cgroup files: remove cpuset_common_file_write()
[deliverable/linux.git] / kernel / cpuset.c
1 /*
2 * kernel/cpuset.c
3 *
4 * Processor and Memory placement constraints for sets of tasks.
5 *
6 * Copyright (C) 2003 BULL SA.
7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8 * Copyright (C) 2006 Google, Inc
9 *
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
12 *
13 * 2003-10-10 Written by Simon Derr.
14 * 2003-10-22 Updates by Stephen Hemminger.
15 * 2004 May-July Rework by Paul Jackson.
16 * 2006 Rework by Paul Menage to use generic cgroups
17 *
18 * This file is subject to the terms and conditions of the GNU General Public
19 * License. See the file COPYING in the main directory of the Linux
20 * distribution for more details.
21 */
22
23 #include <linux/cpu.h>
24 #include <linux/cpumask.h>
25 #include <linux/cpuset.h>
26 #include <linux/err.h>
27 #include <linux/errno.h>
28 #include <linux/file.h>
29 #include <linux/fs.h>
30 #include <linux/init.h>
31 #include <linux/interrupt.h>
32 #include <linux/kernel.h>
33 #include <linux/kmod.h>
34 #include <linux/list.h>
35 #include <linux/mempolicy.h>
36 #include <linux/mm.h>
37 #include <linux/module.h>
38 #include <linux/mount.h>
39 #include <linux/namei.h>
40 #include <linux/pagemap.h>
41 #include <linux/proc_fs.h>
42 #include <linux/rcupdate.h>
43 #include <linux/sched.h>
44 #include <linux/seq_file.h>
45 #include <linux/security.h>
46 #include <linux/slab.h>
47 #include <linux/spinlock.h>
48 #include <linux/stat.h>
49 #include <linux/string.h>
50 #include <linux/time.h>
51 #include <linux/backing-dev.h>
52 #include <linux/sort.h>
53
54 #include <asm/uaccess.h>
55 #include <asm/atomic.h>
56 #include <linux/mutex.h>
57 #include <linux/kfifo.h>
58 #include <linux/workqueue.h>
59 #include <linux/cgroup.h>
60
61 /*
62 * Tracks how many cpusets are currently defined in system.
63 * When there is only one cpuset (the root cpuset) we can
64 * short circuit some hooks.
65 */
66 int number_of_cpusets __read_mostly;
67
68 /* Forward declare cgroup structures */
69 struct cgroup_subsys cpuset_subsys;
70 struct cpuset;
71
72 /* See "Frequency meter" comments, below. */
73
74 struct fmeter {
75 int cnt; /* unprocessed events count */
76 int val; /* most recent output value */
77 time_t time; /* clock (secs) when val computed */
78 spinlock_t lock; /* guards read or write of above */
79 };
80
81 struct cpuset {
82 struct cgroup_subsys_state css;
83
84 unsigned long flags; /* "unsigned long" so bitops work */
85 cpumask_t cpus_allowed; /* CPUs allowed to tasks in cpuset */
86 nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */
87
88 struct cpuset *parent; /* my parent */
89
90 /*
91 * Copy of global cpuset_mems_generation as of the most
92 * recent time this cpuset changed its mems_allowed.
93 */
94 int mems_generation;
95
96 struct fmeter fmeter; /* memory_pressure filter */
97
98 /* partition number for rebuild_sched_domains() */
99 int pn;
100
101 /* for custom sched domain */
102 int relax_domain_level;
103
104 /* used for walking a cpuset heirarchy */
105 struct list_head stack_list;
106 };
107
108 /* Retrieve the cpuset for a cgroup */
109 static inline struct cpuset *cgroup_cs(struct cgroup *cont)
110 {
111 return container_of(cgroup_subsys_state(cont, cpuset_subsys_id),
112 struct cpuset, css);
113 }
114
115 /* Retrieve the cpuset for a task */
116 static inline struct cpuset *task_cs(struct task_struct *task)
117 {
118 return container_of(task_subsys_state(task, cpuset_subsys_id),
119 struct cpuset, css);
120 }
121 struct cpuset_hotplug_scanner {
122 struct cgroup_scanner scan;
123 struct cgroup *to;
124 };
125
126 /* bits in struct cpuset flags field */
127 typedef enum {
128 CS_CPU_EXCLUSIVE,
129 CS_MEM_EXCLUSIVE,
130 CS_MEM_HARDWALL,
131 CS_MEMORY_MIGRATE,
132 CS_SCHED_LOAD_BALANCE,
133 CS_SPREAD_PAGE,
134 CS_SPREAD_SLAB,
135 } cpuset_flagbits_t;
136
137 /* convenient tests for these bits */
138 static inline int is_cpu_exclusive(const struct cpuset *cs)
139 {
140 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
141 }
142
143 static inline int is_mem_exclusive(const struct cpuset *cs)
144 {
145 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
146 }
147
148 static inline int is_mem_hardwall(const struct cpuset *cs)
149 {
150 return test_bit(CS_MEM_HARDWALL, &cs->flags);
151 }
152
153 static inline int is_sched_load_balance(const struct cpuset *cs)
154 {
155 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
156 }
157
158 static inline int is_memory_migrate(const struct cpuset *cs)
159 {
160 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
161 }
162
163 static inline int is_spread_page(const struct cpuset *cs)
164 {
165 return test_bit(CS_SPREAD_PAGE, &cs->flags);
166 }
167
168 static inline int is_spread_slab(const struct cpuset *cs)
169 {
170 return test_bit(CS_SPREAD_SLAB, &cs->flags);
171 }
172
173 /*
174 * Increment this integer everytime any cpuset changes its
175 * mems_allowed value. Users of cpusets can track this generation
176 * number, and avoid having to lock and reload mems_allowed unless
177 * the cpuset they're using changes generation.
178 *
179 * A single, global generation is needed because cpuset_attach_task() could
180 * reattach a task to a different cpuset, which must not have its
181 * generation numbers aliased with those of that tasks previous cpuset.
182 *
183 * Generations are needed for mems_allowed because one task cannot
184 * modify another's memory placement. So we must enable every task,
185 * on every visit to __alloc_pages(), to efficiently check whether
186 * its current->cpuset->mems_allowed has changed, requiring an update
187 * of its current->mems_allowed.
188 *
189 * Since writes to cpuset_mems_generation are guarded by the cgroup lock
190 * there is no need to mark it atomic.
191 */
192 static int cpuset_mems_generation;
193
194 static struct cpuset top_cpuset = {
195 .flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)),
196 .cpus_allowed = CPU_MASK_ALL,
197 .mems_allowed = NODE_MASK_ALL,
198 };
199
200 /*
201 * There are two global mutexes guarding cpuset structures. The first
202 * is the main control groups cgroup_mutex, accessed via
203 * cgroup_lock()/cgroup_unlock(). The second is the cpuset-specific
204 * callback_mutex, below. They can nest. It is ok to first take
205 * cgroup_mutex, then nest callback_mutex. We also require taking
206 * task_lock() when dereferencing a task's cpuset pointer. See "The
207 * task_lock() exception", at the end of this comment.
208 *
209 * A task must hold both mutexes to modify cpusets. If a task
210 * holds cgroup_mutex, then it blocks others wanting that mutex,
211 * ensuring that it is the only task able to also acquire callback_mutex
212 * and be able to modify cpusets. It can perform various checks on
213 * the cpuset structure first, knowing nothing will change. It can
214 * also allocate memory while just holding cgroup_mutex. While it is
215 * performing these checks, various callback routines can briefly
216 * acquire callback_mutex to query cpusets. Once it is ready to make
217 * the changes, it takes callback_mutex, blocking everyone else.
218 *
219 * Calls to the kernel memory allocator can not be made while holding
220 * callback_mutex, as that would risk double tripping on callback_mutex
221 * from one of the callbacks into the cpuset code from within
222 * __alloc_pages().
223 *
224 * If a task is only holding callback_mutex, then it has read-only
225 * access to cpusets.
226 *
227 * The task_struct fields mems_allowed and mems_generation may only
228 * be accessed in the context of that task, so require no locks.
229 *
230 * The cpuset_common_file_read() handlers only hold callback_mutex across
231 * small pieces of code, such as when reading out possibly multi-word
232 * cpumasks and nodemasks.
233 *
234 * Accessing a task's cpuset should be done in accordance with the
235 * guidelines for accessing subsystem state in kernel/cgroup.c
236 */
237
238 static DEFINE_MUTEX(callback_mutex);
239
240 /* This is ugly, but preserves the userspace API for existing cpuset
241 * users. If someone tries to mount the "cpuset" filesystem, we
242 * silently switch it to mount "cgroup" instead */
243 static int cpuset_get_sb(struct file_system_type *fs_type,
244 int flags, const char *unused_dev_name,
245 void *data, struct vfsmount *mnt)
246 {
247 struct file_system_type *cgroup_fs = get_fs_type("cgroup");
248 int ret = -ENODEV;
249 if (cgroup_fs) {
250 char mountopts[] =
251 "cpuset,noprefix,"
252 "release_agent=/sbin/cpuset_release_agent";
253 ret = cgroup_fs->get_sb(cgroup_fs, flags,
254 unused_dev_name, mountopts, mnt);
255 put_filesystem(cgroup_fs);
256 }
257 return ret;
258 }
259
260 static struct file_system_type cpuset_fs_type = {
261 .name = "cpuset",
262 .get_sb = cpuset_get_sb,
263 };
264
265 /*
266 * Return in *pmask the portion of a cpusets's cpus_allowed that
267 * are online. If none are online, walk up the cpuset hierarchy
268 * until we find one that does have some online cpus. If we get
269 * all the way to the top and still haven't found any online cpus,
270 * return cpu_online_map. Or if passed a NULL cs from an exit'ing
271 * task, return cpu_online_map.
272 *
273 * One way or another, we guarantee to return some non-empty subset
274 * of cpu_online_map.
275 *
276 * Call with callback_mutex held.
277 */
278
279 static void guarantee_online_cpus(const struct cpuset *cs, cpumask_t *pmask)
280 {
281 while (cs && !cpus_intersects(cs->cpus_allowed, cpu_online_map))
282 cs = cs->parent;
283 if (cs)
284 cpus_and(*pmask, cs->cpus_allowed, cpu_online_map);
285 else
286 *pmask = cpu_online_map;
287 BUG_ON(!cpus_intersects(*pmask, cpu_online_map));
288 }
289
290 /*
291 * Return in *pmask the portion of a cpusets's mems_allowed that
292 * are online, with memory. If none are online with memory, walk
293 * up the cpuset hierarchy until we find one that does have some
294 * online mems. If we get all the way to the top and still haven't
295 * found any online mems, return node_states[N_HIGH_MEMORY].
