[PATCH] cpuset: update_nodemask code reformat
[deliverable/linux.git] / kernel / cpuset.c
1 /*
2 * kernel/cpuset.c
3 *
4 * Processor and Memory placement constraints for sets of tasks.
5 *
6 * Copyright (C) 2003 BULL SA.
7 * Copyright (C) 2004 Silicon Graphics, Inc.
8 *
9 * Portions derived from Patrick Mochel's sysfs code.
10 * sysfs is Copyright (c) 2001-3 Patrick Mochel
11 * Portions Copyright (c) 2004 Silicon Graphics, Inc.
12 *
13 * 2003-10-10 Written by Simon Derr <simon.derr@bull.net>
14 * 2003-10-22 Updates by Stephen Hemminger.
15 * 2004 May-July Rework by Paul Jackson <pj@sgi.com>
16 *
17 * This file is subject to the terms and conditions of the GNU General Public
18 * License. See the file COPYING in the main directory of the Linux
19 * distribution for more details.
20 */
21
22 #include <linux/config.h>
23 #include <linux/cpu.h>
24 #include <linux/cpumask.h>
25 #include <linux/cpuset.h>
26 #include <linux/err.h>
27 #include <linux/errno.h>
28 #include <linux/file.h>
29 #include <linux/fs.h>
30 #include <linux/init.h>
31 #include <linux/interrupt.h>
32 #include <linux/kernel.h>
33 #include <linux/kmod.h>
34 #include <linux/list.h>
35 #include <linux/mempolicy.h>
36 #include <linux/mm.h>
37 #include <linux/module.h>
38 #include <linux/mount.h>
39 #include <linux/namei.h>
40 #include <linux/pagemap.h>
41 #include <linux/proc_fs.h>
42 #include <linux/sched.h>
43 #include <linux/seq_file.h>
44 #include <linux/slab.h>
45 #include <linux/smp_lock.h>
46 #include <linux/spinlock.h>
47 #include <linux/stat.h>
48 #include <linux/string.h>
49 #include <linux/time.h>
50 #include <linux/backing-dev.h>
51 #include <linux/sort.h>
52
53 #include <asm/uaccess.h>
54 #include <asm/atomic.h>
55 #include <asm/semaphore.h>
56
57 #define CPUSET_SUPER_MAGIC 0x27e0eb
58
59 /* See "Frequency meter" comments, below. */
60
61 struct fmeter {
62 int cnt; /* unprocessed events count */
63 int val; /* most recent output value */
64 time_t time; /* clock (secs) when val computed */
65 spinlock_t lock; /* guards read or write of above */
66 };
67
68 struct cpuset {
69 unsigned long flags; /* "unsigned long" so bitops work */
70 cpumask_t cpus_allowed; /* CPUs allowed to tasks in cpuset */
71 nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */
72
73 /*
74 * Count is atomic so can incr (fork) or decr (exit) without a lock.
75 */
76 atomic_t count; /* count tasks using this cpuset */
77
78 /*
79 * We link our 'sibling' struct into our parents 'children'.
80 * Our children link their 'sibling' into our 'children'.
81 */
82 struct list_head sibling; /* my parents children */
83 struct list_head children; /* my children */
84
85 struct cpuset *parent; /* my parent */
86 struct dentry *dentry; /* cpuset fs entry */
87
88 /*
89 * Copy of global cpuset_mems_generation as of the most
90 * recent time this cpuset changed its mems_allowed.
91 */
92 int mems_generation;
93
94 struct fmeter fmeter; /* memory_pressure filter */
95 };
96
97 /* bits in struct cpuset flags field */
98 typedef enum {
99 CS_CPU_EXCLUSIVE,
100 CS_MEM_EXCLUSIVE,
101 CS_MEMORY_MIGRATE,
102 CS_REMOVED,
103 CS_NOTIFY_ON_RELEASE
104 } cpuset_flagbits_t;
105
106 /* convenient tests for these bits */
107 static inline int is_cpu_exclusive(const struct cpuset *cs)
108 {
109 return !!test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
110 }
111
112 static inline int is_mem_exclusive(const struct cpuset *cs)
113 {
114 return !!test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
115 }
116
117 static inline int is_removed(const struct cpuset *cs)
118 {
119 return !!test_bit(CS_REMOVED, &cs->flags);
120 }
121
122 static inline int notify_on_release(const struct cpuset *cs)
123 {
124 return !!test_bit(CS_NOTIFY_ON_RELEASE, &cs->flags);
125 }
126
127 static inline int is_memory_migrate(const struct cpuset *cs)
128 {
129 return !!test_bit(CS_MEMORY_MIGRATE, &cs->flags);
130 }
131
132 /*
133 * Increment this atomic integer everytime any cpuset changes its
134 * mems_allowed value. Users of cpusets can track this generation
135 * number, and avoid having to lock and reload mems_allowed unless
136 * the cpuset they're using changes generation.
137 *
138 * A single, global generation is needed because attach_task() could
139 * reattach a task to a different cpuset, which must not have its
140 * generation numbers aliased with those of that tasks previous cpuset.
141 *
142 * Generations are needed for mems_allowed because one task cannot
143 * modify anothers memory placement. So we must enable every task,
144 * on every visit to __alloc_pages(), to efficiently check whether
145 * its current->cpuset->mems_allowed has changed, requiring an update
146 * of its current->mems_allowed.
147 */
148 static atomic_t cpuset_mems_generation = ATOMIC_INIT(1);
149
150 static struct cpuset top_cpuset = {
151 .flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)),
152 .cpus_allowed = CPU_MASK_ALL,
153 .mems_allowed = NODE_MASK_ALL,
154 .count = ATOMIC_INIT(0),
155 .sibling = LIST_HEAD_INIT(top_cpuset.sibling),
156 .children = LIST_HEAD_INIT(top_cpuset.children),
157 };
158
159 static struct vfsmount *cpuset_mount;
160 static struct super_block *cpuset_sb;
161
162 /*
163 * We have two global cpuset semaphores below. They can nest.
164 * It is ok to first take manage_sem, then nest callback_sem. We also
165 * require taking task_lock() when dereferencing a tasks cpuset pointer.
166 * See "The task_lock() exception", at the end of this comment.
167 *
168 * A task must hold both semaphores to modify cpusets. If a task
169 * holds manage_sem, then it blocks others wanting that semaphore,
170 * ensuring that it is the only task able to also acquire callback_sem
171 * and be able to modify cpusets. It can perform various checks on
172 * the cpuset structure first, knowing nothing will change. It can
173 * also allocate memory while just holding manage_sem. While it is
174 * performing these checks, various callback routines can briefly
175 * acquire callback_sem to query cpusets. Once it is ready to make
176 * the changes, it takes callback_sem, blocking everyone else.
177 *
178 * Calls to the kernel memory allocator can not be made while holding
179 * callback_sem, as that would risk double tripping on callback_sem
180 * from one of the callbacks into the cpuset code from within
181 * __alloc_pages().
182 *
183 * If a task is only holding callback_sem, then it has read-only
184 * access to cpusets.
185 *
186 * The task_struct fields mems_allowed and mems_generation may only
187 * be accessed in the context of that task, so require no locks.
188 *
189 * Any task can increment and decrement the count field without lock.
190 * So in general, code holding manage_sem or callback_sem can't rely
191 * on the count field not changing. However, if the count goes to
192 * zero, then only attach_task(), which holds both semaphores, can
193 * increment it again. Because a count of zero means that no tasks
194 * are currently attached, therefore there is no way a task attached
195 * to that cpuset can fork (the other way to increment the count).
196 * So code holding manage_sem or callback_sem can safely assume that
197 * if the count is zero, it will stay zero. Similarly, if a task
198 * holds manage_sem or callback_sem on a cpuset with zero count, it
199 * knows that the cpuset won't be removed, as cpuset_rmdir() needs
200 * both of those semaphores.
201 *
202 * A possible optimization to improve parallelism would be to make
203 * callback_sem a R/W semaphore (rwsem), allowing the callback routines
204 * to proceed in parallel, with read access, until the holder of
205 * manage_sem needed to take this rwsem for exclusive write access
206 * and modify some cpusets.
207 *
208 * The cpuset_common_file_write handler for operations that modify
209 * the cpuset hierarchy holds manage_sem across the entire operation,
210 * single threading all such cpuset modifications across the system.
211 *
212 * The cpuset_common_file_read() handlers only hold callback_sem across
213 * small pieces of code, such as when reading out possibly multi-word
214 * cpumasks and nodemasks.
215 *
216 * The fork and exit callbacks cpuset_fork() and cpuset_exit(), don't
217 * (usually) take either semaphore. These are the two most performance
218 * critical pieces of code here. The exception occurs on cpuset_exit(),
219 * when a task in a notify_on_release cpuset exits. Then manage_sem
220 * is taken, and if the cpuset count is zero, a usermode call made
221 * to /sbin/cpuset_release_agent with the name of the cpuset (path
222 * relative to the root of cpuset file system) as the argument.
223 *
224 * A cpuset can only be deleted if both its 'count' of using tasks
225 * is zero, and its list of 'children' cpusets is empty. Since all
226 * tasks in the system use _some_ cpuset, and since there is always at
227 * least one task in the system (init, pid == 1), therefore, top_cpuset
228 * always has either children cpusets and/or using tasks. So we don't
229 * need a special hack to ensure that top_cpuset cannot be deleted.
230 *
231 * The above "Tale of Two Semaphores" would be complete, but for:
232 *
233 * The task_lock() exception
234 *
235 * The need for this exception arises from the action of attach_task(),
236 * which overwrites one tasks cpuset pointer with another. It does
237 * so using both semaphores, however there are several performance
238 * critical places that need to reference task->cpuset without the
239 * expense of grabbing a system global semaphore. Therefore except as
240 * noted below, when dereferencing or, as in attach_task(), modifying
241 * a tasks cpuset pointer we use task_lock(), which acts on a spinlock
242 * (task->alloc_lock) already in the task_struct routinely used for
243 * such matters.
