cpuset: cleanup cpuset[_can]_attach()
[deliverable/linux.git] / kernel / cpuset.c
1 /*
2 * kernel/cpuset.c
3 *
4 * Processor and Memory placement constraints for sets of tasks.
5 *
6 * Copyright (C) 2003 BULL SA.
7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8 * Copyright (C) 2006 Google, Inc
9 *
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
12 *
13 * 2003-10-10 Written by Simon Derr.
14 * 2003-10-22 Updates by Stephen Hemminger.
15 * 2004 May-July Rework by Paul Jackson.
16 * 2006 Rework by Paul Menage to use generic cgroups
17 * 2008 Rework of the scheduler domains and CPU hotplug handling
18 * by Max Krasnyansky
19 *
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
23 */
24
25 #include <linux/cpu.h>
26 #include <linux/cpumask.h>
27 #include <linux/cpuset.h>
28 #include <linux/err.h>
29 #include <linux/errno.h>
30 #include <linux/file.h>
31 #include <linux/fs.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/kernel.h>
35 #include <linux/kmod.h>
36 #include <linux/list.h>
37 #include <linux/mempolicy.h>
38 #include <linux/mm.h>
39 #include <linux/memory.h>
40 #include <linux/export.h>
41 #include <linux/mount.h>
42 #include <linux/namei.h>
43 #include <linux/pagemap.h>
44 #include <linux/proc_fs.h>
45 #include <linux/rcupdate.h>
46 #include <linux/sched.h>
47 #include <linux/seq_file.h>
48 #include <linux/security.h>
49 #include <linux/slab.h>
50 #include <linux/spinlock.h>
51 #include <linux/stat.h>
52 #include <linux/string.h>
53 #include <linux/time.h>
54 #include <linux/backing-dev.h>
55 #include <linux/sort.h>
56
57 #include <asm/uaccess.h>
58 #include <linux/atomic.h>
59 #include <linux/mutex.h>
60 #include <linux/workqueue.h>
61 #include <linux/cgroup.h>
62
63 /*
64 * Workqueue for cpuset related tasks.
65 *
66 * Using kevent workqueue may cause deadlock when memory_migrate
67 * is set. So we create a separate workqueue thread for cpuset.
68 */
69 static struct workqueue_struct *cpuset_wq;
70
71 /*
72 * Tracks how many cpusets are currently defined in system.
73 * When there is only one cpuset (the root cpuset) we can
74 * short circuit some hooks.
75 */
76 int number_of_cpusets __read_mostly;
77
78 /* Forward declare cgroup structures */
79 struct cgroup_subsys cpuset_subsys;
80 struct cpuset;
81
82 /* See "Frequency meter" comments, below. */
83
84 struct fmeter {
85 int cnt; /* unprocessed events count */
86 int val; /* most recent output value */
87 time_t time; /* clock (secs) when val computed */
88 spinlock_t lock; /* guards read or write of above */
89 };
90
91 struct cpuset {
92 struct cgroup_subsys_state css;
93
94 unsigned long flags; /* "unsigned long" so bitops work */
95 cpumask_var_t cpus_allowed; /* CPUs allowed to tasks in cpuset */
96 nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */
97
98 struct cpuset *parent; /* my parent */
99
100 struct fmeter fmeter; /* memory_pressure filter */
101
102 /* partition number for rebuild_sched_domains() */
103 int pn;
104
105 /* for custom sched domain */
106 int relax_domain_level;
107
108 /* used for walking a cpuset hierarchy */
109 struct list_head stack_list;
110 };
111
112 /* Retrieve the cpuset for a cgroup */
113 static inline struct cpuset *cgroup_cs(struct cgroup *cont)
114 {
115 return container_of(cgroup_subsys_state(cont, cpuset_subsys_id),
116 struct cpuset, css);
117 }
118
119 /* Retrieve the cpuset for a task */
120 static inline struct cpuset *task_cs(struct task_struct *task)
121 {
122 return container_of(task_subsys_state(task, cpuset_subsys_id),
123 struct cpuset, css);
124 }
125
126 #ifdef CONFIG_NUMA
127 static inline bool task_has_mempolicy(struct task_struct *task)
128 {
129 return task->mempolicy;
130 }
131 #else
132 static inline bool task_has_mempolicy(struct task_struct *task)
133 {
134 return false;
135 }
136 #endif
137
138
139 /* bits in struct cpuset flags field */
140 typedef enum {
141 CS_ONLINE,
142 CS_CPU_EXCLUSIVE,
143 CS_MEM_EXCLUSIVE,
144 CS_MEM_HARDWALL,
145 CS_MEMORY_MIGRATE,
146 CS_SCHED_LOAD_BALANCE,
147 CS_SPREAD_PAGE,
148 CS_SPREAD_SLAB,
149 } cpuset_flagbits_t;
150
151 /* the type of hotplug event */
152 enum hotplug_event {
153 CPUSET_CPU_OFFLINE,
154 CPUSET_MEM_OFFLINE,
155 };
156
157 /* convenient tests for these bits */
158 static inline bool is_cpuset_online(const struct cpuset *cs)
159 {
160 return test_bit(CS_ONLINE, &cs->flags);
161 }
162
163 static inline int is_cpu_exclusive(const struct cpuset *cs)
164 {
165 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
166 }
167
168 static inline int is_mem_exclusive(const struct cpuset *cs)
169 {
170 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
171 }
172
173 static inline int is_mem_hardwall(const struct cpuset *cs)
174 {
175 return test_bit(CS_MEM_HARDWALL, &cs->flags);
176 }
177
178 static inline int is_sched_load_balance(const struct cpuset *cs)
179 {
180 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
181 }
182
183 static inline int is_memory_migrate(const struct cpuset *cs)
184 {
185 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
186 }
187
188 static inline int is_spread_page(const struct cpuset *cs)
189 {
190 return test_bit(CS_SPREAD_PAGE, &cs->flags);
191 }
192
193 static inline int is_spread_slab(const struct cpuset *cs)
194 {
195 return test_bit(CS_SPREAD_SLAB, &cs->flags);
196 }
197
198 static struct cpuset top_cpuset = {
199 .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
200 (1 << CS_MEM_EXCLUSIVE)),
201 };
202
203 /**
204 * cpuset_for_each_child - traverse online children of a cpuset
205 * @child_cs: loop cursor pointing to the current child
206 * @pos_cgrp: used for iteration
207 * @parent_cs: target cpuset to walk children of
208 *
209 * Walk @child_cs through the online children of @parent_cs. Must be used
210 * with RCU read locked.
211 */
212 #define cpuset_for_each_child(child_cs, pos_cgrp, parent_cs) \
213 cgroup_for_each_child((pos_cgrp), (parent_cs)->css.cgroup) \
214 if (is_cpuset_online(((child_cs) = cgroup_cs((pos_cgrp)))))
215
216 /*
217 * There are two global mutexes guarding cpuset structures. The first
218 * is the main control groups cgroup_mutex, accessed via
219 * cgroup_lock()/cgroup_unlock(). The second is the cpuset-specific
220 * callback_mutex, below. They can nest. It is ok to first take
221 * cgroup_mutex, then nest callback_mutex. We also require taking
222 * task_lock() when dereferencing a task's cpuset pointer. See "The
223 * task_lock() exception", at the end of this comment.
224 *
225 * A task must hold both mutexes to modify cpusets. If a task
226 * holds cgroup_mutex, then it blocks others wanting that mutex,
227 * ensuring that it is the only task able to also acquire callback_mutex
228 * and be able to modify cpusets. It can perform various checks on
229 * the cpuset structure first, knowing nothing will change. It can
230 * also allocate memory while just holding cgroup_mutex. While it is
231 * performing these checks, various callback routines can briefly
232 * acquire callback_mutex to query cpusets. Once it is ready to make
233 * the changes, it takes callback_mutex, blocking everyone else.
234 *
235 * Calls to the kernel memory allocator can not be made while holding
236 * callback_mutex, as that would risk double tripping on callback_mutex
237 * from one of the callbacks into the cpuset code from within
238 * __alloc_pages().
239 *
240 * If a task is only holding callback_mutex, then it has read-only
241 * access to cpusets.
242 *
243 * Now, the task_struct fields mems_allowed and mempolicy may be changed
244 * by other task, we use alloc_lock in the task_struct fields to protect
245 * them.
246 *
247 * The cpuset_common_file_read() handlers only hold callback_mutex across
248 * small pieces of code, such as when reading out possibly multi-word
249 * cpumasks and nodemasks.
250 *
251 * Accessing a task's cpuset should be done in accordance with the
252 * guidelines for accessing subsystem state in kernel/cgroup.c
253 */
254
255 static DEFINE_MUTEX(callback_mutex);
256
257 /*
258 * cpuset_buffer_lock protects both the cpuset_name and cpuset_nodelist
259 * buffers. They are statically allocated to prevent using excess stack
260 * when calling cpuset_print_task_mems_allowed().
261 */
262 #define CPUSET_NAME_LEN (128)
263 #define CPUSET_NODELIST_LEN (256)
264 static char cpuset_name[CPUSET_NAME_LEN];
265 static char cpuset_nodelist[CPUSET_NODELIST_LEN];
266 static DEFINE_SPINLOCK(cpuset_buffer_lock);
267
268 /*
269 * This is ugly, but preserves the userspace API for existing cpuset
270 * users. If someone tries to mount the "cpuset" filesystem, we
271 * silently switch it to mount "cgroup" instead
272 */
273 static struct dentry *cpuset_mount(struct file_system_type *fs_type,
274 int flags, const char *unused_dev_name, void *data)
275 {
276 struct file_system_type *cgroup_fs = get_fs_type("cgroup");
277 struct dentry *ret = ERR_PTR(-ENODEV);
278 if (cgroup_fs) {
279 char mountopts[] =
280 "cpuset,noprefix,"
281 "release_agent=/sbin/cpuset_release_agent";
282 ret = cgroup_fs->mount(cgroup_fs, flags,
283 unused_dev_name, mountopts);
284 put_filesystem(cgroup_fs);
285 }
286 return ret;
287 }
288
289 static struct file_system_type cpuset_fs_type = {
290 .name = "cpuset",
291 .mount = cpuset_mount,
292 };
293
294 /*
295 * Return in pmask the portion of a cpusets's cpus_allowed that
296 * are online. If none are online, walk up the cpuset hierarchy
297 * until we find one that does have some online cpus. If we get
298 * all the way to the top and still haven't found any online cpus,
299 * return cpu_online_mask. Or if passed a NULL cs from an exit'ing
300 * task, return cpu_online_mask.
301 *
302 * One way or another, we guarantee to return some non-empty subset
303 * of cpu_online_mask.
304 *
305 * Call with callback_mutex held.
306 */
307
308 static void guarantee_online_cpus(const struct cpuset *cs,
309 struct cpumask *pmask)
310 {
311 while (cs && !cpumask_intersects(cs->cpus_allowed, cpu_online_mask))
312 cs = cs->parent;
313 if (cs)
314 cpumask_and(pmask, cs->cpus_allowed, cpu_online_mask);
315 else
316 cpumask_copy(pmask, cpu_online_mask);
317 BUG_ON(!cpumask_intersects(pmask, cpu_online_mask));
318 }
319
320 /*
321 * Return in *pmask the portion of a cpusets's mems_allowed that
322 * are online, with memory. If none are online with memory, walk
323 * up the cpuset hierarchy until we find one that does have some
324 * online mems. If we get all the way to the top and still haven't
325 * found any online mems, return node_states[N_MEMORY].
