Merge branch 'fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/jesse/openvswitch
[deliverable/linux.git] / kernel / debug / kdb / kdb_main.c
1 /*
2 * Kernel Debugger Architecture Independent Main Code
3 *
4 * This file is subject to the terms and conditions of the GNU General Public
5 * License. See the file "COPYING" in the main directory of this archive
6 * for more details.
7 *
8 * Copyright (C) 1999-2004 Silicon Graphics, Inc. All Rights Reserved.
9 * Copyright (C) 2000 Stephane Eranian <eranian@hpl.hp.com>
10 * Xscale (R) modifications copyright (C) 2003 Intel Corporation.
11 * Copyright (c) 2009 Wind River Systems, Inc. All Rights Reserved.
12 */
13
14 #include <linux/ctype.h>
15 #include <linux/string.h>
16 #include <linux/kernel.h>
17 #include <linux/kmsg_dump.h>
18 #include <linux/reboot.h>
19 #include <linux/sched.h>
20 #include <linux/sysrq.h>
21 #include <linux/smp.h>
22 #include <linux/utsname.h>
23 #include <linux/vmalloc.h>
24 #include <linux/module.h>
25 #include <linux/mm.h>
26 #include <linux/init.h>
27 #include <linux/kallsyms.h>
28 #include <linux/kgdb.h>
29 #include <linux/kdb.h>
30 #include <linux/notifier.h>
31 #include <linux/interrupt.h>
32 #include <linux/delay.h>
33 #include <linux/nmi.h>
34 #include <linux/time.h>
35 #include <linux/ptrace.h>
36 #include <linux/sysctl.h>
37 #include <linux/cpu.h>
38 #include <linux/kdebug.h>
39 #include <linux/proc_fs.h>
40 #include <linux/uaccess.h>
41 #include <linux/slab.h>
42 #include "kdb_private.h"
43
44 #define GREP_LEN 256
45 char kdb_grep_string[GREP_LEN];
46 int kdb_grepping_flag;
47 EXPORT_SYMBOL(kdb_grepping_flag);
48 int kdb_grep_leading;
49 int kdb_grep_trailing;
50
51 /*
52 * Kernel debugger state flags
53 */
54 int kdb_flags;
55 atomic_t kdb_event;
56
57 /*
58 * kdb_lock protects updates to kdb_initial_cpu. Used to
59 * single thread processors through the kernel debugger.
60 */
61 int kdb_initial_cpu = -1; /* cpu number that owns kdb */
62 int kdb_nextline = 1;
63 int kdb_state; /* General KDB state */
64
65 struct task_struct *kdb_current_task;
66 EXPORT_SYMBOL(kdb_current_task);
67 struct pt_regs *kdb_current_regs;
68
69 const char *kdb_diemsg;
70 static int kdb_go_count;
71 #ifdef CONFIG_KDB_CONTINUE_CATASTROPHIC
72 static unsigned int kdb_continue_catastrophic =
73 CONFIG_KDB_CONTINUE_CATASTROPHIC;
74 #else
75 static unsigned int kdb_continue_catastrophic;
76 #endif
77
78 /* kdb_commands describes the available commands. */
79 static kdbtab_t *kdb_commands;
80 #define KDB_BASE_CMD_MAX 50
81 static int kdb_max_commands = KDB_BASE_CMD_MAX;
82 static kdbtab_t kdb_base_commands[KDB_BASE_CMD_MAX];
83 #define for_each_kdbcmd(cmd, num) \
84 for ((cmd) = kdb_base_commands, (num) = 0; \
85 num < kdb_max_commands; \
86 num++, num == KDB_BASE_CMD_MAX ? cmd = kdb_commands : cmd++)
87
88 typedef struct _kdbmsg {
89 int km_diag; /* kdb diagnostic */
90 char *km_msg; /* Corresponding message text */
91 } kdbmsg_t;
92
93 #define KDBMSG(msgnum, text) \
94 { KDB_##msgnum, text }
95
96 static kdbmsg_t kdbmsgs[] = {
97 KDBMSG(NOTFOUND, "Command Not Found"),
98 KDBMSG(ARGCOUNT, "Improper argument count, see usage."),
99 KDBMSG(BADWIDTH, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, "
100 "8 is only allowed on 64 bit systems"),
101 KDBMSG(BADRADIX, "Illegal value for RADIX use 8, 10 or 16"),
102 KDBMSG(NOTENV, "Cannot find environment variable"),
103 KDBMSG(NOENVVALUE, "Environment variable should have value"),
104 KDBMSG(NOTIMP, "Command not implemented"),
105 KDBMSG(ENVFULL, "Environment full"),
106 KDBMSG(ENVBUFFULL, "Environment buffer full"),
107 KDBMSG(TOOMANYBPT, "Too many breakpoints defined"),
108 #ifdef CONFIG_CPU_XSCALE
109 KDBMSG(TOOMANYDBREGS, "More breakpoints than ibcr registers defined"),
110 #else
111 KDBMSG(TOOMANYDBREGS, "More breakpoints than db registers defined"),
112 #endif
113 KDBMSG(DUPBPT, "Duplicate breakpoint address"),
114 KDBMSG(BPTNOTFOUND, "Breakpoint not found"),
115 KDBMSG(BADMODE, "Invalid IDMODE"),
116 KDBMSG(BADINT, "Illegal numeric value"),
117 KDBMSG(INVADDRFMT, "Invalid symbolic address format"),
118 KDBMSG(BADREG, "Invalid register name"),
119 KDBMSG(BADCPUNUM, "Invalid cpu number"),
120 KDBMSG(BADLENGTH, "Invalid length field"),
121 KDBMSG(NOBP, "No Breakpoint exists"),
122 KDBMSG(BADADDR, "Invalid address"),
123 };
124 #undef KDBMSG
125
126 static const int __nkdb_err = sizeof(kdbmsgs) / sizeof(kdbmsg_t);
127
128
129 /*
130 * Initial environment. This is all kept static and local to
131 * this file. We don't want to rely on the memory allocation
132 * mechanisms in the kernel, so we use a very limited allocate-only
133 * heap for new and altered environment variables. The entire
134 * environment is limited to a fixed number of entries (add more
135 * to __env[] if required) and a fixed amount of heap (add more to
136 * KDB_ENVBUFSIZE if required).
137 */
138
139 static char *__env[] = {
140 #if defined(CONFIG_SMP)
141 "PROMPT=[%d]kdb> ",
142 #else
143 "PROMPT=kdb> ",
144 #endif
145 "MOREPROMPT=more> ",
146 "RADIX=16",
147 "MDCOUNT=8", /* lines of md output */
148 KDB_PLATFORM_ENV,
149 "DTABCOUNT=30",
150 "NOSECT=1",
151 (char *)0,
152 (char *)0,
153 (char *)0,
154 (char *)0,
155 (char *)0,
156 (char *)0,
157 (char *)0,
158 (char *)0,
159 (char *)0,
160 (char *)0,
161 (char *)0,
162 (char *)0,
163 (char *)0,
164 (char *)0,
165 (char *)0,
166 (char *)0,
167 (char *)0,
168 (char *)0,
169 (char *)0,
170 (char *)0,
171 (char *)0,
172 (char *)0,
173 (char *)0,
174 (char *)0,
175 };
176
177 static const int __nenv = (sizeof(__env) / sizeof(char *));
178
179 struct task_struct *kdb_curr_task(int cpu)
180 {
181 struct task_struct *p = curr_task(cpu);
182 #ifdef _TIF_MCA_INIT
183 if ((task_thread_info(p)->flags & _TIF_MCA_INIT) && KDB_TSK(cpu))
184 p = krp->p;
185 #endif
186 return p;
187 }
188
189 /*
190 * kdbgetenv - This function will return the character string value of
191 * an environment variable.
192 * Parameters:
193 * match A character string representing an environment variable.
194 * Returns:
195 * NULL No environment variable matches 'match'
196 * char* Pointer to string value of environment variable.
197 */
198 char *kdbgetenv(const char *match)
199 {
200 char **ep = __env;
201 int matchlen = strlen(match);
202 int i;
203
204 for (i = 0; i < __nenv; i++) {
205 char *e = *ep++;
206
207 if (!e)
208 continue;
209
210 if ((strncmp(match, e, matchlen) == 0)
211 && ((e[matchlen] == '\0')
212 || (e[matchlen] == '='))) {
213 char *cp = strchr(e, '=');
214 return cp ? ++cp : "";
215 }
216 }
217 return NULL;
218 }
219
220 /*
221 * kdballocenv - This function is used to allocate bytes for
222 * environment entries.
223 * Parameters:
224 * match A character string representing a numeric value
225 * Outputs:
226 * *value the unsigned long representation of the env variable 'match'
227 * Returns:
228 * Zero on success, a kdb diagnostic on failure.
229 * Remarks:
230 * We use a static environment buffer (envbuffer) to hold the values
231 * of dynamically generated environment variables (see kdb_set). Buffer
232 * space once allocated is never free'd, so over time, the amount of space
233 * (currently 512 bytes) will be exhausted if env variables are changed
234 * frequently.
235 */
236 static char *kdballocenv(size_t bytes)
237 {
238 #define KDB_ENVBUFSIZE 512
239 static char envbuffer[KDB_ENVBUFSIZE];
240 static int envbufsize;
241 char *ep = NULL;
242
243 if ((KDB_ENVBUFSIZE - envbufsize) >= bytes) {
244 ep = &envbuffer[envbufsize];
245 envbufsize += bytes;
246 }
247 return ep;
248 }
249
250 /*
251 * kdbgetulenv - This function will return the value of an unsigned
252 * long-valued environment variable.
253 * Parameters:
254 * match A character string representing a numeric value
255 * Outputs:
256 * *value the unsigned long represntation of the env variable 'match'
257 * Returns:
258 * Zero on success, a kdb diagnostic on failure.
259 */
260 static int kdbgetulenv(const char *match, unsigned long *value)
261 {
262 char *ep;
263
264 ep = kdbgetenv(match);
265 if (!ep)
266 return KDB_NOTENV;
267 if (strlen(ep) == 0)
268 return KDB_NOENVVALUE;
269
270 *value = simple_strtoul(ep, NULL, 0);
271
272 return 0;
273 }
274
275 /*
276 * kdbgetintenv - This function will return the value of an
277 * integer-valued environment variable.
278 * Parameters:
279 * match A character string representing an integer-valued env variable
280 * Outputs:
281 * *value the integer representation of the environment variable 'match'
282 * Returns:
283 * Zero on success, a kdb diagnostic on failure.
284 */
285 int kdbgetintenv(const char *match, int *value)
286 {
287 unsigned long val;
288 int diag;
289
290 diag = kdbgetulenv(match, &val);
291 if (!diag)
292 *value = (int) val;
293 return diag;
294 }
295
296 /*
297 * kdbgetularg - This function will convert a numeric string into an
298 * unsigned long value.
299 * Parameters:
300 * arg A character string representing a numeric value
301 * Outputs:
302 * *value the unsigned long represntation of arg.
303 * Returns:
304 * Zero on success, a kdb diagnostic on failure.
305 */
306 int kdbgetularg(const char *arg, unsigned long *value)
307 {
308 char *endp;
309 unsigned long val;
310
311 val = simple_strtoul(arg, &endp, 0);
312
313 if (endp == arg) {
314 /*
315 * Also try base 16, for us folks too lazy to type the
316 * leading 0x...
317 */
318 val = simple_strtoul(arg, &endp, 16);
319 if (endp == arg)
320 return KDB_BADINT;
321 }
322
323 *value = val;
324
325 return 0;
326 }
327
328 int kdbgetu64arg(const char *arg, u64 *value)
329 {
330 char *endp;
331 u64 val;
332
333 val = simple_strtoull(arg, &endp, 0);
334
335 if (endp == arg) {
336
337 val = simple_strtoull(arg, &endp, 16);
338 if (endp == arg)
339 return KDB_BADINT;
340 }
341
342 *value = val;
343
344 return 0;
345 }
346
347 /*
348 * kdb_set - This function implements the 'set' command. Alter an
349 * existing environment variable or create a new one.
350 */
351 int kdb_set(int argc, const char **argv)
352 {
353 int i;
354 char *ep;
355 size_t varlen, vallen;
356
357 /*
358 * we can be invoked two ways:
359 * set var=value argv[1]="var", argv[2]="value"
360 * set var = value argv[1]="var", argv[2]="=", argv[3]="value"
361 * - if the latter, shift 'em down.