244 */
245
246 static DECLARE_MUTEX(manage_sem);
247 static DECLARE_MUTEX(callback_sem);
248
249 /*
250 * A couple of forward declarations required, due to cyclic reference loop:
251 * cpuset_mkdir -> cpuset_create -> cpuset_populate_dir -> cpuset_add_file
252 * -> cpuset_create_file -> cpuset_dir_inode_operations -> cpuset_mkdir.
253 */
254
255 static int cpuset_mkdir(struct inode *dir, struct dentry *dentry, int mode);
256 static int cpuset_rmdir(struct inode *unused_dir, struct dentry *dentry);
257
258 static struct backing_dev_info cpuset_backing_dev_info = {
259 .ra_pages = 0, /* No readahead */
260 .capabilities = BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK,
261 };
262
263 static struct inode *cpuset_new_inode(mode_t mode)
264 {
265 struct inode *inode = new_inode(cpuset_sb);
266
267 if (inode) {
268 inode->i_mode = mode;
269 inode->i_uid = current->fsuid;
270 inode->i_gid = current->fsgid;
271 inode->i_blksize = PAGE_CACHE_SIZE;
272 inode->i_blocks = 0;
273 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
274 inode->i_mapping->backing_dev_info = &cpuset_backing_dev_info;
275 }
276 return inode;
277 }
278
279 static void cpuset_diput(struct dentry *dentry, struct inode *inode)
280 {
281 /* is dentry a directory ? if so, kfree() associated cpuset */
282 if (S_ISDIR(inode->i_mode)) {
283 struct cpuset *cs = dentry->d_fsdata;
284 BUG_ON(!(is_removed(cs)));
285 kfree(cs);
286 }
287 iput(inode);
288 }
289
290 static struct dentry_operations cpuset_dops = {
291 .d_iput = cpuset_diput,
292 };
293
294 static struct dentry *cpuset_get_dentry(struct dentry *parent, const char *name)
295 {
296 struct dentry *d = lookup_one_len(name, parent, strlen(name));
297 if (!IS_ERR(d))
298 d->d_op = &cpuset_dops;
299 return d;
300 }
301
302 static void remove_dir(struct dentry *d)
303 {
304 struct dentry *parent = dget(d->d_parent);
305
306 d_delete(d);
307 simple_rmdir(parent->d_inode, d);
308 dput(parent);
309 }
310
311 /*
312 * NOTE : the dentry must have been dget()'ed
313 */
314 static void cpuset_d_remove_dir(struct dentry *dentry)
315 {
316 struct list_head *node;
317
318 spin_lock(&dcache_lock);
319 node = dentry->d_subdirs.next;
320 while (node != &dentry->d_subdirs) {
321 struct dentry *d = list_entry(node, struct dentry, d_child);
322 list_del_init(node);
323 if (d->d_inode) {
324 d = dget_locked(d);
325 spin_unlock(&dcache_lock);
326 d_delete(d);
327 simple_unlink(dentry->d_inode, d);
328 dput(d);
329 spin_lock(&dcache_lock);
330 }
331 node = dentry->d_subdirs.next;
332 }
333 list_del_init(&dentry->d_child);
334 spin_unlock(&dcache_lock);
335 remove_dir(dentry);
336 }
337
338 static struct super_operations cpuset_ops = {
339 .statfs = simple_statfs,
340 .drop_inode = generic_delete_inode,
341 };
342
343 static int cpuset_fill_super(struct super_block *sb, void *unused_data,
344 int unused_silent)
345 {
346 struct inode *inode;
347 struct dentry *root;
348
349 sb->s_blocksize = PAGE_CACHE_SIZE;
350 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
351 sb->s_magic = CPUSET_SUPER_MAGIC;
352 sb->s_op = &cpuset_ops;
353 cpuset_sb = sb;
354
355 inode = cpuset_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR);
356 if (inode) {
357 inode->i_op = &simple_dir_inode_operations;
358 inode->i_fop = &simple_dir_operations;
359 /* directories start off with i_nlink == 2 (for "." entry) */
360 inode->i_nlink++;
361 } else {
362 return -ENOMEM;
363 }
364
365 root = d_alloc_root(inode);
366 if (!root) {
367 iput(inode);
368 return -ENOMEM;
369 }
370 sb->s_root = root;
371 return 0;
372 }
373
374 static struct super_block *cpuset_get_sb(struct file_system_type *fs_type,
375 int flags, const char *unused_dev_name,
376 void *data)
377 {
378 return get_sb_single(fs_type, flags, data, cpuset_fill_super);
379 }
380
381 static struct file_system_type cpuset_fs_type = {
382 .name = "cpuset",
383 .get_sb = cpuset_get_sb,
384 .kill_sb = kill_litter_super,
385 };
386
387 /* struct cftype:
388 *
389 * The files in the cpuset filesystem mostly have a very simple read/write
390 * handling, some common function will take care of it. Nevertheless some cases
391 * (read tasks) are special and therefore I define this structure for every
392 * kind of file.
393 *
394 *
395 * When reading/writing to a file:
396 * - the cpuset to use in file->f_dentry->d_parent->d_fsdata
397 * - the 'cftype' of the file is file->f_dentry->d_fsdata
398 */
399
400 struct cftype {
401 char *name;
402 int private;
403 int (*open) (struct inode *inode, struct file *file);
404 ssize_t (*read) (struct file *file, char __user *buf, size_t nbytes,
405 loff_t *ppos);
406 int (*write) (struct file *file, const char __user *buf, size_t nbytes,
407 loff_t *ppos);
408 int (*release) (struct inode *inode, struct file *file);
409 };
410
411 static inline struct cpuset *__d_cs(struct dentry *dentry)
412 {
413 return dentry->d_fsdata;
414 }
415
416 static inline struct cftype *__d_cft(struct dentry *dentry)
417 {
418 return dentry->d_fsdata;
419 }
420
421 /*
422 * Call with manage_sem held. Writes path of cpuset into buf.
423 * Returns 0 on success, -errno on error.
424 */
425
426 static int cpuset_path(const struct cpuset *cs, char *buf, int buflen)
427 {
428 char *start;
429
430 start = buf + buflen;
431
432 *--start = '\0';
433 for (;;) {
434 int len = cs->dentry->d_name.len;
435 if ((start -= len) < buf)
436 return -ENAMETOOLONG;
437 memcpy(start, cs->dentry->d_name.name, len);
438 cs = cs->parent;
439 if (!cs)
440 break;
441 if (!cs->parent)
442 continue;
443 if (--start < buf)
444 return -ENAMETOOLONG;
445 *start = '/';
446 }
447 memmove(buf, start, buf + buflen - start);
448 return 0;
449 }
450
451 /*
452 * Notify userspace when a cpuset is released, by running
453 * /sbin/cpuset_release_agent with the name of the cpuset (path
454 * relative to the root of cpuset file system) as the argument.
455 *
456 * Most likely, this user command will try to rmdir this cpuset.
457 *
458 * This races with the possibility that some other task will be
459 * attached to this cpuset before it is removed, or that some other
460 * user task will 'mkdir' a child cpuset of this cpuset. That's ok.
461 * The presumed 'rmdir' will fail quietly if this cpuset is no longer
462 * unused, and this cpuset will be reprieved from its death sentence,
463 * to continue to serve a useful existence. Next time it's released,
464 * we will get notified again, if it still has 'notify_on_release' set.
465 *
466 * The final arg to call_usermodehelper() is 0, which means don't
467 * wait. The separate /sbin/cpuset_release_agent task is forked by
468 * call_usermodehelper(), then control in this thread returns here,
469 * without waiting for the release agent task. We don't bother to
470 * wait because the caller of this routine has no use for the exit
471 * status of the /sbin/cpuset_release_agent task, so no sense holding
472 * our caller up for that.
473 *
474 * When we had only one cpuset semaphore, we had to call this
475 * without holding it, to avoid deadlock when call_usermodehelper()
476 * allocated memory. With two locks, we could now call this while
477 * holding manage_sem, but we still don't, so as to minimize
478 * the time manage_sem is held.
479 */
480
481 static void cpuset_release_agent(const char *pathbuf)
482 {
483 char *argv[3], *envp[3];
484 int i;
485
486 if (!pathbuf)
487 return;
488
489 i = 0;
490 argv[i++] = "/sbin/cpuset_release_agent";
491 argv[i++] = (char *)pathbuf;
492 argv[i] = NULL;
493
494 i = 0;
495 /* minimal command environment */
496 envp[i++] = "HOME=/";
497 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
498 envp[i] = NULL;
499
500 call_usermodehelper(argv[0], argv, envp, 0);
501 kfree(pathbuf);
502 }
503
504 /*
505 * Either cs->count of using tasks transitioned to zero, or the
506 * cs->children list of child cpusets just became empty. If this
507 * cs is notify_on_release() and now both the user count is zero and
508 * the list of children is empty, prepare cpuset path in a kmalloc'd
509 * buffer, to be returned via ppathbuf, so that the caller can invoke
510 * cpuset_release_agent() with it later on, once manage_sem is dropped.
511 * Call here with manage_sem held.
512 *
513 * This check_for_release() routine is responsible for kmalloc'ing
514 * pathbuf. The above cpuset_release_agent() is responsible for
515 * kfree'ing pathbuf. The caller of these routines is responsible
516 * for providing a pathbuf pointer, initialized to NULL, then
517 * calling check_for_release() with manage_sem held and the address
518 * of the pathbuf pointer, then dropping manage_sem, then calling
519 * cpuset_release_agent() with pathbuf, as set by check_for_release().