296 *
297 * One way or another, we guarantee to return some non-empty subset
298 * of node_states[N_HIGH_MEMORY].
299 *
300 * Call with callback_mutex held.
301 */
302
303 static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
304 {
305 while (cs && !nodes_intersects(cs->mems_allowed,
306 node_states[N_HIGH_MEMORY]))
307 cs = cs->parent;
308 if (cs)
309 nodes_and(*pmask, cs->mems_allowed,
310 node_states[N_HIGH_MEMORY]);
311 else
312 *pmask = node_states[N_HIGH_MEMORY];
313 BUG_ON(!nodes_intersects(*pmask, node_states[N_HIGH_MEMORY]));
314 }
315
316 /**
317 * cpuset_update_task_memory_state - update task memory placement
318 *
319 * If the current tasks cpusets mems_allowed changed behind our
320 * backs, update current->mems_allowed, mems_generation and task NUMA
321 * mempolicy to the new value.
322 *
323 * Task mempolicy is updated by rebinding it relative to the
324 * current->cpuset if a task has its memory placement changed.
325 * Do not call this routine if in_interrupt().
326 *
327 * Call without callback_mutex or task_lock() held. May be
328 * called with or without cgroup_mutex held. Thanks in part to
329 * 'the_top_cpuset_hack', the task's cpuset pointer will never
330 * be NULL. This routine also might acquire callback_mutex during
331 * call.
332 *
333 * Reading current->cpuset->mems_generation doesn't need task_lock
334 * to guard the current->cpuset derefence, because it is guarded
335 * from concurrent freeing of current->cpuset using RCU.
336 *
337 * The rcu_dereference() is technically probably not needed,
338 * as I don't actually mind if I see a new cpuset pointer but
339 * an old value of mems_generation. However this really only
340 * matters on alpha systems using cpusets heavily. If I dropped
341 * that rcu_dereference(), it would save them a memory barrier.
342 * For all other arch's, rcu_dereference is a no-op anyway, and for
343 * alpha systems not using cpusets, another planned optimization,
344 * avoiding the rcu critical section for tasks in the root cpuset
345 * which is statically allocated, so can't vanish, will make this
346 * irrelevant. Better to use RCU as intended, than to engage in
347 * some cute trick to save a memory barrier that is impossible to
348 * test, for alpha systems using cpusets heavily, which might not
349 * even exist.
350 *
351 * This routine is needed to update the per-task mems_allowed data,
352 * within the tasks context, when it is trying to allocate memory
353 * (in various mm/mempolicy.c routines) and notices that some other
354 * task has been modifying its cpuset.
355 */
356
357 void cpuset_update_task_memory_state(void)
358 {
359 int my_cpusets_mem_gen;
360 struct task_struct *tsk = current;
361 struct cpuset *cs;
362
363 if (task_cs(tsk) == &top_cpuset) {
364 /* Don't need rcu for top_cpuset. It's never freed. */
365 my_cpusets_mem_gen = top_cpuset.mems_generation;
366 } else {
367 rcu_read_lock();
368 my_cpusets_mem_gen = task_cs(current)->mems_generation;
369 rcu_read_unlock();
370 }
371
372 if (my_cpusets_mem_gen != tsk->cpuset_mems_generation) {
373 mutex_lock(&callback_mutex);
374 task_lock(tsk);
375 cs = task_cs(tsk); /* Maybe changed when task not locked */
376 guarantee_online_mems(cs, &tsk->mems_allowed);
377 tsk->cpuset_mems_generation = cs->mems_generation;
378 if (is_spread_page(cs))
379 tsk->flags |= PF_SPREAD_PAGE;
380 else
381 tsk->flags &= ~PF_SPREAD_PAGE;
382 if (is_spread_slab(cs))
383 tsk->flags |= PF_SPREAD_SLAB;
384 else
385 tsk->flags &= ~PF_SPREAD_SLAB;
386 task_unlock(tsk);
387 mutex_unlock(&callback_mutex);
388 mpol_rebind_task(tsk, &tsk->mems_allowed);
389 }
390 }
391
392 /*
393 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
394 *
395 * One cpuset is a subset of another if all its allowed CPUs and
396 * Memory Nodes are a subset of the other, and its exclusive flags
397 * are only set if the other's are set. Call holding cgroup_mutex.
398 */
399
400 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
401 {
402 return cpus_subset(p->cpus_allowed, q->cpus_allowed) &&
403 nodes_subset(p->mems_allowed, q->mems_allowed) &&
404 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
405 is_mem_exclusive(p) <= is_mem_exclusive(q);
406 }
407
408 /*
409 * validate_change() - Used to validate that any proposed cpuset change
410 * follows the structural rules for cpusets.
411 *
412 * If we replaced the flag and mask values of the current cpuset
413 * (cur) with those values in the trial cpuset (trial), would
414 * our various subset and exclusive rules still be valid? Presumes
415 * cgroup_mutex held.
416 *
417 * 'cur' is the address of an actual, in-use cpuset. Operations
418 * such as list traversal that depend on the actual address of the
419 * cpuset in the list must use cur below, not trial.
420 *
421 * 'trial' is the address of bulk structure copy of cur, with
422 * perhaps one or more of the fields cpus_allowed, mems_allowed,
423 * or flags changed to new, trial values.
424 *
425 * Return 0 if valid, -errno if not.
426 */
427
428 static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
429 {
430 struct cgroup *cont;
431 struct cpuset *c, *par;
432
433 /* Each of our child cpusets must be a subset of us */
434 list_for_each_entry(cont, &cur->css.cgroup->children, sibling) {
435 if (!is_cpuset_subset(cgroup_cs(cont), trial))
436 return -EBUSY;
437 }
438
439 /* Remaining checks don't apply to root cpuset */
440 if (cur == &top_cpuset)
441 return 0;
442
443 par = cur->parent;
444
445 /* We must be a subset of our parent cpuset */
446 if (!is_cpuset_subset(trial, par))
447 return -EACCES;
448
449 /*
450 * If either I or some sibling (!= me) is exclusive, we can't
451 * overlap
452 */
453 list_for_each_entry(cont, &par->css.cgroup->children, sibling) {
454 c = cgroup_cs(cont);
455 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
456 c != cur &&
457 cpus_intersects(trial->cpus_allowed, c->cpus_allowed))
458 return -EINVAL;
459 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
460 c != cur &&
461 nodes_intersects(trial->mems_allowed, c->mems_allowed))
462 return -EINVAL;
463 }
464
465 /* Cpusets with tasks can't have empty cpus_allowed or mems_allowed */
466 if (cgroup_task_count(cur->css.cgroup)) {
467 if (cpus_empty(trial->cpus_allowed) ||
468 nodes_empty(trial->mems_allowed)) {
469 return -ENOSPC;
470 }
471 }
472
473 return 0;
474 }
475
476 /*
477 * Helper routine for rebuild_sched_domains().
478 * Do cpusets a, b have overlapping cpus_allowed masks?
479 */
480
481 static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
482 {
483 return cpus_intersects(a->cpus_allowed, b->cpus_allowed);
484 }
485
486 static void
487 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
488 {
489 if (!dattr)
490 return;
491 if (dattr->relax_domain_level < c->relax_domain_level)
492 dattr->relax_domain_level = c->relax_domain_level;
493 return;
494 }
495
496 /*
497 * rebuild_sched_domains()
498 *
499 * If the flag 'sched_load_balance' of any cpuset with non-empty
500 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
501 * which has that flag enabled, or if any cpuset with a non-empty
502 * 'cpus' is removed, then call this routine to rebuild the
503 * scheduler's dynamic sched domains.
504 *
505 * This routine builds a partial partition of the systems CPUs
506 * (the set of non-overlappping cpumask_t's in the array 'part'
507 * below), and passes that partial partition to the kernel/sched.c
508 * partition_sched_domains() routine, which will rebuild the
509 * schedulers load balancing domains (sched domains) as specified
510 * by that partial partition. A 'partial partition' is a set of
511 * non-overlapping subsets whose union is a subset of that set.
512 *
513 * See "What is sched_load_balance" in Documentation/cpusets.txt
514 * for a background explanation of this.
515 *
516 * Does not return errors, on the theory that the callers of this
517 * routine would rather not worry about failures to rebuild sched
518 * domains when operating in the severe memory shortage situations
519 * that could cause allocation failures below.
520 *
521 * Call with cgroup_mutex held. May take callback_mutex during
522 * call due to the kfifo_alloc() and kmalloc() calls. May nest
523 * a call to the get_online_cpus()/put_online_cpus() pair.
524 * Must not be called holding callback_mutex, because we must not
525 * call get_online_cpus() while holding callback_mutex. Elsewhere
526 * the kernel nests callback_mutex inside get_online_cpus() calls.
527 * So the reverse nesting would risk an ABBA deadlock.
528 *
529 * The three key local variables below are:
530 * q - a kfifo queue of cpuset pointers, used to implement a
531 * top-down scan of all cpusets. This scan loads a pointer
532 * to each cpuset marked is_sched_load_balance into the
533 * array 'csa'. For our purposes, rebuilding the schedulers
534 * sched domains, we can ignore !is_sched_load_balance cpusets.
535 * csa - (for CpuSet Array) Array of pointers to all the cpusets
536 * that need to be load balanced, for convenient iterative
537 * access by the subsequent code that finds the best partition,
538 * i.e the set of domains (subsets) of CPUs such that the
539 * cpus_allowed of every cpuset marked is_sched_load_balance
540 * is a subset of one of these domains, while there are as
541 * many such domains as possible, each as small as possible.
542 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
543 * the kernel/sched.c routine partition_sched_domains() in a
544 * convenient format, that can be easily compared to the prior
545 * value to determine what partition elements (sched domains)
546 * were changed (added or removed.)
547 *
548 * Finding the best partition (set of domains):
549 * The triple nested loops below over i, j, k scan over the
550 * load balanced cpusets (using the array of cpuset pointers in
551 * csa[]) looking for pairs of cpusets that have overlapping
552 * cpus_allowed, but which don't have the same 'pn' partition
553 * number and gives them in the same partition number. It keeps
554 * looping on the 'restart' label until it can no longer find
555 * any such pairs.
556 *
557 * The union of the cpus_allowed masks from the set of
558 * all cpusets having the same 'pn' value then form the one
559 * element of the partition (one sched domain) to be passed to
560 * partition_sched_domains().