362 */
363 if (argc == 3) {
364 argv[2] = argv[3];
365 argc--;
366 }
367
368 if (argc != 2)
369 return KDB_ARGCOUNT;
370
371 /*
372 * Check for internal variables
373 */
374 if (strcmp(argv[1], "KDBDEBUG") == 0) {
375 unsigned int debugflags;
376 char *cp;
377
378 debugflags = simple_strtoul(argv[2], &cp, 0);
379 if (cp == argv[2] || debugflags & ~KDB_DEBUG_FLAG_MASK) {
380 kdb_printf("kdb: illegal debug flags '%s'\n",
381 argv[2]);
382 return 0;
383 }
384 kdb_flags = (kdb_flags &
385 ~(KDB_DEBUG_FLAG_MASK << KDB_DEBUG_FLAG_SHIFT))
386 | (debugflags << KDB_DEBUG_FLAG_SHIFT);
387
388 return 0;
389 }
390
391 /*
392 * Tokenizer squashed the '=' sign. argv[1] is variable
393 * name, argv[2] = value.
394 */
395 varlen = strlen(argv[1]);
396 vallen = strlen(argv[2]);
397 ep = kdballocenv(varlen + vallen + 2);
398 if (ep == (char *)0)
399 return KDB_ENVBUFFULL;
400
401 sprintf(ep, "%s=%s", argv[1], argv[2]);
402
403 ep[varlen+vallen+1] = '\0';
404
405 for (i = 0; i < __nenv; i++) {
406 if (__env[i]
407 && ((strncmp(__env[i], argv[1], varlen) == 0)
408 && ((__env[i][varlen] == '\0')
409 || (__env[i][varlen] == '=')))) {
410 __env[i] = ep;
411 return 0;
412 }
413 }
414
415 /*
416 * Wasn't existing variable. Fit into slot.
417 */
418 for (i = 0; i < __nenv-1; i++) {
419 if (__env[i] == (char *)0) {
420 __env[i] = ep;
421 return 0;
422 }
423 }
424
425 return KDB_ENVFULL;
426 }
427
428 static int kdb_check_regs(void)
429 {
430 if (!kdb_current_regs) {
431 kdb_printf("No current kdb registers."
432 " You may need to select another task\n");
433 return KDB_BADREG;
434 }
435 return 0;
436 }
437
438 /*
439 * kdbgetaddrarg - This function is responsible for parsing an
440 * address-expression and returning the value of the expression,
441 * symbol name, and offset to the caller.
442 *
443 * The argument may consist of a numeric value (decimal or
444 * hexidecimal), a symbol name, a register name (preceded by the
445 * percent sign), an environment variable with a numeric value
446 * (preceded by a dollar sign) or a simple arithmetic expression
447 * consisting of a symbol name, +/-, and a numeric constant value
448 * (offset).
449 * Parameters:
450 * argc - count of arguments in argv
451 * argv - argument vector
452 * *nextarg - index to next unparsed argument in argv[]
453 * regs - Register state at time of KDB entry
454 * Outputs:
455 * *value - receives the value of the address-expression
456 * *offset - receives the offset specified, if any
457 * *name - receives the symbol name, if any
458 * *nextarg - index to next unparsed argument in argv[]
459 * Returns:
460 * zero is returned on success, a kdb diagnostic code is
461 * returned on error.
462 */
463 int kdbgetaddrarg(int argc, const char **argv, int *nextarg,
464 unsigned long *value, long *offset,
465 char **name)
466 {
467 unsigned long addr;
468 unsigned long off = 0;
469 int positive;
470 int diag;
471 int found = 0;
472 char *symname;
473 char symbol = '\0';
474 char *cp;
475 kdb_symtab_t symtab;
476
477 /*
478 * Process arguments which follow the following syntax:
479 *
480 * symbol | numeric-address [+/- numeric-offset]
481 * %register
482 * $environment-variable
483 */
484
485 if (*nextarg > argc)
486 return KDB_ARGCOUNT;
487
488 symname = (char *)argv[*nextarg];
489
490 /*
491 * If there is no whitespace between the symbol
492 * or address and the '+' or '-' symbols, we
493 * remember the character and replace it with a
494 * null so the symbol/value can be properly parsed
495 */
496 cp = strpbrk(symname, "+-");
497 if (cp != NULL) {
498 symbol = *cp;
499 *cp++ = '\0';
500 }
501
502 if (symname[0] == '$') {
503 diag = kdbgetulenv(&symname[1], &addr);
504 if (diag)
505 return diag;
506 } else if (symname[0] == '%') {
507 diag = kdb_check_regs();
508 if (diag)
509 return diag;
510 /* Implement register values with % at a later time as it is
511 * arch optional.
512 */
513 return KDB_NOTIMP;
514 } else {
515 found = kdbgetsymval(symname, &symtab);
516 if (found) {
517 addr = symtab.sym_start;
518 } else {
519 diag = kdbgetularg(argv[*nextarg], &addr);
520 if (diag)
521 return diag;
522 }
523 }
524
525 if (!found)
526 found = kdbnearsym(addr, &symtab);
527
528 (*nextarg)++;
529
530 if (name)
531 *name = symname;
532 if (value)
533 *value = addr;
534 if (offset && name && *name)
535 *offset = addr - symtab.sym_start;
536
537 if ((*nextarg > argc)
538 && (symbol == '\0'))
539 return 0;
540
541 /*
542 * check for +/- and offset
543 */
544
545 if (symbol == '\0') {
546 if ((argv[*nextarg][0] != '+')
547 && (argv[*nextarg][0] != '-')) {
548 /*
549 * Not our argument. Return.
550 */
551 return 0;
552 } else {
553 positive = (argv[*nextarg][0] == '+');
554 (*nextarg)++;
555 }
556 } else
557 positive = (symbol == '+');
558
559 /*
560 * Now there must be an offset!
561 */
562 if ((*nextarg > argc)
563 && (symbol == '\0')) {
564 return KDB_INVADDRFMT;
565 }
566
567 if (!symbol) {
568 cp = (char *)argv[*nextarg];
569 (*nextarg)++;
570 }
571
572 diag = kdbgetularg(cp, &off);
573 if (diag)
574 return diag;
575
576 if (!positive)
577 off = -off;
578
579 if (offset)
580 *offset += off;
581
582 if (value)
583 *value += off;
584
585 return 0;
586 }
587
588 static void kdb_cmderror(int diag)
589 {
590 int i;
591
592 if (diag >= 0) {
593 kdb_printf("no error detected (diagnostic is %d)\n", diag);
594 return;
595 }
596
597 for (i = 0; i < __nkdb_err; i++) {
598 if (kdbmsgs[i].km_diag == diag) {
599 kdb_printf("diag: %d: %s\n", diag, kdbmsgs[i].km_msg);
600 return;
601 }
602 }
603
604 kdb_printf("Unknown diag %d\n", -diag);
605 }
606
607 /*
608 * kdb_defcmd, kdb_defcmd2 - This function implements the 'defcmd'
609 * command which defines one command as a set of other commands,
610 * terminated by endefcmd. kdb_defcmd processes the initial
611 * 'defcmd' command, kdb_defcmd2 is invoked from kdb_parse for
612 * the following commands until 'endefcmd'.
613 * Inputs:
614 * argc argument count
615 * argv argument vector
616 * Returns:
617 * zero for success, a kdb diagnostic if error
618 */
619 struct defcmd_set {
620 int count;
621 int usable;
622 char *name;
623 char *usage;
624 char *help;
625 char **command;
626 };
627 static struct defcmd_set *defcmd_set;
628 static int defcmd_set_count;
629 static int defcmd_in_progress;
630
631 /* Forward references */
632 static int kdb_exec_defcmd(int argc, const char **argv);
633
634 static int kdb_defcmd2(const char *cmdstr, const char *argv0)
635 {
636 struct defcmd_set *s = defcmd_set + defcmd_set_count - 1;
637 char **save_command = s->command;
638 if (strcmp(argv0, "endefcmd") == 0) {
639 defcmd_in_progress = 0;
640 if (!s->count)
641 s->usable = 0;
642 if (s->usable)
643 kdb_register(s->name, kdb_exec_defcmd,
644 s->usage, s->help, 0);
645 return 0;
646 }
647 if (!s->usable)
648 return KDB_NOTIMP;
649 s->command = kzalloc((s->count + 1) * sizeof(*(s->command)), GFP_KDB);
650 if (!s->command) {
651 kdb_printf("Could not allocate new kdb_defcmd table for %s\n",
652 cmdstr);
653 s->usable = 0;
654 return KDB_NOTIMP;
655 }
656 memcpy(s->command, save_command, s->count * sizeof(*(s->command)));
657 s->command[s->count++] = kdb_strdup(cmdstr, GFP_KDB);
658 kfree(save_command);
659 return 0;
660 }
661
662 static int kdb_defcmd(int argc, const char **argv)
663 {
664 struct defcmd_set *save_defcmd_set = defcmd_set, *s;
665 if (defcmd_in_progress) {
666 kdb_printf("kdb: nested defcmd detected, assuming missing "
667 "endefcmd\n");
668 kdb_defcmd2("endefcmd", "endefcmd");
669 }
670 if (argc == 0) {
671 int i;
672 for (s = defcmd_set; s < defcmd_set + defcmd_set_count; ++s) {
673 kdb_printf("defcmd %s \"%s\" \"%s\"\n", s->name,
674 s->usage, s->help);
675 for (i = 0; i < s->count; ++i)
676 kdb_printf("%s", s->command[i]);
677 kdb_printf("endefcmd\n");
678 }
679 return 0;
680 }
681 if (argc != 3)
682 return KDB_ARGCOUNT;
683 defcmd_set = kmalloc((defcmd_set_count + 1) * sizeof(*defcmd_set),
684 GFP_KDB);
685 if (!defcmd_set) {
686 kdb_printf("Could not allocate new defcmd_set entry for %s\n",
687 argv[1]);
688 defcmd_set = save_defcmd_set;
689 return KDB_NOTIMP;
690 }
691 memcpy(defcmd_set, save_defcmd_set,
692 defcmd_set_count * sizeof(*defcmd_set));
693 kfree(save_defcmd_set);
694 s = defcmd_set + defcmd_set_count;
695 memset(s, 0, sizeof(*s));
696 s->usable = 1;
697 s->name = kdb_strdup(argv[1], GFP_KDB);
698 s->usage = kdb_strdup(argv[2], GFP_KDB);
699 s->help = kdb_strdup(argv[3], GFP_KDB);
700 if (s->usage[0] == '"') {
701 strcpy(s->usage, s->usage+1);
702 s->usage[strlen(s->usage)-1] = '\0';
703 }
704 if (s->help[0] == '"') {
705 strcpy(s->help, s->help+1);
706 s->help[strlen(s->help)-1] = '\0';
707 }
708 ++defcmd_set_count;
709 defcmd_in_progress = 1;
710 return 0;
711 }
712
713 /*
714 * kdb_exec_defcmd - Execute the set of commands associated with this
715 * defcmd name.
716 * Inputs:
717 * argc argument count
718 * argv argument vector
719 * Returns:
720 * zero for success, a kdb diagnostic if error
721 */
722 static int kdb_exec_defcmd(int argc, const char **argv)
723 {
724 int i, ret;
725 struct defcmd_set *s;
726 if (argc != 0)
727 return KDB_ARGCOUNT;
728 for (s = defcmd_set, i = 0; i < defcmd_set_count; ++i, ++s) {
729 if (strcmp(s->name, argv[0]) == 0)
730 break;
731 }
732 if (i == defcmd_set_count) {
733 kdb_printf("kdb_exec_defcmd: could not find commands for %s\n",
734 argv[0]);
735 return KDB_NOTIMP;
736 }
737 for (i = 0; i < s->count; ++i) {
738 /* Recursive use of kdb_parse, do not use argv after
739 * this point */
740 argv = NULL;
741 kdb_printf("[%s]kdb> %s\n", s->name, s->command[i]);
742 ret = kdb_parse(s->command[i]);
743 if (ret)
744 return ret;
745 }
746 return 0;
747 }
748
749 /* Command history */
750 #define KDB_CMD_HISTORY_COUNT 32
751 #define CMD_BUFLEN 200 /* kdb_printf: max printline
752 * size == 256 */
753 static unsigned int cmd_head, cmd_tail;
754 static unsigned int cmdptr;
755 static char cmd_hist[KDB_CMD_HISTORY_COUNT][CMD_BUFLEN];
756 static char cmd_cur[CMD_BUFLEN];
757
758 /*
759 * The "str" argument may point to something like | grep xyz
760 */
761 static void parse_grep(const char *str)
762 {
763 int len;
764 char *cp = (char *)str, *cp2;
765
766 /* sanity check: we should have been called with the \ first */
767 if (*cp != '|')
768 return;
769 cp++;
770 while (isspace(*cp))
771 cp++;
772 if (strncmp(cp, "grep ", 5)) {
773 kdb_printf("invalid 'pipe', see grephelp\n");
774 return;
775 }
776 cp += 5;
777 while (isspace(*cp))
778 cp++;
779 cp2 = strchr(cp, '\n');
780 if (cp2)
781 *cp2 = '\0'; /* remove the trailing newline */
782 len = strlen(cp);
783 if (len == 0) {
784 kdb_printf("invalid 'pipe', see grephelp\n");
785 return;
786 }
787 /* now cp points to a nonzero length search string */
788 if (*cp == '"') {
789 /* allow it be "x y z" by removing the "'s - there must
790 be two of them */
791 cp++;
792 cp2 = strchr(cp, '"');
793 if (!cp2) {
794 kdb_printf("invalid quoted string, see grephelp\n");
795 return;
796 }
797 *cp2 = '\0'; /* end the string where the 2nd " was */
798 }
799 kdb_grep_leading = 0;
800 if (*cp == '^') {
801 kdb_grep_leading = 1;
802 cp++;
803 }
804 len = strlen(cp);
805 kdb_grep_trailing = 0;
806 if (*(cp+len-1) == '$') {
807 kdb_grep_trailing = 1;
808 *(cp+len-1) = '\0';
809 }
810 len = strlen(cp);
811 if (!len)
812 return;
813 if (len >= GREP_LEN) {
814 kdb_printf("search string too long\n");
815 return;
816 }
817 strcpy(kdb_grep_string, cp);
818 kdb_grepping_flag++;
819 return;
820 }
821
822 /*
823 * kdb_parse - Parse the command line, search the command table for a
824 * matching command and invoke the command function. This
825 * function may be called recursively, if it is, the second call
826 * will overwrite argv and cbuf. It is the caller's
827 * responsibility to save their argv if they recursively call
828 * kdb_parse().