520 */
521
522 static void check_for_release(struct cpuset *cs, char **ppathbuf)
523 {
524 if (notify_on_release(cs) && atomic_read(&cs->count) == 0 &&
525 list_empty(&cs->children)) {
526 char *buf;
527
528 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
529 if (!buf)
530 return;
531 if (cpuset_path(cs, buf, PAGE_SIZE) < 0)
532 kfree(buf);
533 else
534 *ppathbuf = buf;
535 }
536 }
537
538 /*
539 * Return in *pmask the portion of a cpusets's cpus_allowed that
540 * are online. If none are online, walk up the cpuset hierarchy
541 * until we find one that does have some online cpus. If we get
542 * all the way to the top and still haven't found any online cpus,
543 * return cpu_online_map. Or if passed a NULL cs from an exit'ing
544 * task, return cpu_online_map.
545 *
546 * One way or another, we guarantee to return some non-empty subset
547 * of cpu_online_map.
548 *
549 * Call with callback_sem held.
550 */
551
552 static void guarantee_online_cpus(const struct cpuset *cs, cpumask_t *pmask)
553 {
554 while (cs && !cpus_intersects(cs->cpus_allowed, cpu_online_map))
555 cs = cs->parent;
556 if (cs)
557 cpus_and(*pmask, cs->cpus_allowed, cpu_online_map);
558 else
559 *pmask = cpu_online_map;
560 BUG_ON(!cpus_intersects(*pmask, cpu_online_map));
561 }
562
563 /*
564 * Return in *pmask the portion of a cpusets's mems_allowed that
565 * are online. If none are online, walk up the cpuset hierarchy
566 * until we find one that does have some online mems. If we get
567 * all the way to the top and still haven't found any online mems,
568 * return node_online_map.
569 *
570 * One way or another, we guarantee to return some non-empty subset
571 * of node_online_map.
572 *
573 * Call with callback_sem held.
574 */
575
576 static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
577 {
578 while (cs && !nodes_intersects(cs->mems_allowed, node_online_map))
579 cs = cs->parent;
580 if (cs)
581 nodes_and(*pmask, cs->mems_allowed, node_online_map);
582 else
583 *pmask = node_online_map;
584 BUG_ON(!nodes_intersects(*pmask, node_online_map));
585 }
586
587 /*
588 * Refresh current tasks mems_allowed and mems_generation from current
589 * tasks cpuset.
590 *
591 * Call without callback_sem or task_lock() held. May be called with
592 * or without manage_sem held. Will acquire task_lock() and might
593 * acquire callback_sem during call.
594 *
595 * The task_lock() is required to dereference current->cpuset safely.
596 * Without it, we could pick up the pointer value of current->cpuset
597 * in one instruction, and then attach_task could give us a different
598 * cpuset, and then the cpuset we had could be removed and freed,
599 * and then on our next instruction, we could dereference a no longer
600 * valid cpuset pointer to get its mems_generation field.
601 *
602 * This routine is needed to update the per-task mems_allowed data,
603 * within the tasks context, when it is trying to allocate memory
604 * (in various mm/mempolicy.c routines) and notices that some other
605 * task has been modifying its cpuset.
606 */
607
608 static void refresh_mems(void)
609 {
610 int my_cpusets_mem_gen;
611
612 task_lock(current);
613 my_cpusets_mem_gen = current->cpuset->mems_generation;
614 task_unlock(current);
615
616 if (current->cpuset_mems_generation != my_cpusets_mem_gen) {
617 struct cpuset *cs;
618 nodemask_t oldmem = current->mems_allowed;
619 int migrate;
620
621 down(&callback_sem);
622 task_lock(current);
623 cs = current->cpuset;
624 migrate = is_memory_migrate(cs);
625 guarantee_online_mems(cs, &current->mems_allowed);
626 current->cpuset_mems_generation = cs->mems_generation;
627 task_unlock(current);
628 up(&callback_sem);
629 if (!nodes_equal(oldmem, current->mems_allowed)) {
630 numa_policy_rebind(&oldmem, &current->mems_allowed);
631 if (migrate) {
632 do_migrate_pages(current->mm, &oldmem,
633 &current->mems_allowed,
634 MPOL_MF_MOVE_ALL);
635 }
636 }
637 }
638 }
639
640 /*
641 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
642 *
643 * One cpuset is a subset of another if all its allowed CPUs and
644 * Memory Nodes are a subset of the other, and its exclusive flags
645 * are only set if the other's are set. Call holding manage_sem.
646 */
647
648 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
649 {
650 return cpus_subset(p->cpus_allowed, q->cpus_allowed) &&
651 nodes_subset(p->mems_allowed, q->mems_allowed) &&
652 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
653 is_mem_exclusive(p) <= is_mem_exclusive(q);
654 }
655
656 /*
657 * validate_change() - Used to validate that any proposed cpuset change
658 * follows the structural rules for cpusets.
659 *
660 * If we replaced the flag and mask values of the current cpuset
661 * (cur) with those values in the trial cpuset (trial), would
662 * our various subset and exclusive rules still be valid? Presumes
663 * manage_sem held.
664 *
665 * 'cur' is the address of an actual, in-use cpuset. Operations
666 * such as list traversal that depend on the actual address of the
667 * cpuset in the list must use cur below, not trial.
668 *
669 * 'trial' is the address of bulk structure copy of cur, with
670 * perhaps one or more of the fields cpus_allowed, mems_allowed,
671 * or flags changed to new, trial values.
672 *
673 * Return 0 if valid, -errno if not.
674 */
675
676 static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
677 {
678 struct cpuset *c, *par;
679
680 /* Each of our child cpusets must be a subset of us */
681 list_for_each_entry(c, &cur->children, sibling) {
682 if (!is_cpuset_subset(c, trial))
683 return -EBUSY;
684 }
685
686 /* Remaining checks don't apply to root cpuset */
687 if ((par = cur->parent) == NULL)
688 return 0;
689
690 /* We must be a subset of our parent cpuset */
691 if (!is_cpuset_subset(trial, par))
692 return -EACCES;
693
694 /* If either I or some sibling (!= me) is exclusive, we can't overlap */
695 list_for_each_entry(c, &par->children, sibling) {
696 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
697 c != cur &&
698 cpus_intersects(trial->cpus_allowed, c->cpus_allowed))
699 return -EINVAL;
700 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
701 c != cur &&
702 nodes_intersects(trial->mems_allowed, c->mems_allowed))
703 return -EINVAL;
704 }
705
706 return 0;
707 }
708
709 /*
710 * For a given cpuset cur, partition the system as follows
711 * a. All cpus in the parent cpuset's cpus_allowed that are not part of any
712 * exclusive child cpusets
713 * b. All cpus in the current cpuset's cpus_allowed that are not part of any
714 * exclusive child cpusets
715 * Build these two partitions by calling partition_sched_domains
716 *
717 * Call with manage_sem held. May nest a call to the
718 * lock_cpu_hotplug()/unlock_cpu_hotplug() pair.
719 */
720
721 static void update_cpu_domains(struct cpuset *cur)
722 {
723 struct cpuset *c, *par = cur->parent;
724 cpumask_t pspan, cspan;
725
726 if (par == NULL || cpus_empty(cur->cpus_allowed))
727 return;
728
729 /*
730 * Get all cpus from parent's cpus_allowed not part of exclusive
731 * children
732 */
733 pspan = par->cpus_allowed;
734 list_for_each_entry(c, &par->children, sibling) {
735 if (is_cpu_exclusive(c))
736 cpus_andnot(pspan, pspan, c->cpus_allowed);
737 }
738 if (is_removed(cur) || !is_cpu_exclusive(cur)) {
739 cpus_or(pspan, pspan, cur->cpus_allowed);
740 if (cpus_equal(pspan, cur->cpus_allowed))
741 return;
742 cspan = CPU_MASK_NONE;
743 } else {
744 if (cpus_empty(pspan))
745 return;
746 cspan = cur->cpus_allowed;
747 /*
748 * Get all cpus from current cpuset's cpus_allowed not part
749 * of exclusive children
750 */
751 list_for_each_entry(c, &cur->children, sibling) {
752 if (is_cpu_exclusive(c))
753 cpus_andnot(cspan, cspan, c->cpus_allowed);
754 }
755 }
756
757 lock_cpu_hotplug();
758 partition_sched_domains(&pspan, &cspan);
759 unlock_cpu_hotplug();
760 }
761
762 /*
763 * Call with manage_sem held. May take callback_sem during call.
764 */
765
766 static int update_cpumask(struct cpuset *cs, char *buf)
767 {
768 struct cpuset trialcs;
769 int retval, cpus_unchanged;
770
771 trialcs = *cs;
772 retval = cpulist_parse(buf, trialcs.cpus_allowed);
773 if (retval < 0)
774 return retval;
775 cpus_and(trialcs.cpus_allowed, trialcs.cpus_allowed, cpu_online_map);
776 if (cpus_empty(trialcs.cpus_allowed))
777 return -ENOSPC;
778 retval = validate_change(cs, &trialcs);
779 if (retval < 0)
780 return retval;
781 cpus_unchanged = cpus_equal(cs->cpus_allowed, trialcs.cpus_allowed);
782 down(&callback_sem);
783 cs->cpus_allowed = trialcs.cpus_allowed;
784 up(&callback_sem);
785 if (is_cpu_exclusive(cs) && !cpus_unchanged)
786 update_cpu_domains(cs);
787 return 0;
788 }
789
790 /*
791 * Call with manage_sem held. May take callback_sem during call.