561 */
562
563 void rebuild_sched_domains(void)
564 {
565 struct kfifo *q; /* queue of cpusets to be scanned */
566 struct cpuset *cp; /* scans q */
567 struct cpuset **csa; /* array of all cpuset ptrs */
568 int csn; /* how many cpuset ptrs in csa so far */
569 int i, j, k; /* indices for partition finding loops */
570 cpumask_t *doms; /* resulting partition; i.e. sched domains */
571 struct sched_domain_attr *dattr; /* attributes for custom domains */
572 int ndoms; /* number of sched domains in result */
573 int nslot; /* next empty doms[] cpumask_t slot */
574
575 q = NULL;
576 csa = NULL;
577 doms = NULL;
578 dattr = NULL;
579
580 /* Special case for the 99% of systems with one, full, sched domain */
581 if (is_sched_load_balance(&top_cpuset)) {
582 ndoms = 1;
583 doms = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
584 if (!doms)
585 goto rebuild;
586 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
587 if (dattr) {
588 *dattr = SD_ATTR_INIT;
589 update_domain_attr(dattr, &top_cpuset);
590 }
591 *doms = top_cpuset.cpus_allowed;
592 goto rebuild;
593 }
594
595 q = kfifo_alloc(number_of_cpusets * sizeof(cp), GFP_KERNEL, NULL);
596 if (IS_ERR(q))
597 goto done;
598 csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
599 if (!csa)
600 goto done;
601 csn = 0;
602
603 cp = &top_cpuset;
604 __kfifo_put(q, (void *)&cp, sizeof(cp));
605 while (__kfifo_get(q, (void *)&cp, sizeof(cp))) {
606 struct cgroup *cont;
607 struct cpuset *child; /* scans child cpusets of cp */
608 if (is_sched_load_balance(cp))
609 csa[csn++] = cp;
610 list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
611 child = cgroup_cs(cont);
612 __kfifo_put(q, (void *)&child, sizeof(cp));
613 }
614 }
615
616 for (i = 0; i < csn; i++)
617 csa[i]->pn = i;
618 ndoms = csn;
619
620 restart:
621 /* Find the best partition (set of sched domains) */
622 for (i = 0; i < csn; i++) {
623 struct cpuset *a = csa[i];
624 int apn = a->pn;
625
626 for (j = 0; j < csn; j++) {
627 struct cpuset *b = csa[j];
628 int bpn = b->pn;
629
630 if (apn != bpn && cpusets_overlap(a, b)) {
631 for (k = 0; k < csn; k++) {
632 struct cpuset *c = csa[k];
633
634 if (c->pn == bpn)
635 c->pn = apn;
636 }
637 ndoms--; /* one less element */
638 goto restart;
639 }
640 }
641 }
642
643 /* Convert <csn, csa> to <ndoms, doms> */
644 doms = kmalloc(ndoms * sizeof(cpumask_t), GFP_KERNEL);
645 if (!doms)
646 goto rebuild;
647 dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
648
649 for (nslot = 0, i = 0; i < csn; i++) {
650 struct cpuset *a = csa[i];
651 int apn = a->pn;
652
653 if (apn >= 0) {
654 cpumask_t *dp = doms + nslot;
655
656 if (nslot == ndoms) {
657 static int warnings = 10;
658 if (warnings) {
659 printk(KERN_WARNING
660 "rebuild_sched_domains confused:"
661 " nslot %d, ndoms %d, csn %d, i %d,"
662 " apn %d\n",
663 nslot, ndoms, csn, i, apn);
664 warnings--;
665 }
666 continue;
667 }
668
669 cpus_clear(*dp);
670 if (dattr)
671 *(dattr + nslot) = SD_ATTR_INIT;
672 for (j = i; j < csn; j++) {
673 struct cpuset *b = csa[j];
674
675 if (apn == b->pn) {
676 cpus_or(*dp, *dp, b->cpus_allowed);
677 b->pn = -1;
678 if (dattr)
679 update_domain_attr(dattr
680 + nslot, b);
681 }
682 }
683 nslot++;
684 }
685 }
686 BUG_ON(nslot != ndoms);
687
688 rebuild:
689 /* Have scheduler rebuild sched domains */
690 get_online_cpus();
691 partition_sched_domains(ndoms, doms, dattr);
692 put_online_cpus();
693
694 done:
695 if (q && !IS_ERR(q))
696 kfifo_free(q);
697 kfree(csa);
698 /* Don't kfree(doms) -- partition_sched_domains() does that. */
699 /* Don't kfree(dattr) -- partition_sched_domains() does that. */
700 }
701
702 static inline int started_after_time(struct task_struct *t1,
703 struct timespec *time,
704 struct task_struct *t2)
705 {
706 int start_diff = timespec_compare(&t1->start_time, time);
707 if (start_diff > 0) {
708 return 1;
709 } else if (start_diff < 0) {
710 return 0;
711 } else {
712 /*
713 * Arbitrarily, if two processes started at the same
714 * time, we'll say that the lower pointer value
715 * started first. Note that t2 may have exited by now
716 * so this may not be a valid pointer any longer, but
717 * that's fine - it still serves to distinguish
718 * between two tasks started (effectively)
719 * simultaneously.
720 */
721 return t1 > t2;
722 }
723 }
724
725 static inline int started_after(void *p1, void *p2)
726 {
727 struct task_struct *t1 = p1;
728 struct task_struct *t2 = p2;
729 return started_after_time(t1, &t2->start_time, t2);
730 }
731
732 /**
733 * cpuset_test_cpumask - test a task's cpus_allowed versus its cpuset's
734 * @tsk: task to test
735 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
736 *
737 * Call with cgroup_mutex held. May take callback_mutex during call.
738 * Called for each task in a cgroup by cgroup_scan_tasks().
739 * Return nonzero if this tasks's cpus_allowed mask should be changed (in other
740 * words, if its mask is not equal to its cpuset's mask).
741 */
742 static int cpuset_test_cpumask(struct task_struct *tsk,
743 struct cgroup_scanner *scan)
744 {
745 return !cpus_equal(tsk->cpus_allowed,
746 (cgroup_cs(scan->cg))->cpus_allowed);
747 }
748
749 /**
750 * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's
751 * @tsk: task to test
752 * @scan: struct cgroup_scanner containing the cgroup of the task
753 *
754 * Called by cgroup_scan_tasks() for each task in a cgroup whose
755 * cpus_allowed mask needs to be changed.
756 *
757 * We don't need to re-check for the cgroup/cpuset membership, since we're
758 * holding cgroup_lock() at this point.
759 */
760 static void cpuset_change_cpumask(struct task_struct *tsk,
761 struct cgroup_scanner *scan)
762 {
763 set_cpus_allowed_ptr(tsk, &((cgroup_cs(scan->cg))->cpus_allowed));
764 }
765
766 /**
767 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
768 * @cs: the cpuset to consider
769 * @buf: buffer of cpu numbers written to this cpuset
770 */
771 static int update_cpumask(struct cpuset *cs, const char *buf)
772 {
773 struct cpuset trialcs;
774 struct cgroup_scanner scan;
775 struct ptr_heap heap;
776 int retval;
777 int is_load_balanced;
778
779 /* top_cpuset.cpus_allowed tracks cpu_online_map; it's read-only */
780 if (cs == &top_cpuset)
781 return -EACCES;
782
783 trialcs = *cs;
784
785 /*
786 * An empty cpus_allowed is ok only if the cpuset has no tasks.
787 * Since cpulist_parse() fails on an empty mask, we special case
788 * that parsing. The validate_change() call ensures that cpusets
789 * with tasks have cpus.
790 */
791 if (!*buf) {
792 cpus_clear(trialcs.cpus_allowed);
793 } else {
794 retval = cpulist_parse(buf, trialcs.cpus_allowed);
795 if (retval < 0)
796 return retval;
797
798 if (!cpus_subset(trialcs.cpus_allowed, cpu_online_map))
799 return -EINVAL;
800 }
801 retval = validate_change(cs, &trialcs);
802 if (retval < 0)
803 return retval;
804
805 /* Nothing to do if the cpus didn't change */
806 if (cpus_equal(cs->cpus_allowed, trialcs.cpus_allowed))
807 return 0;
808
809 retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, &started_after);
810 if (retval)
811 return retval;
812
813 is_load_balanced = is_sched_load_balance(&trialcs);
814
815 mutex_lock(&callback_mutex);
816 cs->cpus_allowed = trialcs.cpus_allowed;
817 mutex_unlock(&callback_mutex);
818
819 /*
820 * Scan tasks in the cpuset, and update the cpumasks of any
821 * that need an update.
822 */
823 scan.cg = cs->css.cgroup;
824 scan.test_task = cpuset_test_cpumask;
825 scan.process_task = cpuset_change_cpumask;
826 scan.heap = &heap;
827 cgroup_scan_tasks(&scan);
828 heap_free(&heap);
829
830 if (is_load_balanced)
831 rebuild_sched_domains();
832 return 0;
833 }
834
835 /*
836 * cpuset_migrate_mm
837 *
838 * Migrate memory region from one set of nodes to another.
839 *
840 * Temporarilly set tasks mems_allowed to target nodes of migration,
841 * so that the migration code can allocate pages on these nodes.
842 *
843 * Call holding cgroup_mutex, so current's cpuset won't change
844 * during this call, as manage_mutex holds off any cpuset_attach()
845 * calls. Therefore we don't need to take task_lock around the
846 * call to guarantee_online_mems(), as we know no one is changing
847 * our task's cpuset.
848 *
849 * Hold callback_mutex around the two modifications of our tasks
850 * mems_allowed to synchronize with cpuset_mems_allowed().
851 *
852 * While the mm_struct we are migrating is typically from some
853 * other task, the task_struct mems_allowed that we are hacking
854 * is for our current task, which must allocate new pages for that
855 * migrating memory region.
856 *
857 * We call cpuset_update_task_memory_state() before hacking
858 * our tasks mems_allowed, so that we are assured of being in
859 * sync with our tasks cpuset, and in particular, callbacks to
860 * cpuset_update_task_memory_state() from nested page allocations
861 * won't see any mismatch of our cpuset and task mems_generation
862 * values, so won't overwrite our hacked tasks mems_allowed
863 * nodemask.
864 */
865
866 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
867 const nodemask_t *to)
868 {
869 struct task_struct *tsk = current;
870
871 cpuset_update_task_memory_state();
872
873 mutex_lock(&callback_mutex);
874 tsk->mems_allowed = *to;
875 mutex_unlock(&callback_mutex);
876
877 do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
878
879 mutex_lock(&callback_mutex);
880 guarantee_online_mems(task_cs(tsk),&tsk->mems_allowed);
881 mutex_unlock(&callback_mutex);
882 }
883
884 /*
885 * Handle user request to change the 'mems' memory placement
886 * of a cpuset. Needs to validate the request, update the
887 * cpusets mems_allowed and mems_generation, and for each
888 * task in the cpuset, rebind any vma mempolicies and if
889 * the cpuset is marked 'memory_migrate', migrate the tasks
890 * pages to the new memory.
