathbuf)
457 {
458 if (notify_on_release(cs) && atomic_read(&cs->count) == 0 &&
459 list_empty(&cs->children)) {
460 char *buf;
461
462 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
463 if (!buf)
464 return;
465 if (cpuset_path(cs, buf, PAGE_SIZE) < 0)
466 kfree(buf);
467 else
468 *ppathbuf = buf;
469 }
470 }
471
472 /*
473 * Return in *pmask the portion of a cpusets's cpus_allowed that
474 * are online. If none are online, walk up the cpuset hierarchy
475 * until we find one that does have some online cpus. If we get
476 * all the way to the top and still haven't found any online cpus,
477 * return cpu_online_map. Or if passed a NULL cs from an exit'ing
478 * task, return cpu_online_map.
479 *
480 * One way or another, we guarantee to return some non-empty subset
481 * of cpu_online_map.
482 *
483 * Call with cpuset_sem held.
484 */
485
486 static void guarantee_online_cpus(const struct cpuset *cs, cpumask_t *pmask)
487 {
488 while (cs && !cpus_intersects(cs->cpus_allowed, cpu_online_map))
489 cs = cs->parent;
490 if (cs)
491 cpus_and(*pmask, cs->cpus_allowed, cpu_online_map);
492 else
493 *pmask = cpu_online_map;
494 BUG_ON(!cpus_intersects(*pmask, cpu_online_map));
495 }
496
497 /*
498 * Return in *pmask the portion of a cpusets's mems_allowed that
499 * are online. If none are online, walk up the cpuset hierarchy
500 * until we find one that does have some online mems. If we get
501 * all the way to the top and still haven't found any online mems,
502 * return node_online_map.
503 *
504 * One way or another, we guarantee to return some non-empty subset
505 * of node_online_map.
506 *
507 * Call with cpuset_sem held.
508 */
509
510 static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
511 {
512 while (cs && !nodes_intersects(cs->mems_allowed, node_online_map))
513 cs = cs->parent;
514 if (cs)
515 nodes_and(*pmask, cs->mems_allowed, node_online_map);
516 else
517 *pmask = node_online_map;
518 BUG_ON(!nodes_intersects(*pmask, node_online_map));
519 }
520
521 /*
522 * Refresh current tasks mems_allowed and mems_generation from
523 * current tasks cpuset. Call with cpuset_sem held.
524 *
525 * Be sure to call refresh_mems() on any cpuset operation which
526 * (1) holds cpuset_sem, and (2) might possibly alloc memory.
527 * Call after obtaining cpuset_sem lock, before any possible
528 * allocation. Otherwise one risks trying to allocate memory
529 * while the task cpuset_mems_generation is not the same as
530 * the mems_generation in its cpuset, which would deadlock on
531 * cpuset_sem in cpuset_update_current_mems_allowed().
532 *
533 * Since we hold cpuset_sem, once refresh_mems() is called, the
534 * test (current->cpuset_mems_generation != cs->mems_generation)
535 * in cpuset_update_current_mems_allowed() will remain false,
536 * until we drop cpuset_sem. Anyone else who would change our
537 * cpusets mems_generation needs to lock cpuset_sem first.
538 */
539
540 static void refresh_mems(void)
541 {
542 struct cpuset *cs = current->cpuset;
543
544 if (current->cpuset_mems_generation != cs->mems_generation) {
545 guarantee_online_mems(cs, &current->mems_allowed);
546 current->cpuset_mems_generation = cs->mems_generation;
547 }
548 }
549
550 /*
551 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
552 *
553 * One cpuset is a subset of another if all its allowed CPUs and
554 * Memory Nodes are a subset of the other, and its exclusive flags
555 * are only set if the other's are set.
556 */
557
558 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
559 {
560 return cpus_subset(p->cpus_allowed, q->cpus_allowed) &&
561 nodes_subset(p->mems_allowed, q->mems_allowed) &&
562 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
563 is_mem_exclusive(p) <= is_mem_exclusive(q);
564 }
565
566 /*
567 * validate_change() - Used to validate that any proposed cpuset change
568 * follows the structural rules for cpusets.
569 *
570 * If we replaced the flag and mask values of the current cpuset
571 * (cur) with those values in the trial cpuset (trial), would
572 * our various subset and exclusive rules still be valid? Presumes
573 * cpuset_sem held.
574 *
575 * 'cur' is the address of an actual, in-use cpuset. Operations
576 * such as list traversal that depend on the actual address of the
577 * cpuset in the list must use cur below, not trial.
578 *
579 * 'trial' is the address of bulk structure copy of cur, with
580 * perhaps one or more of the fields cpus_allowed, mems_allowed,
581 * or flags changed to new, trial values.
582 *
583 * Return 0 if valid, -errno if not.