829 * Parameters:
830 * cmdstr The input command line to be parsed.
831 * regs The registers at the time kdb was entered.
832 * Returns:
833 * Zero for success, a kdb diagnostic if failure.
834 * Remarks:
835 * Limited to 20 tokens.
836 *
837 * Real rudimentary tokenization. Basically only whitespace
838 * is considered a token delimeter (but special consideration
839 * is taken of the '=' sign as used by the 'set' command).
840 *
841 * The algorithm used to tokenize the input string relies on
842 * there being at least one whitespace (or otherwise useless)
843 * character between tokens as the character immediately following
844 * the token is altered in-place to a null-byte to terminate the
845 * token string.
846 */
847
848 #define MAXARGC 20
849
850 int kdb_parse(const char *cmdstr)
851 {
852 static char *argv[MAXARGC];
853 static int argc;
854 static char cbuf[CMD_BUFLEN+2];
855 char *cp;
856 char *cpp, quoted;
857 kdbtab_t *tp;
858 int i, escaped, ignore_errors = 0, check_grep;
859
860 /*
861 * First tokenize the command string.
862 */
863 cp = (char *)cmdstr;
864 kdb_grepping_flag = check_grep = 0;
865
866 if (KDB_FLAG(CMD_INTERRUPT)) {
867 /* Previous command was interrupted, newline must not
868 * repeat the command */
869 KDB_FLAG_CLEAR(CMD_INTERRUPT);
870 KDB_STATE_SET(PAGER);
871 argc = 0; /* no repeat */
872 }
873
874 if (*cp != '\n' && *cp != '\0') {
875 argc = 0;
876 cpp = cbuf;
877 while (*cp) {
878 /* skip whitespace */
879 while (isspace(*cp))
880 cp++;
881 if ((*cp == '\0') || (*cp == '\n') ||
882 (*cp == '#' && !defcmd_in_progress))
883 break;
884 /* special case: check for | grep pattern */
885 if (*cp == '|') {
886 check_grep++;
887 break;
888 }
889 if (cpp >= cbuf + CMD_BUFLEN) {
890 kdb_printf("kdb_parse: command buffer "
891 "overflow, command ignored\n%s\n",
892 cmdstr);
893 return KDB_NOTFOUND;
894 }
895 if (argc >= MAXARGC - 1) {
896 kdb_printf("kdb_parse: too many arguments, "
897 "command ignored\n%s\n", cmdstr);
898 return KDB_NOTFOUND;
899 }
900 argv[argc++] = cpp;
901 escaped = 0;
902 quoted = '\0';
903 /* Copy to next unquoted and unescaped
904 * whitespace or '=' */
905 while (*cp && *cp != '\n' &&
906 (escaped || quoted || !isspace(*cp))) {
907 if (cpp >= cbuf + CMD_BUFLEN)
908 break;
909 if (escaped) {
910 escaped = 0;
911 *cpp++ = *cp++;
912 continue;
913 }
914 if (*cp == '\\') {
915 escaped = 1;
916 ++cp;
917 continue;
918 }
919 if (*cp == quoted)
920 quoted = '\0';
921 else if (*cp == '\'' || *cp == '"')
922 quoted = *cp;
923 *cpp = *cp++;
924 if (*cpp == '=' && !quoted)
925 break;
926 ++cpp;
927 }
928 *cpp++ = '\0'; /* Squash a ws or '=' character */
929 }
930 }
931 if (!argc)
932 return 0;
933 if (check_grep)
934 parse_grep(cp);
935 if (defcmd_in_progress) {
936 int result = kdb_defcmd2(cmdstr, argv[0]);
937 if (!defcmd_in_progress) {
938 argc = 0; /* avoid repeat on endefcmd */
939 *(argv[0]) = '\0';
940 }
941 return result;
942 }
943 if (argv[0][0] == '-' && argv[0][1] &&
944 (argv[0][1] < '0' || argv[0][1] > '9')) {
945 ignore_errors = 1;
946 ++argv[0];
947 }
948
949 for_each_kdbcmd(tp, i) {
950 if (tp->cmd_name) {
951 /*
952 * If this command is allowed to be abbreviated,
953 * check to see if this is it.
954 */
955
956 if (tp->cmd_minlen
957 && (strlen(argv[0]) <= tp->cmd_minlen)) {
958 if (strncmp(argv[0],
959 tp->cmd_name,
960 tp->cmd_minlen) == 0) {
961 break;
962 }
963 }
964
965 if (strcmp(argv[0], tp->cmd_name) == 0)
966 break;
967 }
968 }
969
970 /*
971 * If we don't find a command by this name, see if the first
972 * few characters of this match any of the known commands.
973 * e.g., md1c20 should match md.
974 */
975 if (i == kdb_max_commands) {
976 for_each_kdbcmd(tp, i) {
977 if (tp->cmd_name) {
978 if (strncmp(argv[0],
979 tp->cmd_name,
980 strlen(tp->cmd_name)) == 0) {
981 break;
982 }
983 }
984 }
985 }
986
987 if (i < kdb_max_commands) {
988 int result;
989 KDB_STATE_SET(CMD);
990 result = (*tp->cmd_func)(argc-1, (const char **)argv);
991 if (result && ignore_errors && result > KDB_CMD_GO)
992 result = 0;
993 KDB_STATE_CLEAR(CMD);
994 switch (tp->cmd_repeat) {
995 case KDB_REPEAT_NONE:
996 argc = 0;
997 if (argv[0])
998 *(argv[0]) = '\0';
999 break;
1000 case KDB_REPEAT_NO_ARGS:
1001 argc = 1;
1002 if (argv[1])
1003 *(argv[1]) = '\0';
1004 break;
1005 case KDB_REPEAT_WITH_ARGS:
1006 break;
1007 }
1008 return result;
1009 }
1010
1011 /*
1012 * If the input with which we were presented does not
1013 * map to an existing command, attempt to parse it as an
1014 * address argument and display the result. Useful for
1015 * obtaining the address of a variable, or the nearest symbol
1016 * to an address contained in a register.
1017 */
1018 {
1019 unsigned long value;
1020 char *name = NULL;
1021 long offset;
1022 int nextarg = 0;
1023
1024 if (kdbgetaddrarg(0, (const char **)argv, &nextarg,
1025 &value, &offset, &name)) {
1026 return KDB_NOTFOUND;
1027 }
1028
1029 kdb_printf("%s = ", argv[0]);
1030 kdb_symbol_print(value, NULL, KDB_SP_DEFAULT);
1031 kdb_printf("\n");
1032 return 0;
1033 }
1034 }
1035
1036
1037 static int handle_ctrl_cmd(char *cmd)
1038 {
1039 #define CTRL_P 16
1040 #define CTRL_N 14
1041
1042 /* initial situation */
1043 if (cmd_head == cmd_tail)
1044 return 0;
1045 switch (*cmd) {
1046 case CTRL_P:
1047 if (cmdptr != cmd_tail)
1048 cmdptr = (cmdptr-1) % KDB_CMD_HISTORY_COUNT;
1049 strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1050 return 1;
1051 case CTRL_N:
1052 if (cmdptr != cmd_head)
1053 cmdptr = (cmdptr+1) % KDB_CMD_HISTORY_COUNT;
1054 strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1055 return 1;
1056 }
1057 return 0;
1058 }
1059
1060 /*
1061 * kdb_reboot - This function implements the 'reboot' command. Reboot
1062 * the system immediately, or loop for ever on failure.
1063 */
1064 static int kdb_reboot(int argc, const char **argv)
1065 {
1066 emergency_restart();
1067 kdb_printf("Hmm, kdb_reboot did not reboot, spinning here\n");
1068 while (1)
1069 cpu_relax();
1070 /* NOTREACHED */
1071 return 0;
1072 }
1073
1074 static void kdb_dumpregs(struct pt_regs *regs)
1075 {
1076 int old_lvl = console_loglevel;
1077 console_loglevel = 15;
1078 kdb_trap_printk++;
1079 show_regs(regs);
1080 kdb_trap_printk--;
1081 kdb_printf("\n");
1082 console_loglevel = old_lvl;
1083 }
1084
1085 void kdb_set_current_task(struct task_struct *p)
1086 {
1087 kdb_current_task = p;
1088
1089 if (kdb_task_has_cpu(p)) {
1090 kdb_current_regs = KDB_TSKREGS(kdb_process_cpu(p));
1091 return;
1092 }
1093 kdb_current_regs = NULL;
1094 }
1095
1096 /*
1097 * kdb_local - The main code for kdb. This routine is invoked on a
1098 * specific processor, it is not global. The main kdb() routine
1099 * ensures that only one processor at a time is in this routine.
1100 * This code is called with the real reason code on the first
1101 * entry to a kdb session, thereafter it is called with reason
1102 * SWITCH, even if the user goes back to the original cpu.
1103 * Inputs:
1104 * reason The reason KDB was invoked
1105 * error The hardware-defined error code
1106 * regs The exception frame at time of fault/breakpoint.
1107 * db_result Result code from the break or debug point.
1108 * Returns:
1109 * 0 KDB was invoked for an event which it wasn't responsible
1110 * 1 KDB handled the event for which it was invoked.
1111 * KDB_CMD_GO User typed 'go'.
1112 * KDB_CMD_CPU User switched to another cpu.
1113 * KDB_CMD_SS Single step.
1114 * KDB_CMD_SSB Single step until branch.
1115 */
1116 static int kdb_local(kdb_reason_t reason, int error, struct pt_regs *regs,
1117 kdb_dbtrap_t db_result)
1118 {
1119 char *cmdbuf;
1120 int diag;
1121 struct task_struct *kdb_current =
1122 kdb_curr_task(raw_smp_processor_id());
1123
1124 KDB_DEBUG_STATE("kdb_local 1", reason);
1125 kdb_go_count = 0;
1126 if (reason == KDB_REASON_DEBUG) {
1127 /* special case below */
1128 } else {
1129 kdb_printf("\nEntering kdb (current=0x%p, pid %d) ",
1130 kdb_current, kdb_current ? kdb_current->pid : 0);
1131 #if defined(CONFIG_SMP)
1132 kdb_printf("on processor %d ", raw_smp_processor_id());
1133 #endif
1134 }
1135
1136 switch (reason) {
1137 case KDB_REASON_DEBUG:
1138 {
1139 /*
1140 * If re-entering kdb after a single step
1141 * command, don't print the message.
1142 */
1143 switch (db_result) {
1144 case KDB_DB_BPT:
1145 kdb_printf("\nEntering kdb (0x%p, pid %d) ",
1146 kdb_current, kdb_current->pid);
1147 #if defined(CONFIG_SMP)
1148 kdb_printf("on processor %d ", raw_smp_processor_id());
1149 #endif
1150 kdb_printf("due to Debug @ " kdb_machreg_fmt "\n",
1151 instruction_pointer(regs));
1152 break;
1153 case KDB_DB_SSB:
1154 /*
1155 * In the midst of ssb command. Just return.
