4 * Processor and Memory placement constraints for sets of tasks.
6 * Copyright (C) 2003 BULL SA.
7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8 * Copyright (C) 2006 Google, Inc
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
13 * 2003-10-10 Written by Simon Derr.
14 * 2003-10-22 Updates by Stephen Hemminger.
15 * 2004 May-July Rework by Paul Jackson.
16 * 2006 Rework by Paul Menage to use generic cgroups
17 * 2008 Rework of the scheduler domains and CPU hotplug handling
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
25 #include <linux/cpu.h>
26 #include <linux/cpumask.h>
27 #include <linux/cpuset.h>
28 #include <linux/err.h>
29 #include <linux/errno.h>
30 #include <linux/file.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/kernel.h>
35 #include <linux/kmod.h>
36 #include <linux/list.h>
37 #include <linux/mempolicy.h>
39 #include <linux/memory.h>
40 #include <linux/export.h>
41 #include <linux/mount.h>
42 #include <linux/namei.h>
43 #include <linux/pagemap.h>
44 #include <linux/proc_fs.h>
45 #include <linux/rcupdate.h>
46 #include <linux/sched.h>
47 #include <linux/seq_file.h>
48 #include <linux/security.h>
49 #include <linux/slab.h>
50 #include <linux/spinlock.h>
51 #include <linux/stat.h>
52 #include <linux/string.h>
53 #include <linux/time.h>
54 #include <linux/backing-dev.h>
55 #include <linux/sort.h>
57 #include <asm/uaccess.h>
58 #include <linux/atomic.h>
59 #include <linux/mutex.h>
60 #include <linux/workqueue.h>
61 #include <linux/cgroup.h>
62 #include <linux/wait.h>
64 struct static_key cpusets_enabled_key __read_mostly
= STATIC_KEY_INIT_FALSE
;
66 /* See "Frequency meter" comments, below. */
69 int cnt
; /* unprocessed events count */
70 int val
; /* most recent output value */
71 time_t time
; /* clock (secs) when val computed */
72 spinlock_t lock
; /* guards read or write of above */
76 struct cgroup_subsys_state css
;
78 unsigned long flags
; /* "unsigned long" so bitops work */
81 * On default hierarchy:
83 * The user-configured masks can only be changed by writing to
84 * cpuset.cpus and cpuset.mems, and won't be limited by the
87 * The effective masks is the real masks that apply to the tasks
88 * in the cpuset. They may be changed if the configured masks are
89 * changed or hotplug happens.
91 * effective_mask == configured_mask & parent's effective_mask,
92 * and if it ends up empty, it will inherit the parent's mask.
97 * The user-configured masks are always the same with effective masks.
100 /* user-configured CPUs and Memory Nodes allow to tasks */
101 cpumask_var_t cpus_allowed
;
102 nodemask_t mems_allowed
;
104 /* effective CPUs and Memory Nodes allow to tasks */
105 cpumask_var_t effective_cpus
;
106 nodemask_t effective_mems
;
109 * This is old Memory Nodes tasks took on.
111 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
112 * - A new cpuset's old_mems_allowed is initialized when some
113 * task is moved into it.
114 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
115 * cpuset.mems_allowed and have tasks' nodemask updated, and
116 * then old_mems_allowed is updated to mems_allowed.
118 nodemask_t old_mems_allowed
;
120 struct fmeter fmeter
; /* memory_pressure filter */
123 * Tasks are being attached to this cpuset. Used to prevent
124 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
126 int attach_in_progress
;
128 /* partition number for rebuild_sched_domains() */
131 /* for custom sched domain */
132 int relax_domain_level
;
135 static inline struct cpuset
*css_cs(struct cgroup_subsys_state
*css
)
137 return css
? container_of(css
, struct cpuset
, css
) : NULL
;
140 /* Retrieve the cpuset for a task */
141 static inline struct cpuset
*task_cs(struct task_struct
*task
)
143 return css_cs(task_css(task
, cpuset_cgrp_id
));
146 static inline struct cpuset
*parent_cs(struct cpuset
*cs
)
148 return css_cs(cs
->css
.parent
);
152 static inline bool task_has_mempolicy(struct task_struct
*task
)
154 return task
->mempolicy
;
157 static inline bool task_has_mempolicy(struct task_struct
*task
)
164 /* bits in struct cpuset flags field */
171 CS_SCHED_LOAD_BALANCE
,
176 /* convenient tests for these bits */
177 static inline bool is_cpuset_online(const struct cpuset
*cs
)
179 return test_bit(CS_ONLINE
, &cs
->flags
);
182 static inline int is_cpu_exclusive(const struct cpuset
*cs
)
184 return test_bit(CS_CPU_EXCLUSIVE
, &cs
->flags
);
187 static inline int is_mem_exclusive(const struct cpuset
*cs
)
189 return test_bit(CS_MEM_EXCLUSIVE
, &cs
->flags
);
192 static inline int is_mem_hardwall(const struct cpuset
*cs
)
194 return test_bit(CS_MEM_HARDWALL
, &cs
->flags
);
197 static inline int is_sched_load_balance(const struct cpuset
*cs
)
199 return test_bit(CS_SCHED_LOAD_BALANCE
, &cs
->flags
);
202 static inline int is_memory_migrate(const struct cpuset
*cs
)
204 return test_bit(CS_MEMORY_MIGRATE
, &cs
->flags
);
207 static inline int is_spread_page(const struct cpuset
*cs
)
209 return test_bit(CS_SPREAD_PAGE
, &cs
->flags
);
212 static inline int is_spread_slab(const struct cpuset
*cs
)
214 return test_bit(CS_SPREAD_SLAB
, &cs
->flags
);
217 static struct cpuset top_cpuset
= {
218 .flags
= ((1 << CS_ONLINE
) | (1 << CS_CPU_EXCLUSIVE
) |
219 (1 << CS_MEM_EXCLUSIVE
)),
223 * cpuset_for_each_child - traverse online children of a cpuset
224 * @child_cs: loop cursor pointing to the current child
225 * @pos_css: used for iteration
226 * @parent_cs: target cpuset to walk children of
228 * Walk @child_cs through the online children of @parent_cs. Must be used
229 * with RCU read locked.
231 #define cpuset_for_each_child(child_cs, pos_css, parent_cs) \
232 css_for_each_child((pos_css), &(parent_cs)->css) \
233 if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
236 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
237 * @des_cs: loop cursor pointing to the current descendant
238 * @pos_css: used for iteration
239 * @root_cs: target cpuset to walk ancestor of
241 * Walk @des_cs through the online descendants of @root_cs. Must be used
242 * with RCU read locked. The caller may modify @pos_css by calling
243 * css_rightmost_descendant() to skip subtree. @root_cs is included in the
244 * iteration and the first node to be visited.
246 #define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs) \
247 css_for_each_descendant_pre((pos_css), &(root_cs)->css) \
248 if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
251 * There are two global mutexes guarding cpuset structures - cpuset_mutex
252 * and callback_mutex. The latter may nest inside the former. We also
253 * require taking task_lock() when dereferencing a task's cpuset pointer.
254 * See "The task_lock() exception", at the end of this comment.
256 * A task must hold both mutexes to modify cpusets. If a task holds
257 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
258 * is the only task able to also acquire callback_mutex and be able to
259 * modify cpusets. It can perform various checks on the cpuset structure
260 * first, knowing nothing will change. It can also allocate memory while
261 * just holding cpuset_mutex. While it is performing these checks, various
262 * callback routines can briefly acquire callback_mutex to query cpusets.
263 * Once it is ready to make the changes, it takes callback_mutex, blocking
266 * Calls to the kernel memory allocator can not be made while holding
267 * callback_mutex, as that would risk double tripping on callback_mutex
268 * from one of the callbacks into the cpuset code from within
271 * If a task is only holding callback_mutex, then it has read-only
274 * Now, the task_struct fields mems_allowed and mempolicy may be changed
275 * by other task, we use alloc_lock in the task_struct fields to protect
278 * The cpuset_common_file_read() handlers only hold callback_mutex across
279 * small pieces of code, such as when reading out possibly multi-word
280 * cpumasks and nodemasks.
282 * Accessing a task's cpuset should be done in accordance with the
283 * guidelines for accessing subsystem state in kernel/cgroup.c
286 static DEFINE_MUTEX(cpuset_mutex
);
287 static DEFINE_MUTEX(callback_mutex
);
290 * CPU / memory hotplug is handled asynchronously.
292 static void cpuset_hotplug_workfn(struct work_struct
*work
);
293 static DECLARE_WORK(cpuset_hotplug_work
, cpuset_hotplug_workfn
);
295 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq
);
298 * This is ugly, but preserves the userspace API for existing cpuset
299 * users. If someone tries to mount the "cpuset" filesystem, we
300 * silently switch it to mount "cgroup" instead
302 static struct dentry
*cpuset_mount(struct file_system_type
*fs_type
,
303 int flags
, const char *unused_dev_name
, void *data
)
305 struct file_system_type
*cgroup_fs
= get_fs_type("cgroup");
306 struct dentry
*ret
= ERR_PTR(-ENODEV
);
310 "release_agent=/sbin/cpuset_release_agent";
311 ret
= cgroup_fs
->mount(cgroup_fs
, flags
,
312 unused_dev_name
, mountopts
);
313 put_filesystem(cgroup_fs
);
318 static struct file_system_type cpuset_fs_type
= {
320 .mount
= cpuset_mount
,
324 * Return in pmask the portion of a cpusets's cpus_allowed that
325 * are online. If none are online, walk up the cpuset hierarchy
326 * until we find one that does have some online cpus. The top
327 * cpuset always has some cpus online.
329 * One way or another, we guarantee to return some non-empty subset
330 * of cpu_online_mask.
332 * Call with callback_mutex held.
334 static void guarantee_online_cpus(struct cpuset
*cs
, struct cpumask
*pmask
)
336 while (!cpumask_intersects(cs
->effective_cpus
, cpu_online_mask
))
338 cpumask_and(pmask
, cs
->effective_cpus
, cpu_online_mask
);
342 * Return in *pmask the portion of a cpusets's mems_allowed that
343 * are online, with memory. If none are online with memory, walk
344 * up the cpuset hierarchy until we find one that does have some
345 * online mems. The top cpuset always has some mems online.
347 * One way or another, we guarantee to return some non-empty subset
348 * of node_states[N_MEMORY].
350 * Call with callback_mutex held.