326 *
327 * One way or another, we guarantee to return some non-empty subset
328 * of node_states[N_MEMORY].
329 *
330 * Call with callback_mutex held.
331 */
332
333 static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
334 {
335 while (cs && !nodes_intersects(cs->mems_allowed,
336 node_states[N_MEMORY]))
337 cs = cs->parent;
338 if (cs)
339 nodes_and(*pmask, cs->mems_allowed,
340 node_states[N_MEMORY]);
341 else
342 *pmask = node_states[N_MEMORY];
343 BUG_ON(!nodes_intersects(*pmask, node_states[N_MEMORY]));
344 }
345
346 /*
347 * update task's spread flag if cpuset's page/slab spread flag is set
348 *
349 * Called with callback_mutex/cgroup_mutex held
350 */
351 static void cpuset_update_task_spread_flag(struct cpuset *cs,
352 struct task_struct *tsk)
353 {
354 if (is_spread_page(cs))
355 tsk->flags |= PF_SPREAD_PAGE;
356 else
357 tsk->flags &= ~PF_SPREAD_PAGE;
358 if (is_spread_slab(cs))
359 tsk->flags |= PF_SPREAD_SLAB;
360 else
361 tsk->flags &= ~PF_SPREAD_SLAB;
362 }
363
364 /*
365 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
366 *
367 * One cpuset is a subset of another if all its allowed CPUs and
368 * Memory Nodes are a subset of the other, and its exclusive flags
369 * are only set if the other's are set. Call holding cgroup_mutex.
370 */
371
372 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
373 {
374 return cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
375 nodes_subset(p->mems_allowed, q->mems_allowed) &&
376 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
377 is_mem_exclusive(p) <= is_mem_exclusive(q);
378 }
379
380 /**
381 * alloc_trial_cpuset - allocate a trial cpuset
382 * @cs: the cpuset that the trial cpuset duplicates
383 */
384 static struct cpuset *alloc_trial_cpuset(const struct cpuset *cs)
385 {
386 struct cpuset *trial;
387
388 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
389 if (!trial)
390 return NULL;
391
392 if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL)) {
393 kfree(trial);
394 return NULL;
395 }
396 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
397
398 return trial;
399 }
400
401 /**
402 * free_trial_cpuset - free the trial cpuset
403 * @trial: the trial cpuset to be freed
404 */
405 static void free_trial_cpuset(struct cpuset *trial)
406 {
407 free_cpumask_var(trial->cpus_allowed);
408 kfree(trial);
409 }
410
411 /*
412 * validate_change() - Used to validate that any proposed cpuset change
413 * follows the structural rules for cpusets.
414 *
415 * If we replaced the flag and mask values of the current cpuset
416 * (cur) with those values in the trial cpuset (trial), would
417 * our various subset and exclusive rules still be valid? Presumes
418 * cgroup_mutex held.
419 *
420 * 'cur' is the address of an actual, in-use cpuset. Operations
421 * such as list traversal that depend on the actual address of the
422 * cpuset in the list must use cur below, not trial.
423 *
424 * 'trial' is the address of bulk structure copy of cur, with
425 * perhaps one or more of the fields cpus_allowed, mems_allowed,
426 * or flags changed to new, trial values.
427 *
428 * Return 0 if valid, -errno if not.
429 */
430
431 static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
432 {
433 struct cgroup *cont;
434 struct cpuset *c, *par;
435 int ret;
436
437 rcu_read_lock();
438
439 /* Each of our child cpusets must be a subset of us */
440 ret = -EBUSY;
441 cpuset_for_each_child(c, cont, cur)
442 if (!is_cpuset_subset(c, trial))
443 goto out;
444
445 /* Remaining checks don't apply to root cpuset */
446 ret = 0;
447 if (cur == &top_cpuset)
448 goto out;
449
450 par = cur->parent;
451
452 /* We must be a subset of our parent cpuset */
453 ret = -EACCES;
454 if (!is_cpuset_subset(trial, par))
455 goto out;
456
457 /*
458 * If either I or some sibling (!= me) is exclusive, we can't
459 * overlap
460 */
461 ret = -EINVAL;
462 cpuset_for_each_child(c, cont, par) {
463 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
464 c != cur &&
465 cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
466 goto out;
467 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
468 c != cur &&
469 nodes_intersects(trial->mems_allowed, c->mems_allowed))
470 goto out;
471 }
472
473 /* Cpusets with tasks can't have empty cpus_allowed or mems_allowed */
474 ret = -ENOSPC;
475 if (cgroup_task_count(cur->css.cgroup) &&
476 (cpumask_empty(trial->cpus_allowed) ||
477 nodes_empty(trial->mems_allowed)))
478 goto out;
479
480 ret = 0;
481 out:
482 rcu_read_unlock();
483 return ret;
484 }
485
486 #ifdef CONFIG_SMP
487 /*
488 * Helper routine for generate_sched_domains().
489 * Do cpusets a, b have overlapping cpus_allowed masks?
490 */
491 static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
492 {
493 return cpumask_intersects(a->cpus_allowed, b->cpus_allowed);
494 }
495
496 static void
497 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
498 {
499 if (dattr->relax_domain_level < c->relax_domain_level)
500 dattr->relax_domain_level = c->relax_domain_level;
501 return;
502 }
503
504 static void
505 update_domain_attr_tree(struct sched_domain_attr *dattr, struct cpuset *c)
506 {
507 LIST_HEAD(q);
508
509 list_add(&c->stack_list, &q);
510 while (!list_empty(&q)) {
511 struct cpuset *cp;
512 struct cgroup *cont;
513 struct cpuset *child;
514
515 cp = list_first_entry(&q, struct cpuset, stack_list);
516 list_del(q.next);
517
518 if (cpumask_empty(cp->cpus_allowed))
519 continue;
520
521 if (is_sched_load_balance(cp))
522 update_domain_attr(dattr, cp);
523
524 rcu_read_lock();
525 cpuset_for_each_child(child, cont, cp)
526 list_add_tail(&child->stack_list, &q);
527 rcu_read_unlock();
528 }
529 }
530
531 /*
532 * generate_sched_domains()
533 *
534 * This function builds a partial partition of the systems CPUs
535 * A 'partial partition' is a set of non-overlapping subsets whose
536 * union is a subset of that set.
537 * The output of this function needs to be passed to kernel/sched.c
538 * partition_sched_domains() routine, which will rebuild the scheduler's
539 * load balancing domains (sched domains) as specified by that partial
540 * partition.
541 *
542 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
543 * for a background explanation of this.
544 *
545 * Does not return errors, on the theory that the callers of this
546 * routine would rather not worry about failures to rebuild sched
547 * domains when operating in the severe memory shortage situations
548 * that could cause allocation failures below.
549 *
550 * Must be called with cgroup_lock held.
551 *
552 * The three key local variables below are:
553 * q - a linked-list queue of cpuset pointers, used to implement a
554 * top-down scan of all cpusets. This scan loads a pointer
555 * to each cpuset marked is_sched_load_balance into the
556 * array 'csa'. For our purposes, rebuilding the schedulers
557 * sched domains, we can ignore !is_sched_load_balance cpusets.
558 * csa - (for CpuSet Array) Array of pointers to all the cpusets
559 * that need to be load balanced, for convenient iterative
560 * access by the subsequent code that finds the best partition,
561 * i.e the set of domains (subsets) of CPUs such that the
562 * cpus_allowed of every cpuset marked is_sched_load_balance
563 * is a subset of one of these domains, while there are as
564 * many such domains as possible, each as small as possible.
565 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
566 * the kernel/sched.c routine partition_sched_domains() in a
567 * convenient format, that can be easily compared to the prior
568 * value to determine what partition elements (sched domains)
569 * were changed (added or removed.)
570 *
571 * Finding the best partition (set of domains):
572 * The triple nested loops below over i, j, k scan over the
573 * load balanced cpusets (using the array of cpuset pointers in
574 * csa[]) looking for pairs of cpusets that have overlapping
575 * cpus_allowed, but which don't have the same 'pn' partition
576 * number and gives them in the same partition number. It keeps
577 * looping on the 'restart' label until it can no longer find
578 * any such pairs.
579 *
580 * The union of the cpus_allowed masks from the set of
581 * all cpusets having the same 'pn' value then form the one
582 * element of the partition (one sched domain) to be passed to
583 * partition_sched_domains().
584 */
585 static int generate_sched_domains(cpumask_var_t **domains,
586 struct sched_domain_attr **attributes)
587 {
588 LIST_HEAD(q); /* queue of cpusets to be scanned */
589 struct cpuset *cp; /* scans q */
590 struct cpuset **csa; /* array of all cpuset ptrs */
591 int csn; /* how many cpuset ptrs in csa so far */
592 int i, j, k; /* indices for partition finding loops */
593 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */
594 struct sched_domain_attr *dattr; /* attributes for custom domains */
595 int ndoms = 0; /* number of sched domains in result */
596 int nslot; /* next empty doms[] struct cpumask slot */
597
598 doms = NULL;
599 dattr = NULL;
600 csa = NULL;
601
602 /* Special case for the 99% of systems with one, full, sched domain */
603 if (is_sched_load_balance(&top_cpuset)) {
604 ndoms = 1;
605 doms = alloc_sched_domains(ndoms);
606 if (!doms)
607 goto done;
608
609 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
610 if (dattr) {
611 *dattr = SD_ATTR_INIT;
612 update_domain_attr_tree(dattr, &top_cpuset);
613 }
614 cpumask_copy(doms[0], top_cpuset.cpus_allowed);
615
616 goto done;
617 }
618
619 csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
620 if (!csa)
621 goto done;
622 csn = 0;
623
624 list_add(&top_cpuset.stack_list, &q);
625 while (!list_empty(&q)) {
626 struct cgroup *cont;
627 struct cpuset *child; /* scans child cpusets of cp */
628
629 cp = list_first_entry(&q, struct cpuset, stack_list);
630 list_del(q.next);
631
632 if (cpumask_empty(cp->cpus_allowed))
633 continue;
634
635 /*
636 * All child cpusets contain a subset of the parent's cpus, so
637 * just skip them, and then we call update_domain_attr_tree()
638 * to calc relax_domain_level of the corresponding sched
639 * domain.
640 */
641 if (is_sched_load_balance(cp)) {
642 csa[csn++] = cp;
643 continue;
644 }
645
646 rcu_read_lock();
647 cpuset_for_each_child(child, cont, cp)
648 list_add_tail(&child->stack_list, &q);
649 rcu_read_unlock();
650 }
651
652 for (i = 0; i < csn; i++)
653 csa[i]->pn = i;
654 ndoms = csn;
655
656 restart:
657 /* Find the best partition (set of sched domains) */
658 for (i = 0; i < csn; i++) {
659 struct cpuset *a = csa[i];
660 int apn = a->pn;
661
662 for (j = 0; j < csn; j++) {
663 struct cpuset *b = csa[j];
664 int bpn = b->pn;
665
666 if (apn != bpn && cpusets_overlap(a, b)) {
667 for (k = 0; k < csn; k++) {
668 struct cpuset *c = csa[k];
669
670 if (c->pn == bpn)
671 c->pn = apn;
672 }
673 ndoms--; /* one less element */
674 goto restart;
675 }
676 }
677 }
678
679 /*
680 * Now we know how many domains to create.