792 */
793
794 static int update_nodemask(struct cpuset *cs, char *buf)
795 {
796 struct cpuset trialcs;
797 int retval;
798
799 trialcs = *cs;
800 retval = nodelist_parse(buf, trialcs.mems_allowed);
801 if (retval < 0)
802 goto done;
803 nodes_and(trialcs.mems_allowed, trialcs.mems_allowed, node_online_map);
804 if (nodes_empty(trialcs.mems_allowed)) {
805 retval = -ENOSPC;
806 goto done;
807 }
808 retval = validate_change(cs, &trialcs);
809 if (retval < 0)
810 goto done;
811
812 down(&callback_sem);
813 cs->mems_allowed = trialcs.mems_allowed;
814 atomic_inc(&cpuset_mems_generation);
815 cs->mems_generation = atomic_read(&cpuset_mems_generation);
816 up(&callback_sem);
817
818 done:
819 return retval;
820 }
821
822 /*
823 * Call with manage_sem held.
824 */
825
826 static int update_memory_pressure_enabled(struct cpuset *cs, char *buf)
827 {
828 if (simple_strtoul(buf, NULL, 10) != 0)
829 cpuset_memory_pressure_enabled = 1;
830 else
831 cpuset_memory_pressure_enabled = 0;
832 return 0;
833 }
834
835 /*
836 * update_flag - read a 0 or a 1 in a file and update associated flag
837 * bit: the bit to update (CS_CPU_EXCLUSIVE, CS_MEM_EXCLUSIVE,
838 * CS_NOTIFY_ON_RELEASE, CS_MEMORY_MIGRATE)
839 * cs: the cpuset to update
840 * buf: the buffer where we read the 0 or 1
841 *
842 * Call with manage_sem held.
843 */
844
845 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs, char *buf)
846 {
847 int turning_on;
848 struct cpuset trialcs;
849 int err, cpu_exclusive_changed;
850
851 turning_on = (simple_strtoul(buf, NULL, 10) != 0);
852
853 trialcs = *cs;
854 if (turning_on)
855 set_bit(bit, &trialcs.flags);
856 else
857 clear_bit(bit, &trialcs.flags);
858
859 err = validate_change(cs, &trialcs);
860 if (err < 0)
861 return err;
862 cpu_exclusive_changed =
863 (is_cpu_exclusive(cs) != is_cpu_exclusive(&trialcs));
864 down(&callback_sem);
865 if (turning_on)
866 set_bit(bit, &cs->flags);
867 else
868 clear_bit(bit, &cs->flags);
869 up(&callback_sem);
870
871 if (cpu_exclusive_changed)
872 update_cpu_domains(cs);
873 return 0;
874 }
875
876 /*
877 * Frequency meter - How fast is some event occuring?
878 *
879 * These routines manage a digitally filtered, constant time based,
880 * event frequency meter. There are four routines:
881 * fmeter_init() - initialize a frequency meter.
882 * fmeter_markevent() - called each time the event happens.
883 * fmeter_getrate() - returns the recent rate of such events.
884 * fmeter_update() - internal routine used to update fmeter.
885 *
886 * A common data structure is passed to each of these routines,
887 * which is used to keep track of the state required to manage the
888 * frequency meter and its digital filter.
889 *
890 * The filter works on the number of events marked per unit time.
891 * The filter is single-pole low-pass recursive (IIR). The time unit
892 * is 1 second. Arithmetic is done using 32-bit integers scaled to
893 * simulate 3 decimal digits of precision (multiplied by 1000).
894 *
895 * With an FM_COEF of 933, and a time base of 1 second, the filter
896 * has a half-life of 10 seconds, meaning that if the events quit
897 * happening, then the rate returned from the fmeter_getrate()
898 * will be cut in half each 10 seconds, until it converges to zero.
899 *
900 * It is not worth doing a real infinitely recursive filter. If more
901 * than FM_MAXTICKS ticks have elapsed since the last filter event,
902 * just compute FM_MAXTICKS ticks worth, by which point the level
903 * will be stable.
904 *
905 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
906 * arithmetic overflow in the fmeter_update() routine.
907 *
908 * Given the simple 32 bit integer arithmetic used, this meter works
909 * best for reporting rates between one per millisecond (msec) and
910 * one per 32 (approx) seconds. At constant rates faster than one
911 * per msec it maxes out at values just under 1,000,000. At constant
912 * rates between one per msec, and one per second it will stabilize
913 * to a value N*1000, where N is the rate of events per second.
914 * At constant rates between one per second and one per 32 seconds,
915 * it will be choppy, moving up on the seconds that have an event,
916 * and then decaying until the next event. At rates slower than
917 * about one in 32 seconds, it decays all the way back to zero between
918 * each event.
919 */
920
921 #define FM_COEF 933 /* coefficient for half-life of 10 secs */
922 #define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
923 #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
924 #define FM_SCALE 1000 /* faux fixed point scale */
925
926 /* Initialize a frequency meter */
927 static void fmeter_init(struct fmeter *fmp)
928 {
929 fmp->cnt = 0;
930 fmp->val = 0;
931 fmp->time = 0;
932 spin_lock_init(&fmp->lock);
933 }
934
935 /* Internal meter update - process cnt events and update value */
936 static void fmeter_update(struct fmeter *fmp)
937 {
938 time_t now = get_seconds();
939 time_t ticks = now - fmp->time;
940
941 if (ticks == 0)
942 return;
943
944 ticks = min(FM_MAXTICKS, ticks);
945 while (ticks-- > 0)
946 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
947 fmp->time = now;
948
949 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
950 fmp->cnt = 0;
951 }
952
953 /* Process any previous ticks, then bump cnt by one (times scale). */
954 static void fmeter_markevent(struct fmeter *fmp)
955 {
956 spin_lock(&fmp->lock);
957 fmeter_update(fmp);
958 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
959 spin_unlock(&fmp->lock);
960 }
961
962 /* Process any previous ticks, then return current value. */
963 static int fmeter_getrate(struct fmeter *fmp)
964 {
965 int val;
966
967 spin_lock(&fmp->lock);
968 fmeter_update(fmp);
969 val = fmp->val;
970 spin_unlock(&fmp->lock);
971 return val;
972 }
973
974 /*
975 * Attack task specified by pid in 'pidbuf' to cpuset 'cs', possibly
976 * writing the path of the old cpuset in 'ppathbuf' if it needs to be
977 * notified on release.
978 *
979 * Call holding manage_sem. May take callback_sem and task_lock of
980 * the task 'pid' during call.
981 */
982
983 static int attach_task(struct cpuset *cs, char *pidbuf, char **ppathbuf)
984 {
985 pid_t pid;
986 struct task_struct *tsk;
987 struct cpuset *oldcs;
988 cpumask_t cpus;
989 nodemask_t from, to;
990
991 if (sscanf(pidbuf, "%d", &pid) != 1)
992 return -EIO;
993 if (cpus_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
994 return -ENOSPC;
995
996 if (pid) {
997 read_lock(&tasklist_lock);
998
999 tsk = find_task_by_pid(pid);
1000 if (!tsk || tsk->flags & PF_EXITING) {
1001 read_unlock(&tasklist_lock);
1002 return -ESRCH;
1003 }
1004
1005 get_task_struct(tsk);
1006 read_unlock(&tasklist_lock);
1007
1008 if ((current->euid) && (current->euid != tsk->uid)
1009 && (current->euid != tsk->suid)) {
1010 put_task_struct(tsk);
1011 return -EACCES;
1012 }
1013 } else {
1014 tsk = current;
1015 get_task_struct(tsk);
1016 }
1017
1018 down(&callback_sem);
1019
1020 task_lock(tsk);
1021 oldcs = tsk->cpuset;
1022 if (!oldcs) {
1023 task_unlock(tsk);
1024 up(&callback_sem);
1025 put_task_struct(tsk);
1026 return -ESRCH;
1027 }
1028 atomic_inc(&cs->count);
1029 tsk->cpuset = cs;
1030 task_unlock(tsk);
1031
1032 guarantee_online_cpus(cs, &cpus);
1033 set_cpus_allowed(tsk, cpus);
1034
1035 from = oldcs->mems_allowed;
1036 to = cs->mems_allowed;
1037
1038 up(&callback_sem);
1039 if (is_memory_migrate(cs))
1040 do_migrate_pages(tsk->mm, &from, &to, MPOL_MF_MOVE_ALL);
1041 put_task_struct(tsk);
1042 if (atomic_dec_and_test(&oldcs->count))
1043 check_for_release(oldcs, ppathbuf);
1044 return 0;
1045 }
1046
1047 /* The various types of files and directories in a cpuset file system */
1048
1049 typedef enum {
1050 FILE_ROOT,
1051 FILE_DIR,
1052 FILE_MEMORY_MIGRATE,
1053 FILE_CPULIST,
1054 FILE_MEMLIST,
1055 FILE_CPU_EXCLUSIVE,
1056 FILE_MEM_EXCLUSIVE,
1057 FILE_NOTIFY_ON_RELEASE,
1058 FILE_MEMORY_PRESSURE_ENABLED,
1059 FILE_MEMORY_PRESSURE,
1060 FILE_TASKLIST,