352 static void guarantee_online_mems(struct cpuset
*cs
, nodemask_t
*pmask
)
354 while (!nodes_intersects(cs
->effective_mems
, node_states
[N_MEMORY
]))
356 nodes_and(*pmask
, cs
->effective_mems
, node_states
[N_MEMORY
]);
360 * update task's spread flag if cpuset's page/slab spread flag is set
362 * Called with callback_mutex/cpuset_mutex held
364 static void cpuset_update_task_spread_flag(struct cpuset
*cs
,
365 struct task_struct
*tsk
)
367 if (is_spread_page(cs
))
368 task_set_spread_page(tsk
);
370 task_clear_spread_page(tsk
);
372 if (is_spread_slab(cs
))
373 task_set_spread_slab(tsk
);
375 task_clear_spread_slab(tsk
);
379 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
381 * One cpuset is a subset of another if all its allowed CPUs and
382 * Memory Nodes are a subset of the other, and its exclusive flags
383 * are only set if the other's are set. Call holding cpuset_mutex.
386 static int is_cpuset_subset(const struct cpuset
*p
, const struct cpuset
*q
)
388 return cpumask_subset(p
->cpus_allowed
, q
->cpus_allowed
) &&
389 nodes_subset(p
->mems_allowed
, q
->mems_allowed
) &&
390 is_cpu_exclusive(p
) <= is_cpu_exclusive(q
) &&
391 is_mem_exclusive(p
) <= is_mem_exclusive(q
);
395 * alloc_trial_cpuset - allocate a trial cpuset
396 * @cs: the cpuset that the trial cpuset duplicates
398 static struct cpuset
*alloc_trial_cpuset(struct cpuset
*cs
)
400 struct cpuset
*trial
;
402 trial
= kmemdup(cs
, sizeof(*cs
), GFP_KERNEL
);
406 if (!alloc_cpumask_var(&trial
->cpus_allowed
, GFP_KERNEL
))
408 if (!alloc_cpumask_var(&trial
->effective_cpus
, GFP_KERNEL
))
411 cpumask_copy(trial
->cpus_allowed
, cs
->cpus_allowed
);
412 cpumask_copy(trial
->effective_cpus
, cs
->effective_cpus
);
416 free_cpumask_var(trial
->cpus_allowed
);
423 * free_trial_cpuset - free the trial cpuset
424 * @trial: the trial cpuset to be freed
426 static void free_trial_cpuset(struct cpuset
*trial
)
428 free_cpumask_var(trial
->effective_cpus
);
429 free_cpumask_var(trial
->cpus_allowed
);
434 * validate_change() - Used to validate that any proposed cpuset change
435 * follows the structural rules for cpusets.
437 * If we replaced the flag and mask values of the current cpuset
438 * (cur) with those values in the trial cpuset (trial), would
439 * our various subset and exclusive rules still be valid? Presumes
442 * 'cur' is the address of an actual, in-use cpuset. Operations
443 * such as list traversal that depend on the actual address of the
444 * cpuset in the list must use cur below, not trial.
446 * 'trial' is the address of bulk structure copy of cur, with
447 * perhaps one or more of the fields cpus_allowed, mems_allowed,
448 * or flags changed to new, trial values.
450 * Return 0 if valid, -errno if not.
453 static int validate_change(struct cpuset
*cur
, struct cpuset
*trial
)
455 struct cgroup_subsys_state
*css
;
456 struct cpuset
*c
, *par
;
461 /* Each of our child cpusets must be a subset of us */
463 cpuset_for_each_child(c
, css
, cur
)
464 if (!is_cpuset_subset(c
, trial
))
467 /* Remaining checks don't apply to root cpuset */
469 if (cur
== &top_cpuset
)
472 par
= parent_cs(cur
);
474 /* On legacy hiearchy, we must be a subset of our parent cpuset. */
476 if (!cgroup_on_dfl(cur
->css
.cgroup
) && !is_cpuset_subset(trial
, par
))
480 * If either I or some sibling (!= me) is exclusive, we can't
484 cpuset_for_each_child(c
, css
, par
) {
485 if ((is_cpu_exclusive(trial
) || is_cpu_exclusive(c
)) &&
487 cpumask_intersects(trial
->cpus_allowed
, c
->cpus_allowed
))
489 if ((is_mem_exclusive(trial
) || is_mem_exclusive(c
)) &&
491 nodes_intersects(trial
->mems_allowed
, c
->mems_allowed
))
496 * Cpusets with tasks - existing or newly being attached - can't
497 * be changed to have empty cpus_allowed or mems_allowed.
500 if ((cgroup_has_tasks(cur
->css
.cgroup
) || cur
->attach_in_progress
)) {
501 if (!cpumask_empty(cur
->cpus_allowed
) &&
502 cpumask_empty(trial
->cpus_allowed
))
504 if (!nodes_empty(cur
->mems_allowed
) &&
505 nodes_empty(trial
->mems_allowed
))
517 * Helper routine for generate_sched_domains().
518 * Do cpusets a, b have overlapping effective cpus_allowed masks?
520 static int cpusets_overlap(struct cpuset
*a
, struct cpuset
*b
)
522 return cpumask_intersects(a
->effective_cpus
, b
->effective_cpus
);
526 update_domain_attr(struct sched_domain_attr
*dattr
, struct cpuset
*c
)
528 if (dattr
->relax_domain_level
< c
->relax_domain_level
)
529 dattr
->relax_domain_level
= c
->relax_domain_level
;
533 static void update_domain_attr_tree(struct sched_domain_attr
*dattr
,
534 struct cpuset
*root_cs
)
537 struct cgroup_subsys_state
*pos_css
;
540 cpuset_for_each_descendant_pre(cp
, pos_css
, root_cs
) {
544 /* skip the whole subtree if @cp doesn't have any CPU */
545 if (cpumask_empty(cp
->cpus_allowed
)) {
546 pos_css
= css_rightmost_descendant(pos_css
);
550 if (is_sched_load_balance(cp
))
551 update_domain_attr(dattr
, cp
);
557 * generate_sched_domains()
559 * This function builds a partial partition of the systems CPUs
560 * A 'partial partition' is a set of non-overlapping subsets whose
561 * union is a subset of that set.
562 * The output of this function needs to be passed to kernel/sched/core.c
563 * partition_sched_domains() routine, which will rebuild the scheduler's
564 * load balancing domains (sched domains) as specified by that partial
567 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
568 * for a background explanation of this.
570 * Does not return errors, on the theory that the callers of this
571 * routine would rather not worry about failures to rebuild sched
572 * domains when operating in the severe memory shortage situations
573 * that could cause allocation failures below.
575 * Must be called with cpuset_mutex held.
577 * The three key local variables below are:
578 * q - a linked-list queue of cpuset pointers, used to implement a
579 * top-down scan of all cpusets. This scan loads a pointer
580 * to each cpuset marked is_sched_load_balance into the
581 * array 'csa'. For our purposes, rebuilding the schedulers
582 * sched domains, we can ignore !is_sched_load_balance cpusets.
583 * csa - (for CpuSet Array) Array of pointers to all the cpusets
584 * that need to be load balanced, for convenient iterative
585 * access by the subsequent code that finds the best partition,
586 * i.e the set of domains (subsets) of CPUs such that the
587 * cpus_allowed of every cpuset marked is_sched_load_balance
588 * is a subset of one of these domains, while there are as
589 * many such domains as possible, each as small as possible.
590 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
591 * the kernel/sched/core.c routine partition_sched_domains() in a
592 * convenient format, that can be easily compared to the prior
593 * value to determine what partition elements (sched domains)
594 * were changed (added or removed.)
596 * Finding the best partition (set of domains):
597 * The triple nested loops below over i, j, k scan over the
598 * load balanced cpusets (using the array of cpuset pointers in
599 * csa[]) looking for pairs of cpusets that have overlapping
600 * cpus_allowed, but which don't have the same 'pn' partition
601 * number and gives them in the same partition number. It keeps
602 * looping on the 'restart' label until it can no longer find
605 * The union of the cpus_allowed masks from the set of
606 * all cpusets having the same 'pn' value then form the one
607 * element of the partition (one sched domain) to be passed to
608 * partition_sched_domains().
610 static int generate_sched_domains(cpumask_var_t
**domains
,
611 struct sched_domain_attr
**attributes
)
613 struct cpuset
*cp
; /* scans q */
614 struct cpuset
**csa
; /* array of all cpuset ptrs */
615 int csn
; /* how many cpuset ptrs in csa so far */
616 int i
, j
, k
; /* indices for partition finding loops */
617 cpumask_var_t
*doms
; /* resulting partition; i.e. sched domains */
618 struct sched_domain_attr
*dattr
; /* attributes for custom domains */
619 int ndoms
= 0; /* number of sched domains in result */
620 int nslot
; /* next empty doms[] struct cpumask slot */
621 struct cgroup_subsys_state
*pos_css
;
627 /* Special case for the 99% of systems with one, full, sched domain */
628 if (is_sched_load_balance(&top_cpuset
)) {
630 doms
= alloc_sched_domains(ndoms
);
634 dattr
= kmalloc(sizeof(struct sched_domain_attr
), GFP_KERNEL
);
636 *dattr
= SD_ATTR_INIT
;
637 update_domain_attr_tree(dattr
, &top_cpuset
);
639 cpumask_copy(doms
[0], top_cpuset
.effective_cpus
);
644 csa
= kmalloc(nr_cpusets() * sizeof(cp
), GFP_KERNEL
);
650 cpuset_for_each_descendant_pre(cp
, pos_css
, &top_cpuset
) {
651 if (cp
== &top_cpuset
)
654 * Continue traversing beyond @cp iff @cp has some CPUs and
655 * isn't load balancing. The former is obvious. The
656 * latter: All child cpusets contain a subset of the
657 * parent's cpus, so just skip them, and then we call
658 * update_domain_attr_tree() to calc relax_domain_level of
659 * the corresponding sched domain.
661 if (!cpumask_empty(cp
->cpus_allowed
) &&
662 !is_sched_load_balance(cp
))
665 if (is_sched_load_balance(cp
))
668 /* skip @cp's subtree */
669 pos_css
= css_rightmost_descendant(pos_css
);
673 for (i
= 0; i
< csn
; i
++)
678 /* Find the best partition (set of sched domains) */
679 for (i
= 0; i
< csn
; i
++) {
680 struct cpuset
*a
= csa
[i
];
683 for (j
= 0; j
< csn
; j
++) {
684 struct cpuset
*b
= csa
[j
];
687 if (apn
!= bpn
&& cpusets_overlap(a
, b
)) {
688 for (k
= 0; k
< csn
; k
++) {
689 struct cpuset
*c
= csa
[k
];
694 ndoms
--; /* one less element */
701 * Now we know how many domains to create.
702 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
704 doms
= alloc_sched_domains(ndoms
);
709 * The rest of the code, including the scheduler, can deal with
710 * dattr==NULL case. No need to abort if alloc fails.