681 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
682 */
683 doms = alloc_sched_domains(ndoms);
684 if (!doms)
685 goto done;
686
687 /*
688 * The rest of the code, including the scheduler, can deal with
689 * dattr==NULL case. No need to abort if alloc fails.
690 */
691 dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
692
693 for (nslot = 0, i = 0; i < csn; i++) {
694 struct cpuset *a = csa[i];
695 struct cpumask *dp;
696 int apn = a->pn;
697
698 if (apn < 0) {
699 /* Skip completed partitions */
700 continue;
701 }
702
703 dp = doms[nslot];
704
705 if (nslot == ndoms) {
706 static int warnings = 10;
707 if (warnings) {
708 printk(KERN_WARNING
709 "rebuild_sched_domains confused:"
710 " nslot %d, ndoms %d, csn %d, i %d,"
711 " apn %d\n",
712 nslot, ndoms, csn, i, apn);
713 warnings--;
714 }
715 continue;
716 }
717
718 cpumask_clear(dp);
719 if (dattr)
720 *(dattr + nslot) = SD_ATTR_INIT;
721 for (j = i; j < csn; j++) {
722 struct cpuset *b = csa[j];
723
724 if (apn == b->pn) {
725 cpumask_or(dp, dp, b->cpus_allowed);
726 if (dattr)
727 update_domain_attr_tree(dattr + nslot, b);
728
729 /* Done with this partition */
730 b->pn = -1;
731 }
732 }
733 nslot++;
734 }
735 BUG_ON(nslot != ndoms);
736
737 done:
738 kfree(csa);
739
740 /*
741 * Fallback to the default domain if kmalloc() failed.
742 * See comments in partition_sched_domains().
743 */
744 if (doms == NULL)
745 ndoms = 1;
746
747 *domains = doms;
748 *attributes = dattr;
749 return ndoms;
750 }
751
752 /*
753 * Rebuild scheduler domains.
754 *
755 * Call with neither cgroup_mutex held nor within get_online_cpus().
756 * Takes both cgroup_mutex and get_online_cpus().
757 *
758 * Cannot be directly called from cpuset code handling changes
759 * to the cpuset pseudo-filesystem, because it cannot be called
760 * from code that already holds cgroup_mutex.
761 */
762 static void do_rebuild_sched_domains(struct work_struct *unused)
763 {
764 struct sched_domain_attr *attr;
765 cpumask_var_t *doms;
766 int ndoms;
767
768 get_online_cpus();
769
770 /* Generate domain masks and attrs */
771 cgroup_lock();
772 ndoms = generate_sched_domains(&doms, &attr);
773 cgroup_unlock();
774
775 /* Have scheduler rebuild the domains */
776 partition_sched_domains(ndoms, doms, attr);
777
778 put_online_cpus();
779 }
780 #else /* !CONFIG_SMP */
781 static void do_rebuild_sched_domains(struct work_struct *unused)
782 {
783 }
784
785 static int generate_sched_domains(cpumask_var_t **domains,
786 struct sched_domain_attr **attributes)
787 {
788 *domains = NULL;
789 return 1;
790 }
791 #endif /* CONFIG_SMP */
792
793 static DECLARE_WORK(rebuild_sched_domains_work, do_rebuild_sched_domains);
794
795 /*
796 * Rebuild scheduler domains, asynchronously via workqueue.
797 *
798 * If the flag 'sched_load_balance' of any cpuset with non-empty
799 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
800 * which has that flag enabled, or if any cpuset with a non-empty
801 * 'cpus' is removed, then call this routine to rebuild the
802 * scheduler's dynamic sched domains.
803 *
804 * The rebuild_sched_domains() and partition_sched_domains()
805 * routines must nest cgroup_lock() inside get_online_cpus(),
806 * but such cpuset changes as these must nest that locking the
807 * other way, holding cgroup_lock() for much of the code.
808 *
809 * So in order to avoid an ABBA deadlock, the cpuset code handling
810 * these user changes delegates the actual sched domain rebuilding
811 * to a separate workqueue thread, which ends up processing the
812 * above do_rebuild_sched_domains() function.
813 */
814 static void async_rebuild_sched_domains(void)
815 {
816 queue_work(cpuset_wq, &rebuild_sched_domains_work);
817 }
818
819 /*
820 * Accomplishes the same scheduler domain rebuild as the above
821 * async_rebuild_sched_domains(), however it directly calls the
822 * rebuild routine synchronously rather than calling it via an
823 * asynchronous work thread.
824 *
825 * This can only be called from code that is not holding
826 * cgroup_mutex (not nested in a cgroup_lock() call.)
827 */
828 void rebuild_sched_domains(void)
829 {
830 do_rebuild_sched_domains(NULL);
831 }
832
833 /**
834 * cpuset_test_cpumask - test a task's cpus_allowed versus its cpuset's
835 * @tsk: task to test
836 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
837 *
838 * Call with cgroup_mutex held. May take callback_mutex during call.
839 * Called for each task in a cgroup by cgroup_scan_tasks().
840 * Return nonzero if this tasks's cpus_allowed mask should be changed (in other
841 * words, if its mask is not equal to its cpuset's mask).
842 */
843 static int cpuset_test_cpumask(struct task_struct *tsk,
844 struct cgroup_scanner *scan)
845 {
846 return !cpumask_equal(&tsk->cpus_allowed,
847 (cgroup_cs(scan->cg))->cpus_allowed);
848 }
849
850 /**
851 * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's
852 * @tsk: task to test
853 * @scan: struct cgroup_scanner containing the cgroup of the task
854 *
855 * Called by cgroup_scan_tasks() for each task in a cgroup whose
856 * cpus_allowed mask needs to be changed.
857 *
858 * We don't need to re-check for the cgroup/cpuset membership, since we're
859 * holding cgroup_lock() at this point.
860 */
861 static void cpuset_change_cpumask(struct task_struct *tsk,
862 struct cgroup_scanner *scan)
863 {
864 set_cpus_allowed_ptr(tsk, ((cgroup_cs(scan->cg))->cpus_allowed));
865 }
866
867 /**
868 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
869 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
870 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
871 *
872 * Called with cgroup_mutex held
873 *
874 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
875 * calling callback functions for each.
876 *
877 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
878 * if @heap != NULL.
879 */
880 static void update_tasks_cpumask(struct cpuset *cs, struct ptr_heap *heap)
881 {
882 struct cgroup_scanner scan;
883
884 scan.cg = cs->css.cgroup;
885 scan.test_task = cpuset_test_cpumask;
886 scan.process_task = cpuset_change_cpumask;
887 scan.heap = heap;
888 cgroup_scan_tasks(&scan);
889 }
890
891 /**
892 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
893 * @cs: the cpuset to consider
894 * @buf: buffer of cpu numbers written to this cpuset
895 */
896 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
897 const char *buf)
898 {
899 struct ptr_heap heap;
900 int retval;
901 int is_load_balanced;
902
903 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
904 if (cs == &top_cpuset)
905 return -EACCES;
906
907 /*
908 * An empty cpus_allowed is ok only if the cpuset has no tasks.
909 * Since cpulist_parse() fails on an empty mask, we special case
910 * that parsing. The validate_change() call ensures that cpusets
911 * with tasks have cpus.
912 */
913 if (!*buf) {
914 cpumask_clear(trialcs->cpus_allowed);
915 } else {
916 retval = cpulist_parse(buf, trialcs->cpus_allowed);
917 if (retval < 0)
918 return retval;
919
920 if (!cpumask_subset(trialcs->cpus_allowed, cpu_active_mask))
921 return -EINVAL;
922 }
923 retval = validate_change(cs, trialcs);
924 if (retval < 0)
925 return retval;
926
927 /* Nothing to do if the cpus didn't change */
928 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
929 return 0;
930
931 retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
932 if (retval)
933 return retval;
934
935 is_load_balanced = is_sched_load_balance(trialcs);
936
937 mutex_lock(&callback_mutex);
938 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
939 mutex_unlock(&callback_mutex);
940
941 /*
942 * Scan tasks in the cpuset, and update the cpumasks of any
943 * that need an update.
944 */
945 update_tasks_cpumask(cs, &heap);
946
947 heap_free(&heap);
948
949 if (is_load_balanced)
950 async_rebuild_sched_domains();
951 return 0;
952 }
953
954 /*
955 * cpuset_migrate_mm
956 *
957 * Migrate memory region from one set of nodes to another.
958 *
959 * Temporarilly set tasks mems_allowed to target nodes of migration,
960 * so that the migration code can allocate pages on these nodes.
961 *
962 * Call holding cgroup_mutex, so current's cpuset won't change
963 * during this call, as manage_mutex holds off any cpuset_attach()
964 * calls. Therefore we don't need to take task_lock around the
965 * call to guarantee_online_mems(), as we know no one is changing
966 * our task's cpuset.
967 *
968 * While the mm_struct we are migrating is typically from some
969 * other task, the task_struct mems_allowed that we are hacking
970 * is for our current task, which must allocate new pages for that
971 * migrating memory region.
972 */
973
974 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
975 const nodemask_t *to)
976 {
977 struct task_struct *tsk = current;
978
979 tsk->mems_allowed = *to;
980
981 do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
982
983 guarantee_online_mems(task_cs(tsk),&tsk->mems_allowed);
984 }
985
986 /*
987 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
988 * @tsk: the task to change
989 * @newmems: new nodes that the task will be set
990 *
991 * In order to avoid seeing no nodes if the old and new nodes are disjoint,
992 * we structure updates as setting all new allowed nodes, then clearing newly
993 * disallowed ones.
994 */
995 static void cpuset_change_task_nodemask(struct task_struct *tsk,
996 nodemask_t *newmems)
997 {
998 bool need_loop;
999
1000 /*
1001 * Allow tasks that have access to memory reserves because they have
1002 * been OOM killed to get memory anywhere.
1003 */
1004 if (unlikely(test_thread_flag(TIF_MEMDIE)))
1005 return;
1006 if (current->flags & PF_EXITING) /* Let dying task have memory */
1007 return;
1008
1009 task_lock(tsk);
1010 /*
1011 * Determine if a loop is necessary if another thread is doing
1012 * get_mems_allowed(). If at least one node remains unchanged and
1013 * tsk does not have a mempolicy, then an empty nodemask will not be
1014 * possible when mems_allowed is larger than a word.
1015 */
1016 need_loop = task_has_mempolicy(tsk) ||
1017 !nodes_intersects(*newmems, tsk->mems_allowed);
1018
1019 if (need_loop)
1020 write_seqcount_begin(&tsk->mems_allowed_seq);
1021
1022 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
1023 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);
1024
1025 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);
1026 tsk->mems_allowed = *newmems;
1027
1028 if (need_loop)
1029 write_seqcount_end(&tsk->mems_allowed_seq);
1030
1031 task_unlock(tsk);
1032 }
1033
1034 /*
1035 * Update task's mems_allowed and rebind its mempolicy and vmas' mempolicy
1036 * of it to cpuset's new mems_allowed, and migrate pages to new nodes if
1037 * memory_migrate flag is set. Called with cgroup_mutex held.
