Merge tag 'chrome-platform' of git://git.kernel.org/pub/scm/linux/kernel/git/olof...
[deliverable/linux.git] / kernel / events / callchain.c
1 /*
2 * Performance events callchain code, extracted from core.c:
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/perf_event.h>
13 #include <linux/slab.h>
14 #include "internal.h"
15
16 struct callchain_cpus_entries {
17 struct rcu_head rcu_head;
18 struct perf_callchain_entry *cpu_entries[0];
19 };
20
21 int sysctl_perf_event_max_stack __read_mostly = PERF_MAX_STACK_DEPTH;
22 int sysctl_perf_event_max_contexts_per_stack __read_mostly = PERF_MAX_CONTEXTS_PER_STACK;
23
24 static inline size_t perf_callchain_entry__sizeof(void)
25 {
26 return (sizeof(struct perf_callchain_entry) +
27 sizeof(__u64) * (sysctl_perf_event_max_stack +
28 sysctl_perf_event_max_contexts_per_stack));
29 }
30
31 static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]);
32 static atomic_t nr_callchain_events;
33 static DEFINE_MUTEX(callchain_mutex);
34 static struct callchain_cpus_entries *callchain_cpus_entries;
35
36
37 __weak void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry,
38 struct pt_regs *regs)
39 {
40 }
41
42 __weak void perf_callchain_user(struct perf_callchain_entry_ctx *entry,
43 struct pt_regs *regs)
44 {
45 }
46
47 static void release_callchain_buffers_rcu(struct rcu_head *head)
48 {
49 struct callchain_cpus_entries *entries;
50 int cpu;
51
52 entries = container_of(head, struct callchain_cpus_entries, rcu_head);
53
54 for_each_possible_cpu(cpu)
55 kfree(entries->cpu_entries[cpu]);
56
57 kfree(entries);
58 }
59
60 static void release_callchain_buffers(void)
61 {
62 struct callchain_cpus_entries *entries;
63
64 entries = callchain_cpus_entries;
65 RCU_INIT_POINTER(callchain_cpus_entries, NULL);
66 call_rcu(&entries->rcu_head, release_callchain_buffers_rcu);
67 }
68
69 static int alloc_callchain_buffers(void)
70 {
71 int cpu;
72 int size;
73 struct callchain_cpus_entries *entries;
74
75 /*
76 * We can't use the percpu allocation API for data that can be
77 * accessed from NMI. Use a temporary manual per cpu allocation
78 * until that gets sorted out.
79 */
80 size = offsetof(struct callchain_cpus_entries, cpu_entries[nr_cpu_ids]);
81
82 entries = kzalloc(size, GFP_KERNEL);
83 if (!entries)
84 return -ENOMEM;
85
86 size = perf_callchain_entry__sizeof() * PERF_NR_CONTEXTS;
87
88 for_each_possible_cpu(cpu) {
89 entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL,
90 cpu_to_node(cpu));
91 if (!entries->cpu_entries[cpu])
92 goto fail;
93 }
94
95 rcu_assign_pointer(callchain_cpus_entries, entries);
96
97 return 0;
98
99 fail:
100 for_each_possible_cpu(cpu)
101 kfree(entries->cpu_entries[cpu]);
102 kfree(entries);
103
104 return -ENOMEM;
105 }
106
107 int get_callchain_buffers(void)
108 {
109 int err = 0;
110 int count;
111
112 mutex_lock(&callchain_mutex);
113
114 count = atomic_inc_return(&nr_callchain_events);
115 if (WARN_ON_ONCE(count < 1)) {
116 err = -EINVAL;
117 goto exit;
118 }
119
120 if (count > 1) {
121 /* If the allocation failed, give up */
122 if (!callchain_cpus_entries)
123 err = -ENOMEM;
124 goto exit;
125 }
126
127 err = alloc_callchain_buffers();
128 exit:
129 if (err)
130 atomic_dec(&nr_callchain_events);