1061 } cpuset_filetype_t;
1062
1063 static ssize_t cpuset_common_file_write(struct file *file, const char __user *userbuf,
1064 size_t nbytes, loff_t *unused_ppos)
1065 {
1066 struct cpuset *cs = __d_cs(file->f_dentry->d_parent);
1067 struct cftype *cft = __d_cft(file->f_dentry);
1068 cpuset_filetype_t type = cft->private;
1069 char *buffer;
1070 char *pathbuf = NULL;
1071 int retval = 0;
1072
1073 /* Crude upper limit on largest legitimate cpulist user might write. */
1074 if (nbytes > 100 + 6 * NR_CPUS)
1075 return -E2BIG;
1076
1077 /* +1 for nul-terminator */
1078 if ((buffer = kmalloc(nbytes + 1, GFP_KERNEL)) == 0)
1079 return -ENOMEM;
1080
1081 if (copy_from_user(buffer, userbuf, nbytes)) {
1082 retval = -EFAULT;
1083 goto out1;
1084 }
1085 buffer[nbytes] = 0; /* nul-terminate */
1086
1087 down(&manage_sem);
1088
1089 if (is_removed(cs)) {
1090 retval = -ENODEV;
1091 goto out2;
1092 }
1093
1094 switch (type) {
1095 case FILE_CPULIST:
1096 retval = update_cpumask(cs, buffer);
1097 break;
1098 case FILE_MEMLIST:
1099 retval = update_nodemask(cs, buffer);
1100 break;
1101 case FILE_CPU_EXCLUSIVE:
1102 retval = update_flag(CS_CPU_EXCLUSIVE, cs, buffer);
1103 break;
1104 case FILE_MEM_EXCLUSIVE:
1105 retval = update_flag(CS_MEM_EXCLUSIVE, cs, buffer);
1106 break;
1107 case FILE_NOTIFY_ON_RELEASE:
1108 retval = update_flag(CS_NOTIFY_ON_RELEASE, cs, buffer);
1109 break;
1110 case FILE_MEMORY_MIGRATE:
1111 retval = update_flag(CS_MEMORY_MIGRATE, cs, buffer);
1112 break;
1113 case FILE_MEMORY_PRESSURE_ENABLED:
1114 retval = update_memory_pressure_enabled(cs, buffer);
1115 break;
1116 case FILE_MEMORY_PRESSURE:
1117 retval = -EACCES;
1118 break;
1119 case FILE_TASKLIST:
1120 retval = attach_task(cs, buffer, &pathbuf);
1121 break;
1122 default:
1123 retval = -EINVAL;
1124 goto out2;
1125 }
1126
1127 if (retval == 0)
1128 retval = nbytes;
1129 out2:
1130 up(&manage_sem);
1131 cpuset_release_agent(pathbuf);
1132 out1:
1133 kfree(buffer);
1134 return retval;
1135 }
1136
1137 static ssize_t cpuset_file_write(struct file *file, const char __user *buf,
1138 size_t nbytes, loff_t *ppos)
1139 {
1140 ssize_t retval = 0;
1141 struct cftype *cft = __d_cft(file->f_dentry);
1142 if (!cft)
1143 return -ENODEV;
1144
1145 /* special function ? */
1146 if (cft->write)
1147 retval = cft->write(file, buf, nbytes, ppos);
1148 else
1149 retval = cpuset_common_file_write(file, buf, nbytes, ppos);
1150
1151 return retval;
1152 }
1153
1154 /*
1155 * These ascii lists should be read in a single call, by using a user
1156 * buffer large enough to hold the entire map. If read in smaller
1157 * chunks, there is no guarantee of atomicity. Since the display format
1158 * used, list of ranges of sequential numbers, is variable length,
1159 * and since these maps can change value dynamically, one could read
1160 * gibberish by doing partial reads while a list was changing.
1161 * A single large read to a buffer that crosses a page boundary is
1162 * ok, because the result being copied to user land is not recomputed
1163 * across a page fault.
1164 */
1165
1166 static int cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
1167 {
1168 cpumask_t mask;
1169
1170 down(&callback_sem);
1171 mask = cs->cpus_allowed;
1172 up(&callback_sem);
1173
1174 return cpulist_scnprintf(page, PAGE_SIZE, mask);
1175 }
1176
1177 static int cpuset_sprintf_memlist(char *page, struct cpuset *cs)
1178 {
1179 nodemask_t mask;
1180
1181 down(&callback_sem);
1182 mask = cs->mems_allowed;
1183 up(&callback_sem);
1184
1185 return nodelist_scnprintf(page, PAGE_SIZE, mask);
1186 }
1187
1188 static ssize_t cpuset_common_file_read(struct file *file, char __user *buf,
1189 size_t nbytes, loff_t *ppos)
1190 {
1191 struct cftype *cft = __d_cft(file->f_dentry);
1192 struct cpuset *cs = __d_cs(file->f_dentry->d_parent);
1193 cpuset_filetype_t type = cft->private;
1194 char *page;
1195 ssize_t retval = 0;
1196 char *s;
1197
1198 if (!(page = (char *)__get_free_page(GFP_KERNEL)))
1199 return -ENOMEM;
1200
1201 s = page;
1202
1203 switch (type) {
1204 case FILE_CPULIST:
1205 s += cpuset_sprintf_cpulist(s, cs);
1206 break;
1207 case FILE_MEMLIST:
1208 s += cpuset_sprintf_memlist(s, cs);
1209 break;
1210 case FILE_CPU_EXCLUSIVE:
1211 *s++ = is_cpu_exclusive(cs) ? '1' : '0';
1212 break;
1213 case FILE_MEM_EXCLUSIVE:
1214 *s++ = is_mem_exclusive(cs) ? '1' : '0';
1215 break;
1216 case FILE_NOTIFY_ON_RELEASE:
1217 *s++ = notify_on_release(cs) ? '1' : '0';
1218 break;
1219 case FILE_MEMORY_MIGRATE:
1220 *s++ = is_memory_migrate(cs) ? '1' : '0';
1221 break;
1222 case FILE_MEMORY_PRESSURE_ENABLED:
1223 *s++ = cpuset_memory_pressure_enabled ? '1' : '0';
1224 break;
1225 case FILE_MEMORY_PRESSURE:
1226 s += sprintf(s, "%d", fmeter_getrate(&cs->fmeter));
1227 break;
1228 default:
1229 retval = -EINVAL;
1230 goto out;
1231 }
1232 *s++ = '\n';
1233
1234 retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
1235 out:
1236 free_page((unsigned long)page);
1237 return retval;
1238 }
1239
1240 static ssize_t cpuset_file_read(struct file *file, char __user *buf, size_t nbytes,
1241 loff_t *ppos)
1242 {
1243 ssize_t retval = 0;
1244 struct cftype *cft = __d_cft(file->f_dentry);
1245 if (!cft)
1246 return -ENODEV;
1247
1248 /* special function ? */
1249 if (cft->read)
1250 retval = cft->read(file, buf, nbytes, ppos);
1251 else
1252 retval = cpuset_common_file_read(file, buf, nbytes, ppos);
1253
1254 return retval;
1255 }
1256
1257 static int cpuset_file_open(struct inode *inode, struct file *file)
1258 {
1259 int err;
1260 struct cftype *cft;
1261
1262 err = generic_file_open(inode, file);
1263 if (err)
1264 return err;
1265
1266 cft = __d_cft(file->f_dentry);
1267 if (!cft)
1268 return -ENODEV;
1269 if (cft->open)
1270 err = cft->open(inode, file);
1271 else
1272 err = 0;
1273
1274 return err;
1275 }
1276
1277 static int cpuset_file_release(struct inode *inode, struct file *file)
1278 {
1279 struct cftype *cft = __d_cft(file->f_dentry);
1280 if (cft->release)
1281 return cft->release(inode, file);
1282 return 0;
1283 }
1284
1285 /*
1286 * cpuset_rename - Only allow simple rename of directories in place.
1287 */
1288 static int cpuset_rename(struct inode *old_dir, struct dentry *old_dentry,
1289 struct inode *new_dir, struct dentry *new_dentry)
1290 {
1291 if (!S_ISDIR(old_dentry->d_inode->i_mode))
1292 return -ENOTDIR;
1293 if (new_dentry->d_inode)
1294 return -EEXIST;
1295 if (old_dir != new_dir)
1296 return -EIO;
1297 return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
1298 }
1299
1300 static struct file_operations cpuset_file_operations = {
1301 .read = cpuset_file_read,
1302 .write = cpuset_file_write,
1303 .llseek = generic_file_llseek,
1304 .open = cpuset_file_open,
1305 .release = cpuset_file_release,
1306 };
1307
1308 static struct inode_operations cpuset_dir_inode_operations = {
1309 .lookup = simple_lookup,
1310 .mkdir = cpuset_mkdir,
1311 .rmdir = cpuset_rmdir,
1312 .rename = cpuset_rename,
1313 };
1314
1315 static int cpuset_create_file(struct dentry *dentry, int mode)
1316 {
1317 struct inode *inode;
1318
1319 if (!dentry)
1320 return -ENOENT;
1321 if (dentry->d_inode)
1322 return -EEXIST;
1323
1324 inode = cpuset_new_inode(mode);
1325 if (!inode)
1326 return -ENOMEM;
1327
1328 if (S_ISDIR(mode)) {
1329 inode->i_op = &cpuset_dir_inode_operations;
1330 inode->i_fop = &simple_dir_operations;
1331
1332 /* start off with i_nlink == 2 (for "." entry) */
1333 inode->i_nlink++;
1334 } else if (S_ISREG(mode)) {
1335 inode->i_size = 0;
1336 inode->i_fop = &cpuset_file_operations;
1337 }
1338
1339 d_instantiate(dentry, inode);
1340 dget(dentry); /* Extra count - pin the dentry in core */
1341 return 0;
1342 }
1343
1344 /*
1345 * cpuset_create_dir - create a directory for an object.
1346 * cs: the cpuset we create the directory for.
1347 * It must have a valid ->parent field
1348 * And we are going to fill its ->dentry field.
1349 * name: The name to give to the cpuset directory. Will be copied.
1350 * mode: mode to set on new directory.