1038 */
1039 static void cpuset_change_nodemask(struct task_struct *p,
1040 struct cgroup_scanner *scan)
1041 {
1042 struct mm_struct *mm;
1043 struct cpuset *cs;
1044 int migrate;
1045 const nodemask_t *oldmem = scan->data;
1046 static nodemask_t newmems; /* protected by cgroup_mutex */
1047
1048 cs = cgroup_cs(scan->cg);
1049 guarantee_online_mems(cs, &newmems);
1050
1051 cpuset_change_task_nodemask(p, &newmems);
1052
1053 mm = get_task_mm(p);
1054 if (!mm)
1055 return;
1056
1057 migrate = is_memory_migrate(cs);
1058
1059 mpol_rebind_mm(mm, &cs->mems_allowed);
1060 if (migrate)
1061 cpuset_migrate_mm(mm, oldmem, &cs->mems_allowed);
1062 mmput(mm);
1063 }
1064
1065 static void *cpuset_being_rebound;
1066
1067 /**
1068 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1069 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1070 * @oldmem: old mems_allowed of cpuset cs
1071 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
1072 *
1073 * Called with cgroup_mutex held
1074 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
1075 * if @heap != NULL.
1076 */
1077 static void update_tasks_nodemask(struct cpuset *cs, const nodemask_t *oldmem,
1078 struct ptr_heap *heap)
1079 {
1080 struct cgroup_scanner scan;
1081
1082 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
1083
1084 scan.cg = cs->css.cgroup;
1085 scan.test_task = NULL;
1086 scan.process_task = cpuset_change_nodemask;
1087 scan.heap = heap;
1088 scan.data = (nodemask_t *)oldmem;
1089
1090 /*
1091 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
1092 * take while holding tasklist_lock. Forks can happen - the
1093 * mpol_dup() cpuset_being_rebound check will catch such forks,
1094 * and rebind their vma mempolicies too. Because we still hold
1095 * the global cgroup_mutex, we know that no other rebind effort
1096 * will be contending for the global variable cpuset_being_rebound.
1097 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1098 * is idempotent. Also migrate pages in each mm to new nodes.
1099 */
1100 cgroup_scan_tasks(&scan);
1101
1102 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
1103 cpuset_being_rebound = NULL;
1104 }
1105
1106 /*
1107 * Handle user request to change the 'mems' memory placement
1108 * of a cpuset. Needs to validate the request, update the
1109 * cpusets mems_allowed, and for each task in the cpuset,
1110 * update mems_allowed and rebind task's mempolicy and any vma
1111 * mempolicies and if the cpuset is marked 'memory_migrate',
1112 * migrate the tasks pages to the new memory.
1113 *
1114 * Call with cgroup_mutex held. May take callback_mutex during call.
1115 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1116 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1117 * their mempolicies to the cpusets new mems_allowed.
1118 */
1119 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1120 const char *buf)
1121 {
1122 NODEMASK_ALLOC(nodemask_t, oldmem, GFP_KERNEL);
1123 int retval;
1124 struct ptr_heap heap;
1125
1126 if (!oldmem)
1127 return -ENOMEM;
1128
1129 /*
1130 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
1131 * it's read-only
1132 */
1133 if (cs == &top_cpuset) {
1134 retval = -EACCES;
1135 goto done;
1136 }
1137
1138 /*
1139 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1140 * Since nodelist_parse() fails on an empty mask, we special case
1141 * that parsing. The validate_change() call ensures that cpusets
1142 * with tasks have memory.
1143 */
1144 if (!*buf) {
1145 nodes_clear(trialcs->mems_allowed);
1146 } else {
1147 retval = nodelist_parse(buf, trialcs->mems_allowed);
1148 if (retval < 0)
1149 goto done;
1150
1151 if (!nodes_subset(trialcs->mems_allowed,
1152 node_states[N_MEMORY])) {
1153 retval = -EINVAL;
1154 goto done;
1155 }
1156 }
1157 *oldmem = cs->mems_allowed;
1158 if (nodes_equal(*oldmem, trialcs->mems_allowed)) {
1159 retval = 0; /* Too easy - nothing to do */
1160 goto done;
1161 }
1162 retval = validate_change(cs, trialcs);
1163 if (retval < 0)
1164 goto done;
1165
1166 retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
1167 if (retval < 0)
1168 goto done;
1169
1170 mutex_lock(&callback_mutex);
1171 cs->mems_allowed = trialcs->mems_allowed;
1172 mutex_unlock(&callback_mutex);
1173
1174 update_tasks_nodemask(cs, oldmem, &heap);
1175
1176 heap_free(&heap);
1177 done:
1178 NODEMASK_FREE(oldmem);
1179 return retval;
1180 }
1181
1182 int current_cpuset_is_being_rebound(void)
1183 {
1184 return task_cs(current) == cpuset_being_rebound;
1185 }
1186
1187 static int update_relax_domain_level(struct cpuset *cs, s64 val)
1188 {
1189 #ifdef CONFIG_SMP
1190 if (val < -1 || val >= sched_domain_level_max)
1191 return -EINVAL;
1192 #endif
1193
1194 if (val != cs->relax_domain_level) {
1195 cs->relax_domain_level = val;
1196 if (!cpumask_empty(cs->cpus_allowed) &&
1197 is_sched_load_balance(cs))
1198 async_rebuild_sched_domains();
1199 }
1200
1201 return 0;
1202 }
1203
1204 /*
1205 * cpuset_change_flag - make a task's spread flags the same as its cpuset's
1206 * @tsk: task to be updated
1207 * @scan: struct cgroup_scanner containing the cgroup of the task
1208 *
1209 * Called by cgroup_scan_tasks() for each task in a cgroup.
1210 *
1211 * We don't need to re-check for the cgroup/cpuset membership, since we're
1212 * holding cgroup_lock() at this point.
1213 */
1214 static void cpuset_change_flag(struct task_struct *tsk,
1215 struct cgroup_scanner *scan)
1216 {
1217 cpuset_update_task_spread_flag(cgroup_cs(scan->cg), tsk);
1218 }
1219
1220 /*
1221 * update_tasks_flags - update the spread flags of tasks in the cpuset.
1222 * @cs: the cpuset in which each task's spread flags needs to be changed
1223 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
1224 *
1225 * Called with cgroup_mutex held
1226 *
1227 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
1228 * calling callback functions for each.
1229 *
1230 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
1231 * if @heap != NULL.
1232 */
1233 static void update_tasks_flags(struct cpuset *cs, struct ptr_heap *heap)
1234 {
1235 struct cgroup_scanner scan;
1236
1237 scan.cg = cs->css.cgroup;
1238 scan.test_task = NULL;
1239 scan.process_task = cpuset_change_flag;
1240 scan.heap = heap;
1241 cgroup_scan_tasks(&scan);
1242 }
1243
1244 /*
1245 * update_flag - read a 0 or a 1 in a file and update associated flag
1246 * bit: the bit to update (see cpuset_flagbits_t)
1247 * cs: the cpuset to update
1248 * turning_on: whether the flag is being set or cleared
1249 *
1250 * Call with cgroup_mutex held.
1251 */
1252
1253 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1254 int turning_on)
1255 {
1256 struct cpuset *trialcs;
1257 int balance_flag_changed;
1258 int spread_flag_changed;
1259 struct ptr_heap heap;
1260 int err;
1261
1262 trialcs = alloc_trial_cpuset(cs);
1263 if (!trialcs)
1264 return -ENOMEM;
1265
1266 if (turning_on)
1267 set_bit(bit, &trialcs->flags);
1268 else
1269 clear_bit(bit, &trialcs->flags);
1270
1271 err = validate_change(cs, trialcs);
1272 if (err < 0)
1273 goto out;
1274
1275 err = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
1276 if (err < 0)
1277 goto out;
1278
1279 balance_flag_changed = (is_sched_load_balance(cs) !=
1280 is_sched_load_balance(trialcs));
1281
1282 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1283 || (is_spread_page(cs) != is_spread_page(trialcs)));
1284
1285 mutex_lock(&callback_mutex);
1286 cs->flags = trialcs->flags;
1287 mutex_unlock(&callback_mutex);
1288
1289 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1290 async_rebuild_sched_domains();
1291
1292 if (spread_flag_changed)
1293 update_tasks_flags(cs, &heap);
1294 heap_free(&heap);
1295 out:
1296 free_trial_cpuset(trialcs);
1297 return err;
1298 }
1299
1300 /*
1301 * Frequency meter - How fast is some event occurring?
1302 *
1303 * These routines manage a digitally filtered, constant time based,
1304 * event frequency meter. There are four routines:
1305 * fmeter_init() - initialize a frequency meter.
1306 * fmeter_markevent() - called each time the event happens.
1307 * fmeter_getrate() - returns the recent rate of such events.
1308 * fmeter_update() - internal routine used to update fmeter.
1309 *
1310 * A common data structure is passed to each of these routines,
1311 * which is used to keep track of the state required to manage the
1312 * frequency meter and its digital filter.
1313 *
1314 * The filter works on the number of events marked per unit time.
1315 * The filter is single-pole low-pass recursive (IIR). The time unit
1316 * is 1 second. Arithmetic is done using 32-bit integers scaled to
1317 * simulate 3 decimal digits of precision (multiplied by 1000).
1318 *
1319 * With an FM_COEF of 933, and a time base of 1 second, the filter
1320 * has a half-life of 10 seconds, meaning that if the events quit
1321 * happening, then the rate returned from the fmeter_getrate()
1322 * will be cut in half each 10 seconds, until it converges to zero.
1323 *
1324 * It is not worth doing a real infinitely recursive filter. If more
1325 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1326 * just compute FM_MAXTICKS ticks worth, by which point the level
1327 * will be stable.
1328 *
1329 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1330 * arithmetic overflow in the fmeter_update() routine.
1331 *
1332 * Given the simple 32 bit integer arithmetic used, this meter works
1333 * best for reporting rates between one per millisecond (msec) and
1334 * one per 32 (approx) seconds. At constant rates faster than one
1335 * per msec it maxes out at values just under 1,000,000. At constant
1336 * rates between one per msec, and one per second it will stabilize
1337 * to a value N*1000, where N is the rate of events per second.
1338 * At constant rates between one per second and one per 32 seconds,
1339 * it will be choppy, moving up on the seconds that have an event,
1340 * and then decaying until the next event. At rates slower than
1341 * about one in 32 seconds, it decays all the way back to zero between
1342 * each event.