712 dattr
= kmalloc(ndoms
* sizeof(struct sched_domain_attr
), GFP_KERNEL
);
714 for (nslot
= 0, i
= 0; i
< csn
; i
++) {
715 struct cpuset
*a
= csa
[i
];
720 /* Skip completed partitions */
726 if (nslot
== ndoms
) {
727 static int warnings
= 10;
729 pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
730 nslot
, ndoms
, csn
, i
, apn
);
738 *(dattr
+ nslot
) = SD_ATTR_INIT
;
739 for (j
= i
; j
< csn
; j
++) {
740 struct cpuset
*b
= csa
[j
];
743 cpumask_or(dp
, dp
, b
->effective_cpus
);
745 update_domain_attr_tree(dattr
+ nslot
, b
);
747 /* Done with this partition */
753 BUG_ON(nslot
!= ndoms
);
759 * Fallback to the default domain if kmalloc() failed.
760 * See comments in partition_sched_domains().
771 * Rebuild scheduler domains.
773 * If the flag 'sched_load_balance' of any cpuset with non-empty
774 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
775 * which has that flag enabled, or if any cpuset with a non-empty
776 * 'cpus' is removed, then call this routine to rebuild the
777 * scheduler's dynamic sched domains.
779 * Call with cpuset_mutex held. Takes get_online_cpus().
781 static void rebuild_sched_domains_locked(void)
783 struct sched_domain_attr
*attr
;
787 lockdep_assert_held(&cpuset_mutex
);
791 * We have raced with CPU hotplug. Don't do anything to avoid
792 * passing doms with offlined cpu to partition_sched_domains().
793 * Anyways, hotplug work item will rebuild sched domains.
795 if (!cpumask_equal(top_cpuset
.effective_cpus
, cpu_active_mask
))
798 /* Generate domain masks and attrs */
799 ndoms
= generate_sched_domains(&doms
, &attr
);
801 /* Have scheduler rebuild the domains */
802 partition_sched_domains(ndoms
, doms
, attr
);
806 #else /* !CONFIG_SMP */
807 static void rebuild_sched_domains_locked(void)
810 #endif /* CONFIG_SMP */
812 void rebuild_sched_domains(void)
814 mutex_lock(&cpuset_mutex
);
815 rebuild_sched_domains_locked();
816 mutex_unlock(&cpuset_mutex
);
820 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
821 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
823 * Iterate through each task of @cs updating its cpus_allowed to the
824 * effective cpuset's. As this function is called with cpuset_mutex held,
825 * cpuset membership stays stable.
827 static void update_tasks_cpumask(struct cpuset
*cs
)
829 struct css_task_iter it
;
830 struct task_struct
*task
;
832 css_task_iter_start(&cs
->css
, &it
);
833 while ((task
= css_task_iter_next(&it
)))
834 set_cpus_allowed_ptr(task
, cs
->effective_cpus
);
835 css_task_iter_end(&it
);
839 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
840 * @cs: the cpuset to consider
841 * @new_cpus: temp variable for calculating new effective_cpus
843 * When congifured cpumask is changed, the effective cpumasks of this cpuset
844 * and all its descendants need to be updated.
846 * On legacy hierachy, effective_cpus will be the same with cpu_allowed.
848 * Called with cpuset_mutex held
850 static void update_cpumasks_hier(struct cpuset
*cs
, struct cpumask
*new_cpus
)
853 struct cgroup_subsys_state
*pos_css
;
854 bool need_rebuild_sched_domains
= false;
857 cpuset_for_each_descendant_pre(cp
, pos_css
, cs
) {
858 struct cpuset
*parent
= parent_cs(cp
);
860 cpumask_and(new_cpus
, cp
->cpus_allowed
, parent
->effective_cpus
);
863 * If it becomes empty, inherit the effective mask of the
864 * parent, which is guaranteed to have some CPUs.
866 if (cpumask_empty(new_cpus
))
867 cpumask_copy(new_cpus
, parent
->effective_cpus
);
869 /* Skip the whole subtree if the cpumask remains the same. */
870 if (cpumask_equal(new_cpus
, cp
->effective_cpus
)) {
871 pos_css
= css_rightmost_descendant(pos_css
);
875 if (!css_tryget_online(&cp
->css
))
879 mutex_lock(&callback_mutex
);
880 cpumask_copy(cp
->effective_cpus
, new_cpus
);
881 mutex_unlock(&callback_mutex
);
883 WARN_ON(!cgroup_on_dfl(cp
->css
.cgroup
) &&
884 !cpumask_equal(cp
->cpus_allowed
, cp
->effective_cpus
));
886 update_tasks_cpumask(cp
);
889 * If the effective cpumask of any non-empty cpuset is changed,
890 * we need to rebuild sched domains.
892 if (!cpumask_empty(cp
->cpus_allowed
) &&
893 is_sched_load_balance(cp
))
894 need_rebuild_sched_domains
= true;
901 if (need_rebuild_sched_domains
)
902 rebuild_sched_domains_locked();
906 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
907 * @cs: the cpuset to consider
908 * @trialcs: trial cpuset
909 * @buf: buffer of cpu numbers written to this cpuset
911 static int update_cpumask(struct cpuset
*cs
, struct cpuset
*trialcs
,
916 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
917 if (cs
== &top_cpuset
)
921 * An empty cpus_allowed is ok only if the cpuset has no tasks.
922 * Since cpulist_parse() fails on an empty mask, we special case
923 * that parsing. The validate_change() call ensures that cpusets
924 * with tasks have cpus.
927 cpumask_clear(trialcs
->cpus_allowed
);
929 retval
= cpulist_parse(buf
, trialcs
->cpus_allowed
);
933 if (!cpumask_subset(trialcs
->cpus_allowed
,
934 top_cpuset
.cpus_allowed
))
938 /* Nothing to do if the cpus didn't change */
939 if (cpumask_equal(cs
->cpus_allowed
, trialcs
->cpus_allowed
))
942 retval
= validate_change(cs
, trialcs
);
946 mutex_lock(&callback_mutex
);
947 cpumask_copy(cs
->cpus_allowed
, trialcs
->cpus_allowed
);
948 mutex_unlock(&callback_mutex
);
950 /* use trialcs->cpus_allowed as a temp variable */
951 update_cpumasks_hier(cs
, trialcs
->cpus_allowed
);
958 * Migrate memory region from one set of nodes to another.
960 * Temporarilly set tasks mems_allowed to target nodes of migration,
961 * so that the migration code can allocate pages on these nodes.
963 * While the mm_struct we are migrating is typically from some
964 * other task, the task_struct mems_allowed that we are hacking
965 * is for our current task, which must allocate new pages for that
966 * migrating memory region.
969 static void cpuset_migrate_mm(struct mm_struct
*mm
, const nodemask_t
*from
,
970 const nodemask_t
*to
)
972 struct task_struct
*tsk
= current
;
974 tsk
->mems_allowed
= *to
;
976 do_migrate_pages(mm
, from
, to
, MPOL_MF_MOVE_ALL
);
979 guarantee_online_mems(task_cs(tsk
), &tsk
->mems_allowed
);
984 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
985 * @tsk: the task to change
986 * @newmems: new nodes that the task will be set
988 * In order to avoid seeing no nodes if the old and new nodes are disjoint,
989 * we structure updates as setting all new allowed nodes, then clearing newly
992 static void cpuset_change_task_nodemask(struct task_struct
*tsk
,
998 * Allow tasks that have access to memory reserves because they have
999 * been OOM killed to get memory anywhere.
1001 if (unlikely(test_thread_flag(TIF_MEMDIE
)))
1003 if (current
->flags
& PF_EXITING
) /* Let dying task have memory */
1008 * Determine if a loop is necessary if another thread is doing
1009 * read_mems_allowed_begin(). If at least one node remains unchanged and
1010 * tsk does not have a mempolicy, then an empty nodemask will not be
1011 * possible when mems_allowed is larger than a word.
1013 need_loop
= task_has_mempolicy(tsk
) ||
1014 !nodes_intersects(*newmems
, tsk
->mems_allowed
);
1017 local_irq_disable();
1018 write_seqcount_begin(&tsk
->mems_allowed_seq
);
1021 nodes_or(tsk
->mems_allowed
, tsk
->mems_allowed
, *newmems
);
1022 mpol_rebind_task(tsk
, newmems
, MPOL_REBIND_STEP1
);
1024 mpol_rebind_task(tsk
, newmems
, MPOL_REBIND_STEP2
);
1025 tsk
->mems_allowed
= *newmems
;
1028 write_seqcount_end(&tsk
->mems_allowed_seq
);
1035 static void *cpuset_being_rebound
;
1038 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1039 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1041 * Iterate through each task of @cs updating its mems_allowed to the
1042 * effective cpuset's. As this function is called with cpuset_mutex held,
1043 * cpuset membership stays stable.
1045 static void update_tasks_nodemask(struct cpuset
*cs
)
1047 static nodemask_t newmems
; /* protected by cpuset_mutex */
1048 struct css_task_iter it
;
1049 struct task_struct
*task
;
1051 cpuset_being_rebound
= cs
; /* causes mpol_dup() rebind */
1053 guarantee_online_mems(cs
, &newmems
);
1056 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
1057 * take while holding tasklist_lock. Forks can happen - the
1058 * mpol_dup() cpuset_being_rebound check will catch such forks,
1059 * and rebind their vma mempolicies too. Because we still hold
1060 * the global cpuset_mutex, we know that no other rebind effort
1061 * will be contending for the global variable cpuset_being_rebound.
1062 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1063 * is idempotent. Also migrate pages in each mm to new nodes.
1065 css_task_iter_start(&cs
->css
, &it
);
1066 while ((task
= css_task_iter_next(&it
))) {
1067 struct mm_struct
*mm
;
1070 cpuset_change_task_nodemask(task
, &newmems
);
1072 mm
= get_task_mm(task
);
1076 migrate
= is_memory_migrate(cs
);
1078 mpol_rebind_mm(mm
, &cs
->mems_allowed
);
1080 cpuset_migrate_mm(mm
, &cs
->old_mems_allowed
, &newmems
);
1083 css_task_iter_end(&it
);
1086 * All the tasks' nodemasks have been updated, update
1087 * cs->old_mems_allowed.
1089 cs
->old_mems_allowed
= newmems
;
1091 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
1092 cpuset_being_rebound
= NULL
;
1096 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
1097 * @cs: the cpuset to consider
1098 * @new_mems: a temp variable for calculating new effective_mems
1100 * When configured nodemask is changed, the effective nodemasks of this cpuset
1101 * and all its descendants need to be updated.
1103 * On legacy hiearchy, effective_mems will be the same with mems_allowed.