1351 */
1352
1353 static int cpuset_create_dir(struct cpuset *cs, const char *name, int mode)
1354 {
1355 struct dentry *dentry = NULL;
1356 struct dentry *parent;
1357 int error = 0;
1358
1359 parent = cs->parent->dentry;
1360 dentry = cpuset_get_dentry(parent, name);
1361 if (IS_ERR(dentry))
1362 return PTR_ERR(dentry);
1363 error = cpuset_create_file(dentry, S_IFDIR | mode);
1364 if (!error) {
1365 dentry->d_fsdata = cs;
1366 parent->d_inode->i_nlink++;
1367 cs->dentry = dentry;
1368 }
1369 dput(dentry);
1370
1371 return error;
1372 }
1373
1374 static int cpuset_add_file(struct dentry *dir, const struct cftype *cft)
1375 {
1376 struct dentry *dentry;
1377 int error;
1378
1379 down(&dir->d_inode->i_sem);
1380 dentry = cpuset_get_dentry(dir, cft->name);
1381 if (!IS_ERR(dentry)) {
1382 error = cpuset_create_file(dentry, 0644 | S_IFREG);
1383 if (!error)
1384 dentry->d_fsdata = (void *)cft;
1385 dput(dentry);
1386 } else
1387 error = PTR_ERR(dentry);
1388 up(&dir->d_inode->i_sem);
1389 return error;
1390 }
1391
1392 /*
1393 * Stuff for reading the 'tasks' file.
1394 *
1395 * Reading this file can return large amounts of data if a cpuset has
1396 * *lots* of attached tasks. So it may need several calls to read(),
1397 * but we cannot guarantee that the information we produce is correct
1398 * unless we produce it entirely atomically.
1399 *
1400 * Upon tasks file open(), a struct ctr_struct is allocated, that
1401 * will have a pointer to an array (also allocated here). The struct
1402 * ctr_struct * is stored in file->private_data. Its resources will
1403 * be freed by release() when the file is closed. The array is used
1404 * to sprintf the PIDs and then used by read().
1405 */
1406
1407 /* cpusets_tasks_read array */
1408
1409 struct ctr_struct {
1410 char *buf;
1411 int bufsz;
1412 };
1413
1414 /*
1415 * Load into 'pidarray' up to 'npids' of the tasks using cpuset 'cs'.
1416 * Return actual number of pids loaded. No need to task_lock(p)
1417 * when reading out p->cpuset, as we don't really care if it changes
1418 * on the next cycle, and we are not going to try to dereference it.
1419 */
1420 static inline int pid_array_load(pid_t *pidarray, int npids, struct cpuset *cs)
1421 {
1422 int n = 0;
1423 struct task_struct *g, *p;
1424
1425 read_lock(&tasklist_lock);
1426
1427 do_each_thread(g, p) {
1428 if (p->cpuset == cs) {
1429 pidarray[n++] = p->pid;
1430 if (unlikely(n == npids))
1431 goto array_full;
1432 }
1433 } while_each_thread(g, p);
1434
1435 array_full:
1436 read_unlock(&tasklist_lock);
1437 return n;
1438 }
1439
1440 static int cmppid(const void *a, const void *b)
1441 {
1442 return *(pid_t *)a - *(pid_t *)b;
1443 }
1444
1445 /*
1446 * Convert array 'a' of 'npids' pid_t's to a string of newline separated
1447 * decimal pids in 'buf'. Don't write more than 'sz' chars, but return
1448 * count 'cnt' of how many chars would be written if buf were large enough.
1449 */
1450 static int pid_array_to_buf(char *buf, int sz, pid_t *a, int npids)
1451 {
1452 int cnt = 0;
1453 int i;
1454
1455 for (i = 0; i < npids; i++)
1456 cnt += snprintf(buf + cnt, max(sz - cnt, 0), "%d\n", a[i]);
1457 return cnt;
1458 }
1459
1460 /*
1461 * Handle an open on 'tasks' file. Prepare a buffer listing the
1462 * process id's of tasks currently attached to the cpuset being opened.
1463 *
1464 * Does not require any specific cpuset semaphores, and does not take any.
1465 */
1466 static int cpuset_tasks_open(struct inode *unused, struct file *file)
1467 {
1468 struct cpuset *cs = __d_cs(file->f_dentry->d_parent);
1469 struct ctr_struct *ctr;
1470 pid_t *pidarray;
1471 int npids;
1472 char c;
1473
1474 if (!(file->f_mode & FMODE_READ))
1475 return 0;
1476
1477 ctr = kmalloc(sizeof(*ctr), GFP_KERNEL);
1478 if (!ctr)
1479 goto err0;
1480
1481 /*
1482 * If cpuset gets more users after we read count, we won't have
1483 * enough space - tough. This race is indistinguishable to the
1484 * caller from the case that the additional cpuset users didn't
1485 * show up until sometime later on.
1486 */
1487 npids = atomic_read(&cs->count);
1488 pidarray = kmalloc(npids * sizeof(pid_t), GFP_KERNEL);
1489 if (!pidarray)
1490 goto err1;
1491
1492 npids = pid_array_load(pidarray, npids, cs);
1493 sort(pidarray, npids, sizeof(pid_t), cmppid, NULL);
1494
1495 /* Call pid_array_to_buf() twice, first just to get bufsz */
1496 ctr->bufsz = pid_array_to_buf(&c, sizeof(c), pidarray, npids) + 1;
1497 ctr->buf = kmalloc(ctr->bufsz, GFP_KERNEL);
1498 if (!ctr->buf)
1499 goto err2;
1500 ctr->bufsz = pid_array_to_buf(ctr->buf, ctr->bufsz, pidarray, npids);
1501
1502 kfree(pidarray);
1503 file->private_data = ctr;
1504 return 0;
1505
1506 err2:
1507 kfree(pidarray);
1508 err1:
1509 kfree(ctr);
1510 err0:
1511 return -ENOMEM;
1512 }
1513
1514 static ssize_t cpuset_tasks_read(struct file *file, char __user *buf,
1515 size_t nbytes, loff_t *ppos)
1516 {
1517 struct ctr_struct *ctr = file->private_data;
1518
1519 if (*ppos + nbytes > ctr->bufsz)
1520 nbytes = ctr->bufsz - *ppos;
1521 if (copy_to_user(buf, ctr->buf + *ppos, nbytes))
1522 return -EFAULT;
1523 *ppos += nbytes;
1524 return nbytes;
1525 }
1526
1527 static int cpuset_tasks_release(struct inode *unused_inode, struct file *file)
1528 {
1529 struct ctr_struct *ctr;
1530
1531 if (file->f_mode & FMODE_READ) {
1532 ctr = file->private_data;
1533 kfree(ctr->buf);
1534 kfree(ctr);
1535 }
1536 return 0;
1537 }
1538
1539 /*
1540 * for the common functions, 'private' gives the type of file
1541 */
1542
1543 static struct cftype cft_tasks = {
1544 .name = "tasks",
1545 .open = cpuset_tasks_open,
1546 .read = cpuset_tasks_read,
1547 .release = cpuset_tasks_release,
1548 .private = FILE_TASKLIST,
1549 };
1550
1551 static struct cftype cft_cpus = {
1552 .name = "cpus",
1553 .private = FILE_CPULIST,
1554 };
1555
1556 static struct cftype cft_mems = {
1557 .name = "mems",
1558 .private = FILE_MEMLIST,
1559 };
1560
1561 static struct cftype cft_cpu_exclusive = {
1562 .name = "cpu_exclusive",
1563 .private = FILE_CPU_EXCLUSIVE,
1564 };
1565
1566 static struct cftype cft_mem_exclusive = {
1567 .name = "mem_exclusive",
1568 .private = FILE_MEM_EXCLUSIVE,
1569 };
1570
1571 static struct cftype cft_notify_on_release = {
1572 .name = "notify_on_release",
1573 .private = FILE_NOTIFY_ON_RELEASE,
1574 };
1575
1576 static struct cftype cft_memory_migrate = {
1577 .name = "memory_migrate",
1578 .private = FILE_MEMORY_MIGRATE,
1579 };
1580
1581 static struct cftype cft_memory_pressure_enabled = {
1582 .name = "memory_pressure_enabled",
1583 .private = FILE_MEMORY_PRESSURE_ENABLED,
1584 };
1585
1586 static struct cftype cft_memory_pressure = {
1587 .name = "memory_pressure",
1588 .private = FILE_MEMORY_PRESSURE,
1589 };
1590
1591 static int cpuset_populate_dir(struct dentry *cs_dentry)
1592 {
1593 int err;
1594
1595 if ((err = cpuset_add_file(cs_dentry, &cft_cpus)) < 0)
1596 return err;
1597 if ((err = cpuset_add_file(cs_dentry, &cft_mems)) < 0)
1598 return err;
1599 if ((err = cpuset_add_file(cs_dentry, &cft_cpu_exclusive)) < 0)
1600 return err;
1601 if ((err = cpuset_add_file(cs_dentry, &cft_mem_exclusive)) < 0)
1602 return err;
1603 if ((err = cpuset_add_file(cs_dentry, &cft_notify_on_release)) < 0)
1604 return err;
1605 if ((err = cpuset_add_file(cs_dentry, &cft_memory_migrate)) < 0)
1606 return err;
1607 if ((err = cpuset_add_file(cs_dentry, &cft_memory_pressure)) < 0)
1608 return err;
1609 if ((err = cpuset_add_file(cs_dentry, &cft_tasks)) < 0)
1610 return err;
1611 return 0;
1612 }
1613
1614 /*
1615 * cpuset_create - create a cpuset
1616 * parent: cpuset that will be parent of the new cpuset.
1617 * name: name of the new cpuset. Will be strcpy'ed.