584 */
585
586 static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
587 {
588 struct cpuset *c, *par;
589
590 /* Each of our child cpusets must be a subset of us */
591 list_for_each_entry(c, &cur->children, sibling) {
592 if (!is_cpuset_subset(c, trial))
593 return -EBUSY;
594 }
595
596 /* Remaining checks don't apply to root cpuset */
597 if ((par = cur->parent) == NULL)
598 return 0;
599
600 /* We must be a subset of our parent cpuset */
601 if (!is_cpuset_subset(trial, par))
602 return -EACCES;
603
604 /* If either I or some sibling (!= me) is exclusive, we can't overlap */
605 list_for_each_entry(c, &par->children, sibling) {
606 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
607 c != cur &&
608 cpus_intersects(trial->cpus_allowed, c->cpus_allowed))
609 return -EINVAL;
610 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
611 c != cur &&
612 nodes_intersects(trial->mems_allowed, c->mems_allowed))
613 return -EINVAL;
614 }
615
616 return 0;
617 }
618
619 /*
620 * For a given cpuset cur, partition the system as follows
621 * a. All cpus in the parent cpuset's cpus_allowed that are not part of any
622 * exclusive child cpusets
623 * b. All cpus in the current cpuset's cpus_allowed that are not part of any
624 * exclusive child cpusets
625 * Build these two partitions by calling partition_sched_domains
626 *
627 * Call with cpuset_sem held. May nest a call to the
628 * lock_cpu_hotplug()/unlock_cpu_hotplug() pair.
629 */
630 static void update_cpu_domains(struct cpuset *cur)
631 {
632 struct cpuset *c, *par = cur->parent;
633 cpumask_t pspan, cspan;
634
635 if (par == NULL || cpus_empty(cur->cpus_allowed))
636 return;
637
638 /*
639 * Hack to avoid 2.6.13 partial node dynamic sched domain bug.
640 * Require the 'cpu_exclusive' cpuset to include all (or none)
641 * of the CPUs on each node, or return w/o changing sched domains.
642 * Remove this hack when dynamic sched domains fixed.
643 */
644 {
645 int i, j;
646
647 for_each_cpu_mask(i, cur->cpus_allowed) {
648 for_each_cpu_mask(j, node_to_cpumask(cpu_to_node(i))) {
649 if (!cpu_isset(j, cur->cpus_allowed))
650 return;
651 }
652 }
653 }
654
655 /*
656 * Get all cpus from parent's cpus_allowed not part of exclusive
657 * children
658 */
659 pspan = par->cpus_allowed;
660 list_for_each_entry(c, &par->children, sibling) {
661 if (is_cpu_exclusive(c))
662 cpus_andnot(pspan, pspan, c->cpus_allowed);
663 }
664 if (is_removed(cur) || !is_cpu_exclusive(cur)) {
665 cpus_or(pspan, pspan, cur->cpus_allowed);
666 if (cpus_equal(pspan, cur->cpus_allowed))
667 return;
668 cspan = CPU_MASK_NONE;
669 } else {
670 if (cpus_empty(pspan))
671 return;
672 cspan = cur->cpus_allowed;
673 /*
674 * Get all cpus from current cpuset's cpus_allowed not part
675 * of exclusive children
676 */
677 list_for_each_entry(c, &cur->children, sibling) {
678 if (is_cpu_exclusive(c))
679 cpus_andnot(cspan, cspan, c->cpus_allowed);
680 }
681 }
682
683 lock_cpu_hotplug();
684 partition_sched_domains(&pspan, &cspan);
685 unlock_cpu_hotplug();
686 }
687
688 static int update_cpumask(struct cpuset *cs, char *buf)
689 {
690 struct cpuset trialcs;
691 int retval, cpus_unchanged;
692
693 trialcs = *cs;
694 retval = cpulist_parse(buf, trialcs.cpus_allowed);
695 if (retval < 0)
696 return retval;
697 cpus_and(trialcs.cpus_allowed, trialcs.cpus_allowed, cpu_online_map);
698 if (cpus_empty(trialcs.cpus_allowed))
699 return -ENOSPC;
700 retval = validate_change(cs, &trialcs);
701 if (retval < 0)
702 return retval;
703 cpus_unchanged = cpus_equal(cs->cpus_allowed, trialcs.cpus_allowed);
704 cs->cpus_allowed = trialcs.cpus_allowed;
705 if (is_cpu_exclusive(cs) && !cpus_unchanged)
706 update_cpu_domains(cs);
707 return 0;
708 }
709
710 static int update_nodemask(struct cpuset *cs, char *buf)
711 {
712 struct cpuset trialcs;
713 int retval;
714
715 trialcs = *cs;
716 retval = nodelist_parse(buf, trialcs.mems_allowed);
717 if (retval < 0)
718 return retval;
719 nodes_and(trialcs.mems_allowed, trialcs.mems_allowed, node_online_map);
720 if (nodes_empty(trialcs.mems_allowed))
721 return -ENOSPC;
722 retval = validate_change(cs, &trialcs);
723 if (retval == 0) {
724 cs->mems_allowed = trialcs.mems_allowed;
725 atomic_inc(&cpuset_mems_generation);
726 cs->mems_generation = atomic_read(&cpuset_mems_generation);
727 }
728 return retval;
729 }
730
731 /*
732 * update_flag - read a 0 or a 1 in a file and update associated flag
733 * bit: the bit to update (CS_CPU_EXCLUSIVE, CS_MEM_EXCLUSIVE,
734 * CS_NOTIFY_ON_RELEASE)
735 * cs: the cpuset to update
736 * buf: the buffer where we read the 0 or 1
737 */
738