1105 * Called with cpuset_mutex held
1107 static void update_nodemasks_hier(struct cpuset
*cs
, nodemask_t
*new_mems
)
1110 struct cgroup_subsys_state
*pos_css
;
1113 cpuset_for_each_descendant_pre(cp
, pos_css
, cs
) {
1114 struct cpuset
*parent
= parent_cs(cp
);
1116 nodes_and(*new_mems
, cp
->mems_allowed
, parent
->effective_mems
);
1119 * If it becomes empty, inherit the effective mask of the
1120 * parent, which is guaranteed to have some MEMs.
1122 if (nodes_empty(*new_mems
))
1123 *new_mems
= parent
->effective_mems
;
1125 /* Skip the whole subtree if the nodemask remains the same. */
1126 if (nodes_equal(*new_mems
, cp
->effective_mems
)) {
1127 pos_css
= css_rightmost_descendant(pos_css
);
1131 if (!css_tryget_online(&cp
->css
))
1135 mutex_lock(&callback_mutex
);
1136 cp
->effective_mems
= *new_mems
;
1137 mutex_unlock(&callback_mutex
);
1139 WARN_ON(!cgroup_on_dfl(cp
->css
.cgroup
) &&
1140 !nodes_equal(cp
->mems_allowed
, cp
->effective_mems
));
1142 update_tasks_nodemask(cp
);
1151 * Handle user request to change the 'mems' memory placement
1152 * of a cpuset. Needs to validate the request, update the
1153 * cpusets mems_allowed, and for each task in the cpuset,
1154 * update mems_allowed and rebind task's mempolicy and any vma
1155 * mempolicies and if the cpuset is marked 'memory_migrate',
1156 * migrate the tasks pages to the new memory.
1158 * Call with cpuset_mutex held. May take callback_mutex during call.
1159 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1160 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1161 * their mempolicies to the cpusets new mems_allowed.
1163 static int update_nodemask(struct cpuset
*cs
, struct cpuset
*trialcs
,
1169 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
1172 if (cs
== &top_cpuset
) {
1178 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1179 * Since nodelist_parse() fails on an empty mask, we special case
1180 * that parsing. The validate_change() call ensures that cpusets
1181 * with tasks have memory.
1184 nodes_clear(trialcs
->mems_allowed
);
1186 retval
= nodelist_parse(buf
, trialcs
->mems_allowed
);
1190 if (!nodes_subset(trialcs
->mems_allowed
,
1191 top_cpuset
.mems_allowed
)) {
1197 if (nodes_equal(cs
->mems_allowed
, trialcs
->mems_allowed
)) {
1198 retval
= 0; /* Too easy - nothing to do */
1201 retval
= validate_change(cs
, trialcs
);
1205 mutex_lock(&callback_mutex
);
1206 cs
->mems_allowed
= trialcs
->mems_allowed
;
1207 mutex_unlock(&callback_mutex
);
1209 /* use trialcs->mems_allowed as a temp variable */
1210 update_nodemasks_hier(cs
, &cs
->mems_allowed
);
1215 int current_cpuset_is_being_rebound(void)
1220 ret
= task_cs(current
) == cpuset_being_rebound
;
1226 static int update_relax_domain_level(struct cpuset
*cs
, s64 val
)
1229 if (val
< -1 || val
>= sched_domain_level_max
)
1233 if (val
!= cs
->relax_domain_level
) {
1234 cs
->relax_domain_level
= val
;
1235 if (!cpumask_empty(cs
->cpus_allowed
) &&
1236 is_sched_load_balance(cs
))
1237 rebuild_sched_domains_locked();
1244 * update_tasks_flags - update the spread flags of tasks in the cpuset.
1245 * @cs: the cpuset in which each task's spread flags needs to be changed
1247 * Iterate through each task of @cs updating its spread flags. As this
1248 * function is called with cpuset_mutex held, cpuset membership stays
1251 static void update_tasks_flags(struct cpuset
*cs
)
1253 struct css_task_iter it
;
1254 struct task_struct
*task
;
1256 css_task_iter_start(&cs
->css
, &it
);
1257 while ((task
= css_task_iter_next(&it
)))
1258 cpuset_update_task_spread_flag(cs
, task
);
1259 css_task_iter_end(&it
);
1263 * update_flag - read a 0 or a 1 in a file and update associated flag
1264 * bit: the bit to update (see cpuset_flagbits_t)
1265 * cs: the cpuset to update
1266 * turning_on: whether the flag is being set or cleared
1268 * Call with cpuset_mutex held.
1271 static int update_flag(cpuset_flagbits_t bit
, struct cpuset
*cs
,
1274 struct cpuset
*trialcs
;
1275 int balance_flag_changed
;
1276 int spread_flag_changed
;
1279 trialcs
= alloc_trial_cpuset(cs
);
1284 set_bit(bit
, &trialcs
->flags
);
1286 clear_bit(bit
, &trialcs
->flags
);
1288 err
= validate_change(cs
, trialcs
);
1292 balance_flag_changed
= (is_sched_load_balance(cs
) !=
1293 is_sched_load_balance(trialcs
));
1295 spread_flag_changed
= ((is_spread_slab(cs
) != is_spread_slab(trialcs
))
1296 || (is_spread_page(cs
) != is_spread_page(trialcs
)));
1298 mutex_lock(&callback_mutex
);
1299 cs
->flags
= trialcs
->flags
;
1300 mutex_unlock(&callback_mutex
);
1302 if (!cpumask_empty(trialcs
->cpus_allowed
) && balance_flag_changed
)
1303 rebuild_sched_domains_locked();
1305 if (spread_flag_changed
)
1306 update_tasks_flags(cs
);
1308 free_trial_cpuset(trialcs
);
1313 * Frequency meter - How fast is some event occurring?
1315 * These routines manage a digitally filtered, constant time based,
1316 * event frequency meter. There are four routines:
1317 * fmeter_init() - initialize a frequency meter.
1318 * fmeter_markevent() - called each time the event happens.
1319 * fmeter_getrate() - returns the recent rate of such events.
1320 * fmeter_update() - internal routine used to update fmeter.
1322 * A common data structure is passed to each of these routines,
1323 * which is used to keep track of the state required to manage the
1324 * frequency meter and its digital filter.
1326 * The filter works on the number of events marked per unit time.
1327 * The filter is single-pole low-pass recursive (IIR). The time unit
1328 * is 1 second. Arithmetic is done using 32-bit integers scaled to
1329 * simulate 3 decimal digits of precision (multiplied by 1000).
1331 * With an FM_COEF of 933, and a time base of 1 second, the filter
1332 * has a half-life of 10 seconds, meaning that if the events quit
1333 * happening, then the rate returned from the fmeter_getrate()
1334 * will be cut in half each 10 seconds, until it converges to zero.
1336 * It is not worth doing a real infinitely recursive filter. If more
1337 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1338 * just compute FM_MAXTICKS ticks worth, by which point the level
1341 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1342 * arithmetic overflow in the fmeter_update() routine.
1344 * Given the simple 32 bit integer arithmetic used, this meter works
1345 * best for reporting rates between one per millisecond (msec) and
1346 * one per 32 (approx) seconds. At constant rates faster than one
1347 * per msec it maxes out at values just under 1,000,000. At constant
1348 * rates between one per msec, and one per second it will stabilize
1349 * to a value N*1000, where N is the rate of events per second.
1350 * At constant rates between one per second and one per 32 seconds,
1351 * it will be choppy, moving up on the seconds that have an event,
1352 * and then decaying until the next event. At rates slower than
1353 * about one in 32 seconds, it decays all the way back to zero between
1357 #define FM_COEF 933 /* coefficient for half-life of 10 secs */
1358 #define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
1359 #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
1360 #define FM_SCALE 1000 /* faux fixed point scale */
1362 /* Initialize a frequency meter */
1363 static void fmeter_init(struct fmeter
*fmp
)
1368 spin_lock_init(&fmp
->lock
);
1371 /* Internal meter update - process cnt events and update value */
1372 static void fmeter_update(struct fmeter
*fmp
)
1374 time_t now
= get_seconds();
1375 time_t ticks
= now
- fmp
->time
;
1380 ticks
= min(FM_MAXTICKS
, ticks
);
1382 fmp
->val
= (FM_COEF
* fmp
->val
) / FM_SCALE
;
1385 fmp
->val
+= ((FM_SCALE
- FM_COEF
) * fmp
->cnt
) / FM_SCALE
;
1389 /* Process any previous ticks, then bump cnt by one (times scale). */
1390 static void fmeter_markevent(struct fmeter
*fmp
)
1392 spin_lock(&fmp
->lock
);
1394 fmp
->cnt
= min(FM_MAXCNT
, fmp
->cnt
+ FM_SCALE
);
1395 spin_unlock(&fmp
->lock
);
1398 /* Process any previous ticks, then return current value. */
1399 static int fmeter_getrate(struct fmeter
*fmp
)
1403 spin_lock(&fmp
->lock
);
1406 spin_unlock(&fmp
->lock
);
1410 static struct cpuset
*cpuset_attach_old_cs
;
1412 /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
1413 static int cpuset_can_attach(struct cgroup_subsys_state
*css
,
1414 struct cgroup_taskset
*tset
)
1416 struct cpuset
*cs
= css_cs(css
);
1417 struct task_struct
*task
;
1420 /* used later by cpuset_attach() */
1421 cpuset_attach_old_cs
= task_cs(cgroup_taskset_first(tset
));
1423 mutex_lock(&cpuset_mutex
);
1425 /* allow moving tasks into an empty cpuset if on default hierarchy */
1427 if (!cgroup_on_dfl(css
->cgroup
) &&
1428 (cpumask_empty(cs
->cpus_allowed
) || nodes_empty(cs
->mems_allowed
)))
1431 cgroup_taskset_for_each(task
, tset
) {
1433 * Kthreads which disallow setaffinity shouldn't be moved
1434 * to a new cpuset; we don't want to change their cpu
1435 * affinity and isolating such threads by their set of
1436 * allowed nodes is unnecessary. Thus, cpusets are not
1437 * applicable for such threads. This prevents checking for
1438 * success of set_cpus_allowed_ptr() on all attached tasks
1439 * before cpus_allowed may be changed.
1442 if (task
->flags
& PF_NO_SETAFFINITY
)
1444 ret
= security_task_setscheduler(task
);
1450 * Mark attach is in progress. This makes validate_change() fail
1451 * changes which zero cpus/mems_allowed.