891 *
892 * Call with cgroup_mutex held. May take callback_mutex during call.
893 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
894 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
895 * their mempolicies to the cpusets new mems_allowed.
896 */
897
898 static void *cpuset_being_rebound;
899
900 static int update_nodemask(struct cpuset *cs, const char *buf)
901 {
902 struct cpuset trialcs;
903 nodemask_t oldmem;
904 struct task_struct *p;
905 struct mm_struct **mmarray;
906 int i, n, ntasks;
907 int migrate;
908 int fudge;
909 int retval;
910 struct cgroup_iter it;
911
912 /*
913 * top_cpuset.mems_allowed tracks node_stats[N_HIGH_MEMORY];
914 * it's read-only
915 */
916 if (cs == &top_cpuset)
917 return -EACCES;
918
919 trialcs = *cs;
920
921 /*
922 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
923 * Since nodelist_parse() fails on an empty mask, we special case
924 * that parsing. The validate_change() call ensures that cpusets
925 * with tasks have memory.
926 */
927 if (!*buf) {
928 nodes_clear(trialcs.mems_allowed);
929 } else {
930 retval = nodelist_parse(buf, trialcs.mems_allowed);
931 if (retval < 0)
932 goto done;
933
934 if (!nodes_subset(trialcs.mems_allowed,
935 node_states[N_HIGH_MEMORY]))
936 return -EINVAL;
937 }
938 oldmem = cs->mems_allowed;
939 if (nodes_equal(oldmem, trialcs.mems_allowed)) {
940 retval = 0; /* Too easy - nothing to do */
941 goto done;
942 }
943 retval = validate_change(cs, &trialcs);
944 if (retval < 0)
945 goto done;
946
947 mutex_lock(&callback_mutex);
948 cs->mems_allowed = trialcs.mems_allowed;
949 cs->mems_generation = cpuset_mems_generation++;
950 mutex_unlock(&callback_mutex);
951
952 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
953
954 fudge = 10; /* spare mmarray[] slots */
955 fudge += cpus_weight(cs->cpus_allowed); /* imagine one fork-bomb/cpu */
956 retval = -ENOMEM;
957
958 /*
959 * Allocate mmarray[] to hold mm reference for each task
960 * in cpuset cs. Can't kmalloc GFP_KERNEL while holding
961 * tasklist_lock. We could use GFP_ATOMIC, but with a
962 * few more lines of code, we can retry until we get a big
963 * enough mmarray[] w/o using GFP_ATOMIC.
964 */
965 while (1) {
966 ntasks = cgroup_task_count(cs->css.cgroup); /* guess */
967 ntasks += fudge;
968 mmarray = kmalloc(ntasks * sizeof(*mmarray), GFP_KERNEL);
969 if (!mmarray)
970 goto done;
971 read_lock(&tasklist_lock); /* block fork */
972 if (cgroup_task_count(cs->css.cgroup) <= ntasks)
973 break; /* got enough */
974 read_unlock(&tasklist_lock); /* try again */
975 kfree(mmarray);
976 }
977
978 n = 0;
979
980 /* Load up mmarray[] with mm reference for each task in cpuset. */
981 cgroup_iter_start(cs->css.cgroup, &it);
982 while ((p = cgroup_iter_next(cs->css.cgroup, &it))) {
983 struct mm_struct *mm;
984
985 if (n >= ntasks) {
986 printk(KERN_WARNING
987 "Cpuset mempolicy rebind incomplete.\n");
988 break;
989 }
990 mm = get_task_mm(p);
991 if (!mm)
992 continue;
993 mmarray[n++] = mm;
994 }
995 cgroup_iter_end(cs->css.cgroup, &it);
996 read_unlock(&tasklist_lock);
997
998 /*
999 * Now that we've dropped the tasklist spinlock, we can
1000 * rebind the vma mempolicies of each mm in mmarray[] to their
1001 * new cpuset, and release that mm. The mpol_rebind_mm()
1002 * call takes mmap_sem, which we couldn't take while holding
1003 * tasklist_lock. Forks can happen again now - the mpol_dup()
1004 * cpuset_being_rebound check will catch such forks, and rebind
1005 * their vma mempolicies too. Because we still hold the global
1006 * cgroup_mutex, we know that no other rebind effort will
1007 * be contending for the global variable cpuset_being_rebound.
1008 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1009 * is idempotent. Also migrate pages in each mm to new nodes.
1010 */
1011 migrate = is_memory_migrate(cs);
1012 for (i = 0; i < n; i++) {
1013 struct mm_struct *mm = mmarray[i];
1014
1015 mpol_rebind_mm(mm, &cs->mems_allowed);
1016 if (migrate)
1017 cpuset_migrate_mm(mm, &oldmem, &cs->mems_allowed);
1018 mmput(mm);
1019 }
1020
1021 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
1022 kfree(mmarray);
1023 cpuset_being_rebound = NULL;
1024 retval = 0;
1025 done:
1026 return retval;
1027 }
1028
1029 int current_cpuset_is_being_rebound(void)
1030 {
1031 return task_cs(current) == cpuset_being_rebound;
1032 }
1033
1034 static int update_relax_domain_level(struct cpuset *cs, s64 val)
1035 {
1036 if (val < -1 || val >= SD_LV_MAX)
1037 return -EINVAL;
1038
1039 if (val != cs->relax_domain_level) {
1040 cs->relax_domain_level = val;
1041 rebuild_sched_domains();
1042 }
1043
1044 return 0;
1045 }
1046
1047 /*
1048 * update_flag - read a 0 or a 1 in a file and update associated flag
1049 * bit: the bit to update (see cpuset_flagbits_t)
1050 * cs: the cpuset to update
1051 * turning_on: whether the flag is being set or cleared
1052 *
1053 * Call with cgroup_mutex held.
1054 */
1055
1056 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1057 int turning_on)
1058 {
1059 struct cpuset trialcs;
1060 int err;
1061 int cpus_nonempty, balance_flag_changed;
1062
1063 trialcs = *cs;
1064 if (turning_on)
1065 set_bit(bit, &trialcs.flags);
1066 else
1067 clear_bit(bit, &trialcs.flags);
1068
1069 err = validate_change(cs, &trialcs);
1070 if (err < 0)
1071 return err;
1072
1073 cpus_nonempty = !cpus_empty(trialcs.cpus_allowed);
1074 balance_flag_changed = (is_sched_load_balance(cs) !=
1075 is_sched_load_balance(&trialcs));
1076
1077 mutex_lock(&callback_mutex);
1078 cs->flags = trialcs.flags;
1079 mutex_unlock(&callback_mutex);
1080
1081 if (cpus_nonempty && balance_flag_changed)
1082 rebuild_sched_domains();
1083
1084 return 0;
1085 }
1086
1087 /*
1088 * Frequency meter - How fast is some event occurring?
1089 *
1090 * These routines manage a digitally filtered, constant time based,
1091 * event frequency meter. There are four routines:
1092 * fmeter_init() - initialize a frequency meter.
1093 * fmeter_markevent() - called each time the event happens.
1094 * fmeter_getrate() - returns the recent rate of such events.
1095 * fmeter_update() - internal routine used to update fmeter.
1096 *
1097 * A common data structure is passed to each of these routines,
1098 * which is used to keep track of the state required to manage the
1099 * frequency meter and its digital filter.
1100 *
1101 * The filter works on the number of events marked per unit time.
1102 * The filter is single-pole low-pass recursive (IIR). The time unit
1103 * is 1 second. Arithmetic is done using 32-bit integers scaled to
1104 * simulate 3 decimal digits of precision (multiplied by 1000).
1105 *
1106 * With an FM_COEF of 933, and a time base of 1 second, the filter
1107 * has a half-life of 10 seconds, meaning that if the events quit
1108 * happening, then the rate returned from the fmeter_getrate()
1109 * will be cut in half each 10 seconds, until it converges to zero.
1110 *
1111 * It is not worth doing a real infinitely recursive filter. If more
1112 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1113 * just compute FM_MAXTICKS ticks worth, by which point the level
1114 * will be stable.
1115 *
1116 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1117 * arithmetic overflow in the fmeter_update() routine.
1118 *
1119 * Given the simple 32 bit integer arithmetic used, this meter works
1120 * best for reporting rates between one per millisecond (msec) and
1121 * one per 32 (approx) seconds. At constant rates faster than one
1122 * per msec it maxes out at values just under 1,000,000. At constant
1123 * rates between one per msec, and one per second it will stabilize
1124 * to a value N*1000, where N is the rate of events per second.
1125 * At constant rates between one per second and one per 32 seconds,
1126 * it will be choppy, moving up on the seconds that have an event,
1127 * and then decaying until the next event. At rates slower than
1128 * about one in 32 seconds, it decays all the way back to zero between
1129 * each event.