1618 * mode: mode to set on new inode
1619 *
1620 * Must be called with the semaphore on the parent inode held
1621 */
1622
1623 static long cpuset_create(struct cpuset *parent, const char *name, int mode)
1624 {
1625 struct cpuset *cs;
1626 int err;
1627
1628 cs = kmalloc(sizeof(*cs), GFP_KERNEL);
1629 if (!cs)
1630 return -ENOMEM;
1631
1632 down(&manage_sem);
1633 refresh_mems();
1634 cs->flags = 0;
1635 if (notify_on_release(parent))
1636 set_bit(CS_NOTIFY_ON_RELEASE, &cs->flags);
1637 cs->cpus_allowed = CPU_MASK_NONE;
1638 cs->mems_allowed = NODE_MASK_NONE;
1639 atomic_set(&cs->count, 0);
1640 INIT_LIST_HEAD(&cs->sibling);
1641 INIT_LIST_HEAD(&cs->children);
1642 atomic_inc(&cpuset_mems_generation);
1643 cs->mems_generation = atomic_read(&cpuset_mems_generation);
1644 fmeter_init(&cs->fmeter);
1645
1646 cs->parent = parent;
1647
1648 down(&callback_sem);
1649 list_add(&cs->sibling, &cs->parent->children);
1650 up(&callback_sem);
1651
1652 err = cpuset_create_dir(cs, name, mode);
1653 if (err < 0)
1654 goto err;
1655
1656 /*
1657 * Release manage_sem before cpuset_populate_dir() because it
1658 * will down() this new directory's i_sem and if we race with
1659 * another mkdir, we might deadlock.
1660 */
1661 up(&manage_sem);
1662
1663 err = cpuset_populate_dir(cs->dentry);
1664 /* If err < 0, we have a half-filled directory - oh well ;) */
1665 return 0;
1666 err:
1667 list_del(&cs->sibling);
1668 up(&manage_sem);
1669 kfree(cs);
1670 return err;
1671 }
1672
1673 static int cpuset_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1674 {
1675 struct cpuset *c_parent = dentry->d_parent->d_fsdata;
1676
1677 /* the vfs holds inode->i_sem already */
1678 return cpuset_create(c_parent, dentry->d_name.name, mode | S_IFDIR);
1679 }
1680
1681 static int cpuset_rmdir(struct inode *unused_dir, struct dentry *dentry)
1682 {
1683 struct cpuset *cs = dentry->d_fsdata;
1684 struct dentry *d;
1685 struct cpuset *parent;
1686 char *pathbuf = NULL;
1687
1688 /* the vfs holds both inode->i_sem already */
1689
1690 down(&manage_sem);
1691 refresh_mems();
1692 if (atomic_read(&cs->count) > 0) {
1693 up(&manage_sem);
1694 return -EBUSY;
1695 }
1696 if (!list_empty(&cs->children)) {
1697 up(&manage_sem);
1698 return -EBUSY;
1699 }
1700 parent = cs->parent;
1701 down(&callback_sem);
1702 set_bit(CS_REMOVED, &cs->flags);
1703 if (is_cpu_exclusive(cs))
1704 update_cpu_domains(cs);
1705 list_del(&cs->sibling); /* delete my sibling from parent->children */
1706 spin_lock(&cs->dentry->d_lock);
1707 d = dget(cs->dentry);
1708 cs->dentry = NULL;
1709 spin_unlock(&d->d_lock);
1710 cpuset_d_remove_dir(d);
1711 dput(d);
1712 up(&callback_sem);
1713 if (list_empty(&parent->children))
1714 check_for_release(parent, &pathbuf);
1715 up(&manage_sem);
1716 cpuset_release_agent(pathbuf);
1717 return 0;
1718 }
1719
1720 /**
1721 * cpuset_init - initialize cpusets at system boot
1722 *
1723 * Description: Initialize top_cpuset and the cpuset internal file system,
1724 **/
1725
1726 int __init cpuset_init(void)
1727 {
1728 struct dentry *root;
1729 int err;
1730
1731 top_cpuset.cpus_allowed = CPU_MASK_ALL;
1732 top_cpuset.mems_allowed = NODE_MASK_ALL;
1733
1734 fmeter_init(&top_cpuset.fmeter);
1735 atomic_inc(&cpuset_mems_generation);
1736 top_cpuset.mems_generation = atomic_read(&cpuset_mems_generation);
1737
1738 init_task.cpuset = &top_cpuset;
1739
1740 err = register_filesystem(&cpuset_fs_type);
1741 if (err < 0)
1742 goto out;
1743 cpuset_mount = kern_mount(&cpuset_fs_type);
1744 if (IS_ERR(cpuset_mount)) {
1745 printk(KERN_ERR "cpuset: could not mount!\n");
1746 err = PTR_ERR(cpuset_mount);
1747 cpuset_mount = NULL;
1748 goto out;
1749 }
1750 root = cpuset_mount->mnt_sb->s_root;
1751 root->d_fsdata = &top_cpuset;
1752 root->d_inode->i_nlink++;
1753 top_cpuset.dentry = root;
1754 root->d_inode->i_op = &cpuset_dir_inode_operations;
1755 err = cpuset_populate_dir(root);
1756 /* memory_pressure_enabled is in root cpuset only */
1757 if (err == 0)
1758 err = cpuset_add_file(root, &cft_memory_pressure_enabled);
1759 out:
1760 return err;
1761 }
1762
1763 /**
1764 * cpuset_init_smp - initialize cpus_allowed
1765 *
1766 * Description: Finish top cpuset after cpu, node maps are initialized
1767 **/
1768
1769 void __init cpuset_init_smp(void)
1770 {
1771 top_cpuset.cpus_allowed = cpu_online_map;
1772 top_cpuset.mems_allowed = node_online_map;
1773 }
1774
1775 /**
1776 * cpuset_fork - attach newly forked task to its parents cpuset.
1777 * @tsk: pointer to task_struct of forking parent process.
1778 *
1779 * Description: A task inherits its parent's cpuset at fork().
1780 *
1781 * A pointer to the shared cpuset was automatically copied in fork.c
1782 * by dup_task_struct(). However, we ignore that copy, since it was
1783 * not made under the protection of task_lock(), so might no longer be
1784 * a valid cpuset pointer. attach_task() might have already changed
1785 * current->cpuset, allowing the previously referenced cpuset to
1786 * be removed and freed. Instead, we task_lock(current) and copy
1787 * its present value of current->cpuset for our freshly forked child.
1788 *
1789 * At the point that cpuset_fork() is called, 'current' is the parent
1790 * task, and the passed argument 'child' points to the child task.
1791 **/
1792
1793 void cpuset_fork(struct task_struct *child)
1794 {
1795 task_lock(current);
1796 child->cpuset = current->cpuset;
1797 atomic_inc(&child->cpuset->count);
1798 task_unlock(current);
1799 }
1800
1801 /**
1802 * cpuset_exit - detach cpuset from exiting task
1803 * @tsk: pointer to task_struct of exiting process
1804 *
1805 * Description: Detach cpuset from @tsk and release it.
1806 *
1807 * Note that cpusets marked notify_on_release force every task in
1808 * them to take the global manage_sem semaphore when exiting.
1809 * This could impact scaling on very large systems. Be reluctant to
1810 * use notify_on_release cpusets where very high task exit scaling
1811 * is required on large systems.
1812 *
1813 * Don't even think about derefencing 'cs' after the cpuset use count
1814 * goes to zero, except inside a critical section guarded by manage_sem
1815 * or callback_sem. Otherwise a zero cpuset use count is a license to
1816 * any other task to nuke the cpuset immediately, via cpuset_rmdir().
1817 *
1818 * This routine has to take manage_sem, not callback_sem, because
1819 * it is holding that semaphore while calling check_for_release(),
1820 * which calls kmalloc(), so can't be called holding callback__sem().
1821 *
1822 * We don't need to task_lock() this reference to tsk->cpuset,
1823 * because tsk is already marked PF_EXITING, so attach_task() won't
1824 * mess with it.
1825 **/
1826
1827 void cpuset_exit(struct task_struct *tsk)
1828 {
1829 struct cpuset *cs;
1830
1831 BUG_ON(!(tsk->flags & PF_EXITING));
1832
1833 cs = tsk->cpuset;
1834 tsk->cpuset = NULL;
1835
1836 if (notify_on_release(cs)) {
1837 char *pathbuf = NULL;
1838
1839 down(&manage_sem);
1840 if (atomic_dec_and_test(&cs->count))
1841 check_for_release(cs, &pathbuf);
1842 up(&manage_sem);
1843 cpuset_release_agent(pathbuf);
1844 } else {
1845 atomic_dec(&cs->count);
1846 }
1847 }
1848
1849 /**
1850 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
1851 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
1852 *
1853 * Description: Returns the cpumask_t cpus_allowed of the cpuset
1854 * attached to the specified @tsk. Guaranteed to return some non-empty
1855 * subset of cpu_online_map, even if this means going outside the
1856 * tasks cpuset.
1857 **/
1858
1859 cpumask_t cpuset_cpus_allowed(const struct task_struct *tsk)
1860 {
1861 cpumask_t mask;
1862
1863 down(&callback_sem);
1864 task_lock((struct task_struct *)tsk);
1865 guarantee_online_cpus(tsk->cpuset, &mask);
1866 task_unlock((struct task_struct *)tsk);
1867 up(&callback_sem);
1868
1869 return mask;
1870 }
1871
1872 void cpuset_init_current_mems_allowed(void)
1873 {
1874 current->mems_allowed = NODE_MASK_ALL;
1875 }
1876
1877 /**
1878 * cpuset_update_current_mems_allowed - update mems parameters to new values
1879 *
1880 * If the current tasks cpusets mems_allowed changed behind our backs,
1881 * update current->mems_allowed and mems_generation to the new value.
1882 * Do not call this routine if in_interrupt().
1883 *
1884 * Call without callback_sem or task_lock() held. May be called
1885 * with or without manage_sem held. Unless exiting, it will acquire
1886 * task_lock(). Also might acquire callback_sem during call to
1887 * refresh_mems().