1453 cs
->attach_in_progress
++;
1456 mutex_unlock(&cpuset_mutex
);
1460 static void cpuset_cancel_attach(struct cgroup_subsys_state
*css
,
1461 struct cgroup_taskset
*tset
)
1463 mutex_lock(&cpuset_mutex
);
1464 css_cs(css
)->attach_in_progress
--;
1465 mutex_unlock(&cpuset_mutex
);
1469 * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach()
1470 * but we can't allocate it dynamically there. Define it global and
1471 * allocate from cpuset_init().
1473 static cpumask_var_t cpus_attach
;
1475 static void cpuset_attach(struct cgroup_subsys_state
*css
,
1476 struct cgroup_taskset
*tset
)
1478 /* static buf protected by cpuset_mutex */
1479 static nodemask_t cpuset_attach_nodemask_to
;
1480 struct mm_struct
*mm
;
1481 struct task_struct
*task
;
1482 struct task_struct
*leader
= cgroup_taskset_first(tset
);
1483 struct cpuset
*cs
= css_cs(css
);
1484 struct cpuset
*oldcs
= cpuset_attach_old_cs
;
1486 mutex_lock(&cpuset_mutex
);
1488 /* prepare for attach */
1489 if (cs
== &top_cpuset
)
1490 cpumask_copy(cpus_attach
, cpu_possible_mask
);
1492 guarantee_online_cpus(cs
, cpus_attach
);
1494 guarantee_online_mems(cs
, &cpuset_attach_nodemask_to
);
1496 cgroup_taskset_for_each(task
, tset
) {
1498 * can_attach beforehand should guarantee that this doesn't
1499 * fail. TODO: have a better way to handle failure here
1501 WARN_ON_ONCE(set_cpus_allowed_ptr(task
, cpus_attach
));
1503 cpuset_change_task_nodemask(task
, &cpuset_attach_nodemask_to
);
1504 cpuset_update_task_spread_flag(cs
, task
);
1508 * Change mm, possibly for multiple threads in a threadgroup. This is
1509 * expensive and may sleep.
1511 cpuset_attach_nodemask_to
= cs
->effective_mems
;
1512 mm
= get_task_mm(leader
);
1514 mpol_rebind_mm(mm
, &cpuset_attach_nodemask_to
);
1517 * old_mems_allowed is the same with mems_allowed here, except
1518 * if this task is being moved automatically due to hotplug.
1519 * In that case @mems_allowed has been updated and is empty,
1520 * so @old_mems_allowed is the right nodesets that we migrate
1523 if (is_memory_migrate(cs
)) {
1524 cpuset_migrate_mm(mm
, &oldcs
->old_mems_allowed
,
1525 &cpuset_attach_nodemask_to
);
1530 cs
->old_mems_allowed
= cpuset_attach_nodemask_to
;
1532 cs
->attach_in_progress
--;
1533 if (!cs
->attach_in_progress
)
1534 wake_up(&cpuset_attach_wq
);
1536 mutex_unlock(&cpuset_mutex
);
1539 /* The various types of files and directories in a cpuset file system */
1542 FILE_MEMORY_MIGRATE
,
1545 FILE_EFFECTIVE_CPULIST
,
1546 FILE_EFFECTIVE_MEMLIST
,
1550 FILE_SCHED_LOAD_BALANCE
,
1551 FILE_SCHED_RELAX_DOMAIN_LEVEL
,
1552 FILE_MEMORY_PRESSURE_ENABLED
,
1553 FILE_MEMORY_PRESSURE
,
1556 } cpuset_filetype_t
;
1558 static int cpuset_write_u64(struct cgroup_subsys_state
*css
, struct cftype
*cft
,
1561 struct cpuset
*cs
= css_cs(css
);
1562 cpuset_filetype_t type
= cft
->private;
1565 mutex_lock(&cpuset_mutex
);
1566 if (!is_cpuset_online(cs
)) {
1572 case FILE_CPU_EXCLUSIVE
:
1573 retval
= update_flag(CS_CPU_EXCLUSIVE
, cs
, val
);
1575 case FILE_MEM_EXCLUSIVE
:
1576 retval
= update_flag(CS_MEM_EXCLUSIVE
, cs
, val
);
1578 case FILE_MEM_HARDWALL
:
1579 retval
= update_flag(CS_MEM_HARDWALL
, cs
, val
);
1581 case FILE_SCHED_LOAD_BALANCE
:
1582 retval
= update_flag(CS_SCHED_LOAD_BALANCE
, cs
, val
);
1584 case FILE_MEMORY_MIGRATE
:
1585 retval
= update_flag(CS_MEMORY_MIGRATE
, cs
, val
);
1587 case FILE_MEMORY_PRESSURE_ENABLED
:
1588 cpuset_memory_pressure_enabled
= !!val
;
1590 case FILE_MEMORY_PRESSURE
:
1593 case FILE_SPREAD_PAGE
:
1594 retval
= update_flag(CS_SPREAD_PAGE
, cs
, val
);
1596 case FILE_SPREAD_SLAB
:
1597 retval
= update_flag(CS_SPREAD_SLAB
, cs
, val
);
1604 mutex_unlock(&cpuset_mutex
);
1608 static int cpuset_write_s64(struct cgroup_subsys_state
*css
, struct cftype
*cft
,
1611 struct cpuset
*cs
= css_cs(css
);
1612 cpuset_filetype_t type
= cft
->private;
1613 int retval
= -ENODEV
;
1615 mutex_lock(&cpuset_mutex
);
1616 if (!is_cpuset_online(cs
))
1620 case FILE_SCHED_RELAX_DOMAIN_LEVEL
:
1621 retval
= update_relax_domain_level(cs
, val
);
1628 mutex_unlock(&cpuset_mutex
);
1633 * Common handling for a write to a "cpus" or "mems" file.
1635 static ssize_t
cpuset_write_resmask(struct kernfs_open_file
*of
,
1636 char *buf
, size_t nbytes
, loff_t off
)
1638 struct cpuset
*cs
= css_cs(of_css(of
));
1639 struct cpuset
*trialcs
;
1640 int retval
= -ENODEV
;
1642 buf
= strstrip(buf
);
1645 * CPU or memory hotunplug may leave @cs w/o any execution
1646 * resources, in which case the hotplug code asynchronously updates
1647 * configuration and transfers all tasks to the nearest ancestor
1648 * which can execute.
1650 * As writes to "cpus" or "mems" may restore @cs's execution
1651 * resources, wait for the previously scheduled operations before
1652 * proceeding, so that we don't end up keep removing tasks added
1653 * after execution capability is restored.
1655 * cpuset_hotplug_work calls back into cgroup core via
1656 * cgroup_transfer_tasks() and waiting for it from a cgroupfs
1657 * operation like this one can lead to a deadlock through kernfs
1658 * active_ref protection. Let's break the protection. Losing the
1659 * protection is okay as we check whether @cs is online after
1660 * grabbing cpuset_mutex anyway. This only happens on the legacy
1664 kernfs_break_active_protection(of
->kn
);
1665 flush_work(&cpuset_hotplug_work
);
1667 mutex_lock(&cpuset_mutex
);
1668 if (!is_cpuset_online(cs
))
1671 trialcs
= alloc_trial_cpuset(cs
);
1677 switch (of_cft(of
)->private) {
1679 retval
= update_cpumask(cs
, trialcs
, buf
);
1682 retval
= update_nodemask(cs
, trialcs
, buf
);
1689 free_trial_cpuset(trialcs
);
1691 mutex_unlock(&cpuset_mutex
);
1692 kernfs_unbreak_active_protection(of
->kn
);
1694 return retval
?: nbytes
;
1698 * These ascii lists should be read in a single call, by using a user
1699 * buffer large enough to hold the entire map. If read in smaller
1700 * chunks, there is no guarantee of atomicity. Since the display format
1701 * used, list of ranges of sequential numbers, is variable length,
1702 * and since these maps can change value dynamically, one could read
1703 * gibberish by doing partial reads while a list was changing.