1130 */
1131
1132 #define FM_COEF 933 /* coefficient for half-life of 10 secs */
1133 #define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
1134 #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
1135 #define FM_SCALE 1000 /* faux fixed point scale */
1136
1137 /* Initialize a frequency meter */
1138 static void fmeter_init(struct fmeter *fmp)
1139 {
1140 fmp->cnt = 0;
1141 fmp->val = 0;
1142 fmp->time = 0;
1143 spin_lock_init(&fmp->lock);
1144 }
1145
1146 /* Internal meter update - process cnt events and update value */
1147 static void fmeter_update(struct fmeter *fmp)
1148 {
1149 time_t now = get_seconds();
1150 time_t ticks = now - fmp->time;
1151
1152 if (ticks == 0)
1153 return;
1154
1155 ticks = min(FM_MAXTICKS, ticks);
1156 while (ticks-- > 0)
1157 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1158 fmp->time = now;
1159
1160 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1161 fmp->cnt = 0;
1162 }
1163
1164 /* Process any previous ticks, then bump cnt by one (times scale). */
1165 static void fmeter_markevent(struct fmeter *fmp)
1166 {
1167 spin_lock(&fmp->lock);
1168 fmeter_update(fmp);
1169 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1170 spin_unlock(&fmp->lock);
1171 }
1172
1173 /* Process any previous ticks, then return current value. */
1174 static int fmeter_getrate(struct fmeter *fmp)
1175 {
1176 int val;
1177
1178 spin_lock(&fmp->lock);
1179 fmeter_update(fmp);
1180 val = fmp->val;
1181 spin_unlock(&fmp->lock);
1182 return val;
1183 }
1184
1185 /* Called by cgroups to determine if a cpuset is usable; cgroup_mutex held */
1186 static int cpuset_can_attach(struct cgroup_subsys *ss,
1187 struct cgroup *cont, struct task_struct *tsk)
1188 {
1189 struct cpuset *cs = cgroup_cs(cont);
1190
1191 if (cpus_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
1192 return -ENOSPC;
1193 if (tsk->flags & PF_THREAD_BOUND) {
1194 cpumask_t mask;
1195
1196 mutex_lock(&callback_mutex);
1197 mask = cs->cpus_allowed;
1198 mutex_unlock(&callback_mutex);
1199 if (!cpus_equal(tsk->cpus_allowed, mask))
1200 return -EINVAL;
1201 }
1202
1203 return security_task_setscheduler(tsk, 0, NULL);
1204 }
1205
1206 static void cpuset_attach(struct cgroup_subsys *ss,
1207 struct cgroup *cont, struct cgroup *oldcont,
1208 struct task_struct *tsk)
1209 {
1210 cpumask_t cpus;
1211 nodemask_t from, to;
1212 struct mm_struct *mm;
1213 struct cpuset *cs = cgroup_cs(cont);
1214 struct cpuset *oldcs = cgroup_cs(oldcont);
1215 int err;
1216
1217 mutex_lock(&callback_mutex);
1218 guarantee_online_cpus(cs, &cpus);
1219 err = set_cpus_allowed_ptr(tsk, &cpus);
1220 mutex_unlock(&callback_mutex);
1221 if (err)
1222 return;
1223
1224 from = oldcs->mems_allowed;
1225 to = cs->mems_allowed;
1226 mm = get_task_mm(tsk);
1227 if (mm) {
1228 mpol_rebind_mm(mm, &to);
1229 if (is_memory_migrate(cs))
1230 cpuset_migrate_mm(mm, &from, &to);
1231 mmput(mm);
1232 }
1233
1234 }
1235
1236 /* The various types of files and directories in a cpuset file system */
1237
1238 typedef enum {
1239 FILE_MEMORY_MIGRATE,
1240 FILE_CPULIST,
1241 FILE_MEMLIST,
1242 FILE_CPU_EXCLUSIVE,
1243 FILE_MEM_EXCLUSIVE,
1244 FILE_MEM_HARDWALL,
1245 FILE_SCHED_LOAD_BALANCE,
1246 FILE_SCHED_RELAX_DOMAIN_LEVEL,
1247 FILE_MEMORY_PRESSURE_ENABLED,
1248 FILE_MEMORY_PRESSURE,
1249 FILE_SPREAD_PAGE,
1250 FILE_SPREAD_SLAB,
1251 } cpuset_filetype_t;
1252
1253 static int cpuset_write_u64(struct cgroup *cgrp, struct cftype *cft, u64 val)
1254 {
1255 int retval = 0;
1256 struct cpuset *cs = cgroup_cs(cgrp);
1257 cpuset_filetype_t type = cft->private;
1258
1259 if (!cgroup_lock_live_group(cgrp))
1260 return -ENODEV;
1261
1262 switch (type) {
1263 case FILE_CPU_EXCLUSIVE:
1264 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
1265 break;
1266 case FILE_MEM_EXCLUSIVE:
1267 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
1268 break;
1269 case FILE_MEM_HARDWALL:
1270 retval = update_flag(CS_MEM_HARDWALL, cs, val);
1271 break;
1272 case FILE_SCHED_LOAD_BALANCE:
1273 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1274 break;
1275 case FILE_MEMORY_MIGRATE:
1276 retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
1277 break;
1278 case FILE_MEMORY_PRESSURE_ENABLED:
1279 cpuset_memory_pressure_enabled = !!val;
1280 break;
1281 case FILE_MEMORY_PRESSURE:
1282 retval = -EACCES;
1283 break;
1284 case FILE_SPREAD_PAGE:
1285 retval = update_flag(CS_SPREAD_PAGE, cs, val);
1286 cs->mems_generation = cpuset_mems_generation++;
1287 break;
1288 case FILE_SPREAD_SLAB:
1289 retval = update_flag(CS_SPREAD_SLAB, cs, val);
1290 cs->mems_generation = cpuset_mems_generation++;
1291 break;
1292 default:
1293 retval = -EINVAL;
1294 break;
1295 }
1296 cgroup_unlock();
1297 return retval;
1298 }
1299
1300 static int cpuset_write_s64(struct cgroup *cgrp, struct cftype *cft, s64 val)
1301 {
1302 int retval = 0;
1303 struct cpuset *cs = cgroup_cs(cgrp);
1304 cpuset_filetype_t type = cft->private;
1305
1306 if (!cgroup_lock_live_group(cgrp))
1307 return -ENODEV;
1308
1309 switch (type) {
1310 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1311 retval = update_relax_domain_level(cs, val);
1312 break;
1313 default:
1314 retval = -EINVAL;
1315 break;
1316 }
1317 cgroup_unlock();
1318 return retval;
1319 }
1320
1321 /*
1322 * Common handling for a write to a "cpus" or "mems" file.
1323 */
1324 static int cpuset_write_resmask(struct cgroup *cgrp, struct cftype *cft,
1325 const char *buf)
1326 {
1327 int retval = 0;
1328
1329 if (!cgroup_lock_live_group(cgrp))
1330 return -ENODEV;
1331
1332 switch (cft->private) {
1333 case FILE_CPULIST:
1334 retval = update_cpumask(cgroup_cs(cgrp), buf);
1335 break;
1336 case FILE_MEMLIST:
1337 retval = update_nodemask(cgroup_cs(cgrp), buf);
1338 break;
1339 default:
1340 retval = -EINVAL;
1341 break;
1342 }
1343 cgroup_unlock();
1344 return retval;
1345 }
1346
1347 /*
1348 * These ascii lists should be read in a single call, by using a user
1349 * buffer large enough to hold the entire map. If read in smaller
1350 * chunks, there is no guarantee of atomicity. Since the display format
1351 * used, list of ranges of sequential numbers, is variable length,
1352 * and since these maps can change value dynamically, one could read
1353 * gibberish by doing partial reads while a list was changing.
1354 * A single large read to a buffer that crosses a page boundary is
1355 * ok, because the result being copied to user land is not recomputed
1356 * across a page fault.
1357 */
1358
1359 static int cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
1360 {
1361 cpumask_t mask;
1362
1363 mutex_lock(&callback_mutex);
1364 mask = cs->cpus_allowed;
1365 mutex_unlock(&callback_mutex);
1366
1367 return cpulist_scnprintf(page, PAGE_SIZE, mask);
1368 }
1369
1370 static int cpuset_sprintf_memlist(char *page, struct cpuset *cs)
1371 {
1372 nodemask_t mask;
1373
1374 mutex_lock(&callback_mutex);
1375 mask = cs->mems_allowed;
1376 mutex_unlock(&callback_mutex);
1377
1378 return nodelist_scnprintf(page, PAGE_SIZE, mask);
1379 }
1380
1381 static ssize_t cpuset_common_file_read(struct cgroup *cont,
1382 struct cftype *cft,
1383 struct file *file,
1384 char __user *buf,
1385 size_t nbytes, loff_t *ppos)
1386 {
1387 struct cpuset *cs = cgroup_cs(cont);
1388 cpuset_filetype_t type = cft->private;
1389 char *page;
1390 ssize_t retval = 0;
1391 char *s;
1392
1393 if (!(page = (char *)__get_free_page(GFP_TEMPORARY)))
1394 return -ENOMEM;
1395
1396 s = page;
1397
1398 switch (type) {
1399 case FILE_CPULIST:
1400 s += cpuset_sprintf_cpulist(s, cs);
1401 break;
1402 case FILE_MEMLIST:
1403 s += cpuset_sprintf_memlist(s, cs);
1404 break;
1405 default:
1406 retval = -EINVAL;
1407 goto out;
1408 }
1409 *s++ = '\n';
1410
1411 retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
1412 out:
1413 free_page((unsigned long)page);
1414 return retval;
1415 }
1416
1417 static u64 cpuset_read_u64(struct cgroup *cont, struct cftype *cft)
1418 {
1419 struct cpuset *cs = cgroup_cs(cont);
1420 cpuset_filetype_t type = cft->private;
1421 switch (type) {
1422 case FILE_CPU_EXCLUSIVE:
1423 return is_cpu_exclusive(cs);
1424 case FILE_MEM_EXCLUSIVE:
1425 return is_mem_exclusive(cs);
1426 case FILE_MEM_HARDWALL:
1427 return is_mem_hardwall(cs);
1428 case FILE_SCHED_LOAD_BALANCE:
1429 return is_sched_load_balance(cs);
1430 case FILE_MEMORY_MIGRATE:
1431 return is_memory_migrate(cs);
1432 case FILE_MEMORY_PRESSURE_ENABLED:
1433 return cpuset_memory_pressure_enabled;
1434 case FILE_MEMORY_PRESSURE:
1435 return fmeter_getrate(&cs->fmeter);
1436 case FILE_SPREAD_PAGE:
1437 return is_spread_page(cs);
1438 case FILE_SPREAD_SLAB:
1439 return is_spread_slab(cs);
1440 default:
1441 BUG();
1442 }
1443 }
1444
1445 static s64 cpuset_read_s64(struct cgroup *cont, struct cftype *cft)
1446 {
1447 struct cpuset *cs = cgroup_cs(cont);
1448 cpuset_filetype_t type = cft->private;
1449 switch (type) {
1450 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1451 return cs->relax_domain_level;
1452 default:
1453 BUG();
1454 }
1455 }
1456
1457
1458 /*
1459 * for the common functions, 'private' gives the type of file
1460 */
1461
1462 static struct cftype files[] = {
1463 {
1464 .name = "cpus",
1465 .read = cpuset_common_file_read,
1466 .write_string = cpuset_write_resmask,
1467 .max_write_len = (100U + 6 * NR_CPUS),
1468 .private = FILE_CPULIST,
1469 },
1470
1471 {
1472 .name = "mems",
1473 .read = cpuset_common_file_read,
1474 .write_string = cpuset_write_resmask,
1475 .max_write_len = (100U + 6 * MAX_NUMNODES),
1476 .private = FILE_MEMLIST,
1477 },
1478
1479 {
1480 .name = "cpu_exclusive",
1481 .read_u64 = cpuset_read_u64,
1482 .write_u64 = cpuset_write_u64,
1483 .private = FILE_CPU_EXCLUSIVE,
1484 },
1485
1486 {
1487 .name = "mem_exclusive",
1488 .read_u64 = cpuset_read_u64,
1489 .write_u64 = cpuset_write_u64,
1490 .private = FILE_MEM_EXCLUSIVE,
1491 },
1492
1493 {
1494 .name = "mem_hardwall",
1495 .read_u64 = cpuset_read_u64,
1496 .write_u64 = cpuset_write_u64,
1497 .private = FILE_MEM_HARDWALL,
1498 },
1499
1500 {
1501 .name = "sched_load_balance",
1502 .read_u64 = cpuset_read_u64,
1503 .write_u64 = cpuset_write_u64,
1504 .private = FILE_SCHED_LOAD_BALANCE,
1505 },
1506
1507 {
1508 .name = "sched_relax_domain_level",
1509 .read_s64 = cpuset_read_s64,
1510 .write_s64 = cpuset_write_s64,
1511 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
1512 },
1513
1514 {
1515 .name = "memory_migrate",
1516 .read_u64 = cpuset_read_u64,
1517 .write_u64 = cpuset_write_u64,
1518 .private = FILE_MEMORY_MIGRATE,
1519 },
1520
1521 {
1522 .name = "memory_pressure",
1523 .read_u64 = cpuset_read_u64,
1524 .write_u64 = cpuset_write_u64,
1525 .private = FILE_MEMORY_PRESSURE,
1526 },
1527
1528 {
1529 .name = "memory_spread_page",
1530 .read_u64 = cpuset_read_u64,
1531 .write_u64 = cpuset_write_u64,
1532 .private = FILE_SPREAD_PAGE,
1533 },
1534
1535 {
1536 .name = "memory_spread_slab",
1537 .read_u64 = cpuset_read_u64,
1538 .write_u64 = cpuset_write_u64,
1539 .private = FILE_SPREAD_SLAB,
1540 },
1541 };
1542
1543 static struct cftype cft_memory_pressure_enabled = {
1544 .name = "memory_pressure_enabled",
1545 .read_u64 = cpuset_read_u64,
1546 .write_u64 = cpuset_write_u64,
1547 .private = FILE_MEMORY_PRESSURE_ENABLED,
1548 };
1549
1550 static int cpuset_populate(struct cgroup_subsys *ss, struct cgroup *cont)
1551 {
1552 int err;
1553
1554 err = cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
1555 if (err)
1556 return err;
1557 /* memory_pressure_enabled is in root cpuset only */
1558 if (!cont->parent)
1559 err = cgroup_add_file(cont, ss,
1560 &cft_memory_pressure_enabled);
1561 return err;
1562 }
1563
1564 /*
1565 * post_clone() is called at the end of cgroup_clone().