1343 */
1344
1345 #define FM_COEF 933 /* coefficient for half-life of 10 secs */
1346 #define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
1347 #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
1348 #define FM_SCALE 1000 /* faux fixed point scale */
1349
1350 /* Initialize a frequency meter */
1351 static void fmeter_init(struct fmeter *fmp)
1352 {
1353 fmp->cnt = 0;
1354 fmp->val = 0;
1355 fmp->time = 0;
1356 spin_lock_init(&fmp->lock);
1357 }
1358
1359 /* Internal meter update - process cnt events and update value */
1360 static void fmeter_update(struct fmeter *fmp)
1361 {
1362 time_t now = get_seconds();
1363 time_t ticks = now - fmp->time;
1364
1365 if (ticks == 0)
1366 return;
1367
1368 ticks = min(FM_MAXTICKS, ticks);
1369 while (ticks-- > 0)
1370 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1371 fmp->time = now;
1372
1373 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1374 fmp->cnt = 0;
1375 }
1376
1377 /* Process any previous ticks, then bump cnt by one (times scale). */
1378 static void fmeter_markevent(struct fmeter *fmp)
1379 {
1380 spin_lock(&fmp->lock);
1381 fmeter_update(fmp);
1382 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1383 spin_unlock(&fmp->lock);
1384 }
1385
1386 /* Process any previous ticks, then return current value. */
1387 static int fmeter_getrate(struct fmeter *fmp)
1388 {
1389 int val;
1390
1391 spin_lock(&fmp->lock);
1392 fmeter_update(fmp);
1393 val = fmp->val;
1394 spin_unlock(&fmp->lock);
1395 return val;
1396 }
1397
1398 /* Called by cgroups to determine if a cpuset is usable; cgroup_mutex held */
1399 static int cpuset_can_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
1400 {
1401 struct cpuset *cs = cgroup_cs(cgrp);
1402 struct task_struct *task;
1403 int ret;
1404
1405 if (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
1406 return -ENOSPC;
1407
1408 cgroup_taskset_for_each(task, cgrp, tset) {
1409 /*
1410 * Kthreads bound to specific cpus cannot be moved to a new
1411 * cpuset; we cannot change their cpu affinity and
1412 * isolating such threads by their set of allowed nodes is
1413 * unnecessary. Thus, cpusets are not applicable for such
1414 * threads. This prevents checking for success of
1415 * set_cpus_allowed_ptr() on all attached tasks before
1416 * cpus_allowed may be changed.
1417 */
1418 if (task->flags & PF_THREAD_BOUND)
1419 return -EINVAL;
1420 if ((ret = security_task_setscheduler(task)))
1421 return ret;
1422 }
1423
1424 return 0;
1425 }
1426
1427 /*
1428 * Protected by cgroup_mutex. cpus_attach is used only by cpuset_attach()
1429 * but we can't allocate it dynamically there. Define it global and
1430 * allocate from cpuset_init().
1431 */
1432 static cpumask_var_t cpus_attach;
1433
1434 static void cpuset_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
1435 {
1436 /* static bufs protected by cgroup_mutex */
1437 static nodemask_t cpuset_attach_nodemask_from;
1438 static nodemask_t cpuset_attach_nodemask_to;
1439 struct mm_struct *mm;
1440 struct task_struct *task;
1441 struct task_struct *leader = cgroup_taskset_first(tset);
1442 struct cgroup *oldcgrp = cgroup_taskset_cur_cgroup(tset);
1443 struct cpuset *cs = cgroup_cs(cgrp);
1444 struct cpuset *oldcs = cgroup_cs(oldcgrp);
1445
1446 /* prepare for attach */
1447 if (cs == &top_cpuset)
1448 cpumask_copy(cpus_attach, cpu_possible_mask);
1449 else
1450 guarantee_online_cpus(cs, cpus_attach);
1451
1452 guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
1453
1454 cgroup_taskset_for_each(task, cgrp, tset) {
1455 /*
1456 * can_attach beforehand should guarantee that this doesn't
1457 * fail. TODO: have a better way to handle failure here
1458 */
1459 WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
1460
1461 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
1462 cpuset_update_task_spread_flag(cs, task);
1463 }
1464
1465 /*
1466 * Change mm, possibly for multiple threads in a threadgroup. This is
1467 * expensive and may sleep.
1468 */
1469 cpuset_attach_nodemask_from = oldcs->mems_allowed;
1470 cpuset_attach_nodemask_to = cs->mems_allowed;
1471 mm = get_task_mm(leader);
1472 if (mm) {
1473 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
1474 if (is_memory_migrate(cs))
1475 cpuset_migrate_mm(mm, &cpuset_attach_nodemask_from,
1476 &cpuset_attach_nodemask_to);
1477 mmput(mm);
1478 }
1479 }
1480
1481 /* The various types of files and directories in a cpuset file system */
1482
1483 typedef enum {
1484 FILE_MEMORY_MIGRATE,
1485 FILE_CPULIST,
1486 FILE_MEMLIST,
1487 FILE_CPU_EXCLUSIVE,
1488 FILE_MEM_EXCLUSIVE,
1489 FILE_MEM_HARDWALL,
1490 FILE_SCHED_LOAD_BALANCE,
1491 FILE_SCHED_RELAX_DOMAIN_LEVEL,
1492 FILE_MEMORY_PRESSURE_ENABLED,
1493 FILE_MEMORY_PRESSURE,
1494 FILE_SPREAD_PAGE,
1495 FILE_SPREAD_SLAB,
1496 } cpuset_filetype_t;
1497
1498 static int cpuset_write_u64(struct cgroup *cgrp, struct cftype *cft, u64 val)
1499 {
1500 int retval = 0;
1501 struct cpuset *cs = cgroup_cs(cgrp);
1502 cpuset_filetype_t type = cft->private;
1503
1504 if (!cgroup_lock_live_group(cgrp))
1505 return -ENODEV;
1506
1507 switch (type) {
1508 case FILE_CPU_EXCLUSIVE:
1509 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
1510 break;
1511 case FILE_MEM_EXCLUSIVE:
1512 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
1513 break;
1514 case FILE_MEM_HARDWALL:
1515 retval = update_flag(CS_MEM_HARDWALL, cs, val);
1516 break;
1517 case FILE_SCHED_LOAD_BALANCE:
1518 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1519 break;
1520 case FILE_MEMORY_MIGRATE:
1521 retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
1522 break;
1523 case FILE_MEMORY_PRESSURE_ENABLED:
1524 cpuset_memory_pressure_enabled = !!val;
1525 break;
1526 case FILE_MEMORY_PRESSURE:
1527 retval = -EACCES;
1528 break;
1529 case FILE_SPREAD_PAGE:
1530 retval = update_flag(CS_SPREAD_PAGE, cs, val);
1531 break;
1532 case FILE_SPREAD_SLAB:
1533 retval = update_flag(CS_SPREAD_SLAB, cs, val);
1534 break;
1535 default:
1536 retval = -EINVAL;
1537 break;
1538 }
1539 cgroup_unlock();
1540 return retval;
1541 }
1542
1543 static int cpuset_write_s64(struct cgroup *cgrp, struct cftype *cft, s64 val)
1544 {
1545 int retval = 0;
1546 struct cpuset *cs = cgroup_cs(cgrp);
1547 cpuset_filetype_t type = cft->private;
1548
1549 if (!cgroup_lock_live_group(cgrp))
1550 return -ENODEV;
1551
1552 switch (type) {
1553 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1554 retval = update_relax_domain_level(cs, val);
1555 break;
1556 default:
1557 retval = -EINVAL;
1558 break;
1559 }
1560 cgroup_unlock();
1561 return retval;
1562 }
1563
1564 /*
1565 * Common handling for a write to a "cpus" or "mems" file.
1566 */
1567 static int cpuset_write_resmask(struct cgroup *cgrp, struct cftype *cft,
1568 const char *buf)
1569 {
1570 int retval = 0;
1571 struct cpuset *cs = cgroup_cs(cgrp);
1572 struct cpuset *trialcs;
1573
1574 if (!cgroup_lock_live_group(cgrp))
1575 return -ENODEV;
1576
1577 trialcs = alloc_trial_cpuset(cs);
1578 if (!trialcs) {
1579 retval = -ENOMEM;
1580 goto out;
1581 }
1582
1583 switch (cft->private) {
1584 case FILE_CPULIST:
1585 retval = update_cpumask(cs, trialcs, buf);
1586 break;
1587 case FILE_MEMLIST:
1588 retval = update_nodemask(cs, trialcs, buf);
1589 break;
1590 default:
1591 retval = -EINVAL;
1592 break;
1593 }
1594
1595 free_trial_cpuset(trialcs);
1596 out:
1597 cgroup_unlock();
1598 return retval;
1599 }
1600
1601 /*
1602 * These ascii lists should be read in a single call, by using a user
1603 * buffer large enough to hold the entire map. If read in smaller
1604 * chunks, there is no guarantee of atomicity. Since the display format
1605 * used, list of ranges of sequential numbers, is variable length,
1606 * and since these maps can change value dynamically, one could read
1607 * gibberish by doing partial reads while a list was changing.
1608 * A single large read to a buffer that crosses a page boundary is
1609 * ok, because the result being copied to user land is not recomputed
1610 * across a page fault.