1705 static int cpuset_common_seq_show(struct seq_file
*sf
, void *v
)
1707 struct cpuset
*cs
= css_cs(seq_css(sf
));
1708 cpuset_filetype_t type
= seq_cft(sf
)->private;
1713 count
= seq_get_buf(sf
, &buf
);
1716 mutex_lock(&callback_mutex
);
1720 s
+= cpulist_scnprintf(s
, count
, cs
->cpus_allowed
);
1723 s
+= nodelist_scnprintf(s
, count
, cs
->mems_allowed
);
1725 case FILE_EFFECTIVE_CPULIST
:
1726 s
+= cpulist_scnprintf(s
, count
, cs
->effective_cpus
);
1728 case FILE_EFFECTIVE_MEMLIST
:
1729 s
+= nodelist_scnprintf(s
, count
, cs
->effective_mems
);
1736 if (s
< buf
+ count
- 1) {
1738 seq_commit(sf
, s
- buf
);
1743 mutex_unlock(&callback_mutex
);
1747 static u64
cpuset_read_u64(struct cgroup_subsys_state
*css
, struct cftype
*cft
)
1749 struct cpuset
*cs
= css_cs(css
);
1750 cpuset_filetype_t type
= cft
->private;
1752 case FILE_CPU_EXCLUSIVE
:
1753 return is_cpu_exclusive(cs
);
1754 case FILE_MEM_EXCLUSIVE
:
1755 return is_mem_exclusive(cs
);
1756 case FILE_MEM_HARDWALL
:
1757 return is_mem_hardwall(cs
);
1758 case FILE_SCHED_LOAD_BALANCE
:
1759 return is_sched_load_balance(cs
);
1760 case FILE_MEMORY_MIGRATE
:
1761 return is_memory_migrate(cs
);
1762 case FILE_MEMORY_PRESSURE_ENABLED
:
1763 return cpuset_memory_pressure_enabled
;
1764 case FILE_MEMORY_PRESSURE
:
1765 return fmeter_getrate(&cs
->fmeter
);
1766 case FILE_SPREAD_PAGE
:
1767 return is_spread_page(cs
);
1768 case FILE_SPREAD_SLAB
:
1769 return is_spread_slab(cs
);
1774 /* Unreachable but makes gcc happy */
1778 static s64
cpuset_read_s64(struct cgroup_subsys_state
*css
, struct cftype
*cft
)
1780 struct cpuset
*cs
= css_cs(css
);
1781 cpuset_filetype_t type
= cft
->private;
1783 case FILE_SCHED_RELAX_DOMAIN_LEVEL
:
1784 return cs
->relax_domain_level
;
1789 /* Unrechable but makes gcc happy */
1795 * for the common functions, 'private' gives the type of file
1798 static struct cftype files
[] = {
1801 .seq_show
= cpuset_common_seq_show
,
1802 .write
= cpuset_write_resmask
,
1803 .max_write_len
= (100U + 6 * NR_CPUS
),
1804 .private = FILE_CPULIST
,
1809 .seq_show
= cpuset_common_seq_show
,
1810 .write
= cpuset_write_resmask
,
1811 .max_write_len
= (100U + 6 * MAX_NUMNODES
),
1812 .private = FILE_MEMLIST
,
1816 .name
= "effective_cpus",
1817 .seq_show
= cpuset_common_seq_show
,
1818 .private = FILE_EFFECTIVE_CPULIST
,
1822 .name
= "effective_mems",
1823 .seq_show
= cpuset_common_seq_show
,
1824 .private = FILE_EFFECTIVE_MEMLIST
,
1828 .name
= "cpu_exclusive",
1829 .read_u64
= cpuset_read_u64
,
1830 .write_u64
= cpuset_write_u64
,
1831 .private = FILE_CPU_EXCLUSIVE
,
1835 .name
= "mem_exclusive",
1836 .read_u64
= cpuset_read_u64
,
1837 .write_u64
= cpuset_write_u64
,
1838 .private = FILE_MEM_EXCLUSIVE
,
1842 .name
= "mem_hardwall",
1843 .read_u64
= cpuset_read_u64
,
1844 .write_u64
= cpuset_write_u64
,
1845 .private = FILE_MEM_HARDWALL
,
1849 .name
= "sched_load_balance",
1850 .read_u64
= cpuset_read_u64
,
1851 .write_u64
= cpuset_write_u64
,
1852 .private = FILE_SCHED_LOAD_BALANCE
,
1856 .name
= "sched_relax_domain_level",
1857 .read_s64
= cpuset_read_s64
,
1858 .write_s64
= cpuset_write_s64
,
1859 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL
,
1863 .name
= "memory_migrate",
1864 .read_u64
= cpuset_read_u64
,
1865 .write_u64
= cpuset_write_u64
,
1866 .private = FILE_MEMORY_MIGRATE
,
1870 .name
= "memory_pressure",
1871 .read_u64
= cpuset_read_u64
,
1872 .write_u64
= cpuset_write_u64
,
1873 .private = FILE_MEMORY_PRESSURE
,
1878 .name
= "memory_spread_page",
1879 .read_u64
= cpuset_read_u64
,
1880 .write_u64
= cpuset_write_u64
,
1881 .private = FILE_SPREAD_PAGE
,
1885 .name
= "memory_spread_slab",
1886 .read_u64
= cpuset_read_u64
,
1887 .write_u64
= cpuset_write_u64
,
1888 .private = FILE_SPREAD_SLAB
,
1892 .name
= "memory_pressure_enabled",
1893 .flags
= CFTYPE_ONLY_ON_ROOT
,
1894 .read_u64
= cpuset_read_u64
,
1895 .write_u64
= cpuset_write_u64
,
1896 .private = FILE_MEMORY_PRESSURE_ENABLED
,
1903 * cpuset_css_alloc - allocate a cpuset css
1904 * cgrp: control group that the new cpuset will be part of
1907 static struct cgroup_subsys_state
*
1908 cpuset_css_alloc(struct cgroup_subsys_state
*parent_css
)
1913 return &top_cpuset
.css
;
1915 cs
= kzalloc(sizeof(*cs
), GFP_KERNEL
);
1917 return ERR_PTR(-ENOMEM
);
1918 if (!alloc_cpumask_var(&cs
->cpus_allowed
, GFP_KERNEL
))
1920 if (!alloc_cpumask_var(&cs
->effective_cpus
, GFP_KERNEL
))
1923 set_bit(CS_SCHED_LOAD_BALANCE
, &cs
->flags
);
1924 cpumask_clear(cs
->cpus_allowed
);
1925 nodes_clear(cs
->mems_allowed
);
1926 cpumask_clear(cs
->effective_cpus
);
1927 nodes_clear(cs
->effective_mems
);
1928 fmeter_init(&cs
->fmeter
);
1929 cs
->relax_domain_level
= -1;
1934 free_cpumask_var(cs
->cpus_allowed
);
1937 return ERR_PTR(-ENOMEM
);
1940 static int cpuset_css_online(struct cgroup_subsys_state
*css
)
1942 struct cpuset
*cs
= css_cs(css
);
1943 struct cpuset
*parent
= parent_cs(cs
);
1944 struct cpuset
*tmp_cs
;
1945 struct cgroup_subsys_state
*pos_css
;
1950 mutex_lock(&cpuset_mutex
);
1952 set_bit(CS_ONLINE
, &cs
->flags
);
1953 if (is_spread_page(parent
))
1954 set_bit(CS_SPREAD_PAGE
, &cs
->flags
);
1955 if (is_spread_slab(parent
))
1956 set_bit(CS_SPREAD_SLAB
, &cs
->flags
);
1960 mutex_lock(&callback_mutex
);
1961 if (cgroup_on_dfl(cs
->css
.cgroup
)) {
1962 cpumask_copy(cs
->effective_cpus
, parent
->effective_cpus
);
1963 cs
->effective_mems
= parent
->effective_mems
;
1965 mutex_unlock(&callback_mutex
);
1967 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN
, &css
->cgroup
->flags
))
1971 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
1972 * set. This flag handling is implemented in cgroup core for
1973 * histrical reasons - the flag may be specified during mount.
1975 * Currently, if any sibling cpusets have exclusive cpus or mem, we
1976 * refuse to clone the configuration - thereby refusing the task to
1977 * be entered, and as a result refusing the sys_unshare() or
1978 * clone() which initiated it. If this becomes a problem for some
1979 * users who wish to allow that scenario, then this could be
1980 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
1981 * (and likewise for mems) to the new cgroup.
1984 cpuset_for_each_child(tmp_cs
, pos_css
, parent
) {
1985 if (is_mem_exclusive(tmp_cs
) || is_cpu_exclusive(tmp_cs
)) {
1992 mutex_lock(&callback_mutex
);
1993 cs
->mems_allowed
= parent
->mems_allowed
;
1994 cpumask_copy(cs
->cpus_allowed
, parent
->cpus_allowed
);
1995 mutex_unlock(&callback_mutex
);
1997 mutex_unlock(&cpuset_mutex
);
2002 * If the cpuset being removed has its flag 'sched_load_balance'
2003 * enabled, then simulate turning sched_load_balance off, which
2004 * will call rebuild_sched_domains_locked().
2007 static void cpuset_css_offline(struct cgroup_subsys_state
*css
)
2009 struct cpuset
*cs
= css_cs(css
);
2011 mutex_lock(&cpuset_mutex
);
2013 if (is_sched_load_balance(cs
))
2014 update_flag(CS_SCHED_LOAD_BALANCE
, cs
, 0);
2017 clear_bit(CS_ONLINE
, &cs
->flags
);
2019 mutex_unlock(&cpuset_mutex
);
2022 static void cpuset_css_free(struct cgroup_subsys_state
*css
)
2024 struct cpuset
*cs
= css_cs(css
);
2026 free_cpumask_var(cs
->effective_cpus
);
2027 free_cpumask_var(cs
->cpus_allowed
);
2031 static void cpuset_bind(struct cgroup_subsys_state
*root_css
)
2033 mutex_lock(&cpuset_mutex
);
2034 mutex_lock(&callback_mutex
);
2036 if (cgroup_on_dfl(root_css
->cgroup
)) {
2037 cpumask_copy(top_cpuset
.cpus_allowed
, cpu_possible_mask
);
2038 top_cpuset
.mems_allowed
= node_possible_map
;
2040 cpumask_copy(top_cpuset
.cpus_allowed
,
2041 top_cpuset
.effective_cpus
);
2042 top_cpuset
.mems_allowed
= top_cpuset
.effective_mems
;
2045 mutex_unlock(&callback_mutex
);
2046 mutex_unlock(&cpuset_mutex
);
2049 struct cgroup_subsys cpuset_cgrp_subsys
= {
2050 .css_alloc
= cpuset_css_alloc
,
2051 .css_online
= cpuset_css_online
,
2052 .css_offline
= cpuset_css_offline
,
2053 .css_free
= cpuset_css_free
,
2054 .can_attach
= cpuset_can_attach
,
2055 .cancel_attach
= cpuset_cancel_attach
,
2056 .attach
= cpuset_attach
,
2057 .bind
= cpuset_bind
,
2058 .legacy_cftypes
= files
,
2063 * cpuset_init - initialize cpusets at system boot
2065 * Description: Initialize top_cpuset and the cpuset internal file system,
2068 int __init
cpuset_init(void)
2072 if (!alloc_cpumask_var(&top_cpuset
.cpus_allowed
, GFP_KERNEL
))
2074 if (!alloc_cpumask_var(&top_cpuset
.effective_cpus
, GFP_KERNEL
))
2077 cpumask_setall(top_cpuset
.cpus_allowed
);
2078 nodes_setall(top_cpuset
.mems_allowed
);
2079 cpumask_setall(top_cpuset
.effective_cpus
);
2080 nodes_setall(top_cpuset
.effective_mems
);
2082 fmeter_init(&top_cpuset
.fmeter
);
2083 set_bit(CS_SCHED_LOAD_BALANCE
, &top_cpuset
.flags
);
2084 top_cpuset
.relax_domain_level
= -1;
2086 err
= register_filesystem(&cpuset_fs_type
);
2090 if (!alloc_cpumask_var(&cpus_attach
, GFP_KERNEL
))
2097 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
2098 * or memory nodes, we need to walk over the cpuset hierarchy,
2099 * removing that CPU or node from all cpusets. If this removes the
2100 * last CPU or node from a cpuset, then move the tasks in the empty
2101 * cpuset to its next-highest non-empty parent.
2103 static void remove_tasks_in_empty_cpuset(struct cpuset
*cs
)
2105 struct cpuset
*parent
;
2108 * Find its next-highest non-empty parent, (top cpuset
2109 * has online cpus, so can't be empty).
2111 parent
= parent_cs(cs
);
2112 while (cpumask_empty(parent
->cpus_allowed
) ||
2113 nodes_empty(parent
->mems_allowed
))
2114 parent
= parent_cs(parent
);
2116 if (cgroup_transfer_tasks(parent
->css
.cgroup
, cs
->css
.cgroup
)) {
2117 pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
2118 pr_cont_cgroup_name(cs
->css
.cgroup
);
2124 hotplug_update_tasks_legacy(struct cpuset
*cs
,
2125 struct cpumask
*new_cpus
, nodemask_t
*new_mems
,
2126 bool cpus_updated
, bool mems_updated
)
2130 mutex_lock(&callback_mutex
);
2131 cpumask_copy(cs
->cpus_allowed
, new_cpus
);
2132 cpumask_copy(cs
->effective_cpus
, new_cpus
);
2133 cs
->mems_allowed
= *new_mems
;
2134 cs
->effective_mems
= *new_mems
;
2135 mutex_unlock(&callback_mutex
);
2138 * Don't call update_tasks_cpumask() if the cpuset becomes empty,
2139 * as the tasks will be migratecd to an ancestor.