1566 * 'cgroup' was just created automatically as a result of
1567 * a cgroup_clone(), and the current task is about to
1568 * be moved into 'cgroup'.
1569 *
1570 * Currently we refuse to set up the cgroup - thereby
1571 * refusing the task to be entered, and as a result refusing
1572 * the sys_unshare() or clone() which initiated it - if any
1573 * sibling cpusets have exclusive cpus or mem.
1574 *
1575 * If this becomes a problem for some users who wish to
1576 * allow that scenario, then cpuset_post_clone() could be
1577 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
1578 * (and likewise for mems) to the new cgroup. Called with cgroup_mutex
1579 * held.
1580 */
1581 static void cpuset_post_clone(struct cgroup_subsys *ss,
1582 struct cgroup *cgroup)
1583 {
1584 struct cgroup *parent, *child;
1585 struct cpuset *cs, *parent_cs;
1586
1587 parent = cgroup->parent;
1588 list_for_each_entry(child, &parent->children, sibling) {
1589 cs = cgroup_cs(child);
1590 if (is_mem_exclusive(cs) || is_cpu_exclusive(cs))
1591 return;
1592 }
1593 cs = cgroup_cs(cgroup);
1594 parent_cs = cgroup_cs(parent);
1595
1596 cs->mems_allowed = parent_cs->mems_allowed;
1597 cs->cpus_allowed = parent_cs->cpus_allowed;
1598 return;
1599 }
1600
1601 /*
1602 * cpuset_create - create a cpuset
1603 * ss: cpuset cgroup subsystem
1604 * cont: control group that the new cpuset will be part of
1605 */
1606
1607 static struct cgroup_subsys_state *cpuset_create(
1608 struct cgroup_subsys *ss,
1609 struct cgroup *cont)
1610 {
1611 struct cpuset *cs;
1612 struct cpuset *parent;
1613
1614 if (!cont->parent) {
1615 /* This is early initialization for the top cgroup */
1616 top_cpuset.mems_generation = cpuset_mems_generation++;
1617 return &top_cpuset.css;
1618 }
1619 parent = cgroup_cs(cont->parent);
1620 cs = kmalloc(sizeof(*cs), GFP_KERNEL);
1621 if (!cs)
1622 return ERR_PTR(-ENOMEM);
1623
1624 cpuset_update_task_memory_state();
1625 cs->flags = 0;
1626 if (is_spread_page(parent))
1627 set_bit(CS_SPREAD_PAGE, &cs->flags);
1628 if (is_spread_slab(parent))
1629 set_bit(CS_SPREAD_SLAB, &cs->flags);
1630 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1631 cpus_clear(cs->cpus_allowed);
1632 nodes_clear(cs->mems_allowed);
1633 cs->mems_generation = cpuset_mems_generation++;
1634 fmeter_init(&cs->fmeter);
1635 cs->relax_domain_level = -1;
1636
1637 cs->parent = parent;
1638 number_of_cpusets++;
1639 return &cs->css ;
1640 }
1641
1642 /*
1643 * Locking note on the strange update_flag() call below:
1644 *
1645 * If the cpuset being removed has its flag 'sched_load_balance'
1646 * enabled, then simulate turning sched_load_balance off, which
1647 * will call rebuild_sched_domains(). The get_online_cpus()
1648 * call in rebuild_sched_domains() must not be made while holding
1649 * callback_mutex. Elsewhere the kernel nests callback_mutex inside
1650 * get_online_cpus() calls. So the reverse nesting would risk an
1651 * ABBA deadlock.
1652 */
1653
1654 static void cpuset_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
1655 {
1656 struct cpuset *cs = cgroup_cs(cont);
1657
1658 cpuset_update_task_memory_state();
1659
1660 if (is_sched_load_balance(cs))
1661 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
1662
1663 number_of_cpusets--;
1664 kfree(cs);
1665 }
1666
1667 struct cgroup_subsys cpuset_subsys = {
1668 .name = "cpuset",
1669 .create = cpuset_create,
1670 .destroy = cpuset_destroy,
1671 .can_attach = cpuset_can_attach,
1672 .attach = cpuset_attach,
1673 .populate = cpuset_populate,
1674 .post_clone = cpuset_post_clone,
1675 .subsys_id = cpuset_subsys_id,
1676 .early_init = 1,
1677 };
1678
1679 /*
1680 * cpuset_init_early - just enough so that the calls to
1681 * cpuset_update_task_memory_state() in early init code
1682 * are harmless.
1683 */
1684
1685 int __init cpuset_init_early(void)
1686 {
1687 top_cpuset.mems_generation = cpuset_mems_generation++;
1688 return 0;
1689 }
1690
1691
1692 /**
1693 * cpuset_init - initialize cpusets at system boot
1694 *
1695 * Description: Initialize top_cpuset and the cpuset internal file system,
1696 **/
1697
1698 int __init cpuset_init(void)
1699 {
1700 int err = 0;
1701
1702 cpus_setall(top_cpuset.cpus_allowed);
1703 nodes_setall(top_cpuset.mems_allowed);
1704
1705 fmeter_init(&top_cpuset.fmeter);
1706 top_cpuset.mems_generation = cpuset_mems_generation++;
1707 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
1708 top_cpuset.relax_domain_level = -1;
1709
1710 err = register_filesystem(&cpuset_fs_type);
1711 if (err < 0)
1712 return err;
1713
1714 number_of_cpusets = 1;
1715 return 0;
1716 }
1717
1718 /**
1719 * cpuset_do_move_task - move a given task to another cpuset
1720 * @tsk: pointer to task_struct the task to move
1721 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
1722 *
1723 * Called by cgroup_scan_tasks() for each task in a cgroup.
1724 * Return nonzero to stop the walk through the tasks.
1725 */
1726 static void cpuset_do_move_task(struct task_struct *tsk,
1727 struct cgroup_scanner *scan)
1728 {
1729 struct cpuset_hotplug_scanner *chsp;
1730
1731 chsp = container_of(scan, struct cpuset_hotplug_scanner, scan);
1732 cgroup_attach_task(chsp->to, tsk);
1733 }
1734
1735 /**
1736 * move_member_tasks_to_cpuset - move tasks from one cpuset to another
1737 * @from: cpuset in which the tasks currently reside
1738 * @to: cpuset to which the tasks will be moved
1739 *
1740 * Called with cgroup_mutex held
1741 * callback_mutex must not be held, as cpuset_attach() will take it.
1742 *
1743 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
1744 * calling callback functions for each.
1745 */
1746 static void move_member_tasks_to_cpuset(struct cpuset *from, struct cpuset *to)
1747 {
1748 struct cpuset_hotplug_scanner scan;
1749
1750 scan.scan.cg = from->css.cgroup;
1751 scan.scan.test_task = NULL; /* select all tasks in cgroup */
1752 scan.scan.process_task = cpuset_do_move_task;
1753 scan.scan.heap = NULL;
1754 scan.to = to->css.cgroup;
1755
1756 if (cgroup_scan_tasks((struct cgroup_scanner *)&scan))
1757 printk(KERN_ERR "move_member_tasks_to_cpuset: "
1758 "cgroup_scan_tasks failed\n");
1759 }
1760
1761 /*
1762 * If common_cpu_mem_hotplug_unplug(), below, unplugs any CPUs
1763 * or memory nodes, we need to walk over the cpuset hierarchy,
1764 * removing that CPU or node from all cpusets. If this removes the
1765 * last CPU or node from a cpuset, then move the tasks in the empty
1766 * cpuset to its next-highest non-empty parent.
1767 *
1768 * Called with cgroup_mutex held
1769 * callback_mutex must not be held, as cpuset_attach() will take it.
1770 */
1771 static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
1772 {
1773 struct cpuset *parent;
1774
1775 /*
1776 * The cgroup's css_sets list is in use if there are tasks
1777 * in the cpuset; the list is empty if there are none;
1778 * the cs->css.refcnt seems always 0.
1779 */
1780 if (list_empty(&cs->css.cgroup->css_sets))
1781 return;
1782
1783 /*
1784 * Find its next-highest non-empty parent, (top cpuset
1785 * has online cpus, so can't be empty).