1156 */
1157 KDB_DEBUG_STATE("kdb_local 3", reason);
1158 return KDB_CMD_SSB; /* Continue with SSB command */
1159
1160 break;
1161 case KDB_DB_SS:
1162 break;
1163 case KDB_DB_SSBPT:
1164 KDB_DEBUG_STATE("kdb_local 4", reason);
1165 return 1; /* kdba_db_trap did the work */
1166 default:
1167 kdb_printf("kdb: Bad result from kdba_db_trap: %d\n",
1168 db_result);
1169 break;
1170 }
1171
1172 }
1173 break;
1174 case KDB_REASON_ENTER:
1175 if (KDB_STATE(KEYBOARD))
1176 kdb_printf("due to Keyboard Entry\n");
1177 else
1178 kdb_printf("due to KDB_ENTER()\n");
1179 break;
1180 case KDB_REASON_KEYBOARD:
1181 KDB_STATE_SET(KEYBOARD);
1182 kdb_printf("due to Keyboard Entry\n");
1183 break;
1184 case KDB_REASON_ENTER_SLAVE:
1185 /* drop through, slaves only get released via cpu switch */
1186 case KDB_REASON_SWITCH:
1187 kdb_printf("due to cpu switch\n");
1188 break;
1189 case KDB_REASON_OOPS:
1190 kdb_printf("Oops: %s\n", kdb_diemsg);
1191 kdb_printf("due to oops @ " kdb_machreg_fmt "\n",
1192 instruction_pointer(regs));
1193 kdb_dumpregs(regs);
1194 break;
1195 case KDB_REASON_NMI:
1196 kdb_printf("due to NonMaskable Interrupt @ "
1197 kdb_machreg_fmt "\n",
1198 instruction_pointer(regs));
1199 kdb_dumpregs(regs);
1200 break;
1201 case KDB_REASON_SSTEP:
1202 case KDB_REASON_BREAK:
1203 kdb_printf("due to %s @ " kdb_machreg_fmt "\n",
1204 reason == KDB_REASON_BREAK ?
1205 "Breakpoint" : "SS trap", instruction_pointer(regs));
1206 /*
1207 * Determine if this breakpoint is one that we
1208 * are interested in.
1209 */
1210 if (db_result != KDB_DB_BPT) {
1211 kdb_printf("kdb: error return from kdba_bp_trap: %d\n",
1212 db_result);
1213 KDB_DEBUG_STATE("kdb_local 6", reason);
1214 return 0; /* Not for us, dismiss it */
1215 }
1216 break;
1217 case KDB_REASON_RECURSE:
1218 kdb_printf("due to Recursion @ " kdb_machreg_fmt "\n",
1219 instruction_pointer(regs));
1220 break;
1221 default:
1222 kdb_printf("kdb: unexpected reason code: %d\n", reason);
1223 KDB_DEBUG_STATE("kdb_local 8", reason);
1224 return 0; /* Not for us, dismiss it */
1225 }
1226
1227 while (1) {
1228 /*
1229 * Initialize pager context.
1230 */
1231 kdb_nextline = 1;
1232 KDB_STATE_CLEAR(SUPPRESS);
1233
1234 cmdbuf = cmd_cur;
1235 *cmdbuf = '\0';
1236 *(cmd_hist[cmd_head]) = '\0';
1237
1238 do_full_getstr:
1239 #if defined(CONFIG_SMP)
1240 snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"),
1241 raw_smp_processor_id());
1242 #else
1243 snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"));
1244 #endif
1245 if (defcmd_in_progress)
1246 strncat(kdb_prompt_str, "[defcmd]", CMD_BUFLEN);
1247
1248 /*
1249 * Fetch command from keyboard
1250 */
1251 cmdbuf = kdb_getstr(cmdbuf, CMD_BUFLEN, kdb_prompt_str);
1252 if (*cmdbuf != '\n') {
1253 if (*cmdbuf < 32) {
1254 if (cmdptr == cmd_head) {
1255 strncpy(cmd_hist[cmd_head], cmd_cur,
1256 CMD_BUFLEN);
1257 *(cmd_hist[cmd_head] +
1258 strlen(cmd_hist[cmd_head])-1) = '\0';
1259 }
1260 if (!handle_ctrl_cmd(cmdbuf))
1261 *(cmd_cur+strlen(cmd_cur)-1) = '\0';
1262 cmdbuf = cmd_cur;
1263 goto do_full_getstr;
1264 } else {
1265 strncpy(cmd_hist[cmd_head], cmd_cur,
1266 CMD_BUFLEN);
1267 }
1268
1269 cmd_head = (cmd_head+1) % KDB_CMD_HISTORY_COUNT;
1270 if (cmd_head == cmd_tail)
1271 cmd_tail = (cmd_tail+1) % KDB_CMD_HISTORY_COUNT;
1272 }
1273
1274 cmdptr = cmd_head;
1275 diag = kdb_parse(cmdbuf);
1276 if (diag == KDB_NOTFOUND) {
1277 kdb_printf("Unknown kdb command: '%s'\n", cmdbuf);
1278 diag = 0;
1279 }
1280 if (diag == KDB_CMD_GO
1281 || diag == KDB_CMD_CPU
1282 || diag == KDB_CMD_SS
1283 || diag == KDB_CMD_SSB
1284 || diag == KDB_CMD_KGDB)
1285 break;
1286
1287 if (diag)
1288 kdb_cmderror(diag);
1289 }
1290 KDB_DEBUG_STATE("kdb_local 9", diag);
1291 return diag;
1292 }
1293
1294
1295 /*
1296 * kdb_print_state - Print the state data for the current processor
1297 * for debugging.
1298 * Inputs:
1299 * text Identifies the debug point
1300 * value Any integer value to be printed, e.g. reason code.
1301 */
1302 void kdb_print_state(const char *text, int value)
1303 {
1304 kdb_printf("state: %s cpu %d value %d initial %d state %x\n",
1305 text, raw_smp_processor_id(), value, kdb_initial_cpu,
1306 kdb_state);
1307 }
1308
1309 /*
1310 * kdb_main_loop - After initial setup and assignment of the
1311 * controlling cpu, all cpus are in this loop. One cpu is in
1312 * control and will issue the kdb prompt, the others will spin
1313 * until 'go' or cpu switch.
1314 *
1315 * To get a consistent view of the kernel stacks for all
1316 * processes, this routine is invoked from the main kdb code via
1317 * an architecture specific routine. kdba_main_loop is
1318 * responsible for making the kernel stacks consistent for all
1319 * processes, there should be no difference between a blocked
1320 * process and a running process as far as kdb is concerned.
1321 * Inputs:
1322 * reason The reason KDB was invoked
1323 * error The hardware-defined error code
1324 * reason2 kdb's current reason code.
1325 * Initially error but can change
1326 * according to kdb state.
1327 * db_result Result code from break or debug point.
1328 * regs The exception frame at time of fault/breakpoint.
1329 * should always be valid.
1330 * Returns:
1331 * 0 KDB was invoked for an event which it wasn't responsible
1332 * 1 KDB handled the event for which it was invoked.
1333 */
1334 int kdb_main_loop(kdb_reason_t reason, kdb_reason_t reason2, int error,
1335 kdb_dbtrap_t db_result, struct pt_regs *regs)
1336 {
1337 int result = 1;
1338 /* Stay in kdb() until 'go', 'ss[b]' or an error */
1339 while (1) {
1340 /*
1341 * All processors except the one that is in control
1342 * will spin here.
1343 */
1344 KDB_DEBUG_STATE("kdb_main_loop 1", reason);
1345 while (KDB_STATE(HOLD_CPU)) {
1346 /* state KDB is turned off by kdb_cpu to see if the
1347 * other cpus are still live, each cpu in this loop
1348 * turns it back on.
1349 */
1350 if (!KDB_STATE(KDB))
1351 KDB_STATE_SET(KDB);
1352 }
1353
1354 KDB_STATE_CLEAR(SUPPRESS);
1355 KDB_DEBUG_STATE("kdb_main_loop 2", reason);
1356 if (KDB_STATE(LEAVING))
1357 break; /* Another cpu said 'go' */
1358 /* Still using kdb, this processor is in control */
1359 result = kdb_local(reason2, error, regs, db_result);
1360 KDB_DEBUG_STATE("kdb_main_loop 3", result);
1361
1362 if (result == KDB_CMD_CPU)
1363 break;
1364
1365 if (result == KDB_CMD_SS) {
1366 KDB_STATE_SET(DOING_SS);
1367 break;
1368 }
1369
1370 if (result == KDB_CMD_SSB) {
1371 KDB_STATE_SET(DOING_SS);
1372 KDB_STATE_SET(DOING_SSB);
1373 break;
1374 }
1375
1376 if (result == KDB_CMD_KGDB) {
1377 if (!KDB_STATE(DOING_KGDB))
1378 kdb_printf("Entering please attach debugger "
1379 "or use $D#44+ or $3#33\n");
1380 break;
1381 }
1382 if (result && result != 1 && result != KDB_CMD_GO)
1383 kdb_printf("\nUnexpected kdb_local return code %d\n",
1384 result);
1385 KDB_DEBUG_STATE("kdb_main_loop 4", reason);
1386 break;
1387 }
1388 if (KDB_STATE(DOING_SS))
1389 KDB_STATE_CLEAR(SSBPT);
1390
1391 /* Clean up any keyboard devices before leaving */
1392 kdb_kbd_cleanup_state();
1393
1394 return result;
1395 }
1396
1397 /*
1398 * kdb_mdr - This function implements the guts of the 'mdr', memory
1399 * read command.
1400 * mdr <addr arg>,<byte count>
1401 * Inputs:
1402 * addr Start address
1403 * count Number of bytes
1404 * Returns:
1405 * Always 0. Any errors are detected and printed by kdb_getarea.
1406 */
1407 static int kdb_mdr(unsigned long addr, unsigned int count)
1408 {
1409 unsigned char c;
1410 while (count--) {
1411 if (kdb_getarea(c, addr))
1412 return 0;
1413 kdb_printf("%02x", c);
1414 addr++;
1415 }
1416 kdb_printf("\n");
1417 return 0;
1418 }
1419
1420 /*
1421 * kdb_md - This function implements the 'md', 'md1', 'md2', 'md4',
1422 * 'md8' 'mdr' and 'mds' commands.
1423 *
1424 * md|mds [<addr arg> [<line count> [<radix>]]]
1425 * mdWcN [<addr arg> [<line count> [<radix>]]]
1426 * where W = is the width (1, 2, 4 or 8) and N is the count.
1427 * for eg., md1c20 reads 20 bytes, 1 at a time.