739 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs, char *buf)
740 {
741 int turning_on;
742 struct cpuset trialcs;
743 int err, cpu_exclusive_changed;
744
745 turning_on = (simple_strtoul(buf, NULL, 10) != 0);
746
747 trialcs = *cs;
748 if (turning_on)
749 set_bit(bit, &trialcs.flags);
750 else
751 clear_bit(bit, &trialcs.flags);
752
753 err = validate_change(cs, &trialcs);
754 if (err < 0)
755 return err;
756 cpu_exclusive_changed =
757 (is_cpu_exclusive(cs) != is_cpu_exclusive(&trialcs));
758 if (turning_on)
759 set_bit(bit, &cs->flags);
760 else
761 clear_bit(bit, &cs->flags);
762
763 if (cpu_exclusive_changed)
764 update_cpu_domains(cs);
765 return 0;
766 }
767
768 static int attach_task(struct cpuset *cs, char *pidbuf, char **ppathbuf)
769 {
770 pid_t pid;
771 struct task_struct *tsk;
772 struct cpuset *oldcs;
773 cpumask_t cpus;
774
775 if (sscanf(pidbuf, "%d", &pid) != 1)
776 return -EIO;
777 if (cpus_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
778 return -ENOSPC;
779
780 if (pid) {
781 read_lock(&tasklist_lock);
782
783 tsk = find_task_by_pid(pid);
784 if (!tsk) {
785 read_unlock(&tasklist_lock);
786 return -ESRCH;
787 }
788
789 get_task_struct(tsk);
790 read_unlock(&tasklist_lock);
791
792 if ((current->euid) && (current->euid != tsk->uid)
793 && (current->euid != tsk->suid)) {
794 put_task_struct(tsk);
795 return -EACCES;
796 }
797 } else {
798 tsk = current;
799 get_task_struct(tsk);
800 }
801
802 task_lock(tsk);
803 oldcs = tsk->cpuset;
804 if (!oldcs) {
805 task_unlock(tsk);
806 put_task_struct(tsk);
807 return -ESRCH;
808 }
809 atomic_inc(&cs->count);
810 tsk->cpuset = cs;
811 task_unlock(tsk);
812
813 guarantee_online_cpus(cs, &cpus);
814 set_cpus_allowed(tsk, cpus);
815
816 put_task_struct(tsk);
817 if (atomic_dec_and_test(&oldcs->count))
818 check_for_release(oldcs, ppathbuf);
819 return 0;
820 }
821
822 /* The various types of files and directories in a cpuset file system */
823
824 typedef enum {
825 FILE_ROOT,
826 FILE_DIR,
827 FILE_CPULIST,
828 FILE_MEMLIST,
829 FILE_CPU_EXCLUSIVE,
830 FILE_MEM_EXCLUSIVE,
831 FILE_NOTIFY_ON_RELEASE,
832 FILE_TASKLIST,
833 } cpuset_filetype_t;
834
835 static ssize_t cpuset_common_file_write(struct file *file, const char __user *userbuf,
836 size_t nbytes, loff_t *unused_ppos)
837 {
838 struct cpuset *cs = __d_cs(file->f_dentry->d_parent);
839 struct cftype *cft = __d_cft(file->f_dentry);
840 cpuset_filetype_t type = cft->private;
841 char *buffer;
842 char *pathbuf = NULL;
843 int retval = 0;
844
845 /* Crude upper limit on largest legitimate cpulist user might write. */
846 if (nbytes > 100 + 6 * NR_CPUS)
847 return -E2BIG;
848
849 /* +1 for nul-terminator */
850 if ((buffer = kmalloc(nbytes + 1, GFP_KERNEL)) == 0)
851 return -ENOMEM;
852
853 if (copy_from_user(buffer, userbuf, nbytes)) {
854 retval = -EFAULT;
855 goto out1;
856 }
857 buffer[nbytes] = 0; /* nul-terminate */
858
859 down(&cpuset_sem);
860
861 if (is_removed(cs)) {
862 retval = -ENODEV;
863 goto out2;
864 }
865
866 switch (type) {
867 case FILE_CPULIST:
868 retval = update_cpumask(cs, buffer);
869 break;
870 case FILE_MEMLIST:
871 retval = update_nodemask(cs, buffer);
872 break;
873 case FILE_CPU_EXCLUSIVE:
874 retval = update_flag(CS_CPU_EXCLUSIVE, cs, buffer);
875 break;
876 case FILE_MEM_EXCLUSIVE:
877 retval = update_flag(CS_MEM_EXCLUSIVE, cs, buffer);
878 break;
879 case FILE_NOTIFY_ON_RELEASE:
880 retval = update_flag(CS_NOTIFY_ON_RELEASE, cs, buffer);
881 break;
882 case FILE_TASKLIST:
883 retval = attach_task(cs, buffer, &pathbuf);
884 break;
885 default:
886 retval = -EINVAL;
887 goto out2;
888 }
889
890 if (retval == 0)
891 retval = nbytes;
892 out2:
893 up(&cpuset_sem);
894 cpuset_release_agent(pathbuf);
895 out1:
896 kfree(buffer);
897 return retval;
898 }
899
900 static ssize_t cpuset_file_write(struct file *file, const char __user *buf,
901 size_t nbytes, loff_t *ppos)
902 {
903 ssize_t retval = 0;
904 struct cftype *cft = __d_cft(file->f_dentry);
905 if (!cft)
906 return -ENODEV;
907
908 /* special function ? */
909 if (cft->write)
910 retval = cft->write(file, buf, nbytes, ppos);
911 else
912 retval = cpuset_common_file_write(file, buf, nbytes, ppos);
913
914 return retval;
915 }
916
917 /*
918 * These ascii lists should be read in a single call, by using a user
919 * buffer large enough to hold the entire map. If read in smaller
920 * chunks, there is no guarantee of atomicity. Since the display format
921 * used, list of ranges of sequential numbers, is variable length,
922 * and since these maps can change value dynamically, one could read
923 * gibberish by doing partial reads while a list was changing.