1786 */
1787 parent = cs->parent;
1788 while (cpus_empty(parent->cpus_allowed) ||
1789 nodes_empty(parent->mems_allowed))
1790 parent = parent->parent;
1791
1792 move_member_tasks_to_cpuset(cs, parent);
1793 }
1794
1795 /*
1796 * Walk the specified cpuset subtree and look for empty cpusets.
1797 * The tasks of such cpuset must be moved to a parent cpuset.
1798 *
1799 * Called with cgroup_mutex held. We take callback_mutex to modify
1800 * cpus_allowed and mems_allowed.
1801 *
1802 * This walk processes the tree from top to bottom, completing one layer
1803 * before dropping down to the next. It always processes a node before
1804 * any of its children.
1805 *
1806 * For now, since we lack memory hot unplug, we'll never see a cpuset
1807 * that has tasks along with an empty 'mems'. But if we did see such
1808 * a cpuset, we'd handle it just like we do if its 'cpus' was empty.
1809 */
1810 static void scan_for_empty_cpusets(const struct cpuset *root)
1811 {
1812 struct cpuset *cp; /* scans cpusets being updated */
1813 struct cpuset *child; /* scans child cpusets of cp */
1814 struct list_head queue;
1815 struct cgroup *cont;
1816
1817 INIT_LIST_HEAD(&queue);
1818
1819 list_add_tail((struct list_head *)&root->stack_list, &queue);
1820
1821 while (!list_empty(&queue)) {
1822 cp = container_of(queue.next, struct cpuset, stack_list);
1823 list_del(queue.next);
1824 list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
1825 child = cgroup_cs(cont);
1826 list_add_tail(&child->stack_list, &queue);
1827 }
1828 cont = cp->css.cgroup;
1829
1830 /* Continue past cpusets with all cpus, mems online */
1831 if (cpus_subset(cp->cpus_allowed, cpu_online_map) &&
1832 nodes_subset(cp->mems_allowed, node_states[N_HIGH_MEMORY]))
1833 continue;
1834
1835 /* Remove offline cpus and mems from this cpuset. */
1836 mutex_lock(&callback_mutex);
1837 cpus_and(cp->cpus_allowed, cp->cpus_allowed, cpu_online_map);
1838 nodes_and(cp->mems_allowed, cp->mems_allowed,
1839 node_states[N_HIGH_MEMORY]);
1840 mutex_unlock(&callback_mutex);
1841
1842 /* Move tasks from the empty cpuset to a parent */
1843 if (cpus_empty(cp->cpus_allowed) ||
1844 nodes_empty(cp->mems_allowed))
1845 remove_tasks_in_empty_cpuset(cp);
1846 }
1847 }
1848
1849 /*
1850 * The cpus_allowed and mems_allowed nodemasks in the top_cpuset track
1851 * cpu_online_map and node_states[N_HIGH_MEMORY]. Force the top cpuset to
1852 * track what's online after any CPU or memory node hotplug or unplug event.
1853 *
1854 * Since there are two callers of this routine, one for CPU hotplug
1855 * events and one for memory node hotplug events, we could have coded
1856 * two separate routines here. We code it as a single common routine
1857 * in order to minimize text size.
1858 */
1859
1860 static void common_cpu_mem_hotplug_unplug(int rebuild_sd)
1861 {
1862 cgroup_lock();
1863
1864 top_cpuset.cpus_allowed = cpu_online_map;
1865 top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
1866 scan_for_empty_cpusets(&top_cpuset);
1867
1868 /*
1869 * Scheduler destroys domains on hotplug events.
1870 * Rebuild them based on the current settings.
1871 */
1872 if (rebuild_sd)
1873 rebuild_sched_domains();
1874
1875 cgroup_unlock();
1876 }
1877
1878 /*
1879 * The top_cpuset tracks what CPUs and Memory Nodes are online,
1880 * period. This is necessary in order to make cpusets transparent
1881 * (of no affect) on systems that are actively using CPU hotplug
1882 * but making no active use of cpusets.
1883 *
1884 * This routine ensures that top_cpuset.cpus_allowed tracks
1885 * cpu_online_map on each CPU hotplug (cpuhp) event.
1886 */
1887
1888 static int cpuset_handle_cpuhp(struct notifier_block *unused_nb,
1889 unsigned long phase, void *unused_cpu)
1890 {
1891 switch (phase) {
1892 case CPU_UP_CANCELED:
1893 case CPU_UP_CANCELED_FROZEN:
1894 case CPU_DOWN_FAILED:
1895 case CPU_DOWN_FAILED_FROZEN:
1896 case CPU_ONLINE:
1897 case CPU_ONLINE_FROZEN:
1898 case CPU_DEAD:
1899 case CPU_DEAD_FROZEN:
1900 common_cpu_mem_hotplug_unplug(1);
1901 break;
1902 default:
1903 return NOTIFY_DONE;
1904 }
1905
1906 return NOTIFY_OK;
1907 }
1908
1909 #ifdef CONFIG_MEMORY_HOTPLUG
1910 /*
1911 * Keep top_cpuset.mems_allowed tracking node_states[N_HIGH_MEMORY].
1912 * Call this routine anytime after you change
1913 * node_states[N_HIGH_MEMORY].
1914 * See also the previous routine cpuset_handle_cpuhp().
1915 */
1916
1917 void cpuset_track_online_nodes(void)
1918 {
1919 common_cpu_mem_hotplug_unplug(0);
1920 }
1921 #endif
1922
1923 /**
1924 * cpuset_init_smp - initialize cpus_allowed
1925 *
1926 * Description: Finish top cpuset after cpu, node maps are initialized
1927 **/
1928
1929 void __init cpuset_init_smp(void)
1930 {
1931 top_cpuset.cpus_allowed = cpu_online_map;
1932 top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
1933
1934 hotcpu_notifier(cpuset_handle_cpuhp, 0);
1935 }
1936
1937 /**
1938
1939 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
1940 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
1941 * @pmask: pointer to cpumask_t variable to receive cpus_allowed set.
1942 *
1943 * Description: Returns the cpumask_t cpus_allowed of the cpuset
1944 * attached to the specified @tsk. Guaranteed to return some non-empty
1945 * subset of cpu_online_map, even if this means going outside the
1946 * tasks cpuset.
1947 **/
1948
1949 void cpuset_cpus_allowed(struct task_struct *tsk, cpumask_t *pmask)
1950 {
1951 mutex_lock(&callback_mutex);
1952 cpuset_cpus_allowed_locked(tsk, pmask);
1953 mutex_unlock(&callback_mutex);
1954 }
1955
1956 /**
1957 * cpuset_cpus_allowed_locked - return cpus_allowed mask from a tasks cpuset.
1958 * Must be called with callback_mutex held.
1959 **/
1960 void cpuset_cpus_allowed_locked(struct task_struct *tsk, cpumask_t *pmask)
1961 {
1962 task_lock(tsk);
1963 guarantee_online_cpus(task_cs(tsk), pmask);
1964 task_unlock(tsk);
1965 }
1966
1967 void cpuset_init_current_mems_allowed(void)
1968 {
1969 nodes_setall(current->mems_allowed);
1970 }
1971
1972 /**
1973 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
1974 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
1975 *
1976 * Description: Returns the nodemask_t mems_allowed of the cpuset
1977 * attached to the specified @tsk. Guaranteed to return some non-empty
1978 * subset of node_states[N_HIGH_MEMORY], even if this means going outside the
1979 * tasks cpuset.
1980 **/
1981
1982 nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
1983 {
1984 nodemask_t mask;
1985
1986 mutex_lock(&callback_mutex);
1987 task_lock(tsk);
1988 guarantee_online_mems(task_cs(tsk), &mask);
1989 task_unlock(tsk);
1990 mutex_unlock(&callback_mutex);
1991
1992 return mask;
1993 }
1994
1995 /**
1996 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
1997 * @nodemask: the nodemask to be checked
1998 *
1999 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
2000 */
2001 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
2002 {
2003 return nodes_intersects(*nodemask, current->mems_allowed);
2004 }
2005
2006 /*
2007 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2008 * mem_hardwall ancestor to the specified cpuset. Call holding
2009 * callback_mutex. If no ancestor is mem_exclusive or mem_hardwall
2010 * (an unusual configuration), then returns the root cpuset.
2011 */
2012 static const struct cpuset *nearest_hardwall_ancestor(const struct cpuset *cs)
2013 {
2014 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && cs->parent)
2015 cs = cs->parent;
2016 return cs;
2017 }
2018
2019 /**
2020 * cpuset_zone_allowed_softwall - Can we allocate on zone z's memory node?
2021 * @z: is this zone on an allowed node?
2022 * @gfp_mask: memory allocation flags
2023 *
2024 * If we're in interrupt, yes, we can always allocate. If
2025 * __GFP_THISNODE is set, yes, we can always allocate. If zone
2026 * z's node is in our tasks mems_allowed, yes. If it's not a
2027 * __GFP_HARDWALL request and this zone's nodes is in the nearest
2028 * hardwalled cpuset ancestor to this tasks cpuset, yes.
2029 * If the task has been OOM killed and has access to memory reserves
2030 * as specified by the TIF_MEMDIE flag, yes.
2031 * Otherwise, no.
2032 *
2033 * If __GFP_HARDWALL is set, cpuset_zone_allowed_softwall()
2034 * reduces to cpuset_zone_allowed_hardwall(). Otherwise,
2035 * cpuset_zone_allowed_softwall() might sleep, and might allow a zone
2036 * from an enclosing cpuset.
2037 *
2038 * cpuset_zone_allowed_hardwall() only handles the simpler case of
2039 * hardwall cpusets, and never sleeps.
2040 *
2041 * The __GFP_THISNODE placement logic is really handled elsewhere,
2042 * by forcibly using a zonelist starting at a specified node, and by
2043 * (in get_page_from_freelist()) refusing to consider the zones for
2044 * any node on the zonelist except the first. By the time any such
2045 * calls get to this routine, we should just shut up and say 'yes'.
2046 *
2047 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
2048 * and do not allow allocations outside the current tasks cpuset
2049 * unless the task has been OOM killed as is marked TIF_MEMDIE.
2050 * GFP_KERNEL allocations are not so marked, so can escape to the
2051 * nearest enclosing hardwalled ancestor cpuset.
2052 *
2053 * Scanning up parent cpusets requires callback_mutex. The
2054 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2055 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2056 * current tasks mems_allowed came up empty on the first pass over
2057 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
2058 * cpuset are short of memory, might require taking the callback_mutex
2059 * mutex.
2060 *
2061 * The first call here from mm/page_alloc:get_page_from_freelist()
2062 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2063 * so no allocation on a node outside the cpuset is allowed (unless
2064 * in interrupt, of course).