1611 */
1612
1613 static size_t cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
1614 {
1615 size_t count;
1616
1617 mutex_lock(&callback_mutex);
1618 count = cpulist_scnprintf(page, PAGE_SIZE, cs->cpus_allowed);
1619 mutex_unlock(&callback_mutex);
1620
1621 return count;
1622 }
1623
1624 static size_t cpuset_sprintf_memlist(char *page, struct cpuset *cs)
1625 {
1626 size_t count;
1627
1628 mutex_lock(&callback_mutex);
1629 count = nodelist_scnprintf(page, PAGE_SIZE, cs->mems_allowed);
1630 mutex_unlock(&callback_mutex);
1631
1632 return count;
1633 }
1634
1635 static ssize_t cpuset_common_file_read(struct cgroup *cont,
1636 struct cftype *cft,
1637 struct file *file,
1638 char __user *buf,
1639 size_t nbytes, loff_t *ppos)
1640 {
1641 struct cpuset *cs = cgroup_cs(cont);
1642 cpuset_filetype_t type = cft->private;
1643 char *page;
1644 ssize_t retval = 0;
1645 char *s;
1646
1647 if (!(page = (char *)__get_free_page(GFP_TEMPORARY)))
1648 return -ENOMEM;
1649
1650 s = page;
1651
1652 switch (type) {
1653 case FILE_CPULIST:
1654 s += cpuset_sprintf_cpulist(s, cs);
1655 break;
1656 case FILE_MEMLIST:
1657 s += cpuset_sprintf_memlist(s, cs);
1658 break;
1659 default:
1660 retval = -EINVAL;
1661 goto out;
1662 }
1663 *s++ = '\n';
1664
1665 retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
1666 out:
1667 free_page((unsigned long)page);
1668 return retval;
1669 }
1670
1671 static u64 cpuset_read_u64(struct cgroup *cont, struct cftype *cft)
1672 {
1673 struct cpuset *cs = cgroup_cs(cont);
1674 cpuset_filetype_t type = cft->private;
1675 switch (type) {
1676 case FILE_CPU_EXCLUSIVE:
1677 return is_cpu_exclusive(cs);
1678 case FILE_MEM_EXCLUSIVE:
1679 return is_mem_exclusive(cs);
1680 case FILE_MEM_HARDWALL:
1681 return is_mem_hardwall(cs);
1682 case FILE_SCHED_LOAD_BALANCE:
1683 return is_sched_load_balance(cs);
1684 case FILE_MEMORY_MIGRATE:
1685 return is_memory_migrate(cs);
1686 case FILE_MEMORY_PRESSURE_ENABLED:
1687 return cpuset_memory_pressure_enabled;
1688 case FILE_MEMORY_PRESSURE:
1689 return fmeter_getrate(&cs->fmeter);
1690 case FILE_SPREAD_PAGE:
1691 return is_spread_page(cs);
1692 case FILE_SPREAD_SLAB:
1693 return is_spread_slab(cs);
1694 default:
1695 BUG();
1696 }
1697
1698 /* Unreachable but makes gcc happy */
1699 return 0;
1700 }
1701
1702 static s64 cpuset_read_s64(struct cgroup *cont, struct cftype *cft)
1703 {
1704 struct cpuset *cs = cgroup_cs(cont);
1705 cpuset_filetype_t type = cft->private;
1706 switch (type) {
1707 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1708 return cs->relax_domain_level;
1709 default:
1710 BUG();
1711 }
1712
1713 /* Unrechable but makes gcc happy */
1714 return 0;
1715 }
1716
1717
1718 /*
1719 * for the common functions, 'private' gives the type of file
1720 */
1721
1722 static struct cftype files[] = {
1723 {
1724 .name = "cpus",
1725 .read = cpuset_common_file_read,
1726 .write_string = cpuset_write_resmask,
1727 .max_write_len = (100U + 6 * NR_CPUS),
1728 .private = FILE_CPULIST,
1729 },
1730
1731 {
1732 .name = "mems",
1733 .read = cpuset_common_file_read,
1734 .write_string = cpuset_write_resmask,
1735 .max_write_len = (100U + 6 * MAX_NUMNODES),
1736 .private = FILE_MEMLIST,
1737 },
1738
1739 {
1740 .name = "cpu_exclusive",
1741 .read_u64 = cpuset_read_u64,
1742 .write_u64 = cpuset_write_u64,
1743 .private = FILE_CPU_EXCLUSIVE,
1744 },
1745
1746 {
1747 .name = "mem_exclusive",
1748 .read_u64 = cpuset_read_u64,
1749 .write_u64 = cpuset_write_u64,
1750 .private = FILE_MEM_EXCLUSIVE,
1751 },
1752
1753 {
1754 .name = "mem_hardwall",
1755 .read_u64 = cpuset_read_u64,
1756 .write_u64 = cpuset_write_u64,
1757 .private = FILE_MEM_HARDWALL,
1758 },
1759
1760 {
1761 .name = "sched_load_balance",
1762 .read_u64 = cpuset_read_u64,
1763 .write_u64 = cpuset_write_u64,
1764 .private = FILE_SCHED_LOAD_BALANCE,
1765 },
1766
1767 {
1768 .name = "sched_relax_domain_level",
1769 .read_s64 = cpuset_read_s64,
1770 .write_s64 = cpuset_write_s64,
1771 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
1772 },
1773
1774 {
1775 .name = "memory_migrate",
1776 .read_u64 = cpuset_read_u64,
1777 .write_u64 = cpuset_write_u64,
1778 .private = FILE_MEMORY_MIGRATE,
1779 },
1780
1781 {
1782 .name = "memory_pressure",
1783 .read_u64 = cpuset_read_u64,
1784 .write_u64 = cpuset_write_u64,
1785 .private = FILE_MEMORY_PRESSURE,
1786 .mode = S_IRUGO,
1787 },
1788
1789 {
1790 .name = "memory_spread_page",
1791 .read_u64 = cpuset_read_u64,
1792 .write_u64 = cpuset_write_u64,
1793 .private = FILE_SPREAD_PAGE,
1794 },
1795
1796 {
1797 .name = "memory_spread_slab",
1798 .read_u64 = cpuset_read_u64,
1799 .write_u64 = cpuset_write_u64,
1800 .private = FILE_SPREAD_SLAB,
1801 },
1802
1803 {
1804 .name = "memory_pressure_enabled",
1805 .flags = CFTYPE_ONLY_ON_ROOT,
1806 .read_u64 = cpuset_read_u64,
1807 .write_u64 = cpuset_write_u64,
1808 .private = FILE_MEMORY_PRESSURE_ENABLED,
1809 },
1810
1811 { } /* terminate */
1812 };
1813
1814 /*
1815 * cpuset_css_alloc - allocate a cpuset css
1816 * cont: control group that the new cpuset will be part of
1817 */
1818
1819 static struct cgroup_subsys_state *cpuset_css_alloc(struct cgroup *cont)
1820 {
1821 struct cpuset *cs;
1822
1823 if (!cont->parent)
1824 return &top_cpuset.css;
1825
1826 cs = kzalloc(sizeof(*cs), GFP_KERNEL);
1827 if (!cs)
1828 return ERR_PTR(-ENOMEM);
1829 if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL)) {
1830 kfree(cs);
1831 return ERR_PTR(-ENOMEM);
1832 }
1833
1834 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1835 cpumask_clear(cs->cpus_allowed);
1836 nodes_clear(cs->mems_allowed);
1837 fmeter_init(&cs->fmeter);
1838 cs->relax_domain_level = -1;
1839 cs->parent = cgroup_cs(cont->parent);
1840
1841 return &cs->css;
1842 }
1843
1844 static int cpuset_css_online(struct cgroup *cgrp)
1845 {
1846 struct cpuset *cs = cgroup_cs(cgrp);
1847 struct cpuset *parent = cs->parent;
1848 struct cpuset *tmp_cs;
1849 struct cgroup *pos_cg;
1850
1851 if (!parent)
1852 return 0;
1853
1854 set_bit(CS_ONLINE, &cs->flags);
1855 if (is_spread_page(parent))
1856 set_bit(CS_SPREAD_PAGE, &cs->flags);
1857 if (is_spread_slab(parent))
1858 set_bit(CS_SPREAD_SLAB, &cs->flags);
1859
1860 number_of_cpusets++;
1861
1862 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags))
1863 return 0;
1864
1865 /*
1866 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
1867 * set. This flag handling is implemented in cgroup core for
1868 * histrical reasons - the flag may be specified during mount.
1869 *
1870 * Currently, if any sibling cpusets have exclusive cpus or mem, we
1871 * refuse to clone the configuration - thereby refusing the task to
1872 * be entered, and as a result refusing the sys_unshare() or
1873 * clone() which initiated it. If this becomes a problem for some
1874 * users who wish to allow that scenario, then this could be
1875 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
1876 * (and likewise for mems) to the new cgroup.
1877 */
1878 rcu_read_lock();
1879 cpuset_for_each_child(tmp_cs, pos_cg, parent) {
1880 if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
1881 rcu_read_unlock();
1882 return 0;
1883 }
1884 }
1885 rcu_read_unlock();
1886
1887 mutex_lock(&callback_mutex);
1888 cs->mems_allowed = parent->mems_allowed;
1889 cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
1890 mutex_unlock(&callback_mutex);
1891
1892 return 0;
1893 }
1894
1895 static void cpuset_css_offline(struct cgroup *cgrp)
1896 {
1897 struct cpuset *cs = cgroup_cs(cgrp);
1898
1899 /* css_offline is called w/o cgroup_mutex, grab it */
1900 cgroup_lock();
1901
1902 if (is_sched_load_balance(cs))
1903 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
1904
1905 number_of_cpusets--;
1906 clear_bit(CS_ONLINE, &cs->flags);
1907
1908 cgroup_unlock();
1909 }
1910
1911 /*
1912 * If the cpuset being removed has its flag 'sched_load_balance'
1913 * enabled, then simulate turning sched_load_balance off, which
1914 * will call async_rebuild_sched_domains().
1915 */
1916
1917 static void cpuset_css_free(struct cgroup *cont)
1918 {
1919 struct cpuset *cs = cgroup_cs(cont);
1920
1921 free_cpumask_var(cs->cpus_allowed);
1922 kfree(cs);
1923 }
1924
1925 struct cgroup_subsys cpuset_subsys = {
1926 .name = "cpuset",
1927 .css_alloc = cpuset_css_alloc,
1928 .css_online = cpuset_css_online,
1929 .css_offline = cpuset_css_offline,
1930 .css_free = cpuset_css_free,
1931 .can_attach = cpuset_can_attach,
1932 .attach = cpuset_attach,
1933 .subsys_id = cpuset_subsys_id,
1934 .base_cftypes = files,
1935 .early_init = 1,
1936 };
1937
1938 /**
1939 * cpuset_init - initialize cpusets at system boot
1940 *
1941 * Description: Initialize top_cpuset and the cpuset internal file system,
1942 **/
1943
1944 int __init cpuset_init(void)
1945 {
1946 int err = 0;
1947
1948 if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
1949 BUG();
1950
1951 cpumask_setall(top_cpuset.cpus_allowed);
1952 nodes_setall(top_cpuset.mems_allowed);
1953
1954 fmeter_init(&top_cpuset.fmeter);
1955 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
1956 top_cpuset.relax_domain_level = -1;
1957
1958 err = register_filesystem(&cpuset_fs_type);
1959 if (err < 0)
1960 return err;
1961
1962 if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
1963 BUG();
1964
1965 number_of_cpusets = 1;
1966 return 0;
1967 }
1968
1969 /**
1970 * cpuset_do_move_task - move a given task to another cpuset
1971 * @tsk: pointer to task_struct the task to move
1972 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
1973 *
1974 * Called by cgroup_scan_tasks() for each task in a cgroup.
1975 * Return nonzero to stop the walk through the tasks.
1976 */
1977 static void cpuset_do_move_task(struct task_struct *tsk,
1978 struct cgroup_scanner *scan)
1979 {
1980 struct cgroup *new_cgroup = scan->data;
1981
1982 cgroup_attach_task(new_cgroup, tsk);
1983 }
1984
1985 /**
1986 * move_member_tasks_to_cpuset - move tasks from one cpuset to another
1987 * @from: cpuset in which the tasks currently reside
1988 * @to: cpuset to which the tasks will be moved
1989 *
1990 * Called with cgroup_mutex held
1991 * callback_mutex must not be held, as cpuset_attach() will take it.
1992 *
1993 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
1994 * calling callback functions for each.
1995 */
1996 static void move_member_tasks_to_cpuset(struct cpuset *from, struct cpuset *to)
1997 {
1998 struct cgroup_scanner scan;
1999
2000 scan.cg = from->css.cgroup;
2001 scan.test_task = NULL; /* select all tasks in cgroup */
2002 scan.process_task = cpuset_do_move_task;
2003 scan.heap = NULL;
2004 scan.data = to->css.cgroup;
2005
2006 if (cgroup_scan_tasks(&scan))
2007 printk(KERN_ERR "move_member_tasks_to_cpuset: "
2008 "cgroup_scan_tasks failed\n");
2009 }
2010
2011 /*
2012 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
2013 * or memory nodes, we need to walk over the cpuset hierarchy,
2014 * removing that CPU or node from all cpusets. If this removes the
2015 * last CPU or node from a cpuset, then move the tasks in the empty
2016 * cpuset to its next-highest non-empty parent.
2017 *
2018 * Called with cgroup_mutex held
2019 * callback_mutex must not be held, as cpuset_attach() will take it.
2020 */
2021 static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
2022 {
2023 struct cpuset *parent;
2024
2025 /*
2026 * Find its next-highest non-empty parent, (top cpuset
2027 * has online cpus, so can't be empty).
2028 */
2029 parent = cs->parent;
2030 while (cpumask_empty(parent->cpus_allowed) ||
2031 nodes_empty(parent->mems_allowed))
2032 parent = parent->parent;
2033
2034 move_member_tasks_to_cpuset(cs, parent);
2035 }
2036
2037 /*
2038 * Helper function to traverse cpusets.