924 * A single large read to a buffer that crosses a page boundary is
925 * ok, because the result being copied to user land is not recomputed
926 * across a page fault.
927 */
928
929 static int cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
930 {
931 cpumask_t mask;
932
933 down(&cpuset_sem);
934 mask = cs->cpus_allowed;
935 up(&cpuset_sem);
936
937 return cpulist_scnprintf(page, PAGE_SIZE, mask);
938 }
939
940 static int cpuset_sprintf_memlist(char *page, struct cpuset *cs)
941 {
942 nodemask_t mask;
943
944 down(&cpuset_sem);
945 mask = cs->mems_allowed;
946 up(&cpuset_sem);
947
948 return nodelist_scnprintf(page, PAGE_SIZE, mask);
949 }
950
951 static ssize_t cpuset_common_file_read(struct file *file, char __user *buf,
952 size_t nbytes, loff_t *ppos)
953 {
954 struct cftype *cft = __d_cft(file->f_dentry);
955 struct cpuset *cs = __d_cs(file->f_dentry->d_parent);
956 cpuset_filetype_t type = cft->private;
957 char *page;
958 ssize_t retval = 0;
959 char *s;
960 char *start;
961 size_t n;
962
963 if (!(page = (char *)__get_free_page(GFP_KERNEL)))
964 return -ENOMEM;
965
966 s = page;
967
968 switch (type) {
969 case FILE_CPULIST:
970 s += cpuset_sprintf_cpulist(s, cs);
971 break;
972 case FILE_MEMLIST:
973 s += cpuset_sprintf_memlist(s, cs);
974 break;
975 case FILE_CPU_EXCLUSIVE:
976 *s++ = is_cpu_exclusive(cs) ? '1' : '0';
977 break;
978 case FILE_MEM_EXCLUSIVE:
979 *s++ = is_mem_exclusive(cs) ? '1' : '0';
980 break;
981 case FILE_NOTIFY_ON_RELEASE:
982 *s++ = notify_on_release(cs) ? '1' : '0';
983 break;
984 default:
985 retval = -EINVAL;
986 goto out;
987 }
988 *s++ = '\n';
989 *s = '\0';
990
991 start = page + *ppos;
992 n = s - start;
993 retval = n - copy_to_user(buf, start, min(n, nbytes));
994 *ppos += retval;
995 out:
996 free_page((unsigned long)page);
997 return retval;
998 }
999
1000 static ssize_t cpuset_file_read(struct file *file, char __user *buf, size_t nbytes,
1001 loff_t *ppos)
1002 {
1003 ssize_t retval = 0;
1004 struct cftype *cft = __d_cft(file->f_dentry);
1005 if (!cft)
1006 return -ENODEV;
1007
1008 /* special function ? */
1009 if (cft->read)
1010 retval = cft->read(file, buf, nbytes, ppos);
1011 else
1012 retval = cpuset_common_file_read(file, buf, nbytes, ppos);
1013
1014 return retval;
1015 }
1016
1017 static int cpuset_file_open(struct inode *inode, struct file *file)
1018 {
1019 int err;
1020 struct cftype *cft;
1021
1022 err = generic_file_open(inode, file);
1023 if (err)
1024 return err;
1025
1026 cft = __d_cft(file->f_dentry);
1027 if (!cft)
1028 return -ENODEV;
1029 if (cft->open)
1030 err = cft->open(inode, file);
1031 else
1032 err = 0;
1033
1034 return err;
1035 }
1036
1037 static int cpuset_file_release(struct inode *inode, struct file *file)
1038 {
1039 struct cftype *cft = __d_cft(file->f_dentry);
1040 if (cft->release)
1041 return cft->release(inode, file);
1042 return 0;
1043 }
1044
1045 static struct file_operations cpuset_file_operations = {
1046 .read = cpuset_file_read,
1047 .write = cpuset_file_write,
1048 .llseek = generic_file_llseek,
1049 .open = cpuset_file_open,
1050 .release = cpuset_file_release,
1051 };
1052
1053 static struct inode_operations cpuset_dir_inode_operations = {
1054 .lookup = simple_lookup,
1055 .mkdir = cpuset_mkdir,
1056 .rmdir = cpuset_rmdir,
1057 };
1058
1059 static int cpuset_create_file(struct dentry *dentry, int mode)
1060 {
1061 struct inode *inode;
1062
1063 if (!dentry)
1064 return -ENOENT;
1065 if (dentry->d_inode)
1066 return -EEXIST;
1067
1068 inode = cpuset_new_inode(mode);
1069 if (!inode)
1070 return -ENOMEM;
1071
1072 if (S_ISDIR(mode)) {
1073 inode->i_op = &cpuset_dir_inode_operations;
1074 inode->i_fop = &simple_dir_operations;
1075
1076 /* start off with i_nlink == 2 (for "." entry) */
1077 inode->i_nlink++;
1078 } else if (S_ISREG(mode)) {
1079 inode->i_size = 0;
1080 inode->i_fop = &cpuset_file_operations;
1081 }
1082
1083 d_instantiate(dentry, inode);
1084 dget(dentry); /* Extra count - pin the dentry in core */
1085 return 0;
1086 }
1087
1088 /*
1089 * cpuset_create_dir - create a directory for an object.
1090 * cs: the cpuset we create the directory for.
1091 * It must have a valid ->parent field
1092 * And we are going to fill its ->dentry field.