2065 *
2066 * The second pass through get_page_from_freelist() doesn't even call
2067 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
2068 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2069 * in alloc_flags. That logic and the checks below have the combined
2070 * affect that:
2071 * in_interrupt - any node ok (current task context irrelevant)
2072 * GFP_ATOMIC - any node ok
2073 * TIF_MEMDIE - any node ok
2074 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
2075 * GFP_USER - only nodes in current tasks mems allowed ok.
2076 *
2077 * Rule:
2078 * Don't call cpuset_zone_allowed_softwall if you can't sleep, unless you
2079 * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
2080 * the code that might scan up ancestor cpusets and sleep.
2081 */
2082
2083 int __cpuset_zone_allowed_softwall(struct zone *z, gfp_t gfp_mask)
2084 {
2085 int node; /* node that zone z is on */
2086 const struct cpuset *cs; /* current cpuset ancestors */
2087 int allowed; /* is allocation in zone z allowed? */
2088
2089 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2090 return 1;
2091 node = zone_to_nid(z);
2092 might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
2093 if (node_isset(node, current->mems_allowed))
2094 return 1;
2095 /*
2096 * Allow tasks that have access to memory reserves because they have
2097 * been OOM killed to get memory anywhere.
2098 */
2099 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2100 return 1;
2101 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
2102 return 0;
2103
2104 if (current->flags & PF_EXITING) /* Let dying task have memory */
2105 return 1;
2106
2107 /* Not hardwall and node outside mems_allowed: scan up cpusets */
2108 mutex_lock(&callback_mutex);
2109
2110 task_lock(current);
2111 cs = nearest_hardwall_ancestor(task_cs(current));
2112 task_unlock(current);
2113
2114 allowed = node_isset(node, cs->mems_allowed);
2115 mutex_unlock(&callback_mutex);
2116 return allowed;
2117 }
2118
2119 /*
2120 * cpuset_zone_allowed_hardwall - Can we allocate on zone z's memory node?
2121 * @z: is this zone on an allowed node?
2122 * @gfp_mask: memory allocation flags
2123 *
2124 * If we're in interrupt, yes, we can always allocate.
2125 * If __GFP_THISNODE is set, yes, we can always allocate. If zone
2126 * z's node is in our tasks mems_allowed, yes. If the task has been
2127 * OOM killed and has access to memory reserves as specified by the
2128 * TIF_MEMDIE flag, yes. Otherwise, no.
2129 *
2130 * The __GFP_THISNODE placement logic is really handled elsewhere,
2131 * by forcibly using a zonelist starting at a specified node, and by
2132 * (in get_page_from_freelist()) refusing to consider the zones for
2133 * any node on the zonelist except the first. By the time any such
2134 * calls get to this routine, we should just shut up and say 'yes'.
2135 *
2136 * Unlike the cpuset_zone_allowed_softwall() variant, above,
2137 * this variant requires that the zone be in the current tasks
2138 * mems_allowed or that we're in interrupt. It does not scan up the
2139 * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
2140 * It never sleeps.
2141 */
2142
2143 int __cpuset_zone_allowed_hardwall(struct zone *z, gfp_t gfp_mask)
2144 {
2145 int node; /* node that zone z is on */
2146
2147 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2148 return 1;
2149 node = zone_to_nid(z);
2150 if (node_isset(node, current->mems_allowed))
2151 return 1;
2152 /*
2153 * Allow tasks that have access to memory reserves because they have
2154 * been OOM killed to get memory anywhere.
2155 */
2156 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2157 return 1;
2158 return 0;
2159 }
2160
2161 /**
2162 * cpuset_lock - lock out any changes to cpuset structures
2163 *
2164 * The out of memory (oom) code needs to mutex_lock cpusets
2165 * from being changed while it scans the tasklist looking for a
2166 * task in an overlapping cpuset. Expose callback_mutex via this
2167 * cpuset_lock() routine, so the oom code can lock it, before
2168 * locking the task list. The tasklist_lock is a spinlock, so
2169 * must be taken inside callback_mutex.
2170 */
2171
2172 void cpuset_lock(void)
2173 {
2174 mutex_lock(&callback_mutex);
2175 }
2176
2177 /**
2178 * cpuset_unlock - release lock on cpuset changes
2179 *
2180 * Undo the lock taken in a previous cpuset_lock() call.
2181 */
2182
2183 void cpuset_unlock(void)
2184 {
2185 mutex_unlock(&callback_mutex);
2186 }
2187
2188 /**
2189 * cpuset_mem_spread_node() - On which node to begin search for a page
2190 *
2191 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2192 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2193 * and if the memory allocation used cpuset_mem_spread_node()
2194 * to determine on which node to start looking, as it will for
2195 * certain page cache or slab cache pages such as used for file
2196 * system buffers and inode caches, then instead of starting on the
2197 * local node to look for a free page, rather spread the starting
2198 * node around the tasks mems_allowed nodes.
2199 *
2200 * We don't have to worry about the returned node being offline
2201 * because "it can't happen", and even if it did, it would be ok.
2202 *
2203 * The routines calling guarantee_online_mems() are careful to
2204 * only set nodes in task->mems_allowed that are online. So it
2205 * should not be possible for the following code to return an
2206 * offline node. But if it did, that would be ok, as this routine
2207 * is not returning the node where the allocation must be, only
2208 * the node where the search should start. The zonelist passed to
2209 * __alloc_pages() will include all nodes. If the slab allocator
2210 * is passed an offline node, it will fall back to the local node.
2211 * See kmem_cache_alloc_node().
2212 */
2213
2214 int cpuset_mem_spread_node(void)
2215 {
2216 int node;
2217
2218 node = next_node(current->cpuset_mem_spread_rotor, current->mems_allowed);
2219 if (node == MAX_NUMNODES)
2220 node = first_node(current->mems_allowed);
2221 current->cpuset_mem_spread_rotor = node;
2222 return node;
2223 }
2224 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
2225
2226 /**
2227 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2228 * @tsk1: pointer to task_struct of some task.
2229 * @tsk2: pointer to task_struct of some other task.
2230 *
2231 * Description: Return true if @tsk1's mems_allowed intersects the
2232 * mems_allowed of @tsk2. Used by the OOM killer to determine if
2233 * one of the task's memory usage might impact the memory available
2234 * to the other.
2235 **/
2236
2237 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
2238 const struct task_struct *tsk2)
2239 {
2240 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
2241 }
2242
2243 /*
2244 * Collection of memory_pressure is suppressed unless
2245 * this flag is enabled by writing "1" to the special
2246 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2247 */
2248
2249 int cpuset_memory_pressure_enabled __read_mostly;
2250
2251 /**
2252 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2253 *
2254 * Keep a running average of the rate of synchronous (direct)
2255 * page reclaim efforts initiated by tasks in each cpuset.
2256 *
2257 * This represents the rate at which some task in the cpuset
2258 * ran low on memory on all nodes it was allowed to use, and
2259 * had to enter the kernels page reclaim code in an effort to
2260 * create more free memory by tossing clean pages or swapping
2261 * or writing dirty pages.
2262 *
2263 * Display to user space in the per-cpuset read-only file
2264 * "memory_pressure". Value displayed is an integer
2265 * representing the recent rate of entry into the synchronous
2266 * (direct) page reclaim by any task attached to the cpuset.
2267 **/
2268
2269 void __cpuset_memory_pressure_bump(void)
2270 {
2271 task_lock(current);
2272 fmeter_markevent(&task_cs(current)->fmeter);
2273 task_unlock(current);
2274 }
2275
2276 #ifdef CONFIG_PROC_PID_CPUSET
2277 /*
2278 * proc_cpuset_show()
2279 * - Print tasks cpuset path into seq_file.
2280 * - Used for /proc/<pid>/cpuset.
2281 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2282 * doesn't really matter if tsk->cpuset changes after we read it,
2283 * and we take cgroup_mutex, keeping cpuset_attach() from changing it
2284 * anyway.
2285 */
2286 static int proc_cpuset_show(struct seq_file *m, void *unused_v)
2287 {
2288 struct pid *pid;
2289 struct task_struct *tsk;
2290 char *buf;
2291 struct cgroup_subsys_state *css;
2292 int retval;
2293
2294 retval = -ENOMEM;
2295 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2296 if (!buf)
2297 goto out;
2298
2299 retval = -ESRCH;
2300 pid = m->private;
2301 tsk = get_pid_task(pid, PIDTYPE_PID);
2302 if (!tsk)
2303 goto out_free;
2304
2305 retval = -EINVAL;
2306 cgroup_lock();
2307 css = task_subsys_state(tsk, cpuset_subsys_id);
2308 retval = cgroup_path(css->cgroup, buf, PAGE_SIZE);
2309 if (retval < 0)
2310 goto out_unlock;
2311 seq_puts(m, buf);
2312 seq_putc(m, '\n');
2313 out_unlock:
2314 cgroup_unlock();
2315 put_task_struct(tsk);
2316 out_free:
2317 kfree(buf);
2318 out:
2319 return retval;
2320 }
2321
2322 static int cpuset_open(struct inode *inode, struct file *file)
2323 {
2324 struct pid *pid = PROC_I(inode)->pid;
2325 return single_open(file, proc_cpuset_show, pid);
2326 }
2327
2328 const struct file_operations proc_cpuset_operations = {
2329 .open = cpuset_open,
2330 .read = seq_read,
2331 .llseek = seq_lseek,
2332 .release = single_release,
2333 };
2334 #endif /* CONFIG_PROC_PID_CPUSET */
2335
2336 /* Display task cpus_allowed, mems_allowed in /proc/<pid>/status file. */
2337 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
2338 {
2339 seq_printf(m, "Cpus_allowed:\t");
2340 m->count += cpumask_scnprintf(m->buf + m->count, m->size - m->count,
2341 task->cpus_allowed);
2342 seq_printf(m, "\n");
2343 seq_printf(m, "Cpus_allowed_list:\t");
2344 m->count += cpulist_scnprintf(m->buf + m->count, m->size - m->count,
2345 task->cpus_allowed);
2346 seq_printf(m, "\n");
2347 seq_printf(m, "Mems_allowed:\t");
2348 m->count += nodemask_scnprintf(m->buf + m->count, m->size - m->count,
2349 task->mems_allowed);
2350 seq_printf(m, "\n");
2351 seq_printf(m, "Mems_allowed_list:\t");
2352 m->count += nodelist_scnprintf(m->buf + m->count, m->size - m->count,
2353 task->mems_allowed);
2354 seq_printf(m, "\n");
2355 }
This page took 0.077521 seconds and 6 git commands to generate.