1428 * mdr <addr arg>,<byte count>
1429 */
1430 static void kdb_md_line(const char *fmtstr, unsigned long addr,
1431 int symbolic, int nosect, int bytesperword,
1432 int num, int repeat, int phys)
1433 {
1434 /* print just one line of data */
1435 kdb_symtab_t symtab;
1436 char cbuf[32];
1437 char *c = cbuf;
1438 int i;
1439 unsigned long word;
1440
1441 memset(cbuf, '\0', sizeof(cbuf));
1442 if (phys)
1443 kdb_printf("phys " kdb_machreg_fmt0 " ", addr);
1444 else
1445 kdb_printf(kdb_machreg_fmt0 " ", addr);
1446
1447 for (i = 0; i < num && repeat--; i++) {
1448 if (phys) {
1449 if (kdb_getphysword(&word, addr, bytesperword))
1450 break;
1451 } else if (kdb_getword(&word, addr, bytesperword))
1452 break;
1453 kdb_printf(fmtstr, word);
1454 if (symbolic)
1455 kdbnearsym(word, &symtab);
1456 else
1457 memset(&symtab, 0, sizeof(symtab));
1458 if (symtab.sym_name) {
1459 kdb_symbol_print(word, &symtab, 0);
1460 if (!nosect) {
1461 kdb_printf("\n");
1462 kdb_printf(" %s %s "
1463 kdb_machreg_fmt " "
1464 kdb_machreg_fmt " "
1465 kdb_machreg_fmt, symtab.mod_name,
1466 symtab.sec_name, symtab.sec_start,
1467 symtab.sym_start, symtab.sym_end);
1468 }
1469 addr += bytesperword;
1470 } else {
1471 union {
1472 u64 word;
1473 unsigned char c[8];
1474 } wc;
1475 unsigned char *cp;
1476 #ifdef __BIG_ENDIAN
1477 cp = wc.c + 8 - bytesperword;
1478 #else
1479 cp = wc.c;
1480 #endif
1481 wc.word = word;
1482 #define printable_char(c) \
1483 ({unsigned char __c = c; isascii(__c) && isprint(__c) ? __c : '.'; })
1484 switch (bytesperword) {
1485 case 8:
1486 *c++ = printable_char(*cp++);
1487 *c++ = printable_char(*cp++);
1488 *c++ = printable_char(*cp++);
1489 *c++ = printable_char(*cp++);
1490 addr += 4;
1491 case 4:
1492 *c++ = printable_char(*cp++);
1493 *c++ = printable_char(*cp++);
1494 addr += 2;
1495 case 2:
1496 *c++ = printable_char(*cp++);
1497 addr++;
1498 case 1:
1499 *c++ = printable_char(*cp++);
1500 addr++;
1501 break;
1502 }
1503 #undef printable_char
1504 }
1505 }
1506 kdb_printf("%*s %s\n", (int)((num-i)*(2*bytesperword + 1)+1),
1507 " ", cbuf);
1508 }
1509
1510 static int kdb_md(int argc, const char **argv)
1511 {
1512 static unsigned long last_addr;
1513 static int last_radix, last_bytesperword, last_repeat;
1514 int radix = 16, mdcount = 8, bytesperword = KDB_WORD_SIZE, repeat;
1515 int nosect = 0;
1516 char fmtchar, fmtstr[64];
1517 unsigned long addr;
1518 unsigned long word;
1519 long offset = 0;
1520 int symbolic = 0;
1521 int valid = 0;
1522 int phys = 0;
1523
1524 kdbgetintenv("MDCOUNT", &mdcount);
1525 kdbgetintenv("RADIX", &radix);
1526 kdbgetintenv("BYTESPERWORD", &bytesperword);
1527
1528 /* Assume 'md <addr>' and start with environment values */
1529 repeat = mdcount * 16 / bytesperword;
1530
1531 if (strcmp(argv[0], "mdr") == 0) {
1532 if (argc != 2)
1533 return KDB_ARGCOUNT;
1534 valid = 1;
1535 } else if (isdigit(argv[0][2])) {
1536 bytesperword = (int)(argv[0][2] - '0');
1537 if (bytesperword == 0) {
1538 bytesperword = last_bytesperword;
1539 if (bytesperword == 0)
1540 bytesperword = 4;
1541 }
1542 last_bytesperword = bytesperword;
1543 repeat = mdcount * 16 / bytesperword;
1544 if (!argv[0][3])
1545 valid = 1;
1546 else if (argv[0][3] == 'c' && argv[0][4]) {
1547 char *p;
1548 repeat = simple_strtoul(argv[0] + 4, &p, 10);
1549 mdcount = ((repeat * bytesperword) + 15) / 16;
1550 valid = !*p;
1551 }
1552 last_repeat = repeat;
1553 } else if (strcmp(argv[0], "md") == 0)
1554 valid = 1;
1555 else if (strcmp(argv[0], "mds") == 0)
1556 valid = 1;
1557 else if (strcmp(argv[0], "mdp") == 0) {
1558 phys = valid = 1;
1559 }
1560 if (!valid)
1561 return KDB_NOTFOUND;
1562
1563 if (argc == 0) {
1564 if (last_addr == 0)
1565 return KDB_ARGCOUNT;
1566 addr = last_addr;
1567 radix = last_radix;
1568 bytesperword = last_bytesperword;
1569 repeat = last_repeat;
1570 mdcount = ((repeat * bytesperword) + 15) / 16;
1571 }
1572
1573 if (argc) {
1574 unsigned long val;
1575 int diag, nextarg = 1;
1576 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr,
1577 &offset, NULL);
1578 if (diag)
1579 return diag;
1580 if (argc > nextarg+2)
1581 return KDB_ARGCOUNT;
1582
1583 if (argc >= nextarg) {
1584 diag = kdbgetularg(argv[nextarg], &val);
1585 if (!diag) {
1586 mdcount = (int) val;
1587 repeat = mdcount * 16 / bytesperword;
1588 }
1589 }
1590 if (argc >= nextarg+1) {
1591 diag = kdbgetularg(argv[nextarg+1], &val);
1592 if (!diag)
1593 radix = (int) val;
1594 }
1595 }
1596
1597 if (strcmp(argv[0], "mdr") == 0)
1598 return kdb_mdr(addr, mdcount);
1599
1600 switch (radix) {
1601 case 10:
1602 fmtchar = 'd';
1603 break;
1604 case 16:
1605 fmtchar = 'x';
1606 break;
1607 case 8:
1608 fmtchar = 'o';
1609 break;
1610 default:
1611 return KDB_BADRADIX;
1612 }
1613
1614 last_radix = radix;
1615
1616 if (bytesperword > KDB_WORD_SIZE)
1617 return KDB_BADWIDTH;
1618
1619 switch (bytesperword) {
1620 case 8:
1621 sprintf(fmtstr, "%%16.16l%c ", fmtchar);
1622 break;
1623 case 4:
1624 sprintf(fmtstr, "%%8.8l%c ", fmtchar);
1625 break;
1626 case 2:
1627 sprintf(fmtstr, "%%4.4l%c ", fmtchar);
1628 break;
1629 case 1:
1630 sprintf(fmtstr, "%%2.2l%c ", fmtchar);
1631 break;
1632 default:
1633 return KDB_BADWIDTH;
1634 }
1635
1636 last_repeat = repeat;
1637 last_bytesperword = bytesperword;
1638
1639 if (strcmp(argv[0], "mds") == 0) {
1640 symbolic = 1;
1641 /* Do not save these changes as last_*, they are temporary mds
1642 * overrides.
1643 */
1644 bytesperword = KDB_WORD_SIZE;
1645 repeat = mdcount;
1646 kdbgetintenv("NOSECT", &nosect);
1647 }
1648
1649 /* Round address down modulo BYTESPERWORD */
1650
1651 addr &= ~(bytesperword-1);
1652
1653 while (repeat > 0) {
1654 unsigned long a;
1655 int n, z, num = (symbolic ? 1 : (16 / bytesperword));
1656
1657 if (KDB_FLAG(CMD_INTERRUPT))
1658 return 0;
1659 for (a = addr, z = 0; z < repeat; a += bytesperword, ++z) {
1660 if (phys) {
1661 if (kdb_getphysword(&word, a, bytesperword)
1662 || word)
1663 break;
1664 } else if (kdb_getword(&word, a, bytesperword) || word)
1665 break;
1666 }
1667 n = min(num, repeat);
1668 kdb_md_line(fmtstr, addr, symbolic, nosect, bytesperword,
1669 num, repeat, phys);
1670 addr += bytesperword * n;
1671 repeat -= n;
1672 z = (z + num - 1) / num;
1673 if (z > 2) {
1674 int s = num * (z-2);
1675 kdb_printf(kdb_machreg_fmt0 "-" kdb_machreg_fmt0
1676 " zero suppressed\n",
1677 addr, addr + bytesperword * s - 1);
1678 addr += bytesperword * s;
1679 repeat -= s;
1680 }
1681 }
1682 last_addr = addr;
1683
1684 return 0;
1685 }
1686
1687 /*
1688 * kdb_mm - This function implements the 'mm' command.
1689 * mm address-expression new-value
1690 * Remarks:
1691 * mm works on machine words, mmW works on bytes.
1692 */
1693 static int kdb_mm(int argc, const char **argv)
1694 {
1695 int diag;
1696 unsigned long addr;
1697 long offset = 0;
1698 unsigned long contents;
1699 int nextarg;
1700 int width;
1701
1702 if (argv[0][2] && !isdigit(argv[0][2]))
1703 return KDB_NOTFOUND;
1704
1705 if (argc < 2)
1706 return KDB_ARGCOUNT;
1707
1708 nextarg = 1;
1709 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1710 if (diag)
1711 return diag;
1712
1713 if (nextarg > argc)
1714 return KDB_ARGCOUNT;
1715 diag = kdbgetaddrarg(argc, argv, &nextarg, &contents, NULL, NULL);
1716 if (diag)
1717 return diag;
1718
1719 if (nextarg != argc + 1)
1720 return KDB_ARGCOUNT;
1721
1722 width = argv[0][2] ? (argv[0][2] - '0') : (KDB_WORD_SIZE);
1723 diag = kdb_putword(addr, contents, width);
1724 if (diag)
1725 return diag;
1726
1727 kdb_printf(kdb_machreg_fmt " = " kdb_machreg_fmt "\n", addr, contents);
1728
1729 return 0;
1730 }
1731
1732 /*
1733 * kdb_go - This function implements the 'go' command.
1734 * go [address-expression]
1735 */
1736 static int kdb_go(int argc, const char **argv)
1737 {
1738 unsigned long addr;
1739 int diag;
1740 int nextarg;
1741 long offset;
1742
1743 if (raw_smp_processor_id() != kdb_initial_cpu) {
1744 kdb_printf("go must execute on the entry cpu, "
1745 "please use \"cpu %d\" and then execute go\n",
1746 kdb_initial_cpu);
1747 return KDB_BADCPUNUM;
1748 }
1749 if (argc == 1) {
1750 nextarg = 1;
1751 diag = kdbgetaddrarg(argc, argv, &nextarg,
1752 &addr, &offset, NULL);
1753 if (diag)
1754 return diag;
1755 } else if (argc) {
1756 return KDB_ARGCOUNT;
1757 }
1758
1759 diag = KDB_CMD_GO;
1760 if (KDB_FLAG(CATASTROPHIC)) {
1761 kdb_printf("Catastrophic error detected\n");
1762 kdb_printf("kdb_continue_catastrophic=%d, ",
1763 kdb_continue_catastrophic);
1764 if (kdb_continue_catastrophic == 0 && kdb_go_count++ == 0) {
1765 kdb_printf("type go a second time if you really want "
1766 "to continue\n");
1767 return 0;
1768 }
1769 if (kdb_continue_catastrophic == 2) {
1770 kdb_printf("forcing reboot\n");
1771 kdb_reboot(0, NULL);
1772 }
1773 kdb_printf("attempting to continue\n");
1774 }
1775 return diag;
1776 }
1777
1778 /*
1779 * kdb_rd - This function implements the 'rd' command.
1780 */
1781 static int kdb_rd(int argc, const char **argv)
1782 {
1783 int len = kdb_check_regs();
1784 #if DBG_MAX_REG_NUM > 0
1785 int i;
1786 char *rname;
1787 int rsize;
1788 u64 reg64;
1789 u32 reg32;
1790 u16 reg16;
1791 u8 reg8;
1792
1793 if (len)
1794 return len;
1795
1796 for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1797 rsize = dbg_reg_def[i].size * 2;
1798 if (rsize > 16)
1799 rsize = 2;
1800 if (len + strlen(dbg_reg_def[i].name) + 4 + rsize > 80) {
1801 len = 0;
1802 kdb_printf("\n");
1803 }
1804 if (len)
1805 len += kdb_printf(" ");
1806 switch(dbg_reg_def[i].size * 8) {
1807 case 8:
1808 rname = dbg_get_reg(i, &reg8, kdb_current_regs);
1809 if (!rname)
1810 break;
1811 len += kdb_printf("%s: %02x", rname, reg8);
1812 break;
1813 case 16:
1814 rname = dbg_get_reg(i, &reg16, kdb_current_regs);
1815 if (!rname)
1816 break;
1817 len += kdb_printf("%s: %04x", rname, reg16);
1818 break;
1819 case 32:
1820 rname = dbg_get_reg(i, &reg32, kdb_current_regs);
1821 if (!rname)
1822 break;
1823 len += kdb_printf("%s: %08x", rname, reg32);
1824 break;
1825 case 64:
1826 rname = dbg_get_reg(i, &reg64, kdb_current_regs);
1827 if (!rname)
1828 break;
1829 len += kdb_printf("%s: %016llx", rname, reg64);
1830 break;
1831 default:
1832 len += kdb_printf("%s: ??", dbg_reg_def[i].name);
1833 }
1834 }
1835 kdb_printf("\n");
1836 #else
1837 if (len)
1838 return len;
1839
1840 kdb_dumpregs(kdb_current_regs);
1841 #endif
1842 return 0;
1843 }
1844
1845 /*
1846 * kdb_rm - This function implements the 'rm' (register modify) command.
1847 * rm register-name new-contents
1848 * Remarks:
1849 * Allows register modification with the same restrictions as gdb
1850 */
1851 static int kdb_rm(int argc, const char **argv)
1852 {
1853 #if DBG_MAX_REG_NUM > 0
1854 int diag;
1855 const char *rname;
1856 int i;
1857 u64 reg64;
1858 u32 reg32;
1859 u16 reg16;
1860 u8 reg8;
1861
1862 if (argc != 2)
1863 return KDB_ARGCOUNT;
1864 /*
1865 * Allow presence or absence of leading '%' symbol.
1866 */
1867 rname = argv[1];
1868 if (*rname == '%')
1869 rname++;
1870
1871 diag = kdbgetu64arg(argv[2], &reg64);
1872 if (diag)
1873 return diag;
1874
1875 diag = kdb_check_regs();
1876 if (diag)
1877 return diag;
1878
1879 diag = KDB_BADREG;
1880 for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1881 if (strcmp(rname, dbg_reg_def[i].name) == 0) {
1882 diag = 0;
1883 break;
1884 }
1885 }
1886 if (!diag) {
1887 switch(dbg_reg_def[i].size * 8) {
1888 case 8:
1889 reg8 = reg64;
1890 dbg_set_reg(i, &reg8, kdb_current_regs);
1891 break;
1892 case 16:
1893 reg16 = reg64;
1894 dbg_set_reg(i, &reg16, kdb_current_regs);
1895 break;
1896 case 32:
1897 reg32 = reg64;
1898 dbg_set_reg(i, &reg32, kdb_current_regs);
1899 break;
1900 case 64:
1901 dbg_set_reg(i, &reg64, kdb_current_regs);
1902 break;
1903 }
1904 }
1905 return diag;
1906 #else
1907 kdb_printf("ERROR: Register set currently not implemented\n");
1908 return 0;
1909 #endif
1910 }
1911
1912 #if defined(CONFIG_MAGIC_SYSRQ)
1913 /*
1914 * kdb_sr - This function implements the 'sr' (SYSRQ key) command
1915 * which interfaces to the soi-disant MAGIC SYSRQ functionality.