1888 */
1889
1890 void cpuset_update_current_mems_allowed(void)
1891 {
1892 struct cpuset *cs;
1893 int need_to_refresh = 0;
1894
1895 task_lock(current);
1896 cs = current->cpuset;
1897 if (!cs)
1898 goto done;
1899 if (current->cpuset_mems_generation != cs->mems_generation)
1900 need_to_refresh = 1;
1901 done:
1902 task_unlock(current);
1903 if (need_to_refresh)
1904 refresh_mems();
1905 }
1906
1907 /**
1908 * cpuset_zonelist_valid_mems_allowed - check zonelist vs. curremt mems_allowed
1909 * @zl: the zonelist to be checked
1910 *
1911 * Are any of the nodes on zonelist zl allowed in current->mems_allowed?
1912 */
1913 int cpuset_zonelist_valid_mems_allowed(struct zonelist *zl)
1914 {
1915 int i;
1916
1917 for (i = 0; zl->zones[i]; i++) {
1918 int nid = zl->zones[i]->zone_pgdat->node_id;
1919
1920 if (node_isset(nid, current->mems_allowed))
1921 return 1;
1922 }
1923 return 0;
1924 }
1925
1926 /*
1927 * nearest_exclusive_ancestor() - Returns the nearest mem_exclusive
1928 * ancestor to the specified cpuset. Call holding callback_sem.
1929 * If no ancestor is mem_exclusive (an unusual configuration), then
1930 * returns the root cpuset.
1931 */
1932 static const struct cpuset *nearest_exclusive_ancestor(const struct cpuset *cs)
1933 {
1934 while (!is_mem_exclusive(cs) && cs->parent)
1935 cs = cs->parent;
1936 return cs;
1937 }
1938
1939 /**
1940 * cpuset_zone_allowed - Can we allocate memory on zone z's memory node?
1941 * @z: is this zone on an allowed node?
1942 * @gfp_mask: memory allocation flags (we use __GFP_HARDWALL)
1943 *
1944 * If we're in interrupt, yes, we can always allocate. If zone
1945 * z's node is in our tasks mems_allowed, yes. If it's not a
1946 * __GFP_HARDWALL request and this zone's nodes is in the nearest
1947 * mem_exclusive cpuset ancestor to this tasks cpuset, yes.
1948 * Otherwise, no.
1949 *
1950 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
1951 * and do not allow allocations outside the current tasks cpuset.
1952 * GFP_KERNEL allocations are not so marked, so can escape to the
1953 * nearest mem_exclusive ancestor cpuset.
1954 *
1955 * Scanning up parent cpusets requires callback_sem. The __alloc_pages()
1956 * routine only calls here with __GFP_HARDWALL bit _not_ set if
1957 * it's a GFP_KERNEL allocation, and all nodes in the current tasks
1958 * mems_allowed came up empty on the first pass over the zonelist.
1959 * So only GFP_KERNEL allocations, if all nodes in the cpuset are
1960 * short of memory, might require taking the callback_sem semaphore.
1961 *
1962 * The first loop over the zonelist in mm/page_alloc.c:__alloc_pages()
1963 * calls here with __GFP_HARDWALL always set in gfp_mask, enforcing
1964 * hardwall cpusets - no allocation on a node outside the cpuset is
1965 * allowed (unless in interrupt, of course).
1966 *
1967 * The second loop doesn't even call here for GFP_ATOMIC requests
1968 * (if the __alloc_pages() local variable 'wait' is set). That check
1969 * and the checks below have the combined affect in the second loop of
1970 * the __alloc_pages() routine that:
1971 * in_interrupt - any node ok (current task context irrelevant)
1972 * GFP_ATOMIC - any node ok
1973 * GFP_KERNEL - any node in enclosing mem_exclusive cpuset ok
1974 * GFP_USER - only nodes in current tasks mems allowed ok.
1975 **/
1976
1977 int cpuset_zone_allowed(struct zone *z, gfp_t gfp_mask)
1978 {
1979 int node; /* node that zone z is on */
1980 const struct cpuset *cs; /* current cpuset ancestors */
1981 int allowed = 1; /* is allocation in zone z allowed? */
1982
1983 if (in_interrupt())
1984 return 1;
1985 node = z->zone_pgdat->node_id;
1986 if (node_isset(node, current->mems_allowed))
1987 return 1;
1988 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
1989 return 0;
1990
1991 if (current->flags & PF_EXITING) /* Let dying task have memory */
1992 return 1;
1993
1994 /* Not hardwall and node outside mems_allowed: scan up cpusets */
1995 down(&callback_sem);
1996
1997 task_lock(current);
1998 cs = nearest_exclusive_ancestor(current->cpuset);
1999 task_unlock(current);
2000
2001 allowed = node_isset(node, cs->mems_allowed);
2002 up(&callback_sem);
2003 return allowed;
2004 }
2005
2006 /**
2007 * cpuset_excl_nodes_overlap - Do we overlap @p's mem_exclusive ancestors?
2008 * @p: pointer to task_struct of some other task.
2009 *
2010 * Description: Return true if the nearest mem_exclusive ancestor
2011 * cpusets of tasks @p and current overlap. Used by oom killer to
2012 * determine if task @p's memory usage might impact the memory
2013 * available to the current task.
2014 *
2015 * Acquires callback_sem - not suitable for calling from a fast path.
2016 **/
2017
2018 int cpuset_excl_nodes_overlap(const struct task_struct *p)
2019 {
2020 const struct cpuset *cs1, *cs2; /* my and p's cpuset ancestors */
2021 int overlap = 0; /* do cpusets overlap? */
2022
2023 down(&callback_sem);
2024
2025 task_lock(current);
2026 if (current->flags & PF_EXITING) {
2027 task_unlock(current);
2028 goto done;
2029 }
2030 cs1 = nearest_exclusive_ancestor(current->cpuset);
2031 task_unlock(current);
2032
2033 task_lock((struct task_struct *)p);
2034 if (p->flags & PF_EXITING) {
2035 task_unlock((struct task_struct *)p);
2036 goto done;
2037 }
2038 cs2 = nearest_exclusive_ancestor(p->cpuset);
2039 task_unlock((struct task_struct *)p);
2040
2041 overlap = nodes_intersects(cs1->mems_allowed, cs2->mems_allowed);
2042 done:
2043 up(&callback_sem);
2044
2045 return overlap;
2046 }
2047
2048 /*
2049 * Collection of memory_pressure is suppressed unless
2050 * this flag is enabled by writing "1" to the special
2051 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2052 */
2053
2054 int cpuset_memory_pressure_enabled __read_mostly;
2055
2056 /**
2057 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2058 *
2059 * Keep a running average of the rate of synchronous (direct)
2060 * page reclaim efforts initiated by tasks in each cpuset.
2061 *
2062 * This represents the rate at which some task in the cpuset
2063 * ran low on memory on all nodes it was allowed to use, and
2064 * had to enter the kernels page reclaim code in an effort to
2065 * create more free memory by tossing clean pages or swapping
2066 * or writing dirty pages.
2067 *
2068 * Display to user space in the per-cpuset read-only file
2069 * "memory_pressure". Value displayed is an integer
2070 * representing the recent rate of entry into the synchronous
2071 * (direct) page reclaim by any task attached to the cpuset.
2072 **/
2073
2074 void __cpuset_memory_pressure_bump(void)
2075 {
2076 struct cpuset *cs;
2077
2078 task_lock(current);
2079 cs = current->cpuset;
2080 fmeter_markevent(&cs->fmeter);
2081 task_unlock(current);
2082 }
2083
2084 /*
2085 * proc_cpuset_show()
2086 * - Print tasks cpuset path into seq_file.
2087 * - Used for /proc/<pid>/cpuset.
2088 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2089 * doesn't really matter if tsk->cpuset changes after we read it,
2090 * and we take manage_sem, keeping attach_task() from changing it
2091 * anyway.
2092 */
2093
2094 static int proc_cpuset_show(struct seq_file *m, void *v)
2095 {
2096 struct cpuset *cs;
2097 struct task_struct *tsk;
2098 char *buf;
2099 int retval = 0;
2100
2101 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2102 if (!buf)
2103 return -ENOMEM;
2104
2105 tsk = m->private;
2106 down(&manage_sem);
2107 cs = tsk->cpuset;
2108 if (!cs) {
2109 retval = -EINVAL;
2110 goto out;
2111 }
2112
2113 retval = cpuset_path(cs, buf, PAGE_SIZE);
2114 if (retval < 0)
2115 goto out;
2116 seq_puts(m, buf);
2117 seq_putc(m, '\n');
2118 out:
2119 up(&manage_sem);
2120 kfree(buf);
2121 return retval;
2122 }
2123
2124 static int cpuset_open(struct inode *inode, struct file *file)
2125 {
2126 struct task_struct *tsk = PROC_I(inode)->task;
2127 return single_open(file, proc_cpuset_show, tsk);
2128 }
2129
2130 struct file_operations proc_cpuset_operations = {
2131 .open = cpuset_open,
2132 .read = seq_read,
2133 .llseek = seq_lseek,
2134 .release = single_release,
2135 };
2136
2137 /* Display task cpus_allowed, mems_allowed in /proc/<pid>/status file. */
2138 char *cpuset_task_status_allowed(struct task_struct *task, char *buffer)
2139 {
2140 buffer += sprintf(buffer, "Cpus_allowed:\t");
2141 buffer += cpumask_scnprintf(buffer, PAGE_SIZE, task->cpus_allowed);
2142 buffer += sprintf(buffer, "\n");
2143 buffer += sprintf(buffer, "Mems_allowed:\t");
2144 buffer += nodemask_scnprintf(buffer, PAGE_SIZE, task->mems_allowed);
2145 buffer += sprintf(buffer, "\n");
2146 return buffer;
2147 }
This page took 0.072665 seconds and 6 git commands to generate.