2039 * It can be used to walk the cpuset tree from top to bottom, completing
2040 * one layer before dropping down to the next (thus always processing a
2041 * node before any of its children).
2042 */
2043 static struct cpuset *cpuset_next(struct list_head *queue)
2044 {
2045 struct cpuset *cp;
2046 struct cpuset *child; /* scans child cpusets of cp */
2047 struct cgroup *cont;
2048
2049 if (list_empty(queue))
2050 return NULL;
2051
2052 cp = list_first_entry(queue, struct cpuset, stack_list);
2053 list_del(queue->next);
2054 rcu_read_lock();
2055 cpuset_for_each_child(child, cont, cp)
2056 list_add_tail(&child->stack_list, queue);
2057 rcu_read_unlock();
2058
2059 return cp;
2060 }
2061
2062
2063 /*
2064 * Walk the specified cpuset subtree upon a hotplug operation (CPU/Memory
2065 * online/offline) and update the cpusets accordingly.
2066 * For regular CPU/Mem hotplug, look for empty cpusets; the tasks of such
2067 * cpuset must be moved to a parent cpuset.
2068 *
2069 * Called with cgroup_mutex held. We take callback_mutex to modify
2070 * cpus_allowed and mems_allowed.
2071 *
2072 * This walk processes the tree from top to bottom, completing one layer
2073 * before dropping down to the next. It always processes a node before
2074 * any of its children.
2075 *
2076 * In the case of memory hot-unplug, it will remove nodes from N_MEMORY
2077 * if all present pages from a node are offlined.
2078 */
2079 static void
2080 scan_cpusets_upon_hotplug(struct cpuset *root, enum hotplug_event event)
2081 {
2082 LIST_HEAD(queue);
2083 struct cpuset *cp; /* scans cpusets being updated */
2084 static nodemask_t oldmems; /* protected by cgroup_mutex */
2085
2086 list_add_tail((struct list_head *)&root->stack_list, &queue);
2087
2088 switch (event) {
2089 case CPUSET_CPU_OFFLINE:
2090 while ((cp = cpuset_next(&queue)) != NULL) {
2091
2092 /* Continue past cpusets with all cpus online */
2093 if (cpumask_subset(cp->cpus_allowed, cpu_active_mask))
2094 continue;
2095
2096 /* Remove offline cpus from this cpuset. */
2097 mutex_lock(&callback_mutex);
2098 cpumask_and(cp->cpus_allowed, cp->cpus_allowed,
2099 cpu_active_mask);
2100 mutex_unlock(&callback_mutex);
2101
2102 /* Move tasks from the empty cpuset to a parent */
2103 if (cpumask_empty(cp->cpus_allowed))
2104 remove_tasks_in_empty_cpuset(cp);
2105 else
2106 update_tasks_cpumask(cp, NULL);
2107 }
2108 break;
2109
2110 case CPUSET_MEM_OFFLINE:
2111 while ((cp = cpuset_next(&queue)) != NULL) {
2112
2113 /* Continue past cpusets with all mems online */
2114 if (nodes_subset(cp->mems_allowed,
2115 node_states[N_MEMORY]))
2116 continue;
2117
2118 oldmems = cp->mems_allowed;
2119
2120 /* Remove offline mems from this cpuset. */
2121 mutex_lock(&callback_mutex);
2122 nodes_and(cp->mems_allowed, cp->mems_allowed,
2123 node_states[N_MEMORY]);
2124 mutex_unlock(&callback_mutex);
2125
2126 /* Move tasks from the empty cpuset to a parent */
2127 if (nodes_empty(cp->mems_allowed))
2128 remove_tasks_in_empty_cpuset(cp);
2129 else
2130 update_tasks_nodemask(cp, &oldmems, NULL);
2131 }
2132 }
2133 }
2134
2135 /*
2136 * The top_cpuset tracks what CPUs and Memory Nodes are online,
2137 * period. This is necessary in order to make cpusets transparent
2138 * (of no affect) on systems that are actively using CPU hotplug
2139 * but making no active use of cpusets.
2140 *
2141 * The only exception to this is suspend/resume, where we don't
2142 * modify cpusets at all.
2143 *
2144 * This routine ensures that top_cpuset.cpus_allowed tracks
2145 * cpu_active_mask on each CPU hotplug (cpuhp) event.
2146 *
2147 * Called within get_online_cpus(). Needs to call cgroup_lock()
2148 * before calling generate_sched_domains().
2149 *
2150 * @cpu_online: Indicates whether this is a CPU online event (true) or
2151 * a CPU offline event (false).
2152 */
2153 void cpuset_update_active_cpus(bool cpu_online)
2154 {
2155 struct sched_domain_attr *attr;
2156 cpumask_var_t *doms;
2157 int ndoms;
2158
2159 cgroup_lock();
2160 mutex_lock(&callback_mutex);
2161 cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
2162 mutex_unlock(&callback_mutex);
2163
2164 if (!cpu_online)
2165 scan_cpusets_upon_hotplug(&top_cpuset, CPUSET_CPU_OFFLINE);
2166
2167 ndoms = generate_sched_domains(&doms, &attr);
2168 cgroup_unlock();
2169
2170 /* Have scheduler rebuild the domains */
2171 partition_sched_domains(ndoms, doms, attr);
2172 }
2173
2174 #ifdef CONFIG_MEMORY_HOTPLUG
2175 /*
2176 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
2177 * Call this routine anytime after node_states[N_MEMORY] changes.
2178 * See cpuset_update_active_cpus() for CPU hotplug handling.
2179 */
2180 static int cpuset_track_online_nodes(struct notifier_block *self,
2181 unsigned long action, void *arg)
2182 {
2183 static nodemask_t oldmems; /* protected by cgroup_mutex */
2184
2185 cgroup_lock();
2186 switch (action) {
2187 case MEM_ONLINE:
2188 oldmems = top_cpuset.mems_allowed;
2189 mutex_lock(&callback_mutex);
2190 top_cpuset.mems_allowed = node_states[N_MEMORY];
2191 mutex_unlock(&callback_mutex);
2192 update_tasks_nodemask(&top_cpuset, &oldmems, NULL);
2193 break;
2194 case MEM_OFFLINE:
2195 /*
2196 * needn't update top_cpuset.mems_allowed explicitly because
2197 * scan_cpusets_upon_hotplug() will update it.
2198 */
2199 scan_cpusets_upon_hotplug(&top_cpuset, CPUSET_MEM_OFFLINE);
2200 break;
2201 default:
2202 break;
2203 }
2204 cgroup_unlock();
2205
2206 return NOTIFY_OK;
2207 }
2208 #endif
2209
2210 /**
2211 * cpuset_init_smp - initialize cpus_allowed
2212 *
2213 * Description: Finish top cpuset after cpu, node maps are initialized
2214 **/
2215
2216 void __init cpuset_init_smp(void)
2217 {
2218 cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
2219 top_cpuset.mems_allowed = node_states[N_MEMORY];
2220
2221 hotplug_memory_notifier(cpuset_track_online_nodes, 10);
2222
2223 cpuset_wq = create_singlethread_workqueue("cpuset");
2224 BUG_ON(!cpuset_wq);
2225 }
2226
2227 /**
2228 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2229 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
2230 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
2231 *
2232 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
2233 * attached to the specified @tsk. Guaranteed to return some non-empty
2234 * subset of cpu_online_mask, even if this means going outside the
2235 * tasks cpuset.
2236 **/
2237
2238 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
2239 {
2240 mutex_lock(&callback_mutex);
2241 task_lock(tsk);
2242 guarantee_online_cpus(task_cs(tsk), pmask);
2243 task_unlock(tsk);
2244 mutex_unlock(&callback_mutex);
2245 }
2246
2247 void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
2248 {
2249 const struct cpuset *cs;
2250
2251 rcu_read_lock();
2252 cs = task_cs(tsk);
2253 if (cs)
2254 do_set_cpus_allowed(tsk, cs->cpus_allowed);
2255 rcu_read_unlock();
2256
2257 /*
2258 * We own tsk->cpus_allowed, nobody can change it under us.
2259 *
2260 * But we used cs && cs->cpus_allowed lockless and thus can
2261 * race with cgroup_attach_task() or update_cpumask() and get
2262 * the wrong tsk->cpus_allowed. However, both cases imply the
2263 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
2264 * which takes task_rq_lock().
2265 *
2266 * If we are called after it dropped the lock we must see all
2267 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
2268 * set any mask even if it is not right from task_cs() pov,
2269 * the pending set_cpus_allowed_ptr() will fix things.
2270 *
2271 * select_fallback_rq() will fix things ups and set cpu_possible_mask
2272 * if required.
2273 */
2274 }
2275
2276 void cpuset_init_current_mems_allowed(void)
2277 {
2278 nodes_setall(current->mems_allowed);
2279 }
2280
2281 /**
2282 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2283 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2284 *
2285 * Description: Returns the nodemask_t mems_allowed of the cpuset
2286 * attached to the specified @tsk. Guaranteed to return some non-empty
2287 * subset of node_states[N_MEMORY], even if this means going outside the
2288 * tasks cpuset.
2289 **/
2290
2291 nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
2292 {
2293 nodemask_t mask;
2294
2295 mutex_lock(&callback_mutex);
2296 task_lock(tsk);
2297 guarantee_online_mems(task_cs(tsk), &mask);
2298 task_unlock(tsk);
2299 mutex_unlock(&callback_mutex);
2300
2301 return mask;
2302 }
2303
2304 /**
2305 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
2306 * @nodemask: the nodemask to be checked
2307 *
2308 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
2309 */
2310 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
2311 {
2312 return nodes_intersects(*nodemask, current->mems_allowed);
2313 }
2314
2315 /*
2316 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2317 * mem_hardwall ancestor to the specified cpuset. Call holding
2318 * callback_mutex. If no ancestor is mem_exclusive or mem_hardwall
2319 * (an unusual configuration), then returns the root cpuset.
2320 */
2321 static const struct cpuset *nearest_hardwall_ancestor(const struct cpuset *cs)
2322 {
2323 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && cs->parent)
2324 cs = cs->parent;
2325 return cs;
2326 }
2327
2328 /**
2329 * cpuset_node_allowed_softwall - Can we allocate on a memory node?
2330 * @node: is this an allowed node?
2331 * @gfp_mask: memory allocation flags
2332 *
2333 * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
2334 * set, yes, we can always allocate. If node is in our task's mems_allowed,
2335 * yes. If it's not a __GFP_HARDWALL request and this node is in the nearest
2336 * hardwalled cpuset ancestor to this task's cpuset, yes. If the task has been
2337 * OOM killed and has access to memory reserves as specified by the TIF_MEMDIE
2338 * flag, yes.
2339 * Otherwise, no.
2340 *
2341 * If __GFP_HARDWALL is set, cpuset_node_allowed_softwall() reduces to
2342 * cpuset_node_allowed_hardwall(). Otherwise, cpuset_node_allowed_softwall()
2343 * might sleep, and might allow a node from an enclosing cpuset.
2344 *
2345 * cpuset_node_allowed_hardwall() only handles the simpler case of hardwall
2346 * cpusets, and never sleeps.