2141 if (cpus_updated
&& !cpumask_empty(cs
->cpus_allowed
))
2142 update_tasks_cpumask(cs
);
2143 if (mems_updated
&& !nodes_empty(cs
->mems_allowed
))
2144 update_tasks_nodemask(cs
);
2146 is_empty
= cpumask_empty(cs
->cpus_allowed
) ||
2147 nodes_empty(cs
->mems_allowed
);
2149 mutex_unlock(&cpuset_mutex
);
2152 * Move tasks to the nearest ancestor with execution resources,
2153 * This is full cgroup operation which will also call back into
2154 * cpuset. Should be done outside any lock.
2157 remove_tasks_in_empty_cpuset(cs
);
2159 mutex_lock(&cpuset_mutex
);
2163 hotplug_update_tasks(struct cpuset
*cs
,
2164 struct cpumask
*new_cpus
, nodemask_t
*new_mems
,
2165 bool cpus_updated
, bool mems_updated
)
2167 if (cpumask_empty(new_cpus
))
2168 cpumask_copy(new_cpus
, parent_cs(cs
)->effective_cpus
);
2169 if (nodes_empty(*new_mems
))
2170 *new_mems
= parent_cs(cs
)->effective_mems
;
2172 mutex_lock(&callback_mutex
);
2173 cpumask_copy(cs
->effective_cpus
, new_cpus
);
2174 cs
->effective_mems
= *new_mems
;
2175 mutex_unlock(&callback_mutex
);
2178 update_tasks_cpumask(cs
);
2180 update_tasks_nodemask(cs
);
2184 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
2185 * @cs: cpuset in interest
2187 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
2188 * offline, update @cs accordingly. If @cs ends up with no CPU or memory,
2189 * all its tasks are moved to the nearest ancestor with both resources.
2191 static void cpuset_hotplug_update_tasks(struct cpuset
*cs
)
2193 static cpumask_t new_cpus
;
2194 static nodemask_t new_mems
;
2198 wait_event(cpuset_attach_wq
, cs
->attach_in_progress
== 0);
2200 mutex_lock(&cpuset_mutex
);
2203 * We have raced with task attaching. We wait until attaching
2204 * is finished, so we won't attach a task to an empty cpuset.
2206 if (cs
->attach_in_progress
) {
2207 mutex_unlock(&cpuset_mutex
);
2211 cpumask_and(&new_cpus
, cs
->cpus_allowed
, parent_cs(cs
)->effective_cpus
);
2212 nodes_and(new_mems
, cs
->mems_allowed
, parent_cs(cs
)->effective_mems
);
2214 cpus_updated
= !cpumask_equal(&new_cpus
, cs
->effective_cpus
);
2215 mems_updated
= !nodes_equal(new_mems
, cs
->effective_mems
);
2217 if (cgroup_on_dfl(cs
->css
.cgroup
))
2218 hotplug_update_tasks(cs
, &new_cpus
, &new_mems
,
2219 cpus_updated
, mems_updated
);
2221 hotplug_update_tasks_legacy(cs
, &new_cpus
, &new_mems
,
2222 cpus_updated
, mems_updated
);
2224 mutex_unlock(&cpuset_mutex
);
2228 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
2230 * This function is called after either CPU or memory configuration has
2231 * changed and updates cpuset accordingly. The top_cpuset is always
2232 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
2233 * order to make cpusets transparent (of no affect) on systems that are
2234 * actively using CPU hotplug but making no active use of cpusets.
2236 * Non-root cpusets are only affected by offlining. If any CPUs or memory
2237 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
2240 * Note that CPU offlining during suspend is ignored. We don't modify
2241 * cpusets across suspend/resume cycles at all.
2243 static void cpuset_hotplug_workfn(struct work_struct
*work
)
2245 static cpumask_t new_cpus
;
2246 static nodemask_t new_mems
;
2247 bool cpus_updated
, mems_updated
;
2248 bool on_dfl
= cgroup_on_dfl(top_cpuset
.css
.cgroup
);
2250 mutex_lock(&cpuset_mutex
);
2252 /* fetch the available cpus/mems and find out which changed how */
2253 cpumask_copy(&new_cpus
, cpu_active_mask
);
2254 new_mems
= node_states
[N_MEMORY
];
2256 cpus_updated
= !cpumask_equal(top_cpuset
.effective_cpus
, &new_cpus
);
2257 mems_updated
= !nodes_equal(top_cpuset
.effective_mems
, new_mems
);
2259 /* synchronize cpus_allowed to cpu_active_mask */
2261 mutex_lock(&callback_mutex
);
2263 cpumask_copy(top_cpuset
.cpus_allowed
, &new_cpus
);
2264 cpumask_copy(top_cpuset
.effective_cpus
, &new_cpus
);
2265 mutex_unlock(&callback_mutex
);
2266 /* we don't mess with cpumasks of tasks in top_cpuset */
2269 /* synchronize mems_allowed to N_MEMORY */
2271 mutex_lock(&callback_mutex
);
2273 top_cpuset
.mems_allowed
= new_mems
;
2274 top_cpuset
.effective_mems
= new_mems
;
2275 mutex_unlock(&callback_mutex
);
2276 update_tasks_nodemask(&top_cpuset
);
2279 mutex_unlock(&cpuset_mutex
);
2281 /* if cpus or mems changed, we need to propagate to descendants */
2282 if (cpus_updated
|| mems_updated
) {
2284 struct cgroup_subsys_state
*pos_css
;
2287 cpuset_for_each_descendant_pre(cs
, pos_css
, &top_cpuset
) {
2288 if (cs
== &top_cpuset
|| !css_tryget_online(&cs
->css
))
2292 cpuset_hotplug_update_tasks(cs
);
2300 /* rebuild sched domains if cpus_allowed has changed */
2302 rebuild_sched_domains();
2305 void cpuset_update_active_cpus(bool cpu_online
)
2308 * We're inside cpu hotplug critical region which usually nests
2309 * inside cgroup synchronization. Bounce actual hotplug processing
2310 * to a work item to avoid reverse locking order.
2312 * We still need to do partition_sched_domains() synchronously;
2313 * otherwise, the scheduler will get confused and put tasks to the
2314 * dead CPU. Fall back to the default single domain.
2315 * cpuset_hotplug_workfn() will rebuild it as necessary.
2317 partition_sched_domains(1, NULL
, NULL
);
2318 schedule_work(&cpuset_hotplug_work
);
2322 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
2323 * Call this routine anytime after node_states[N_MEMORY] changes.
2324 * See cpuset_update_active_cpus() for CPU hotplug handling.
2326 static int cpuset_track_online_nodes(struct notifier_block
*self
,
2327 unsigned long action
, void *arg
)
2329 schedule_work(&cpuset_hotplug_work
);
2333 static struct notifier_block cpuset_track_online_nodes_nb
= {
2334 .notifier_call
= cpuset_track_online_nodes
,
2335 .priority
= 10, /* ??! */
2339 * cpuset_init_smp - initialize cpus_allowed
2341 * Description: Finish top cpuset after cpu, node maps are initialized
2343 void __init
cpuset_init_smp(void)
2345 cpumask_copy(top_cpuset
.cpus_allowed
, cpu_active_mask
);
2346 top_cpuset
.mems_allowed
= node_states
[N_MEMORY
];
2347 top_cpuset
.old_mems_allowed
= top_cpuset
.mems_allowed
;
2349 cpumask_copy(top_cpuset
.effective_cpus
, cpu_active_mask
);
2350 top_cpuset
.effective_mems
= node_states
[N_MEMORY
];
2352 register_hotmemory_notifier(&cpuset_track_online_nodes_nb
);
2356 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2357 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
2358 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
2360 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
2361 * attached to the specified @tsk. Guaranteed to return some non-empty
2362 * subset of cpu_online_mask, even if this means going outside the
2366 void cpuset_cpus_allowed(struct task_struct
*tsk
, struct cpumask
*pmask
)
2368 mutex_lock(&callback_mutex
);
2370 guarantee_online_cpus(task_cs(tsk
), pmask
);
2372 mutex_unlock(&callback_mutex
);
2375 void cpuset_cpus_allowed_fallback(struct task_struct
*tsk
)
2378 do_set_cpus_allowed(tsk
, task_cs(tsk
)->effective_cpus
);
2382 * We own tsk->cpus_allowed, nobody can change it under us.
2384 * But we used cs && cs->cpus_allowed lockless and thus can
2385 * race with cgroup_attach_task() or update_cpumask() and get
2386 * the wrong tsk->cpus_allowed. However, both cases imply the
2387 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
2388 * which takes task_rq_lock().
2390 * If we are called after it dropped the lock we must see all
2391 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
2392 * set any mask even if it is not right from task_cs() pov,
2393 * the pending set_cpus_allowed_ptr() will fix things.
2395 * select_fallback_rq() will fix things ups and set cpu_possible_mask
2400 void cpuset_init_current_mems_allowed(void)
2402 nodes_setall(current
->mems_allowed
);
2406 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2407 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2409 * Description: Returns the nodemask_t mems_allowed of the cpuset
2410 * attached to the specified @tsk. Guaranteed to return some non-empty
2411 * subset of node_states[N_MEMORY], even if this means going outside the
2415 nodemask_t
cpuset_mems_allowed(struct task_struct
*tsk
)
2419 mutex_lock(&callback_mutex
);
2421 guarantee_online_mems(task_cs(tsk
), &mask
);
2423 mutex_unlock(&callback_mutex
);
2429 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
2430 * @nodemask: the nodemask to be checked
2432 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
2434 int cpuset_nodemask_valid_mems_allowed(nodemask_t
*nodemask
)
2436 return nodes_intersects(*nodemask
, current
->mems_allowed
);
2440 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2441 * mem_hardwall ancestor to the specified cpuset. Call holding
2442 * callback_mutex. If no ancestor is mem_exclusive or mem_hardwall
2443 * (an unusual configuration), then returns the root cpuset.
2445 static struct cpuset
*nearest_hardwall_ancestor(struct cpuset
*cs
)
2447 while (!(is_mem_exclusive(cs
) || is_mem_hardwall(cs
)) && parent_cs(cs
))
2453 * cpuset_node_allowed_softwall - Can we allocate on a memory node?
2454 * @node: is this an allowed node?