1916 * sr <magic-sysrq-code>
1917 */
1918 static int kdb_sr(int argc, const char **argv)
1919 {
1920 if (argc != 1)
1921 return KDB_ARGCOUNT;
1922 kdb_trap_printk++;
1923 __handle_sysrq(*argv[1], false);
1924 kdb_trap_printk--;
1925
1926 return 0;
1927 }
1928 #endif /* CONFIG_MAGIC_SYSRQ */
1929
1930 /*
1931 * kdb_ef - This function implements the 'regs' (display exception
1932 * frame) command. This command takes an address and expects to
1933 * find an exception frame at that address, formats and prints
1934 * it.
1935 * regs address-expression
1936 * Remarks:
1937 * Not done yet.
1938 */
1939 static int kdb_ef(int argc, const char **argv)
1940 {
1941 int diag;
1942 unsigned long addr;
1943 long offset;
1944 int nextarg;
1945
1946 if (argc != 1)
1947 return KDB_ARGCOUNT;
1948
1949 nextarg = 1;
1950 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1951 if (diag)
1952 return diag;
1953 show_regs((struct pt_regs *)addr);
1954 return 0;
1955 }
1956
1957 #if defined(CONFIG_MODULES)
1958 /*
1959 * kdb_lsmod - This function implements the 'lsmod' command. Lists
1960 * currently loaded kernel modules.
1961 * Mostly taken from userland lsmod.
1962 */
1963 static int kdb_lsmod(int argc, const char **argv)
1964 {
1965 struct module *mod;
1966
1967 if (argc != 0)
1968 return KDB_ARGCOUNT;
1969
1970 kdb_printf("Module Size modstruct Used by\n");
1971 list_for_each_entry(mod, kdb_modules, list) {
1972
1973 kdb_printf("%-20s%8u 0x%p ", mod->name,
1974 mod->core_size, (void *)mod);
1975 #ifdef CONFIG_MODULE_UNLOAD
1976 kdb_printf("%4ld ", module_refcount(mod));
1977 #endif
1978 if (mod->state == MODULE_STATE_GOING)
1979 kdb_printf(" (Unloading)");
1980 else if (mod->state == MODULE_STATE_COMING)
1981 kdb_printf(" (Loading)");
1982 else
1983 kdb_printf(" (Live)");
1984 kdb_printf(" 0x%p", mod->module_core);
1985
1986 #ifdef CONFIG_MODULE_UNLOAD
1987 {
1988 struct module_use *use;
1989 kdb_printf(" [ ");
1990 list_for_each_entry(use, &mod->source_list,
1991 source_list)
1992 kdb_printf("%s ", use->target->name);
1993 kdb_printf("]\n");
1994 }
1995 #endif
1996 }
1997
1998 return 0;
1999 }
2000
2001 #endif /* CONFIG_MODULES */
2002
2003 /*
2004 * kdb_env - This function implements the 'env' command. Display the
2005 * current environment variables.
2006 */
2007
2008 static int kdb_env(int argc, const char **argv)
2009 {
2010 int i;
2011
2012 for (i = 0; i < __nenv; i++) {
2013 if (__env[i])
2014 kdb_printf("%s\n", __env[i]);
2015 }
2016
2017 if (KDB_DEBUG(MASK))
2018 kdb_printf("KDBFLAGS=0x%x\n", kdb_flags);
2019
2020 return 0;
2021 }
2022
2023 #ifdef CONFIG_PRINTK
2024 /*
2025 * kdb_dmesg - This function implements the 'dmesg' command to display
2026 * the contents of the syslog buffer.
2027 * dmesg [lines] [adjust]
2028 */
2029 static int kdb_dmesg(int argc, const char **argv)
2030 {
2031 int diag;
2032 int logging;
2033 int lines = 0;
2034 int adjust = 0;
2035 int n = 0;
2036 int skip = 0;
2037 struct kmsg_dumper dumper = { .active = 1 };
2038 size_t len;
2039 char buf[201];
2040
2041 if (argc > 2)
2042 return KDB_ARGCOUNT;
2043 if (argc) {
2044 char *cp;
2045 lines = simple_strtol(argv[1], &cp, 0);
2046 if (*cp)
2047 lines = 0;
2048 if (argc > 1) {
2049 adjust = simple_strtoul(argv[2], &cp, 0);
2050 if (*cp || adjust < 0)
2051 adjust = 0;
2052 }
2053 }
2054
2055 /* disable LOGGING if set */
2056 diag = kdbgetintenv("LOGGING", &logging);
2057 if (!diag && logging) {
2058 const char *setargs[] = { "set", "LOGGING", "0" };
2059 kdb_set(2, setargs);
2060 }
2061
2062 kmsg_dump_rewind_nolock(&dumper);
2063 while (kmsg_dump_get_line_nolock(&dumper, 1, NULL, 0, NULL))
2064 n++;
2065
2066 if (lines < 0) {
2067 if (adjust >= n)
2068 kdb_printf("buffer only contains %d lines, nothing "
2069 "printed\n", n);
2070 else if (adjust - lines >= n)
2071 kdb_printf("buffer only contains %d lines, last %d "
2072 "lines printed\n", n, n - adjust);
2073 skip = adjust;
2074 lines = abs(lines);
2075 } else if (lines > 0) {
2076 skip = n - lines - adjust;
2077 lines = abs(lines);
2078 if (adjust >= n) {
2079 kdb_printf("buffer only contains %d lines, "
2080 "nothing printed\n", n);
2081 skip = n;
2082 } else if (skip < 0) {
2083 lines += skip;
2084 skip = 0;
2085 kdb_printf("buffer only contains %d lines, first "
2086 "%d lines printed\n", n, lines);
2087 }
2088 } else {
2089 lines = n;
2090 }
2091
2092 if (skip >= n || skip < 0)
2093 return 0;
2094
2095 kmsg_dump_rewind_nolock(&dumper);
2096 while (kmsg_dump_get_line_nolock(&dumper, 1, buf, sizeof(buf), &len)) {
2097 if (skip) {
2098 skip--;
2099 continue;
2100 }
2101 if (!lines--)
2102 break;
2103
2104 kdb_printf("%.*s\n", (int)len - 1, buf);
2105 }
2106
2107 return 0;
2108 }
2109 #endif /* CONFIG_PRINTK */
2110 /*
2111 * kdb_cpu - This function implements the 'cpu' command.
2112 * cpu [<cpunum>]
2113 * Returns:
2114 * KDB_CMD_CPU for success, a kdb diagnostic if error
2115 */
2116 static void kdb_cpu_status(void)
2117 {
2118 int i, start_cpu, first_print = 1;
2119 char state, prev_state = '?';
2120
2121 kdb_printf("Currently on cpu %d\n", raw_smp_processor_id());
2122 kdb_printf("Available cpus: ");
2123 for (start_cpu = -1, i = 0; i < NR_CPUS; i++) {
2124 if (!cpu_online(i)) {
2125 state = 'F'; /* cpu is offline */
2126 } else {
2127 state = ' '; /* cpu is responding to kdb */
2128 if (kdb_task_state_char(KDB_TSK(i)) == 'I')
2129 state = 'I'; /* idle task */
2130 }
2131 if (state != prev_state) {
2132 if (prev_state != '?') {
2133 if (!first_print)
2134 kdb_printf(", ");
2135 first_print = 0;
2136 kdb_printf("%d", start_cpu);
2137 if (start_cpu < i-1)
2138 kdb_printf("-%d", i-1);
2139 if (prev_state != ' ')
2140 kdb_printf("(%c)", prev_state);
2141 }
2142 prev_state = state;
2143 start_cpu = i;
2144 }
2145 }
2146 /* print the trailing cpus, ignoring them if they are all offline */
2147 if (prev_state != 'F') {
2148 if (!first_print)
2149 kdb_printf(", ");
2150 kdb_printf("%d", start_cpu);
2151 if (start_cpu < i-1)
2152 kdb_printf("-%d", i-1);
2153 if (prev_state != ' ')
2154 kdb_printf("(%c)", prev_state);
2155 }
2156 kdb_printf("\n");
2157 }
2158
2159 static int kdb_cpu(int argc, const char **argv)
2160 {
2161 unsigned long cpunum;
2162 int diag;
2163
2164 if (argc == 0) {
2165 kdb_cpu_status();
2166 return 0;
2167 }
2168
2169 if (argc != 1)
2170 return KDB_ARGCOUNT;
2171
2172 diag = kdbgetularg(argv[1], &cpunum);
2173 if (diag)
2174 return diag;
2175
2176 /*
2177 * Validate cpunum
2178 */
2179 if ((cpunum > NR_CPUS) || !cpu_online(cpunum))
2180 return KDB_BADCPUNUM;
2181
2182 dbg_switch_cpu = cpunum;
2183
2184 /*
2185 * Switch to other cpu
2186 */
2187 return KDB_CMD_CPU;
2188 }
2189
2190 /* The user may not realize that ps/bta with no parameters does not print idle
2191 * or sleeping system daemon processes, so tell them how many were suppressed.
2192 */
2193 void kdb_ps_suppressed(void)
2194 {
2195 int idle = 0, daemon = 0;
2196 unsigned long mask_I = kdb_task_state_string("I"),
2197 mask_M = kdb_task_state_string("M");
2198 unsigned long cpu;
2199 const struct task_struct *p, *g;
2200 for_each_online_cpu(cpu) {
2201 p = kdb_curr_task(cpu);
2202 if (kdb_task_state(p, mask_I))
2203 ++idle;
2204 }
2205 kdb_do_each_thread(g, p) {
2206 if (kdb_task_state(p, mask_M))
2207 ++daemon;
2208 } kdb_while_each_thread(g, p);
2209 if (idle || daemon) {
2210 if (idle)
2211 kdb_printf("%d idle process%s (state I)%s\n",
2212 idle, idle == 1 ? "" : "es",
2213 daemon ? " and " : "");
2214 if (daemon)
2215 kdb_printf("%d sleeping system daemon (state M) "
2216 "process%s", daemon,
2217 daemon == 1 ? "" : "es");
2218 kdb_printf(" suppressed,\nuse 'ps A' to see all.\n");
2219 }
2220 }
2221
2222 /*
2223 * kdb_ps - This function implements the 'ps' command which shows a
2224 * list of the active processes.
2225 * ps [DRSTCZEUIMA] All processes, optionally filtered by state
2226 */
2227 void kdb_ps1(const struct task_struct *p)
2228 {
2229 int cpu;
2230 unsigned long tmp;
2231
2232 if (!p || probe_kernel_read(&tmp, (char *)p, sizeof(unsigned long)))
2233 return;
2234
2235 cpu = kdb_process_cpu(p);
2236 kdb_printf("0x%p %8d %8d %d %4d %c 0x%p %c%s\n",
2237 (void *)p, p->pid, p->parent->pid,
2238 kdb_task_has_cpu(p), kdb_process_cpu(p),
2239 kdb_task_state_char(p),
2240 (void *)(&p->thread),
2241 p == kdb_curr_task(raw_smp_processor_id()) ? '*' : ' ',
2242 p->comm);
2243 if (kdb_task_has_cpu(p)) {
2244 if (!KDB_TSK(cpu)) {
2245 kdb_printf(" Error: no saved data for this cpu\n");
2246 } else {
2247 if (KDB_TSK(cpu) != p)
2248 kdb_printf(" Error: does not match running "
2249 "process table (0x%p)\n", KDB_TSK(cpu));
2250 }
2251 }
2252 }
2253
2254 static int kdb_ps(int argc, const char **argv)
2255 {
2256 struct task_struct *g, *p;
2257 unsigned long mask, cpu;
2258
2259 if (argc == 0)
2260 kdb_ps_suppressed();
2261 kdb_printf("%-*s Pid Parent [*] cpu State %-*s Command\n",
2262 (int)(2*sizeof(void *))+2, "Task Addr",
2263 (int)(2*sizeof(void *))+2, "Thread");
2264 mask = kdb_task_state_string(argc ? argv[1] : NULL);
2265 /* Run the active tasks first */
2266 for_each_online_cpu(cpu) {
2267 if (KDB_FLAG(CMD_INTERRUPT))
2268 return 0;
2269 p = kdb_curr_task(cpu);
2270 if (kdb_task_state(p, mask))
2271 kdb_ps1(p);
2272 }
2273 kdb_printf("\n");
2274 /* Now the real tasks */
2275 kdb_do_each_thread(g, p) {
2276 if (KDB_FLAG(CMD_INTERRUPT))
2277 return 0;
2278 if (kdb_task_state(p, mask))
2279 kdb_ps1(p);
2280 } kdb_while_each_thread(g, p);
2281
2282 return 0;
2283 }
2284
2285 /*
2286 * kdb_pid - This function implements the 'pid' command which switches
2287 * the currently active process.