2347 *
2348 * The __GFP_THISNODE placement logic is really handled elsewhere,
2349 * by forcibly using a zonelist starting at a specified node, and by
2350 * (in get_page_from_freelist()) refusing to consider the zones for
2351 * any node on the zonelist except the first. By the time any such
2352 * calls get to this routine, we should just shut up and say 'yes'.
2353 *
2354 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
2355 * and do not allow allocations outside the current tasks cpuset
2356 * unless the task has been OOM killed as is marked TIF_MEMDIE.
2357 * GFP_KERNEL allocations are not so marked, so can escape to the
2358 * nearest enclosing hardwalled ancestor cpuset.
2359 *
2360 * Scanning up parent cpusets requires callback_mutex. The
2361 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2362 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2363 * current tasks mems_allowed came up empty on the first pass over
2364 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
2365 * cpuset are short of memory, might require taking the callback_mutex
2366 * mutex.
2367 *
2368 * The first call here from mm/page_alloc:get_page_from_freelist()
2369 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2370 * so no allocation on a node outside the cpuset is allowed (unless
2371 * in interrupt, of course).
2372 *
2373 * The second pass through get_page_from_freelist() doesn't even call
2374 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
2375 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2376 * in alloc_flags. That logic and the checks below have the combined
2377 * affect that:
2378 * in_interrupt - any node ok (current task context irrelevant)
2379 * GFP_ATOMIC - any node ok
2380 * TIF_MEMDIE - any node ok
2381 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
2382 * GFP_USER - only nodes in current tasks mems allowed ok.
2383 *
2384 * Rule:
2385 * Don't call cpuset_node_allowed_softwall if you can't sleep, unless you
2386 * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
2387 * the code that might scan up ancestor cpusets and sleep.
2388 */
2389 int __cpuset_node_allowed_softwall(int node, gfp_t gfp_mask)
2390 {
2391 const struct cpuset *cs; /* current cpuset ancestors */
2392 int allowed; /* is allocation in zone z allowed? */
2393
2394 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2395 return 1;
2396 might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
2397 if (node_isset(node, current->mems_allowed))
2398 return 1;
2399 /*
2400 * Allow tasks that have access to memory reserves because they have
2401 * been OOM killed to get memory anywhere.
2402 */
2403 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2404 return 1;
2405 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
2406 return 0;
2407
2408 if (current->flags & PF_EXITING) /* Let dying task have memory */
2409 return 1;
2410
2411 /* Not hardwall and node outside mems_allowed: scan up cpusets */
2412 mutex_lock(&callback_mutex);
2413
2414 task_lock(current);
2415 cs = nearest_hardwall_ancestor(task_cs(current));
2416 task_unlock(current);
2417
2418 allowed = node_isset(node, cs->mems_allowed);
2419 mutex_unlock(&callback_mutex);
2420 return allowed;
2421 }
2422
2423 /*
2424 * cpuset_node_allowed_hardwall - Can we allocate on a memory node?
2425 * @node: is this an allowed node?
2426 * @gfp_mask: memory allocation flags
2427 *
2428 * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
2429 * set, yes, we can always allocate. If node is in our task's mems_allowed,
2430 * yes. If the task has been OOM killed and has access to memory reserves as
2431 * specified by the TIF_MEMDIE flag, yes.
2432 * Otherwise, no.
2433 *
2434 * The __GFP_THISNODE placement logic is really handled elsewhere,
2435 * by forcibly using a zonelist starting at a specified node, and by
2436 * (in get_page_from_freelist()) refusing to consider the zones for
2437 * any node on the zonelist except the first. By the time any such
2438 * calls get to this routine, we should just shut up and say 'yes'.
2439 *
2440 * Unlike the cpuset_node_allowed_softwall() variant, above,
2441 * this variant requires that the node be in the current task's
2442 * mems_allowed or that we're in interrupt. It does not scan up the
2443 * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
2444 * It never sleeps.
2445 */
2446 int __cpuset_node_allowed_hardwall(int node, gfp_t gfp_mask)
2447 {
2448 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2449 return 1;
2450 if (node_isset(node, current->mems_allowed))
2451 return 1;
2452 /*
2453 * Allow tasks that have access to memory reserves because they have
2454 * been OOM killed to get memory anywhere.
2455 */
2456 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2457 return 1;
2458 return 0;
2459 }
2460
2461 /**
2462 * cpuset_mem_spread_node() - On which node to begin search for a file page
2463 * cpuset_slab_spread_node() - On which node to begin search for a slab page
2464 *
2465 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2466 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2467 * and if the memory allocation used cpuset_mem_spread_node()
2468 * to determine on which node to start looking, as it will for
2469 * certain page cache or slab cache pages such as used for file
2470 * system buffers and inode caches, then instead of starting on the
2471 * local node to look for a free page, rather spread the starting
2472 * node around the tasks mems_allowed nodes.
2473 *
2474 * We don't have to worry about the returned node being offline
2475 * because "it can't happen", and even if it did, it would be ok.
2476 *
2477 * The routines calling guarantee_online_mems() are careful to
2478 * only set nodes in task->mems_allowed that are online. So it
2479 * should not be possible for the following code to return an
2480 * offline node. But if it did, that would be ok, as this routine
2481 * is not returning the node where the allocation must be, only
2482 * the node where the search should start. The zonelist passed to
2483 * __alloc_pages() will include all nodes. If the slab allocator
2484 * is passed an offline node, it will fall back to the local node.
2485 * See kmem_cache_alloc_node().
2486 */
2487
2488 static int cpuset_spread_node(int *rotor)
2489 {
2490 int node;
2491
2492 node = next_node(*rotor, current->mems_allowed);
2493 if (node == MAX_NUMNODES)
2494 node = first_node(current->mems_allowed);
2495 *rotor = node;
2496 return node;
2497 }
2498
2499 int cpuset_mem_spread_node(void)
2500 {
2501 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
2502 current->cpuset_mem_spread_rotor =
2503 node_random(&current->mems_allowed);
2504
2505 return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
2506 }
2507
2508 int cpuset_slab_spread_node(void)
2509 {
2510 if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
2511 current->cpuset_slab_spread_rotor =
2512 node_random(&current->mems_allowed);
2513
2514 return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
2515 }
2516
2517 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
2518
2519 /**
2520 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2521 * @tsk1: pointer to task_struct of some task.
2522 * @tsk2: pointer to task_struct of some other task.
2523 *
2524 * Description: Return true if @tsk1's mems_allowed intersects the
2525 * mems_allowed of @tsk2. Used by the OOM killer to determine if
2526 * one of the task's memory usage might impact the memory available
2527 * to the other.
2528 **/
2529
2530 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
2531 const struct task_struct *tsk2)
2532 {
2533 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
2534 }
2535
2536 /**
2537 * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
2538 * @task: pointer to task_struct of some task.
2539 *
2540 * Description: Prints @task's name, cpuset name, and cached copy of its
2541 * mems_allowed to the kernel log. Must hold task_lock(task) to allow
2542 * dereferencing task_cs(task).
2543 */
2544 void cpuset_print_task_mems_allowed(struct task_struct *tsk)
2545 {
2546 struct dentry *dentry;
2547
2548 dentry = task_cs(tsk)->css.cgroup->dentry;
2549 spin_lock(&cpuset_buffer_lock);
2550 snprintf(cpuset_name, CPUSET_NAME_LEN,
2551 dentry ? (const char *)dentry->d_name.name : "/");
2552 nodelist_scnprintf(cpuset_nodelist, CPUSET_NODELIST_LEN,
2553 tsk->mems_allowed);
2554 printk(KERN_INFO "%s cpuset=%s mems_allowed=%s\n",
2555 tsk->comm, cpuset_name, cpuset_nodelist);
2556 spin_unlock(&cpuset_buffer_lock);
2557 }
2558
2559 /*
2560 * Collection of memory_pressure is suppressed unless
2561 * this flag is enabled by writing "1" to the special
2562 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2563 */
2564
2565 int cpuset_memory_pressure_enabled __read_mostly;
2566
2567 /**
2568 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2569 *
2570 * Keep a running average of the rate of synchronous (direct)
2571 * page reclaim efforts initiated by tasks in each cpuset.
2572 *
2573 * This represents the rate at which some task in the cpuset
2574 * ran low on memory on all nodes it was allowed to use, and
2575 * had to enter the kernels page reclaim code in an effort to
2576 * create more free memory by tossing clean pages or swapping
2577 * or writing dirty pages.
2578 *
2579 * Display to user space in the per-cpuset read-only file
2580 * "memory_pressure". Value displayed is an integer
2581 * representing the recent rate of entry into the synchronous
2582 * (direct) page reclaim by any task attached to the cpuset.
2583 **/
2584
2585 void __cpuset_memory_pressure_bump(void)
2586 {
2587 task_lock(current);
2588 fmeter_markevent(&task_cs(current)->fmeter);
2589 task_unlock(current);
2590 }
2591
2592 #ifdef CONFIG_PROC_PID_CPUSET
2593 /*
2594 * proc_cpuset_show()
2595 * - Print tasks cpuset path into seq_file.
2596 * - Used for /proc/<pid>/cpuset.
2597 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2598 * doesn't really matter if tsk->cpuset changes after we read it,
2599 * and we take cgroup_mutex, keeping cpuset_attach() from changing it
2600 * anyway.
2601 */
2602 static int proc_cpuset_show(struct seq_file *m, void *unused_v)
2603 {
2604 struct pid *pid;
2605 struct task_struct *tsk;
2606 char *buf;
2607 struct cgroup_subsys_state *css;
2608 int retval;
2609
2610 retval = -ENOMEM;
2611 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2612 if (!buf)
2613 goto out;
2614
2615 retval = -ESRCH;
2616 pid = m->private;
2617 tsk = get_pid_task(pid, PIDTYPE_PID);
2618 if (!tsk)
2619 goto out_free;
2620
2621 retval = -EINVAL;
2622 cgroup_lock();
2623 css = task_subsys_state(tsk, cpuset_subsys_id);
2624 retval = cgroup_path(css->cgroup, buf, PAGE_SIZE);
2625 if (retval < 0)
2626 goto out_unlock;
2627 seq_puts(m, buf);
2628 seq_putc(m, '\n');
2629 out_unlock:
2630 cgroup_unlock();
2631 put_task_struct(tsk);
2632 out_free:
2633 kfree(buf);
2634 out:
2635 return retval;
2636 }
2637
2638 static int cpuset_open(struct inode *inode, struct file *file)
2639 {
2640 struct pid *pid = PROC_I(inode)->pid;
2641 return single_open(file, proc_cpuset_show, pid);
2642 }
2643
2644 const struct file_operations proc_cpuset_operations = {
2645 .open = cpuset_open,
2646 .read = seq_read,
2647 .llseek = seq_lseek,
2648 .release = single_release,
2649 };
2650 #endif /* CONFIG_PROC_PID_CPUSET */
2651
2652 /* Display task mems_allowed in /proc/<pid>/status file. */
2653 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
2654 {
2655 seq_printf(m, "Mems_allowed:\t");
2656 seq_nodemask(m, &task->mems_allowed);
2657 seq_printf(m, "\n");
2658 seq_printf(m, "Mems_allowed_list:\t");
2659 seq_nodemask_list(m, &task->mems_allowed);
2660 seq_printf(m, "\n");
2661 }
This page took 0.159144 seconds and 6 git commands to generate.