131
132 mutex_unlock(&callchain_mutex);
133
134 return err;
135 }
136
137 void put_callchain_buffers(void)
138 {
139 if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) {
140 release_callchain_buffers();
141 mutex_unlock(&callchain_mutex);
142 }
143 }
144
145 static struct perf_callchain_entry *get_callchain_entry(int *rctx)
146 {
147 int cpu;
148 struct callchain_cpus_entries *entries;
149
150 *rctx = get_recursion_context(this_cpu_ptr(callchain_recursion));
151 if (*rctx == -1)
152 return NULL;
153
154 entries = rcu_dereference(callchain_cpus_entries);
155 if (!entries)
156 return NULL;
157
158 cpu = smp_processor_id();
159
160 return (((void *)entries->cpu_entries[cpu]) +
161 (*rctx * perf_callchain_entry__sizeof()));
162 }
163
164 static void
165 put_callchain_entry(int rctx)
166 {
167 put_recursion_context(this_cpu_ptr(callchain_recursion), rctx);
168 }
169
170 struct perf_callchain_entry *
171 perf_callchain(struct perf_event *event, struct pt_regs *regs)
172 {
173 bool kernel = !event->attr.exclude_callchain_kernel;
174 bool user = !event->attr.exclude_callchain_user;
175 /* Disallow cross-task user callchains. */
176 bool crosstask = event->ctx->task && event->ctx->task != current;
177
178 if (!kernel && !user)
179 return NULL;
180
181 return get_perf_callchain(regs, 0, kernel, user, sysctl_perf_event_max_stack, crosstask, true);
182 }
183
184 struct perf_callchain_entry *
185 get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user,
186 u32 max_stack, bool crosstask, bool add_mark)
187 {
188 struct perf_callchain_entry *entry;
189 struct perf_callchain_entry_ctx ctx;
190 int rctx;
191
192 entry = get_callchain_entry(&rctx);
193 if (rctx == -1)
194 return NULL;
195
196 if (!entry)
197 goto exit_put;
198
199 ctx.entry = entry;
200 ctx.max_stack = max_stack;
201 ctx.nr = entry->nr = init_nr;
202 ctx.contexts = 0;
203 ctx.contexts_maxed = false;
204
205 if (kernel && !user_mode(regs)) {
206 if (add_mark)
207 perf_callchain_store_context(&ctx, PERF_CONTEXT_KERNEL);
208 perf_callchain_kernel(&ctx, regs);
209 }
210
211 if (user) {
212 if (!user_mode(regs)) {
213 if (current->mm)
214 regs = task_pt_regs(current);
215 else
216 regs = NULL;
217 }
218
219 if (regs) {
220 if (crosstask)
221 goto exit_put;
222
223 if (add_mark)
224 perf_callchain_store_context(&ctx, PERF_CONTEXT_USER);
225 perf_callchain_user(&ctx, regs);
226 }
227 }
228
229 exit_put:
230 put_callchain_entry(rctx);
231
232 return entry;
233 }
234
235 /*
236 * Used for sysctl_perf_event_max_stack and
237 * sysctl_perf_event_max_contexts_per_stack.
238 */
239 int perf_event_max_stack_handler(struct ctl_table *table, int write,
240 void __user *buffer, size_t *lenp, loff_t *ppos)
241 {
242 int *value = table->data;
243 int new_value = *value, ret;
244 struct ctl_table new_table = *table;
245
246 new_table.data = &new_value;
247 ret = proc_dointvec_minmax(&new_table, write, buffer, lenp, ppos);
248 if (ret || !write)
249 return ret;
250
251 mutex_lock(&callchain_mutex);
252 if (atomic_read(&nr_callchain_events))
253 ret = -EBUSY;
254 else
255 *value = new_value;
256
257 mutex_unlock(&callchain_mutex);
258
259 return ret;
260 }
This page took 0.036779 seconds and 6 git commands to generate.