2288 * pid [<pid> | R]
2289 */
2290 static int kdb_pid(int argc, const char **argv)
2291 {
2292 struct task_struct *p;
2293 unsigned long val;
2294 int diag;
2295
2296 if (argc > 1)
2297 return KDB_ARGCOUNT;
2298
2299 if (argc) {
2300 if (strcmp(argv[1], "R") == 0) {
2301 p = KDB_TSK(kdb_initial_cpu);
2302 } else {
2303 diag = kdbgetularg(argv[1], &val);
2304 if (diag)
2305 return KDB_BADINT;
2306
2307 p = find_task_by_pid_ns((pid_t)val, &init_pid_ns);
2308 if (!p) {
2309 kdb_printf("No task with pid=%d\n", (pid_t)val);
2310 return 0;
2311 }
2312 }
2313 kdb_set_current_task(p);
2314 }
2315 kdb_printf("KDB current process is %s(pid=%d)\n",
2316 kdb_current_task->comm,
2317 kdb_current_task->pid);
2318
2319 return 0;
2320 }
2321
2322 /*
2323 * kdb_ll - This function implements the 'll' command which follows a
2324 * linked list and executes an arbitrary command for each
2325 * element.
2326 */
2327 static int kdb_ll(int argc, const char **argv)
2328 {
2329 int diag = 0;
2330 unsigned long addr;
2331 long offset = 0;
2332 unsigned long va;
2333 unsigned long linkoffset;
2334 int nextarg;
2335 const char *command;
2336
2337 if (argc != 3)
2338 return KDB_ARGCOUNT;
2339
2340 nextarg = 1;
2341 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
2342 if (diag)
2343 return diag;
2344
2345 diag = kdbgetularg(argv[2], &linkoffset);
2346 if (diag)
2347 return diag;
2348
2349 /*
2350 * Using the starting address as
2351 * the first element in the list, and assuming that
2352 * the list ends with a null pointer.
2353 */
2354
2355 va = addr;
2356 command = kdb_strdup(argv[3], GFP_KDB);
2357 if (!command) {
2358 kdb_printf("%s: cannot duplicate command\n", __func__);
2359 return 0;
2360 }
2361 /* Recursive use of kdb_parse, do not use argv after this point */
2362 argv = NULL;
2363
2364 while (va) {
2365 char buf[80];
2366
2367 if (KDB_FLAG(CMD_INTERRUPT))
2368 goto out;
2369
2370 sprintf(buf, "%s " kdb_machreg_fmt "\n", command, va);
2371 diag = kdb_parse(buf);
2372 if (diag)
2373 goto out;
2374
2375 addr = va + linkoffset;
2376 if (kdb_getword(&va, addr, sizeof(va)))
2377 goto out;
2378 }
2379
2380 out:
2381 kfree(command);
2382 return diag;
2383 }
2384
2385 static int kdb_kgdb(int argc, const char **argv)
2386 {
2387 return KDB_CMD_KGDB;
2388 }
2389
2390 /*
2391 * kdb_help - This function implements the 'help' and '?' commands.
2392 */
2393 static int kdb_help(int argc, const char **argv)
2394 {
2395 kdbtab_t *kt;
2396 int i;
2397
2398 kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description");
2399 kdb_printf("-----------------------------"
2400 "-----------------------------\n");
2401 for_each_kdbcmd(kt, i) {
2402 if (kt->cmd_name)
2403 kdb_printf("%-15.15s %-20.20s %s\n", kt->cmd_name,
2404 kt->cmd_usage, kt->cmd_help);
2405 if (KDB_FLAG(CMD_INTERRUPT))
2406 return 0;
2407 }
2408 return 0;
2409 }
2410
2411 /*
2412 * kdb_kill - This function implements the 'kill' commands.
2413 */
2414 static int kdb_kill(int argc, const char **argv)
2415 {
2416 long sig, pid;
2417 char *endp;
2418 struct task_struct *p;
2419 struct siginfo info;
2420
2421 if (argc != 2)
2422 return KDB_ARGCOUNT;
2423
2424 sig = simple_strtol(argv[1], &endp, 0);
2425 if (*endp)
2426 return KDB_BADINT;
2427 if (sig >= 0) {
2428 kdb_printf("Invalid signal parameter.<-signal>\n");
2429 return 0;
2430 }
2431 sig = -sig;
2432
2433 pid = simple_strtol(argv[2], &endp, 0);
2434 if (*endp)
2435 return KDB_BADINT;
2436 if (pid <= 0) {
2437 kdb_printf("Process ID must be large than 0.\n");
2438 return 0;
2439 }
2440
2441 /* Find the process. */
2442 p = find_task_by_pid_ns(pid, &init_pid_ns);
2443 if (!p) {
2444 kdb_printf("The specified process isn't found.\n");
2445 return 0;
2446 }
2447 p = p->group_leader;
2448 info.si_signo = sig;
2449 info.si_errno = 0;
2450 info.si_code = SI_USER;
2451 info.si_pid = pid; /* same capabilities as process being signalled */
2452 info.si_uid = 0; /* kdb has root authority */
2453 kdb_send_sig_info(p, &info);
2454 return 0;
2455 }
2456
2457 struct kdb_tm {
2458 int tm_sec; /* seconds */
2459 int tm_min; /* minutes */
2460 int tm_hour; /* hours */
2461 int tm_mday; /* day of the month */
2462 int tm_mon; /* month */
2463 int tm_year; /* year */
2464 };
2465
2466 static void kdb_gmtime(struct timespec *tv, struct kdb_tm *tm)
2467 {
2468 /* This will work from 1970-2099, 2100 is not a leap year */
2469 static int mon_day[] = { 31, 29, 31, 30, 31, 30, 31,
2470 31, 30, 31, 30, 31 };
2471 memset(tm, 0, sizeof(*tm));
2472 tm->tm_sec = tv->tv_sec % (24 * 60 * 60);
2473 tm->tm_mday = tv->tv_sec / (24 * 60 * 60) +
2474 (2 * 365 + 1); /* shift base from 1970 to 1968 */
2475 tm->tm_min = tm->tm_sec / 60 % 60;
2476 tm->tm_hour = tm->tm_sec / 60 / 60;
2477 tm->tm_sec = tm->tm_sec % 60;
2478 tm->tm_year = 68 + 4*(tm->tm_mday / (4*365+1));
2479 tm->tm_mday %= (4*365+1);
2480 mon_day[1] = 29;
2481 while (tm->tm_mday >= mon_day[tm->tm_mon]) {
2482 tm->tm_mday -= mon_day[tm->tm_mon];
2483 if (++tm->tm_mon == 12) {
2484 tm->tm_mon = 0;
2485 ++tm->tm_year;
2486 mon_day[1] = 28;
2487 }
2488 }
2489 ++tm->tm_mday;
2490 }
2491
2492 /*
2493 * Most of this code has been lifted from kernel/timer.c::sys_sysinfo().
2494 * I cannot call that code directly from kdb, it has an unconditional
2495 * cli()/sti() and calls routines that take locks which can stop the debugger.
2496 */
2497 static void kdb_sysinfo(struct sysinfo *val)
2498 {
2499 struct timespec uptime;
2500 do_posix_clock_monotonic_gettime(&uptime);
2501 memset(val, 0, sizeof(*val));
2502 val->uptime = uptime.tv_sec;
2503 val->loads[0] = avenrun[0];
2504 val->loads[1] = avenrun[1];
2505 val->loads[2] = avenrun[2];
2506 val->procs = nr_threads-1;
2507 si_meminfo(val);
2508
2509 return;
2510 }
2511
2512 /*
2513 * kdb_summary - This function implements the 'summary' command.
2514 */
2515 static int kdb_summary(int argc, const char **argv)
2516 {
2517 struct timespec now;
2518 struct kdb_tm tm;
2519 struct sysinfo val;
2520
2521 if (argc)
2522 return KDB_ARGCOUNT;
2523
2524 kdb_printf("sysname %s\n", init_uts_ns.name.sysname);
2525 kdb_printf("release %s\n", init_uts_ns.name.release);
2526 kdb_printf("version %s\n", init_uts_ns.name.version);
2527 kdb_printf("machine %s\n", init_uts_ns.name.machine);
2528 kdb_printf("nodename %s\n", init_uts_ns.name.nodename);
2529 kdb_printf("domainname %s\n", init_uts_ns.name.domainname);
2530 kdb_printf("ccversion %s\n", __stringify(CCVERSION));
2531
2532 now = __current_kernel_time();
2533 kdb_gmtime(&now, &tm);
2534 kdb_printf("date %04d-%02d-%02d %02d:%02d:%02d "
2535 "tz_minuteswest %d\n",
2536 1900+tm.tm_year, tm.tm_mon+1, tm.tm_mday,
2537 tm.tm_hour, tm.tm_min, tm.tm_sec,
2538 sys_tz.tz_minuteswest);
2539
2540 kdb_sysinfo(&val);
2541 kdb_printf("uptime ");
2542 if (val.uptime > (24*60*60)) {
2543 int days = val.uptime / (24*60*60);
2544 val.uptime %= (24*60*60);
2545 kdb_printf("%d day%s ", days, days == 1 ? "" : "s");
2546 }
2547 kdb_printf("%02ld:%02ld\n", val.uptime/(60*60), (val.uptime/60)%60);
2548
2549 /* lifted from fs/proc/proc_misc.c::loadavg_read_proc() */
2550
2551 #define LOAD_INT(x) ((x) >> FSHIFT)
2552 #define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
2553 kdb_printf("load avg %ld.%02ld %ld.%02ld %ld.%02ld\n",
2554 LOAD_INT(val.loads[0]), LOAD_FRAC(val.loads[0]),
2555 LOAD_INT(val.loads[1]), LOAD_FRAC(val.loads[1]),
2556 LOAD_INT(val.loads[2]), LOAD_FRAC(val.loads[2]));
2557 #undef LOAD_INT
2558 #undef LOAD_FRAC
2559 /* Display in kilobytes */
2560 #define K(x) ((x) << (PAGE_SHIFT - 10))
2561 kdb_printf("\nMemTotal: %8lu kB\nMemFree: %8lu kB\n"
2562 "Buffers: %8lu kB\n",
2563 val.totalram, val.freeram, val.bufferram);
2564 return 0;
2565 }
2566
2567 /*
2568 * kdb_per_cpu - This function implements the 'per_cpu' command.
2569 */
2570 static int kdb_per_cpu(int argc, const char **argv)
2571 {
2572 char fmtstr[64];
2573 int cpu, diag, nextarg = 1;
2574 unsigned long addr, symaddr, val, bytesperword = 0, whichcpu = ~0UL;
2575
2576 if (argc < 1 || argc > 3)
2577 return KDB_ARGCOUNT;
2578
2579 diag = kdbgetaddrarg(argc, argv, &nextarg, &symaddr, NULL, NULL);
2580 if (diag)
2581 return diag;
2582
2583 if (argc >= 2) {
2584 diag = kdbgetularg(argv[2], &bytesperword);
2585 if (diag)
2586 return diag;
2587 }
2588 if (!bytesperword)
2589 bytesperword = KDB_WORD_SIZE;
2590 else if (bytesperword > KDB_WORD_SIZE)
2591 return KDB_BADWIDTH;
2592 sprintf(fmtstr, "%%0%dlx ", (int)(2*bytesperword));
2593 if (argc >= 3) {
2594 diag = kdbgetularg(argv[3], &whichcpu);
2595 if (diag)
2596 return diag;
2597 if (!cpu_online(whichcpu)) {
2598 kdb_printf("cpu %ld is not online\n", whichcpu);
2599 return KDB_BADCPUNUM;
2600 }
2601 }
2602
2603 /* Most architectures use __per_cpu_offset[cpu], some use
2604 * __per_cpu_offset(cpu), smp has no __per_cpu_offset.