1093 * name: The name to give to the cpuset directory. Will be copied.
1094 * mode: mode to set on new directory.
1095 */
1096
1097 static int cpuset_create_dir(struct cpuset *cs, const char *name, int mode)
1098 {
1099 struct dentry *dentry = NULL;
1100 struct dentry *parent;
1101 int error = 0;
1102
1103 parent = cs->parent->dentry;
1104 dentry = cpuset_get_dentry(parent, name);
1105 if (IS_ERR(dentry))
1106 return PTR_ERR(dentry);
1107 error = cpuset_create_file(dentry, S_IFDIR | mode);
1108 if (!error) {
1109 dentry->d_fsdata = cs;
1110 parent->d_inode->i_nlink++;
1111 cs->dentry = dentry;
1112 }
1113 dput(dentry);
1114
1115 return error;
1116 }
1117
1118 static int cpuset_add_file(struct dentry *dir, const struct cftype *cft)
1119 {
1120 struct dentry *dentry;
1121 int error;
1122
1123 down(&dir->d_inode->i_sem);
1124 dentry = cpuset_get_dentry(dir, cft->name);
1125 if (!IS_ERR(dentry)) {
1126 error = cpuset_create_file(dentry, 0644 | S_IFREG);
1127 if (!error)
1128 dentry->d_fsdata = (void *)cft;
1129 dput(dentry);
1130 } else
1131 error = PTR_ERR(dentry);
1132 up(&dir->d_inode->i_sem);
1133 return error;
1134 }
1135
1136 /*
1137 * Stuff for reading the 'tasks' file.
1138 *
1139 * Reading this file can return large amounts of data if a cpuset has
1140 * *lots* of attached tasks. So it may need several calls to read(),
1141 * but we cannot guarantee that the information we produce is correct
1142 * unless we produce it entirely atomically.
1143 *
1144 * Upon tasks file open(), a struct ctr_struct is allocated, that
1145 * will have a pointer to an array (also allocated here). The struct
1146 * ctr_struct * is stored in file->private_data. Its resources will
1147 * be freed by release() when the file is closed. The array is used
1148 * to sprintf the PIDs and then used by read().
1149 */
1150
1151 /* cpusets_tasks_read array */
1152
1153 struct ctr_struct {
1154 char *buf;
1155 int bufsz;
1156 };
1157
1158 /*
1159 * Load into 'pidarray' up to 'npids' of the tasks using cpuset 'cs'.
1160 * Return actual number of pids loaded.
1161 */
1162 static inline int pid_array_load(pid_t *pidarray, int npids, struct cpuset *cs)
1163 {
1164 int n = 0;
1165 struct task_struct *g, *p;
1166
1167 read_lock(&tasklist_lock);
1168
1169 do_each_thread(g, p) {
1170 if (p->cpuset == cs) {
1171 pidarray[n++] = p->pid;
1172 if (unlikely(n == npids))
1173 goto array_full;
1174 }
1175 } while_each_thread(g, p);
1176
1177 array_full:
1178 read_unlock(&tasklist_lock);
1179 return n;
1180 }
1181
1182 static int cmppid(const void *a, const void *b)
1183 {
1184 return *(pid_t *)a - *(pid_t *)b;
1185 }
1186
1187 /*
1188 * Convert array 'a' of 'npids' pid_t's to a string of newline separated
1189 * decimal pids in 'buf'. Don't write more than 'sz' chars, but return
1190 * count 'cnt' of how many chars would be written if buf were large enough.
1191 */
1192 static int pid_array_to_buf(char *buf, int sz, pid_t *a, int npids)
1193 {
1194 int cnt = 0;
1195 int i;
1196
1197 for (i = 0; i < npids; i++)
1198 cnt += snprintf(buf + cnt, max(sz - cnt, 0), "%d\n", a[i]);
1199 return cnt;
1200 }
1201
1202 static int cpuset_tasks_open(struct inode *unused, struct file *file)
1203 {
1204 struct cpuset *cs = __d_cs(file->f_dentry->d_parent);
1205 struct ctr_struct *ctr;
1206 pid_t *pidarray;
1207 int npids;
1208 char c;
1209
1210 if (!(file->f_mode & FMODE_READ))
1211 return 0;
1212
1213 ctr = kmalloc(sizeof(*ctr), GFP_KERNEL);
1214 if (!ctr)
1215 goto err0;
1216
1217 /*
1218 * If cpuset gets more users after we read count, we won't have
1219 * enough space - tough. This race is indistinguishable to the
1220 * caller from the case that the additional cpuset users didn't
1221 * show up until sometime later on.