2455 * @gfp_mask: memory allocation flags
2457 * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
2458 * set, yes, we can always allocate. If node is in our task's mems_allowed,
2459 * yes. If it's not a __GFP_HARDWALL request and this node is in the nearest
2460 * hardwalled cpuset ancestor to this task's cpuset, yes. If the task has been
2461 * OOM killed and has access to memory reserves as specified by the TIF_MEMDIE
2465 * If __GFP_HARDWALL is set, cpuset_node_allowed_softwall() reduces to
2466 * cpuset_node_allowed_hardwall(). Otherwise, cpuset_node_allowed_softwall()
2467 * might sleep, and might allow a node from an enclosing cpuset.
2469 * cpuset_node_allowed_hardwall() only handles the simpler case of hardwall
2470 * cpusets, and never sleeps.
2472 * The __GFP_THISNODE placement logic is really handled elsewhere,
2473 * by forcibly using a zonelist starting at a specified node, and by
2474 * (in get_page_from_freelist()) refusing to consider the zones for
2475 * any node on the zonelist except the first. By the time any such
2476 * calls get to this routine, we should just shut up and say 'yes'.
2478 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
2479 * and do not allow allocations outside the current tasks cpuset
2480 * unless the task has been OOM killed as is marked TIF_MEMDIE.
2481 * GFP_KERNEL allocations are not so marked, so can escape to the
2482 * nearest enclosing hardwalled ancestor cpuset.
2484 * Scanning up parent cpusets requires callback_mutex. The
2485 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2486 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2487 * current tasks mems_allowed came up empty on the first pass over
2488 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
2489 * cpuset are short of memory, might require taking the callback_mutex
2492 * The first call here from mm/page_alloc:get_page_from_freelist()
2493 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2494 * so no allocation on a node outside the cpuset is allowed (unless
2495 * in interrupt, of course).
2497 * The second pass through get_page_from_freelist() doesn't even call
2498 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
2499 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2500 * in alloc_flags. That logic and the checks below have the combined
2502 * in_interrupt - any node ok (current task context irrelevant)
2503 * GFP_ATOMIC - any node ok
2504 * TIF_MEMDIE - any node ok
2505 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
2506 * GFP_USER - only nodes in current tasks mems allowed ok.
2509 * Don't call cpuset_node_allowed_softwall if you can't sleep, unless you
2510 * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
2511 * the code that might scan up ancestor cpusets and sleep.
2513 int __cpuset_node_allowed_softwall(int node
, gfp_t gfp_mask
)
2515 struct cpuset
*cs
; /* current cpuset ancestors */
2516 int allowed
; /* is allocation in zone z allowed? */
2518 if (in_interrupt() || (gfp_mask
& __GFP_THISNODE
))
2520 might_sleep_if(!(gfp_mask
& __GFP_HARDWALL
));
2521 if (node_isset(node
, current
->mems_allowed
))
2524 * Allow tasks that have access to memory reserves because they have
2525 * been OOM killed to get memory anywhere.
2527 if (unlikely(test_thread_flag(TIF_MEMDIE
)))
2529 if (gfp_mask
& __GFP_HARDWALL
) /* If hardwall request, stop here */
2532 if (current
->flags
& PF_EXITING
) /* Let dying task have memory */
2535 /* Not hardwall and node outside mems_allowed: scan up cpusets */
2536 mutex_lock(&callback_mutex
);
2539 cs
= nearest_hardwall_ancestor(task_cs(current
));
2540 allowed
= node_isset(node
, cs
->mems_allowed
);
2543 mutex_unlock(&callback_mutex
);
2548 * cpuset_node_allowed_hardwall - Can we allocate on a memory node?
2549 * @node: is this an allowed node?
2550 * @gfp_mask: memory allocation flags
2552 * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
2553 * set, yes, we can always allocate. If node is in our task's mems_allowed,
2554 * yes. If the task has been OOM killed and has access to memory reserves as
2555 * specified by the TIF_MEMDIE flag, yes.
2558 * The __GFP_THISNODE placement logic is really handled elsewhere,
2559 * by forcibly using a zonelist starting at a specified node, and by
2560 * (in get_page_from_freelist()) refusing to consider the zones for
2561 * any node on the zonelist except the first. By the time any such
2562 * calls get to this routine, we should just shut up and say 'yes'.
2564 * Unlike the cpuset_node_allowed_softwall() variant, above,
2565 * this variant requires that the node be in the current task's
2566 * mems_allowed or that we're in interrupt. It does not scan up the
2567 * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
2570 int __cpuset_node_allowed_hardwall(int node
, gfp_t gfp_mask
)
2572 if (in_interrupt() || (gfp_mask
& __GFP_THISNODE
))
2574 if (node_isset(node
, current
->mems_allowed
))
2577 * Allow tasks that have access to memory reserves because they have
2578 * been OOM killed to get memory anywhere.
2580 if (unlikely(test_thread_flag(TIF_MEMDIE
)))
2586 * cpuset_mem_spread_node() - On which node to begin search for a file page
2587 * cpuset_slab_spread_node() - On which node to begin search for a slab page
2589 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2590 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2591 * and if the memory allocation used cpuset_mem_spread_node()
2592 * to determine on which node to start looking, as it will for
2593 * certain page cache or slab cache pages such as used for file
2594 * system buffers and inode caches, then instead of starting on the
2595 * local node to look for a free page, rather spread the starting
2596 * node around the tasks mems_allowed nodes.
2598 * We don't have to worry about the returned node being offline
2599 * because "it can't happen", and even if it did, it would be ok.
2601 * The routines calling guarantee_online_mems() are careful to
2602 * only set nodes in task->mems_allowed that are online. So it
2603 * should not be possible for the following code to return an
2604 * offline node. But if it did, that would be ok, as this routine
2605 * is not returning the node where the allocation must be, only
2606 * the node where the search should start. The zonelist passed to
2607 * __alloc_pages() will include all nodes. If the slab allocator
2608 * is passed an offline node, it will fall back to the local node.
2609 * See kmem_cache_alloc_node().
2612 static int cpuset_spread_node(int *rotor
)
2616 node
= next_node(*rotor
, current
->mems_allowed
);
2617 if (node
== MAX_NUMNODES
)
2618 node
= first_node(current
->mems_allowed
);
2623 int cpuset_mem_spread_node(void)
2625 if (current
->cpuset_mem_spread_rotor
== NUMA_NO_NODE
)
2626 current
->cpuset_mem_spread_rotor
=
2627 node_random(¤t
->mems_allowed
);
2629 return cpuset_spread_node(¤t
->cpuset_mem_spread_rotor
);
2632 int cpuset_slab_spread_node(void)
2634 if (current
->cpuset_slab_spread_rotor
== NUMA_NO_NODE
)
2635 current
->cpuset_slab_spread_rotor
=
2636 node_random(¤t
->mems_allowed
);
2638 return cpuset_spread_node(¤t
->cpuset_slab_spread_rotor
);
2641 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node
);
2644 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2645 * @tsk1: pointer to task_struct of some task.
2646 * @tsk2: pointer to task_struct of some other task.
2648 * Description: Return true if @tsk1's mems_allowed intersects the
2649 * mems_allowed of @tsk2. Used by the OOM killer to determine if
2650 * one of the task's memory usage might impact the memory available
2654 int cpuset_mems_allowed_intersects(const struct task_struct
*tsk1
,
2655 const struct task_struct
*tsk2
)
2657 return nodes_intersects(tsk1
->mems_allowed
, tsk2
->mems_allowed
);
2660 #define CPUSET_NODELIST_LEN (256)
2663 * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
2664 * @tsk: pointer to task_struct of some task.
2666 * Description: Prints @task's name, cpuset name, and cached copy of its
2667 * mems_allowed to the kernel log.
2669 void cpuset_print_task_mems_allowed(struct task_struct
*tsk
)
2671 /* Statically allocated to prevent using excess stack. */
2672 static char cpuset_nodelist
[CPUSET_NODELIST_LEN
];
2673 static DEFINE_SPINLOCK(cpuset_buffer_lock
);
2674 struct cgroup
*cgrp
;
2676 spin_lock(&cpuset_buffer_lock
);
2679 cgrp
= task_cs(tsk
)->css
.cgroup
;
2680 nodelist_scnprintf(cpuset_nodelist
, CPUSET_NODELIST_LEN
,
2682 pr_info("%s cpuset=", tsk
->comm
);
2683 pr_cont_cgroup_name(cgrp
);
2684 pr_cont(" mems_allowed=%s\n", cpuset_nodelist
);
2687 spin_unlock(&cpuset_buffer_lock
);
2691 * Collection of memory_pressure is suppressed unless
2692 * this flag is enabled by writing "1" to the special
2693 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2696 int cpuset_memory_pressure_enabled __read_mostly
;
2699 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2701 * Keep a running average of the rate of synchronous (direct)
2702 * page reclaim efforts initiated by tasks in each cpuset.
2704 * This represents the rate at which some task in the cpuset
2705 * ran low on memory on all nodes it was allowed to use, and
2706 * had to enter the kernels page reclaim code in an effort to
2707 * create more free memory by tossing clean pages or swapping
2708 * or writing dirty pages.
2710 * Display to user space in the per-cpuset read-only file
2711 * "memory_pressure". Value displayed is an integer
2712 * representing the recent rate of entry into the synchronous
2713 * (direct) page reclaim by any task attached to the cpuset.
2716 void __cpuset_memory_pressure_bump(void)
2719 fmeter_markevent(&task_cs(current
)->fmeter
);
2723 #ifdef CONFIG_PROC_PID_CPUSET
2725 * proc_cpuset_show()
2726 * - Print tasks cpuset path into seq_file.
2727 * - Used for /proc/<pid>/cpuset.
2728 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2729 * doesn't really matter if tsk->cpuset changes after we read it,
2730 * and we take cpuset_mutex, keeping cpuset_attach() from changing it
2733 int proc_cpuset_show(struct seq_file
*m
, struct pid_namespace
*ns
,
2734 struct pid
*pid
, struct task_struct
*tsk
)
2737 struct cgroup_subsys_state
*css
;
2741 buf
= kmalloc(PATH_MAX
, GFP_KERNEL
);
2745 retval
= -ENAMETOOLONG
;
2747 css
= task_css(tsk
, cpuset_cgrp_id
);
2748 p
= cgroup_path(css
->cgroup
, buf
, PATH_MAX
);
2760 #endif /* CONFIG_PROC_PID_CPUSET */
2762 /* Display task mems_allowed in /proc/<pid>/status file. */
2763 void cpuset_task_status_allowed(struct seq_file
*m
, struct task_struct
*task
)
2765 seq_puts(m
, "Mems_allowed:\t");
2766 seq_nodemask(m
, &task
->mems_allowed
);
2768 seq_puts(m
, "Mems_allowed_list:\t");
2769 seq_nodemask_list(m
, &task
->mems_allowed
);