2605 */
2606 #ifdef __per_cpu_offset
2607 #define KDB_PCU(cpu) __per_cpu_offset(cpu)
2608 #else
2609 #ifdef CONFIG_SMP
2610 #define KDB_PCU(cpu) __per_cpu_offset[cpu]
2611 #else
2612 #define KDB_PCU(cpu) 0
2613 #endif
2614 #endif
2615 for_each_online_cpu(cpu) {
2616 if (KDB_FLAG(CMD_INTERRUPT))
2617 return 0;
2618
2619 if (whichcpu != ~0UL && whichcpu != cpu)
2620 continue;
2621 addr = symaddr + KDB_PCU(cpu);
2622 diag = kdb_getword(&val, addr, bytesperword);
2623 if (diag) {
2624 kdb_printf("%5d " kdb_bfd_vma_fmt0 " - unable to "
2625 "read, diag=%d\n", cpu, addr, diag);
2626 continue;
2627 }
2628 kdb_printf("%5d ", cpu);
2629 kdb_md_line(fmtstr, addr,
2630 bytesperword == KDB_WORD_SIZE,
2631 1, bytesperword, 1, 1, 0);
2632 }
2633 #undef KDB_PCU
2634 return 0;
2635 }
2636
2637 /*
2638 * display help for the use of cmd | grep pattern
2639 */
2640 static int kdb_grep_help(int argc, const char **argv)
2641 {
2642 kdb_printf("Usage of cmd args | grep pattern:\n");
2643 kdb_printf(" Any command's output may be filtered through an ");
2644 kdb_printf("emulated 'pipe'.\n");
2645 kdb_printf(" 'grep' is just a key word.\n");
2646 kdb_printf(" The pattern may include a very limited set of "
2647 "metacharacters:\n");
2648 kdb_printf(" pattern or ^pattern or pattern$ or ^pattern$\n");
2649 kdb_printf(" And if there are spaces in the pattern, you may "
2650 "quote it:\n");
2651 kdb_printf(" \"pat tern\" or \"^pat tern\" or \"pat tern$\""
2652 " or \"^pat tern$\"\n");
2653 return 0;
2654 }
2655
2656 /*
2657 * kdb_register_repeat - This function is used to register a kernel
2658 * debugger command.
2659 * Inputs:
2660 * cmd Command name
2661 * func Function to execute the command
2662 * usage A simple usage string showing arguments
2663 * help A simple help string describing command
2664 * repeat Does the command auto repeat on enter?
2665 * Returns:
2666 * zero for success, one if a duplicate command.
2667 */
2668 #define kdb_command_extend 50 /* arbitrary */
2669 int kdb_register_repeat(char *cmd,
2670 kdb_func_t func,
2671 char *usage,
2672 char *help,
2673 short minlen,
2674 kdb_repeat_t repeat)
2675 {
2676 int i;
2677 kdbtab_t *kp;
2678
2679 /*
2680 * Brute force method to determine duplicates
2681 */
2682 for_each_kdbcmd(kp, i) {
2683 if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2684 kdb_printf("Duplicate kdb command registered: "
2685 "%s, func %p help %s\n", cmd, func, help);
2686 return 1;
2687 }
2688 }
2689
2690 /*
2691 * Insert command into first available location in table
2692 */
2693 for_each_kdbcmd(kp, i) {
2694 if (kp->cmd_name == NULL)
2695 break;
2696 }
2697
2698 if (i >= kdb_max_commands) {
2699 kdbtab_t *new = kmalloc((kdb_max_commands - KDB_BASE_CMD_MAX +
2700 kdb_command_extend) * sizeof(*new), GFP_KDB);
2701 if (!new) {
2702 kdb_printf("Could not allocate new kdb_command "
2703 "table\n");
2704 return 1;
2705 }
2706 if (kdb_commands) {
2707 memcpy(new, kdb_commands,
2708 (kdb_max_commands - KDB_BASE_CMD_MAX) * sizeof(*new));
2709 kfree(kdb_commands);
2710 }
2711 memset(new + kdb_max_commands, 0,
2712 kdb_command_extend * sizeof(*new));
2713 kdb_commands = new;
2714 kp = kdb_commands + kdb_max_commands - KDB_BASE_CMD_MAX;
2715 kdb_max_commands += kdb_command_extend;
2716 }
2717
2718 kp->cmd_name = cmd;
2719 kp->cmd_func = func;
2720 kp->cmd_usage = usage;
2721 kp->cmd_help = help;
2722 kp->cmd_flags = 0;
2723 kp->cmd_minlen = minlen;
2724 kp->cmd_repeat = repeat;
2725
2726 return 0;
2727 }
2728 EXPORT_SYMBOL_GPL(kdb_register_repeat);
2729
2730
2731 /*
2732 * kdb_register - Compatibility register function for commands that do
2733 * not need to specify a repeat state. Equivalent to
2734 * kdb_register_repeat with KDB_REPEAT_NONE.
2735 * Inputs:
2736 * cmd Command name
2737 * func Function to execute the command
2738 * usage A simple usage string showing arguments
2739 * help A simple help string describing command
2740 * Returns:
2741 * zero for success, one if a duplicate command.
2742 */
2743 int kdb_register(char *cmd,
2744 kdb_func_t func,
2745 char *usage,
2746 char *help,
2747 short minlen)
2748 {
2749 return kdb_register_repeat(cmd, func, usage, help, minlen,
2750 KDB_REPEAT_NONE);
2751 }
2752 EXPORT_SYMBOL_GPL(kdb_register);
2753
2754 /*
2755 * kdb_unregister - This function is used to unregister a kernel
2756 * debugger command. It is generally called when a module which
2757 * implements kdb commands is unloaded.
2758 * Inputs:
2759 * cmd Command name
2760 * Returns:
2761 * zero for success, one command not registered.
2762 */
2763 int kdb_unregister(char *cmd)
2764 {
2765 int i;
2766 kdbtab_t *kp;
2767
2768 /*
2769 * find the command.
2770 */
2771 for_each_kdbcmd(kp, i) {
2772 if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2773 kp->cmd_name = NULL;
2774 return 0;
2775 }
2776 }
2777
2778 /* Couldn't find it. */
2779 return 1;
2780 }
2781 EXPORT_SYMBOL_GPL(kdb_unregister);
2782
2783 /* Initialize the kdb command table. */
2784 static void __init kdb_inittab(void)
2785 {
2786 int i;
2787 kdbtab_t *kp;
2788
2789 for_each_kdbcmd(kp, i)
2790 kp->cmd_name = NULL;
2791
2792 kdb_register_repeat("md", kdb_md, "<vaddr>",
2793 "Display Memory Contents, also mdWcN, e.g. md8c1", 1,
2794 KDB_REPEAT_NO_ARGS);
2795 kdb_register_repeat("mdr", kdb_md, "<vaddr> <bytes>",
2796 "Display Raw Memory", 0, KDB_REPEAT_NO_ARGS);
2797 kdb_register_repeat("mdp", kdb_md, "<paddr> <bytes>",
2798 "Display Physical Memory", 0, KDB_REPEAT_NO_ARGS);
2799 kdb_register_repeat("mds", kdb_md, "<vaddr>",
2800 "Display Memory Symbolically", 0, KDB_REPEAT_NO_ARGS);
2801 kdb_register_repeat("mm", kdb_mm, "<vaddr> <contents>",
2802 "Modify Memory Contents", 0, KDB_REPEAT_NO_ARGS);
2803 kdb_register_repeat("go", kdb_go, "[<vaddr>]",
2804 "Continue Execution", 1, KDB_REPEAT_NONE);
2805 kdb_register_repeat("rd", kdb_rd, "",
2806 "Display Registers", 0, KDB_REPEAT_NONE);
2807 kdb_register_repeat("rm", kdb_rm, "<reg> <contents>",
2808 "Modify Registers", 0, KDB_REPEAT_NONE);
2809 kdb_register_repeat("ef", kdb_ef, "<vaddr>",
2810 "Display exception frame", 0, KDB_REPEAT_NONE);
2811 kdb_register_repeat("bt", kdb_bt, "[<vaddr>]",
2812 "Stack traceback", 1, KDB_REPEAT_NONE);
2813 kdb_register_repeat("btp", kdb_bt, "<pid>",
2814 "Display stack for process <pid>", 0, KDB_REPEAT_NONE);
2815 kdb_register_repeat("bta", kdb_bt, "[DRSTCZEUIMA]",
2816 "Display stack all processes", 0, KDB_REPEAT_NONE);
2817 kdb_register_repeat("btc", kdb_bt, "",
2818 "Backtrace current process on each cpu", 0, KDB_REPEAT_NONE);
2819 kdb_register_repeat("btt", kdb_bt, "<vaddr>",
2820 "Backtrace process given its struct task address", 0,
2821 KDB_REPEAT_NONE);
2822 kdb_register_repeat("ll", kdb_ll, "<first-element> <linkoffset> <cmd>",
2823 "Execute cmd for each element in linked list", 0, KDB_REPEAT_NONE);
2824 kdb_register_repeat("env", kdb_env, "",
2825 "Show environment variables", 0, KDB_REPEAT_NONE);
2826 kdb_register_repeat("set", kdb_set, "",
2827 "Set environment variables", 0, KDB_REPEAT_NONE);
2828 kdb_register_repeat("help", kdb_help, "",
2829 "Display Help Message", 1, KDB_REPEAT_NONE);
2830 kdb_register_repeat("?", kdb_help, "",
2831 "Display Help Message", 0, KDB_REPEAT_NONE);
2832 kdb_register_repeat("cpu", kdb_cpu, "<cpunum>",
2833 "Switch to new cpu", 0, KDB_REPEAT_NONE);
2834 kdb_register_repeat("kgdb", kdb_kgdb, "",
2835 "Enter kgdb mode", 0, KDB_REPEAT_NONE);
2836 kdb_register_repeat("ps", kdb_ps, "[<flags>|A]",
2837 "Display active task list", 0, KDB_REPEAT_NONE);
2838 kdb_register_repeat("pid", kdb_pid, "<pidnum>",
2839 "Switch to another task", 0, KDB_REPEAT_NONE);
2840 kdb_register_repeat("reboot", kdb_reboot, "",
2841 "Reboot the machine immediately", 0, KDB_REPEAT_NONE);
2842 #if defined(CONFIG_MODULES)
2843 kdb_register_repeat("lsmod", kdb_lsmod, "",
2844 "List loaded kernel modules", 0, KDB_REPEAT_NONE);
2845 #endif
2846 #if defined(CONFIG_MAGIC_SYSRQ)
2847 kdb_register_repeat("sr", kdb_sr, "<key>",
2848 "Magic SysRq key", 0, KDB_REPEAT_NONE);
2849 #endif
2850 #if defined(CONFIG_PRINTK)
2851 kdb_register_repeat("dmesg", kdb_dmesg, "[lines]",
2852 "Display syslog buffer", 0, KDB_REPEAT_NONE);
2853 #endif
2854 kdb_register_repeat("defcmd", kdb_defcmd, "name \"usage\" \"help\"",
2855 "Define a set of commands, down to endefcmd", 0, KDB_REPEAT_NONE);
2856 kdb_register_repeat("kill", kdb_kill, "<-signal> <pid>",
2857 "Send a signal to a process", 0, KDB_REPEAT_NONE);
2858 kdb_register_repeat("summary", kdb_summary, "",
2859 "Summarize the system", 4, KDB_REPEAT_NONE);
2860 kdb_register_repeat("per_cpu", kdb_per_cpu, "<sym> [<bytes>] [<cpu>]",
2861 "Display per_cpu variables", 3, KDB_REPEAT_NONE);
2862 kdb_register_repeat("grephelp", kdb_grep_help, "",
2863 "Display help on | grep", 0, KDB_REPEAT_NONE);
2864 }
2865
2866 /* Execute any commands defined in kdb_cmds. */
2867 static void __init kdb_cmd_init(void)
2868 {
2869 int i, diag;
2870 for (i = 0; kdb_cmds[i]; ++i) {
2871 diag = kdb_parse(kdb_cmds[i]);
2872 if (diag)
2873 kdb_printf("kdb command %s failed, kdb diag %d\n",
2874 kdb_cmds[i], diag);
2875 }
2876 if (defcmd_in_progress) {
2877 kdb_printf("Incomplete 'defcmd' set, forcing endefcmd\n");
2878 kdb_parse("endefcmd");
2879 }
2880 }
2881
2882 /* Initialize kdb_printf, breakpoint tables and kdb state */
2883 void __init kdb_init(int lvl)
2884 {
2885 static int kdb_init_lvl = KDB_NOT_INITIALIZED;
2886 int i;
2887
2888 if (kdb_init_lvl == KDB_INIT_FULL || lvl <= kdb_init_lvl)
2889 return;
2890 for (i = kdb_init_lvl; i < lvl; i++) {
2891 switch (i) {
2892 case KDB_NOT_INITIALIZED:
2893 kdb_inittab(); /* Initialize Command Table */
2894 kdb_initbptab(); /* Initialize Breakpoints */
2895 break;
2896 case KDB_INIT_EARLY:
2897 kdb_cmd_init(); /* Build kdb_cmds tables */
2898 break;
2899 }
2900 }
2901 kdb_init_lvl = lvl;
2902 }
This page took 0.09571 seconds and 5 git commands to generate.