1222 */
1223 npids = atomic_read(&cs->count);
1224 pidarray = kmalloc(npids * sizeof(pid_t), GFP_KERNEL);
1225 if (!pidarray)
1226 goto err1;
1227
1228 npids = pid_array_load(pidarray, npids, cs);
1229 sort(pidarray, npids, sizeof(pid_t), cmppid, NULL);
1230
1231 /* Call pid_array_to_buf() twice, first just to get bufsz */
1232 ctr->bufsz = pid_array_to_buf(&c, sizeof(c), pidarray, npids) + 1;
1233 ctr->buf = kmalloc(ctr->bufsz, GFP_KERNEL);
1234 if (!ctr->buf)
1235 goto err2;
1236 ctr->bufsz = pid_array_to_buf(ctr->buf, ctr->bufsz, pidarray, npids);
1237
1238 kfree(pidarray);
1239 file->private_data = ctr;
1240 return 0;
1241
1242 err2:
1243 kfree(pidarray);
1244 err1:
1245 kfree(ctr);
1246 err0:
1247 return -ENOMEM;
1248 }
1249
1250 static ssize_t cpuset_tasks_read(struct file *file, char __user *buf,
1251 size_t nbytes, loff_t *ppos)
1252 {
1253 struct ctr_struct *ctr = file->private_data;
1254
1255 if (*ppos + nbytes > ctr->bufsz)
1256 nbytes = ctr->bufsz - *ppos;
1257 if (copy_to_user(buf, ctr->buf + *ppos, nbytes))
1258 return -EFAULT;
1259 *ppos += nbytes;
1260 return nbytes;
1261 }
1262
1263 static int cpuset_tasks_release(struct inode *unused_inode, struct file *file)
1264 {
1265 struct ctr_struct *ctr;
1266
1267 if (file->f_mode & FMODE_READ) {
1268 ctr = file->private_data;
1269 kfree(ctr->buf);
1270 kfree(ctr);
1271 }
1272 return 0;
1273 }
1274
1275 /*
1276 * for the common functions, 'private' gives the type of file
1277 */
1278
1279 static struct cftype cft_tasks = {
1280 .name = "tasks",
1281 .open = cpuset_tasks_open,
1282 .read = cpuset_tasks_read,
1283 .release = cpuset_tasks_release,
1284 .private = FILE_TASKLIST,
1285 };
1286
1287 static struct cftype cft_cpus = {
1288 .name = "cpus",
1289 .private = FILE_CPULIST,
1290 };
1291
1292 static struct cftype cft_mems = {
1293 .name = "mems",
1294 .private = FILE_MEMLIST,
1295 };
1296
1297 static struct cftype cft_cpu_exclusive = {
1298 .name = "cpu_exclusive",
1299 .private = FILE_CPU_EXCLUSIVE,
1300 };
1301
1302 static struct cftype cft_mem_exclusive = {
1303 .name = "mem_exclusive",
1304 .private = FILE_MEM_EXCLUSIVE,
1305 };
1306
1307 static struct cftype cft_notify_on_release = {
1308 .name = "notify_on_release",
1309 .private = FILE_NOTIFY_ON_RELEASE,
1310 };
1311
1312 static int cpuset_populate_dir(struct dentry *cs_dentry)
1313 {
1314 int err;
1315
1316 if ((err = cpuset_add_file(cs_dentry, &cft_cpus)) < 0)
1317 return err;
1318 if ((err = cpuset_add_file(cs_dentry, &cft_mems)) < 0)
1319 return err;
1320 if ((err = cpuset_add_file(cs_dentry, &cft_cpu_exclusive)) < 0)
1321 return err;
1322 if ((err = cpuset_add_file(cs_dentry, &cft_mem_exclusive)) < 0)
1323 return err;
1324 if ((err = cpuset_add_file(cs_dentry, &cft_notify_on_release)) < 0)
1325 return err;
1326 if ((err = cpuset_add_file(cs_dentry, &cft_tasks)) < 0)
1327 return err;
1328 return 0;
1329 }
1330
1331 /*
1332 * cpuset_create - create a cpuset
1333 * parent: cpuset that will be parent of the new cpuset.
1334 * name: name of the new cpuset. Will be strcpy'ed.
1335 * mode: mode to set on new inode
1336 *
1337 * Must be called with the semaphore on the parent inode held
1338 */
1339
1340 static long cpuset_create(struct cpuset *parent, const char *name, int mode)
1341 {
1342 struct cpuset *cs;
1343 int err;
1344
1345 cs = kmalloc(sizeof(*cs), GFP_KERNEL);
1346 if (!cs)
1347 return -ENOMEM;
1348
1349 down(&cpuset_sem);
1350 refresh_mems();
1351 cs->flags = 0;
1352 if (notify_on_release(parent))
1353 set_bit(CS_NOTIFY_ON_RELEASE, &cs->flags);
1354 cs->cpus_allowed = CPU_MASK_NONE;
1355 cs->mems_allowed = NODE_MASK_NONE;
1356 atomic_set(&cs->count, 0);
1357 INIT_LIST_HEAD(&cs->sibling);
1358 INIT_LIST_HEAD(&cs->children);
1359 atomic_inc(&cpuset_mems_generation);
1360 cs->mems_generation = atomic_read(&cpuset_mems_generation);
1361
1362 cs->parent = parent;
1363
1364 list_add(&cs->sibling, &cs->parent->children);
1365
1366 err = cpuset_create_dir(cs, name, mode);
1367 if (err < 0)
1368 goto err;
1369
1370 /*
1371 * Release cpuset_sem before cpuset_populate_dir() because it
1372 * will down() this new directory's i_sem and if we race with
1373 * another mkdir, we might deadlock.
1374 */
1375 up(&cpuset_sem);
1376
1377 err = cpuset_populate_dir(cs->dentry);
1378 /* If err < 0, we have a half-filled directory - oh well ;) */
1379 return 0;
1380 err:
1381 list_del(&cs->sibling);
1382 up(&cpuset_sem);
1383 kfree(cs);
1384 return err;
1385 }
1386
1387 static int cpuset_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1388 {
1389 struct cpuset *c_parent = dentry->d_parent->d_fsdata;
1390
1391 /* the vfs holds inode->i_sem already */
1392 return cpuset_create(c_parent, dentry->d_name.name, mode | S_IFDIR);
1393 }
1394
1395 static int cpuset_rmdir(struct inode *unused_dir, struct dentry *dentry)
1396 {
1397 struct cpuset *cs = dentry->d_fsdata;
1398 struct dentry *d;
1399 struct cpuset *parent;
1400 char *pathbuf = NULL;
1401
1402 /* the vfs holds both inode->i_sem already */
1403
1404 down(&cpuset_sem);
1405 refresh_mems();
1406 if (atomic_read(&cs->count) > 0) {
1407 up(&cpuset_sem);
1408 return -EBUSY;
1409 }
1410 if (!list_empty(&cs->children)) {
1411 up(&cpuset_sem);
1412 return -EBUSY;
1413 }
1414 parent = cs->parent;
1415 set_bit(CS_REMOVED, &cs->flags);
1416 if (is_cpu_exclusive(cs))
1417 update_cpu_domains(cs);
1418 list_del(&cs->sibling); /* delete my sibling from parent->children */
1419 if (list_empty(&parent->children))
1420 check_for_release(parent, &pathbuf);
1421 spin_lock(&cs->dentry->d_lock);
1422 d = dget(cs->dentry);
1423 cs->dentry = NULL;
1424 spin_unlock(&d->d_lock);
1425 cpuset_d_remove_dir(d);
1426 dput(d);
1427 up(&cpuset_sem);
1428 cpuset_release_agent(pathbuf);
1429 return 0;
1430 }
1431
1432 /**
1433 * cpuset_init - initialize cpusets at system boot
1434 *
1435 * Description: Initialize top_cpuset and the cpuset internal file system,
1436 **/
1437
1438 int __init cpuset_init(void)
1439 {
1440 struct dentry *root;
1441 int err;
1442
1443 top_cpuset.cpus_allowed = CPU_MASK_ALL;
1444 top_cpuset.mems_allowed = NODE_MASK_ALL;
1445
1446 atomic_inc(&cpuset_mems_generation);
1447 top_cpuset.mems_generation = atomic_read(&cpuset_mems_generation);
1448
1449 init_task.cpuset = &top_cpuset;
1450
1451 err = register_filesystem(&cpuset_fs_type);
1452 if (err < 0)
1453 goto out;
1454 cpuset_mount = kern_mount(&cpuset_fs_type);
1455 if (IS_ERR(cpuset_mount)) {
1456 printk(KERN_ERR "cpuset: could not mount!\n");
1457 err = PTR_ERR(cpuset_mount);
1458 cpuset_mount = NULL;
1459 goto out;
1460 }
1461 root = cpuset_mount->mnt_sb->s_root;
1462 root->d_fsdata = &top_cpuset;
1463 root->d_inode->i_nlink++;
1464 top_cpuset.dentry = root;
1465 root->d_inode->i_op = &cpuset_dir_inode_operations;
1466 err = cpuset_populate_dir(root);
1467 out:
1468 return err;
1469 }
1470
1471 /**
1472 * cpuset_init_smp - initialize cpus_allowed
1473 *
1474 * Description: Finish top cpuset after cpu, node maps are initialized
1475 **/
1476
1477 void __init cpuset_init_smp(void)
1478 {
1479 top_cpuset.cpus_allowed = cpu_online_map;
1480 top_cpuset.mems_allowed = node_online_map;
1481 }
1482
1483 /**
1484 * cpuset_fork - attach newly forked task to its parents cpuset.
1485 * @tsk: pointer to task_struct of forking parent process.
1486 *
1487 * Description: By default, on fork, a task inherits its
1488 * parent's cpuset. The pointer to the shared cpuset is
1489 * automatically copied in fork.c by dup_task_struct().
1490 * This cpuset_fork() routine need only increment the usage
1491 * counter in that cpuset.
1492 **/
1493
1494 void cpuset_fork(struct task_struct *tsk)
1495 {
1496 atomic_inc(&tsk->cpuset->count);
1497 }
1498
1499 /**
1500 * cpuset_exit - detach cpuset from exiting task
1501 * @tsk: pointer to task_struct of exiting process
1502 *
1503 * Description: Detach cpuset from @tsk and release it.
1504 *
1505 * Note that cpusets marked notify_on_release force every task
1506 * in them to take the global cpuset_sem semaphore when exiting.
1507 * This could impact scaling on very large systems. Be reluctant
1508 * to use notify_on_release cpusets where very high task exit
1509 * scaling is required on large systems.
1510 *
1511 * Don't even think about derefencing 'cs' after the cpuset use
1512 * count goes to zero, except inside a critical section guarded
1513 * by the cpuset_sem semaphore. If you don't hold cpuset_sem,
1514 * then a zero cpuset use count is a license to any other task to
1515 * nuke the cpuset immediately.
1516 **/
1517
1518 void cpuset_exit(struct task_struct *tsk)
1519 {
1520 struct cpuset *cs;
1521
1522 task_lock(tsk);
1523 cs = tsk->cpuset;
1524 tsk->cpuset = NULL;
1525 task_unlock(tsk);
1526
1527 if (notify_on_release(cs)) {
1528 char *pathbuf = NULL;
1529
1530 down(&cpuset_sem);
1531 if (atomic_dec_and_test(&cs->count))
1532 check_for_release(cs, &pathbuf);
1533 up(&cpuset_sem);
1534 cpuset_release_agent(pathbuf);
1535 } else {
1536 atomic_dec(&cs->count);
1537 }
1538 }
1539
1540 /**
1541 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
1542 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
1543 *
1544 * Description: Returns the cpumask_t cpus_allowed of the cpuset
1545 * attached to the specified @tsk. Guaranteed to return some non-empty
1546 * subset of cpu_online_map, even if this means going outside the
1547 * tasks cpuset.
1548 **/
1549
1550 cpumask_t cpuset_cpus_allowed(const struct task_struct *tsk)
1551 {
1552 cpumask_t mask;
1553
1554 down(&cpuset_sem);
1555 task_lock((struct task_struct *)tsk);
1556 guarantee_online_cpus(tsk->cpuset, &mask);
1557 task_unlock((struct task_struct *)tsk);
1558 up(&cpuset_sem);
1559
1560 return mask;
1561 }
1562
1563 void cpuset_init_current_mems_allowed(void)
1564 {
1565 current->mems_allowed = NODE_MASK_ALL;
1566 }
1567
1568 /**
1569 * cpuset_update_current_mems_allowed - update mems parameters to new values
1570 *
1571 * If the current tasks cpusets mems_allowed changed behind our backs,
1572 * update current->mems_allowed and mems_generation to the new value.
1573 * Do not call this routine if in_interrupt().
1574 */
1575
1576 void cpuset_update_current_mems_allowed(void)
1577 {
1578 struct cpuset *cs = current->cpuset;
1579
1580 if (!cs)
1581 return; /* task is exiting */
1582 if (current->cpuset_mems_generation != cs->mems_generation) {
1583 down(&cpuset_sem);
1584 refresh_mems();
1585 up(&cpuset_sem);
1586 }
1587 }
1588
1589 /**
1590 * cpuset_restrict_to_mems_allowed - limit nodes to current mems_allowed
1591 * @nodes: pointer to a node bitmap that is and-ed with mems_allowed
1592 */
1593 void cpuset_restrict_to_mems_allowed(unsigned long *nodes)
1594 {
1595 bitmap_and(nodes, nodes, nodes_addr(current->mems_allowed),
1596 MAX_NUMNODES);
1597 }
1598
1599 /**
1600 * cpuset_zonelist_valid_mems_allowed - check zonelist vs. curremt mems_allowed
1601 * @zl: the zonelist to be checked
1602 *
1603 * Are any of the nodes on zonelist zl allowed in current->mems_allowed?
1604 */
1605 int cpuset_zonelist_valid_mems_allowed(struct zonelist *zl)
1606 {
1607 int i;
1608
1609 for (i = 0; zl->zones[i]; i++) {
1610 int nid = zl->zones[i]->zone_pgdat->node_id;
1611
1612 if (node_isset(nid, current->mems_allowed))
1613 return 1;
1614 }
1615 return 0;
1616 }
1617
1618 /**
1619 * cpuset_zone_allowed - is zone z allowed in current->mems_allowed
1620 * @z: zone in question
1621 *
1622 * Is zone z allowed in current->mems_allowed, or is
1623 * the CPU in interrupt context? (zone is always allowed in this case)
1624 */
1625 int cpuset_zone_allowed(struct zone *z)
1626 {
1627 return in_interrupt() ||
1628 node_isset(z->zone_pgdat->node_id, current->mems_allowed);
1629 }
1630
1631 /*
1632 * proc_cpuset_show()
1633 * - Print tasks cpuset path into seq_file.
1634 * - Used for /proc/<pid>/cpuset.
1635 */
1636
1637 static int proc_cpuset_show(struct seq_file *m, void *v)
1638 {
1639 struct cpuset *cs;
1640 struct task_struct *tsk;
1641 char *buf;
1642 int retval = 0;
1643
1644 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1645 if (!buf)
1646 return -ENOMEM;
1647
1648 tsk = m->private;
1649 down(&cpuset_sem);
1650 task_lock(tsk);
1651 cs = tsk->cpuset;
1652 task_unlock(tsk);
1653 if (!cs) {
1654 retval = -EINVAL;
1655 goto out;
1656 }
1657
1658 retval = cpuset_path(cs, buf, PAGE_SIZE);
1659 if (retval < 0)
1660 goto out;
1661 seq_puts(m, buf);
1662 seq_putc(m, '\n');
1663 out:
1664 up(&cpuset_sem);
1665 kfree(buf);
1666 return retval;
1667 }
1668
1669 static int cpuset_open(struct inode *inode, struct file *file)
1670 {
1671 struct task_struct *tsk = PROC_I(inode)->task;
1672 return single_open(file, proc_cpuset_show, tsk);
1673 }
1674
1675 struct file_operations proc_cpuset_operations = {
1676 .open = cpuset_open,
1677 .read = seq_read,
1678 .llseek = seq_lseek,
1679 .release = single_release,
1680 };
1681
1682 /* Display task cpus_allowed, mems_allowed in /proc/<pid>/status file. */
1683 char *cpuset_task_status_allowed(struct task_struct *task, char *buffer)
1684 {
1685 buffer += sprintf(buffer, "Cpus_allowed:\t");
1686 buffer += cpumask_scnprintf(buffer, PAGE_SIZE, task->cpus_allowed);
1687 buffer += sprintf(buffer, "\n");
1688 buffer += sprintf(buffer, "Mems_allowed:\t");
1689 buffer += nodemask_scnprintf(buffer, PAGE_SIZE, task->mems_allowed);
1690 buffer += sprintf(buffer, "\n");
1691 return buffer;
1692 }
This page took 0.065648 seconds and 5 git commands to generate.